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Abstract

Antimicrobial peptides (AMP), part of the innate immune system, are well studied for their

ability to kill pathogenic microorganisms. However, many also possess important immuno-

modulatory effects, and this area has potential for the development of novel therapies to

supplement traditional methods such as the use of antibiotics. Here, we characterise the

microbicidal and immunomodulatory potential of the proline-rich bovine AMP, Bactenecin 5

(Bac5). We demonstrate broad antimicrobial activity, including against some mycobacterial

species, which are important pathogens of fish, cattle and humans. Bac5 is able to activate

macrophage-like THP-1 cells and can synergistically trigger the upregulation of tnf-α when

co-stimulated with M. marinum. Furthermore, Bac5 sensitises A549 epithelial cells to stimu-

lation with TNF-α. For the first time, we characterise the activity of Bac5 in vivo, and show it

to be a potent chemokine for macrophages in the zebrafish (Danio rerio) embryo model of

infection. Bac5 also supports the early recruitment of neutrophils in the presence of M. mari-

num. In the absence of host adaptive immunity, exogenous injected Bac5 is able to slow,

although not prevent, infection of zebrafish with M. marinum.

Introduction

The rising incidence of antimicrobial resistance and decline in major commercial investment

into new antimicrobial development is driving the innovative use of alternative compounds

and novel strategies to combat infection. Antimicrobial peptides (AMP) are a conserved but

diverse group of innate immune effectors that have been well studied for their ability to kill

bacteria, fungi and viruses (reviewed by Radek et al [1]). They are usually small, typically

below fifty amino-acids in length, tend to be cationic and hydrophobic, and can have an array

of secondary structures and modifications. The sheer diversity of possible sequence variations

lends them to the rational design of novel AMP derivatives, which is a promising avenue of

research [2–6]. The study of naturally occurring AMP can be used to identify those that carry

properties that may be desirable in new therapeutics, as well as elucidating their natural role

during infection.
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While some AMP act through direct lysis of the bacterial cell membrane, others target

intracellular sites, including heat-shock proteins and ribosomal subunits (reviewed by Mishra

et al [7]). Furthermore, some have been reported to contribute to wound healing [8] and

angiogenesis [9]. The only human AMP belonging to the cathelicidin-family is LL37; which, in

addition to human beta defensin (HBD)3, has been described as chemotactic for neutrophils,

T-cells [10], macrophages [11], immature dendritic cells [10] and mast cells [11]. It is these

non-bactericidal properties of AMP that are garnering interest for their potential application

as immunoregulators to treat disease. An attractive aspect of this approach is that since the

AMP does not depend on direct microbicidal activity, rather supporting the host immune

response to eradicate infection, it may confer less selective pressure to evolve resistance.

Immunomodulatory AMPs have already entered clinical trials for the treatment of acne, rosa-

cea and malaria [12].

Bactenecins (Bac) comprise a family of cyclic peptides released by activated bovine neutro-

phils upon degranulation [13]. Bac5, also known as bovine cathelicidin-2, is unusual in that it

is particularly arginine-proline rich, a feature normally associated with insect and crustacean

AMPs, and otherwise so far only identified in ruminants.

Since it lacks any cysteine residues, Bac5 cannot form disulphide bridges and exists in a lin-

ear conformation [14]. Linearised forms of other bactenecins are reportedly less active against

Gram-negative species, but more active against Gram-positive species, compared with their

cyclised form [15]. Bac5 is reportedly non-lytic [16] and can be internalised by some bacteria

via a transport-mediated mechanism to reach intracellular targets [17]. However, there are sev-

eral reports that Bac5 can also fuse with and alter the morphology of bacterial membranes, and

this correlates with microbicidal activity [18, 19]. Bac5 demonstrates species-restricted bacteri-

cidal activity, particularly against Gram-negative bacteria including Escherichia coli, Burkhol-
deria pseudomallei [20] and Klebsiella sp. [21], but retains some limited activity against certain

Gram-positive species: it can kill Staphylococcus epidermidis, for example, but not S. aureus.
Meanwhile it has also been shown to be able to kill Candida albicans [22]. To our knowledge,

the activity of bovine Bac5 against mycobacteria has not been investigated.

Although synthesised during myelopoiesis [23], Bac5 is also strongly upregulated upon

intramammary challenge with Streptococcus uberis [24] and E. coli, although in goats it appears

to be constitutively expressed in healthy somatic milk cells [25]. Interestingly, despite its tran-

scriptional upregulation in this tissue, the peptide itself has dramatically reduced minimum

inhibitory concentration (MIC) in bovine serum and milk [26]. Still, the pro-form of the pep-

tide may retain chemotactic properties that are still of benefit to the host, similar to the related

peptide, Bac7 [27]. Proteolytic cleavage of pro-Bac5 to the mature Bac5 form is thought to

occur rapidly, within five minutes [13, 28], while mRNA expression of Bac5 appears to peak at

around 20 hours post-stimulation of neutrophils with E. coli as stores of the pro-peptide are

replenished [29]. These findings point to an important sentinel role for Bac5 in peripheral tis-

sue in preventing infection. However, the non-bactericidal effects of Bac5, particularly with

regards to important host cell types involved in innate immunity, as well as in the context of

mycobacterial infection have not been well studied.

Proline-rich peptides, such as those isolated from bovine colostrum, have been shown to

counteract the Th2-dominated allergic inflammatory response and promote a Th1-associated

outcome, for example by the induction of IFN-γ and TNF-α in human leukocytes and whole

blood cultures [30]. It is believed that this type of immune response may be important in pro-

tection against progressive mycobacterial infection [31]. Immunomodulation by other bovine

AMP has been reported, with indolicidin shown to induce CXCL8; and Bac7, structurally simi-

lar to Bac5, potentially able induce DNA synthesis and proliferation of fibroblasts [28]. Some

promising research has demonstrated that some AMP can neutralise lipopolysaccharide and
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reduce TLR4-mediated inflammation, offering a potential new treatment for sepsis through

detoxification [32–38]. Certain modern synthetic peptides derived from the native Bac2

sequence are also able to upregulate expression of potent chemokines such as MCP-1 [39].

In this study, we sought to investigate the bactericidal and immunomodulatory properties

of Bac5 in vitro and in vivo, in the presence and absence of mycobacterial infection. We use the

zebrafish (Danio rerio) embryo infection model along with its natural pathogen, M. marinum
[40, 41]. This system confers several advantages: the zebrafish embryos are transparent and

therefore amenable to fluorescence imaging of bacteria and host cell types [42]; they do not

encode proline-rich AMP, enabling the study of Bac5 in isolation; and finally, they lack a

developed adaptive immune response (reviewed by Trede et al [43]), enabling us to character-

ise the capabilities and limitations of Bac5 in a purely innate context.

Results

Bac5 Has species-selective antibacterial activity

The active portion of the Bac5 amino acid sequence was synthesised, purified and tested for

activity against different Gram-negative and Acid-Fast species of bacteria. The peptide demon-

strated significant, concentration-dependent ability to restrict metabolic activity in all bacteria

species tested (Fig 1A). Bac5 was variably microbicidal against all species, mostly correlating

well with the metabolic assay, although Y. pseudotuberculosis and M. bovis BCG both demon-

strated greater resistance to the peptide, and required higher concentration of Bac5 to signifi-

cantly reduce CFU (Fig 1B).

Bac5 modulates chemokine and cytokine transcriptional activity in

response to M. marinum and tnf-α challenge in vitro
We characterised the immunomodulatory effect of Bac5 in vitro by looking directly at its effect

on key cell types and cytokines associated with mycobacterial infection. We studied the effect

of Bac5 on matured human THP-1 macrophage-like cells, and found that synthetic Bac5 and

Fig 1. Antibacterial effect of Bac5 against gram-negative and Acid-Fast bacilli. The active fragment of Bac5 was synthesised to high purity and incubated at different

concentrations with mid-log phase bacteria of different species in a sterile solution of RPMI:Water (1:4, v:v). Metabolic activity (A) was calculated using the colorimetric

Alamar Blue assay, while bactericidal activity was recorded by colony forming unit (CFU) assay (B). All data were collected at 24 hours, except for M. bovis BCG, where

metabolic activity was recorded after 72 hours. Stars denote statistical (p< 0.01) significance from the untreated (zero) control for each species as calculated using

Student’s T-test.

https://doi.org/10.1371/journal.pone.0210508.g001
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epinecidin induced the transcription of IL-1β both in the presence and absence of live M. mari-
num in THP-1 cells (Fig 2A & 2B). Interestingly, Bac5 was the only peptide tested to signifi-

cantly upregulate tnf-α, but only in synergy with M. marinum. Epinecidin significantly

upregulated both mmp-9 and IL-1β, particularly in the presence of the bacteria. Collectively,

these results show that Bac5 is able to activate macrophage-like cells in vitro in the absence of

additional host cell types or cytokines.

We looked for the same cytokine responses in vivo using the zebrafish embryo model, fol-

lowing infection with M. marinum and treatment with a single injection of 10 ng Bac5 in the

hindbrain ventricle (HBV). Whilst M. marinum induced il-1β, mmp-9 and cxcl-c1c after 96

hours, Bac5 did not significantly affect this outcome (S1 Fig), in contrast to our in vitro find-

ings. To establish whether injection of Bac5 at later stages post-infection influenced the cyto-

kine profile, we allowed the infection to proceed to either 72 or 90 hpi before treating with

Bac5, and again found no significant difference from the untreated control (S2 Fig).

To examine whether endogenously-produced Bac5 could also modulate chemokine and

cytokine responses by host cells in vitro, we transformed the adherent human epithelial cell

line, A549 to stably express Bac5. We confirmed Bac5 expression by A549 cell lines by both

transcriptional analysis and also by phenotypic assay, confirming that, as with the synthetic

version of the peptide, A549 cells expressing Bac5 could inhibit bacterial metabolic activity.

Fig 2. Effect of Bac5 on THP-1 cell cytokine transcription during infection. Fold change of IL-1β, TNF-α and MMP-9 mRNA levels in uninfected (A) and M.

marinum-infected (B) resting THP-1 cells following incubation with 15 ng/μl AMPs for 24 h. Fold changes of mRNA levels were assessed by qRT-PCR, normalised to

18S and expressed relative to one control (no treatment) sample. Data pooled from two independent experiments is shown. Each data point represents two treatment

wells (n = 12). Error bars represent S.E.M. Kruskal-Wallis with Dunn’s post-test. ��p<0.01, �p<0.05.

https://doi.org/10.1371/journal.pone.0210508.g002
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The finding that this only occurred in culture supernatant and not lysate indicated that the

peptide was readily secreted (S3A and S3B Fig). We furthermore examined the effect of

endogenously-produced Bac5 in response to stimulation with either live mycobacteria or to

the inflammatory cytokine, TNF-α. Bac5 only weakly affected MMP-9 and CXCL8 secretion

by epithelial cells when stimulated with mycobacteria, but significantly upregulated both cyto-

kines in response to TNF-α stimulation in the absence of bacteria (S3C and S3D Fig).

Bac5 induces rapid, sustained macrophage and transient neutrophil

recruitment in vivo
Infection of the zebrafish embryo HBV with M. marinum induced the recruitment of macro-

phages to the site from 3–24 hpi (Fig 3). In the absence of bacteria, 10 ng Bac5 was also able to

Fig 3. Injection of Bac5 to the hindbrain ventricle (HBV) increases macrophage recruitment. Two days post-fertilisation Tg(mpeg-1:mCherry) zebrafish embryos

were injected into their HBV with Mock, BAC, Mock/M. marinum (Mmar) or BAC/Mmar. 10 ng Bac5 was injected for both Bac5 treatment groups and approximately

190 CFU Mmar expressing GFP for both infection groups. Z-stack images of the HBV region were acquired at 3 hours post-injection (hpi) and 24 hpi. (A-H)

Representative fluorescence overlay images of fish at 3 hpi (A-D) and 24 hpi (E-H) from a single experiment are shown. Scale bar 100 μm. (I-J) Macrophages in the HBV

region were quantified from fluorescence images of zebrafish taken at 3 hpi (I) and 24 hpi (J) using Icy Spot Detector plugin. Data pooled from three independent

experiments is shown. Sample size (n): 40, 36, 61, 53. Error bars represent S.E.M. One-way ANOVA with Bonferroni’s post-test. �p<0.05, ���p<0.001.

https://doi.org/10.1371/journal.pone.0210508.g003
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induce recruitment of macrophages, however co-injection of bacteria with peptide did not sig-

nificantly enhance macrophage recruitment above the levels induced by bacteria alone.

Beyond 24 hpi, macrophages aggregated into nascent granulomatous-like structures and were

no longer discernible as discrete cells.

In contrast to macrophages, M. marinum did not induce neutrophil recruitment until 72

hpi. Interestingly, co-injection with Bac5 enabled the recruitment of neutrophils significantly

earlier, at 6 hpi (Fig 4). Yet by 72 hpi, there was no discernible effect of Bac5 above the level of

neutrophils recruited by M. marinum alone. Similarly, delayed injections of Bac5 at later time

points (48 hpi and 96 hpi) showed that there was no significant difference in neutrophil count

compared with M. marinum alone (S4 Fig).

Co-injection of Bac5 with M. marinum slows the rate of bacterial infection

As a marker of bacterial burden, we quantified the fluorescence intensity of a reporter-strain

of M. marinum, which enabled us to measure the progression of infection in real-time for each

Fig 4. Injection of Bac5 to the HBV induces early but not sustained neutrophil recruitment. Two days post-fertilisation casper Tg(mpx:GFP) zebrafish embryos

were injected into their HBV with Mock, Bac5, Mock/M. marinum (Mmar) or Bac5/Mmar. 10 ng BAC was injected for both BAC treatment groups and

approximately 250 CFU Mmar expressing DsRed2 for both infection groups. Z-stack images of the HBV region were acquired at 6 hpi, 24 hpi and 72 hpi. (A-D)

Representative fluorescence overlay images of fish from a single experiment are shown at 6 hpi. Scale bar 100 μm. (E-H) Representative fluorescence images of fish

from the same single experiment are shown at 72 hpi. Images of the bacterial fluorescence channel are shown only for infected zebrafish groups, separated by white

dashed line from the neutrophil channel images. Scale bar 100 μm. (I-K) Neutrophils in the HBV region were quantified from fluorescence images of zebrafish

embryos using Icy Spot Detector plugin. From L to R: 6 hpi, 24 hpi and 72 hpi. Data was also analysed using Icy FPC protocol with the same outcome (S5 Fig).

Sample size (n) = 39, 37, 38, 43. Data pooled from three independent experiments is shown. Error bars represent S.E.M. One-way ANOVA with Bonferroni’s post-

test. �p<0.05, ��p<0.01, ���p<0.001.

https://doi.org/10.1371/journal.pone.0210508.g004
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embryo. Whilst we observed a significantly reduced bacterial burden in the Bac5-treated con-

dition, this was only apparent at 72 hpi, and the overall trend was still increased bacterial bur-

den over time, suggesting the peptide treatment may slow, but not prevent colonisation by M.

marinum (Fig 5).

To investigate whether Bac5 could affect bacterial burden of an established infection, we

allowed infection to proceed unchallenged until administering Bac5 at 48 hpi, with a repeat

treatment at 96 hpi. However, in this model there was also no protective benefit of the AMP

treatment, either in reducing bacterial burden or in embryo survival (S5 Fig).

Discussion

Mycobacteria are able to redirect the host immune response from one that is able to clear the

infection (Th1) towards one that supports persistence (Th2) that can last for many years [44].

Dysregulation of the immune response can also result in excessive and damaging immunopa-

thology [31, 45]; AMP may offer a solution for restoring an effective host response. In the pres-

ent work, we sought to characterise the immunomodulatory properties of the proline-rich

bovine AMP, Bac5. In particular, we wanted to examine its in vivo potential using the embry-

onic zebrafish model in the context of early infection with virulent M. marinum, a close rela-

tive of M. tuberculosis.

In vitro activity of Bac5

Bac5 was found to broadly restrict metabolic activity across a number of different bacterial spe-

cies. However, its killing activity was more species-selective, with Y. pseudotuberculosis and M.

bovis BCG demonstrating greater resistance to the peptide than other species, although they

were still sensitive to higher concentrations. These findings fit with observations that Bac5 can

fuse with bacterial membranes [18] and with reports that Bac2 is active against Gram-negative

bacilli [15]. A suggested target for Bac5 is through the ABC transporter, SbmA, which facili-

tates uptake of the peptide. While SbmA is conserved amongst Gram-negative bacteria, it is

not among Gram-positive species (24). We are the first to report Bac5 microbicidal activity

against mycobacterial species; interestingly, a BLAST comparison revealed that Mycobacterium
spp. possess an orthologous ABC transporter, to SbmA, but with only 24% identity. The mech-

anism of uptake and killing by Bac5 therefore remains to be proven.

Fig 5. Exogenous injected Bac5 slows rate of infection with m. marinum in zebrafish embryos. Two days post-fertilisation casper Tg(mpx:GFP) zebrafish embryos

were injected into their HBV with 10 ng Bac5 or mock control along with approximately 250 CFU Mmar expressing DsRed2 for both infection groups. Zebrafish

embryos were live-imaged using a fluorescence stereomicroscope and z-stack images of the HBV region acquired at 6 hpi, 24 hpi and 72 hpi. Bacterial burden in the

HBV region of M. marinum–infected zebrafish embryos was quantified from fluorescence images using Icy FPC protocol. Sample size (n): 38, 43. Data pooled from

three independent experiments is shown. Error bars represent S.E.M. Mann-Whitney test. �p<0.05.

https://doi.org/10.1371/journal.pone.0210508.g005
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We found that Bac5 was able to significantly upregulate the transcription of both IL-1β and

TNF-α in mature THP-1 cells, indicating that it can activate macrophage-like cells in vitro.

The induction of IL-1β by Bac5 was of interest since it is reported to be an important mediator

of host resistance to MTB infection [46–48]. IL-1 gene knockout studies have shown its impor-

tance in reducing bacterial burden and improving survival in mice [49–51], while mice that

are deficient in IL-1 receptor demonstrate greater necrosis in response to MTB infection [50,

52].

Since we detected concomitant IL-1β and TNF-α transcriptional activity, we could not

determine whether Bac5 directly upregulated TNF-α since it has been reported that IL-1β can

itself induce TNF-α [53–55]. Interestingly, our findings contrast with the reported inability of

Bac5 to upregulate TNF-α in bovine epithelial cells [26], suggesting this may be a cell-type spe-

cific effect. The ability of Bac5 to activate THP-1 cells optimally required co-stimulation with

M. marinum. This is analogous to the classical activation pathway of macrophages which

requires two signals: a pathogen-associated molecular pattern (PAMP) and a pro-inflamma-

tory cytokine such as IFN-γ [56, 57]. It contrasts with human LL37, which could kill M. mari-
num, but not induce TNF-α in our hands.

While TNF-α is important in the host response to mycobacterial infection, it can also pro-

mote tissue damage if unregulated [58–60]. For this reason, we were particularly interested to

examine co-induction of MMP-9. MMP-9 is a metalloprotease that has been associated with

macrophage recruitment and wound healing, and the formation of well-defined and stable

granuloma in both murine and zebrafish models of mycobacterial infection [61, 62]. We

found that epinecidin induced MMP-9 in synergy with M. marinum in THP-1 cells. With

Bac5, the response was variable, with only about half the replicates showing strong induction

of MMP-9 in response to Bac5 treatment. In A549 cells endogenously expressing Bac5, how-

ever, TNF-α stimulation induced significantly higher amounts of MMP-9 protein. It is inter-

esting that Bac5 is able to both induce TNF-α transcription in one cell type, and enhance

sensitivity to it in another, and suggests it can potentially act as a signal mediator in support of

cytokine function. In constructing stable cell lines expressing AMP, we demonstrate a proof of

principle that these peptides can be produced more efficiently than existing synthetic methods

such as those using solid-phase chemistry [63], or using bacterial or yeast systems that are

complicated by auto-toxicity issues.

In vivo activity of Bac5

We identified macrophage recruitment in vivo in the presence of Bac5 that was sustained for

24 hours, independent of M. marinum infection. However, when bacteria and peptide were

co-injected, Bac5 promoted no additional macrophage recruitment above the level induced by

M. marinum alone. The ability of Bac5 to recruit macrophages independently may support an

early immune response when the peptide is located away from the immediate proximity of a

nascent infection. From a wider perspective, the ability of Bac5 to recruit macrophages high-

lights a potential application as a peptide-based vaccine adjuvant, considering that M. bovis
BCG vaccine has been shown to promote better protection against MTB challenge when acti-

vated macrophages are present [64].

We also observed a chemotactic effect of Bac5 on neutrophils at six hpi in synergy with M.

marinum, although the effect was not sustained over longer time periods. The lack of signifi-

cant cxcl-c1c transcriptional activity in vivo suggested that Bac5 did not recruit neutrophils via

induction of this chemokine.

Treatment with Bac5 resulted in significantly reduced bacterial burden at 72 hpi, potentially

due to the observed early enhanced recruitment of macrophages and neutrophils. While
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neutrophils reportedly lack the ability to efficiently phagocytose and kill free mycobacteria

[65], there is evidence that they can support killing by macrophages, as well as engulf and

destroy mycobacteria-infected macrophages [66].

Still, we only observed a reduced rate of bacterial infection, not control of or killing of

mycobacteria, and we suggest this may be due to an overall lack of pro-inflammatory cytokine

induction in the in vivo model, exacerbated by a lack of adaptive immunity. This is likely to

significantly affect the ability of the host to resist infection, and may limit the contribution of

Bac5.

While TNF-α produced by TLR-stimulated macrophages can activate macrophages, it opti-

mally requires co-stimulation with IFN-γ [67, 68], of which T-cells are a major source. CD4+

Th1 T-cell-produced IFN-γ and TNF-α can activate bystander resting macrophages and pre-

vent their infection by MTB [44, 69]. Non-activated macrophages, by contrast, are permissive

to mycobacterial infection [70, 71]. Clay et al have shown that macrophages are sufficient to

control bacillary burden of M. marinum in the embryonic zebrafish model without the contri-

bution of adaptive immunity [72]; however in that study, a high level of tnfa was found, sug-

gesting the macrophages were activated. There are conflicting reports of the ability of M.

marinum to induce tnf in zebrafish embryos. Some have described it to be a potent inducer of

tnfa [72, 73], whereas others have reported only weak or delayed induction [74, 75]. In our

hands, M. marinum was able to upregulate il-1β, but it was only detected in significant

amounts after 96 hours. Bac5, a potent inducer of il-1β in vitro, failed to upregulate it in vivo. A

possible explanation for the lack of either tnfa, il-1β or mmp-9 transcriptional activity observed

in vivo may be the presence of TGF-β in the developing embryo [76], which has been described

to inhibit IL-1β, TNF-α [77] and MMP-9 production [78].

Conclusions

AMP are a key component of the innate immune system, we therefore sought to study the

function of Bac5 purely in this context, modelling early infection of a host with a natural path-

ogen. We furthermore utilised in vitro systems to study the effects of Bac5 in a reductionist

approach. By definition, these models do not fully replicate the role of Bac5 in the bovine sys-

tem. Determining the physiological concentration of AMPs is notoriously difficult, but some

data is available. For context, the concentration of LL37 stored in human neutrophils and

found in plasma and adult airway fluid is in the range of 0.6–2 μg mL-1[79]. In our present

work, we injected 10 ng Bac5 per embryo; the chemotactic effects we observed therefore repre-

sent a potent function of Bac5. Additionally, in a physiological setting, the peptide itself would

be continually replenished by neutrophil degranulation, whereas our design represents a single

‘pulse-chase’ kinetic. Since the in vivo half-life of some AMPs can be just a few minutes [3], it

would be interesting to examine the impact of Bac5 when constitutively expressed in vivo
rather than using exogenous synthetic peptide.

In conclusion, we have demonstrated direct bactericidal activity of the proline-rich bovine

innate immune peptide, Bac5. For the first time, we show that Bac5 is able to variably kill some

mycobacterial species, and it supports macrophage activation in vitro in synergy with M. mari-
num. We also show that it is able to induce recruitment of macrophages, and that it can

enhance recruitment of neutrophils in the presence of M. marinum. A single dose of the pep-

tide was able to slow but not prevent infection of zebrafish embryos with M. marinum; a lack

of inflammatory cytokine induction in vivo may limit the potency of Bac5, particularly in the

absence of adaptive immunity. These findings point to Bac5 being a potentiator of the innate

immune response in response to infection beyond its recognised ability to kill Gram-negative

bacteria.
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Materials and methods

Stable expression of Bac5 in A549 human epithelial cells

To create stable A549 human epithelial cell lines expressing the active form of Bac5, we began

by synthesising the double-stranded DNA encoding Bac5 using overlap extension PCR with

primers for the entire coding sequence with Kozak sequence inserted at the 5’ end and using an

A-tailing polymerase. The sequence was directly cloned into pcDNA 3.3 (Invitrogen, UK) and

used to transform TOP10 E. coli and screened by ampicillin resistance and colony PCR. Positive

clones were confirmed by sequencing of plasmid minipreps (Qiagen Spin Miniprep). Since the

expression of the antimicrobial peptide is under the control of a CMV promoter, it is not

expressed during E. coli replication and so there is no auto-toxicity. Purified pcDNA3.3_Bac5

plasmid were linearised and introduced into human A549 cell lines (ATCC-LGC) using Lipo-

fectamineTM (Thermo Fisher Scientific) transfection reagent, and after 24 hours culture at

37 oC with 5% CO2 in DMEM Glutamax (Gibco) with 10% foetal calf serum, 100 μg ml-1 genta-

mycin (Sigma Aldrich) was added to the cell culture to select for chromosomally integration

and expression of the vector. Expression of Bac5 was confirmed by RNA extraction from the

cell lines followed by cDNA synthesis and PCR using Bac5-specific primers.

Synthetic peptides

All synthetic peptides were manufactured by Biomatik. All AMPs were resuspended in nucle-

ase-free water to a stock concentration of 10 mg/ml. Sequences were as follows: Bac5 = RFRPP

IRRPPIRPPFYPPFRPPIRPPIFPPIRPPFRPPLGPF; Epinecidin = GFIFHIIKGLFHAGKMIH

GLV; LL37 (Cathelicidin) = LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES.

Bacterial strains and maintenance

E. coli (strain HB101) was maintained at 37˚C in Luria-Bertani (LB) media or on LB agar

plates. M. marinum (strain M, ATCC BAA-535) was maintained at 28.5˚C in Middlebrook

7H9 media (BD), or on Middlebrook 7H11 or 7H10 plates (BD) supplemented with 10% Mid-

dlebrook Oleic Acid Albumin Dextrose Complex (OADC) media (BD and Stratech). All liquid

cultures were incubated with shaking at 150 rotations per minute (rpm) and liquid cultures of

M. marinum also contained 0.05% Tween-80. Where appropriate, growth media were supple-

mented with 25 μg/ml kanamycin and/or 50 μg/ml hygromycin. Where stated, M. marinum
(strain M, ATCC BAA-535) containing pMSP12:DsRed2[80] or pGFPHyg2[81] was used and

maintained as above.

In vitro activity of endogenous-expressed Bac5

To assess the activity of endogenously produced Bac5 peptide, cell culture supernatant was col-

lected from either A549 cells or Bac5_A549 cells. Alternatively, adherent cells were washed

three times with sterile PBS before harvesting using Accutase (Thermo Fisher Scientific) and

mechanical lysis using a sterile douncer. Protein concentration was normalised using modified

Bradford Assay, and equivalent amounts of either cell lysate or cell culture supernatant added

1:1 with lysogeny broth containing 1 x 105 CFU bacteria, either M. smegmatis, M. bovis BCG,

Burkholderia. thailandensis, Yersinia pseudotuberculosis IP32953 or E. coli. 96-well plates were

incubated at 37˚C for 24 hours before the addition of Alamar Blue reagent (Thermo Fisher Sci-

entific) for 1 hour and measurement of optical density at 590 and 620 nm. Metabolic activity

was calculated and normalised against the bacteria-free control.

To assess the effect of constitutive Bac5 expression on the responsiveness of the A549 cells

to mycobacterial PAMP or cytokine stimulation, we incubated 1x 105 cells in a 96 well plate
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with different MOI of either M. smegmatis, M. bovis BCG, or TNF-α. After 24 hours incuba-

tion at 37 oC, cell culture supernatant was harvested and centrifuged to pellet extracellular bac-

teria. Supernatant used measured for metalloprotease (MMP-9) and CXCL8 content by

enzyme-linked immunosorbent assay (ELISA) according to manufacturer’s instructions (both

Thermo Fisher Scientific).

In vitro activity of synthetic AMPs assay

M. marinum starter cultures were used at OD600 1.0 and E. coli starter cultures at OD600 0.5

(ensuring the bacteria were in logarithmic phase) before dilution in a solution of 1:4 (v:v) RPMI:

water to a concentration of 1.5x106 CFU per ml. 100 μl of bacterial solution (1.5x105 CFU /well)

was added to each well with 10 μl of appropriate 10X working AMP stock (prepared fresh in 1:4

(v:v, RPMI:water) and the 96-well plate incubated for 24 hours at 28.5 oC. For M. marinum exper-

iments, serial dilutions in 1X PBS were plated on 7H10 agar for each well and CFU counts taken

after 5 days of incubation at 28.5 oC. For E. coli experiments, serial dilutions in 1X PBS were plated

on LB agar for each well and CFU counts taken after overnight incubation at 28.5 oC. Three bio-

logical replicates per experiment were performed for each AMP concentration.

THP-1 cells maintenance

The THP-1 acute monocytic leukaemia cell line (ATCC TIB-202) was maintained in RPMI

1640 Medium, GlutaMAX supplement (Gibco) containing 10% FBS (heat-inactivated, Sigma-

Aldrich), 50 units/ml penicillin and 50 μg/ml streptomycin (penicillin/streptomycin, Sigma-

Aldrich). Cells were maintained at a density of 2x105 - 1x106 cells at 37˚C 5% CO2 in a humidi-

fied chamber. All procedures were carried out using cells between passages 9 and 12.

THP-1 cell assays with AMPs

THP-1 cells were plated at 5x105 cells/well to 96-well plates in RPMI 1640 Medium, Gluta-

MAX supplement containing 10% FBS, 50 units/ml penicillin and 50 μg/ml streptomycin. Fol-

lowing plating, cells were incubated for 24 hours at 37˚C 5% CO2 with or without activation

with 20 ng/ml PMA (phorbol 12-myristate 13-acetate, Sigma-Aldrich) as stated in figure leg-

ends. Cell media was changed to RPMI 1640 Medium, GlutaMAX supplement containing 10%

FBS only, and all cells incubated for a further 24 hours without PMA or antibiotics. Mean-

while, M. marinum was cultured to an OD600 of 1.0, bacteria harvested by centrifugation, and

bacteria resuspended in RPMI 1640 Medium, GlutaMAX supplement containing 10% FBS

only. Following 24 hours rest without PMA, 10 μl of bacterial suspension or 10 μl media only

was added to each well. Infection with M. marinum at MOI 1:1 was allowed to proceed for 3

hours at 33˚C 5% CO2, cells were washed 3x with RPMI 1640 Medium, GlutaMAX supple-

ment (no additives), and cell media was replaced with RPMI 1640 Medium, GlutaMAX sup-

plement (no additives) containing no AMP or 15 ng/μl of the AMP indicated. Cells were then

incubated for the stated times at 33˚C 5% CO2.

qRT-PCR sampling was performed by adding 100 μl lysis buffer (MagMAX-96 Total RNA

Isolation Kit) per sample, and proceeding with sample processing according to the manufac-

turer’s recommendations. Pools of two wells were used for each sample by transferring the

100 μl lysis buffer from the first well to the second before processing the sample.

Zebrafish lines and maintenance

Zebrafish lines used in this study were Tg(mpeg-1:mCherry)gl23[82], casper Tg(mpx:GFP)i114
[83–85] and casper Tg(Lyz:GFP)nz117[86]. All zebrafish embryos in this study were under
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6dpf and larvae were maintained at 28.5˚C in 0.5X E2[87], including infected zebrafish. Wild-

type zebrafish were purchased from the Zebrafish International Resource Center (Eugene,

OR). Survival was monitored daily and dead zebrafish embryos and larvae removed. Where

required for injection or imaging procedures, zebrafish embryos and larvae were anaesthetised

in E2 containing 4.2% MS-222 (3-aminobenzoic acid ethyl ester, Sigma-Aldrich), followed by

recovery in 0.5X E2 media containing no anaesthetic. Where euthanasia was performed, zebra-

fish embryos and larvae were terminally anaesthetised in 0.5X E2 containing 15% MS-222 and

death verified after overnight incubation. To prevent melanisation and aid imaging, Tg(mpeg-
1:mCherry) zebrafish were maintained from 24hpf in 0.5X E2 containing 30 mg/L PTU (1-phe-

nyl-2-thiourea, Sigma-Aldrich).

Zebrafish injections

Embryos were dechorionated manually prior to injections using fine forceps. Hindbrain ven-

tricle (HBV) injections were performed at 2 days post-fertilisation (dpf, 50–54 hpf) with an IM

300 microinjector with injection volumes of approximately 1 nl. Embryos were injected with

one of four possible injection solutions during this study, as specified in figure legends: 1X PBS

(mock); 1X PBS containing M. marinum; 10 mg/ml BAC; or 10 mg/ml BAC containing M.

marinum. The solution of 1X PBS was chosen as an osmotically-balanced non-inflammatory

control (mock) injection. All injection solutions contained phenol red dye (Sigma-Aldrich) at

a final concentration of 0.0005%.

For zebrafish injections, M. marinum expressing DsRed2[80] or GFPmut3[81] was grown

to mid-logarithmic phase (OD600 1.0). Growth curves were initially performed for each strain

to determine the appropriate dilutions; bacterial cultures were concentrated 5-fold for injec-

tions. Cells were harvested by centrifugation, washed 3X in 1X PBS, and resuspended at the

appropriate dilution for injections in 1X PBS for M. marinum only injections. Co-injection

solutions were first resuspended at the appropriate dilution in 100 μl 1X PBS to provide the

Mock/M. marinum injection solution, with 10 μl of this preparation then being harvested by

centrifugation and resuspended in 10 μl of 10 mg/ml Bac5 to provide the Bac5/M. marinum
injection solution. Injection doses were verified by injecting bacterial solutions directly into a

10 μl drop of sterile 1X PBS and plating the drop to 7H10 for CFU counting after 5 days of

incubation. Three 1X PBS drop injections were plated for each experiment.

Zebrafish were sampled for qRT-PCR following injections by euthanizing the zebrafish,

homogenising the samples using a pestle (Kimble-Chase) in 100 μl lysis buffer (MagMAX-96

Total RNA Isolation Kit), and proceeding with sample processing using the kit according to

manufacturer’s recommendations. qRT-PCR was performed for pools of 3 whole zebrafish

embryos per sample at 6 hpi and 24 hpi, or individual zebrafish larvae samples at 96 hpi.

Zebrafish microscopy and image quantification

Live zebrafish embryos and larvae were imaged using a Leica M205 FA fluorescence stereomi-

croscope. To enable quantification of infection progression parameters from images of zebra-

fish, transgenic zebrafish lines expressing fluorescently labelled immune cells and

fluorescently-labelled M. marinum strains were used. Z-stack images of the zebrafish HBV

region were acquired in the dorsal view with the z-stack range capturing the entire head region

from the dorsal to ventral sides. All images were acquired for infected and uninfected zebrafish

using standardised settings for each infection parameter to be quantified such that repeat

experiments could be compared and/or data pooled. All zebrafish were manually positioned in

the dorsal orientation to ensure the accuracy of parameter quantification from images. Data

for zebrafish which died or suffered from pericardial and/or yolk sac oedema during the course
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of experiments was excluded from the analyses presented for all time points. All quantifica-

tions and brightness and contrast adjustments for images presented in this study were per-

formed in Icy (open-source image analysis software, http://icy.bioimageanalysis.org/).

To permit the quantification of HBV region leukocyte recruitment and bacterial burden

following injections, images were first processed. The in-focus z-slice was extracted from z-

stacks for analysis. The selected z-slice was defined as the depth of slice from the top of the

head in which bacterial fluorescence was seen in the majority of infected zebrafish groups;

slices at that depth were then extracted and processed for all zebrafish in the experiment. To

rapidly and reproducibly define a standardised HBV region for analysis, selected z-slice images

were cropped at the otic vesicle, such that quantification was performed for the zebrafish head

region from the tip to the otic vesicle—referred to as the “HBV region” throughout this study.

Cropping facilitates the removal of the yolk sac and lymph nodes from the regions to be pro-

cessed, eliminating issues with autofluorescence and large collections of immune cells in

images, respectively.

The processed z-slice was analysed using both an Icy FPC protocol to determine the bacte-

rial burden, and the Icy Spot Detector plugin to determine leukocyte recruitment to the HBV

region. The FPC protocol is based upon the Icy Thresholded Pixel Density plugin (developed

by Fabrice de Chaumont, with the FPC protocol provided as “Pixel Density (batch mode) pro-

tocol” on the Icy website) and integrates the number of pixels in each image of infected zebra-

fish with values above a background threshold, as determined by matched images of

uninfected animals. The background threshold intensity is defined as the value for the highest

intensity pixel in the uninfected control images. The Icy Spot Detector plugin [88] detects the

number of pixel clusters of user-defined scale and sensitivity within an image, and was used to

detect the number of fluorescently-labelled cells present in an image. In addition to quantifica-

tion using the Spot Detector plugin, the Icy FPC protocol was also used to quantify neutrophil

recruitment to the HBV region in co-injection experiments (Fig 4). This was due to imperfect

resolution of neutrophil cell clusters at the 72 hpi time point by the Icy Spot Detector plugin;

caused by the use of standardised image acquisition settings throughout these experiments

from 6 to 72 hpi to permit comparison of the results at different time points.

To enable the separation of zebrafish into equal groups of infection burden and distribution

for sequential injection experiments, single images of the HBV region were acquired in the

dorsal view with the infecting bacteria in-focus at 24 hpi. These images were cropped at the

otic vesicle as described above to provide the HBV region for analysis. The processed images

were analysed using the Icy FPC protocol as above to determine the bacterial burden, zebrafish

were separated into four groups of equal infection burden and any surplus infected zebrafish

were discarded at this point. The four groups of zebrafish were then treated with sequential

injections of Mock or Bac5 as described in figure legends.

qRT-PCR

Following RNA extraction from samples using the MagMAX-96 Total RNA Isolation Kit

(Ambion), RNA quantity and quality was determined using a NanoDrop 1000 (Thermo Scien-

tific). The High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems) was used

according to manufacturer’s recommendations with 125 ng of total RNA sample per reaction.

qRT-PCR was performed with 2% of the generated cDNA per reaction using the Taqman Fast

Universal PCR Master mix, no AmpErase UNG (Applied Biosystems) and Taqman primer

and probes assays (Applied Biosystems). All reactions were performed in duplicate using a

7500 Fast Real-Time PCR System (Applied Biosystems). Obtained cycle thresholds were nor-

malised to 18S and expressed relative to one control sample for each experiment. Taqman
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primer and probes assays used were: 18S rRNA (4319413E), il-1β (Dr03114368_m1), mmp-9
(Dr03139882_m1), TNF-α (Dr03126850_m1), cxcl-c1c (Dr03436643_m1), and ifn-phi1
(Dr03100938_m1).

Statistical analysis

All statistical analyses were carried out using GraphPad Prism 4.0 software (GraphPad Soft-

ware, La Jolla California USA, www.graphpad.com). The D’Agostino-Pearson omnibus test

was used to confirm a normal distribution of data (parametric data). To compare two groups,

unpaired two-tailed T-tests or Mann-Whitney tests were used for parametric or non-paramet-

ric datasets, respectively. To compare more than two groups, one-way ANOVA followed by

Bonferroni’s multiple comparison test or Kruskal-Wallis test followed by Dunn’s multiple

comparison test were used for parametric or non-parametric data, respectively. P values of less

than 0.05 were deemed statistically significant with ��� p<0.001, �� p<0.01 and � p<0.05.

Supporting information

S1 Fig. Single injection of Bac5 to the HBV does not affect il-1β, mmp-9, tnfa or cxcl-c1c
transcription in uninfected or M. marinum-infected zebrafish. Two dpf Tg(mpeg-1:

mCherry) zebrafish embryos were injected with Mock, 10 ng Bac5, Mock/M. marinum
(Mmar) (approx. 190 CFU) or Bac5/Mmar. Fold changes of il-1β, mmp-9, cxcl-c1c and tnfa
mRNA levels were assessed by qRT-PCR, normalised to 18S and expressed relative to one con-

trol uninjected sample. Samples were taken at 6 hpi (A), 24 hpi (B) and 96 hpi (C). Each data

point in (A-B) represents a pool of three fish (n = 33 for uninjected and Bac5/Mmar injected

groups at 24 hpi, and n = 36 for all other groups at 6 hpi and 24 hpi), each data point in (C)

represents an individual fish (n = 15). Data were pooled from three independent experiments.

Error bars represent S.E.M. Mann-Whitney test for 96 hpi tnfa data and Kruskal-Wallis with

Dunn’s post-test for all other data. ���p<0.001. Statistical significance between M. marinum-
infected and uninfected groups is displayed relative to the Mock control group only for clarity.

The uninjected control group is shown for reference only; statistical significance to this group

is not shown for clarity.

(TIF)

S2 Fig. Delayed injection of Bac5 to the HBV of M. marinum-infected zebrafish at 72hpi or

90hpi does not affect cytokine transcription. Two days post-fertilisation Tg(mpeg-1:

mCherry) zebrafish embryos were injected into their HBV with approximately 180 CFU M.

marinum expressing GFP. Zebrafish embryos were live-imaged using a fluorescence stereomi-

croscope at 24 hpi, individual bacterial burdens calculated using the Icy FPC protocol, and

embryos were separated into four groups of equal infection burden and distribution. Zebrafish

were then injected with either Mock or 10 ng BAC at 72 hpi or 90 hpi. Fold changes of il-1β,

mmp-9, tnfa and cxcl-c1c mRNA levels were assessed at 96 hpi by qRT-PCR, normalised to 18S

and expressed relative to one control sample. Data pooled from two independent experiments

is shown (n = 19 for 90 hpi Mock injection group and n = 20 for all other groups). Each data

point represents an individual fish. Error bars represent S.E.M. Kruskal-Wallis with Dunn’s

post-test. �p<0.05, ��p,0.01.

(TIF)

S3 Fig. Endogenously expressed Bac5 confers antibacterial activity and enhances cytokine

and chemokine response to infection. A549 cells and A549 cell lines stably expressing Bac5
were tested for ability to restrict bacterial metabolic activity. Cell lysate (A) or culture superna-

tant (B) were incubated neat with different species of bacteria (MOI of 1) and metabolic
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activity was assessed after 24 h by Alamar Blue assay. To asses chemokine and cytokine

responses, cell lines were seeded at 1 x 105 in 96-well plate and challenged with different MOI

of bacteria, or 10–100 ng/ml TNFα over 24 hrs. Cell culture supernatant was used to perform

either MMP-9 (C) or CXCL8 (D) ELISA and normalised against the untreated negative con-

trol. � p<0.01 Student’s T-test.

(TIF)

S4 Fig. Delayed injection of Bac5 does not affect neutrophil recruitment in infected

embryos. Two days post-fertilisation casper Tg(LysC:GFP) zebrafish embryo groups were

injected into their HBV with approximately 220 CFU M. marinum expressing DsRed2. Zebra-

fish embryos were live-imaged using a fluorescence stereomicroscope at 24 hpi, individual bac-

terial burdens calculated using the Icy FPC protocol, and embryos were separated into four

groups of equal infection burden and distribution. Two groups were treated with Mock or 10

ng Bac5 at 48 hpi and two groups were treated with repeated doses of Mock or 10 ng Bac5 at

48 hpi and 96 hpi. Zebrafish embryos were live-imaged using a fluorescence stereomicroscope

and z-stack images of the HBV region acquired at 72 hpi and 120 hpi. (A-F) Representative

fluorescence images of fish from the same single experiment are shown at 72 hpi (A-B) and

120 hpi (C-F). Images of the neutrophil and bacterial fluorescence channels are shown sepa-

rated by white dashed line. Scale bar 100 μm. (G-H) Neutrophils in the HBV region were

quantified from fluorescence images of zebrafish embryos using Icy Spot Detector plugin at 72

hpi (G) and 120 hpi (H). Sample size (n): 111, 109 (G) and 47, 43, 45, 41 (H). Data pooled

from three independent experiments is shown. Error bars represent S.E.M. Unpaired t-test

(G), one-way ANOVA with Bonferroni’s post-test (H) showed no significant differences.

(TIF)

S5 Fig. Delayed injection of Bac5 does not affect bacterial burden or survival of infected

embryos. Two days post-fertilisation casper Tg(LysC:GFP) zebrafish embryos were injected

into their HBV with approximately 220 CFU M. marinum expressing DsRed2. Zebrafish

embryos were live-imaged using a fluorescence stereomicroscope at 24 hpi, individual bacte-

rial burdens calculated using the Icy FPC protocol, and embryos were separated into four

groups of equal infection burden and distribution. Two groups were treated with mock or 10

ng Bac5 at 48 hpi and two groups were treated with repeated doses of mock or 10 ng Bac5 at

48 hpi and 96 hpi. Zebrafish embryos were live-imaged using a fluorescence stereomicroscope

and z-stack images of the HBV region acquired at 72 hpi and 120 hpi (A). Survival of all zebra-

fish embryo treatment groups was recorded, including dosed with single injection of Bac5 at

48 hpi and with second injection at 96 hpi (B). Data pooled from three independent experi-

ments is shown. Error bars represent S.E.M. Sample size, 111 and 109 (72 hpi) and 47, 43, 45,

41 (120 hpi). Kruskal-Wallis with Dunn’s post-test (A) and survival analysis (B) showed no

significant differences.

(TIF)

Acknowledgments

This research received no specific grant from any funding agency in the public, commercial,

or not-for-profit sectors. The authors declare that they have no competing interests.

Author Contributions

Conceptualization: L. Bugeon, S. Mostowy, S. J. Willcocks.

Data curation: R. L. Price, C. Makendi, S. J. Willcocks.

In vitro and in vivo properties of the bovine antimicrobial peptide, Bactenecin 5

PLOS ONE | https://doi.org/10.1371/journal.pone.0210508 January 9, 2019 15 / 20

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0210508.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0210508.s005
https://doi.org/10.1371/journal.pone.0210508


Formal analysis: S. J. Willcocks.

Funding acquisition: B. W. Wren, H. D. Williams.

Investigation: R. L. Price, C. Makendi, S. J. Willcocks.

Methodology: L. Bugeon, S. Mostowy, H. D. Williams, S. J. Willcocks.

Supervision: B. W. Wren, H. D. Williams, S. J. Willcocks.

Writing – original draft: S. J. Willcocks.

Writing – review & editing: R. L. Price, L. Bugeon, S. Mostowy, B. W. Wren, H. D. Williams.

References
1. Radek K. and Gallo R., Antimicrobial peptides: natural effectors of the innate immune system. Semin

Immunopathol, 2007. 29(1): p. 27–43. PMID: 17621952

2. Mansour S.C., de la Fuente-Nunez C., and Hancock R.E., Peptide IDR-1018: modulating the immune

system and targeting bacterial biofilms to treat antibiotic-resistant bacterial infections. J Pept Sci, 2015.

21(5): p. 323–9. https://doi.org/10.1002/psc.2708 PMID: 25358509

3. Rivas-Santiago B., et al., Ability of innate defence regulator peptides IDR-1002, IDR-HH2 and IDR-

1018 to protect against Mycobacterium tuberculosis infections in animal models. PLoS One, 2013. 8

(3): p. e59119. https://doi.org/10.1371/journal.pone.0059119 PMID: 23555622

4. Steinstraesser L., et al., Innate defense regulator peptide 1018 in wound healing and wound infection.

PLoS One, 2012. 7(8): p. e39373. https://doi.org/10.1371/journal.pone.0039373 PMID: 22879874

5. Niyonsaba F., et al., The innate defense regulator peptides IDR-HH2, IDR-1002, and IDR-1018 modu-

late human neutrophil functions. J Leukoc Biol, 2013. 94(1): p. 159–70. https://doi.org/10.1189/jlb.

1012497 PMID: 23616580

6. Bednarska N.G., Wren B.W., and Willcocks S.J., The importance of the glycosylation of antimicrobial

peptides: natural and synthetic approaches. Drug Discov Today, 2017.

7. Mishra B., et al., Host defense antimicrobial peptides as antibiotics: design and application strategies.

Curr Opin Chem Biol, 2017. 38: p. 87–96. https://doi.org/10.1016/j.cbpa.2017.03.014 PMID: 28399505

8. Vandamme D., et al., A comprehensive summary of LL-37, the factotum human cathelicidin peptide.

Cell Immunol, 2012. 280(1): p. 22–35. https://doi.org/10.1016/j.cellimm.2012.11.009 PMID: 23246832

9. Koczulla R., et al., An angiogenic role for the human peptide antibiotic LL-37/hCAP-18. J Clin Invest,

2003. 111(11): p. 1665–72. https://doi.org/10.1172/JCI17545 PMID: 12782669

10. Yang D., et al., Human neutrophil defensins selectively chemoattract naive T and immature dendritic

cells. J Leukoc Biol, 2000. 68(1): p. 9–14. PMID: 10914484

11. Soruri A., et al., beta-Defensins chemoattract macrophages and mast cells but not lymphocytes and

dendritic cells: CCR6 is not involved. Eur J Immunol, 2007. 37(9): p. 2474–86. https://doi.org/10.1002/

eji.200737292 PMID: 17705135

12. Brandenburg M., Albrecht, Varoga, Pufe, Antimicrobial peptides: multifunctional drugs for different

applications. Polymers, 2012. 4: p. 539–560.

13. Zanetti M., et al., Stimulus-induced maturation of probactenecins, precursors of neutrophil antimicrobial

polypeptides. J Immunol, 1991. 146(12): p. 4295–300. PMID: 2040802

14. Young-Speirs M., et al., Host defense cathelicidins in cattle: types, production, bioactive functions and

potential therapeutic and diagnostic applications. Int J Antimicrob Agents, 2018. 51(6): p. 813–821.

https://doi.org/10.1016/j.ijantimicag.2018.02.006 PMID: 29476808

15. Wu M. and Hancock R.E., Interaction of the cyclic antimicrobial cationic peptide bactenecin with the

outer and cytoplasmic membrane. J Biol Chem, 1999. 274(1): p. 29–35. PMID: 9867806

16. Tomasinsig L., et al., Comparative activity and mechanism of action of three types of bovine antimicro-

bial peptides against pathogenic Prototheca spp. J Pept Sci, 2012. 18(2): p. 105–13. https://doi.org/10.

1002/psc.1422 PMID: 22083804

17. Paulsen V.S., et al., Inner membrane proteins YgdD and SbmA are required for the complete suscepti-

bility of E. coli to the proline-rich antimicrobial peptide arasin 1(1–25). Microbiology, 2016.

18. Tokunaga Y., et al., Antibacterial activity of bactenecin 5 fragments and their interaction with phospho-

lipid membranes. J Pept Sci, 2001. 7(6): p. 297–304. https://doi.org/10.1002/psc.317 PMID: 11461043

In vitro and in vivo properties of the bovine antimicrobial peptide, Bactenecin 5

PLOS ONE | https://doi.org/10.1371/journal.pone.0210508 January 9, 2019 16 / 20

http://www.ncbi.nlm.nih.gov/pubmed/17621952
https://doi.org/10.1002/psc.2708
http://www.ncbi.nlm.nih.gov/pubmed/25358509
https://doi.org/10.1371/journal.pone.0059119
http://www.ncbi.nlm.nih.gov/pubmed/23555622
https://doi.org/10.1371/journal.pone.0039373
http://www.ncbi.nlm.nih.gov/pubmed/22879874
https://doi.org/10.1189/jlb.1012497
https://doi.org/10.1189/jlb.1012497
http://www.ncbi.nlm.nih.gov/pubmed/23616580
https://doi.org/10.1016/j.cbpa.2017.03.014
http://www.ncbi.nlm.nih.gov/pubmed/28399505
https://doi.org/10.1016/j.cellimm.2012.11.009
http://www.ncbi.nlm.nih.gov/pubmed/23246832
https://doi.org/10.1172/JCI17545
http://www.ncbi.nlm.nih.gov/pubmed/12782669
http://www.ncbi.nlm.nih.gov/pubmed/10914484
https://doi.org/10.1002/eji.200737292
https://doi.org/10.1002/eji.200737292
http://www.ncbi.nlm.nih.gov/pubmed/17705135
http://www.ncbi.nlm.nih.gov/pubmed/2040802
https://doi.org/10.1016/j.ijantimicag.2018.02.006
http://www.ncbi.nlm.nih.gov/pubmed/29476808
http://www.ncbi.nlm.nih.gov/pubmed/9867806
https://doi.org/10.1002/psc.1422
https://doi.org/10.1002/psc.1422
http://www.ncbi.nlm.nih.gov/pubmed/22083804
https://doi.org/10.1002/psc.317
http://www.ncbi.nlm.nih.gov/pubmed/11461043
https://doi.org/10.1371/journal.pone.0210508


19. Freer E., et al., The outer membrane of Brucella ovis shows increased permeability to hydrophobic

probes and is more susceptible to cationic peptides than are the outer membranes of mutant rough Bru-

cella abortus strains. Infect Immun, 1999. 67(11): p. 6181–6. PMID: 10531286

20. Madhongsa K., et al., Antimicrobial action of the cyclic peptide bactenecin on Burkholderia pseudomal-

lei correlates with efficient membrane permeabilization. PLoS Negl Trop Dis, 2013. 7(6): p. e2267.

https://doi.org/10.1371/journal.pntd.0002267 PMID: 23785532

21. Gennaro R., Skerlavaj B., and Romeo D., Purification, composition, and activity of two bactenecins,

antibacterial peptides of bovine neutrophils. Infect Immun, 1989. 57(10): p. 3142–6. PMID: 2777377

22. Raj P.A., Marcus E., and Edgerton M., Delineation of an active fragment and poly(L-proline) II confor-

mation for candidacidal activity of bactenecin 5. Biochemistry, 1996. 35(14): p. 4314–25. https://doi.

org/10.1021/bi951681r PMID: 8605180

23. Zanetti M., et al., Bactenecins, defense polypeptides of bovine neutrophils, are generated from precur-

sor molecules stored in the large granules. J Cell Biol, 1990. 111(4): p. 1363–71. PMID: 2211815

24. Mudaliar M., et al., Mastitomics, the integrated omics of bovine milk in an experimental model of Strep-

tococcus uberis mastitis: 2. Label-free relative quantitative proteomics. Mol Biosyst, 2016. 12(9): p.

2748–61. https://doi.org/10.1039/c6mb00290k PMID: 27412694

25. Jarczak J, K.E., Ostrowska M, Lisowski P, Strzalkowska N, Jozwik A, Krzyzewski J, Zwierzchowski L,

Sloniewska D, Bagnicka E, The effects of diet supplementation with yeast on the expression of selected

immune system genes in the milk somatic cells of dairy goats. Animal Science Papers and Reports

2014. 32(1): p. 41–53.

26. Tomasinsig L., et al., Broad-spectrum activity against bacterial mastitis pathogens and activation of

mammary epithelial cells support a protective role of neutrophil cathelicidins in bovine mastitis. Infect

Immun, 2010. 78(4): p. 1781–8. https://doi.org/10.1128/IAI.01090-09 PMID: 20100862

27. Verbanac D., Zanetti M., and Romeo D., Chemotactic and protease-inhibiting activities of antibiotic pep-

tide precursors. FEBS Lett, 1993. 317(3): p. 255–8. PMID: 8425613

28. Scocchi M., et al., Proteolytic cleavage by neutrophil elastase converts inactive storage proforms to

antibacterial bactenecins. Eur J Biochem, 1992. 209(2): p. 589–95. PMID: 1425666

29. Tomasinsig L., et al., Inducible expression of an antimicrobial peptide of the innate immunity in polymor-

phonuclear leukocytes. J Leukoc Biol, 2002. 72(5): p. 1003–10. PMID: 12429723

30. A.M., K., Peptide Immunotherapy: The Use of Bovine Colostrum Proline-Rich Polypeptides in Cytokine

Modulation for the Relief of Allergic Symptoms. The Journal of Allergy and Clinical Immunology, 2007.

119(1): p. S260.

31. Lyadova I.V. and Panteleev A.V., Th1 and Th17 Cells in Tuberculosis: Protection, Pathology, and Bio-

markers. Mediators Inflamm, 2015. 2015: p. 854507. https://doi.org/10.1155/2015/854507 PMID:

26640327

32. Suzuki Y., et al., Introduction of human beta-defensin-3 into cultured human keratinocytes and fibro-

blasts by infection of a recombinant adenovirus vector. Burns, 2011. 37(1): p. 109–16. https://doi.org/

10.1016/j.burns.2010.08.004 PMID: 20884123

33. Yu J., et al., Host defense peptide LL-37, in synergy with inflammatory mediator IL-1beta, augments

immune responses by multiple pathways. J Immunol, 2007. 179(11): p. 7684–91. PMID: 18025214

34. Schaal J.B., et al., Rhesus macaque theta defensins suppress inflammatory cytokines and enhance

survival in mouse models of bacteremic sepsis. PLoS One, 2012. 7(12): p. e51337. https://doi.org/10.

1371/journal.pone.0051337 PMID: 23236475

35. Zughaier S.M., Shafer W.M., and Stephens D.S., Antimicrobial peptides and endotoxin inhibit cytokine

and nitric oxide release but amplify respiratory burst response in human and murine macrophages. Cell

Microbiol, 2005. 7(9): p. 1251–62. https://doi.org/10.1111/j.1462-5822.2005.00549.x PMID: 16098213

36. Scott M.G., et al., An anti-infective peptide that selectively modulates the innate immune response. Nat

Biotechnol, 2007. 25(4): p. 465–72. https://doi.org/10.1038/nbt1288 PMID: 17384586

37. Brunetti J., et al., Immunomodulatory and Anti-inflammatory Activity in Vitro and in Vivo of a Novel Anti-

microbial Candidate. J Biol Chem, 2016. 291(49): p. 25742–25748. https://doi.org/10.1074/jbc.M116.

750257 PMID: 27758868

38. van Dijk A., et al., Immunomodulatory and Anti-Inflammatory Activities of Chicken Cathelicidin-2

Derived Peptides. PLoS One, 2016. 11(2): p. e0147919. https://doi.org/10.1371/journal.pone.0147919

PMID: 26848845

39. Freitas C.G., et al., An Immunomodulatory Peptide Confers Protection in an Experimental Candidemia

Murine Model. Antimicrob Agents Chemother, 2017. 61(8).

40. Swaim L.E., et al., Mycobacterium marinum infection of adult zebrafish causes caseating granuloma-

tous tuberculosis and is moderated by adaptive immunity. Infect Immun, 2006. 74(11): p. 6108–17.

https://doi.org/10.1128/IAI.00887-06 PMID: 17057088

In vitro and in vivo properties of the bovine antimicrobial peptide, Bactenecin 5

PLOS ONE | https://doi.org/10.1371/journal.pone.0210508 January 9, 2019 17 / 20

http://www.ncbi.nlm.nih.gov/pubmed/10531286
https://doi.org/10.1371/journal.pntd.0002267
http://www.ncbi.nlm.nih.gov/pubmed/23785532
http://www.ncbi.nlm.nih.gov/pubmed/2777377
https://doi.org/10.1021/bi951681r
https://doi.org/10.1021/bi951681r
http://www.ncbi.nlm.nih.gov/pubmed/8605180
http://www.ncbi.nlm.nih.gov/pubmed/2211815
https://doi.org/10.1039/c6mb00290k
http://www.ncbi.nlm.nih.gov/pubmed/27412694
https://doi.org/10.1128/IAI.01090-09
http://www.ncbi.nlm.nih.gov/pubmed/20100862
http://www.ncbi.nlm.nih.gov/pubmed/8425613
http://www.ncbi.nlm.nih.gov/pubmed/1425666
http://www.ncbi.nlm.nih.gov/pubmed/12429723
https://doi.org/10.1155/2015/854507
http://www.ncbi.nlm.nih.gov/pubmed/26640327
https://doi.org/10.1016/j.burns.2010.08.004
https://doi.org/10.1016/j.burns.2010.08.004
http://www.ncbi.nlm.nih.gov/pubmed/20884123
http://www.ncbi.nlm.nih.gov/pubmed/18025214
https://doi.org/10.1371/journal.pone.0051337
https://doi.org/10.1371/journal.pone.0051337
http://www.ncbi.nlm.nih.gov/pubmed/23236475
https://doi.org/10.1111/j.1462-5822.2005.00549.x
http://www.ncbi.nlm.nih.gov/pubmed/16098213
https://doi.org/10.1038/nbt1288
http://www.ncbi.nlm.nih.gov/pubmed/17384586
https://doi.org/10.1074/jbc.M116.750257
https://doi.org/10.1074/jbc.M116.750257
http://www.ncbi.nlm.nih.gov/pubmed/27758868
https://doi.org/10.1371/journal.pone.0147919
http://www.ncbi.nlm.nih.gov/pubmed/26848845
https://doi.org/10.1128/IAI.00887-06
http://www.ncbi.nlm.nih.gov/pubmed/17057088
https://doi.org/10.1371/journal.pone.0210508


41. Prouty M.G., et al., Zebrafish-Mycobacterium marinum model for mycobacterial pathogenesis. FEMS

Microbiol Lett, 2003. 225(2): p. 177–82. https://doi.org/10.1016/S0378-1097(03)00446-4 PMID:

12951238

42. Cronan M.R. and Tobin D.M., Fit for consumption: zebrafish as a model for tuberculosis. Dis Model

Mech, 2014. 7(7): p. 777–84. https://doi.org/10.1242/dmm.016089 PMID: 24973748

43. Trede N.S., et al., The use of zebrafish to understand immunity. Immunity, 2004. 20(4): p. 367–79.

PMID: 15084267

44. Hernandez-Pando R., et al., Correlation between the kinetics of Th1, Th2 cells and pathology in a

murine model of experimental pulmonary tuberculosis. Immunology, 1996. 89(1): p. 26–33. PMID:

8911136

45. Marin N.D., et al., Reduced frequency of memory T cells and increased Th17 responses in patients with

active tuberculosis. Clin Vaccine Immunol, 2012. 19(10): p. 1667–76. https://doi.org/10.1128/CVI.

00390-12 PMID: 22914361

46. Yamada H., et al., Protective role of interleukin-1 in mycobacterial infection in IL-1 alpha/beta double-

knockout mice. Lab Invest, 2000. 80(5): p. 759–67. PMID: 10830786

47. Bourigault M.L., et al., Relative contribution of IL-1alpha, IL-1beta and TNF to the host response to

Mycobacterium tuberculosis and attenuated M. bovis BCG. Immun Inflamm Dis, 2013. 1(1): p. 47–62.

https://doi.org/10.1002/iid3.9 PMID: 25400917

48. Yang D., et al., Pro-inflammatory cytokines increase reactive oxygen species through mitochondria and

NADPH oxidase in cultured RPE cells. Exp Eye Res, 2007. 85(4): p. 462–72. https://doi.org/10.1016/j.

exer.2007.06.013 PMID: 17765224

49. Juffermans N.P., et al., Interleukin-1 signaling is essential for host defense during murine pulmonary

tuberculosis. J Infect Dis, 2000. 182(3): p. 902–8. https://doi.org/10.1086/315771 PMID: 10950787

50. Fremond C.M., et al., IL-1 receptor-mediated signal is an essential component of MyD88-dependent

innate response to Mycobacterium tuberculosis infection. J Immunol, 2007. 179(2): p. 1178–89. PMID:

17617611

51. Mayer-Barber K.D., et al., Caspase-1 independent IL-1beta production is critical for host resistance to

mycobacterium tuberculosis and does not require TLR signaling in vivo. J Immunol, 2010. 184(7): p.

3326–30. https://doi.org/10.4049/jimmunol.0904189 PMID: 20200276

52. Sugawara I., et al., Role of interleukin (IL)-1 type 1 receptor in mycobacterial infection. Microbiol Immu-

nol, 2001. 45(11): p. 743–50. PMID: 11791667

53. Bethea J.R., et al., Interleukin-1 beta induction of tumor necrosis factor-alpha gene expression in

human astroglioma cells. J Neuroimmunol, 1992. 36(2–3): p. 179–91. PMID: 1732280

54. Ledesma E., et al., Interleukin-1 beta (IL-1beta) induces tumor necrosis factor alpha (TNF-alpha)

expression on mouse myeloid multipotent cell line 32D cl3 and inhibits their proliferation. Cytokine,

2004. 26(2): p. 66–72. https://doi.org/10.1016/j.cyto.2003.12.009 PMID: 15050606

55. Ikejima T., et al., Interleukin-1 induces tumor necrosis factor (TNF) in human peripheral blood mononu-

clear cells in vitro and a circulating TNF-like activity in rabbits. J Infect Dis, 1990. 162(1): p. 215–23.

PMID: 2113076

56. Schnare M., et al., Recognition of CpG DNA is mediated by signaling pathways dependent on the adap-

tor protein MyD88. Curr Biol, 2000. 10(18): p. 1139–42. PMID: 10996797

57. Zhang X. and Mosser D.M., Macrophage activation by endogenous danger signals. J Pathol, 2008.

214(2): p. 161–78. https://doi.org/10.1002/path.2284 PMID: 18161744

58. Mootoo A., et al., TNF-alpha in tuberculosis: a cytokine with a split personality. Inflamm Allergy Drug

Targets, 2009. 8(1): p. 53–62. PMID: 19275693

59. Roca F.J. and Ramakrishnan L., TNF dually mediates resistance and susceptibility to mycobacteria via

mitochondrial reactive oxygen species. Cell, 2013. 153(3): p. 521–34. https://doi.org/10.1016/j.cell.

2013.03.022 PMID: 23582643

60. Castro-Garza J., et al., Dual mechanism for Mycobacterium tuberculosis cytotoxicity on lung epithelial

cells. Can J Microbiol, 2012. 58(7): p. 909–16. https://doi.org/10.1139/w2012-067 PMID: 22720783

61. Taylor J.L., et al., Role for matrix metalloproteinase 9 in granuloma formation during pulmonary Myco-

bacterium tuberculosis infection. Infect Immun, 2006. 74(11): p. 6135–44. https://doi.org/10.1128/IAI.

02048-05 PMID: 16982845

62. Volkman H.E., et al., Tuberculous granuloma induction via interaction of a bacterial secreted protein

with host epithelium. Science, 2010. 327(5964): p. 466–9. https://doi.org/10.1126/science.1179663

PMID: 20007864

In vitro and in vivo properties of the bovine antimicrobial peptide, Bactenecin 5

PLOS ONE | https://doi.org/10.1371/journal.pone.0210508 January 9, 2019 18 / 20

https://doi.org/10.1016/S0378-1097(03)00446-4
http://www.ncbi.nlm.nih.gov/pubmed/12951238
https://doi.org/10.1242/dmm.016089
http://www.ncbi.nlm.nih.gov/pubmed/24973748
http://www.ncbi.nlm.nih.gov/pubmed/15084267
http://www.ncbi.nlm.nih.gov/pubmed/8911136
https://doi.org/10.1128/CVI.00390-12
https://doi.org/10.1128/CVI.00390-12
http://www.ncbi.nlm.nih.gov/pubmed/22914361
http://www.ncbi.nlm.nih.gov/pubmed/10830786
https://doi.org/10.1002/iid3.9
http://www.ncbi.nlm.nih.gov/pubmed/25400917
https://doi.org/10.1016/j.exer.2007.06.013
https://doi.org/10.1016/j.exer.2007.06.013
http://www.ncbi.nlm.nih.gov/pubmed/17765224
https://doi.org/10.1086/315771
http://www.ncbi.nlm.nih.gov/pubmed/10950787
http://www.ncbi.nlm.nih.gov/pubmed/17617611
https://doi.org/10.4049/jimmunol.0904189
http://www.ncbi.nlm.nih.gov/pubmed/20200276
http://www.ncbi.nlm.nih.gov/pubmed/11791667
http://www.ncbi.nlm.nih.gov/pubmed/1732280
https://doi.org/10.1016/j.cyto.2003.12.009
http://www.ncbi.nlm.nih.gov/pubmed/15050606
http://www.ncbi.nlm.nih.gov/pubmed/2113076
http://www.ncbi.nlm.nih.gov/pubmed/10996797
https://doi.org/10.1002/path.2284
http://www.ncbi.nlm.nih.gov/pubmed/18161744
http://www.ncbi.nlm.nih.gov/pubmed/19275693
https://doi.org/10.1016/j.cell.2013.03.022
https://doi.org/10.1016/j.cell.2013.03.022
http://www.ncbi.nlm.nih.gov/pubmed/23582643
https://doi.org/10.1139/w2012-067
http://www.ncbi.nlm.nih.gov/pubmed/22720783
https://doi.org/10.1128/IAI.02048-05
https://doi.org/10.1128/IAI.02048-05
http://www.ncbi.nlm.nih.gov/pubmed/16982845
https://doi.org/10.1126/science.1179663
http://www.ncbi.nlm.nih.gov/pubmed/20007864
https://doi.org/10.1371/journal.pone.0210508


63. Coin I., Beyermann M., and Bienert M., Solid-phase peptide synthesis: from standard procedures to the

synthesis of difficult sequences. Nat Protoc, 2007. 2(12): p. 3247–56. https://doi.org/10.1038/nprot.

2007.454 PMID: 18079725

64. Choi H.G., et al., Mycobacterium tuberculosis Rv2882c Protein Induces Activation of Macrophages

through TLR4 and Exhibits Vaccine Potential. PLoS One, 2016. 11(10): p. e0164458. https://doi.org/

10.1371/journal.pone.0164458 PMID: 27711141

65. Egen J.G., et al., Macrophage and T cell dynamics during the development and disintegration of myco-

bacterial granulomas. Immunity, 2008. 28(2): p. 271–84. https://doi.org/10.1016/j.immuni.2007.12.010

PMID: 18261937

66. Corleis B., et al., Escape of Mycobacterium tuberculosis from oxidative killing by neutrophils. Cell Micro-

biol, 2012. 14(7): p. 1109–21. https://doi.org/10.1111/j.1462-5822.2012.01783.x PMID: 22405091

67. Gallego C., et al., Toll-like receptors participate in macrophage activation and intracellular control of

Leishmania (Viannia) panamensis. Infect Immun, 2011. 79(7): p. 2871–9. https://doi.org/10.1128/IAI.

01388-10 PMID: 21518783

68. Salim T., Sershen C.L., and May E.E., Investigating the Role of TNF-alpha and IFN-gamma Activation

on the Dynamics of iNOS Gene Expression in LPS Stimulated Macrophages. PLoS One, 2016. 11(6):

p. e0153289. https://doi.org/10.1371/journal.pone.0153289 PMID: 27276061

69. Janeway, Immunobiology: The Immune System in Health and Disease. 5th Edition. 2001.

70. Cambier C.J., et al., Mycobacteria manipulate macrophage recruitment through coordinated use of

membrane lipids. Nature, 2014. 505(7482): p. 218–22. https://doi.org/10.1038/nature12799 PMID:

24336213

71. Herbst S., Schaible U.E., and Schneider B.E., Interferon gamma activated macrophages kill mycobac-

teria by nitric oxide induced apoptosis. PLoS One, 2011. 6(5): p. e19105. https://doi.org/10.1371/

journal.pone.0019105 PMID: 21559306

72. Clay H., et al., Dichotomous role of the macrophage in early Mycobacterium marinum infection of the

zebrafish. Cell Host Microbe, 2007. 2(1): p. 29–39. https://doi.org/10.1016/j.chom.2007.06.004 PMID:

18005715

73. Clay H., Volkman H.E., and Ramakrishnan L., Tumor necrosis factor signaling mediates resistance to

mycobacteria by inhibiting bacterial growth and macrophage death. Immunity, 2008. 29(2): p. 283–94.

https://doi.org/10.1016/j.immuni.2008.06.011 PMID: 18691913

74. van der Vaart M., Spaink H.P., and Meijer A.H., Pathogen recognition and activation of the innate

immune response in zebrafish. Adv Hematol, 2012. 2012: p. 159807. https://doi.org/10.1155/2012/

159807 PMID: 22811714

75. Roca F.J., et al., Evolution of the inflammatory response in vertebrates: fish TNF-alpha is a powerful

activator of endothelial cells but hardly activates phagocytes. J Immunol, 2008. 181(7): p. 5071–81.

PMID: 18802111

76. Cheah F.S., Jabs E.W., and Chong S.S., Genomic, cDNA, and embryonic expression analysis of zebra-

fish transforming growth factor beta 3 (tgfbeta3). Dev Dyn, 2005. 232(4): p. 1021–30. https://doi.org/10.

1002/dvdy.20282 PMID: 15739231

77. Bogdan C., et al., Contrasting mechanisms for suppression of macrophage cytokine release by trans-

forming growth factor-beta and interleukin-10. J Biol Chem, 1992. 267(32): p. 23301–8. PMID:

1429677

78. Vaday G.G., et al., Transforming growth factor-beta suppresses tumor necrosis factor alpha-induced

matrix metalloproteinase-9 expression in monocytes. J Leukoc Biol, 2001. 69(4): p. 613–21. PMID:

11310848

79. Sorensen O., et al., An ELISA for hCAP-18, the cathelicidin present in human neutrophils and plasma. J

Immunol Methods, 1997. 206(1–2): p. 53–9. PMID: 9328568

80. Cosma C.L., Humbert O., and Ramakrishnan L., Superinfecting mycobacteria home to established

tuberculous granulomas. Nat Immunol, 2004. 5(8): p. 828–35. https://doi.org/10.1038/ni1091 PMID:

15220915

81. Cosma C.L., et al., Mycobacterium marinum Erp is a virulence determinant required for cell wall integrity

and intracellular survival. Infection and Immunity, 2006. 74(6): p. 3125–3133. https://doi.org/10.1128/

IAI.02061-05 PMID: 16714540

82. Ellett F., et al., mpeg1 promoter transgenes direct macrophage-lineage expression in zebrafish. Blood,

2011. 117(4): p. E49–E56. https://doi.org/10.1182/blood-2010-10-314120 PMID: 21084707

83. Mathias J.R., et al., Resolution of inflammation by retrograde chemotaxis of neutrophils in transgenic

zebrafish. J Leukoc Biol, 2006. 80(6): p. 1281–8. https://doi.org/10.1189/jlb.0506346 PMID: 16963624

84. Renshaw S.A., et al., A transgenic zebrafish model of neutrophilic inflammation. Blood, 2006. 108(13):

p. 3976–8. https://doi.org/10.1182/blood-2006-05-024075 PMID: 16926288

In vitro and in vivo properties of the bovine antimicrobial peptide, Bactenecin 5

PLOS ONE | https://doi.org/10.1371/journal.pone.0210508 January 9, 2019 19 / 20

https://doi.org/10.1038/nprot.2007.454
https://doi.org/10.1038/nprot.2007.454
http://www.ncbi.nlm.nih.gov/pubmed/18079725
https://doi.org/10.1371/journal.pone.0164458
https://doi.org/10.1371/journal.pone.0164458
http://www.ncbi.nlm.nih.gov/pubmed/27711141
https://doi.org/10.1016/j.immuni.2007.12.010
http://www.ncbi.nlm.nih.gov/pubmed/18261937
https://doi.org/10.1111/j.1462-5822.2012.01783.x
http://www.ncbi.nlm.nih.gov/pubmed/22405091
https://doi.org/10.1128/IAI.01388-10
https://doi.org/10.1128/IAI.01388-10
http://www.ncbi.nlm.nih.gov/pubmed/21518783
https://doi.org/10.1371/journal.pone.0153289
http://www.ncbi.nlm.nih.gov/pubmed/27276061
https://doi.org/10.1038/nature12799
http://www.ncbi.nlm.nih.gov/pubmed/24336213
https://doi.org/10.1371/journal.pone.0019105
https://doi.org/10.1371/journal.pone.0019105
http://www.ncbi.nlm.nih.gov/pubmed/21559306
https://doi.org/10.1016/j.chom.2007.06.004
http://www.ncbi.nlm.nih.gov/pubmed/18005715
https://doi.org/10.1016/j.immuni.2008.06.011
http://www.ncbi.nlm.nih.gov/pubmed/18691913
https://doi.org/10.1155/2012/159807
https://doi.org/10.1155/2012/159807
http://www.ncbi.nlm.nih.gov/pubmed/22811714
http://www.ncbi.nlm.nih.gov/pubmed/18802111
https://doi.org/10.1002/dvdy.20282
https://doi.org/10.1002/dvdy.20282
http://www.ncbi.nlm.nih.gov/pubmed/15739231
http://www.ncbi.nlm.nih.gov/pubmed/1429677
http://www.ncbi.nlm.nih.gov/pubmed/11310848
http://www.ncbi.nlm.nih.gov/pubmed/9328568
https://doi.org/10.1038/ni1091
http://www.ncbi.nlm.nih.gov/pubmed/15220915
https://doi.org/10.1128/IAI.02061-05
https://doi.org/10.1128/IAI.02061-05
http://www.ncbi.nlm.nih.gov/pubmed/16714540
https://doi.org/10.1182/blood-2010-10-314120
http://www.ncbi.nlm.nih.gov/pubmed/21084707
https://doi.org/10.1189/jlb.0506346
http://www.ncbi.nlm.nih.gov/pubmed/16963624
https://doi.org/10.1182/blood-2006-05-024075
http://www.ncbi.nlm.nih.gov/pubmed/16926288
https://doi.org/10.1371/journal.pone.0210508


85. White R.M., et al., Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem

Cell, 2008. 2(2): p. 183–9. https://doi.org/10.1016/j.stem.2007.11.002 PMID: 18371439

86. Hall C., et al., The zebrafish lysozyme C promoter drives myeloid-specific expression in transgenic fish.

BMC Dev Biol, 2007. 7: p. 42. https://doi.org/10.1186/1471-213X-7-42 PMID: 17477879

87. Westerfield M., The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish (Danio Rerio). 2007:

University of Oregon Press.

88. Olivo-Marin J., Extraction of spots in biological images using multiscale products. Pattern Recognition,

2002. 35: p. 1989–1996.

In vitro and in vivo properties of the bovine antimicrobial peptide, Bactenecin 5

PLOS ONE | https://doi.org/10.1371/journal.pone.0210508 January 9, 2019 20 / 20

https://doi.org/10.1016/j.stem.2007.11.002
http://www.ncbi.nlm.nih.gov/pubmed/18371439
https://doi.org/10.1186/1471-213X-7-42
http://www.ncbi.nlm.nih.gov/pubmed/17477879
https://doi.org/10.1371/journal.pone.0210508

