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ABSTRACT 20 

Characterizing genetic structure across geographic space is a fundamental challenge in 21 

population genetics. Multivariate statistical analyses are powerful tools for summarizing genetic 22 

variability, but geographic information and accompanying metadata is not always easily 23 

integrated into these methods in a user-friendly fashion. Here, we present a deployable Python-24 

based web-tool, mvMapper, for visualizing and exploring results of multivariate analyses in 25 

geographic space. This tool can be used to map results of virtually any multivariate analysis of 26 

georeferenced data and routines for exporting results from a number of standard methods have 27 

been integrated in the R package adegenet, including principal components analysis (PCA), 28 

spatial PCA (sPCA), discriminant analysis of principal components (DAPC), principal 29 

coordinates analysis (PCoA), non-metric dimensional scaling (NMDS), and correspondence 30 

analysis (CA). mvMapper’s greatest strength is facilitating dynamic and interactive exploration 31 

of the statistical and geographic frameworks side-by-side, a task that is difficult and time-32 

consuming with currently available tools. Source code and deployment instructions, as well as a 33 

link to a hosted instance of mvMapper, can be found at 34 

https://popphylotools.github.io/mvMapper/. 35 

  36 
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INTRODUCTION 37 

Assessing patterns of genetic structure is one of the foundational challenges of population 38 

genetics (Pritchard et al. 2000; Slatkin 1987; Verity & Nichols 2016; Wright 1949), and 39 

characterizing this structure across geographic space is one of the first steps in most population 40 

genetic studies. Such contextualization of genetic structure allows in-depth evolutionary 41 

investigations, such as characterizing dispersal and invasion pathways (Genton et al. 2005; Janes 42 

et al. 2014; Mori et al. 2016), assessing and prioritizing conservation efforts (Austin et al. 2011; 43 

Proshek et al. 2015; Zenboudji et al. 2016), quantifying hybridization (Chatfield et al. 2010; 44 

Dupuis & Sperling 2016), and even utilizing genomic information to predict human origins (Das 45 

et al. 2016; Elhaik et al. 2014; Flegontov et al. 2016). Some analyses explicitly incorporate 46 

spatial information in the assessment of population structure (e.g. TESS: Caye et al. (2016), 47 

BAPS: Cheng et al. (2013), GENELAND: Guillot et al. (2005), EEMS: Petkova et al. (2016), 48 

SCAT: Wasser et al. (2004), sPCA: Jombart et al. (2008)), and landscape genetics is a fast 49 

growing field of statistics combining population genetics and landscape ecology (Manel & 50 

Holderegger 2013; Manel et al. 2003; Storfer et al. 2007).  51 

Multivariate analyses stand out as powerful tools for summarizing genetic variability 52 

(Jombart et al. 2009). A wide diversity of such methods exist, each with their own particular 53 

applications (reviewed in Jombart et al. 2009). As a whole, these statistics provide many 54 

analytical advantages for population genetics, including, but not limited to: few overarching 55 

assumptions regarding the data (e.g. Hardy-Weinberg expectations and linkage equilibria, which 56 

can mask subtle clinal population structure (Jombart et al. 2008)), low computational 57 

requirements for the analysis of large datasets (e.g. thousands of markers and individuals 58 
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(Jombart & Ahmed 2011; Patterson et al. 2006)), and the statistical flexibility to address 59 

complex population genetic questions (Jombart et al. 2009 and references therein). While some 60 

methods explicitly incorporate geographic information (e.g. spatial principal components 61 

analysis (sPCA) (Jombart et al. 2008) and spatial correspondence analysis (Dray et al. 2008)) 62 

and provide valuable geographic context to population genetic data, non-spatial analyses also 63 

benefit from visualization in geographic space (Cavalli-Sforza et al. 1994; Wang et al. 2012). 64 

However, incorporating geographic context into multivariate analyses often requires the 65 

laborious comparison of ordination plots to maps of sampling localities, or technical expertise in 66 

map-making or geographic information systems (GIS) that may be beyond the comfort zone of 67 

the average researcher. While some streamlined tools exist for specific geographic visualizations 68 

(e.g. the Geography of Genetic Variants browser (Marcus & Novembre 2017)), generalized tools 69 

for straightforward visualization are lacking. 70 

Here, we present a tool for the visualization and exploration of multivariate analyses in 71 

geographic space. mvMapper is a Python-based, deployable web-based tool that can process 72 

outputs of virtually any multivariate analysis as well as sample locality information and allows 73 

users to interactively explore the statistical framework of the multivariate analysis in both 74 

ordination and geographical space (Figure 1). The input format is a simple comma-delimited 75 

tabular file that can either be assembled manually, or generated using mvMapper’s input 76 

generation function in the adegenet library (Jombart 2008) in R (R Core Team 2016), giving 77 

access to a wide range of commonly used methods. 78 

 79 

METHODS 80 
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Implementation 81 

mvMapper is implemented in Python v3.6 (Python Software Foundation 2017), and 82 

makes extensive use of the following libraries: Bokeh v0.12.4 for data visualization (Bokeh 83 

Development Team 2014), Pandas v0.19.2 for data structure and analysis (McKinney 2010), 84 

colorcet v0.9.1 for color utilities (Kovesi 2015), and pyproj v1.9.5.1 (Whitaker 2016), a python 85 

interface for cartographic transformations using PROJ.4 (Warmerdam 2001). Map tiles and map 86 

data are by Stamen Design under CC BY 3.0 (Stamen Design 2017) and OpenStreetMap under 87 

CC BY SA (OpenStreetMap contributors 2017), respectively, and use the WGS84 (ESPG 4326) 88 

spatial reference system. The automated data preparation script is implemented in the 89 

adegenet library (Jombart 2008) in R (R Core Team 2016). Links to mvMapper’s source 90 

code, documentation, a ready to deploy Docker container (Merkel 2014, see 91 

https://www.docker.com/), and a hosted instance of the web application can be found on our 92 

project page at https://popphylotools.github.io/mvMapper/. Although deploying a stand-alone 93 

instance of mvMapper provides a great deal of flexibility through the customization of the 94 

configuration file (default displayed statistical parameters, dataset, etc.), here, we generally refer 95 

to the default configuration available on our hosted instance. All modern desktop web browsers 96 

support mvMapper.  97 

 98 

Data input 99 

 The primary input for mvMapper is a comma-delimited tabular file that contains 100 

individuals in rows and information about those individuals in columns. A typical file contains 101 

columns such as: specimen identification code (we refer to this unique identifier as key), 102 
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collection locality information (latitude and longitude, or lat and lon), a population identifier, 103 

results of the multivariate analysis (specimen coordinates across multiple dimensions of an 104 

analysis, e.g. principal components), and any other metadata related to the specimens (sex, host, 105 

morphological characteristics, etc.). Given that many of these analyses are conducted in R (R 106 

Core Team 2016), we have incorporated a data preparation function to the widely used R library 107 

adegenet (Jombart 2008). This function, export_to_mvmapper, combines an active R 108 

object from a multivariate analysis with locality information for each specimen. Currently, 109 

multivariate analyses conducted in adegenet and those based on the duality diagram (dudi.* 110 

functions) in ade4 (Dray & Dufour 2007) are supported, including: sPCA and discriminant 111 

analysis of principal components (DAPC: Jombart et al. (2010)) in adegenet, and principal 112 

components analysis (PCA), principal coordinates analysis (PCoA), non-metric dimensional 113 

scaling (NMDS), correspondence analysis (CA), and others in ade4. Locality information is 114 

then incorporated into the multivariate analysis through another R object. This is most easily 115 

done by preparing an additional file with at least three columns, key, lat, and lon, where key 116 

matches the unique individual identifiers used in the multivariate analysis. After reading this 117 

locality file into R, export_to_mvmapper will combine the two R objects (the multivariate 118 

analysis and the locality information) into mvMapper input format, which can be manually 119 

written to a comma-delimited file (e.g. using R’s write.csv function). Locality information 120 

can be incorporated via other means (e.g. when latitude and longitude are already part of a 121 

genind object), however the advantage of creating an additional file, as described here, is that 122 

any additional specimen-based information can be included in that file (named 123 

localities.csv in the following example), such as: specimen sex, host information, and 124 
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morphological or ecological characters. Alternatively, rather than using 125 

export_to_mvmapper, the input data file can be generated manually from results of 126 

multivariate analyses in different programs or R libraries, as the tabular format is general and 127 

user-friendly.  128 

Below we provide an example of data preparation from a DAPC, which in addition to 129 

standard multivariate analyses results (distribution of individuals along principal components) 130 

provides additional components recognized by mvMapper, such as membership to a priori-131 

assigned and DAPC-assigned groups, and the posterior probabilities of the DAPC-assigned 132 

groups. See https://github.com/popphylotools/mvMapper/tree/master/dataPrepExampleFiles for 133 

an example of this file generated from a dataset of 783 autosomal microsatellite loci genotyped 134 

for 1,048 human individuals from 53 populations (Rosenberg et al. 2005). 135 

> # An example using the microsatellite dataset of Rosenberg et al. 2005 136 
> # Using adegenet devel version 137 
> # Reading input file 138 
> Rosenberg <- read.structure("Rosenberg_783msats.str", n.ind=1048, 139 
n.loc=783,  onerowperind=F, col.lab=1, col.pop=2, row.marknames=NULL, 140 
NA.char="-9", ask=F, quiet=F) 141 
 142 
> # DAPC (n.pca determined using xvalDapc, see ??xvalDapc) 143 
> dapc1 <- dapc(Rosenberg, n.pca=20, n.da=200) 144 
 145 
> # read in localities.csv, which contains "key", "lat", and "lon" columns 146 
with column headers (this example contains a fourth column "population" which 147 
is a text-based population name based on geography) 148 
> localities <- read.csv(file="localities.csv", header=T) 149 
 150 
> # generate mvmapper input file and write to "rosenbergData.csv" 151 
> out <- export_to_webapp(dapc1,localities) 152 
> write.csv(out, "rosenbergData.csv", row.names=F) 153 
 154 

 By default, mvMapper is configured to display the microsatellite dataset of Rosenberg et 155 

al. (2005) from the example above. Users can upload their own datasets through the upload tab 156 

linked in the navigation bar at the top of the page (Figure 1, top). Files uploaded in this manner 157 
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are named using an alphanumeric random string that is integrated into the web address used to 158 

select that dataset; users can return to a previously uploaded dataset using its unique web address 159 

until it expires after 14 days. 160 

 161 

Interface and functionality 162 

The main interface of mvMapper consists of three components: a statistical panel, a 163 

mapping panel, and a metadata panel (Figure 1). Aspects of these panels are linked, so that, for 164 

example, selecting individuals in the ordination of the statistical panel will highlight those 165 

individuals on the map and their metadata will appear in the metadata panel. Pull-down menus to 166 

the left of the statistical panel allows users to select which data is displayed in the ordination 167 

plot. In a general multivariate analysis, the most informative principal axes (or principal 168 

components) would be plotted against each other (e.g. PC1 vs. PC2) (Figure 1); in mvMapper, 169 

any of the multivariate analysis results (all principal axes) or specimen-based metadata can be 170 

plotted in the statistical panel. For example, the distribution of individuals along a particular 171 

principal component can be plotted against populations of origin (Figure 2A), assigned group 172 

membership from DAPC, or latitude or longitude (Figure 2B). Individual specimen points in 173 

both the statistical and mapping panels can be colored (with several palette choices) or sized 174 

according to any column in the input data file, except when discrete data values outnumber 175 

available colors/sizes, in which case those attributes are excluded from the dropdowns. 176 

Automatic binning supports coloring and sizing of numeric attributes. Specific attributes can be 177 

configured to be treated as discrete values, even if numeric, and by default these include key, 178 

grp, and assigned_grp. These coloring and sizing abilities facilitate rapid exploration of 179 
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metadata with regard to population structure; for example, individuals can be colored by 180 

collection locality, group membership, host, sex, or other genetic attribute (Figure 2C), or be 181 

sized by the posterior probability of group membership in a DAPC, all with a few mouse clicks.  182 

 Both the statistical and mapping panels are interactive with tools for panning, zooming in 183 

and out, and saving the image. Individuals can be selected singly with a mouse click, or multiply 184 

by shift clicking or using the dragged box tool. In the mapping panel, overlapping points can be 185 

separated with a jitter function, and the zoom tool is dynamic: zooming in or out will access 186 

finer-scale or coarser-scale map tiles with more or less detail, respectively (e.g. labeling 187 

countries, cities, roads, or other scale-appropriate geographical features). This allows 188 

mvMapper to function at both global and local geographic scales (Figure 2C). Selecting 189 

individuals in either the statistical or mapping panel displays their metadata in the lower panel, 190 

which can be sorted by clicking on column headers. Selected data can also be downloaded (as a 191 

comma-delimited file) to facilitate downstream analysis, for example re-analysis of individual 192 

population groups or hierarchical analysis (Vähä et al. 2007). 193 

 194 

DISCUSSION 195 

 Visualizing population structure across geographic space is fundamental to most 196 

population genetic studies. However, combining multiple “data wrangling” tools (Kandel et al. 197 

2011), including population genetic data processing, multivariate analysis, and particularly map-198 

making or GIS, is a time-consuming, error-prone, and generally daunting task (e.g. Fletcher-199 

Lartey & Caprarelli 2016; Rickles & Ellul 2014; Sipe & Dale 2003). mvMapper greatly 200 

facilitates this process by providing an accessible, open access, user-friendly interface for 201 
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exploring and visualizing results of multivariate analysis in geographic space, and perhaps most 202 

importantly facilitates dynamic and interactive exploration of these spaces. Interactivity, in 203 

particular, is key to enable users to quickly assess the geographic patterns of any combinations of 204 

principal components, population groupings, additional statistical parameters (assignments to 205 

groups based on discriminant functions in DAPC or lag-vectors of principal components in 206 

sPCA), and any other specimen-based metadata with a few mouse clicks in the drop-down 207 

menus to the left of the statistical panel. Given these characteristics, we envision mvMapper to 208 

be of wide interest to a broad range of researchers as well as for teaching and training purposes. 209 

Additionally, mvMapper’s highly generalized and modular approach allows it to be modified 210 

for more specific uses; for example, including metadata corresponding to whether specimens of 211 

an invasive species were collected in its native versus introduced range allows mvMapper to 212 

become a tool for source determination of intercepted material (Roderick 2004). 213 

 214 
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FIGURE LEGENDS 356 
 357 
Figure 1. The user interface of mvMapper in a web browser, displaying the human 358 
microsatellite dataset of Rosenberg et al. (2005). Features include the statistical panel (left), 359 
mapping panel (right), metadata panel (lower), and navigation bar (top). 360 
 361 
 362 
Figure 2. Various visualization options for the human and swallowtail butterfly microsatellite 363 
datasets of Rosenberg et al. (2005) (A and B) and Dupuis and Sperling (2016) (C), respectively. 364 
A) population grouping vs. principal component 3, B) latitude vs. principal component 3, and C) 365 
principal component 2 vs. 1, colored by COI clade and zoomed in to the Red Deer River valley 366 
in southeast Alberta, Canada. 367 
 368 


