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The indirect health effects of malaria estimated
from health advantages of the sickle cell trait
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Most estimates of the burden of malaria are based on its direct impacts; however, its true
burden is likely to be greater because of its wider effects on overall health. Here we estimate
the indirect impact of malaria on children’s health in a case-control study, using the sickle cell
trait (HbAS), a condition associated with a high degree of specific malaria resistance, as a
proxy indicator for an effective intervention. We estimate the odds ratios for HbAS among
cases (all children admitted to Kilifi County Hospital during 2000-2004) versus community
controls. As expected, HbAS protects strongly against malaria admissions (aOR 0.26; 95%Cl
0.22-0.31), but it also protects against other syndromes, including neonatal conditions (aOR
0.79; 0.67-0.93), bacteraemia (aOR 0.69; 0.54-0.88) and severe malnutrition (aOR 0.67;
0.55-0.83). The wider health impacts of malaria should be considered when estimating the
potential added benefits of effective malaria interventions.
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lasmodium falciparum malaria is a major cause of child

morbidity and mortality in tropical and sub-tropical

regions of the world. While a substantial proportion of
this mortality is directly attributable to the complications of
individual infections!, malaria may also have a wider impact
through its indirect effects on children’s health?3. For example,
malaria is a recognized cause of malnutrition?, itself a major
determinant of disease susceptibility’, and can also predispose
children to invasive bacterial infections®. Nevertheless, quantify-
ing this indirect effect can be difficult’. Intervention studies can
be hard to interpret because most interventions are not entirely
specific to malaria and can result in wider impacts on morbidity
and mortality through study effects. In the current study, we take
an alternative approach through which we use the case-control
frequencies of the sickle cell trait (HbAS), the archetypal malaria
resistance trait®?, as a proxy measure for the potential impact that
an effective and specific malaria intervention might have on a
wide range of common childhood conditions. Through this study
we confirm that malaria has wider impacts on children’s health
than can not be attributed to the results of acute infections alone,
a fact that should be taken into account when estimating the true
burden of malaria on overall child health.

Results

Study population. The study included 20,574 children < 14 years
of age who were admitted to Kilifi County Hospital (KCH) from
within the study area covered by the Kilifi Health and Demo-
graphic Surveillance System (KHDSS) during the 5-year period
between 15t January 2000 and 315t December 2004. Of these
potential cases, 18,864 (92%) were genotyped successfully for HbS
and were included in the current analysis (Fig. 1). The baseline
demographic, anthropometric and hematological characteristics
of these children are summarized in Table 1. No systematic dif-
ferences were seen with regard to these characteristics between
genotyped and un-genotyped cases. Hospitalized HbAS children
were younger, better nourished and less anemic than those with
HbAA. Moreover, as expected, parasite densities were lower
among those HbAS cases whose blood films were positive for P.
falciparum malaria.

Disease classification. We classified the disease phenotypes of
cases using both non-hierarchical and hierarchical approaches.
The first approach allowed for multiple diagnoses within indivi-
dual children while the latter classified each child with only a
single phenotype on the basis of a hierarchy based on clinical and
laboratory criteria (see Supplementary Table 1). The clinical
phenotypes and outcome of hospital admission among non-
hierarchically classified cases, stratified by HbAS genotype, are
summarized in Table 2. Compared to those with HbAA, a sub-
stantially lower proportion of HbAS cases were admitted with a
diagnosis of either malaria or severe malaria, and HbAS cases
were approximately half as likely to be severely anemic or to
receive a blood transfusion.

Quantifying the non-specific contribution of malaria. We then
estimated the contribution of malaria to the risk of hospital
admission, both overall and with a range of specific clinical
syndromes, by using HbAS as a proxy-indicator for an effective
malaria intervention. We did this by comparing the prevalence of
HbAS among cases to that in a large group of community con-
trols who were recruited from within the same geographic area as
cases [n=4707: 4006 (85.1%) HbAA and 701 (14.9%) HbAS].
The results of these analyses are summarized as Odds Ratios
(ORs) in Table 3. These analyses showed that HbAS was asso-
ciated with significant protection against admission to hospital

both overall [adjusted OR (aOR) 0.62; 95% CI 0.55-0.69; P <
0.0001, determined by logistic regression] and from admission
with a wide range of specific diagnoses. While the effect size was
greatest for conditions directly related to malaria, including
malaria overall (aOR: 0.26; CI: 0.22-0.31; P <0.0001), strictly
defined severe malaria (aOR: 0.14; CI: 0.09-0.22; P < 0.0001), and
severe anemia (aOR: 0.35; CI: 0.27-0.46; P <0.0001), HbAS was
also associated with protection from admission with a range of
conditions that could not easily have been directly attributable to
malaria. For example, children with HbAS were less likely to be
admitted to hospital with conditions associated with a negative
malaria blood film (0.90; 0.83-0.98; P =0.011) or to be admitted
during the first 28 days of life (0.79; 0.67-0.93; P = 0.005). Fur-
thermore, HbAS infants who were admitted during this period
were significantly better nourished (weight-for-age Z score —1.59;
—1.66, —1.52) than HbAA children (—1.69; —1.71, —1.67; P=
0.006) (Table 1). Similarly, in comparison to those with HbAA,
HbAS children were less likely to be admitted to hospital with
bacteremia (0.69; 0.54-0.88; P < 0.003) or to die during the course
of their admission (0.69; 0.55-0.88; P < 0.002). When analyzed on
the basis of hierarchical definitions, the effect sizes remained
similar for some conditions (including neonatal conditions and
bacteremia) although they were reduced for others (Supplemen-
tary Tables 1 and 2). Using the same group of controls as a
constant representation of the background prevalence of HbAS,
we calculated the ORs for HbAS in cases versus controls in each
year between 2000 and 2004. This is a period during which a
significant decline in the prevalence of malaria was seen among
children admitted to our hospital'® (Fig. 2). While throughout
this period the OR for HbAS remained constant among admitted
children whose blood-films were positive for P. falciparum
parasites, the ORs for HbAS among those admitted with a
negative blood-film increased towards unity in parallel with the
temporal decline in malaria.

Discussion
The B mutation of the -globin (HBB) gene is the prime example
of a balanced polymorphism in humans. Despite the negative
effects of homozygosity (HbSS; sickle-cell anemia), a condition
associated with high early mortality! 12, the mutation has risen
to high frequencies in many tropical areas because of the strong
selective advantage afforded to heterozygotes (HbAS) against P.
falciparum malaria. The protective effect of HbAS against the full
range of malaria phenotypes is well documented, a recent meta-
analysis having shown a consistent association with high levels of
protection against both uncomplicated- and severe malaria in
studies conducted throughout Africad. Subsequently, it has been
shown that the degree of malaria protection afforded by HbAS far
exceeds that of any other polymorphism yet described!®14. As
such, we believe that the malaria protective effect of HbAS is
strongly analogous to that which might be seen with malaria-
specific interventions, including an effective malaria vaccine.
While it has been shown that under specific circumstances, HbAS
can result in adverse consequences!>!9, it has never been asso-
ciated with benefit against any other diseases in a non-malaria-
endemic environment!®17. Specifically, while it has been shown
that the risk of invasive bacterial infections is significantly
reduced in HbAS children!®!8, this has only been observed in
areas endemic for malarial®. As a consequence, it seems rea-
sonable to assume that the association between HbAS and pro-
tection from admission to hospital with a wide range of clinical
conditions that we saw in our study is explained by the indirect
consequences of malaria on overall childhood health.

Although we would have liked to conduct a similar study in a
non-malaria-endemic environment in order to confirm that the
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25,619 pediatric admissions between
18t January 2000 and 315! December
2004

A

20,600 lived within the study area

5019 lived outside the study area

A 4

26 older than 13 years

20,574 aged 0-13 years

1710 no stored sample for sickle genotyping
or genotyping unsuccessful

A4

18,864 with HbS genotypes

A 4

571 with sickle cell anemia (HbSS)

18,293 cases in a case-control study

Fig. 1 Profile showing the derivation of the case-patients included in the study. Figure shows the sample flow for patients contributing to the hospital

admission data set

Table 1 Clinical and laboratory characteristics of case-patients

Characteristic HbAA HbAS P value
All admissions (n, %) 16,502 (90.21) 1791 (9.79) n/a
Median age (IQR; months) 17.5 (7.2-35.4) 14.3 (5.2-31.8) 0.0001
Mean WAZ (95% CI) -1.69 (—1.71, —1.67) —1.59 (-1.66, —1.52) 0.0075
Mean HAZ (95% CI) —1.33 (—1.36, —1.30) —1.30 (-1.39, -1.22) 0.613
Mean parasite density (95% Cl; parasites/mcl)2 28,597 (27,015-30,270) 10,002 (7686-13,015) <0.0001
Mean hemoglobin (95% Cl g/L) 91.4 (90.9-91.9) 98.0 (96.6-99.3) <0.0001
Mean MCV (95% Cl) 74 (73.9-74.3) 72.5 (71.8-73.2) <0.0001
Median WBC (IQR; x10%/mcl) 12.0 (8.7-16.7) 12.9 (9.1-17.7) <0.0001
Median platelets (IQR; x106/L) 273 (134-442) 373 (227-528) <0.0001

tests as appropriate in comparison to HbAA children
WAZ weight-for-age Z-score, HAZ height-for-age Z-score

The data summarized reflect the clinical and laboratory features of hospital-admitted case-patients only, stratified by HbS genotype. P values estimated by use of Student's t test, 2, or Mann-Whitney

3Geometric mean densities among children with positive slides (7222 (43.8%) of HbAA and 384 (21.4%) of HbAS children)

wider impact of HbAS was attributable to malaria, we are not
aware of any studies in which a large population of hospital-
admitted children and representative community controls have
been systematically tested for HbAS in a non-endemic region.
Furthermore, it seems likely that in any such area the prevalence
of HbAS would be too low to allow for meaningful interpretation.
As an alternative therefore, we investigated the effect of changes
in malaria transmission over time and observed that the

protection afforded by HbAS against a range of admission diag-
noses correlated closely with malaria endemicity. This effectively
eliminates pleiotropy or linkage disequilibrium as alternative
explanations for our observations.

It has long been recognized that the impact of malaria on child
mortality is greater than can be attributed to the direct con-
sequences of malaria alone’. For example, effective malaria-control
programs have frequently led to reductions in childhood mortality
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Table 2 Distribution of clinical syndromes and outcomes
among case-children

Syndrome HbAA (N=16,502) HbAS (N=1791)
Clinical syndromes

Neonatal conditions 1615 (9.8) 224 (12.5)
Malaria 5308 (32.2) 252 (14.1)
Severe malaria 838 (5.1) 20 (1.1)

Severe pneumonia 446 (2.7) 54 (3.0)

Very severe pneumonia 9760 (59.1) 1073 (59.9)
Meningitis/encephalitis 2779 (16.8) 294 (16.2)
Severe malnutrition 1428 (8.7) 166 (9.3)
Gastroenteritis 3038 (18.4) 378 (21.1)
Transfused 1543 (9.4) 80 (4.5)

Other 1069 (6.5) 204 (11.4)
Laboratory based syndromes

Bacteremia 854 (5.2) 98 (5.5)
Malaria blood film positive 7222 (43.8) 384 (21.4)
Malaria blood film 9280 (56.2) 1407 (78.6)
negative

Severe anemia 1389 (8.6) 80 (4.5)
Outcome

Median duration of 3(2,5) 3 (2, 6)
admission (IQR; days)

Death (n; %) 974 (5.9) N3 (6.3)

The data summarized reflect the clinical and laboratory features of hospital-admitted case-
patients only, stratified by HbS genotype. Some children contribute data to more than one row.
Definitions can be found in the text. Figures in parentheses denote the proportion of admissions
with specific diagnoses within each genotypic group

that have been several-fold higher than those expected on the basis
of prior estimates of malaria-specific mortality”-19-21, In one recent
study, all-cause mortality was reduced by two-thirds within four
years of introducing multiple intensive malaria control interven-
tions0. This added value of malaria interventions almost certainly
reflects the fact that malaria has important effects on child health
more generally. For example, it is a recognized cause of mal-
nutrition?>?3, a major determinant of all-cause mortality during
childhood®, and of invasive bacterial infections!?. Nevertheless,
proving this fact and estimating the magnitude of such effects can
be difficult because few interventions are entirely specific to
malaria. For example, those targeting the vector can also impact on
other insect-transmitted diseases and some chemo-prophylactic
agents such as sulfadoxine-pyrimethamine may also be active in
preventing bacterial infections. Furthermore, it can also be difficult
to control for study effects and secular trends.

In the current study, we have used the well-documented
malaria-protective properties of HbAS as a proxy for estimating
the indirect impact of malaria on a range of health outcomes in
children admitted to hospital on the coast of Kenya. Because
HDbAS is strongly and specifically protective against malaria, we
believe that our approach gives some indication of the likely
benefits of malaria interventions, including an effective malaria-
specific vaccine. HbAS was associated with a 38% reduction in
hospital admissions overall, and while the greatest effect sizes
were seen for conditions directly attributable to malaria, sig-
nificant reductions were also seen for a number of outcomes that
could not be readily attributed to its direct consequences. For
example, admitted children with HbAS were significantly better
nourished and were 10% less likely to be admitted with a negative
malaria slide. Finally, it was also associated with a 21% reduction
in the risk of admission in the neonatal period during which, for
various reasons?4, clinical malaria is rare.

On the basis of the data from previous cohort studies, the
protective effect of HbAS against uncomplicated clinical malaria
(where malaria infections are not accompanied by signs of
severity) is only around 30%°8, and is substantially lower against

asymptomatic parasitemia8. Moreover, at the time of the study,
malaria transmission within the study area was lower than in
many other parts of sub-Saharan Africa. Consequently, although
our study provides some indication of the wider impacts of
malaria on child health, it is likely that both the true magnitude of
these consequences within our study area and their impact in
areas of higher transmission will be significantly greater. Simi-
larly, while 31% protection against inpatient mortality provides
some indication of the overall proportion of childhood deaths
that are attributable to malaria, it is also likely that this would be
significantly greater in areas of higher transmission.

One weakness of our study is our inability to provide diagnoses
based on more detailed investigations. As in other hospitals in
similar settings, diagnostic facilities at KCH are relatively limited.
Most diagnoses, therefore, are based on clinical criteria alone and
it can be difficult to differentiate with confidence between com-
mon conditions within the pediatric age range. For example,
respiratory distress is a feature of both pneumonia, malaria and
severe anemia and, as a consequence, it is likely that some of our
categories include a significant degree of mis-classification. For
this reason, we analyzed our study on the basis of both hier-
archical and non-hierarchical definitions. While the former
approach reduced the effect sizes for some, many associations
remained significant including those for neonatal conditions,
bacteremia and pneumonia.

Our observation that HbAS protected against admission during
the neonatal period, and that HbAS neonates who were admitted
were better nourished, is particularly interesting. Pregnant women
are especially vulnerable to malaria, which can result in increased
risks of low birth weight, prematurity and maternal and fetal
mortality2>. Moreover, malaria protection during pregnancy has
been associated with a one fifth reduction in the risk of low birth
weight2°. However, these benefits are usually attributed to the
prevention of malaria infection in mothers, while the observations
regarding the benefits of HbAS in our current study relate
exclusively to their children. We can envisage two potential
explanations. The first relates to the fact that half of all HbAS
children are born to HbAS mothers, and that our observation may
simply reflect, therefore, the direct benefits of maternal malaria
resistance. If this is the correct explanation then our observation
must reflect a significant underestimate of the true benefits of
maternal HbAS on pregnancy outcome?®. Few studies have
addressed this question directly and while none have found con-
vincing evidence to support it*°-2, most have been too small to
provide definitive conclusions. An alternative explanation is that
our findings result from malaria resistance in the fetus. This is
interesting because it is widely believed that the fetal consequences
of malaria in pregnancy relate largely to infection within the
placenta, and that direct infection of the fetus is relatively rare.
Moreover, the switch from fetal hemoglobin (HbF: a,Yy,) to adult
hemoglobin [either HbA (a,fp,) or HbS (a,f%,)] does not occur
until after birth, making it hard to appreciate how HbS might offer
protection prenatally. Nevertheless, this model may need to be
revisited if this second explanation is correct.

Our study provides some insight into the impact of malaria on
health systems in sub-Saharan Africa. Of particular note, despite
the incomplete protection afforded by HbAS and the modest
levels of malaria transmission at the time our study was con-
ducted, malaria was probably responsible for at least 38% of
admissions to KCH overall, and effective control would have
resulted in a 65% reduction in the number of admissions with
severe anemia. The latter is important for blood transfusion
services in Africa, as evidenced by the fact that 68% fewer
transfusions were administered to HbAS than to HbAA children.

At the same time as providing data on both the direct and
indirect effects of malaria on child morbidity and mortality, our
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Fig. 2 The odds ratios for HbAS in cases versus community controls, stratified by year of study. Triangles show the ORs for HbAS among patients admitted
with a negative and diamonds for patients admitted with a positive blood slides for P. falciparum malaria parasites. Circles show the prevalence of P.
falciparum parasite positivity among all admitted patients. The x-axis denotes each year of the study between 2000 and 2005. Horizontal dashed line
denotes an OR of one: ORs below the line denote a protective effect of HbAS against the condition of interest. Error bars show 95% confidence intervals

Table 3 The odds ratios for HbAS in case-patients versus community controls
Diagnosis Proportion HbAS among cases OR (95% CI) P value aOR (95% CI) P value
(n/N, %)
Clinical syndromes
All cause hospital admission 1791/18,293 (9.8) 0.62 (0.56-0.68) <0.0001 0.62 (0.55-0.69) <0.0001
Neonatal conditions 224/1839 (12.2) 0.79 (0.67-0.93) 0.005 0.79 (0.67-0.93) 0.005
Malaria 252/5560 (4.5) 0.27 (0.23-0.32) <0.0001 0.26 (0.22-0.31) <0.0001
Severe malaria 20/858 (2.3) 0.14 (0.09-0.21) <0.0001 0.14 (0.09-0.22) <0.0001
Severe pneumonia 54/500 (10.8) 0.69 (0.52-0.93) 0.014 0.70 (0.51-0.96) 0.026
Very severe pneumonia 1073/10,833 (9.9) 0.63 (0.57-0.70) <0.0001 0.64 (0.56-0.72) <0.0001
Meningitis/encephalitis 294/3073 (9.6) 0.60 (0.52-0.70) <0.0001 0.60 (0.50-0.72) <0.0001
Severe malnutrition 166/1594 (10.4) 0.66 (0.56-0.80) <0.0001 0.67 (0.55-0.83) <0.0001
Gastroenteritis 378/3416 (11.1) 0.71 (0.62-0.81) <0.0001 0.72 (0.61-0.86) <0.0001
Other 204/1273 (16.0) 1.09 (0.92-1.29) 0.32 1.08 (0.90-1.29) 0.41
Laboratory features and outcomes
Bacteremia 98/952 (10.3) 0.66 (0.52-0.82) <0.0001 0.69 (0.54-0.88) 0.003
Malaria blood film positive 384/7606 (5.0) 0.30 (0.27-0.35) <0.0001 0.30 (0.26-0.35) <0.0001
Malaria blood film negative 1407/10,687 (13.2) 0.87 (0.79-0.96) 0.004 0.90 (0.83-0.98) 0.0
Severe anemia 80/1469 (5.4) 0.33 (0.26-0.42) <0.0001 0.35 (0.27-0.46) <0.0001
Transfused 80/1623 (4.9) 0.30 (0.23-0.38) <0.0001 0.32 (0.25-0.41) <0.0001
Died 113/1087 (10.4) 0.66 (0.54-0.82) <0.0001 0.69 (0.55-0.88) 0.002
OR: crude odds ratios for HbAS were derived through comparison of the genotype frequencies for HbAA and HbAS in cases versus community controls using logistic regression. Those for cases are
shown in the second column while the frequency of HbAS among controls was 701/4707 (14.9%). aOR is the odds ratios adjusted for age groups defined as 0-3 years, 4-7 years and 8-12 years. The
genotype frequencies for the control group, stratified by age category, are described in more detail under methods. P values were estimated using logistic regression

study illustrates the wider selective advantage of HbAS in malaria-
endemic environments. It has been suggested that the time depth
for selection of the B* mutation is too short to be fully explained by
malaria alone®0. Our data on the added value of HbAS in malaria-
endemic environments help to reconcile this previous observation.

In summary, through a large case-control study of childhood
diseases conducted in a malaria-endemic area on the coast of
Kenya, we present new evidence to quantify the extended impact
of malaria against childhood morbidity and mortality. Our study
supports the conclusion that effective interventions will result in

health benefits that could considerably exceed those directly
attributable to malaria alone?”’.

Methods

Study design. We investigated the overall impact of malaria on child health
through a case-control approach in which we used HbAS as a proxy indicator for
malaria exposure. A system of routine clinical surveillance has been operating at
Kilifi County Hospital (KCH) since 1989 through which all children are assessed at
both admission and discharge using a standard computerized proforma. In addi-
tion, a battery of routine tests are conducted on all children at admission, including
a full blood count, a malaria blood-film and a blood culture3!. Data and samples
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are systematically archived which allows for the conduct of retrospective studies
such as this one. For the current study, we defined cases as children aged <14 years
who were admitted from the area served by the Kilifi Health and Demographic
Surveillance System (KHDSS)32 onto the wards of KCH between 1st January 2000
and 31st December 2004, a period during which the incidence of uncomplicated P.
falciparum malaria among children within this region was between 1 and 3 epi-
sodes/person/year33, allowing us to study the research hypothesis in question. Data
derived from this surveillance system allowed us to further classify cases into
specific disease categories on the basis of both clinical and laboratory criteria.
Clinical syndromes were defined as follows. Neonatal conditions were defined as
admission to hospital within the first 28 days of life; malaria as a fever in the
presence of P. falciparum parasitemia at any density in children <1 year old or at a
density of >2500 parasites/l in older children; severe malaria as malaria in asso-
ciation with the specific complications of prostration and/or coma and/or
respiratory distress and/or a Hb of <50 g/L. Severe and very severe pneumonia were
defined using standard methods3* while meningitis/encephalitis was defined by the
presence of neck stiffness, a bulging fontanelle, prostration or coma (defined as a
Blantyre Coma Score of <5). Severe malnutrition was defined on the basis of a mid-
upper-arm circumference of <7.5 cm in children < 6 months or of <11.5 in
children 26 months of age. Finally, gastroenteritis was defined as diarrhea (>3
loose watery stools/day) with or without vomiting (=3 episodes/day). For the
purposes of our case-control analyses, we assembled a control group that was
representative of cases in terms of their area of residence and age. Given that this
was a retrospective study, we did not have access to samples from children precisely
matched in terms of time of sampling, age and other variables. Instead, we con-
structed a control panel consisting of unselected children who were recruited into a
range of epidemiological studies that were conducted throughout the KHDSS study
area between September 1998 and November 2005, for whom data on HbS phe-
notype (HbAA or HbAS) had been recorded for the purposes of those studies, and
who were 0-13 years of age at the time of sampling>>3>-37. The resulting control
group included a total of 4707 children with the following age structure and HbS
frequencies: 0-3 years 1364 (29.0%) [1163 (85.3%) HbAA and 201 (14.7%) HbAS];
4-7 years 2177 (46.3%) [1859 (85.4%) HbAA and 318 (14.6%) HbAS]; 8-13 years
1166 (24.8%) [984 (84.4%) HbAA and 182 (15.6%) HbAS].

Ethics. Informed written consent was obtained from all study participants, their
parents or guardians. Ethical permission for this study was granted by the KEMRI/
National Ethics Research Committee in Nairobi, Kenya.

Laboratory procedures. Hematological, biochemical and malaria parasite data
were derived by standard methods®® while blood cultures were processed in
BACTEC Peds Plus bottles using a BACTEC 9050 automated blood-culture
instrument (Becton Dickinson, UK). Positive samples were sub-cultured on stan-
dard media by routine microbiological techniques®!. Quality assurance for all
laboratory tests was provided by the UK National External Quality Assessment
Service (www.ukneqas.org.uk). Within cases, we retrospectively tested for HbAS by
PCR3® using DNA extracted from fresh or frozen samples of whole blood using
proprietary methods [ABI PRISM (Applied Biosystems, California, USA) or Qia-
gen DNA Blood Mini Kit (Qiagen, West Sussex, United Kingdom)]. Throughout
the study, therefore, admitting clinicians were unaware of the HbS status of cases.
For controls, we tested for HbAS, within 7 days of recruitment, using fresh blood
samples collected into EDTA by alkaline electrophoresis on cellulose acetate gels
(Helena Titan™III, Helena Biosciences, Gateshead, UK) using standard methods.

Statistical analysis. Because of its association with major health consequences, for
the purpose of the current analysis we excluded children with sickle cell anemia
(HbSS) from both the case and control groups. We compared the clinical,
laboratory and demographic characteristics of HbAA vs. HbAS children who were
admitted to hospital during the study period (cases) using parametric or non-
parametric tests as appropriate, while proportions were compared using the XZ test.
To estimate the impact of malaria on admission to hospital both overall and with a
range of specific conditions, we calculated the odds ratios (ORs) for HbAS in cases
versus community controls by logistic regression, both with and without adjust-
ment for age, categorized as 0-3 years, 4-7 years and 7-14 years. All analyses were
conducted using Stata v11.2 (Stata Corp, Timberlake).

Code availability. The code associated with the statistical analysis of the primary
data, written in Stata v11.2, have been deposited on the data repository for the
KEMRI/Wellcome Trust Research Programme in Kilifi and are available, along
with appropriately anonymized data, by application through MMunene@kemri-
wellcome.org.

Reporting Summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Requests for access to appropriately anonymized data from this study can be made by
application to the data governance committee at the KEMRI/Wellcome Trust Research

Progamme through the following e-mail address: <MMunene@kemri-wellcome.org>.
The authors declare that all other data supporting the findings of this study are available
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