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Abstract

As malaria endemic countries progress towards elimination, accurately measuring community-
level transmission is critical for monitoring control strategies and the design of efficacy trials.
However, measuring malaria transmission often faces challenges in pre-elimination settings due
to the complexity of human immunity and its interaction with vector and parasite dynamics. This
study evaluates current and emerging epidemiological measures of malaria transmission, and
explores the use of novel serological markers of malaria infection as metrics in surveillance and

cluster-randomised trials (CRTSs).

The relative sensitivity of commonly used surveillance diagnostics - polymerase chain reaction
(PCR), rapid diagnostic tests (RDTs), and microscopy — are cross-compared with respect to their
accuracy in quantifying cluster-level prevalence of malaria infection. These are further evaluated
against immunological measures of transmission based on antibody responses to two malaria
parasite antigens - PfMSP119 and PfAMAL - used extensively in serological surveillance for the last

decade.

To investigate novel serological markers of malaria infection, a multiplexed immunoassay was
used to characterise post-infection antibody dynamics to 20 Plasmodium falciparum antigens.
This was based on a subset of 192 individuals from an all-age longitudinal cohort study in The
Gambia. Antibody responses against several antigens showed accuracy in detecting infection in
the preceding six months. These may have potential utility in measuring time since infection or
short-term changes in transmission. However, variations in immune response by age and
transmission intensity were observed and should be taken into consideration for future

optimisation of serological assays.

Antigens identified as the most promising biomarkers of recent infection were used to estimate
cluster-level transmission in four villages in The Gambia. Serological responses are compared
between dry and wet season and geographical regions of low and high transmission intensity.
Their application was also extended to compare study arms of a cluster-randomised trial in the
Zambezi Region, Namibia, comparing the effectiveness of reactive focal case detection, reactive

focal mass drug administration, and reactive vector control.

These findings may help to inform the development of new serological diagnostic assays for
malaria, their use in future malaria surveillance and elimination strategies, and the design of

cluster-randomised trials in low transmission settings.
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Chapter 1 Introduction
1.1 Malaria elimination — past, present and future

“Not only does malaria persist; it thrives.”?

In fact, the human battle against Plasmodia has endured for millennia.? In 2007, when Bill and
Melinda Gates challenged scientists to eradicate malaria in their lifetimes,? it was not the first
time the world had made this pursuit. Nonetheless, it signalled a renewed paradigm shift from
control to elimination in the modern era of malaria. In the years since, consistent financial
investment and political will have enabled sizeable reductions in malaria at national and regional
levels. As part of the Global Technical Strategy for Malaria endorsed by the World Health
Organization (WHO) in 2015, the malaria community set targets to achieve elimination in over 35
countries by 2030. A number of countries have already been declared no longer endemic or free
of indigenous cases since 2000,* and 32 currently endemic countries are pursuing national

policies for elimination® (Figure 1.1).

Yet, perhaps the most distinguishing characteristic of current malaria efforts is the recognition
that multi-faceted approaches are crucial (Figure 1.2). Countries currently on or considering the
path to elimination possess a much larger range of intrinsic transmission potential than countries
that have eliminated since the Global Malaria Eradication Program (GMEP) of 1955-1969.5~°
These variations are driven by complex environmental, biological, and health system factors.1%1?
Today, a better appreciation for these differences across epidemiological settings means that
implementing an optimal set of strategies for elimination will require a tailored effort for many
countries. In light of this, well-designed and consistent methods for measuring malaria
transmission are needed to assess the effectiveness of strategies in varied settings and to monitor

progress towards elimination.

In this chapter, | review strategies for malaria elimination (past and present) and the challenges
posed by the changing landscape of malaria epidemiology. | will also discuss current and
emerging diagnostic tools for measuring transmission, including the application of immunoassays
to serological surveillance. Finally, | describe the history of epidemiology in The Gambia and
Namibia - two sub-Saharan African countries currently on the path to malaria elimination - and
how their experience with community-based interventions may help illustrate what is required

going forward.
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Figure 1.1 Map of 21 countries with the potential to eliminate malaria by 2020

As described by Rabinovich, R.N. et al in “malERA: An updated research agenda for malaria elimination and
eradication.” PLOS Med. 14, 1002456 (2017)12, there are 91 countries and territories with ongoing malaria
transmission. As of November 2017, analysis by WHO identified 21 countries with the potential to eliminate by
2020: Algeria, Belize, Bhutan, Botswana, Cabo Verde, China, Comoros, Costa Rica, Ecuador, El Salvador, Iran
(Islamic Republic of), Malaysia, Mexico, Nepal, Paraguay, Republic of Korea, Saudi Arabia, South Africa, Suriname,
Swaziland, and Timor-Leste. Countries and territories that have been certified malaria-free since 2007 are the
United Arab Emirates (2007), Morocco (2010), Turkmenistan (2010), Armenia (2011), Maldives (2015), Sri Lanka
(2016), Kyrgyzstan (2016), and Paraguay (2018). Argentina has formally requested certification of malaria
elimination and is in the process. Note that not all countries that have achieved zero indigenous cases for 3
consecutive years have sought certification from WHO.

. Ongoing malaria transmission

@ Countries certified as malaria-free since 2007

1.2 Strategies for malaria elimination

The eradication of malaria was first considered a feasible objective after the development and
application of dichloro-diphenyl-trichloroethane (DDT) in the 1940s as a long-lasting residual
insecticide. Numerous field trials and the integration of DDT spraying into national malaria
control programmes demonstrated that it was extremely effective in interrupting
transmission.'®'* Furthermore, the early work of Ronald Ross and George Macdonald on
mathematical models of mosquito-borne pathogens brought to the centre stage principles of
vectorial capacity, methods for measuring mosquito-driven transmission, and quantitative

theories of vector control.>16

Consequently, GMEP interventions were based entirely around indoor residual spraying (IRS)

with DDT and other insecticides, abandoning other methods of malaria control such as
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prevention of mosquito biting and the destruction of vector breeding sites. Even the use of
antimalarial drugs was initially considered unnecessary. The campaign’s emphasis on
intervention coverage and operational efficiency galvanised countries with the existing
infrastructure and resources to eliminate regionally. The impact on the global burden of malaria
was clear; the geographical distribution of malaria shrank, albeit primarily due to reduction in

areas with strong control programmes.t”/18

As with any disease elimination effort, however, GMEP eventually faced diminishing returns. The
importance of reported treatment failures and the documentation of chloroquine resistance in
Venezuela and Thailand as early as the 1950s was overlooked, and evidence of vector avoidance
of insecticide contact in Mexico also emerged. By the 1960s, a number of areas failed to reduce
malaria at rates originally predicted, and other regions experienced unexpected resurgences
after long periods of interrupted transmission. As countries began to revert from “consolidation”
to “attack” phase (Figure 1.3) and financial constraints grew, the global eradication campaign lost
momentum.?® The 1968-1969 epidemic in Sri Lanka, the poster child for malaria research and
control at the time, may have foreshadowed what was to come - formal recognition by the WHO

in 1969 that short-term eradication in many countries was not feasible.?®

Figure 1.2 Framework for malaria elimination established by the WHO in 2017

As described by the WHO Global Malaria Programme in “A framework for malaria elimination” (2017)%, the figure
below illustrates a package of intervention strategies that can be adapted for different geographical areas in a
country. It is recommended that the choice of interventions be based on transmission intensity (from “high” to
“very low” to zero and maintaining zero) and also on operational capacity and system readiness. The diagram is
presented as illustrative rather than prescriptive, as the onset and duration of interventions depends on local
circumstances. Shading of boxes indicates enhancements and quality required as programmes progress towards
elimination, with more intense actions indicated with darker colours and shading from light to dark indicating
enhancement of quality and scale or focus of work.

High Moderate Low Very low Zero Maintaining zero

Transmission intensity

Global technical strategy for
malaria 2016-2030

Supporting
elements Pillars

COMPONENT D
>=Accelerate efforts>> (@) Investigate and clear individual
towards elimination cases, manage foci and follow up
and attainment of
malaria-free status COMPONENT C o )»

ation-wide parasite cleal
idditional or new interves
orwhere applicable)

Increase sensitivity and sp. ity of surveillance

systems fo detect, characterize and monitor all

cases (individual and in foci); see component D
0

Enhance and optimize case management
- testing, treating and tracking

Enhance and optimize vector control

Harnessing innovation and expanding research
Strengthening the enabling environment

*Acceleration - as represented by arrow bars (>>>>>) here - relates to time-limited efforts made across all components in order to (1) achieve universal/optimal coverage in malaria prevention
ard case management (Component A), and increase sansitivity and specificity of surveillance systems so they are able fo detect, characterize and monitor all malaria cases and foci
(Cemponent B); and (2) bring malaria transmission fo sufficiently low levels (with or without population-wide parasite clearance and ofther strategies, Compenent C as an option) where
remaining cases can be investigated/cleared and foci can be managed and followed up (Component D).
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Figure 1.3 Phases of the Malaria Eradication Campaign as established by the WHO in 1963

As described in the report of the World Health Assembly “Re-examination of the global strategy of malaria
eradication” published in 196919, the figure below illustrates the phases of malaria control and elimination under
the Global Malaria Eradication Programme (GMEP).

) Consolidation phase

Yoars 1 2 3 4 1 2 3
Interruption of | Annual
| transmission | parasite incidence
. ‘7 yac not over 0.5%
|
f I
----------------------- - 2 |
~—@—= Amount of malaria «+«@++ Transmission O Parasite reservoir

Today, there are a number of elimination strategies and interventions aimed at community-based
reduction of transmission (Table 1.1). These range from vector control, surveillance, and case
management to the development of novel drugs and vaccines to reduce human-to-mosquito
transmission. All of them will require robust methods for measuring transmission, either as a

means of focally targeting interventions or tracking impact over time.

Table 1.1 Elimination strategies and interventions for reducing malaria transmission

*Interventions discussed in subsequent research-specific chapters are underlined for emphasis.

Intervention Description

Vector control Long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS)
have been the mainstay of malaria control and elimination, accounting for
an estimated 78% of malaria cases averted globally since 2000.2' However,
new vector control products and methods will need to address insecticide
resistance, outdoor resting and biting species, and other constraints.

Potential innovations and strategies include (but are not limited to)
improved larval source management, ground or aerial spray delivery of
insecticides, housing modifications such as window screening, sealed eaves
and closed ceilings, insecticide treated clothing, odour- or sugar-baited
traps, and veterinary insecticides to target livestock feeding vectors.??

Studies are also on-going on the mass drug administration of ivermectin as
both vector control and a sporontocidal transmission-interrupting drug.?*2*

Reactive vector control (RAVC). Vector control measures can also face
coverage challenges or risk of resistance if insecticides are not rotated.
Reactive vector control is one strategy for spatially targeting households
with increased risk of infection based on entomological or clinical
surveillance data.
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Population-wide Mass drug administration (MDA). Studies have suggested that in

drug-based populations with a large proportion of low-density asymptomatic infections

strategies below the detection limit of microscopy and rapid diagnostic tests (RDTs),
mass screen and treat (MSAT) is not effective in reducing transmission.?>?6
This has renewed the interest in the administration of chemoprophylaxis to
entire populations to prevent transmission. Due to concerns over safety and
drug resistance, variations also include presumptive treatment directed at
potentially high-risk populations or targeted parasite elimination (TPE).?’

Reactive focal mass drug administration (rfMDA). If population-wide MDA
is not feasible or unpopular due to the risks associated with treating
uninfected populations or the potential for drug resistance,
chemoprophylaxis can be administered only to individuals with increased
risk of infection based on proximity to passively-detected index cases from
the health facility.

Seasonal malaria chemoprevention (SMC). In areas where malaria
transmission is highly seasonal, SMC has been used to provide preventive
treatment specifically during months of peak transmission. Studies have
shown that this is highly effective in reducing clinical incidence in young
children?®3% and, in 2012, the WHO recommended implementation in
children under age five in countries of the Sahel sub-region of Africa.3! SMC
is used primarily for malaria control and reduction of morbidity and is
contra-indicated in areas with low or perennial transmission, though it is
currently being implemented in countries with large heterogeneities in
transmission and may impact on bordering areas being targeted for
elimination sub-nationally (e.g., Senegal, The Gambia).

Studies have also suggested that SMC is effective when administered to
individuals up to 10 years of age, though this is not yet recommended by the
WHO.*? It is also not yet recommended for use in southern or eastern Africa
due to high levels of resistance to amodiaquine and sulfadoxine-
pyrimethamine and lack of efficacy and safety data on the use of other
antimalarials in SMC.33

Enhanced Case management through passive and active case detection. Passive case

surveillance and detection (PCD) based on health facility cases is used for malaria surveillance

case management at all transmission intensities. For malaria-eliminating countries, however,
clinical cases are increasingly rare, and active case detection (ACD) by health
workers is used to identify infections in the community or households that
may not present directly to the health systems. It is used primarily as a
strategy for targeting asymptomatic reservoirs of infection.3*

Mass screening and treatment (MSAT) / Mass testing and treatment
(MTAT). This strategy involves screening for risk factors or symptoms (in the
case of MSAT), following by testing and treating (MTAT), of an entire
population. The objective is to target the parasite reservoir in areas of low
parasite prevalence or where MDA is not feasible or acceptable.

Reactive case detection (RACD) and focal screening/testing and treatment
(FSAT/FTAT). Focal and reactive strategies are a subset of MSAT/MTAT
strategies, where interventions are in limited geographical areas or
communities. RACD, also referred to as reactive case investigation3,
involves the screening and/or testing of household members, neighbours,
and other contacts - typically with RDTs - around a passively detected case
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and treating those who are positive, while FSAT/FTAT may be based on
known high-risk areas or foci. This is motivated by evidence in multiple
settings that malaria cases tend to be spatially clustered3°, but limited
impact studies are available.

Pro-active case detection (PACD). Also a form of MSAT/MTAT, PACD is not
prompted by an index case, but focused on populations with limited access
to the health system, poor health-seeking behaviour, or in particularly high-
risk groups (e.g., migrants and refugees, forest or mine workers). Compared
to FSAT/FTAT, it is similar to a form of ACD conducted periodically (weekly
or monthly) during high transmission season.

Transmission-
blocking
pharmaceutical
products

Transmission blocking drugs. Human-to-mosquito transmission involves
the uptake of gametocytes, the sexual stage of the parasite. Single low-dose
primaquine has been shown to be active against this stage. This regimen was
recommended for addition to artemisinin-based combination therapies
(ACTs) by the WHO in 2012.%° Research has shown that this can reduce
infectiousness to mosquitoes, but there are limited studies that
demonstrate a reduction of malaria transmission in communities.*

Vaccines interrupting malaria transmission (VIMTs). To date, most vaccines
have focused on reducing morbidity and mortality, with only one vaccine
candidate, RTS,S/AS01, reaching phase Il clinical trials. VIMTs typically refer
to “classical” transmission-blocking vaccines (TBVs) that directly target
sexual or mosquito stage parasite antigens, but may also include pre-
erythrocytic or asexual stage vaccines that inhibit parasite densities enough
to indirectly reduce the presence of gametocytes.*>** There are a limited
number of candidate-TBVs in early stage R&D,** with leading candidates
based on Pfs25% as well as Pfs48/45, Pfs230°°, Pfs28, and APN1.

Other strategies

Surveillance as an intervention. There has been an increased emphasis on
strategies to detect all infections as early as possible. Therefore, the strength
of health systems to identify, investigate, classify, and manage foci more
efficiently has been highlighted as critical for countries aiming to eliminate.

Testing of co-travellers. This strategy is similar to RACD, but focused on
imported cases or those that occur outside the household, such a forest-
workers.

Border screening. To reduce the risk of imported malaria to eliminating
countries, the screening and/or testing of any individuals entering
eliminating countries from endemic areas has been suggested, but there
have not been formal impact evaluations of this strategy.
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1.3 The challenge of measuring malaria transmission for elimination

Getting to zero — a matter of debate (and definitions)?

The difference between global eradication, elimination, and control has been described as “the
difference between absolute zero, nearly zero, and low.”#” Eradication is the permanent
reduction to zero of worldwide incidence of all human malaria parasite species. On the other
hand, elimination has been more difficult to delineate. Formally, the WHO defines elimination as
the interruption of local transmission of a specified malaria parasite species in a defined
geographical area. Certification requires proof of zero incidence of indigenous cases for at least

three consecutive years.*

However, elimination has also been described as a state of interrupted endemic transmission
below a threshold at which risk of re-establishment is minimised.*’ This relates to the concept of
“malariogenic potential”, a combination of an ecosystem’s receptivity to malaria transmission
(e.g., presence of competent vectors, a suitable climate, and a susceptible population) and
vulnerability or “importation risk” due to the influx of infected individuals, groups, and/or
infective mosquitoes.**” Debates around the qualitative and quantitative concept of elimination
are not purely academic, but critical for both policy and research. The subtleties of various
definitions imply that elimination is linked to risk of transmission, and must therefore involve

much more than monitoring of infections or cases, as WHO certification requirements imply.

The epidemiology of malaria in a landscape of declining transmission

What is clear in recent decades is the rapidly changing epidemiology of malaria. There are five
Plasmodium species known to infect humans [P.falciparum (Pf), P.vivax (Pv), P.malariae (Pm), P.
ovale (Po), and P.knowlesi (Pk)]*®. Pf, which this report exclusively focuses on, is most associated
with severe disease, clinical symptoms, and mortality, particularly in sub-Saharan Africa®. It also
has the greatest global distribution. Geospatial methods developed by the Malaria Atlas Project
(MAP) have utilised malariometric information from multi-year national surveys, routine health
facility data, and a range of environmental covariates. In 2010, they estimated that 2.57 billion
people worldwide were at risk of Pf transmission. Of these, 1.13 billion lived in areas of unstable
and very low transmission (where case incidence is unlikely to exceed 10,000 per annum),
primarily in Asia (91%). In the same year, 1.44 billion people still resided in areas of stable

transmission, with the majority located in Africa (52%) or Central, South and East Asia (46%).*°

Within sub-Saharan Africa, updated geospatial estimates in 2015 (Figure 1.4) reported a 50%

reduction in Pf parasite rate in children aged 2 to 10 (PfPR.10) since 2000, with three-quarters of
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the decline occurring between 2005 and 2015 alone.?! The population of stable endemic Africa
experiencing PfPR2.10 less than 1% also increased six-fold in that time (faster that the underlying
rate of population growth). Based on these figures, Bhatt et al suggest that 121 million people
are currently living in areas where elimination campaigns are feasible.?* They attribute these
changes in prevalence to the distribution of insecticide treated bednets (ITNs), estimated to
account for 62-72% of PfPR declines, while access to artemisinin combination therapies (ACTs)
and IRS have also contributed, but to a lesser degree (15-24% and 11-16% respectively). In 2014,
based on spatial temporal analysis of Pf parasite prevalence, Noor et al also observed a shift
towards populations residing in areas of lower transmission intensity across Africa between 2000

and 2010 (Table 1.2).5!

Figure 1.4 Changing infection prevalence in Africa 2000-2015

As described by Bhatt, S et al in “The effect of malaria control on Plasmodium falciparum in Africa between 2000
and 2015.” Nature 526, 207-2011 (2015)2%, the figure below includes (a) PfPR,-10 for the year 2000 predicted at
5x5 km resolution, (b) PfPR,-10 for the year 2015 predicted at 5x5 km resolution, (c) absolute reduction
in PfPR,-10 from 2000 to 2015, and (d) smoothed density plot showing the relative distribution of endemic
populations by PfPR,-10in the years 2000 (red line) and 2015 (blue line).
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Table 1.2 2010 population (millions) in malaria endemic countries in Africa by the Plasmodium
falciparum parasite rate endemicity class in 2000 and 2010

As described by Noor, A.M. et al in “The changing risk of Plasmodium falciparum malaria infection in Africa: 2000-
10: a spatial and temporal analysis of transmission intensity.” Lancet 383, 1739-1747 (2014)°?, the table below
includes green shaded cells showing the number of people (millions) in 2010 who lived in areas where malaria
endemicity declined least one level from 2000. Pink shaded areas are where endemicity increased by at least one
level from 2000. Estimates do not include Burundi, Central African Republic, Congo, Mauritania, and Niger, for
which there was insufficient data to predict change. PAR=populations at risk. PfPRy-ip=community Plasmodium
falciparum parasite rate standardised to the age group 2-10 years.

2010

Malaria free Unstable <1% PfPR, , 1% to <5% 5-10% >10%t050% >50%to75% >75%t0100% Total PAR
PPR, ., PfPR,.., PPR, 1 PPR, 5, PfPR,.;,

2000

Malaria free 987 0 0 0 0 0 0 0 987
Unstable 0 16-7 0 0 0 0 0 0 16.7
<1% PfPR, ;o ()} 21 677 74 06 0.6 0 0 78-4
1% to <5% PfPR, ;, 0 07 24-4 387 36 23 02 01 70-0
5-10% PfPR, ., 0 0 79 19-6 75 50 04 02 40-6
>10% to 50% PfPR, 0 0 72 242 21.9 1667 233 27 246.0
>50% to 75% PfPR, 4, 0 0 15 0.9 0-8 1053 1212 165 2462
>75% to 100% PfPR,_;, 0 0 0 0 0 0-2 0.9 18.0 191
Total PAR 98.7 195 108.7 90-8 344 2801 146-0 375 815.7
PAR transitioned froma 0 28 41-0 447 22.7 1055 0-9 (1] 2176
higher endemicity

Heterogeneity in malaria transmission

It is easy to making sweeping generalisations at the global or regional level, especially when gains
have been impressive. However, as a caveat to their estimates, Noor et al describe a central
challenge to malaria elimination: “Why the intensity of malaria has changed so dramatically in
some areas and seems to be intractable in others over the past decade is a fundamental question
for future investment in malaria control in Africa.” One reason may be our limited understanding
of the malaria ecotypes that correlate most with the feasibility of interrupting transmission, but
more importantly, the risk of resurgence. In fact, the most recent World Malaria Report suggests
that progress in malaria control may be stalling, with 5 million more cases in 2016 than 2015

(though this may potentially be an artefact of improved surveillance).

Following GMEP, malaria resurgence was experienced widely in sub-Saharan Africa (Kenya,
Nigeria, Sudan, Mauritius, Madagascar, and Swaziland), Asia (India, Pakistan, Sri Lanka, Thailand,
Indonesia), and Latin America (Brazil, Mexico, Peru, Colombia). Causes have been attributed to
the cessation of pilot programmes and control activities, increased human or mosquito
movement, development and land-use changes, as well as war and civil strife and the associated

worsening of socio-economic conditions.>?

Terms classically used to describe malaria transmission are hypo, meso, hyper, and holo-endemic
based on spleen and parasite rate. Today, transmission intensity is similarly defined as high,
moderate, low, and very low, based on annual parasite incidence (API) and parasite prevalence

(Figure 1.2).* Despite advancements in geospatial mapping described above, not explicitly
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embedded in these categories are geographical and socio-demographic characteristics that
determine the rate of change in transmission intensity. Ecology-based classifications of malarious
zones fell out of popularity during GMEP. This was largely due to the fact that control and
elimination in sub-Saharan Africa - which exhibits a diversity of environments and, therefore,
malariogenic potential - was largely ignored. However, francophone scientists working in tropical

Africa at the time did develop categories of faciés épidémiologique, based on:

e Natural regions
o Equatorial with forest or savannah - perennial transmission
Tropical and humid savannah - transmission season exceeding 6 months
Sahelian with dry savannahs - transmission season lasting less than 6 months
Desert — short or absent transmission season
Southern (plateaus of southern African) — seasonal transmission interrupted
with winter
o Highland (1000-2000m altitude) — highly variable transmission limited by
temperature and surface declination
e Secondary factors
o Natural - landform, water bodies, soil characteristics
o Anthropic factors - modification of vegetation, water bodies, urbanisation,
habitat of humans and cattle
o Dynamic factors — natural disasters, climate change, malaria control, population
movement, development of transport networks

O
@)
O
@)

Malaria ecotypes are most useful if they can demarcate areas most responsive to intervention
strategies and if there are methods for measuring risk factors as they change. Heterogeneity and
hotspots of transmission are increasingly common as malaria burden declines in many regions
(Figure 1.5). Micro-epidemiological variations in malaria infection are frequently observed in
areas of low to moderate transmission intensity.>3>® Here, large proportions of the population
may remain malaria free for years, while subpopulations experience multiples episodes.>*>>°7
For example, a study in Kilifi, Kenya found that 20% of homesteads experiencing a febrile case of
malaria during the dry season later experienced 65% of all febrile malaria episodes the following
year.’® Malaria hotspots have been described previously as a geographical area where
transmission intensity exceeds the average level, and, in fact, several hotspots of malaria
transmission can occur in a single defined region,”>*® resulting in much higher localised

reproductive rate (Ro) estimates compared to broader intervention focus areas.>?
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Figure 1.5 Malaria heterogeneity across the transmission continuum

As described by the WHO in “Malaria surveillance, monitoring & evaluation: a reference manual” (2018)60, the
schematic below illustrates the increasingly focal nature of malaria as transmission decreases, requiring increased
intensity and frequency of reporting from large geographical areas (e.g., district) to reporting near-real-time
individual case data in small areas.
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1.4 Implications for surveillance and the evaluation of transmission-
reducing interventions

A major shortfall of GMEP was the lack of strong surveillance systems and strategies for detecting
the last remaining cases. Many health systems lacked the geographical coverage required to
achieve effective surveillance for elimination.® In fact, the resurgence of malaria in Sri Lanka is
credited to the failure of the surveillance system to respond to decades of evidence on the
periodic nature of epidemic risk in the country. One underlying principle behind other eradication
campaigns, such as smallpox and polio, is a focus on outbreak investigation or clustering of cases,
before attempting to identify individual cases.’

The current epidemiology of malaria poses several challenges for surveillance. These include the
changing demographics of high-risk populations or occupations (e.g., forest and mine workers),
increased migration and imported malaria, hard to reach populations, and the increasing
prevalence of asymptomatic low-density infections.?? The latter of these may also vary at the sub-
national and regional level. This has implications for the effectiveness of intervention packages
that need to adapt to the diversity of transmission intensity. The WHO framework for malaria
elimination suggests that stratification to differentiate transmission risk can be thought of in

sequential stages (Figure 1.6):

Receptive and non-receptive areas

Receptive areas with and without ongoing transmission
Transmission with or without foci

Degree of transmission in diffuse or focal areas

PwnNnPRE
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In many instances, a number of elimination strategies and interventions described above (Table
1.1) have provided valuable data via health-facility surveillance and active household surveys.
This surveillance data in various forms has allowed evidence-based stratification or identification

of transmission foci for targeted community-interventions.®364

Figure 1.6 Sequential stratification according to receptivity and transmission intensity
As described by the WHO in “A framework for malaria elimination” (2017)%, the schematic below illustrates the

geographically focal or diffuse nature of transmission in areas targeted for malaria elimination.

Sequential stratification according to receptivity and transmission intensity of a diffuse or focal
geographical area targeted for malaria elimination

Cleared foel
Receptive
1st stratification 2nd stratification 3rd stratification 4th stratification
Receptive vs non-receptive Receptive with and without Transmission with or Degree of transmission

fransmission without foci in diffuse or focal areas

Challenges facing cluster randomised trials for transmission-blocking interventions

Testing the effectiveness of transmission interrupting interventions (drug, vaccine, or vector
control) requires measuring the indirect reduction of infection at the community level to evaluate
herd effects. In low transmission settings, measuring clinical incidence may require large samples
sizes. Furthermore, active surveillance may have the effect of altering patterns of clinical

disease.®®

Cluster randomised trials (CRTs) are practical for measuring the indirect and/or herd immunity
effects of interventions, and they have been used previously to evaluate intermittent preventive
treatment (IPT),%6%° ITNs”®72 and MDA’475, CRTs achieve study power by increasing the number
of clusters rather than increasing cluster size,”®”” which will also be influenced by the
intervention-independent malaria transmission and risk of infection between clusters. In a CRT,
the degree of variability between clusters in the outcome of interest has a large impact on the
precision and power of the trial.”® While conducting a trial across many heterogeneous settings
may improve the generalisability of the study findings, this will impact on the value of the intra-
cluster coefficient of variation (ICC), which reduces the power and precision at a given sample
size. One method of accounting for this is to match or stratify study communities with respect to
the primary outcome.”” The effectiveness of this stratification, however, will depend on the

accuracy of the metric that is used as the proxy for the expected primary outcome levels.
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It is also likely that movement of people and/or mosquitoes between clusters will occur during
the trials and the contamination of infection from control clusters, or spill-over protective effects
from intervention clusters, may lead to an underestimation of impact. For example, one study
evaluating the effectiveness of permethrin-treated ITNs in Asembo and Gem, Kenya, showed a
protective effect against child mortality, moderate anaemia, and high-density parasitaemia in
control clusters within a particular distance of the intervention clusters.”? A standard analysis of
the effect of the control vs. intervention clusters without accounting for these spatial spill-over
effects would have led to an underestimation of the intervention’s community effect. Therefore,
several cluster designs have been suggested to address this issue that involve the inclusion of

buffer zones in various forms (discussed further in Chapter 7).

Heterogeneity in transmission and hotspots present challenges for both the implementation of
interventions’® and clinical trial design to evaluate them. If untargeted, residual transmission is
most likely to persist in these areas.>® Studies have observed instances in which hotspots of
malaria intensity remained unaltered even after overall transmission is reduced.*377° In the
context of cluster trials, heterogeneity will exists between and within clusters and needs to be
accounted for either in the stratification or analysis of trial outcomes. The ability to detect
heterogeneities will vary depending on transmission intensity and the discriminatory power of

the metrics used to identify differences in malaria infection.

Accurate measures of malaria transmission are also essential to the design of CRTs. Firstly,
baseline measures of transmission intensity can be used to select appropriate trial sites.
Transmission intensity influences not only the sample size required to demonstrate an
intervention’s effectiveness, but the choice of diagnostic to be used. Furthermore, these baseline
measures of transmission intensity can be used to classify clusters into strata to improve study
power. However, inaccurate measurement can lead to inefficient stratification and an under- or
over-estimation of intervention effect. Finally, evaluation of an intervention effect on
transmission requires accurate measures of infection incidence. This can include a combination
of primary and secondary endpoints. If surrogate entomological endpoints are to be measured
prior to phase lll trials, for example, it may also be important to understand how these relate to
primary human endpoints. These factors will influence decisions on the frequency of sampling

and the sample size required for each endpoint.
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1.5 Diagnostics and tools for measuring transmission

As best described by Tusting et al, “measuring malaria transmission is intrinsically noisy.”3%8! We
currently have a wide range of malaria diagnostics at our disposal, but they vary in their suitability
as metrics of transmission or as endpoints in efficacy trials. Historically, malaria transmission has
been measured using the entomological inoculation rate (EIR), or the number of infective bites
per person per unit of time.8 In humans, infection prevalence can be directly measured using
parasite prevalence, the proportion of individuals with parasitaemia at a given point in time, and
its accuracy varies depending on the measurement method used.®° These range in sensitivity
from light microscopy®? and RDTs®? to nucleic acid amplification tests (NAATs), such as
polymerase chain reaction (PCR)3*%. The relative sensitivity of these measures will be discussed

further in Chapter 3.

Active and passive case detection based on clinical cases or annual parasite index (API) are the
cornerstone of national malaria control programmes.®! More recently, they have also been
improved and complemented by the widespread use of RDTs in health facilities and large-scale
surveys such as the Demographic and Health Surveys (DHS), Malaria Indicators Surveys (MIS) and
UNICEF Multiple Indicators Cluster Surveys (MICS).8 Currently used human and entomological
metrics are summarised in Tables 1.3 and 1.48, which also describe their discriminatory power

in different settings.

Recently, there have been a number of new approaches used to monitor changes in malaria
epidemiology using both molecular and serological methods (Table 1.5%), though they have been
limited to research settings. For example, molecular force of infection (moIFOI) can be estimated
through the genotyping of individual parasite infections.®%-°! Broadly, force of infection (FOI) is
defined as the number of new infections per person per unit time, while moFOI specifically is the
number of new parasite clones acquired per unit time.?° These methods can distinguish multiple
co-infecting parasite clones within one host.?%°223 Another molecular measure being used is the
multiplicity of infection (MOI), the number of concurrent parasite clones per parasite-positive
host.8% Additionally, the use of single nucleotide polymorphism (SNP) barcode assays has been
suggested for measuring changes in malaria infection in low transmission settings. Studies in
Senegal have used a 24-SNP barcode assay to correlate parasite population diversity with

longitudinal changes in disease transmission.%%

Serology, which indirectly measures infection using human antibody (Ab) responses to malaria
parasite antigens, has been used extensively in malaria epidemiology in the last decade, primarily
through FOI estimates derived from age-dependent measures of sero-prevalence. These and

other serological methods are discussed in more detail below and in Chapters 4-7.
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In low transmission settings, the prevalence of asymptomatic infections with parasite densities

below the detection limit of conventional diagnostics such as microscopy and RDTs has been

observed. Nearly 50% of infections identified by nested PCR (nPCR) are undetectable by light

microscopy, and this proportion also varies by endemicity and population groups.®®°” The factors

influencing the relative sensitivities of these diagnostics, and their relationship with

asymptomatic infections, are discussed further in Chapter 3.

Table 1.3 Summary of currently available malaria transmission metrics in humans

As described in “malERA: An updated research agenda for characterising the reservoir and measuring
transmission in malaria elimination and eradication.” PLOS Med. 14, e1002452 (2017)%8, the table
below outlines currently available metrics for measuring malaria transmission in humans.

Matric

Annual bload
examination rate
(ABER)

Casa, confirmed

Case, fevar

Proporion of fevars.
parasitanmic (PFPT)

Slide positivity rate
(5PR)

ROT positivity rate
(ROT-PA)

Parasite rate (PR)

Gamatocyle e
(GR)

Definition [3]

The nmber of people receiving a
pamasitological tast for malaria per unit
population par yaar

Malaria case (or infection) in which the
jparasite has been defected in a
diagnostic best

The occumence of fever (curment or
recant) in & person

Propartion of fever cases found fo be
pasilive for Flasmodium

Propartion of biood smears found to bea
positive for Flasmodium among all blood
smaars axamined

Proportion of positive results among all
RADTs perdommed

Propartion of the population found to
carmy asexusl bood-s1ape parasies

Parcentage of individuls in & defined
population in whom sexual fosms of
maliria parasfies have been delecied

*MNo WHO definition is availabda for this term.
Abbreviations: ABER, annual biood examination rate; GR, gametocyle rale; NAAT, nucleie ackd amplfication test: PF P, propontion of fevers parasitaemic;
PR, parasite rate; ADT, ragid diagroestic 1es1; RDT-PR, BDT positivity rate; SPR, slide positivity rate,

Measura of transmission

Ll of diagnostic monitoring
acthity

Currgnt Iransmission or
incidence if data collection is
repeated or routing

Current transmission or
incidonca if data collection is
repeated or routine

Current transmission or
incidenca if data collection is
rapeated or rowting

Current iransmission or
incidence if data collection is
rapaated or rowting

Current transmission or
incadence if data collaction is
repeated or rowting

Current transmission or
Incidence if data collection is
repaated or routing
Potentially infectious human
population

Method
Microscopy or
RDT

Micrascopy ar
RODT positive

Rieponed or
obsenvad faver

Microscopy:
RODT; MAAT

Microscopy

ROT

Microscopy:
ROT; MAAT

Microscopy:
NAAT

Discriminatory powar
= Depandant on haalth-systam
prowision

= Ingansitive ab Kw Iransmission;
saturates at high transmission

= Undgnastimates due to system
inadequAties and poor Realth-
seeking behaviowr

= Overestimales malana infection

* Depends on dagnostic sensitivity
= Insansitiva at kow transmission

= Depands on ABER
= Ingangitive at kow Iransmission

* Depends on ROT sensitivity
* Insansitive at kow transmission

= Depands on diagnostic sensitivity
= Ingansitve at kw ransmission

* Depands on dagnostic sensiivity
= Inggnsitivi al kW Iransmisson
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Table 1.4 Summary of currently available entomological malaria transmission metrics

As described in “malERA: An updated research agenda for characterising the reservoir and measuring
transmission in malaria elimination and eradication.” PLOS Med. 14, e1002452 (2017) %8, the table

below outlines currently available entomological measures of malaria transmission.

Matric Definition [3] Measure of Sampling methoed and reselution  Discriminatory power
transmission
Entomodogical Mumber of infective bites received = Transmission * Human landing collection; light * Insansitive at kw transmission
inoculation rabe par parson in aghen unid of tima,  intensity trags » Lack of standardisad sampiing dasign
(EIR) ina human population * Rgsolution: Household or » Collected by malaria contral
community keval programmes

Sporozoite rabe Percentage of female Anopheles  Risk ol infection | * Human landing catch; baited = Insansithve at kow transmission
(SR} masquitoes with sporozoiles in the traps; gravid traps

salivary glands » Resoldion; Cemmunity level
Human biting rate | Average number of mosquilo bites | Aisk of exposure | » Human landing collection = Allows determination of the primary
{HER) recefved by a host in a unit of time, * Resoldion: Person o vechor

spitified acoording to host and community kevel

mosquilo species
Vectorial capacity | Rate at which given vector Efficlancy of » Derived from human biting rate, = = Measures potential, not actual, rate of

population generabes now ransmission parasite inoculation period, Iransmigsson—includes na

Infections caused by a cumently
inbactious Ruman case

mosquite te human density and
PO quil e Sunvival
= Fesolution: Community level

parasiological information

= Sensitive 1o changes in mosguito
survival and biting behaviour but may
nod translate o significant changa in
human incidence

+ Can be useful when infection rates
ang low and mosquilo Samplng
aficul
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Table 1.5 Advances in the development of metrics for measuring malaria transmission

As described in “malERA: An updated research agenda for characterising the reservoir and measuring
transmission in malaria elimination and eradication.” PLOS Med. 14, e1002452 (2017)%%, the table
below summarises recent advances in the development of new metrics for measuring malaria
transmission.

Force of infection

mFol

Grmotypng:
SNPg of amglicon
SEQUEncing

Antibody
SANgpIavalanss

Rale at which susceplible
individuals contract malaria

The number ol new parasila
chonag acquinad b'p' 8 hoal over
tima

Th b of diffrsnt
parasile straing coinfecting a
single host

» Gienetic diversity, e,
number of allebes in &
population

* Parasie signatures o map
geographical relaledness of
infoction (L., spatial-
ternporal bisnsmissicn)

The percentage of seroposilive
Individuals in & population

Thi rate (typicaly anisl) by
which saronegabive indniduals
become saropositive upon
malaria gogosn

Measure of iransmission Method

= Probabibty of ransmession

* Population-level
trarsmitssion infensity

* Transmission haterogenaity

+ Population-level
tramsmission inlensity
T :

+ Population-lovel
irarsmission inlensity

+ Transmession haterogenady

* Gieographical tracking of
transmission pattems

* Population-leval
transmission intensity

= Population-lsaeal
trarsmission inlensity

* Tomparal changas in
fransmission can be
delnctod from a singa
sampiling lime point

Tirna irom birth 1o firs1 malaria
episoda; microsoopic dedection of
parasites following successhl
antimalirial redabmaen

GCohaor shudy =8 monhs with
parasila genolyping

Parasile genotyping ol pogitive
samplas

* Haplatypes compasedof =12
informative SNPE from single
chong infeclions

* Haplotypic signatures from

highly vasiabhe loc

Seronegative of seroposilive
dedined using appeopriabe culoll
points

Dataclion of anlibodas A dara
using serological assay (IFAT,
ELISA, boad-based assays
microarry)

Discriminatory powar

= Diifficull 1o measure

= Diificult 1o standardise

* Dapends on diagnostic
sengitivity

= Canndl difl srgntiabe
supariniections

+ Highily sensitive for
monilening changes in
malaria axposure

* Suparinfections can be
ditlgrentisied

+ Salurates al high
Iransmission

+ Rpatricted by age
dapandency

* Insansitive at low
Iransmission

* Highily sensithve to spatial
heataroganeity

+ Highly sensitive to increases
in impored infection

* Less sensitive 1o changes in
seasonaliy

* Sansitive 1o changes in
malaria exposure and
spalial-tamporal llow ol
infection

+ Standardisation of measures
rgesdied

+ Methods for analysis and
interprelation of data neaded

+ Dependent on antibody
target tested

* Saturates ai high
transmission

= Bansitive o low
Iransmission

« Dapandan on antibady
targed iesled

+ Restrictod by age
dapandency

* Salurabes a1 high
Iransmission

o Sansive ol low
transmission

* Sanstive to risk of malaria in
absence of transmission

Abbreviations: ELISA, enzyme-linked immunosorbant assay; IFAT, Immuncfivorescence Antibody Test; mPOI, molecular force of infection; MOI,
ruliplicity of inlection; SCR, Seroconversion rae.
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1.6 Leveraging the human immune response for surveillance

The use of serological data in epidemiological analysis

Sero-epidemiology, or the measure of population-wide Ab responses in serum, has been widely
used to study the prevalence of infection for a number of diseases. Sero-prevalence surveys have
helped to guide vaccination strategies as well as disease control and elimination programmes®®
for polio®>1%, measles,'? rubella,'® diphtheria,®®* Haemophilus influenza type B (Hib)'°*, and
pertussisi®. It has been used extensively in tropical infectious diseases such a dengue, trachoma,

chikungunya, and helminths infections.106-111

For infections that lead to lifelong or persistent antibodies, the application to sero-epidemiology
is primarily through measures of Ab prevalence by age in mathematical models used to estimate
an age-specific FOI*2, It is particularly useful for pathogens such as hepatitis B'** and rubella
where serology is a strong marker for subclinical infections. It is less suitable for infections that
do not generate stable Ab responses, such as cholera, human papillomavirus (HPV), rotavirus,

and typhoid.

In malaria, the use of sero-epidemiology has also focused on measuring age-related sero-
prevalence and FOI through community or household surveys. Over the past 10 years, substantial
work has shown that serological evaluation of cross-sectional Ab prevalence can provide
medium- and long-term temporal measures of transmission intensity,!*1! and correlate well
with within-study estimates of EIR, PR, and clinical incidence.'?! In particular, the ability to
standardise the use of the Pf blood-stage antigens PFAMA1 and PfMSP119 due to their long half-
life, moderate levels of immunogenicity, and limited polymorphisms, has allowed the use of
immunological assays that measure human Ab responses to these antigens as a practical

epidemiological tool.

As a proxy for malaria transmission intensity, age-stratified sero-prevalence data are used to fit
reverse catalytic models and estimate population-level FOI or a seroconversion rate (SCR) - the
rate at which sero-negative individuals become sero-positive after infection by malaria
parasites.’?> More recently, new approaches have been applied using serological data to measure
population Ab responses to malaria. These include adaptations of the reverse catalytic model
with the use of Ab titre measurements rather than sero-positivity'?® and Ab acquisition models!?*.
These and other malaria sero-epidemiology models will be discussed in more detail in Chapters

4-7.

Naturally acquired immunity to malaria
Most successful vaccines have been against pathogens that induce long-lived protective Abs upon

a single infection, such as smallpox, measles, and yellow fever.12>126 pathogens that do not induce
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sterile immunity, including malaria as well as human immunodeficiency virus type-1 (HIV-1) and

Mycobacterium tuberculosus (Mtb), are much more challenging for vaccine development.

Currently, we still have an incomplete understanding of the dynamics of immune responses to
Pf. While sterilising immunity to malaria is almost never achieved, it is generally understood that
partial immunity against high-density parasitaemia and clinical disease is developed through
repeated and cumulative infection (Figure 1.7%?7). This has been illustrated through studies of
non-immune individuals challenged with malaria infection!?®, passive transfer of immune serum
to malaria-infected children,>>3°% and more broadly through epidemiological and clinical

observations in malaria endemic populations.

Epidemiological data across medium-high transmission intensities in Africa indicate that clinical
immunity in these settings is acquired after 10 to 15 years of exposure and severe malaria is rare
in older children and adults.®131132 There is also large variability in disease episodes among
children within the same transmission setting. At the individual level, studies have shown that
those repeatedly exposed have lower parasite densities and less frequent clinical episodes.133-140
In high transmission settings, severe malaria is only generally observed in children under age
five.8133 On the other hand, in some low transmission settings, limited exposure has been found
to result in low effective immunity and higher rates of symptomatic and severe malaria in
adults.14142 Several longitudinal studies suggest that “premunition”*, or persistent low-density
asymptomatic infection, is important for maintaining Ab responses through repeated immune
boosting.14150 After the re-emergence of malaria in Madagascar after 30 years of control,
individuals exposed when transmission intensity was previously higher were more resistant to
clinical disease than their younger counterparts.’®> As transmission declines, shifts in age
distribution are also observed, with a higher frequency of clinical disease in older individuals
compared to high transmission settings where symptomatic episodes are primarily experienced

in children under age 10-15 years.**2153

What determines the rate at which naturally acquired immunity develops has been a subject of
debate for some time. One hypothesis is that the slow onset of clinical immunity in holo-endemic
areas is due to parasite diversity, where cumulative exposure to multiple parasite infections over
time yields a suitable diverse repertoire of strain-specific immune responses.'>* ¢ One of the
best examples of Pf polymorphisms are the approximately 60 var genes that encode the
hypervariable surface protein known as the Pf erythrocyte membrane protein 1 (PfEMP1), critical

for malaria pathogenesis and immune evasion.'>7-1%9

A competing hypothesis is that immunity is less dependent on parasite-specific exposure, but
instead due to cross-reactive strain-transcending immune responses associated with age-related

maturation of the immune system. This is motivated by data from trans-migrants in Indonesian
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Papua, where malaria-naive adults initially experienced parasitaemia at the same rates as
children, but rapidly acquired protective immunity such that age-specific prevalence paralleled
those of lifelong residents in the area within two years, suggesting innate age-dependent factors

associated with immunity.'®%%1 This has also been observed in studies in Tanzania.16%163

However, the influence of age on the pathophysiology of malaria has also been found to be
important. It has been observed that, relative to children, adults are more tolerant of chronic
infection but less able to withstand acute infection. For example, Griffin et al investigated the
effect of age on different severe malaria syndromes across transmission intensities in Tanzania
based on mathematical models and found that infection at later ages was associated with a
higher proportion of cerebral malaria regardless of exposure.'® Field-based studies by Reyburn
et al found that this age effect was observed primarily in low and moderate transmission
settings.*! This could be driven by T-cell mediated immune responses or an increased production
of tumour necrosis factor alpha (TNF-a) by adults in response to primary infection that may wane
with continued exposure (Figure 1.8).1%> What is key is how these biological mechanisms will
manifest themselves as transmission declines.'3? While the overall risk of clinical disease across
the population will inevitably decline with malaria intensity, empirical studies are conflicting on
whether a loss of immunity in older children and adults will render a large proportion of at-risk

individuals more vulnerable to severe and fatal malaria.

Implications of antibody longevity on serological markers of immunity and exposure

What is still the subject of on-going research is how the effect of age and exposure on the
acquisition of immunity differs between antigens. Characterising these dynamics for specific
target antigens is fundamental to how measures of human immune response can be used
epidemiologically. Antigens will fall along a continuum of suitability as a biomarker of acute

infection / recent exposure to a correlate of protective clinical or parasitic immunity.

While low antibody levels are not protective against malaria, they will increase with age and/or
exposure and, once it reaches a theoretical threshold to confer protection against clinical disease
are most suitable as biomarkers of immunity (Figure 1.9%%®). Conversely, antibody levels below
the threshold of protection can be useful as biomarkers of previous infection in populations with
limited exposure, such as young children or areas of low transmission intensity. It may also be
possible that antibody responses that boost above the threshold of protective immunity, but

decay rapidly in the absence of infection, can also be used as markers of recent infection.
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Figure 1.7 The acquisition of immunity to malaria in the context of intense seasonal Pf transmission

As described by Crompton, P.D. et al in “Malaria immunity in man and mosquito: Insights into unsolved
mysteries of a deadly infectious disease”. Annu Rev. Immunol. 32, 157-187 (2014)'%’, the figure below
seeks to illustrate that in areas of intense malaria transmission, immunity to severe life-threatening
malaria is generally acquired by the age of five years. Children remain susceptible to repeated
episodes of febrile malaria into adolescence, eventually acquiring near complete immunity to the
symptoms of malaria by adulthood, but remaining susceptible to infection by blood-stage parasites.
The mechanisms of immunity to severe malaria are unclear but may involve the acquisition of “strain-
specific” antibodies that neutralise key P. falciparum variant antigens, which drive the pathogenesis
of severe disease (e.g., subset of P/EMP1s that mediate sequestration), and the induction of “strain-
transcendent” regulatory mechanisms that control excessive P. falciparum-induced inflammation.
Both of these mechanisms may depend on ongoing P. falciparum exposure to be maintained. In young
children, P. falciparum-specific antibody responses to acute infection are generally short-lived, but
with each year of exposure, there is a gradual increase in the breadth of antigen specificity and serum
levels of P. falciparum-specific IgG that persists in the absence of transmission (i.e., during the dry
season in the case of seasonal malaria). Protection against malaria symptoms is only conferred when
an, as yet ill-defined, threshold is surpassed.
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Figure 1.8 Hypothetical basis of age-dependent inversion of susceptibility to disease with acutve vs.
chronic exposure in children and adults

As described by Doolan et al in “Acquired immunity to malaria. “ Clin. Microbiol. Rev. 22, 13-36 (2009)3,
the figure below illustrates the hypothetical basis of an age-dependent inversion of susceptibility to
disease with respect to acute versus chronic exposure in children and adults. Thl- and Th2-type
immune responses are surrogates for immune responses that change with age-dependent exposure
and play a critical role in infection outcomes. Thl-driven effectors may dominate the immune
response of children, while Th2-driven effectors may dominate adult immune responses.
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Figure 1.9 Models of the evolving role of antibodies to Plasmodium falciparum merozoite antigens
with changing malaria exposure and antibody levels

As described by Stanisic, D.l. et al in “Acquisition of antibodies against Plasmodium falciparum
merozoites and malaria immunity in young children and the influence of age, force of infection, and
magnitude of response.” Infect. Immun. 83, 646-60 (2015)%°, the figure below illustrates models of
the evolving role of antibodies to Plasmodium falciparum merozoite antigens with changing malaria
exposure and antibody levels, where (a) low antibody levels are not protective against malaria, but as
antibody levels increase (with age and/or exposure) and reach a theoretical threshold, antibodies
contribute to protection and serve as biomarkers of malaria immunity, and (b) antibody levels may
also serve as biomarkers to predict malaria risk or protective immunity by identifying individuals who
have been exposed to infection. In young children or those with limited exposure, antibodies have a
high predictive value for increased risk of malaria and poor predictive value for protective immunity.
As age or cumulative exposure or both increase, the predictive value of antibodies for increased risk
of malaria declines, reaching a point where antibodies become better markers of protection.
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Only 1% of the roughly 5,000 antigens encoded by the malaria parasite have been studied so
far.167.168 Blood stage infection is the primary target of acquired human immunity and antigens
expressed by the merozoite, the erythrocyte infecting extracellular form of Plasmodium, are
particularly important immune targets and vaccine candidates.’6%17° These are assumed to be
humoral responses because human leukocyte antigen (HLA) class | and Il molecules associated

with cell-mediated immune responses are absent from the surface of the parasite and infected

red blood cells (RBCs).%’
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The invasion of erythrocytes is a multi-step process involving several interactions with proteins
on the merozoite surface as well as those associated with invasion organelles — micronemes and
rhoptries (a schematic of the specific proteins investigated in this thesis are illustrated in Figure
1.10).Y7! Due to their direct exposure to the host immune system and their roles in invasion, these
antigens are major targets for protective Abs, which can act either by inhibiting parasite
replication (opsonising merozoites for uptake by phagocytes and antibody-dependent cellular
inhibition), blocking binding of merozoite ligands to their receptor or binding partners, or
blocking processes required for parasite function.}’%172-178 Developments in genomics,
proteomics, and innovations in protein expression have allowed a much wider identification and
expression of antigens that may be potential vaccine candidates, but also markers of immunity
or exposure.’>18 However, gaps still remain between the expression of recombinant proteins

and natural antigens.

Upon initial exposure and binding to parasite antigens, naive B cells begin to differentiate into
either short-lived plasma cells that function to control initial infection or long-lived plasma cells
and memory B cells (MBCs) that contribute to the maintenance of sustained antibody-based
immunity.1>>81  Research suggests that short-lived plasma cells secrete primarily
immunoglobulin-M (IgM), while long-lived plasma cells and MBCs secrete immunoglobulin-G
(18G) and immunoglobulin-A (1gA).*®? Given that IgM only persists for several days to a month,
IgG antibodies are typically used to measure historical transmission intensity as they tend to be
associated with protective immunity and are detectable for a longer period, replacing IgM once

parasite load begins to fall.
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Figure 1.10 Plasmodium falciparum parasite life cycle and antigens as potential biomarkers of malaria
exposure

Adapted from Winzeler et al in “Applied systems biology and malaria.” Nat. Rev Microbiol. 4, 145-151 (2006)183
and Cowman et al in “Invasion of red blood cells by malaria parasites.” Cell 124, 755-766 (2006)171. Original figures
have been modified to include specific antigens discussed in following chapters of this report (blue boxes).
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1.7 The role of multiplex immunoassays

Several types of assays have been used to quantify Ab responses to malaria and other infectious
pathogens. As early as the 1900s, Ab quantification methods were found to be more sensitive
than microscopy in detecting current infection in the form of complement fixation and precipitin
tests'®-186 These were designed to photo-metrically measure reductions in complement
concentrations that are specific or “fix” to target antigen-antibody complexes of interest in serum
and resulted in an increase of RBC lysis in an indicator system. This was later replaced by the
indirect haemagglutination assay (IHA)'®’, where malaria antigen-coated tests reacted with anti-
malarial Abs in serum samples, resulting in agglutination that was measured visually. This method
allowed improvements in high throughput analysis given that antigen was easily prepared on

micro-titre plates to test several samples at once.
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By the 1960s, Ab quantification tests were modified again in favour of immunofluorescence
antibody tests (IFAT). Here, antigens of interest (usually whole parasitised RBCs as opposed to
the antigen extracts used in IHA) are fixed to a glass slide, incubated with human serum samples,
and a secondary Ab coupled with a fluorescent compound added and reactivity measured
visually with a fluorescence microscope. Both IHA and IFAT methods are difficult to standardise,

however, because reactivity was measured visually and were therefore subjective.11°188

IFAT tests were widely used in malaria surveillance for some time.'8-%3 However, in the last
decade they have been supplanted by enzyme-linked immunosorbent assays (ELISA). Similar to
IFAT, but rather than glass slides, recombinant antigens are coated to micro-titre plates, which
are incubated with human sera followed by an enzyme-coupled secondary Ab. Upon addition of
an enzymatic substrate, a colour change proportional to the amount of antigen-specific Ab in the

sample is measured with a spectrophotometer.11%188

More recently, cytometric bead assays (CBA) and protein microarray have been used as multiplex
platforms to measure responses to multiple antigen-specific responses in a single sample. CBAs
use measurement techniques similar to fluorescence-activated cell sorting (FACS). Recombinant
antigens are conjugated to distinctly coloured microspheres or beads (a combination of
fluorescent dyes), allowing a unique spectral address for each analyte of interest. This allows a
dual-detection flow cytometer to identify the bead-specific colour and to quantify the associated
analyte concentration.® Current CBA platforms allow measurement of up to 500 different

analytes simultaneously. CBA assays will be discussed in more detail in Chapter 5.

In a revisit to IFAT methods, protein microarrays bind (or print) recombinant proteins to
microscopy slides, but with only nano- or pico-gram volumes of antigen. Like CBAs, it has the
advantages of a larger dynamic range compared to ELISA and multiplexing up to 1,000s of
antigens at a time. However, high start-up costs make it impractical for field-based surveillance.
It also suffers from variability in signal between slides and large volumes of data, leading to data
standardisation and processing challenges. For these reason, it is used primarily for broad

screening of immune responses or antigen discovery in research settings.1881%

While ELISA has been the assay of choice for sero-epidemiological studies, the proliferation of
newer multiplex technologies are allowing surveillance tools to be more refined in the breadth
of malaria exposure that is measured. However, it also introduces new challenges in assay
validation and standardisation. Nonetheless, these tools may become increasingly relevant as
countries move towards malaria elimination, particularly in areas where it may be cost-effective
to integrate malaria surveillance with other disease surveys. Figure 1.118 illustrates commonly

used immunoassay platforms for detection of antibodies against malaria antigens.
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Figure 1.11 Schematic of immuno-assay platforms

As described by van den Hoogen and Drakeley in Encyclopedia of Malaria 1-8 (Springer New York,
2015)88, the figure below illustrates several malaria diagnostic platforms used for antibody detection,
including the immunofluorescence antibody test (IFAT), enzyme-linked immunosorbent assay (ELISA),
the cytometric bead array (CBA), and protein microarray. From left to right, the number of identified
antigenic targets increases in relation to the number of individuals per test (i.e., per microscope slide
or 96-well plate).
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1.8 The history of malaria epidemiology in two pre-elimination settings
in sub-Saharan Africa

The two countries explored in the research presented in this thesis are examples of
epidemiological settings where elimination may not be easily achieved without intensified
efforts, and, hence, where research into tailored strategies is necessary. Most countries that have
eliminated are areas with robust surveillance systems and rural public health services, relatively
rich and tourism-oriented islands with strong mosquito control programmes, or areas that are
not intrinsically malarious or with highly focal endemicity (Table 1.6).17 Historically, elimination
efforts in sub-Saharan regions were limited — by 1964, GMEP activities had only covered 3.2% of

the population at-risk in Africa due to concerns about operational and technical challenges.*”/1%
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Table 1.6 Countries and regions certified malaria free up to 2010

As described by Najera, J.A. et al in “Some lessons for the future from the Global Malaria Eradication
Programme (1955-1969), PLOS Med. 8, 1000412 (2011)."7

Countries and Reglons with & Long History of Control Islands with Tourlsm-Orlanted Economy  Other

Haorth Venszuela (1961), Mungary [1964], Spain (1084), Bulgaris (19651 Grenada & Carristou (19621, S Lucks (19632) Singapore [1082), Brursel
Tabwan (1065], Cyprus (1947), Paland (1987), Romanis (1967), Retherlands Trirmkdad & Tobagoe (1965), Doménica (1984], Dwsrudsalam (1087, United Arsb
(1970), United States (1970), aly (1970}, Pusvto Rico (19700 Cubas {1973% Jaamaica (1968}, LS. Vingin lilamds (19700, Emirated (2007, Mamcco (20010}
Portugal (1973), Yugoslavia (1973], Australia (1580}, Turkmenistan (30100 Mauritius (1973} Reunlon (1579

doi 10,1371 Journal perned. 100041 2 1001

The Gambia

As the smallest country in mainland Africa, The Gambia has contributed more to our
understanding of malaria biology and epidemiology than would be expected. It experiences a
typical West African savannah climate - an intense and short rainy season between June and
October followed by a longer dry season. The majority of malaria transmission occurs during this
wet season (and the period immediately after).’®” The predominant malaria parasite is Pf, but Pm
and Po are also observed. Prevalence of Pv, however, is not high given that the RBC Duffy antigen
required for parasite invasion is largely absent from the population. The main mosquito vector is
Anopheles gambiae,**® named after their identification by Frederick Theobald and Col. George
M. Giles from samples collected in and around the River Gambia,'?>?% where a number of
important studies on vector ecology and behaviour and its contribution to variation in malaria

transmission would later be conducted.136:198,201-205

During an expedition to The Gambia by the Liverpool School of Tropical Medicine and Medical
Parasitology in 1902, Dr. J. Everett Dutton was one of the first to observe that the prevalence of
spleen enlargement and parasitaemia, as well as parasite density, was lower in older children,
suggesting the development of partial immunity to malaria through repeated infections.?% Fifty
years later, studies led by Sir lan McGregor in Keneba (part of the recently established UK Medical
Research Council Unit in The Gambia), demonstrated that gamma globulin prepared from malaria
immune adult Gambians given to malaria-infected Gambian children reduced parasite count
within days.’?® This provided strong evidence that components of immune serum, likely
antibodies, could impede the replication of malaria parasites. Subsequent studies in both The
Gambia and Tanzania showed variability in immune responses in children to immune sera from
adult Gambians. This was some of the first research to suggest strain specificimmune responses

to malaria infections due to antigenic variation.!30.207

Since then, the transmission patterns and seasonality of The Gambia have enabled pivotal
research on immunity to malaria, including the correlation of Ab concentrations to protection

against clinical malaria (later associated with the blood stage antigen PfEMP1),2%829° community

43



cohort studies identifying merozoite antigens as targets of protective Abs,?'%21 and longitudinal
studies on the duration of immune response in the absence of re-infection.?? Later, key
epidemiological studies were conducted on the role of gametocytes, asymptomatic infections,
and host factors that drive human infectiousness.?!3?'* Further work on immune responses to
the sexual stages of the parasite focussed on gametocyte antigens as potential vaccine
candidates.?'®> These studies built a more complete understanding of immunity throughout the
parasite life cycle and the dynamics that influence human-to-mosquito transmission at the

individual and population level.

The Gambia was also one of the first African countries to document clear declines in malaria
burden in recent decades. Between 2003 and 2007, the proportion of malaria positive
microscopy slides decreased by 74%, while malaria hospital admissions fell by 81% (Figure
1.12).153216 Malaria incidence and mortality continued to decline by 60% between 2010 and
2016.2 Political and financial investment in malaria control has allowed high coverage of LLINs
(>60%), treatment with ACTs and chemoprophylaxis through intermittent prevention therapy in

pregnancy (IPTp).2Y
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Figure 1.12 Changing epidemiology of malaria incidence and mortality in The Gambia between 2003
and 2007

As described by Ceesay, S.J. et al in “Changes in malaria indices between 1999 and 2007 in The Gambia: a
retrospective analysis.” Lancet. 372, 1545-54 (2008)216, the figure below illustrates monthly numbers (left panel)
and yearly proportions (right panel) of (a) malaria hospital admissions, (b) death, and (c) positive slides in
outpatients at the Medical Research Council in Fajara from January 1999 to December 2007. Monthly and yearly
rainfall in the Greater Banjul Area over the period is also shown (d).
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Despite these gains and the potential for elimination, malaria transmission in The Gambia is still
on-going across the country and markedly heterogeneous.?*¥?19 Variations in the proportion of
sub-microscopic infections between regions and villages have also been observed.?® The
increasing malaria prevalence documented from west to east may be due lower LLIN usage
amongst individuals sleeping outdoors alongside a higher proportion of Anopheles arabiensis (An.
arabiensis) and Anopheles coluzzii (An. coluzzii), an exophilic outdoor biting mosquito species

adapted to semi-arid conditions and potentially more efficient in transmitting infection.?2%.22!

Today, The Gambia continues to be an important research site for the evaluation of malaria
control strategies given the challenges it still faces to achieve elimination. Ongoing research on
vaccines, drugs, and community interventions there will be critical not only for the West African

region, but other countries with similarly heterogeneous malaria epidemiology as transmission
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declines. The current state of malaria control and elimination in The Gambia will be discussed in

more detail in Chapter 6.
Namibia

Namibia is one of a number of southern African countries, including South Africa, Swaziland and
Botswana, targeting malaria elimination by 2020, and the Elimination 8 initiative was created in
2009 to support these goals.?!7?22 Namibia experienced a remarkable epidemiologic transition
between 2001 and 2011, during which clinical cases of malaria fell by 97.4% and malaria-
attributable deaths by 98%, owing largely to policies for universal bed-net coverage and IRS in

endemic areas, RDT-based case management, and access to ACTs.?23-226

Overall, climate across this large and sparsely populated country varies considerably from semi-
arid to subtropical and temperatures ranging from 5°C and 40°C. The ten northern regions, where
65% of the country’s population reside, are categorised as malaria endemic and experience an
ecosystem of high temperatures, rainfall and humidity.??” Malaria risk is driven by rainfall
patterns, occurring seasonally with periodic outbreaks in the northwest and more perennially in
the northeast.??® Pf accounts for 97% of malaria infections and primary vector is An. arabiensis,
which are able to breed in “iishanas” or flat, low-lying areas that collect water during the rainy
season.??3226 The Kavango and Zambezi regions have the highest endemicity, while receptivity
remains high in Kunene, Omusati, Ohangwena regions. The southern coastal regions of Erongo,

Hardap, Khomas and Karas are largely arid and malaria-free (Figure 1.13).22>228
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Figure 1.13 Map of Namibia and Plasmodium falciparum transmission receptivity

As described by Noor, A.M. et al in “Malaria control and the intensity of Plasmodium falciparum transmission in
Namibia 1969-1992). PLOS One 8, 63350 (2013)225, the figure below illustrates the receptive risks of P.
falciparum parasite rate for ages 2-10 years (PfPR.10), computed as the maximum mean population adjusted
PfPRy.10 predicted for years 1969,1974, 1979, 1984 and 1989 for each health district.

- Stable transmission
| Unstable transmission
I Unsuitable for transmission

The National Vector-borne Diseases Control Programme (NVDCP) of Namibia launched a
campaign for elimination in 2010, with the aim to reduce incidence to less than one case per
1,000 individuals in all districts by 2016 and zero local malaria cases by 2020.222 DDT-based IRS

has been the primary component of the Namibian malaria control programme since the 1960s%%°
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and is typically conducted between October to January before the start of the rainy season
(November to April). There have been reported coverage issues (falling to as low as 5.0% of the
population at risk in the Ohangwena region) due to delayed procurement of insecticides,
community acceptance of DDT, and difficulty reaching mobile pastoral populations.??? IRS has
also been periodically supplemented with other vector controls measures. In 2005, the policy of
LLIN distribution targeted mainly at-risk groups (children under five years of age and pregnant
women), but in 2012, aimed to achieve 95% coverage of the entire population in at risk regions.
Free and subsidised LLIN distribution has mainly been supported by the Global Fund and other
non-governmental organisations. In 2013, nearly 90 thousand LLINs were distributed, targeting
villages with highest malaria burden in Zambezi, Kavango, and Omusati.??®> In 2013, LLIN coverage
in the Zambezi region was 17.4% (Namibia Malaria Strategic Plan 2010-2016, Ministry of Health

and Social Services).

Due to frequent population movement from neighbouring countries, particularly along the
borders with Angola, Zambia and Botswana, low to moderate transmission has been sustained
and receptivity remains high. Recent studies in Namibia have found that young male travellers to
Angolain particular were disproportionately at risk of malaria, as well as populations living within
15km of the Angolan border, which may be due to mosquito or human movement.??* The Trans-
Kunene Malaria Initiative (TKMI) has aimed to reduce malaria cases in five border regions
(Ohangwena, Omusati and Kunene in Namibia and Cunene and Namibe in Angola).?3® The Trans-

Zambezi Malaria Initiative (TZMI) also involves Angola, Botswana, Zambia and Zimbabwe.

Historically, Namibia’s war for independence from 1975 to approximately 1988 is also an
illustration of how easily gains in malaria control can be lost during political instability.
Widespread fighting in the areas around Caprivi hampered scale-up and coverage of
interventions such as IRS and presumptive treatment. Additionally, large cross-border
movements occurred as Namibian fighters engaged South African troops from Angolan bases,
which likely blunted the impact of control efforts on the Namibian side. This manifested itself in
large malaria rebounds in eastern Kavango and Caprivi by 1989 (increases in PfPR,.10ranging from

4 to 12% compared to levels in 1969).22

Today, there have been a limited number of research and capacity building activities Zambezi and
neighbouring regions since 2014, in addition to a cluster randomised trial on reactive focal MDA
and vector control (the topic of Chapter 7). This includes the Malaria Risk Factor Assessment Tool
(MERFAT), developed as part of a case control study that aimed to identify risk factors for malaria
in Zambezi by comparing malaria positive and negative cases from the health facility. As part of
a 2015 cross-sectional survey, a geographical reconnaissance system was set up that geo-located

8,000 households in the area. This also included a spatial decision support system established via
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local health facilities with surveillance data, graphical maps, and tablet-based reporting for use

in active case detection and spatially targeted interventions.

Despite progress in reducing malaria burden, outbreaks have been observed in recent years. The
areas of northern Namibia have been subject to malaria epidemics in 2004 and 2013, causing
high levels of morbidity and mortality (Namibia Malaria Strategic Plan 2010-2016, Ministry of
Health and Social Services). In the 2016 malaria season, cases in the country overall were nearly
3-fold higher the annual average in previous years (personal communication Immo Kleinschmidt,
Elimination 8). These periodic spikes in incidence have created unexpected challenges for the

planning of elimination efforts and case investigations for targeted interventions.

Remaining challenges in malaria elimination and surveillance

The experiences of both The Gambia and Namibia illustrate the many epidemiological and
programmatic challenges associated with elimination efforts. In many ways, we are blessed to
work on malaria at a time when political commitment is high and there is an arsenal of diverse
tools at our disposal with which to target and measure transmission. However, how these tools
will be implemented to achieve reductions in transmission and maintain them is still a work in
progress. The main challenge addressed in this thesis is the investigation of more sensitive
measures of malaria transmission and how they can be applied and standardised for use in

surveillance and the evaluation of efficacy trials for elimination.
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Chapter 2 Aims and Objectives

The research presented in this thesis seeks to develop improved methods for measuring malaria
transmission based on serological endpoints for use in epidemiological surveillance and cluster

randomised trials in elimination settings. The work described has the following aims:

Aim 1. To estimate the relative sensitivities of diagnostics currently used to measure malaria

infection in humans at the community or cluster level. Specific objectives include:

1. To quantify the comparative sensitivity of existing diagnostics (microscopy, RDTs, PCR,
and serology) for the detection of patent and asymptomatic P.falciparum infection.
2. To evaluate whether relative diagnostic sensitivities vary by age, geographical region,

and transmission intensity.

These objectives are addressed by the work described in Chapters 3 and 4.

Aim 2. To assess the suitability of novel P.falciparum recombinant antigens as candidate

serological biomarkers of previous malaria infection. Specific objectives include:

1. To estimate the predictive power of candidate biomarkers for measuring previous
malaria infection and time since last infection.

2. To evaluate whether the strength of association of novel serological biomarkers varies
by age, geographical region, transmission intensity, and other covariates.

3. To select an optimal subset of serological biomarkers for use in measuring short-term

changes in malaria transmission at the cluster level.

These objectives are addressed by the work described in Chapter 5.

Aim 3. To investigate the use of novel candidate serological markers of previous malaria infection

for use in malaria surveillance and cluster randomised trials. Specific objectives include:

1. To estimate cluster-level antibody responses between transmission seasons and
geographical region in The Gambia and between study arms in a cluster randomised trial
in Zambezi Region, Namibia.

2. To develop standardised methods for evaluating differences in malaria transmission

between clusters or study arms in efficacy trials based on novel serological endpoints.

These objectives are addressed by the work described in Chapters 6 and 7.
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Chapter 3 Comparison of diagnostics used to measure
cluster-level parasite prevalence

As introduced in Chapter 1, the accurate identification of asymptomatic human infections, which
can sustain a large proportion of transmission, is a vital component of control and elimination
programmes. This chapter explores the relationship across common diagnostics used to measure
malaria prevalence — polymerase chain reaction, rapid diagnostic tests, and microscopy — for
the detection of Plasmodium falciparum infections in endemic populations based on a pooled

analysis of cross-sectional data.

This study was published in 2015 (https://www.nature.com/articles/nature16039) as part of a

Nature Supplement on the role of diagnostic tools for infectious disease control and elimination

in resource poor settings, and the published version is included here.
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The global burden of malaria has been substantially reduced over the past two decades. Future efforts to reduce malaria further
will require moving beyond the treatment of clinical infections to targeting malaria transmission more broadly in the community.
As such, the accurate identification of asymptomatic human infections, which can sustain a large proportion of transmission, is
becoming a vital component of control and elimination programmes. We determined the relationship across common diagnos-
tics used to measure malaria prevalence — polymerase chain reaction (PCR), rapid diagnostic test and microscopy — for the
detection of Plasmodium falciparum infections in endemic populations based on a pooled analysis of cross-sectional data. We
included data from more than 170,000 individuals comparing the detection by rapid diagnostic test and microscopy, and 30,000
for detection by rapid diagnostic test and PCR. The analysis showed that, on average, rapid diagnostic tests detected 41% (95%
confidence interval = 26-66%) of PCR-positive infections. Data for the comparison of rapid diagnostic test to PCR detection at
high transmission intensity and in adults were sparse. Prevalence measured by rapid diagnostic test and microscopy was compa-
rable, although rapid diagnostic test detected slightly more infections than microscopy. On average, microscopy captured 87%
(95% confidence interval = 74-102%) of rapid diagnostic test-positive infections. The extent to which higher rapid diagnostic test
detection reflects increased sensitivity, lack of specificity or both, is unclear. Once the contribution of asymptomatic individuals
to the infectious reservoir is better defined, future analyses should ideally establish optimal detection limits of new diagnostics

for use in control and elimination strategies.

Nature 528, $86-593 (3 December 2015), DOI: 10.1038 /naturel6039
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ver the past two decades, considerable progress has been made in
reducing the global malaria burden. Between 2000 and 2013 alone,
malaria-related mortality decreased by 47% worldwide and 54% in
Africa. In addition, more than half of malaria endemic countries are on track to
meet global targets to reduce malaria incidence by 75% in 2015 (ref. 1). These
achievements are largely due to the widespread use of insecticide-treated nets
(ITNs) and highly effective antimalarial treatments. The treatment of sympto-
matic cases in particular has been enabled by notable advances in the develop-
ment and deployment of more accurate malaria diagnostics?*, However, efforts
to reduce the burden of malaria infections further in the future will require mov-
ing beyond the treatment of clinical infections to targeting transmission more
broadly in the community. As such, the accurate identification of asymptomat-
ic human infections, which can sustain a large proportion of transmission, is
becoming a vital component of control and elimination programmes®*,
Community chemotherapy (for example, mass screen and treat (MSAT)
or mass drug administration (MDA) programmes) in conjunction with on-
going vector control is an approach under consideration for the interruption
of transmission. This is achieved through the direct treatment of potentially
infectious individuals. In the case of MSAT strategies, delivering drugs spe-
cifically on the basis of positive test results may be considered preferable to

presumptive treatment because it provides clear benefit to the recipient and
limits excess drug use that may drive antimalarial resistance. However, ow-
ing to the insufficient sensitivity of existing field diagnostics used to identify
asymptomatic infections, studies have shown that MSAT has limited effect in
reducing transmission®®,

Measuring parasite infection by microscopy has been the gold standard
in malaria research for more than a century and remains relatively widespread
as a point-of-care diagnostic in clinical and epidemiological settings. More
recently, the advent of rapid diagnostic tests (RDTs), which measure the pres-
ence of histidine-rich protein 2 (HRP2) for Plasmodium falciparum and/or lac-
tate dehydrogenase for other Plasmodium species (pLDH), has expanded the
range of diagnostic options. Originally developed to inform clinical treatment,
RDTs are increasingly important for epidemiological characterization” because
of their low cost and field applicability. However, most only have reported de-
tection limits in the range of 100 to 200 parasites per microlitre®® in compari-
son with around 50 parasites per microlitre by expert microscopy™.

Over the past three decades, the development of nucleic acid amplifica-
tion tests has improved the detection limit for malaria infection to less than 1
parasite per microlitre by ultrasensitive quantitative polymerase chain reac-
tion (qPCR)™2, Although these detection thresholds are more appropriate for

*These authors contributed equally. 'Department of Inmunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical
Medicine, Keppel Street, London WC1E 7HT, UK. ?MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Faculty of
Medicine, Imperial College London, Norfolk Place, London W2 1PG, UK. Correspondence should be addressed to: L. W. e-mail lindsey.wu@lshtm.ac.uk.
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RDT infection to recently cleared infection (Fig. 1). A limited number of studies have
PCR reviewed the detection capability of RDTs in asymptomatic individuals®?, but
key research questions still remain. A recent analysis of Demographic and
Health Surveys (DHS) across Africa showed a higher prevalence of malaria
\ when measured by RDTs compared with detection by microscopy in 19 out
"v, of 22 surveys. This report also highlighted the issue of false positives owing

ROT to prolonged presence of HRP2 after parasite clearance?. However, studies
- have not reviewed the detection capability across all three diagnostics. Fur-
i Microscapy thermore, the DHS study only considered children under 5 years of age and

did not determine the effect of malaria transmission intensity on diagnostic

Microscopy

Diagnostic detection limit

Sub-micresco,

discordance. This is particularly important given that low-density infections
seem to be most common in adults and in low-transmission settings™*.

In this study, we determine the relationship across malaria prevalence
measures obtained by current diagnostic methods — PCR, RDT and micros-
copy — for the detection of P. falciparum infections in endemic populations
based on a pooled analysis of published and unpublished cross-sectional data.

Parasite density
Ausuap zdyH

PCR
METHODS

. Literature review and data collection. \We carried out two separate literature
v/4 i, il i b TP . . .. . . . .
B Week2 Weaka Time reviews to identify studies in which P. falciparum prevalence was measured by
< < > different diagnostic techniques in the same individuals: first, by RDT and mi-
HRP2 persistence No recent or croscopy, and, second, by RDT and PCR. Relevant studies were identified in
after parasite clearance  current infection

PubMed and Embase, using MeSH and Map terms when possible. For the RDT

Figure 1| Schematic of diagnostic detection limits with respect to parasite and microscopy review, the search terms were: “rapid diagnostic test' and
and HRP2 density. The black curve indicates parasite density and the red ‘microscopy’ [MeSH/Map] and ‘'malaria falciparum' [MeSH/Map]", and for
curve indicates HRP2 density. Time scale is in days prior to treatment and in the RDT and PCR review the search terms were: “polymerase chain reaction’
weeks after treatment. Horizontal lines are the detection limits of respective [MeSH/Map] and ‘malaria falciparum’ [MeSH/Map]". Searches were limited
diagnostics. The blue shaded area shows detectability of parasites by microscopy  to English, human and post-2005 (considering the substantial development in
and/or polymerase chain reaction (PCR), whereas the red shaded area shows RDTs over time??). For Embase, the searches were also limited to journal ar-
detectability of HRP2 by rapid diagnostic test (RDT). ticles. Inclusion criteria were applied as previously described®. In short, only
studies that were cross-sectional (on populations not selected according to

measuring low-density infections than microscopy and RDTs, most PCR tech-  malaria test results or symptoms), that were of populations from a malaria en-

niques remain impractical for wide-scale use in field surveys owing to cost,  demic region, that used RDTs targeting P. falciparum only or mixed infections

processing time and the lack of appropriate laboratory facilities in many en-  (HRP2 and/or pLDH) and that used PCR or loop-mediated isothermal amplifi-
demic countries’®. Comparative analysis of malaria prevalence, measured by  cation (LAMP) methods were included. For intervention studies, only baseline
both microscopy and PCR in cross-sectional surveys, has shown that sub-mi-  data were included, except for treatment studies where a sufficient amount of
croscopic low-density infections are common across a range of transmission  time had passed between last treatment and follow-up. Separate publications
settings''“. These infections may be chronic and asymptomatic, particularly  that used the same data set or measured 0% prevalence by both methods were
in previously exposed individuals with more mature immune responses. More  removed, as well as data from clusters with fewer than five individuals. RDT and
importantly, even at low parasite densities, they are still capable of infecting  microscopy studies identified in our literature search that also included PCR
mosquitoes and seeding onward transmission”. Even though RDTs are be-  measurements were included in the RDT and PCR data set, and vice versa for
coming more common in areas where these types of infections are prevalent,  RDT and PCR studies that included microscopy measurements. In addition to
studies formally evaluating their performance in detecting asymptomatic in-  the literature review, we sought as many individual-level data sets as possible
fections remain scarce. from studies with the above inclusion criteria.

h 1 1
Day0 Dayl Day2 D

Recently, there has been an increased focus on developing improved di-
agnostics to inform malaria elimination strategies. The analysis presented in
this paper aims to determine the concordance of current malaria diagnostic
methods, forming a baseline to evaluate further how they can be improved
to inform malaria control and elimination strategies. It should be noted that, ~ from the DHS online database were extracted’. These included individual-level
in principle, quantifying the presence of gametocytes is considered the most  data on location and timing of collection, RDT and microscopy test results, RDT
accurate method for characterizing transmission and the potential infectious-  brand?, age, sex, use of an ITN, fever and antimalarial use in the past two weeks.
ness of individuals. Research in this area is ongoing, but the technical chal-  In addition, individual-level data sets from one unpublished and one published
lenges of existing gametocyte assays preclude them from standardized use™.  study were included**, as well as shared data sets of the RDT and PCR compar-
Moreover, all malaria infections have the capacity to produce gametocytes™,  ison that also included microscopy measurements (see below)*°.

Therefore, in the context of community chemotherapy programmes, any in-

RDT and microscopy. Where available, information on location, sample size,
RDT brand and type (HRP2 or pLDH), age group (15 or younger compared with
older than 15) and prevalence estimates were recorded®***?, Furthermore, data

dividual who tests positive for asexual parasites should be treated to reduce ~ RDT and PCR. Corresponding authors of the 13 studies identified from the it-
transmission. Given this operational framework, this paper does not address  erature search were contacted to request individual-level data in December
the role of diagnostics that specifically measure gametocytaemia. 2014 and reminders were sent out 4 weeks later. Of the contacted authors,
So far, no studies have comprehensively evaluated the concordance across  six responded within the timeframe; five data sets were included*-*74%%°, and
PCR, RDT and microscopy detection methods simultaneously in asymptomatic ~ one data set had been destroyed for privacy compliance. Prevalence meas-
populations. Although microscopy- and PCR-measured prevalences are based  ures and study information (including PCR method) were extracted as de-
on similar biological endpoints (parasite density), diagnostic results based on  scribed above from the publications in the aforementioned literature search
RDTs are less comparable given that HRP2 and pLDH are indirect measures  and the non-responders group, as well as included studies from the RDT
of parasite biomass®. HRP2 can persist in the blood for up to two weeks after ~ and microscopy search that also reported PCR proportions?273439404251-55,
parasite clearance®. Consequently, results across these diagnostic methods

Four additional individual-level unpublished and published data sets were
indicate a range of possible infection states, from patent or sub-microscopic  included**“,
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Statistical analyses. We analysed the association between PCR- and

RDT-measured prevalence, and microscopy- and RDT-measured prevalence by

fitting a linear relationship on the log odds scale'*¢. Prevalence (on a scale of O
s glog 0dds) - Pprevalence

to1) was defined as l+e“mw‘),where log odds lo&(m)

0, =0, +8, m

0, =0+, (Q,-0) @
Q,=Q,.+8, 3
0u=0uth (-0 @

In Equations 1-4, O“ is the log odds of RDT-measured prevalence in trial i,
0” is the log odds of PCR prevalence, ﬂw is the log odds of microscopy-meas-
ured prevalence, 8” is the log odds ratio (OR) of RDT- to PCR-measured prev-
alence (RDT:PCR; Equation 1) or RDT- to microscopy-measured prevalence
(RDT:microscopy; Equation 3), G’N is the expected log OR of RDT:PCR prev-
alence (Equation 2) or RDT:microscopy prevalence (Equation 4) when the log
odds of PCR- or microscopy-measured prevalence is equal to the mean across
trials, ﬁ, and ﬁM are the mean log odds of PCR- and microscopy-measured
prevalence, respectively, across trials, and ﬂo is the regression coefficient. To al-
low for varying sample size and sampling variation across the surveys included
in our analysis, the model was fitted using Bayesian Markov Chain Monte Carlo
methods in JAGS version 3.4.0 and the rjags package in R version 3.0.2 (ref.
13). We also explored fitting polynomial relationships, but these provided no
substantial improvement in fit to the data over the linear model as assessed by
deviance information criterion, nor were these fitted relationships qualitatively
different (data not shown). To confirm that the fitted curves at different prev-
alence ranges were not overly influenced by the high number of data points in
lower transmission areas, we fitted separate relationships in three PCR-meas-
ured prevalence bands: <5%, 5-20% and >20%. These categories represent
approximate cut-offs that have been suggested as thresholds for operational
decision-making. Broadly speaking, programmes can begin to consider target-
ed and focal control strategies when parasite prevalence by microscopy falls
below 5% (ref. 57), which translates to a PCR-measured prevalence of 20%
(ref. 14), and move towards targeted elimination when it falls below 1% (ref.
58) (5% PCR-measured prevalence™).

We also conducted a meta-analysis of the risk ratio between RDT:PCR
prevalence or RDT:microscopy prevalence, adjusted for random effects at the
study level (for RDT:PCR) or country level (for RDT:microscopy). Studies that
reported zero infections by either diagnostic method were assigned a value of
0.01to allow a risk ratio to be calculated. To evaluate the effect of explanatory
factors on discordant test results, individual-level data were analysed by logis-
tic regression, allowing for random effects at the study or country level as noted
above. The meta-analysis was done with the metafor package in R version 3.0.2,
and the logistic regression with the logit command in STATA version 13.

We assessed the ability of our models to predict RDT-measured preva-
lence based on microscopy- or PCR-measured prevalence data. Leave-one-out
cross validation was used to evaluate the RDT:PCR and the RDT:microscopy
models separately. The data available for direct comparison of malaria detec-
tion by RDT and PCR in the same individuals were sparse relative to the quan-
tity of data available for the RDT:microscopy and previous microscopy:PCR
comparisons. Therefore, we also triangulated the relationship between RDT-
and PCR-measured prevalence by combining the RDT:microscopy relationship
calculated in this study with the microscopy:PCR prevalence relationship that
has been previously defined®. The credible interval of the triangulation line
was computed from the posterior distributions of all the parameters from both
equations combined. We evaluated whether this triangulated RDT:PCR rela-
tionship was significantly different from the observed RDT:PCR relationship
using the posterior distributions of the predictions from each model.

RESULTS

Literature search and data collection. The literature search generated 549 re-
sults in Pubmed and an additional 37 in Embase for RDT and microscopy, and
2,247 results in PubMed and an additional 426 in Embase for RDT and PCR. In

588

1004

804

@
=3
1

RDT prevalence (%)
s
=3
i

20

0 20 40 60 80 100
Microscopy prevalence (%)

100+

804

=)
=)
1

RDT prevalence (%)
-
b

20

40 60 80 100
Microscopy prevalence (%)

o
~
o

Figure 2 | The relationship between rapid diagnostic tests (RDTs) and microscopy
Plasmodium falciparum prevalence overall (a) and stratified by age group (b).

In b red indicates children (those under 15 years) and yellow indicates adults
(those over 15 years). Dashed lines indicate the expected relationship if RDT and
microscopy detected equal prevalence. Horizontal and vertical lines indicate
95% confidence intervals around point estimates, whereas coloured solid lines
indicate the median of the Bayesian posterior distributions from the fitted model
and shaded areas indicate 95% credible intervals. Radius of point estimates
indicate cluster size (from small to large: <100, 100-1,000 and >1,000).

total, 20 RDT: microscopy studies and 13 RDT:PCR studies from the literature
search met our inclusion criteria. Combined with additional data sets from DHS
and unpublished studies, the pooled data available for evaluation yielded 323
pairs of prevalence estimates for RDT and microscopy®#-4244-4® and 162 pairs
for RDT and PCR%273439404245-55 The extracted proportions together with the
main characteristics of the studies from our literature search are provided in
the Supplementary Information. The main PCR method used was nested PCR
(nPCR; 15 of 20) of which mainly the Snounou method** was used (11 of 15).
The other methods included LAMP (1 of 20) and gPCR (4 of 20). All of the in-
cluded RDTs in both comparisons were based on HRP2, with 8 out of 20 studies
also including pLDH to measure species other than P. falciparum. However, this
study only focuses on the detection of P. falciparum infections.

Comparison of RDT- and microscopy-measured prevalence. Analysis of
RDT- and microscopy-measured prevalence included data from 172,281 indi-
viduals who were tested with RDTs (cluster prevalence range = 0-92%) and
186,434 tested with microscopy (cluster prevalence range = 0-87%). The
323 geographical clusters spanned a total of 29 countries (cluster size range =
5-7,664). Overall, prevalence of P. falciparum measured by microscopy detect-
ed 87% (95% confidence interval (Cl) = 74-102%) of RDT-positive infections.
Therefore, RDT and microscopy detection was comparable (Fig. 2a, Table 1),
with less of a difference between the two diagnostic methods in children under
15 years of age (77%, 95% Cl| = 71-85%) compared with adults (over 15 years)
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Table 1| Best fit relationships between RDT:microscopy and RDT:PCR prevalence.

RDT:microscopy

log odds RDT prevalence = 0.108 +0.907 x log odds microscopy prevalence (all ages)

log odds RDT prevalence = 0.109 +0.908 x log odds microscopy prevalence (under 15 years)
log odds RDT prevalence = -0.168 + 0.890 x log odds microscopy prevalence (over 15 years)
RDT:PCR

log odds RDT prevalence = -0.968 + 1.186 x log odds PCR prevalence (all ages)

log odds RDT prevalence = -0.382 + 1.306 x log odds PCR prevalence (under 5 years)
log odds RDT prevalence = -0.864 + 1.213 x log odds PCR prevalence (6-15 years)
log odds RDT prevalence = -1.378 + 1.300 x log odds PCR prevalence (over 15 years)

log odds RDT prevalence = 1.097 + 1.690 x log odds PCR prevalence (<5% prevalence)
log odds RDT prevalence = 0.211 + 1.754 x log odds PCR prevalence (5-20% prevalence)
log odds RDT prevalence = -0.516 + 1.904 x log odds PCR prevalence (>20% prevalence)

RDT prevalence (%)

log odds PCR prevalence = 0.108 + 0.907 x [(log odds RDT prevalence - 0.954)/0.868]

PCR, polymerase chain reaction; RDT, rapid diagnostic test.

(60%, 95% Cl = 48-86%) (Fig. 2b, Table 1). The lower age-specific risk ratios
are due to smaller cluster sizes after stratifying the data by age group. However,
regression analysis of individual-level data did not show a significant associa-
tion between age group and test discordance (Supplementary Table 1).

Effect of individual level covariates on RDT:microscopy discordance. In addi-
tion to age, we explored the effect of several other covariates on diagnostic
outcomes, and adjusted for transmission intensity as assessed by microsco-
py-measured prevalence (Supplementary Table 1). A significant association
was seen between self-reported antimalarial use in the two weeks before
survey testing and RDT positivity in individuals who tested negative by mi-
croscopy (OR =171, 95% Cl = 116-2.51, p = 0.006). The presence of fever
at the time of testing (recorded temperature with study-specific cut-off
or self-reported) reduced the odds of undetected malaria infection by RDT
among microscopy-positive individuals (OR = 0.59, 95% CI = 0.39-0.89,
p<0.001). Among individuals testing negative by microscopy, presence of a
fever was significantly associated with RDT positivity (OR = 1.84, 95% CI =
1.51-2.24, p<0.001), after adjusting for transmission intensity. There was a
borderline significant increased risk of malaria infection being undetectable
by RDT among those who used an ITN and were microscopy positive (OR =
1.26, 95% Cl = 1.00-1.59, p = 0.053), whereas use of an ITN was associated
with decreased RDT positivity (OR = 0.84, 95% Cl = 0.73-0.97, p = 0.019)
among microscopy-negative individuals. There was no evidence of an asso-
ciation between RDT brand and the risk of an undetected malaria infection
by RDT among microscopy-positive individuals. Among microscopy-negative
individuals, the proportion testing positive was different between RDT brands,
but these results are difficult to interpret, owing to complete correlation be-
tween study and RDT brand. The year of the survey was not associated with
discordant test results for RDT:microscopy.

Comparison of RDT- and PCR-measured prevalence. Analysis of RDT- and
PCR-measured prevalence included 35,887 individuals tested with an RDT
(cluster prevalence range = 0-45%) and 31,178 individuals tested with PCR
(cluster prevalence range = 0-52%). There were a total of 162 geographical
clusters across 17 countries (cluster size range = 5-3,307, Figs 3a,b and Table
1). Pooled meta-analysis across all surveys showed that RDTs detected an av-
erage of 41% (95% Cl = 26-66%) of PCR-positive infections. This primarily
reflects the relationship between RDT and PCR in low-transmission settings,
with an average PCR prevalence of 8% across all the clusters included in our
analysis.

528|7580| 3 December 2015

WUET AL | DIAGNOSTICS FOR P. FALCIPARUM

a
50
g
o
g
S 40
2
2
a
ﬁ 30
-
<
> s e
& o | Pid
g 20 5
§ [ ,,
[]
& 10- || | —
2
a
=
o -
&

0

T T T T T T
0 10 20 30 40 50
PCR prevalence (%)

b

PCR prevalence (%)

Figure 3| The relationship between rapid diagnostic test (RDT) and polymerase
chain reaction (PCR) prevalence overall (a) and zoomed in for <20% PCR
prevalence (b). Blue, observed RDT:PCR prevalence data and model fit; pink,
the triangulated RDT:PCR comparison (see methods); grey, the PCR:microscopy
comparison from ref. 13. Dashed lines indicate the expected relationship if RDT
(or microscopy) and PCR detected equal prevalence. Horizontal and vertical
linesindicate 95% confidence intervals around point estimates, whereas
coloured solid lines indicate the median of the Bayesian posterior distributions
from the fitted model and shaded areas indicate 95% credible intervals. Radius
of point estimates indicate cluster size (from small to large: <100, 100-1,000 and
>1,000).

Age, transmission intensity and undetected malaria infection by RDT. As
with the relationship between RDT- and microscopy-measured prevalence,
stratifying by age group improved the model fit to the data, showing a de-
crease in detectability by RDT with increasing age (Figs 4a-c). Meta-analysis
of the risk ratio between RDT and PCR positivity showed that, for children un-
der 5 years of age, RDTs detected 81% (95% Cl| = 74-89%) of PCR-positive in-
fections. By comparison, RDTs detected fewer PCR-positive school-aged indi-
viduals (6-15 years) (70%, 95% C| = 57-86%), and even fewer among adults
over 15 years of age (49%, 95% Cl = 31-78%). There was a larger data set
available for analysis in the under 5 (140 clusters) and 6-15 (136 clusters) age
groups compared with adults (81 clusters), suggesting that additional data in
the higher age group could help to improve the accuracy of these estimates.
Previous studies have suggested that the proportion of carriers with
sub-microscopic infections decreases in areas of higher transmission intensi-
ty, potentially because of an association with re-infection and increased para-
site density3'*. A similar trend was also observed in the relationship between
RDT and PCR detectability. The fit to our data was improved after stratify-
ing by transmission intensity based on PCR-measured prevalence, showing
increased RDT sensitivity compared with PCR as transmission increases
(Fig. 4d-f). However, meta-analysis of the risk ratio between RDT and PCR
positivity did not show a significant difference between the three transmission
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ranges, possibly indicating that more data are needed to define a more robust
relationship for each transmission setting.

Figure 5 shows RDT detectability as a proportion of PCR-positive individ-
uals, stratified by age and transmission intensity. Irrespective of transmission
intensity, adults have the highest percentage of RDT-undetectable infections.
By contrast, the percentage of individuals with RDT-detectable infections in
all age groups increases as transmission intensity increases. However, since
infection rates are greater at high-transmission intensities, RDTs may still miss
a larger absolute number of infectious individuals at this level of endemicity.
Best-fit model estimates of PCR-measured prevalence based on RDT-meas-
ured prevalence are summarized in Figs 3, 4 and Table 1.

Effect of individual-level covariates on RDT:PCR discordance. \We evaluated the
impact of age and transmission intensity on RDT positivity among PCR-neg-
ative individuals as a potential indicator of prolonged HRP2 clearance time.
Logistic regression, adjusted for cluster PCR-measured prevalence, showed
that among PCR-negative individuals, school-aged children had a significantly
higher RDT positivity (OR =1.53,95% Cl =1.28-1.82, p<0.001) when compared
with a baseline of children under 5 years of age. Adults showed similar odds of
being RDT positive (OR =1.00, 95% Cl = 0.64-1.58, p = 0.990) as those under
5 years. Infections that were undetected by RDT, based on PCR positivity, were
highest in adults (OR = 5.04, 95 %CI = 4.14-6.13, p<0.001) compared with
those under 5 years, with a similar risk in school-aged children and those under
5 years (Supplementary Table 2).

RDT positivity among PCR-negative individuals varied between RDT
brands, as did the detection of infection in PCR-positive individuals, but these
results were not significant. Patients with a fever were less likely to have un-
detected infections by RDT if they were PCR positive (OR = 0.14, 95% Cl =
0.06-0.32, p<0.001), but also more likely to have a RDT-positive result if they
were PCR negative (OR = 4.86, 95% Cl = 2.29-10.30, p<0.001). More recent
surveys showed a lower risk of RDT-undetected infections, based on PCR pos-
itivity (OR = 0.77 per year, 95% Cl = 0.60-0.99, p = 0.044), which may indi-
cate an improved performance of RDTs over time. PCR method was associated
with test discordance at borderline significance, with RDTs detecting less PCR
positive results measured by gPCR than those measured by PCR (OR =1.92,
95% Cl = 0.98-3.74, p = 0.056), reflecting higher sensitivity of qPCR, as de-
scribed previously's,

Model validation. From the leave-one-out analysis, the correlation coefficient
between observed and predicted values of RDT-measured prevalence from the
RDT:PCR model was 0.67, indicating a moderate agreement. The correlation
coefficient between observed and predicted values of RDT-measured preva-
lence from the RDT:microscopy model was 0.92, indicating a relatively stronger
agreement (Fig. 6). The credible interval of this triangulated relationship was
narrower than that of the directly observed line, owing to the larger number
of data points in the RDT:microscopy and microscopy:PCR data sets (Figs 2,
3, Table 1). There was no significant difference between the triangulated and
observed relationships at any transmission intensity.

DISCUSSION

As the burden of malaria continues to decline in many regions', it is crucial
to understand the suitability of diagnostics for use in low-transmission and
near-eliminating areas where MSAT and MDA strategies are likely to be
applied. More specifically, how will diagnostic accuracy affect the ability
of MSAT programmes to detect and treat asymptomatic individuals or de-
termine local malaria prevalence thresholds for the initiation of MDA? Our
study results show that the detection capability of RDTs is comparable with,
and often greater than, microscopy. On average, microscopy captured 87%
of RDT-positive infections, with higher test concordance in children than in
adults. The extent to which this higher RDT detection reflects increased sen-
sitivity, lack of specificity, or both, is unclear. Compared with molecular detec-
tion methods, however, RDTs still miss a substantial proportion of infections,
capturing only 41% of PCR-positive individuals in low-transmission settings.
Our analysis included cross-sectional data with paired prevalence measures
by either RDT and microscopy or RDT and PCR from more than 180,000 indi-
viduals, spanning more than 400 geographical clusters. The detection levels
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Figure 4 | The relationship between rapid diagnostic test (RDT) and polymerase
chain reaction (PCR) prevalence by age group (a—c) and PCR prevalence band
(d-f). The Bayesian model was fitted separately for each age group or PCR
prevalence band. Age groups are younger than 5 years (a) 6-15 years (b) and
older than 15 years (c). PCR prevalence bands are <5% (d), 5-20% (e) and >20%
(f). Dashed lines indicate the expected relationship if RDT and PCR detected
equal prevalence. Horizontal and vertical lines around point estimates indicate
95% confidence intervals, whereas coloured solid lines indicate the median of
the Bayesian posterior distributions from the fitted model and shaded areas
indicate 95% credible intervals of these fits. Radius of point estimates indicate
cluster size (from small to large: <50, 50-100 and >100).

observed differed depending on age and transmission intensity, reflecting
complex dynamics at both the ecological and host level that may influence
parasite densities and the relative performance of these diagnostics.

Factors correlated with the accuracy of RDTs are varied and likely to be
driven by subtleties in the concentration and duration of HRP2 antigens in
peripheral circulation. A lower specificity by RDT is expected given that, in
addition to current infection, they can detect recent infection owing to resid-
ual HRP2 even after parasite clearance. Our analysis found that RDTs had a
higher positivity rate than microscopy among those who were more likely to
have current or recent high parasite densities — children, those with measured
or reported fever and those recently treated with antimalarial drugs. This may
indicate that high parasite densities and, therefore, ruptured schizonts (asex-
ual parasites that replicate to form multiple red blood cell invading parasites),
lead to increased and/or prolonged HRP2 levels. These levels are likely to vary
depending on an individual's clinical status and stage of infection owing to as-
sociated fluctuations in parasite density. Because RDTs have been designed for
clinical use, it is intuitive that their performance would be optimal in the detec-
tion of high-density infections associated with symptomatic disease. A previ-
ous analysis evaluating the sensitivity of RDTs and microscopy, specifically in
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Prevalence >20%

Sample size 3,701 3,305 1,093 2,057 1,565 1,833 1,323 1,267 808
PCR 1.6% 1.9% 1.7% 11.4% 12.5% 8.6% 31.8% 37.3% 28.7%
prevalence
(by age group) 50%
Detectable 38X, 34
by RDT %
(% of PCR+) 24%  13% 6%
Undetectable -
by RDT 7% g7% 94%
(% of PCR+)
62%
66% 87%
43%
Age group 41%
W <5 years
W 6-15 years
W >15 years

80%

Figure 5 | Rapid diagnostic test (RDT) detectable (darker colours) and undetectable (lighter colours) infections based on polymerase chain reaction positive
(PCR+) infections by age (under 5 years, 6-15 years and older than 15 years) and transmission intensity (PCR prevalence <5%, 5-20% and >20%). The height
of the bars for RDT detectable and undetectable proportions reflects the total prevalence of infection in that group according to PCR, whereas the width
of the bars shows the proportion of the population in each age group in most African settings (younger than 5 years (blue), 15%; 6-15 years (red), 35%; and

over 15 years (green), 50% of the total population™).

individuals with clinical symptoms, found an association between parasite den-
sity and RDT positivity®. This study also stressed the issue of false positives
and how RDT specificity, in addition to being influenced by parasite density,
may be correlated with age and transmission intensity. Further investigation
into how RDT accuracy varies between clinical and subclinical populations
could help to elucidate the factors that drive these differences. Our analysis
also found that using an ITN was associated with better concordance of RDT
and microscopy results, most probably due to a lower risk of infection. This dis-
tinction is particularly relevant for elimination strategies, because an RDT-pos-
itive and microscopy-negative result after parasite clearance may still indicate
recent transmission in a population, whereas absence of infection does not.
In general, it should be noted that the quality of microscopy is likely to vary
more widely than that of RDTs. Microscopy in the context of research surveys
is more accurate than those typically encountered during routine surveillance®.
Therefore, the relative sensitivity of these diagnostics may be more discordant
in programmatic settings than the relationship observed in this study.

Our analysis also found a number of factors that correlated with detec-
tion by RDT and PCR. Previous studies have demonstrated that the proportion
of carriers with sub-microscopic infections decreases in areas of high-trans-
mission intensity, potentially associated with superinfection (new malaria
infection in already infected individuals)’**. This trend was also observed in
our analysis — the proportion of PCR-measured infections that were detect-
ed by RDT increased with higher transmission intensity. Although the inter-
action between infection, immunity and parasite density in these settings is
not fully understood, it has been suggested that only partial cross-immunity
is acquired against malaria parasite clones®. Greater multiplicity of infection
in higher transmission settings could result in higher parasite densities if host
immune systems cannot respond to the diversity of parasites or if parasites
increase growth rates in the presence of competing clones', In addition to
transmission intensity, we also observed age-associated variations in RDT de-
tection. Our analysis shows that, after adjusting for transmission intensity, the
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odds of having an RDT-undetectable infection in adults was fivefold higher
compared with under 5 year olds, potentially owing to more enhanced im-
mune responses in adults that suppress parasite proliferation. This finding
coincides well with data that show a lower sensitivity of microscopy relative
to PCR among adults®. In addition, among PCR-positive individuals, the odds
of a positive RDT result was seven times higher in patients with a fever. Over-
all, these results emphasize that fever, superinfections and childhood infec-
tions are commonly associated with high parasite densities, which, in turn,
may lead to higher HRP2 levels that persist after parasite clearance. A num-
ber of studies have shown a relationship between parasite biomass and HRP2
clearance time®-, However, these studies were predominantly in areas of
high-density infections; studies in areas of lower parasite densities are less
conclusive®. Moreover, HRP2 concentrations may be influenced by duration
of infection, parasite sequestration and HRP2 antibody responses®’. Therefore,
characterizing HRP2 detection profiles at parasite densities that are more typ-
ically found in elimination settings can help to better gauge the accuracy of
RDTs in these areas. Our results also showed that risk of an RDT-positive and
PCR-negative test result was higher in school-aged children compared with
children under 5 and adults. This may be further evidence for an association
between age and recent high parasite density (approximately 2-4 weeks), but
may also suggest that infections can fall below the detection limit of PCR and
still be captured by RDTs. RDT results that are typically presumed to be false
positives may be advantageous when the identification of a recent as well as
a current infection is needed, such as in elimination settings, or if HRP2 is
still measurable during periods of fluctuating parasite density that drop below
the molecular detection threshold. An improved understanding of RDT per-
formance relative to PCR methods of various sensitivities, such as gPCR and
LAMP, could help to further benchmark the range at which RDTs can optimally
operate. Although the impact of the PCR method on test sensitivity has been
investigated in previous studies", more data are required to evaluate this rela-
tive to RDT sensitivity in more detail.
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Figure 6 | The relationship between observed and predicted rapid diagnostic
test (RDT) prevalence from the RDT:microscopy comparison (a), and the
RDT:polymerase chain reaction comparison (b). Predictions were obtained using
leave-one-out cross-validation.

We were able to define a more robust model for the relationship between
prevalence measured by RDT compared with microscopy, than for the rela-
tionship between prevalence measured by RDT compared with PCR. This is
because a more comprehensive data set of comparative RDT and microsco-
py measures was available across a wider range of transmission intensities.
Medium- to high-transmission settings were particularly under-represented
in the comparison of RDT and PCR measures. With more than half of our data
from <5% PCR prevalence settings (57%; 93 of 162 clusters), the RDT:PCR
relationship described here primarily reflects RDT performance at low-trans-
mission intensity. However, the relationship between RDT- and PCR-meas-
ured prevalence estimated from directly observed paired data was not sta-
tistically different from the RDT:PCR relationship estimated by triangulating
the RDT:microscopy and microscopy:PCR relationships based on independent
data sets, improving confidence in our findings. Additional covariate informa-
tion in future studies would further explain other factors that influence diag-
nostic sensitivity. Although we included RDT brand as a covariate in both the
RDT:microscopy and RDT:PCR models, studies in this meta-analysis were not
collected specifically to evaluate RDT brand so data are not sufficiently repre-
sentative to draw conclusions on its impact on diagnostic sensitivity.

Overall, this study has established the relative detection capabilities of
existing diagnostics for the identification of asymptomatic individuals infected
with P. falciparum. To inform community chemotherapy programmes, however,
further analysis is needed to determine to what extent these individuals con-
tribute to onward transmission. As with detection, the potential infectiousness
of asymptomatic individuals is sensitive to fluctuations in parasite density over
the course of an infection and by season’®. These are driven by the maturity
of the host's immune response, which may vary by age and by local trans-
mission dynamics, such as seasonality, that can influence population-level
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immunity or within-host parasite behaviour. Therefore, defining infectivity in
relation to parasite density is especially important; this is addressed further
by Slater and colleagues in a companion paper in this supplement®. Once the
contribution of asymptomatic individuals to the infectious reservoir is better
defined, future analyses should ideally establish optimal detection limits of
new diagnostics for use in control and elimination strategies.
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Chapter 4 Correlating estimates of malaria sero-
prevalence with parasite prevalence

In Chapter 3, the relationship between parasitological measures of malaria infection - rapid
diagnostic tests, microscopy, and polymerase chain reaction — was estimated based on cluster-
level estimates of prevalence. This chapter aims to extend this cross-metric analysis to serological
measures of malaria exposure, using a large dataset of paired cluster-level sero-conversion rates

and parasite prevalence estimates.
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4.1 Background

Accurate field-deployable diagnostic tools for the characterisation of malaria transmission will be
the hallmark of any successful surveillance system in elimination settings. As introduced in
Chapters 1 and 3, malaria transmission is typically measured as the prevalence of infection, also
known as the parasite rate (PR), based on RDT or microscopy slide positivity, or the entomological
inoculation rate (EIR).2%231 However, as transmission declines and becomes more heterogeneous,
classical surveillance tools often fail to fully detect the asymptomatic reservoir or capture
fluctuations in population prevalence over time.?32-237 Even nucleic-acid amplification techniques
(NAATSs) such as quantitative PCR (qPCR), which are sensitive enough to detect low-density

parasitaemia®® 238, are limited to measuring current infections at a single point in time.

In areas where transmission is temporally and spatially heterogeneous or where there is a
potentially large reservoir of asymptomatic infections, reliance on intermittent cross-sectional
surveys?3® or reactive case detection may be inadequate to fully characterise transmission
risk.24%.241 On the other hand, large-scale routine monitoring with currently available technologies
can be costly or logistically burdensome for most health systems. Mathematical models suggest
that R, the basic reproduction number under malaria control measures, should be less than 0.5
to interrupt endemic transmission within a reasonable time frame.?*? Given these quantitative
thresholds, sensitive laboratory assays or field-based point-of-care tests such as lateral flow
assays (LFAs) are needed to define and stratify transmission at a finer-scale to guide operational

strategies and track progress towards elimination.

Serology is a potentially more sensitive measure in elimination settings where PR and EIR are less
robust.?**> With markers that can detect previously exposed (but not necessarily currently
infected) individuals, cross-sectional serology data can be used to characterise exposure history
over a longer window of time. Therefore, unlike cross-sectional PR data, it can be more easily
used to estimate a force of infection and relate to R¢ as a measure of transmission over a relevant
time scale. As discussed in Chapter 1, the ability to standardise the use of Pf blood-stage antigens
PfAMAL1 and PfMSP119(due to their long half-life, moderate levels of immunogenicity, and limited
polymorphisms) has allowed the use of immunological assays as practical epidemiological tools.
Antibody responses to these antigens are used as a proxy for malaria transmission intensity. More
specifically, age-stratified sero-prevalence data are used to fit reverse catalytic models and
estimate a population-level force of infection or seroconversion rate (SCR) - the rate at which

seronegative individuals become seropositive after exposure to malaria parasites.'??

Evidence suggests that serology could be a powerful addition to the existing repertoire of

surveillance tools.?** In its infancy, the epidemiological application of malaria serology was
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limited to a handful of research studies. With the greater availability of serological data as well
as standardised reagents and protocols, it is now possible to compare results across a broader

range of settings and antigens.

This chapter aims to harmonise serological estimates of transmission (i.e., force of infection /
SCR) through a pooled analysis of datasets with PfMSP115 and PfAMAL sero-prevalence and
parasite prevalence as measured by PCR, RDT or microscopy. It estimates a relationship between
SCR and PR, and also compares this against previously measured relationships between PR, EIR
and clinical incidence. For use in epidemiological studies, one goal is to determine where (or
within which populations), sero-conversion rates are most consistent and aligned with other
measures, potentially allowing the selection of sentinel populations where sampling could be
more efficient and informative. It is also important to determine if serology can provide a more
granular measure in settings where other endpoints are limited in their ability to discriminate
between transmission intensities or simply impractical to measure operationally. Finally, it is
important to identify settings where data are too sparse (e.g., limited coverage geographically,
over time, or across transmission intensities) to understand the relative relationship between
serology and other metrics. These may be particularly important where the population dynamics

of human immunity are variable.

4.2 Methods

Data
Serology

Data from 102 clusters, representing 15 countries, were compiled from 32 different cross-
sectional surveys that had paired measurements of antibody response and parasite rate for P.
falciparum. Clusters (i.e., sample size and geographical radius) were defined according to study
specific protocols, but are commonly done according to enumeration area. This varied according
to study design, which included both cross-sectional surveys and efficacy trials. Studies were
selected if they i) included concurrent estimates of antibody responses (PfMSP1:5 and/or
PfAMA1) and parasite positivity detected by RDT, microscopy, or PCR and ii) both diagnostic
endpoints were measured in the general community and not selected based on clinical

symptoms, diagnostic test results, or patient sub-groups.

All surveys were all-age cross-sectional samples, with the exception of three studies: Sudan 2012
clusters were study arms in an intervention trial evaluating the effectiveness of LLINs and IRS;
Yemen 2012 clusters included only individuals under the age of 15 years; and Tanzania 2007

clusters were surveys conducted after the implementation of intermittent preventive treatment
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infants (IPTi), where participants were recruited based on attendance at district health facilities

for any reason including accompanying a patient (Appendix 4.1).

For all studies, antibody response was quantified using enzyme linked immunosorbent assays
(ELISA). Final antibody response was measured either as an optical density (OD) or converted to
arbitrary antibody titres using a standard curve. Sero-positivity was determined using study- and
antigen-specific thresholds. That is, for each study, the distribution of antibody titre values (or
normalised optical (OD) values if titre values were not available) was fitted to a two-component
Gaussian mixture model using maximum likelihood methods.?*®> For each antigen in the study,
the sero-positivity threshold was defined as the mean titre (or OD) value of the seronegative
population plus 2 (or up to 5) standard deviations, where the number of standard deviations used
varied between studies. For the purposes of this pooled analysis, sero-positivity values previously

assigned by the original study were used and not re-calculated here.

Data were limited to study clusters with a sample size greater than 100 and where sero-
prevalence was greater than zero. Study clusters from Cambodia 2004 and 2007 Malaria Indicator
Surveys (MIS), where the majority were less than 100 individuals, were aggregated based on risk
zones (based on expert opinion, but approximately defined as proximity to forest areas). A
schematic and table of the studies included in the pooled analysis are summarised in Figure 4.1

and Appendix 4.1.

Figure 4.1 Study sites included in serology meta-analysis by country, survey year, sample size, and
antigen

Study clusters measuring MSP119 (green) and AMAL (blue) shown as points along a horizontal axis indicating
survey year. Point diameters vary based on cluster size (<500, 500-1000, 1000-2000, >2000) and are jittered so
overlapping points are easily viewed.
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Clinical incidence and entomological inoculation rate
To benchmark the use of serology with other measures of transmission, datasets were compiled

from previous studies modelling parasite rate with clinical incidence and EIR.

Studies with concurrent estimates of EIR and PR were taken from Smith et al?*¢, where the best
fit relationship between the two measures is described by PR =1 — (1 + 1.89 * EIR)*2.
However, the credible intervals of the model are not published, and therefore, results presented
here only show the empirical point estimates from the study and not their fitted relationship. A
total of 127 study clusters were included, covering 15 countries. All studies were from countries

in sub-Saharan Africa and in children under 15 years of age.

Concurrent estimates of parasite rate and clinical incidence were taken from Battle et al 2015,%*’
excluding studies where empirical estimates of PR were not available or where the PR data were
not age matched to clinical incidence data. Modelled or age-adjusted data were excluded as this
study aims to analyse the granularity of data that can be collected operationally through routine
surveys as a comparison against similarly collected data for serology rather than inferred
estimates. After these exclusions, 693 study clusters were included in the analysis of clinical
incidence and EIR, covering 30 countries globally with a variety of age ranges across studies.
Estimates of the relationship between clinical incidence and PR are inclusive of modelled and

age-standardised data and are therefore not included here for analysis.

Statistical analyses

Sero-catalytic models — estimating force of infection from sero-prevalence as a measure of
cluster level transmission

We estimated a force of infection (SCR) in each cluster by fitting reverse catalytic models to age-
adjusted sero-prevalence data. Infants under 1 year of age were excluded to avoid the influence
of maternally derived antibodies. We fit variations of the reverse catalytic model, which has been
described in the context of malaria by Corran et al'?!, Drakeley et al®*8, and Sepulveda et al'?2.
Data are first fit assuming no change in malaria transmission over time and no difference in
exposure by age. Where cluster sizes and expected value of seroconversion rate (4) are too small
to accurately estimate sero-reversion rate (p) (based on sample size estimates previously
published by Sepulveda et al),?* region-specific p is used (see regions below). Out of a total of
102 clusters, 55 clusters did not have adequate sample size to estimate a cluster-specific p for
PfMSP119 and 63 did not have adequate sample size for PFAMA1 (Appendix 4.1). Therefore, a

region-specific p was used to fit the model for these clusters.
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Models that allow for changes in transmission over time or by age were also tested, and the
seroconversion rate from the best fit model (based on likelihood ratio tests) is used as the SCR
data point included for the final analysis the SCR:PR relationship. It should be noted that it is not
possible to determine from the model alone whether changes in sero-conversion rate occur due
to the effect of time, age, or both. In settings where differences in transmission are likely due to
temporal changes (e.g., following intervention campaigns in most sub-Saharan African countries),
the A experienced by children is assumed to reflect the most recent transmission level. In settings
where differences in seroconversion rates are hypothesised to be due to behaviour (e.g., adult
forest workers in South East Asia and the Americas), the A describing the transmission intensity
experienced by the highest-risk population is used in the SCR:PR model fit. For this dataset, this
was relevant for any clusters exhibiting a change in SCR in Cambodia (6 clusters for PAMSP1:9and
15 clusters for PFAMA1), Myanmar (1 cluster for both PAMSP119and PfAMA1), and Brazil (1 cluster
for both PfMSP119 and PfAMA1L) (Appendix 4.1). Similarly, where cluster size is too small to
accurately estimate a change in transmission (based on previous analysis by Sepulveda et al?*),
a model with no change in 4 is used. Out of a total of 102 clusters, 13 had sample sizes adequate

to estimate a change in PAMSP119 SCR and 18 for PFAMAL (Appendix 4.1).

e Reverse Catalytic Model 1: Constant sero-conversion rate (1), cluster specific sero-
reversion rate (p)

A -
ps+(t) = 7 (1—e A+pelty (4.2)

Model 1 fits cluster specific sero-reversion and constant sero-conversion rates, where pg., (t)
represents the probability of an individual being seropositive at age t, and p. represents the

cluster-specific sero-reversion rate.

e Reverse Catalytic Model 2: Constant sero-conversion rate (4), region-specific sero-

reversion rate (p)

A -
Ps+(t) = 57— (1 —e”+ert) (4.2)

Model 2 uses a fixed sero-reversion rate, which is calculated for each geographical region (Africa
& Middle East, Asia, and the Americas), where pg, (t) is the probability of an individual being
seropositive at age t (same as equation 4.1), and p,. represents the region specific sero-reversion
rate. The regional sero-reversion rate is estimated by running Model 1, but treating all clusters
within a geographical region as a single cluster. The rationale behind using a regional p, is that
sero-reversion rate (or the rate of antibody decay) is usually governed by population genetics in
a broad geographical region and is unlikely to have micro-epidemiological variations at the cluster

level.
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e Reverse Catalytic Model 3: Change in 4

Ps+(t)=1 4, (1—e~Getn)T) 4 M (1— e Matn (=) o=(atP)T > ¢ (43)
Ay+p Ai+p

Model 3, previously described by Sepulveda et al??, allows for a change in transmission intensity
from A4 to 4, at time or age 7. Individuals born after the change in transmission (t < ), will
have a probability of being sero-positive under conditions with constant transmission (Models 1
and 2) subject to the most recent seroconversion rate A,. Individuals born before the change in
transmission (t > ) will have a probability of being sero-positive that is a function of both sero-
conversion rates. The p value included in Model 3 is a fixed value chosen from either Model 1 or

Model 2 (based on the model with the highest log likelihood).
Association between seroconversion rate and parasite rate (SCR:PR Model)

Once seroconversion rates are estimated for all clusters, a comparison against other measures of
transmission is feasible. To analyse the association between seroconversion rate (1) and parasite
rate (PR), a linear relationship was fitted between the log of seroconversion rate and the log odds

of parasite prevalence.
e  SCR:PR model unadjusted
Os; = ao + ay(0p; — 6p) (4.4)
Ai~ N (e%si, 0?) (4.5)

Og; is the log of the seroconversion rate (1;) measured in cluster i, 8p; is the log odds of the PCR
prevalence in cluster i, and G_P is the mean log odds of PCR prevalence across all clusters. a
represents the expected log seroconversion rate when log odds of the PCR prevalence in cluster
i is equal to the mean across all clusters, and a; is the regression coefficient. The model
accounts for the influence of sample size and sampling variation across surveys in a few ways.
For parasite rate, prevalence (on a scale of 0 to 1) is assumed to be beta distributed (which allows
for propensity of infection to change according to variables such as age), and the probability of
an individual being parasite-positive is assumed to be binomially distributed based on the

number of individuals that were parasite positive out of those tested in each cluster and defined

e(logodds) ( prevalence

and log odds = log, ). All clusters observed at least one parasite positive

as ————
1+4elogodds 1-prevalence

individual by either PCR, RDT, or microscopy, and therefore all could be fit into a logistic model
without continuity correction or other methods to adjust for PR values of zero. For SCR, log
seroconversion rate is assumed to be normally distributed about a mean of e?si and variance o7,

where al-z is the cluster-specific variance of the SCR fitted with the reverse catalytic model for
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cluster i. The models were fitted using Bayesian Markov Chain Monte Carlo methods in JAGS

version 3.4.0.

To ensure that the model fit across PR and SCR ranges was not dominated by clusters in a
particular transmission setting, separate relationships were fit to clusters with PCR prevalence
<20% and >20%. We could not further stratify in the lower transmission settings because the
large number of clusters with a parasite prevalence of zero does not allow the model to be fit

accurately at this prevalence range.

When measuring PR, sentinel populations such as school-aged children are often used as a
convenience sample when all-age surveys are logistically challenging. Therefore, the SCR:PR
model was also fit using PR based on different age cohorts: 2-10 year olds and 5-15 year olds.
This used only data from Africa given that the at-risk populations in Asia and the Americas are

typically adults rather than children?30-253,

To account for geographical variation in population level immune responses, the model was

also fit including a covariate for each region (Americas, Africa & Middle East, Asia).

e SCR:PR model by geographical region

951' = 0(0 + al(GPi - H_P) + ﬁl + ﬁz + ﬂ3 (46)
/11 ~ N(eeSl, O_LZ) (47)

B1, B2 and B3 are dummy variables (0/1) for the effects of clusters being located in either Africa
& Middle East, Asia, or the Americas respectively. To assess the significance of each region as a
covariate, the 95% credible intervals of the 8 parameters were assessed, with values that did
not include zero deemed significant. It should be noted this is not entirely comprehensive as the
B specific estimates do not reflect posterior distribution of the entire model fit. A comparison of
the 95% credible intervals of the model with and without regional covariates was not done, but
can potentially be explored in future adjustments to the analysis. This model by region was also

fit separately for different PCR prevalence ranges, as described above.
Data transformations and model validation

Serology is expected to detect differences in transmission at PR ranges below the detectability of
RDT and microscopy. Therefore, the model is fit using a prevalence scale based on PCR-measured
PR. Studies with PR measured by RDT or microscopy, but no PCR data, were transformed to units
on the PCR prevalence scale using previously modelled relationships between RDT and PCR from
Wu & van den Hoogen (Chapter 3) and microscopy and PCR from Okell et al?3*. This allows all

studies to be combined in a single dataset and fit on the same parasite rate scale. Data used for
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paired clinical incidence and PR clusters from Battle et al is comprised primarily of PR measured
by microscopy or RDT. Therefore, data from these studies were also transformed to the PCR PR
scale as described above. However, information on the specific diagnostic used to measure PR
was not reported in the Smith et al study, therefore this adjustment could not be made and PR

values are assumed to be based on PCR to avoid extra data transformations.

The ability to accurately predict PR based on the modelled SCR:PR relationships and to evaluate
whether any level of data over-influenced the fit of the model, leave-one-out analysis was

conducted at the study, country, and cluster level.

4.3 Results

Global estimates of parasite rate and sero-conversion rates by geographical region and country

Sero-conversion rates varied across geographical regions, countries and study clusters (Figure
4.2). Data from the Americas and Asia were sparse, comprising clusters from only one country in
the Americas (Brazil) and three countries in Asia (Cambodia, Myanmar, Vanuatu). In Asia, the
large majority of clusters were from two Malaria Indicator Surveys (MIS) in Cambodia, so may not
be representative of the South East Asian region generally. All clusters in the Asian region had a
parasite rate below 40% and all clusters in Brazil were below 20%. Therefore, it was not possible
to evaluate a PCR prevalence specific model fit at the higher transmission range for these regions.
Clusters in Africa had a more dynamic range of parasite rate values, allowing evaluation of the

model fit at PCR prevalence ranging from zero to 75%.

A much larger range of SCRs based on PfAMAL was observed, with a mean SCR of 0.076
(SD=0.112), compared with PfMSP119where mean SCR was 0.033 (SD=0.032), due to the stronger
immunogenicity of PFAMAL. In Africa and the Middle East, mean SCR for PfMSP119 was 0.047
(SD=0.034), compared to mean SCR of 0.104 for PF/AMA1 (SD=0.103). In Asia, mean SCR for
PfMSP119was 0.022 (SD=0.026) and 0.066 (SD=0.120) for PF/AMAL. In the Americas, which only
included data from Brazil, the mean SCR for PAMSP119was 0.019 (SD=0.022) and 0.005 (SD=0.005)
for PFAMAL.

The range of SCRs observed at the country level indicate areas with consistently low transmission
(e.g., Somaliland, Sudan, Vanuatu, Brazil) and others with greater heterogeneity in transmission
(e.g., Uganda, Tanzania, Kenya, Yemen, Cambodia). However, datasets in the pooled analysis
include surveys conducted in different years with a variety of sampling strategies, in select
geographical regions, or before and after roll-out of malaria control programmes. Therefore, they
may not be representative of overall country level transmission or the current levels of

transmission. The precision of the seroconversion rate estimate varied by cluster as it is
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dependent on sample size and age distribution.?*® For all clusters, model fits using the reverse
catalytic model to calculate the final seroconversion rate used to estimate the SCR:PR

relationship can be found in Appendix 4.2.

Figure 4.2 Seroconversion rate (SCR) estimates by region and study cluster

Listed alphabetically by country, survey/study, and sero-conversion rate in ascending order.
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Relationship between seroconversion rate and parasite rate

Overall, SCR was observed to be positively associated with PR for both PfAMSP1,9 and PfAMA1,
based on estimates for a (Figure 4.3, Table 4.1). For PAMSP1,,, statistical evidence for a positive
correlation between SCR and PR was weaker at PCR prevalence ranges below 20%, based on the
95% credible intervals of the posterior distributions for a1 (Appendix 4.3). However, this is likely
due to the fact the model is less precise when the model is fit separately for these prevalence
ranges. The model was also less precise for PFAMA1 when splitting the dataset by prevalence.
This may reflect the large number of clusters with PCR prevalence of zero, but where a large

range of SCR values is still measurable.

Overall, SCRs based on PfAMA1 were higher for equivalent PR values than SCRs based on
PfMSP1,4, reflecting the greater immunogenicity of PfAMA1. PfAMA1 SCR also increases at a
greater rate as PCR prevalence increases (o1=0.28 for PAMSP119, 011=0.71 for PFAMAL), indicating

a non-linear increase in population immune response as transmission increases.

Fitting the model separately by PCR prevalence had an influence on the o estimates (Table 4.1,
Appendix 4.3). For clusters below 20% PCR prevalence, PAMSP114SCR values increase at a slower
rate with respect to PR [ai1= 0.09 (95%Cl -0.02,0.25), Appendix 4.3] compared to clusters with
>20% PCR prevalence [a1 = 0.28 (95%Cl 0.13, 0.41)], but 95% credible intervals do not suggest
this difference is statistically strong (Figure 4.4a-b). For PfAMA1, on the other hand, SCR values
increase faster with respect to PR at PCR prevalence <20% [oi1 = 0.98 (95%Cl 0.92, 1.00)]
compared to clusters with >20% PCR prevalence [95%Cl oy = 0.83 (95%ClI 0.75, 0.92)] and
statistical strength for this difference appears more robust (Figure 4.4c-d, Appendix 4.3).
However, after adjusting for region, the difference between the PCR prevalence ranges for
PfAMA1 were less statistically different [o1 = 0.71 (95%CI 0.57, 0.87) at PCR prevalence <20% vs.
a1 = 0.76 (95%Cl 0.68, 0.88) at PCR prevalence >20%] (Table 4.1, Appendix 4.3), though this is

driven primarily by clusters in Africa (Figure 4.6c-d).

In low transmission settings in Africa, clusters experienced higher than average PF/AMAL SCRs
compared to clusters in equivalent PCR prevalence ranges in Asia and the Americas (f; = 1.32
95%Cl 0.27 —1.97, Figure 4.6¢-d, Appendix 4.3). Statistical evidence for a different relationship in
other regions and transmission intensities for PFAMA1 and across all regions and transmission
intensities for MSP119 was weak (i.e., based on 95% credible intervals for 8 values) (Appendix 4.3,
Figures 4.5 — 4.6). However, median estimates suggest that for both antigens, clusters in Africa
experience higher SCRs, followed next by Asia, and the lowest SCRs observed in the Americas

(Table 4.1).
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Table 4.1 Best fit relationships between sero-conversion rate (SCR) and parasite rate (PR)

Listed by geographical region and PCR prevalence. Region-specific estimates are based on B values (Appendix 4.3)
of models fit separately for clusters <20% vs >20% PCR prevalence.

Antigen / Region
PfMSP11

Overall

Africa & Middle East

Americas t
PfAMA1
Overall
Africa & Middle East
Asia t

Americas T

log SCR =-3.06 + 0.09 * log odds PR
Asia log SCR =-3.50 + 0.09 * log odds PR
log SCR =-4.27 + 0.09 * log odds PR -

log SCR =-0.18 + 0.71 * log odds PR
log SCR =-1.43 + 0.71 * log odds PR -
log SCR =-2.90 + 0.71 * log odds PR -

Prevalence band (PCR parasite rate)

<20%

> 20%

log SCR =-2.66 + 0.28 * log odds PR
log SCR =-2.66 + 0.28 * log odds PR

log SCR =-2.18 + 0.28 * log odds PR

log SCR =-1.50 + 0.71 * log odds PR
log SCR=-1.61 + 0.76 * log odds PR

T Limited study sites (< 2 clusters) with >20% PR, so SCR:PR relationship for <20% PR only shown

Figure 4.3 Sero-conversion rate vs. PCR parasite rate overall
Parasite rate measured by PCR, RDT and microscopy on a PCR-prevalence scale (red=empirical PCR prevalence,
blue=PCR-prevalence derived from microscopy prevalence, yellow=PCR-prevalence derived from RDT
prevalence). Model fit weighted by cluster size and inverse log variance of SCR (95%Cl lambda) estimated in
reverse catalytic model. Solid line is the best fit line and shaded area is 95% credible interval. Point diameters are
relative to increasing cluster size and crosshairs represent 95% confidence intervals for parasite rate (horizontal)

and SCR (vertical)
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Figure 4.4 Sero-conversion rate vs. PCR parasite rate by PCR prevalence range (<20% and >20%)
Parasite rate measured by PCR, RDT and microscopy on a PCR-prevalence scale (red=empirical PCR prevalence,
blue=PCR-prevalence derived from microscopy prevalence, yellow=PCR-prevalence derived from RDT
prevalence). Model fit weighted by cluster size and inverse log variance of SCR (95%Cl lambda) estimated in
reverse catalytic model. Solid line is the best fit line and shaded area is 95% credible interval. Point diameters are
relative to increasing cluster size and crosshairs represent 95% confidence intervals for parasite rate (horizontal)
and SCR (vertical)
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Figure 4.5 PfMSP1,9 sero-conversion rate vs. parasite rate (PCR prevalence)

By geographical region (Americas - yellow, Africa & Middle East - blue, and Asia - red), and PCR prevalence (<20% and >20%). Solid line is the best fit line and shaded area is 95% credible interval.

Point diameters are relative to increasing cluster size and crosshairs represent 95% confidence intervals for parasite rate (horizontal) and SCR (vertical)
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Figure 4.6 PFAMAL1 sero-conversion rate vs. parasite rate (PCR prevalence)

By geographical region (Americas - yellow, Africa & Middle East - blue, and Asia - red), and PCR prevalence (<20% and >20%). Solid line is the best fit line and shaded area is 95% credible interval.
Point diameters are relative to increasing cluster size and crosshairs represent 95% confidence intervals for parasite rate (horizontal) and SCR (vertical)
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Comparisons against clinical incidence and entomological inoculation rate

A comparison of the SCR:PR relationship to previously explored relationships between EIR vs. PR
and clinical incidence vs PR indicate that (Figure 4.7) data for EIR is most widely available at ranges
of PCR prevalence above 20%, likely due to the large sample sizes required to measure EIR in low
transmission settings. SCR values for both PfMSP115 and PfAMAL, on the other hand, show the
most resolution below 10% PCR prevalence and begins to saturate at transmission levels above

this.

This suggests that serology may be capable of discriminating fine-scale differences in
transmission at levels where PCR prevalence is below 10% and in particular, where estimated PCR
prevalence is close to zero (and RDT/microscopy is also likely to be zero), as seen by the wide
range of SCR values along the y-axis. However, in the absence of a gold standard, it is not clear
whether this range of SCR values at low PR prevalence reflects increased sensitivity of serological
measures for current transmission or lack of specificity due to residual immune responses and a
longer historical period of malaria transmission. The relationship between clinical incidence and
PRis variable, with a large range of clinical incidence values at all levels of PR, suggesting relatively
weaker precision of this metric compared to serology. However, it should be noted that these
endpoints are not directly comparable due to the different biological endpoints they measure.
Here, they are plotted together primarily to show their relative precision across transmission

intensities.
Figure 4.7 Relationship of three measures of transmission (sero-conversion rate, clinical incidence,
and entomological inoculation rate) with PCR parasite rate

Clinical incidence and SCR are reported as cases or seropositive individuals per 1000 person-years observed (PYO)
compared to annual Pf EIR (aPfEIR) per 1000 PYO or (aPfEIR x 1000)
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Despite the fact that PfMSP119 and PfAMA1 SCRs show the best resolution below 10% PR,
maximum PfMSP119 SCR values are smaller compared to PF/AMA1 and saturate at lower levels of
transmission, while AMA1 SCR values continue to increase and show discriminatory ranges above
20% PR. This dynamic is most evident amongst clusters in the African and Middle East regions,
where the majority of the high PCR prevalence data is from. At the lower PR range, however,
clusters in Asia illustrate the tendency for PFAMA1 SCR values to increase rapidly with parasite
prevalence. This may be due to the relatively larger size and epitope diversity in the PfAMA1
recombinant antigen fragment used in these assays compared to PfMSP1lis, allowing

measurement of a greater breadth of response in the population.
Influence of age in estimating parasite rate

Model fits using different age groups suggest that PR based on children aged 2-10 years are higher
for equivalent PfMSP119 SCR values in the overall population or children ages 5-15, which likely
reflects that infections in younger age groups will tend to be more common than the general
population. However, for PFAMAL, the opposite is observed, where PR values for children aged
2-10 are actually lower for equivalent SCR values compared to the overall population or children
aged 5-15. However, the SCR:PR estimate for PFAMAL is less precise, making it difficult to draw
conclusions on the effect of the PR age cohort. Furthermore, for both antigens, any differences
between age cohorts are primarily at prevalence of 1% or lower (though 95% credible intervals
suggest these are not statistically different). This may indicate that SCR has the potential to be a
robust measure of transmission if it correlates consistently across different age demographics
used to measure PR. However, this may simply reflect that, for data clusters included in the
analysis, when considering clusters across all prevalence ranges, PR according to different age

subsets do not differ substantially from all-age parasite rate, as seen in Figure 4.8.
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Figure 4.8 Best fit relationship between sero-conversion rate and parasite rate by age subset

All age seroconversion rate vs. PCR parasite rate based on different age subsets (African clusters only). Grey = all
ages, yellow = ages 2-10 year olds, red = 5-15 year olds. Solid line is the best fit line and shaded area is 95%
credible interval.
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Model validation and predictive power of seroconversion rate

Leave-one-out analysis at the cluster level (i.e., leaving out a single cluster at a time) did not
strongly influence the model. However, bootstrapping by country and study showed a tendency
for SCR to overestimate PR for all clusters (Figure 4.9). It should be noted that certain countries
had a particularly large number of studies and/or clusters (i.e., Cambodia). Separate model
validation was not conducted with the region-specific model, so the overestimation at country

and study level may be due to differences in the best fit relationships by region.
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Figure 4.9 Comparison of observed vs. predicted PCR parasite rate (example of PFMSP1,)
Based on best fit model of PAMSP115 SCR:PR overall, using leave-one-out analysis at study, country, and cluster
level. Best fit model is based on SCR:PR overall and not by geographical region or PCR prevalence.
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4.4 Discussion

Global patterns in sero-conversion rates

The analysis in this chapter describes a wide range of SCRs within country and region, which may
reflect heterogeneities in transmission in these areas. This could be driven by a number of factors,
depending on the country. The highest SCRs on average for both PfMSP119 and PfAMA1 were
observed in Africa and the Middle east, followed by Asia, with the Americas (i.e., Brazil) having
the lowest mean SCRs. However, these values may not be geographically representative of the
regions overall, nor are they necessarily based on recent estimates as studies in this analysis

range from years 1988 to 2014.

Due to the longevity of antibodies to PFAMA1 and PfMSP1,, it may be that, depending on how
recently a region has undergone changes in transmission, the impact of malaria control
programmes or natural reductions in malaria transmission will be reflected in more immediate
reductions in PR while changes in SCR are subject to a time lag. While we aimed to explicitly
model this by testing for a change in force of infection over time, the size or age distribution of
the sample did not always allow this, which may be the reason for the weakness of the model in
some regions or countries. The precision of the fit is often dependent on adequate sampling
around the age or time of presumed change in transmission, and profile likelihood plots of

estimated change points can often have very large confidence intervals if this is not the case. Due
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to the limited number of clusters in this analysis where a change in transmission could be
detected, not enough data is available to explore the impact of recent changes in transmission

on the SCR:PR relationship.

Relationship between sero-conversion rate and parasite prevalence by geographical region and

transmission intensity

While a number of studies have observed that SCR is positively correlated with parasite rate at
the study level, the analysis here confirms this association regionally and globally based on a
pooled analysis of available serological studies to date. However, the nature of this association
was observed to differ slightly by geographical region and by transmission intensity. SCRs were
found to increase at a faster rate relative to PR at PCR prevalence less than 20%, while increasing
more gradually at PCR prevalence values above 20%. This effect was more distinct for PFAMA1
compared to PfMSP115 (Where the SCR:PR relationship at low vs high PCR prevalence were not
statistically strong). This is consistent with previous studies that have found that sero-prevalence

to PfAMAL1 saturates quickly across a range of transmission intensities.?>2>>

Consistent with estimates of average SCR values by region, studies in Africa and the Middle East
were observed to have higher SCRs for both antigens compared to clusters with equivalent PR
values in Asia and the Americas. The Americas had the lowest SCRs across all transmission
intensities. However, statistical evidence that the model including regional covariates differed
from the general model was weak (with the exception of higher PFAMA1 SCRs observed in low
transmission African settings). This may reflect a lack of enough data to fit the model with
precision, and updating these estimates as countries continue to monitor transmission based on

serological endpoints will be useful.

However, the higher levels of antibody response in African settings could reflect historical
patterns of transmission intensity that are not captured in parasite rate. Residual immune
responses in this population may still be measurable if changes in transmission have been very
recent, as opposed to the longer period of low Pf infection rates in Asia and the Americas that
may have resulted in some loss of immunity over time. It is not clear how this might be affected
by the relatively higher levels of P.vivax infection if there is some degree of cross-reactivity with

PVMSP19 and PvAMAL.
Differences in range of SCR measured by PfAMA1 and PfMSP1;s

It is not surprising that in general PFAMA1 SCR values are higher than PfMSP1,4, given that it is
known to be more immunogenic. This may suggest that it is a more useful measure at lower levels
of transmission, where it would have a larger range of values than PfMSP115. What is surprising
is the tendency for PfMSP115 SCR values to saturate at lower levels of parasite prevalence,
whereas PfAMAL1 SCRs not only increase faster, but continue to increase even at quite high

parasite prevalence values. This is contrary to previous studies that have observed that PFAMA1
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SCR estimates tend to saturate very quickly,?*® and that antibodies to PFAMA1 and PfMSP11s are
both generally very long-lived. While in general, individuals become seronegative to P/AMAL1 at
a similar (or even slower) rate than PfMSP119, sero-reversion rates and antibody half-lives will

vary by age and children often experience faster decay rates.?>*

The increased sensitivity of PfAMAL to detect transmission differences at higher parasite
prevalence may be confounded by the age distribution of clusters in the dataset. If the samples
are over-representative of younger age groups, the population could have a high proportion of
individuals sero-reverting quickly to PfAMA1 relative to PfMSP115 while experiencing a greater
number of repeat infections, particularly in high transmission settings. In this context, PFAMA1
may be better at detecting changes in the sero-conversion / sero-reversion dynamic (i.e., a
greater frequency of sero-negative to positive conversion events) even within the same
individual, while PAMSP119 sero-prevalence remains at a steady state for longer once it saturates.
However, there is not much evidence currently to suggest that the sero-reversion rate differs this

dramatically to the two antigens.

Another explanation may be that the relatively larger size of the PFAMA1 recombinant antigen
and its inclusion of a greater number of epitopes allows it to measure a higher diversity of human
antibody responses in the population. Conversely, the smaller PfMSP119 fragment used may
cause saturation at lower SCR values. As transmission intensity increases, the genetic diversity of
the parasite population also tends to increase, potentially allowing PFAMAL to measure higher
levels of sero-prevalence and SCR. Variant-specific immune responses have also been observed
for other polymorphic antigens such as MSP2, though they are not covered in this analysis

specifically.?>®

Overall, it is not clear whether rapid increases in PfAMAl1l SCR are due to its strong
immunogenicity or a slow rate of sero-reversion. On the other hand, it is also difficult to balance
these potential causes with the fact that PFAMA1 measures differences in immune responses at
high levels of parasite prevalence, which could be due to its ability to measure a greater breadth

of antibody response in the population.

It should be noted that in this dataset, the high immunogenicity of PFAMA1 may also lead to a
rapid saturation of sero-prevalence at young ages for clusters in high transmission intensities,
such as Tororo, Uganda in the PRISM study, which experiences aPfEIR values as high as 340.%7
This highlights the limited utility of certain serological markers at very high transmission
intensities, where either less immunogenic markers such as PfMSP115 or other measures such as
clinical incidence and EIR are more suitable. While this single cluster is unlikely to have a large
influence on the overall model fit, this can be assessed by investigating the cluster level leave-
one-out analysis presented in Figure 4.9 in more detail or by computing a Hat projection matrix

to estimate the level of influence this cluster or other outliers have on the regression.
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The effect of age on sero-conversion rate, parasite prevalence, and clinical incidence

The influence of age on different measures of malaria transmission is only partially explored in
this analysis. Models fitting sero-conversion rate already account for the effect of age to a degree,
as force of infection is fit to age-specific sero-prevalence. The effect of age on parasite prevalence
is only indirectly explored by fitting the SCR:PR model separately with two different age subsets.
This specifically checks for the effect of age on the relationship between two diagnostic
measures. Another method would be to define age categories of interest and include them as
parameters in the SCR:PR model in the same manner that geographical region has been included
as a covariate. If this method suggests that age has an effect, the SCR:PR relationship could be
re-calculated based on age standardised PR estimates, for example using the methodology by
Smith et al.>® However, including age as a covariate in the SCR:PR relationship may not be valid

if SCR is already an age-derived measure.

The clinical incidence and PR dataset published by Battle et al also includes age standardised
estimates using the method by Smith et al. For the purposes of the analysis in this chapter, only
the datasets where the empirically collected information of PR and clinical incidence cover the
same age range are included. Comparison between SCR:PR against clinical incidence and PR could
potentially cover a larger dataset if age-standardised or modelled data points are included. While
an argument can be made for including the age-standardised data, including all modelled data
points based on the MAP estimates may need more careful consideration. If the goal is to
understand the utility of data that can be operationally collected through health facility or
household surveys, using modelled data may lead one to falsely assume a better precision for

particular diagnostics/metrics than would occur in practice.

Future work should consider overall age standardisation of the data, which could be particularly
helpful when comparing against the EIR:PR data by Smith et al, given that this only includes data
for ages under 15 years. The fact that this dataset is only based on African settings, however,

would still need to be taken into account.
Comparing against EIR and clinical incidence

Our analysis suggests that SCR may be able to reflect a greater range of values at PR values of
zero (or close to zero). More specifically, SCR appears to have a greater dynamic range starting
at PCR prevalence values of 5% and lower. As noted above, while SCR values estimated for the
antigens analysed here tend to saturate in high transmission settings, EIR data is more likely to
be available at these higher PR ranges. Meanwhile, estimating PR values based on API or clinical

incidence does not appear to be precise at any PR prevalence range.

The point estimates of the different metrics against PR suggest that SCR may have greater
precision at moderate transmission intensities or have a greater dynamic range at low

transmission intensities. A limitation to this analysis is the lack of information on credible
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intervals for the EIR vs. PR or clinical incidence vs. PR best fit relationships. When this is available,
future analysis could quantitatively compare the precision of the various measures across
transmission intensities. Additional data that could be included in this analysis are datasets with
paired estimates of SCR and EIR%® that could allow triangulation of the relationships between

measures.

Overall, it is important to note that there is a lack of a gold standard definition for transmission
in this context. Variation in serological responses at very low PR prevalence could reflect
heterogeneities in transmission as areas move towards elimination, or, given the longevity of
immune responses to PAMSP119 and PfAMAL, lack of specificity due to the historical immune
signatures in the population that may or may not reflect current transmission intensity.
Therefore, immune responses to malaria antigens that have a shorter antibody half-life may
provide more precise estimates of current levels of transmission, combined with information that
PfMSP119 and PfAMA1 provide on either historical levels of transmission or current levels of

protective immunity.

In order to make serological markers truly operational, their sensitivity and specificity need to be
defined for different use-case scenarios, which should no longer be defined based on existing
parasites in the blood at time of testing, as the sensitivity and specificity of parasite rate or clinical
incidence are assessed. First, what is the window of time during which infection is
epidemiologically relevant for assessing risk of malaria infection with regards to asymptomatic
infection and its contribution to onwards transmission or the potential for increased clinical
malaria if protective immunity has declined. This will vary by antigen and its relative correlation
with either exposure of protection. Once these are defined, the next step is to determine the
relevance of this information for targeting interventions such as focal MDA, focal vector control
or future transmission blocking vaccines over space and time. Nonetheless, the data presented
here may help to inform when to incorporate serological measures of transmission to
complement other measures of malaria exposure. An investigation into novel serological markers

that may be more associated with recent or current transmission is explored in Chapters 5-7.
Other data or model limitations

It should be noted that while parameter values and their 95% credible intervals as well as overall
model DIC values and effective number of parameters (pD) were computed for each model in
this chapter (Appendix 4.3), these models could also be compared by structuring them as nested
models and comparing them using likelihood ratio tests or assessing whether the 95% confidence
intervals of covariates are significantly different from zero. Alternative criterion, such as the
Akaike information criterion (AIC) could also be considered given that the models assessed here
are not overly complex and do not necessarily require effective number of parameters to be

estimated, as the DIC does. For assessing the effect of transmission intensity, rather than
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separate models at different PR ranges, non-log-linear relationships could also be tested or
models that combine all the data but allow for segmented regression or smoothed piece-wise fits
(i.e., splines at ranges of transmission intensity where there SCR-PR relationship may not be
clear). All these models could be compared using DIC values or developed as nested models and

likelihood compared as described above.

The analysis in this chapter combines PR data as measured using three different diagnostics (RDT,
microscopy, and PCR). While the modelled relationship between these diagnostics (detailed in
Chapter 3) can be used for transforming these units so that a combined analysis can be explored,
it also introduces potential biases in interpretation, given the uncertainty in the RDT/microscopy
— PCR modelled fit that is not accounted for in the data transformation in Chapter 4. The analysis
would be improved by incorporating this uncertainty into the model. Alternatively, models could
be fit for the different diagnostic datasets separately to determine if the regression coefficients
vary between models. As a combined model, the diagnostic test used can also be included as a
variable, which would also allow nested model comparison to test for improvements in fit or to

verify that a bias is not introduced due to data transformation.

Validation of the model using leave-one-out analysis indicate that the model does not accurately
predict PR based on the SCR:PR relationship at the country or study level. This is likely due to the
fact that some countries have a very large number of clusters (e.g., Cambodia) with a wide range
of SCR values and this may over-influence the model fit. It may also reflect the fact that the
SCR:PR relationship differs by region. The model validation could be adjusted to check the effect
of leave-one-out analysis by study or cluster, but using the best fit relationships by geographical
region instead. Similarly, it could be tested for different PCR prevalence ranges. It may also be
worth checking how to aggregate clusters for the Cambodia dataset so that they do not comprise

such a large proportion of point estimates in the model.

The analysis in here treats PFAMAL and PfMSP119 separately, but precision could potentially be
gained by combining these datasets and fitting models based on sero-positivity to either antigen.
However, assessing the correlation between SCRs for the two antigens separately would also be
useful to determine precisely at which transmission intensities antibody responses between

them will differ.

Other adjustments that could be made are a better estimation of prevalence for clusters
measuring no parasite positive infections, rather than simply assuming a fixed value close to zero
as is done in this analysis. This could be done by taking advantage of Bayesian spatial fitting
methods and the large number of clusters compiled in this study, where a more informative prior
could be included based on clusters in similar geographical regions with low (but non-zero)

prevalence values and the influence of sample size on the precision of the estimates.
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Also, while most serology models define sero-prevalence using a binary threshold for sero-
positivity, some models account for boosting of immunity upon repeat infection by including
additional sero-positive compartments!?>2%0 or using magnitude of change in antibody
titres.123124 These are most relevant in hyper-endemic settings where sero-prevalence may
saturate at earlier ages. For surveillance purposes in high transmission settings, however, it is
possible to rely accurately on EIR and PR estimates of prevalence, and serology can serve as a

validation of these estimates rather than as a primary measure of transmission.

Applications for surveillance and cluster randomised trial design

As the relationship between different measures of malaria transmission are refined, the use of
serology is likely to have a number of distinct operational applications. This includes its use as a
measure of baseline transmission at the community or cluster level for trial stratification,
identifying geographic or demographic foci of transmission risk or receptivity, as a secondary
endpoint in cluster randomised trials, or as part of routine surveillance to monitor progress

towards elimination and to prevent re-introduction after local elimination.

Once prevalence measures based on PCR, microscopy or RDT approach levels close to zero, it can
be difficult to achieve statistical power to measure changes in transmission.?3® Some alternatives
have been suggested to deal with these measurement issues in low transmission settings, such
as a greater emphasis on the basic reproduction number R to certify elimination, but this is
difficult to measure empirically without modelling.2%* SCR measures transmission by estimating
a force of infection, and this relationship with Romakes it a powerful quantitative metric. It is also
relatively easier to implement operationally in resource-limited settings compared to other

equivalently sensitive molecular methods.

Future surveillance does not have to be limited to one or two antigens, and a multiplexed
serological platform that can measure the combined response across a number of markers,
including those more associated with recent or current transmission, could increase the utility of
malaria serology for a wider range of transmission intensities. This is discussed further in Chapter
5. Additional studies comparing clonal diversity or the multiplicity of infection and its impact on
antigen-specific SCR dynamics would be useful analysis to explore this hypothesis and to optimise

future assay development.
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Appendix 4.1 List of surveys included in serology meta-analysis

A. Africa
PfMSP11s | PF/AMA1 | PCR RDT | Slide | PfMSP1is | Pf/AMA1l | PfMSP11s | PfAMA1l
2009 All-age XS XSS1 Kisii 1076 1056 -- 1071 -
survey XSS1 Rachuonyo 1047 1045 - 1046 --
Kenya 2009 All-age XS XSS2 Kisii 1743 - 1715 1743 -
survey XSS2 Rachuonyo 1761 - 1733 | 1761 --
2011 | All-ageXs XSS4 Rachuonyo | 16627 16627 | 12229 | - -
survey
Gebileyl 241 240 241 - - 4 v
. All-age XS -
Somaliland 2008 surve Gebiley2 99 131 105 - - v v v
Y Gebiley3 616 635 616 | - -
Alhoosh 2517 2562 2427 | 1682 -- v v
LLIN and IRS trial | Hag Abdala 2345 2403 2296 | 1555 - v v
arms, all ages Galabat 1601 1632 1509 | 1025 --
New Halfa 2302 2369 2298 | 2298 - v
Equatorial All-age XS .
Guinea 2008 1 ¢ ey Bioko 6466 6436 ~ | 5586 | -
All-age XS .
1988 survey Farafenni 742 __ B B 7
Gambia All-age XS Basse
2008 survey 859 - -- -- 848
All-age XS Farafenni
survey 670 - -- -- 662
. . All-age XS .
Guinea Bissau 2008 survey Caio 769 _ B B 750
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Region

AFRICA

Parasite rate sample

i Serology sample size . Regional SCR* Change in SCR¥
Country Su;\:y S:rn;::):ng Site/Cluster &Y P size 8 8
y &Y PfAMAL PfMSP11s | PfAMAL | PAMSP1:1s | PfAMA1
All-age XS
2010 survey Mwanza Cotanda 2496 2382 2496 B B
2007 Post-IPTi survey | Mtwara IPTi 393 -- -- 392 --
Post-IPTi survey | Lindi IPTi 619 -- -- 617 --
2007 Health-facility Korogwe 1746 1746 - 1746 -
patients/attend | Same 1670 1713 - 1006 -
Tanzania 2007 ees, post-IPTi Lower Moshi 331 -- -- 331 --
Rombo 1637 1672 - - 1636
2001 All-age XS Mwanga 1628 705 - - 1580
survey Same 1670 1678 - - 1643
Lushoto 3747 3820 -- - 3722
2009 | All-age XS Zanzibar 2185 2170 2181 - -
2011 survey Zanzibar 2014 2010 2014 -- --
Apac X1 436 463 436 - -- v
All-age XS
2010 survey Apac X2 426 448 401 212 392 v
Apac X3 432 475 427 219 392 v
Uganda —
All XS Jinja 552 592 -- 552 552
2014 ~age Kanungu 753 755 ~ 753 | 753
survey
Tororo 781 777 - 780 781
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B. Asia

Serology sample Parasite rate sample

. " .
Region Country S:;\;ery Sampling strategy Site/Cluster size size A EREE SR i
PfMSP1:s | P/AMALl | PCR RDT | Slide | PAMISP11s | PF/AMAL | PAMISP11s | PfAMAL
Myanmart 2013 | All-age XS survey Bago East 1576 1586 1576 - - v v
1999 Aneityum 618 619 493 - - v
2002 Aneityum 712 719 711 -- -- v v
Vanuatu 2004 | All-age XS survey Aneityum 590 598 590 -- -- v
2007 Aneityum 755 755 755 - - v v
2010 Aneityum 883 876 883 -- -- 4 4
1-5,9 500 499 - - 500 v v v
10,11,6,90 332 338 - - 332 v v v
7,8,12 305 303 - - 305 v
32-25 307 340 -- -- 307 v v v
39,40,43 260 257 -- -- 260 4 4 v
ASIA 41,42 184 184 - - 184 v v 4
All-age XS survey | 44-48 445 439 - - 445
Clusters combined | 49-51 317 276 - - 317 4 4
Cambodiat 2004 | based on risk 52-55 327 317 - - 327
zones (proximity 56,57 197 176 - - 197 v v
to forest) 58-65 737 686 - - 737
66,67 161 122 - - 161 v 4
68,69 172 168 -- -- 172 v v
70,71 155 152 - - 155 v v
75-78 278 236 - - 278 v
82-85 358 354 - - 358 v v
86,87 175 168 - - 175 v v
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Region

ASIA
(continued)

Country

Cambodiat

Survey
year

2007

Sampling
strategy

All-age XS survey
Clusters
combined based
on risk zones
(proximity to
forest)

Serology sample size

Parasite rate sample size

Regional SCR*

Change in SCRt

Site/Cluster

PfMSP11o PfAMA1 PCR | RDT Slide PfMSP11s | PfAMA1 | PfMSP11s | PfAMA1
1-6 617 620 610 - 617
7,8,9 281 292 281 - 281 v
10,11 133 135 133 -- 133 v v
12,13 206 207 206 - 206 v 4
14,15,41 330 341 325 - 330 v v v
16,17,18 295 295 295 - 295 v v v v
19,20,21 253 255 252 - 253 v v
22,23,24 325 300 323 - 325 v 4
25,26,27 365 350 364 - 365 v
28,29,30 332 335 330 - 332 v v v
31-33,49 314 288 312 - 314 4
34-40 210 211 208 - 210 v v
35,37,38 337 339 252 - 337 4 4 4
40,39 219 220 180 -- 219 v 4 4
42,45 198 219 198 - 198 v v
43,44,72 290 324 289 - 290 v v v
46,47,48 279 279 186 -- 279 v v
49,50 155 158 154 - 155 4 v
51,52,53 298 299 298 -- 298 v 4 4 4
54,56,57 295 296 294 -- 295 v 4 4 4
55,58,59 317 317 317 - 317 v v v
60 113 114 113 -- 113 v v
61,62,63 279 284 278 -- 279 v v
64,65 192 193 192 - 192 4 v
66,67,68 308 287 306 - 308 v v
79,70,71 312 303 312 - 312 4 4 4 4
73 101 102 101 - 101 v v v
74,75,76 256 256 256 - 256 4
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C. Middle East

MIDDLE
EAST

Yemen

2012

Only age < 15
years

PfMSP11s | P/AMAL | PCR | RDT | Slide | PMISP11s | PfAMAL | PMSP11s | PfAMA1

3001/3003 340 325 - 340 340 v
3002 195 186 - 194 195 4 v
3004 181 173 - 181 181 4 v
3005 188 187 184 188 188 4 v
3006,3009,3011 523 505 - 523 521 v

3007,3012 219 218 115 219 214 v v
3008 167 160 - 167 167 4 v
3010 175 160 175 175 175 v v

D. Americas

Region

AMERICAS

Country

Brazilt

Survey
year

2007

Sampling strategy

All-age XS survey

Site/Cluster

Serology sample

size

Parasite rate sample

size

Regional SCR*

Change in SCRt