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Abstract 

With breast cancer being a highly prevalent complex disease that affects many women 

worldwide, research over the years has focused on establishing underlying breast 

cancer risk factors. Understanding how, and why the disease develops will potentially 

reduce the number of women developing breast cancer, or increase the number of 

women being diagnosed at an earlier stage of development. The disease has been 

shown to be a highly polygenic trait, so in order to learn more about the disease, this 

thesis focuses on the polygenic basis of breast cancer. Two breast cancer GWAS, the 

UK2 and BBCS, and the COGS were used to conduct the analyses presented in this 

thesis.  

Using current chip heritability estimation methods, it was estimated that just under half 

of the genetic variation explained on the liability scale could be explained by genotyped 

SNPs. Common SNPs (MAF > 0.1) were shown to explain a substantial proportion of 

this variation, and the variance explained by each chromosome was shown to be 

linearly related to chromosome length, which indicated that variation is spread evenly 

across the genome. With BMI and age at menarche shown to be breast cancer risk 

factors, it was examined whether a shared polygenic basis exists between breast 

cancer and BMI, and whether there was evidence to suggest that breast cancer 

polygenic scores interact with either BMI, age at menarche or individual SNPs, to have 

an effect on breast cancer risk. With many susceptibility loci mapping to non-protein-

coding regions of the genome, it was also tested whether individual genome-wide 

significant loci interact with other regions of the genome to influence breast cancer risk.  

These results give further insight into the polygenic architecture of breast cancer, and 

provide further evidence that a large number of genetic variants explain much of the 

genetic variation in breast cancer. 
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Chapter 1 Introduction  

In the United Kingdom, over 50,000 women a year are diagnosed with breast cancer, 

making it the most common type of cancer amongst British women (1). The disease is 

also common worldwide, with the number of women diagnosed with breast cancer ever 

increasing. With many women developing the disease, the importance of research into 

the underlying risk factors is evident. However, discovering all factors associated with 

breast cancer risk has not been an easy task as both environmental and genetic 

factors influence disease risk, making it a complex disease. Not only is breast cancer a 

complex disease, it is also a polygenic trait whereby many genetic mutations affect 

disease risk. With breast cancer having a polygenic basis, genetic epidemiology has 

been used to gain a better understanding of how environmental factors and genes 

influence disease risk in the human population (2). Improving our knowledge of the 

genetic risk factors and how they interact with the environment, will enable the 

development of individual breast cancer risk prediction, and risk-stratified screening to 

be implemented in the future. Thus, improving the chances of early diagnosis for breast 

cancer, which in turn could decrease the number of deaths from the disease. 

Understanding the aetiology of breast cancer could help to develop novel treatments, 

as well as improve the effectiveness of existing treatments, as it becomes possible to 

assign treatments based on a persons’ DNA.  

Over the years, various studies and statistical methods have been developed and used 

to identify breast cancer susceptibility genes and alleles linked to breast cancer risk. 

Approaches used have changed due to both technological advances and study costs. 

The price of genotyping over the years has been decreasing, meaning that a larger 

number of individuals can be genotyped today, then they could when the first GWAS 

was conducted. The first section of this chapter gives a brief introduction of the genetic 

studies that have been used to make such breast cancer discoveries. The remainder of 
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the chapter highlights the forms of bias that can affect results, and what can be done to 

reduce the risk of such bias occurring.  
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1.1 Overview of the genetic epidemiology of breast cancer  

With developments in both technology and statistical techniques over time, we have 

seen advances in the field of genetic epidemiology in regard to breast cancer. In this 

section, a brief explanation of the main study types that have been used to help shape 

our understanding of this disease in women of European descent, will be given. The 

choice of study design is dependent on the aim of the study. Earlier studies tended to 

focus on establishing whether a phenotype was familial, and if this was found, 

researchers then quantified how much variation in the phenotype could be explained by 

genetic variation. Research then began trying to explain some of the genetic variation 

by investigating where in the genome risk variants were located, and which variants 

were risk variants.  

1.1.1 Familial aggregation 

The aim of a familial aggregation study is to establish whether a specific disease 

clusters in families which, if shown, could indicate that inherited genetic factors 

influence disease risk (3, 4). In order to examine for the presence of familial 

aggregation, the family histories for cases and controls are compared (5). If the disease 

is shown to be more prominent amongst the relatives of the case subjects than the 

control subjects, then it is possible that the disease aggregates in families because of 

inherited genetic factors that influence disease risk. However, it is possible that this 

aggregation could also be due to a shared environment, or a combination of 

environmental and inherited genetic factors (gene-environment interactions) (5-7). 

Familial aggregation studies have shown that breast cancer does aggregate in families. 

Disease risk increases for women with a family history of the disease, and for first-

degree relatives, the relative risk doubles (8-10).  
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1.1.2 Twin and family studies 

With breast cancer shown to aggregate in families, research then focused on 

estimating how much phenotypic variation could be explained by genetic variation. 

Both twins and family members were used to establish whether the observed 

aggregation could be due to genetics, and/or shared environment (11). The heritability 

of a trait, this being the amount of phenotypic variation that is due to genetic variation, 

can be estimated and used to assess whether future genetic studies should be carried 

out. If the heritability estimate indicates that genes do not influence disease risk 

(heritability estimate = 0), then there would be no justification for carrying out future 

genetic studies.  

There are two main types of heritability, broad-sense heritability and narrow-sense 

heritability. Broad-sense heritability (𝐻2) can be defined as the proportion of phenotypic 

variation (𝑉𝑃) that is due to additive genetic variation (𝑉𝑎), dominance genetic variation 

(𝑉𝑑) and epistatic variation (𝑉𝑒𝑝) (12): 

𝐻2 =  
𝑉𝑎 +  𝑉𝑑 +  𝑉𝑒𝑝 

𝑉𝑃
 

Additive variation is the proportion of phenotypic variance caused by the additive effect 

of alleles, whereas the dominance genetic variation is the genetic variation caused by 

dominant alleles. Epistatic variation is caused by the joint effect of multiple loci, for 

example some of the variation in a phenotype may be explained by two loci interacting.  

Narrow-sense heritability (ℎ2) on the other hand is the proportion of genetic variation 

that is due to additive genetic variation (𝑉𝑎) only. Narrow-sense heritability can be 

defined as (13): 

ℎ2 =  
𝑉𝑎

𝑉𝑃
  

With breast cancer being a complex disease with a binary outcome, a multifactorial 

estimation method can be used to estimate the disease heritability. A heritability 
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measure for a binary trait can either be on the observed, 0/1, scale (ℎ𝑜
2), or the 

unobserved liability scale (ℎ𝑙𝑖𝑎𝑏
2 ). On the observed scale, individuals are coded as 

either 0 or 1, these being individuals who are not observed to have the trait, or have the 

trait, respectively. For the liability scale, individuals each have a continuous normally 

distributed score, with the trait being observed in an individual if their liability score 

exceeds a certain liability threshold, T. The liability threshold, T, is equal to the quantile 

function of (1-K) for the normal distribution, with K being the disease prevalence. The 

liability scale is often used when predicting trait heritability for binary traits. 

The sibling recurrence risk ratio (𝜆𝑆), the given risk for a sibling of an affected individual 

divided by the population prevalence (6), can be used to produce a narrow-sense 

heritability estimate on the unobserved liability scale. Wray et al. (14) have produced a 

narrow-sense heritability estimate for breast cancer on this scale, using an estimate of 

the sibling recurrence risk ratio and the following equation (6, 14): 

ℎ𝑙𝑖𝑎𝑏
2 =  

2[ 𝑇− 𝑇1 √1−(𝑇2−𝑇1
2)(1−

𝑇

𝑖
)  ]

𝑖+ 𝑇1
2(1−𝑇)

 , 

where, 𝑇1is the quantile function of (1-𝜆𝑆𝐾) for the normal distribution, and i=z/K ,where 

z is the normal density at T. 

Wray et al. estimated the narrow-sense heritability for breast cancer on the unobserved 

liability scale to be 44%. The narrow-sense liability scale estimate was estimated for 

European women whilst assuming a prevalence = 3.6% and 𝜆𝑆 = 2.5 (6, 14, 15). With 

twin-study heritability estimates for complex-diseases tending to be ~50% (16), the 

estimate produced for breast cancer is similar to what is typically observed. 

1.1.3 Family-based linkage analysis 

With breast cancer being shown to have a genetic basis, studies were then conducted 

to try and establish where in the genome disease genes were located, in order to gain 

a better understanding of disease risk. Family-based linkage analysis was an analysis 
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used to identify the chromosomal location of disease genes, using data based on 

families with numerous affected family members, and examining for linkage between 

loci. The analysis is based on the finding that during meiosis, loci that are physically 

close together on the chromosome tend to be linked. This would mean that the loci are 

inherited together by the offspring, from the parent, more often than expected if 

inheritance were independent under Mendel’s second law (17-19).   

Using family-based linkage analyses, BRCA1 and BRCA2 gene mutations were 

discovered to be associated with breast cancer risk in the 1990’s (20). Results 

indicated that between 57%-65% of women with a BRCA1 gene mutation, and 45-49% 

of women with a BRCA2 gene mutation will develop breast cancer before the age of 70 

years (21, 22). The highly penetrant genetic variants found in the BRCA1 and BRCA2 

genes are however rare in the general population, with less than 1% of the population 

actually having either a BRCA1 or BRCA2 mutation (23). It has also been estimated 

that mutations in these two genes account for ~16% of the familial breast cancer risk 

(24-26), this being the risk of disease that aggregates in families. With BRCA1 and 

BRCA2 gene mutations estimated to not explain a large proportion of familial breast 

cancer risk, and shown to be rare in the general population, research then focussed on 

examining the genetic variation of breast cancer in the general population. 

1.1.4 Population based genetic association studies 

Population based genetic association studies have been fundamental for the 

development of our understanding of complex diseases in the general population. They 

have enabled associations between genetic variants and phenotypes, within different 

populations, to be discovered. With this form of association study being population 

based, collecting samples should be easier than family-based studies. In this 

subsection, the focus will be on candidate gene studies and genome-wide association 

studies (GWAS). 
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1.1.4.1 Candidate gene study 

A candidate gene study typically involves analysing between 5-50 single-nucleotide 

polymorphisms (SNPs) within a specific gene. SNPs, a common type of genetic 

variation in humans, are single base mutations. A candidate gene region is a gene 

region of interest, specifically chosen for analysis  based on either linkage analysis 

results, which have indicated that the disease variant could be within that specific 

region, or through existing knowledge of the biology of the disease (27, 28). Candidate 

gene studies have identified that genetic mutations within the genes ATM, CHEK2, 

BRIP1, PALB2, and RAD50, genes known to be involved in DNA repair, cause an 

increase in breast cancer risk (29). The main advantage of candidate gene studies is 

that they can cost less to conduct than other study types, notably GWAS, as only 

specific pre-selected SNPs will genotyped and analysed. However, by focussing on 

specific gene regions, you miss out on capturing the genetic variation across the rest of 

the genome. Genetic variants that map to other genes may not be considered if the 

function of the gene is either unknown or not fully understood, therefore hindering 

progress, especially if a disease is polygenic.  

1.1.4.2 Genome-wide association study (GWAS) 

With breast cancer being a polygenic disease, research adopted a hypothesis-free 

approach in order to identify potentially causal genetic variants across the genome. In 

recent years, with advances in technology, the completion of the Human Genome 

Project, the International HapMap Project, the 1000 Genomes Project, and the 

decrease in genotyping costs, it has become possible to undertake large scale 

association studies (30). One such example is a GWAS, which involves analysing 

SNPs across the whole genome, testing whether any individual SNPs could be 

associated with the phenotype of interest (31). The cost to genotype genetic variants 

across the whole genome is very expensive, so a set of tagging SNPs that reflect the 

genome are used instead. A tag SNP is a SNP that is used to represent a group of 
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SNPs that are in high linkage disequilibrium (LD), these being SNPs that are highly 

correlated with each other. If a tag SNP is shown to be associated with the phenotype, 

then it is likely that the true disease variant will be tagged to that SNP, if the tag SNP 

itself is not the causal variant. GWAS are hypothesis-free as focus is not on analysing 

specific tag SNPs that map to certain regions of the genome, or choosing which tag 

SNP to analyse based on the results of previous analyses. No biological assumptions 

are made, and an understanding of the phenotype is not needed in order to conduct a 

GWAS.  

In 2003, before GWAS were published, the Human Genome Project produced an 

outline of the average human genome based on the genome sequence for a small 

number of individuals (32). The project aimed to discover the order and sequence of all 

base pairs across the genome (over 3 billion base pairs), and identify the genes across 

the whole genome (33, 34). The output produced by the Human Genome Project 

cannot be used to identify genetic differences between individuals, therefore it does not 

provide much help when testing for associations between genetic variants and disease 

risk. The output produced does however show that humans have fewer protein-coding 

genes than previously thought. Before the project began, the estimated number of 

human genes was thought to be as high as 120,000 (35, 36), but once the final draft 

was published in 2003, this number fell to approximately 19,000 genes (37).  

With researchers using GWAS to identify causal variants, genetic variants across the 

genome needed to be identified, in order to establish tag SNPs. In 2002, the 

International HapMap Project was launched, with the aim of the project being to map 

genetic variants across the human genome. Over 1 million SNPs had been identified 

once the third, and last, phase of this project was released in 2009 (38-40). In 2008 the 

1000 Genomes Project was launched, another project that aimed to map common 

genetic variants (frequency > 1%) in humans, using whole-genome sequencing, deep 

exome sequencing and dense microarray genotyping on individuals taken from 
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different populations (41). Once the project ended in 2015, over 84 million SNPs had 

been sequenced for 2,504 individuals from 26 populations (41).  

In 2005, one of the first GWAS using a SNP array was published by Klein et al. (42, 

43), with the study focussing on age-related macular degeneration. With only 96 cases 

and 50 controls being analysed, compared to recently conducted studies, this was a 

very small study. In 2007, the first breast cancer GWAS was published (44), and since 

then, more than 90 individual genetic variants have been shown to be associated with 

breast cancer risk (44-51). However, the effect sizes of many of the individual variants 

discovered so far have been small. The odds ratios for GWAS hits tend to be less than 

1.3, which makes them individually unsuitable for risk prediction, as prediction accuracy 

would be compromised by such low effect sizes (43, 52, 53). Also, it has been 

estimated that collectively discovered common genetic variants only explain ~16% of 

the familial risk of breast cancer (51), which was the same estimate given for the 

mutations within BRCA1 and BRCA2 alone.  

With much of the genetic variation in many disease yet to be explained, and effect 

sizes for discovered SNPs being small, it has been widely accepted that GWAS have 

been underpowered to detect many associated genetic variants. To improve power, in 

order to detect associated variants, a much larger number of genotyped individuals are 

needed. Genotyping is expensive, so to be able to increase the number of individuals 

genotyped, yet keep cost down, the number of SNPs genotyped has to be reduced. To 

reduce the number genotyped SNPs, yet to make sure that the variants genotyped are 

informative, researchers have used custom arrays. Loci are included on the custom 

array if they have previously been shown to have some form of relationship with the 

phenotype of interest. Some researchers have decided which SNPs to genotype, 

based on findings from GWAS, along with other candidate regions of interest. The 

Illumina Collaborative Oncological Gene-Environment Study (iCOGS) array (45, 51) is 

a custom array, which has been used to genotype over 200,000 SNPs, in more than 
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100,000 women (51).The SNPs were chosen to be genotyped on the array, based on 

findings from prostate, ovarian and breast cancer GWAS. Using the iCOGS custom 

array to genotype breast cancer cases and controls, researchers have been able to 

increase the number of breast cancer susceptibility variants identified, and replicate 

previous GWAS results (45, 51). The familial risk estimate (~16%), given previously, 

included the associated breast cancer variants that were discovered using the iCOGS 

array. Many of the susceptibility variants discovered to date, have been identified using 

genetic data produced using the iCOGS array.    

In the near future, it is expected that many more variants will be discovered, as study 

sample sizes are set to increase further. Recently a new custom array has been 

developed, the OncoArray. The custom array is being used to genotype over 500,000 

SNPs in ~450,000 individuals, with this including women who have been diagnosed 

with breast cancer (54). The SNPs genotyped include over 200,000 tagging SNPs, 

which provide genome-wide coverage for the majority of common variants (54). The 

genotyped SNPs also consist up to date susceptibility variants and loci that have 

previously been identified through various breast, ovary, colon, prostate or lung cancer 

studies (54). The UK Biobank have just released genotype data, which includes SNPs 

that offer genome-wide coverage, for up to 500,000 individuals. There are set to be 

many studies published, for a wide range of traits and diseases, using this data. In 

2012 the 100,000 Genomes Project, a project that aims to whole-genome sequence 

over 70,000 NHS (National Health Service) patients by 2017, was launched (55). The 

project aims to whole-genome sequence patients who had been diagnosed with 

cancer, or a rare disease, with the families of patients with rare diseases also being 

sequenced. The data will be used by the NHS as part of a new genomic medicine 

service, and will also be available for use in research. With the release of these 

datasets, we will see many more susceptibility SNPs being discovered for breast 

cancer, as well as other complex diseases and traits. 
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From the genetic studies conducted to date, it is evident that many genetic variants 

influence breast cancer risk. However, the variants discovered so far do not collectively 

explain a large amount of the genetic variation for breast cancer. It might be that some 

of the “missing” heritability for a disease could be explained by many common causal 

variants of low effects (12). A polygenic score analysis can be used to test whether a 

trait is affected by a combination of SNP effects. The analysis is based on the 

polygenic model proposed by Fisher (56), a model whereby disease is affected by 

many small effects. This analysis has been used in breast cancer studies (52, 57) to 

further understand how a combination of genetic variants influence disease risk.  

1.1.4.3 Polygenic risk score (PRS) analysis 

In recent years, polygenic risk scores (PRS) have been used to explore the polygenic 

basis of many diseases and traits. Both training and replication samples are needed in 

order to examine whether multiple SNPs with small effect sizes affect disease risk. The 

two samples could be based on two different studies containing cases with the same 

disease, two different studies that each contain cases with a different disease, or one 

study that has been split into two studies internally. Choice of training and replication 

sample depends on the aim of the analysis.  

A polygenic risk score analysis tests whether the genetic effects estimated from a 

training sample, can be used to predict risk of disease in the replication sample, by 

constructing a PRS and testing whether the PRS is associated with the replication 

sample trait. If an association is shown, then the result suggests that the training 

sample SNP effects, can be used to predict the replication trait. If the same trait is used 

across the samples, and an association is shown, then this would suggests that 

disease has a polygenic basis. Studies, including schizophrenia (58) and BMI (59) 

studies, have used polygenic scoring to explore whether a collection of genetic variants 

are associated with disease risk, in order show that a trait has a polygenic basis (60).  

To conduct a polygenic score analysis, a PRS for each subject in the replication 
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sample, j, is constructed using training sample SNP effects, 𝛽̂𝑖, for each independent 

training sample SNP, i. 

If the training sample trait is binary, each  𝛽̂𝑖  is estimated using a logistic regression 

model. For a quantitative trait, a linear regression model is used.  

For each subject j, a PRS is constructed such that: 

𝑃𝑅𝑆𝑗 =  ∑ 𝛽̂𝑖𝑥𝑖𝑗

𝑚

𝑖=1

 

 Where, 𝑚 is the total number of independent SNPs, and 𝑥𝑖𝑗 are the allele dosages at 

SNP i, for individual 𝑗.  

In breast cancer, Machiela et al. (57) have used polygenic score analysis to assess 

whether a breast cancer prediction model, based on identified susceptibility breast 

cancer genetic variants, could be improved further by including common genetic 

variants in the model. The analysis was based on 1,145 breast cancer cases and 1,142 

controls, genotyped as part of the Nurses’ Health Study. The subjects were split into 

ten roughly equal subsets, with one set assigned as the training set, and the other nine 

the replication set. A polygenic score was constructed for the individuals in the 

combined replication set, using the estimated SNP effects from the training set. This 

was repeated until all ten individual subsets have been used as the training set, with 

the remaining nine sets as the replication set. Each polygenic score analysis was 

therefore conducted ten times. A risk score was first constructed using 13 susceptibility 

breast cancer risk variants, and on average, there was found to be a significant 

association between the PRS and breast cancer outcome in the replication sample (p-

value = 5.83 x 10-17). Machiela et al. then gradually included up to ~60,000 SNPs into 

the score, this included SNPs that had not yet been shown to be associated with breast 

cancer risk. Machiela et al. then used the area under the ROC (receiver operating 

characteristic) curve to assess whether including a larger number of SNPs into the 
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score, improved predictive accuracy for breast cancer outcome. By averaging the AUC 

over the tenfold cross-validation analyses, and observing that none of the polygenic 

scores which included the common variants were significantly associated with breast 

cancer outcome in the replication sample, Machiela et al. (57) concluded that there was 

no evidence to suggest that breast cancer risk prediction could be improved by adding 

a larger number of common variants to the model. The sample size for this study was 

originally small, and was made even smaller by splitting the sample into approximately 

10 subsets, therefore each subset analyses would have been underpowered to detect 

an association between score and breast cancer outcome. The authors acknowledged 

that this, along with the original sample size, would have meant that they would have 

had low power to detect any score and breast cancer outcome associations.   

Using a much larger sample size, Mavaddat et al. (52) have constructed a polygenic 

score based on the SNP effects for 77 published susceptibility genetic variants, 

estimated using ~90,000 women of European descent, who were genotyped as part of 

the Collaborative Oncological Gene-Environment Study (COGS) (45). Mavaddat et al. 

examined whether breast cancer risk could be stratified by PRS, with the polygenic 

score being constructed using only the 77 published breast cancer susceptibility loci. It 

was shown that by computing the odds of disease using odds ratios, and then adjusting 

by the PRS that the odds do change. This was shown to be the case for women who 

had a family history of breast cancer, and for women without a family history of the 

disease. These therefore suggests that a breast cancer PRS can be used to predict 

breast cancer risk. 

Polygenic scores are more useful in predicting disease risk than individual SNPs 

because of their small effect sizes. Studies have tended to construct scores using only 

susceptibility variants, however it could be more beneficial to produce a polygenic 

score based on all genotyped SNPs (60). Many associated loci may not be reaching 

genome-wide significance because the studies used are underpowered to detect 
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associations, because of their sample size. This means that unidentified disease 

associated SNPs are being left out of many PRS analyses, therefore jeopardising the 

accuracy of the analysis results. Machiela et al. (57) did not find evidence that a less 

restricted polygenic score was better at predicting breast cancer risk than a score 

based on genome-wide significant SNPs, but this study would have suffered from being 

underpowered. For other complex diseases, such as schizophrenia (61) and multiple 

sclerosis (62), polygenic scores constructed using both a larger number of individuals 

and a larger number of genetic variants, have been shown to be associated with 

disease outcome. Therefore, it would be beneficial to examine whether, in a larger 

study, a score based on a larger number of SNPs can be used to predict breast cancer 

outcome. 

1.1.5 Discussion 

In this chapter so far, the genetic epidemiology of breast cancer has been briefly 

discussed. As it become cheaper to collect and analyse larger samples, and as our 

understanding of the disease changes, our choice of preferred study design will also 

change. We have learnt, like many complex diseases, that breast cancer is a polygenic 

disease whereby many genetic variants of small effect influence disease risk. For many 

diseases, polygenic scoring has been used to gain a better understanding of the 

polygenic basis of the disease. Known susceptibility variants have not been shown to 

explain a large amount of the estimated genetic variation for most complex diseases. 

With it being difficult to identify all genetic risk factors associated with disease risk, and 

with breast cancer being a polygenic disease, much more of the genetic variation for 

the disease may be explained if we were to consider all genotyped SNPs in analyses 

(60). 

In the next section of this chapter, an overview of the quality control (QC) procedure 

that should be implemented before analysing genetic data will be given.  
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1.2 Quality control and linkage disequilibrium removal 

GWAS, and other SNP based studies, are large-scale studies that involve thousands of 

genetic variants and subjects which, due to their large size, makes them susceptible to 

bias. It is important to check and remove various forms of bias, so that a meaningful 

conclusion can be made about the phenotype of interest. The inclusion of either SNPs 

or subjects that incur bias could cause inaccurate results, so QC should be 

implemented on both subjects and SNPs before data is analysed, in order to reduce 

the risk of this happening. Various tests and methods have been developed to identify 

and correct for bias when analysing genetic data. In this section, the different types of 

bias that GWAS data is prone to, and how to test and correct for it will be discussed. 

For the majority of the QC, PLINK version 1.90 (63) has been used to test and filter out 

the SNPs or subjects that fail QC.  

If a specific analysis assumes that there is independence across SNPs, these include a 

polygenic score analysis and a GWAS analysis, then the correlation between SNPs 

should be assessed. LD-thinning methods, implemented in PLINK, can be used to both 

measure the correlation between SNPs, and then reduce the level of correlation 

between SNPs. LD-thinning methods are explained later in this section. 

First QC is applied to the genotyped SNPs as it is better to remove troublesome SNPs 

first, as this could potentially save having to remove subjects. With reduced statistical 

power being an issue for many genetic studies, it would be best to try and retain as 

many subjects in each study as possible.  
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1.2.1 SNP quality control 

1.2.1.1 Minor allele frequency (MAF)  

For a given SNP in a specific population, the minor allele frequency (MAF) is the 

frequency of the least common allele. SNPs with a low MAF should be removed as 

they have reduced statistical power, and could be more susceptible to errors (64).  

The MAF is calculated as: 

MAF =
 𝑓𝑟𝑒𝑞(𝐴𝐴) × 2 + 𝑓𝑟𝑒𝑞(𝐴𝑎) × 1 + 𝑓𝑟𝑒𝑞(𝑎𝑎) × 0 

2𝑁
 , 

where, A is the minor allele and a is the alternative allele, 𝑓𝑟𝑒𝑞(𝐴𝐴) is defined as the 

number of individuals with genotype AA, 𝑓𝑟𝑒𝑞(𝐴𝑎) is the number of individuals with 

genotype Aa, 𝑓𝑟𝑒𝑞(𝑎𝑎) is the number of individuals with genotype aa ,and 𝑁 is the total 

number of individuals.  

PLINK can be used to calculate the MAF and remove any SNPs with a MAF less than 

a stated value using the “--freq” and “--maf” options. SNPs in this thesis were retained 

for analysis if they had a MAF greater than 5%.  

1.2.1.2 Missing rates  

The SNP missing rate can be used to measure the amount of genotype information 

missing for a given SNP. This measure of missingness can be used to assess 

genotyping quality, with high missingness potentially indicating poor reliability in the 

data (64). The PLINK “--geno” option can be used to filter out SNPs with a missing rate 

greater than a given threshold. For the QC carried out in this thesis, the threshold used 

was 5%, which meant that only the SNPs with a 95% genotyping rate were retained.  
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1.2.1.3 Hardy-Weinberg equilibrium  

An important concept in population genetics is the Hardy-Weinberg equilibrium (HWE), 

a concept first described by Hardy and Weinberg separately in 1908 (65, 66). The 

HWE theorem states that for a given large population of diploid organisms and non-

overlapping generations, both the genotype and allele frequencies should remain 

constant from generation to generation when the conditions of no mutation, no 

migration and no selection hold (67).    

Through calculation of the probabilities for genotype arrangements, the exact test can 

be used to examine whether SNPs deviate from HWE. Wigginton et al (68) state that if 

we know the number of heterozygous Aa genotypes, and the number of a alleles and A 

alleles for a given genetic variant, whilst assuming that each individual has 2N alleles 

for N individuals, then we can calculate the number of AA aa homozygous genotypes 

using the following formulae: 

 

𝑛𝐴𝐴 =  
𝑛𝐴 −  𝑛𝐴𝑎

2
 

and 

𝑛𝑎𝑎 =  
𝑛𝑎 −  𝑛𝐴𝑎

2
 

Where, 𝑛𝐴 is the number of the A allele, 𝑛𝑎 is the number of a allele and 𝑛𝐴𝐴 and 𝑛𝑎𝑎 

are the number of AA and aa homozygous genotypes, respectively. 

If the number of heterozygotes are known, then under the assumption of HWE, the 

probability of observing 𝑛𝐴𝑎 heterozygotes for N individuals with 𝑛𝐴 minor alleles is (68):  

𝑃(𝑁𝐴𝑎 =  𝑛𝐴𝑎|𝑁, 𝑛𝐴) =  
2𝑛𝐴𝑎𝑁!

𝑛𝐴𝐴! 𝑛𝐴𝑎! 𝑛𝑎𝑎!
 × 

𝑛𝐴! 𝑛𝑎!

(2𝑁)!
 

with the exact test p-value being the sum of these probabilities.  
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PLINK can be used to filter out by using “--hwe” option, and stating an exact test p-

value threshold. This option in PLINK can be used to remove SNPs that have an exact 

test p-value less than a specified threshold, with the null hypothesis that HWE holds, 

failing to hold for those SNPs. If deviation from HWE is identified, then it could be 

indicative that there are problems with either genotyping, population stratification or 

inbreeding (68). Population stratification is explained later in this chapter. Care should 

be taken when testing for deviations from HWE as an observed deviation could actually 

be caused by an association between the genotypes and phenotype, and because of 

problems with either genotyping, population stratification or inbreeding (31). For the QC 

carried out in this thesis, the exact test p-value threshold used was 5 x 10-6. 

 

1.2.2 Sample quality control 

Once QC has been implemented on SNP data, focus moves onto establishing whether 

bias is present amongst the individuals genotyped in the study. 

1.2.2.1 Discordant sex information 

With the analyses conducted in this thesis aiming to improve our understanding of 

breast cancer in women, the genetic data used to conduct the analysis should only 

contain individuals who are women. Individuals should be excluded if, genetically, they 

are not female. The “--check-sex” option in PLINK can be used to assess whether the 

number of X chromosomes matches the gender of the subject. Women have two X 

chromosomes (XX), so individuals in a study shown not to have two X chromosomes 

should be removed from the dataset, and not used in any of the analyses conducted in 

this thesis. 

1.2.2.2 Missing genotypes 

DNA quality can be assessed by measuring the number of genotypes each individual 

has missing. If genotyped individuals are found to have a high number of missing 
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genotypes, it would suggest that DNA quality might be poor (64). The “--mind" option in 

PLINK can be used to filter out the individuals that have too many missing genotypes, 

based on a given missing rate. Individuals who have a missing genotype rate greater 

than the stated rate are removed from the study. For the studies used in this thesis, 

any individual with a missing rate > 5% was not included in the analysis.  

1.2.2.3 Heterozygosity 

Heterozygosity is the proportion of non-missing genotype calls where, for a given 

genotype, the two alleles are different (heterozygous) (69). If heterozygosity is greater 

than the expected heterozygosity, it is an indication that either the quality of the sample 

is poor, or that the data is contaminated. If heterozygosity is low, it could be an 

indication that either inbreeding or population stratification are present (70). The “--het" 

option in PLINK can be used to produce an output file which presents the observed 

number of homozygous genotypes (𝑜ℎ𝑜𝑚), and the number of non-missing genotypes 

per individual (𝑛𝑔𝑒𝑛). These two variables can be used to calculate the observed 

heterozygosity rate per individual, using the following formula: 

𝑛𝑔𝑒𝑛 − 𝑜ℎ𝑜𝑚 

𝑛𝑔𝑒𝑛
 

The heterozygosity rate, for each individual, is then examined. If the rate is ± 3 

standard deviations away from the mean, then it is concluded that the heterozygosity is 

different from the expected heterozygosity for that individual (71).  

1.2.2.4 Relatedness between subjects 

For non-family based studies, it is assumed that the individuals within the study being 

analysed are not related to each other. Relatedness between subjects can easily arise 

in studies that contain a large number of individuals; it is not safe to simply assume that 

relatedness is not present, even if at the data collection stage related individuals were 

not recruited into the study. Relatedness between individuals can affect the accuracy of 

results, if the model or method used does not adjust for the relatedness between 
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individuals. For example, when conducting a polygenic score analysis, if an individual 

in the training set is highly related to an individual in the replication set, the association 

between the polygenic risk score and the phenotype in the replication study could be 

inflated. Also analysing related individuals could cause results to reflect environmental 

effects, and not just the genetic effects (72). 

KING version 1.4 (73) is a software package that can be used to measure the 

relatedness between a pair of individuals within a study, in order to determine whether 

two individuals are related to each other. KING is a robust relationship inference 

algorithm, robust because it adjusts for any population stratification present in the data. 

Both an estimate of the kinship coefficient (𝜙) and the probability of zero identity by 

descent (IBD) sharing (𝜏0) are produced by KING, with both estimates used to assess 

the relatedness between a pair of individuals. The kinship coefficient, 𝜙, is the 

probability that two alleles from each individual are IBD when chosen at random, with 

alleles being defined as IBD if they are inherited from the same ancestor (31). The 

probability of zero IBD sharing,𝜏0, is the probability that two individuals share zero IBD 

alleles. The similarity between individuals can be measured based on the number of 

common alleles between the individuals for each genotype, this measure is known as 

identity by state (IBS). 

Assume that there is HWE amongst SNPs, and that only an 𝐼𝐵𝐷𝑖𝑗 = 0 can produce an 

𝐼𝐵𝑆𝑖𝑗 = 0 for a pair of individuals i and j. Then the proportion of SNPs with zero IBS can 

be estimated as (73): 

Pr(𝐼𝐵𝑆𝑖𝑗 = 0) = Pr(𝐵𝐵, 𝑏𝑏 | 𝐼𝐵𝐷𝑖𝑗 = 0) ×  Pr(𝐼𝐵𝐷𝑖𝑗 = 0) = 2𝑝2(1 − 𝑝)2𝜏0𝑖𝑗
 

Where, 𝑝 is the reference allele (𝐵) frequency for a SNP, 𝑏 is the alternative allele,  

𝐼𝐵𝑆𝑖𝑗 is the number of IBS alleles between individuals i and j. 
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This can then be used to estimate the probability of zero IBD between the two 

individuals i and j, such that (73): 

𝜏̂0𝑖𝑗
=  

𝑁𝐵𝐵,𝑏𝑏

∑ 2𝑝̂𝑚
2 (1 − 𝑝̂𝑚)2

𝑚

   

Where, 𝑁𝐵𝐵,𝑏𝑏 is defined as the total number of SNPs, where the genotypes between 

the two individuals are different homozygotes (BB,bb). The number of SNPs between 

two individuals, where there is no missing genotypes in either pair, can be defined as 

m.  

The genotype frequencies for the whole sample can be used to estimate the allele 

frequency 𝑝̂𝑚 at the m-th SNP, such that (73): 

𝑝̂𝑚 =  
𝑖𝑛𝑑𝐵𝐵 + 𝑖𝑛𝑑𝐵𝑏/2

𝑖𝑛𝑑𝐵𝐵 + 𝑖𝑛𝑑𝐵𝑏 + 𝑖𝑛𝑑𝑏𝑏
 

 

Where, at the m-th SNP, 𝑖𝑛𝑑𝐵𝐵 , 𝑖𝑛𝑑𝐵𝑏 and 𝑖𝑛𝑑𝑏𝑏 are defined as the total number of 

individuals with genotypes 𝐵𝐵, 𝐵𝑏 and 𝑏𝑏, respectively.  

Assuming HWE, and that population stratification may be present, the genetic distance 

between two individuals, 𝑖 and 𝑗, in terms of the kinship coefficient can be modelled as 

(73): 

𝐸(𝑋(𝑖) −  𝑋(𝑗))2 = 4𝐸(𝑃(1 − 𝑃))(1 − 2𝜙𝑖𝑗) 

Where 𝑋(𝑖) and 𝑋(𝑗) are the genotype scores, for individuals i and j, respectively, with 

this being defined by the number of the reference alleles for an individual. It is assumed 

that 𝑃 is the allele frequency for a randomly chosen SNP for an individual, and it is 

possible for 𝑃 to vary if population stratification is present.  
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When measuring the relationship across different families, the kinship coefficient can 

be estimated as (73): 

𝜙̂𝑖𝑗 =  
1

2
−

1

4

∑ (𝑋𝑚
(𝑖)

−  𝑋𝑚
(𝑗)

)
2

𝑚

𝑁𝐵𝑏
(𝑖)

=  
𝑁𝐵𝑏,𝐵𝑏 − 2𝑁𝐵𝐵,𝑏𝑏 

2𝑁𝐵𝑏
(𝑖)

+
1

2
−

1

4

𝑁𝐵𝑏
(𝑖)

+  𝑁𝐵𝑏
(𝑗)

𝑁𝐵𝑏
(𝑖)

  

Where, 𝑁𝐵𝑏,𝐵𝑏 is defined as the number of SNPs where both individuals of a subject 

pair are heterozygous, with  𝑁𝐵𝑏
(𝑖)

 and 𝑁𝐵𝑏
(𝑗)

 being the total numbers of heterozygotes for 

individuals, i and j, respectively. 

Manichaikul et al. (73) present a table that defines the relationship of a pair of 

individuals based on both the kinship coefficient and the probability of zero IBD 

sharing: 

Relationship 
Kinship 

coefficient 
(𝜙) 

Inference 
criteria 

Probability of zero IBD 
sharing (𝜏0) 

Inference criteria 

Monozygotic twin 
1

2
 > 

1

2
3
2

 0 < 0.1 

Parent-offspring 
1

4
 (

1

2
5
2

, 
1

2
3
2

 ) 0 < 0.1 

Full sibling 
1

4
 (

1

2
5
2

, 
1

2
3
2

 ) 1

4
 (0.1,0.365) 

Second degree 
1

8
 (

1

2
7
2

, 
1

2
5
2

 ) 
1

2
 (0.365,1- 

1

2
3
2

 ) 

Third degree 
1

16
 (

1

2
9
2

, 
1

2
7
2

 ) 
3

4
 (1- 

1

2
3
2

 , 1- 
1

2
5
2

 ) 

Unrelated 0 < 
1

2
9
2

 1          > 1- 
1

2
5
2

 

Table 1-1: Relationship inference criteria based on the kinship coefficient and the 
probability of zero IBD sharing  

Source: Edited version of table in Manichaikul et al. (73) - page 2868 

 

Both the estimated 𝜙 and 𝜏0 can be used to define the relationship between two 

subjects. A pair of subjects where the estimated 𝜙 is greater than 
1

2
5
2

  and the estimated 

probability of zero IBD sharing is greater than 0.1, are defined as being first-degree 

relatives (Table 1-1). One way to manage the relatedness between subjects is to 
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remove one individual from every first-degree relative pair. This was the method 

chosen to prevent related subjects being included in the analysis. 

1.2.2.5 Population stratification 

When using cases and controls to conduct a GWAS, in order to test for an association 

between an allele and a phenotype of interest, an allele is identified as being 

associated with a trait if it is more frequent in cases than controls. Occasionally, allele 

frequency differences between cases and controls may be due to ancestry differences, 

and not through an association with the phenotype. This is known as population 

stratification and can occur when there is both a difference in allele frequency between 

sub-populations, and a difference in disease prevalence. It is important to make sure 

that population stratification is not present in the data being analysed, as this could 

cause spurious associations. One way to examine whether population stratification is 

present in data is to estimate, and examine, the genomic inflation factor for the data. 

An estimate of the genomic inflation factor can be produced by taking the median chi-

squared test statistic (𝜒1
2) across all SNPs, and dividing it by the expected median 

under the null distribution (27, 74). If the estimate is greater than one, then it is an 

indication that population stratification may be present in the data.  

It is also possible to visually identify population stratification by plotting 

eigenvectors/principal components that represent the data. Principal-component (PC) 

analysis, a procedure used to convert a set of potentially correlated variables into a set 

of linearly uncorrelated variables using an orthogonal transformation, can be used to 

create the eigenvectors/principal components. The first and second eigenvector, the 

eigenvectors that explain most of the variation in the data, are plotted against each 

other. If there is shown to be more than one separate cluster of subjects, then the plot 

would suggest that population stratification is present. More than one cluster may also 

be visualised when plotting additional eigenvectors, such as the second and third 

eigenvector, which again would suggest that population stratification is a problem.  
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If population stratification is shown to be present in the data, genomic control and PC 

analysis are two different methods that can be used to adjust for it, in order to reduce 

the effect it has on the result. The genomic control method adjusts for population 

stratification by dividing the chi-squared statistic for each individual SNP association by 

the estimated genomic inflation factor. To control for population stratification using PC 

analysis, eigenvectors/principal components are created and then included as 

covariates in the regression model used to test the association between alleles and a 

trait (74).  

1.2.3 Linkage disequilibrium (LD) removal 

When conducting a GWAS or a polygenic score analysis, as independence across 

SNPs is assumed, it is important to check that SNPs used in the score are 

independent. Causal SNPs tend to tag the SNPs that they are in LD with, and increase 

the tagged SNPs association with the phenotype. This means that if a tag SNP is 

discovered to be associated with the phenotype, it is not necessarily the causal SNP, 

or truly associated with the phenotype of interest. If one were to conduct a polygenic 

score analysis without first removing high LD between SNPs, the SNP effects used to 

construct a polygenic score may be inflated, which could cause inaccurate results.  

Foulkes (31) state that under the assumption of independence between two loci, the 

expected haplotype distribution should be as follows: 

𝑛11 = 𝑁𝑝𝐴𝑝𝐵                                𝑛12 = 𝑁𝑝𝐴𝑝𝑏 

𝑛21 = 𝑁𝑝𝑎𝑝𝐵                               𝑛22 = 𝑁𝑝𝑎𝑝𝑏 

where, n is the number of individuals and N = 2n, as each individual, n, has two 

homologous chromosomes. The alleles on locus 1 and locus 2 are defined as Aa and 

Bb, respectively. Also, 𝑝𝐴 and 𝑝𝑎 denote the population frequencies for alleles A and a, 

with 𝑝𝐵 and 𝑝𝑏 denoting the population frequencies for B and b.  
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If locus 1 and locus 2 are correlated, then the observed counts will be different to those 

expected when assuming independence, such that (31):  

𝑛11 = 𝑁(𝑝𝐴𝑝𝐵 + 𝐷)                 𝑛12 = 𝑁(𝑝𝐴𝑝𝑏 − 𝐷) 

𝑛21 = 𝑁(𝑝𝑎𝑝𝐵 − 𝐷)                  𝑛22 = 𝑁(𝑝𝑎𝑝𝑏 + 𝐷) 

With, scalar D representing the difference when independence cannot be assumed.  

If D were to be close to 0, then the observed counts would be close to the expected 

counts under independence. This would then indicate little or no departure from LD.  

D can be expressed in terms of both the joint probability of A and B, and the product of 

the individual allele probabilities, such that: 

𝐷 =  𝑝𝐴𝐵 −  𝑝𝐴𝑝𝐵 

With, 𝐷 ≠ 0 if there is LD present 

Lewontin (75) proposed a rescaled version of D, known as 𝐷′ which can be expressed 

as: 

𝐷′ =  
|𝐷|

𝐷𝑚𝑎𝑥
 

where, 𝐷𝑚𝑎𝑥  is the theoretical maximum for the observed allele frequencies, which can 

be given by: 

𝐷𝑚𝑎𝑥 =  {
min(𝑝𝐴𝑝𝑏 , 𝑝𝑎𝑝𝐵)       𝐷 > 0
min(𝑃𝐴𝑝𝐵, 𝑝𝑎𝑝𝑏)       𝐷 < 0

 

 

The correlation coefficient can also be used to express LD, such that (76): 

𝑟2(𝑝𝑎 , 𝑝𝑏 , 𝑝𝑎𝑏) =  
(𝑝𝑎𝑏− 𝑝𝑎𝑝𝑏)2

 𝑝𝑎(1− 𝑝𝑎)𝑝𝑏(1− 𝑝𝑏)
 , 
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with an r2 close to 0 suggesting low correlation, and an r2 close to 1 suggesting high 

correlation between SNPs.  

There are two main LD-thinning methods commonly used to reduce LD between SNPs, 

LD-based pruning and LD-based clumping. Both methods can be implemented using 

PLINK, with both methods retaining one SNP from a group of SNPs that have been 

identified as being in LD. The methods do however differ in how the retained SNP is 

chosen, but both methods can use r2  to measure LD between SNPs.  

LD-based pruning is implemented using PLINKs’ “--indep-pairwise” command and 

stating a window size, the number of SNPs to shift the window by, and an r2 value. The 

window size is measured in SNPs and specifies the number of SNPs within a subset, 

with the LD between the SNPs in each window being measured. This is then repeated 

for each shift in SNPs. If the r2 between any of the SNPs is greater than the specified 

r2, then one SNP from each correlated group will be randomly retained.  

LD-based clumping is similar to LD-based pruning except that SNPs are first ranked by 

their individual association with the phenotype of interest. In a correlated group of 

SNPs, the SNP with the strongest association with the phenotype is retained. By 

retaining the SNP with the strongest association with the phenotype, it will reduce the 

risk of removing causal variants from the analysis. 
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1.3 Discussion  

The methods and studies used to gain a better understanding of the underlying genetic 

architecture of a disease have changed over time due to improvements in our 

knowledge of the disease, sample size, data quality, technology and the reduction of 

genotyping costs. As sample sizes have been increasing, new developments in 

software and computational methods have enabled analyses to be performed on larger 

sample sizes, as well as a greater number of genetic variants. Even with sample sizes 

increasing, studies, such as GWAS, still suffer from being underpowered.  

Over 90 individual genetic variants have been shown to be associated with breast 

cancer risk, but like most complex diseases, these variants collectively only explain a 

small proportion of the heritability for breast cancer (44-51). Much of the genetic 

variation for the breast cancer may be explained by a combination of SNPs that have a 

small effect on disease risk, that have not yet reached genome-wide significance. 

Polygenic scores can be used to test whether a combination of SNP effects is 

associated with a trait of interest, with the hope that once sample sizes are large 

enough, the scores can be used to accurately predict risk of disease. Assuming that a 

score is to be constructed using 1,000,000 SNPs, and that 1% of these SNPs have an 

effect on breast cancer risk, it has been estimated that we would need to collect a 

training sample of approximately 100,000 subjects, for a breast cancer polygenic score 

to accurately predict breast cancer risk (15). The estimated number training sample 

individuals needed then increases, if the proportion of SNPs that have an effect on 

disease increases (15).  

 Even though the cost of genotyping has been decreasing over the years, it is still 

considered to be expensive to genotype a sample. The high cost can make it hard to 

genotype enough individuals to have a highly powered study, in order to detect 

genome-wide significant associations, or to predict disease risk. Collecting a large 

number of cases is also difficult if the disease of interest is rare. In order to increase 
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sample sizes in studies, consortium datasets have been generated. A consortium is a 

collaboration between institutions and researchers, with the goal of combining many 

studies and creating large datasets to be analysed. Depending on the analysis being 

carried out, the genetic data could include a combination of genome-wide significant 

SNPs, imputed SNPs, GWAS SNPs and SNPs genotyped on custom arrays. Variants 

genotyped on a custom array, such as the iCOGS array, are those that have been 

purposely selected. The selection of variants could be based on their relationship with 

the trait of interest. Being selective of which SNPs to genotype lowers the number of 

SNPs being genotyped, which decreases costs, thus enabling a larger number of 

subjects to be genotyped. Consortium data and custom arrays, have allowed samples 

of over 100,000 subjects to be studied. However, these larger samples have not 

always been genotyped for SNPs across the whole genome, meaning that parts of the 

genome have not been represented in analyses. 

With sample sizes increasing, this being in terms of both the number of subjects and 

the number of genetic variants genotyped, the risk of bias occurring also increases. In 

order to improve the accuracy of results produced, it is important to make sure that the 

chances of bias occurring is reduced through QC measures.  
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1.4 Research questions and overview of thesis 

The overall aim of this thesis is to gain a better understanding of the underlying 

polygenic architecture of breast cancer. With a better understanding of how many 

genetic mutations of small effect influence breast cancer risk, it will enable risk 

prediction to be possible in the future. Risk prediction in turn will allow the 

development, and implementation of risk stratification procedures. For instance, 

women who have been estimated to have a high risk of developing breast cancer, 

could be screened more frequently using established screening procedures, or 

screened at a younger age. This could increase the number of women detecting breast 

cancer in the early stages, which could decrease the number of women diagnosed with 

advanced stage breast cancer. Understanding the genetic mechanisms of the disease 

will also enable the development of breast cancer treatments, treatments that target 

certain genetic mutations, and personalised medicine. 

The objective of this thesis is to: 

1. Investigate whether a large number of SNPs could collectively explain the 

missing heritability for breast cancer.  

2. Partition the genetic variation explained by genotyped SNPs to better 

understand how genetic variation is spread across the genome. 

3. Examine whether there is evidence that a shared polygenic basis between 

breast cancer and body mass index exists. 

4. Investigate whether there is evidence that PRS-body mass index, or PRS-age 

at menarche interactions exist. 

5.  Investigate whether there is evidence that any breast cancer derived PRS-SNP 

interactions exist. 

6. Find evidence of physical interactions between known breast cancer loci, and 

other loci across the genome. 
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With breast cancer being a polygenic trait, in chapter 2, polygenic score analysis will be 

used to find evidence that confirms that breast cancer has a polygenic basis. It will be 

tested whether the estimated SNP effects from one breast cancer GWAS, can be used 

to predict breast cancer outcome in an independent breast cancer GWAS. If shown, 

this would indicate that breast cancer does have a polygenic basis, which would 

support other breast cancer findings. Once this has been examined, using three 

commonly used estimation methods, it will be estimated how much variation in breast 

cancer risk can be explained by a large number of common SNPs (MAF> 0.05). The 

estimates produced will be based on two European breast cancer GWAS, the UK2 

study (48) and the British Breast Cancer Study (BBCS) (49, 77), as well as the 

Collaborative Oncological Gene-environment Study (COGS) (45). Estimates have been 

previously produced for both breast cancer and ER-negative breast cancer, but based 

on a smaller number of individuals. The estimates produced in this thesis will be based 

on all genotyped SNPs, not just genome-wide significant SNPs, and estimated using 

larger samples than those previously used to produce breast cancer chip heritability 

estimates.  Producing breast cancer based chip heritability estimates for both GWAS 

and a study in which a custom array has been used, allows the genetic variation of 

breast cancer explained by GWAS SNPs to be compared to the variation explained by 

custom array SNPs. In breast cancer, this will be the first time that such a comparison 

has been made between a custom array, and a GWAS array. With the custom array 

allowing for more individuals to be genotyped, compared to a GWAS array, do the 

variants on the custom array explain nearly as much variation as a GWAS array? Or, is 

the difference large?  

In chapter 3, this analysis will be taken further by partitioning the chip heritability 

estimates, in order to examine how genetic variation is spread across the genome. 

Genomic partitioning will be used to partition the genetic variation explained by the 

SNPs genotyped for each study, by chromosome, MAF and SNP annotation. In breast 

cancer, this will be the first time that partitioning analyses have been performed. This 
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analysis is important as it has the potential to identify areas of the genome where 

causal variants are most likely to lie, if certain subsets are shown to explain a larger 

proportion of genetic variation, than other subsets. 

In chapter 4, polygenic scores will be used to examine whether there is evidence to 

suggest that a shared polygenic basis exists between breast cancer, and body mass 

index (BMI). It will be the first time that this has been tested using polygenic scores, 

and if evidence of a shared polygenic basis is found, it could aid the development of 

novel treatments and procedures by enabling the two phenotypes to be studied 

together.  

In chapter 5, polygenic scores and a case-only interaction analysis will be used to test 

whether there is evidence to suggest that either a PRS-BMI interaction, or a PRS-age 

at menarche interaction exist. Both BMI and age at menarche have been linked to 

breast cancer risk, but it is not known whether the presence of either of these risk 

factors influence the effect a breast cancer PRS has in predicting breast cancer risk. It 

will also be tested whether there is evidence to suggest that the effect a breast cancer 

derived PRS has on predicting breast cancer risk, is modified by any of the SNPs used 

to construct the score.  

Finally, in chapter 6 it will be tested whether any significant physical interactions exist 

between known breast cancer susceptibility loci, and other loci positioned within 5Mb of 

the associated loci using Capture Hi-C (CHi-C) methods. With many of the discovered 

breast cancer susceptibility loci mapping to non-coding regions of the genome, it is not 

fully understood how the variants influence disease risk. This analysis aims to detect 

significant physical interactions that may explain how these significant loci influence 

breast cancer risk. With regard to the number of cell-lines and loci analysed at once, 

this is the largest CHi-C analysis to have been conducted for breast cancer and, as far 

as I am aware, it is also the largest CHi-C analysis to have been conducted for any 

disease.  
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With breast cancer being a polygenic trait, the work presented in this thesis focuses on 

using polygenic scores to gain a better understanding of the polygenic basis of breast 

cancer in individuals of European descent. Collectively, known genome-wide significant 

SNPs have not been shown to explain a large proportion of the genetic variation for the 

disease. It could be that a much larger proportion of the genetic variation in breast 

cancer is explained by SNPs that have not yet reached genome-wide significance. The 

analyses conducted in this thesis will be different to those previously conducted in 

breast cancer, as “deep” scores will be analysed. Machiela et al. (57) have previously 

assessed the ability breast cancer based polygenic scores have in predicting breast 

cancer risk, but with very small training and replication samples. Mavaddat et al.(52) 

have previously performed a PRS analysis and a PRS interaction analysis using a 

larger number of individuals, but their analysis was performed using a reduced number 

of SNPs. The analyses conducted in this thesis will be performed on the largest 

number of SNPs, genotyped in the largest number of individuals.  
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Chapter 2 Analysis of two breast cancer GWAS 
and the COGS 

 

2.1 Introduction 
 
2.1.1 Breast cancer datasets 

Much of the analysis in this thesis has been performed on two European breast cancer 

GWAS, the UK2 study (48) and the British Breast Cancer Study (BBCS) (49, 77), and 

the Collaborative Oncological Gene-environment Study (COGS) (45). These studies 

have been used to explore the underlying polygenic architecture of breast cancer in 

order to further understand the genetic and environmental risk factors for the disease.  

2.1.1.1 UK2 GWAS 

In 2010, Turnbull et al. (48) first described the UK2 GWAS in a study that identified five 

previously unknown breast cancer susceptibility loci. Varghese et al. (78), a few years 

later, then used the study to find evidence of a shared genetic basis existing between 

breast cancer, and mammographic breast density.  

The case-control GWAS consists of breast cancer cases collected through both the 

ICR Familial Breast and Ovarian Cancer Study (BOCS), and the Prospective study of 

Outcome in Sporadic versus Hereditary (POSH) breast cancer study. These studies 

recruited women of European descent using 23 UK based clinical genetics centres and 

UK oncology clinics. Women with breast cancer were included in the study if they had 

at least two affected first, or second-degree relatives in their family. However, women 

were excluded from the GWAS if they were found to have either BRCA1 or BRCA2 

mutations. Controls were collected through the Wellcome Trust Case Control 

Consortium (WTCCC) study (79), which recruited controls from both the 1958 Birth 

Cohort, and the UK National Blood Service. Using an Illumina 670k array, 475,998 
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SNPs were genotyped in 3,628 cases, with an Illumina 1.2M array being used to 

genotype 5,190 controls. 

2.1.1.2 British Breast Cancer Study (BBCS) GWAS 

Johnson et al. (77) first described the British Breast Cancer Study (BBCS), and used it 

to find evidence that interactions between CHEK2*1100dekC, and other low-

penetrance breast cancer susceptibility genes, possibly exist. Fletcher et al. (49) have 

also used the BBCS, along with other studies, to identify potential breast cancer risk 

loci and risk variants. Fletcher et al. identified 9q31.2 as a susceptibility risk locus, 

along with two genetic variants, rs3734805 and rs9383938.  

The study contains breast cancer cases collected through UK based cancer registries, 

with the majority of the cases having been diagnosed with two primary breast cancers 

(bilateral breast cancer). The remaining cases were women who have at least two first-

degree relatives who had previously been diagnosed with breast cancer. The controls 

used in the BBCS were the same controls used in the UK2 study. Therefore, controls 

were collected through the Wellcome Trust Case Control Consortium (WTCCC) study, 

and recruited from both the 1958 Birth Cohort and the UK National Blood Service. An 

Illumina 370k array was used to genotype 269,684 SNPs in 1,609 breast cancer cases, 

and an Illumina 1.2M array was used to genotype 5,190 controls. 

 

For both GWAS, two versions of the data were available; one containing genotype and 

phenotype data for the GWAS in binary PED file format, and the other a MACH dosage 

file containing SNPs that had either been genotyped or imputed, for each GWAS 

subject. I did not perform the imputation, it was executed as part of the studies. The 

MACH dosage files were converted into best guess PLINK binary format using the “--

dosage-mach” and “--make-bed” commands in GCTA.  

In the analysis presented in this thesis, it should be assumed that genotyped SNPs 

have been used, unless stated. Imputed SNPs have been used when constructing risk 
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scores across independent studies, in order to increase the number of SNPs in union 

between the two studies. This enabled a polygenic score to be constructed using a 

much larger number of SNPs than would have otherwise been possible if only 

genotyped SNPs were used. When imputed SNPs have been used in an analysis, it 

will be stated. 

For both GWAS, I had data for genetic variants on chromosomes 1 to 22. For the UK2 

GWAS, and not the BBCS GWAS, I also had data for genetic variants on the X 

chromosome. With there being only data for genetic variants on the X chromosome for 

one GWAS, the X chromosme was omitted from the analyses presented in this thesis. 

This was because for many of the analyses conducted in this thesis, only overlapping 

SNPs across the two studies were analysed.  

 

2.1.1.3 Collaborative Oncological Gene-Environment Study (COGS)  

In recent years, genetic variants genotyped on the iCOGS array, a custom array 

developed as part of the Collaborative Oncological Gene-Environment Study (COGS) 

project (80), has been used to identify breast, ovarian and prostate cancer risk factors. 

SNPs were chosen for inclusion on the custom array if they were thought to be 

somewhat related to any of the three cancers, this being based on a meta-analysis of 

breast, ovarian and prostate cancer GWAS results, as well as other studies. The array 

was used to genotype 211,115 SNPs in subjects from 52 BCAC (Breast Cancer 

Association Consortium) studies. In total, 41 out of the 52 BCAC studies contained 

women of European ancestry, nine studies contained populations of Asian ancestry, 

and two studies contained women of African-American ancestry. Based on European 

ancestry, the COGS data used to perform the analysis in this thesis contained 199,961 

genotyped SNPs for 48,154 European cases and 43,612 European controls.  
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2.1.2 Estimating the genetic variation explained by common SNPs 

for polygenic traits 

Since the first GWAS, many traits and diseases have been shown to have a polygenic 

basis, making it difficult to establish all associated genetic variants. With there being 

many variants that affect disease risk, it has been hard to discover them all. It has not 

helped that GWAS are expensive to conduct in a large number of individuals, and that 

many of the studies conducted to date have not been large enough to detect many of 

the associated genetic variants with small effect sizes. However, researchers have 

developed methods to estimate the proportion of phenotypic variance that can be 

explained by genotyped SNPs, without having to first discover the genetic variants 

associated with the trait (81). These estimates are known as chip, or SNP, heritability 

estimates, and are particularly useful as they enable the potential a genotyping array 

has in explaining the heritability of a trait, to be evaluated. Estimates can be produced 

using unrelated individuals, which is an advantage as it is easier to collect a larger 

number of unrelated individuals, than it is related individuals. Also, using unrelated 

individuals reduces the risk of shared environments inflating the chip heritability 

estimate (60). The estimates also allow researchers to assess whether a certain group 

of variants, for example SNPs mapping to a specific chromosome, explain more 

phenotypic variation than other groups. This type of analysis is known as genome 

partitioning, and will not be discussed further in this chapter, but will instead will 

discussed in chapter 3.   

For many polygenic traits and diseases, chip heritability estimates have been produced 

and have shown that a fairly large proportion of the variation in a trait, can be explained 

by genotyped SNPs not yet reaching genome-wide significance. An early study 

conducted by Yang et al.(82) showed that a large proportion of the heritability for 

human height could be explained by common SNPs using when using the genomic-

relatedness based restricted maximum-likelihood (GREML) (83), implemented as part 
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of the genome-wide complex trait analysis software (GCTA). They estimated that 45% 

(se = 8%) of the phenotypic variance for height could be explained by 294,831 SNPs, 

genotyped in 3,925 individuals of European descent. This estimate was much larger 

than the estimated 5% explained by the combination of genome-wide significant SNPs, 

published before the analysis was conducted, and suggested that over 50% of the 

heritability for height could be explained by common SNPs. Otowa et al.(84) used both 

GREML and another estimation method, LD score regression (LDSC) (85), to produce 

chip heritability estimates for anxiety disorder. LDSC is a method that uses summary 

data to produce chip heritability estimates. In this study, anxiety disorder was defined 

by five phenotypes, these being; generalized anxiety disorder, panic disorder, phobias, 

social phobia, agoraphobia, and specific phobias. Based on 3,695 European 

individuals from the Rotterdam Study Cohort, Otowa et al. estimated that 13.8% (se = 

18%) of the variation in liability to anxiety disorder could be explained by genotyped 

SNPs, when using GREML. An LDSC chip heritability estimate was produced using 

summary statistics, based on a meta-analysis of over 18,000 individuals and 995,869 

SNPs, across nine cohorts. Using LDSC, they estimated that 9.5% (se = 3.7%) of the 

variation in liability to anxiety disorder could be explained by genotyped SNPs. These 

results showed that approximately a third of the genetic variation in anxiety disorders 

could be explained by common SNPs. 

Chip heritability estimates, on the unobserved liability scale, have also been produced 

for breast cancer. Lu et al.(86) have produced a chip heritability estimate based on 

489,247 genotyped SNPs, in 1,081 breast cancer cases and 1,085 controls. Using 

GREML, it was estimated that 13% (95% CI:[0%-56%]) of the variation in liability to 

breast cancer could be explained by genotyped SNPs. Assuming that the heritability of 

breast cancer on the unobserved liability scale is 44%, then approximately 30% of the 

genetic variation in liability to breast cancer could be explained by these genotyped 

SNPs. However, the 95% CI for the estimate was quite wide which, with only ~2,000 
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individuals being used in the analysis to produce the estimate, would have been due to 

the limited sample size. Therefore, the estimate could in fact be much larger than 13%. 

Sampson et al.(87) have also produced a chip heritability estimate for breast cancer, 

but instead they have focussed on ER-negative breast cancer. The estimate they 

produced was based on GWAS SNPs, genotyped in 1,998 ER-negative breast cancer 

cases and 3,263 controls. Using GREML, they estimated that 9.6% (95% CI: [0%-

19.9%]) of the variation in liability to ER-negative breast cancer, could be explained by 

genotyped SNPs.  

The non-breast cancer studies mentioned, are only a very small sample of the chip 

heritability studies that have been conducted to date. Studies in general have shown 

that a relatively large proportion of variation for a trait can be explained by currently 

genotyped SNPs, compared to the proportion of phenotypic variation that can be 

explained by SNPs reaching genome-wide significance. This common finding indicates 

that much of the missing heritability for many phenotypes, may be explained by SNPs 

not yet reaching genome-wide significance.  
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2.2 Methods 
 

2.2.1 Testing whether a breast cancer PRS is associated with breast 

cancer risk 

Many genetic variants have been shown to be associated with breast cancer risk, 

which implies that breast cancer has a polygenic basis. Polygenic scores can be used 

to provide additional evidence to infer that a disease, or trait, is polygenic. A training 

and replication sample are needed, these can either be based on two separate studies 

of the same phenotype, or a single study split into two samples. The two samples are 

used to perform a polygenic score analysis, and if there is found to be an association 

between the polygenic score and phenotype, the result suggests that the phenotype 

has a polygenic basis. 

Two independent GWAS were used to perform the polygenic score analyses 

conducted in this thesis. Using the “--score” command in PLINK, the SNP effects from 

one GWAS were used to construct a PRS for the women in the remaining independent 

GWAS. The SNP effects were estimated using a logistic regression model, with the 

relevant number of ancestry principal components for the training sample, included as 

covariates in the model. The principal components were included in the model in order 

to reduce the presence of population stratification. A logistic regression model was then 

used to examine the relationship between the breast cancer PRS and breast cancer 

risk, with the relevant number of ancestry principal components for the replication 

sample included as covariates in the model.  

2.2.2 Approaches to estimate chip heritability 

Using data currently available, either publicly or through their own 

collection/collaboration, many researchers have attempted to identify causal variants in 

order to explain the heritability for many individual complex diseases. As explained in 

chapter 1, the genetic variants discovered for many diseases fall short of explaining a 



56 
 

large proportion of the heritability for the disease. With that in mind, methods have 

been developed in order to estimate the proportion of phenotypic variance that can be 

explained by genotyped SNPs. Producing an accurate chip heritability estimate will 

enable researches to assess the potential current genotyped variants have of 

explaining “missing heritability”, without first having to establish which variants are 

causal variants. As mentioned in the previous section, methods typically used to 

estimate chip heritability include GREML (83) and LDSC (85). Palla et al.(88) have also 

developed an estimation method, known as the additive variance explained and 

number of genetic effects method of estimation (AVENGEME) (88). This method uses 

polygenic scores, and methodology previously given by Dudbridge (15), to produce a 

chip heritability estimate.  

In this section, an overview of the methods that have been used in this thesis to 

produce chip heritability estimates on a liability scale will be given. The estimates 

produced were based on SNPs that have been genotyped for either the BBCS, UK2 

GWAS study, or the COGS. 

2.2.2.1 LD score regression (LDSC) 

LD score regression (LDSC) (85), is a chip heritability estimation method that can be 

implemented using the web interface LD hub (89), which enables one to upload 

genotype data, and perform LDSC. The method produces an observed chip heritability 

estimate (ℎ𝑜
2 ) by regressing the chi-squared test statistic ( 𝜒2) for each individual SNP, 

i, against an LD score (ℓ𝑖), such that (85):  

𝐸[𝜒2|ℓ𝑖] = 𝑁𝑎 + 1 + 
𝑁ℎ𝑜

2ℓ𝑖

𝑀
 

Where, 𝑁 is the number of subjects, 𝑀 is the total number of SNPs, 
ℎ𝑜

2

𝑀
 is the average 

observed chip heritability and 𝑎 is the inflation from population stratification/cryptic 

relatedness, with 𝑁𝑎 + 1 being the intercept. The LD score,(ℓ𝑖) for a specific SNP, i, is 
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estimated by summing the measures of 𝑟2 associated with that SNP, for its relationship 

with other SNPs. LD scores are estimated under the belief that a SNP that is in LD with 

many SNPs, could have a higher univariate association statistic, than a SNP that is in 

LD with fewer SNPs (60).  

From this regression an estimate of the slope is produced, which can then be multiplied 

by M/N  to produce a heritability estimate on the observed scale.  

For case-control studies, the proportion of cases in each study tends to be higher than 

the proportion of cases in the general population, meaning that cases are over 

represented in the data. This is known as ascertainment bias, and should be adjusted 

for. For binary traits, the chip heritability on the observed scale estimate and its 

standard error can be transformed to the liability scale, and adjusted for ascertainment 

using the following equations given by Lee et al (90): 

ℎ𝑙
2 =  ℎ𝑜

2̂  
𝐾(1 − 𝐾)

𝑧2
 
𝐾(1 − 𝐾)

𝑃(1 − 𝑃)
 

𝑆𝐸(ℎ𝑙
2) =  √𝑣𝑎𝑟(ℎ𝑜

2) 
𝐾(1 − 𝐾)

𝑧2
 
𝐾(1 − 𝐾)

𝑃(1 − 𝑃)
  

Where, P is the sampling fraction, K the population prevalence, z the normal density 

height at threshold T, ℎ𝑙
2 is the chip heritability on a liability scale and ℎ𝑜

2 is the chip 

heritability estimate on the observed scale. 
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2.2.2.2 Genomic-relatedness based restricted maximum-likelihood (GREML) method 

GCTAs GREML uses both a genetic relationship matrix (GRM), 𝑨, and a linear mixed 

model, to estimate the genetic variation explained by all genotyped SNPs.  

The genetic correlation between each pair of individuals, j and k, is measured using the 

GRM, 𝑨, which can be estimated from SNPs, such that (83): 

𝐴𝑗𝑘 =
1

𝑀
 ∑

(𝑥𝑖𝑗 − 2𝑝𝑖)(𝑥𝑖𝑘 − 2𝑝𝑖)

2𝑝𝑖(1 − 𝑝𝑖)

𝑀

𝑖=1

 

 

Where,  𝑥𝑖𝑗 is the number of copies that the 𝑗𝑡ℎ individual has of the reference allele for 

the 𝑖𝑡ℎSNP, 𝑥𝑖𝑘 is the number of copies that the 𝑘𝑡ℎ individual has of the reference 

allele for the 𝑖𝑡ℎSNP, and 𝑝𝑖 is the frequency of the reference allele. The total number 

of SNPs is denoted as M.  

The GRM between each pair of individuals is then used to help produce a chip 

heritability estimate. A GREML chip heritability estimate is produced using a restricted 

maximum likelihood analysis of the following mixed model (83): 

𝒚 =  𝑿𝜷 + 𝒈 +  𝜺 

with, 

𝑣𝑎𝑟(𝒚) =  𝑨𝑔𝜎𝑔
2 + 𝑰𝜎𝜀

2 

With, 𝒚 being an n x 1 vector of phenotypes with sample size n, and 𝑿 an incidence 

matrix for 𝜷, a vector of fixed effects. In this thesis, 𝜷 shall be a vector of fixed effects 

for the eigenvectors used to adjust for population stratification. An n x 1 vector of the 

random genetic effects of all SNPs for all the individuals is denoted by 𝒈, with 

𝒈 ~ 𝑁(0, 𝑨𝑔𝜎𝑔
2), where 𝑨𝑔is the GRM estimated for the same SNPs and  𝜎𝑔

2 is the 

variance explained by the SNPs. The vector of residual effects is denoted by 𝜀, with 

𝜀 ~ 𝑁(0, 𝑰𝜎𝜀
2), where 𝑰 is an n x n identity matrix. 
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The genetic relationship matrix is used to adjust for any relatedness between 

individuals in order to improve the accuracy of the chip heritability estimate. By 

adjusting for subject relatedness, the estimated variation explained should then be 

based on the variation of SNPs alone.  

The variance explained by SNPs on the observed scale is transformed to the liability 

scale, and adjusted for ascertainment using the equations given by Lee et al (90). The 

GREML model allows for correlation between the analysed genotyped SNPs, so LD-

clumping and LD-pruning does not have to be carried out before using this method to 

estimate chip heritability.  

2.2.2.3 AVENGEME 

AVENGEME (88), a method developed by Palla & Dudbridge (88) based on methods 

described by Dudbridge (15), can also be used to estimate chip heritability. This 

method consists of a group of R functions, one of which can be used to estimate the 

proportion of trait variance explained by the genetic effects in the training sample (𝜎1
2), 

the genetic covariance between the training and replication sample (𝜎12) and the 

proportion of markers with no effect on the training trait (𝜋01). These estimates can be 

generated using the R function, “estimatePolygenicModel”, and z-scores that have 

been produced from testing the association between multiple polygenic scores and the 

replication trait.  

Dudbridge (15) presents a model where a pair of traits, 𝒀 = (𝑌1, 𝑌2)′, can be expressed 

as a linear combination of m genetic effects, with a pair of random errors 𝑬 = (𝐸1, 𝐸2)′ 

which include both environmental and un-modelled genetic effects:  

𝒀 =  𝜷′𝑮 + 𝑬 = (∑ 𝛽𝑖1 𝐺𝑖

𝑚

𝑖=1

+  𝐸1 , ∑ 𝛽𝑖2 𝐺𝑖

𝑚

𝑖=1

+ 𝐸2 )

′

 

Where, β  is an m x 2 matrix of coefficients and G  is a m-vector of coded genetic 

markers. It is assumed that the genetic markers are independent and standardised, 
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and E  is independent of G. Estimated marker effects are given as 𝛽̂𝑖1 and 𝛽̂𝑖2, for i = 

1,…m , with m  being the total number of markers.  

Assuming independence across the two samples, then either set of genetic effect 

estimates can be used to create a polygenic score (𝑆̂1 or 𝑆̂2). 

 For the training sample: 

𝑆̂1 =  ∑ 𝛽̂𝑖2𝐺𝑖

𝑚

𝑖=1

   

and for the replication sample: 

𝑆̂2 =  ∑ 𝛽̂𝑖1𝐺𝑖

𝑚

𝑖=1

   

                           

The polygenic score can then be used to test for an association with 𝑌1 and 𝑌2 , 

respectively.  

Focussing on 𝑆̂2, and assuming that 𝑌1 and 𝑌2 are binary traits,  𝛽̂𝑖1 can be produced 

using a logistic regression model, where the dependent variable is 𝑌1 and the 

independent variable is each 𝐺𝑖 for m.   

The association between 𝑆̂2 and 𝑌2 is then tested using logistic regression model, with 

the independent variable being 𝑆̂2 and the dependent variable 𝑌2. To estimate the 

proportion of trait variance explained by the genetic effects in the training sample (𝜎1
2), 

the genetic covariance between the training and replication sample (𝜎12) and the 

proportion of markers with no effect on the training trait (𝜋01), multiple 𝑆̂2 and 𝑌2 

associations should be tested. The number of z-scores/p-values produced should be 

greater than or equal to the number of parameters being estimated. The multiple z-

scores are produced by testing the association between 𝑆̂2 and 𝑌2 , with multiple 𝑆̂2 
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being constructed using SNPs from different SNP p-value intervals. The SNP p-value 

intervals are created based on each SNPs association with 𝑌1. 

Palla et al.(88) show that the variance explained by the polygenic score in the 

regression of 𝑌2 on 𝑆̂2 can be given as: 

𝑅𝑆̂2 ,𝑌2

2 =  
𝑚𝑐𝑜𝑣(𝛽̂𝑖1, 𝛽𝑖2)2

𝑣𝑎𝑟(𝛽̂𝑖1)𝑣𝑎𝑟(𝑌2)
 , 

and the asymptotic non-centrality parameter of the 𝜒1
2 test for the association between 

𝑌2 on 𝑆̂2 can also be given as (88): 

𝜆 =
𝑛2𝑅𝑆̂2 ,𝑌2

2  

(1 − 𝑅𝑆̂2 ,𝑌2

2 )
 

where, 𝑛2 is the sample size of the replication sample. 

From this, the expectation of the Z-test can be estimated as (88): 

 

𝜇 = √
𝑛2𝑅𝑆̂2 ,𝑌2

2  

(1 − 𝑅𝑆̂2 ,𝑌2

2 )
 , 

The observed z-scores, along with the expectation of the Z-test and maximum-

likelihood estimation can then used to find the 𝜎1
2, 𝜎12 and 𝜋01 values that maximize the 

following log-likelihood function (88): 

ℓ(𝜎1
2, 𝜎12, 𝜋01) =  ∑ 𝑙𝑜𝑔𝜑(𝑍𝑖 −  𝜇(𝜎1

2, 𝜎12, 𝜋01; 𝑑𝑖)

𝑘

𝑖=1

 ) , 

with 𝑑1, … , 𝑑𝑘 being the SNP selection p-value interval, for a set of k intervals, with the 

value of k being equal to or greater than the number of parameters estimated. Multiple 

z-scores, 𝑍𝑖, are estimated using SNPs within each 𝑑1, … , 𝑑𝑘 interval. The expectation 

of the Z-test is then represented by 𝜇(𝜎1
2, 𝜎12, 𝜋01;  𝑑𝑖). 
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To produce a chip heritability based an ensemble of markers genotyped as part of a 

study, study subjects can be randomly split into roughly equal internal training and 

replication samples, with the 𝑌1 and 𝑌2 then being the same trait. The effect sizes for all 

independent markers in the training sample, including SNPs that have not yet been 

shown to be associated with the trait, are estimated using either a logistic or a linear 

regression model. Principal components can be included in the model if population 

stratification needs to be adjusted for. The SNP p-value intervals, 𝑑1, … , 𝑑𝑘,  are 

created by assigning SNPs to different p-value threshold groups, based on their 

individual association with the training trait. The individual effect sizes for each marker 

are then used to construct a polygenic score for each subject in the replication sample, 

for the different SNP p-value thresholds, and the association between each score and 

𝑌2 is then tested. The z-scores produced are then used to estimate the additive genetic 

variance in the training sample (𝜎1
2), which is the chip heritability when 𝑌1 and 𝑌2 are the 

same trait, as well as the proportion of null markers with no effect on the trait in the 

training sample (𝜋01). With the training and replication samples assumed to have the 

same genetic model, the replication variance and covariance can be fixed to equal the 

variance explained on the training sample, and the proportion of null SNPs in the 

replication sample can also be set to equal the proportion of null SNPs in the training 

sample. For a binary trait, both the prevalence and sampling fractions for the two 

samples are needed. When 𝑌1 or 𝑌2 are binary, the chip heritability estimates are 

transformed from the observed scale to the unobserved liability scale, with 

ascertainment also being adjusted for, using the equation given by Lee et al (90). 

AVENGEME can also be used to estimate the power of the 𝜒1
2 test of the association 

between the polygenic score and 𝑌2, using the “polygenescore” R function. The 

estimates produced using “estimatePolygenicModel”, along with the total number of 

SNPs, sample size of training and replication sample, sampling fraction for both 

samples and prevalence, can be used to estimate 𝑅𝑆̂2 ,𝑌2

2 . This can then be used to 
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estimate the asymptotic non-centrality parameter of the 𝜒1
2 test for the association 

between 𝑌2 on 𝑆̂2 (𝜆). Power can be estimated by estimating the distribution function for 

the chi-squared distribution, with the estimated 𝜆 as the non-centrality parameter.  
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2.3 Quality control and LD removal  
 

2.3.1 SNP quality control 

As explained in the previous chapter, QC should be carried out on genetic data before 

analysis is performed. QC was executed on the European subjects and autosomal 

SNPs within each study, first using PLINK to identify and remove any SNPs that have a 

MAF less than 5%, missing rates greater than 5%, or a significant departure from HWE 

(p-value < 5x10−6). After SNP QC, 483,185 SNPs, 268,776 SNPs and 172,995 SNPs 

were retained in the UK2, BBCS and COGS, respectively. 

2.3.2 Sample quality control 

Individuals with discordant sex information, missing genotype rates greater than 5% 

and a heterozygosity rate ± 3 standard deviations away from the mean heterozygosity 

rate, were identified and removed using PLINK. With there being shared controls 

between the UK2 and BBCS GWAS, duplicate/MZ twin subject pairs were expected to 

be discovered across the two GWAS. Also, the BBCS and UK2 GWAS contributed to 

COGS, so overlap between COGS subjects and the subjects in the two GWAS was 

also expected. The relationship between subjects within and across each study was 

assessed using KING Version 1.4. The results from this assessment are given in Table 

2-1. No first-degree relative pairs were identified within either the UK2 or BBCS GWAS. 

Within COGS, both across and within the various BCAC studies, no duplicate/MZ twin 

pairs were identified. However, 100 parent-offspring related pairs were discovered, with 

the majority of these pairs having differing disease status. For every case-control 

related pair, the control was excluded in order to retain cases in the analysis. For every 

control-control and case-case pair, a subject was randomly removed whilst trying to 

remove subjects as evenly as possible across the BCAC studies. There were found to 

be 29 BBCS-COGS duplicate/MZ twin pairs, 84 UK2-COGS duplicate/MZ twin pairs 

and 5,190 BBCS-UK2 duplicate/MZ twin subject pairs, all with the same disease status. 
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The duplicate/MZ twin pairs between the two GWAS were all controls, which meant 

that one control from each subject pair was removed from either GWAS, whilst 

ensuring that the sampling fraction within each study was close to a half in order to 

retain power (15). For the COGS-GWAS pairs, the COGS subject from each pair was 

removed. This was because there were a larger number of subjects in the COGS, than 

there were in either GWAS. 

Between the studies, parent-offspring subject pairs were also identified, with 74 of 

these being BBCS-COGS pairs and 52 being UK2-COGS pairs. The majority of these 

pairs had differing disease status. No parent-offspring relatives were, however, 

identified across the two GWAS. The control from each parent-offspring pair was 

removed, however, if neither subject was a control, the COGS subject was removed. 

After exclusions, 3,628 cases and 3,581 controls remained in the UK2 study, and 1,609 

cases and 1,609 controls in the BBCS, making the sampling fractions for the UK2 and 

the BBCS 0.503 and 0.5 respectively. For COGS, 48,069 cases and 43,481 controls 

remained after exclusions (sampling fraction = 0.525). 

 

Study 1 Study 2 No. MZ twin pairs No. parent-offspring pairs 

BBCS BBCS 0 0 

UK2 UK2 0 0 

COGS COGS 0 100 

BBCS UK2 5,190 0 

BBCS COGS 29 74 

UK2 COGS 84 52 

Note:  
when study 1 = study 2, this is the number of related subject pairs within the study  

MZ twin pair: Kinship coefficient > 
𝟏

𝟐
𝟑
𝟐

 and prob of zero IBD sharing < 0.1 

Parent-offspring pair: Kinship coefficient ( 
𝟏

𝟐
𝟓
𝟐

,
𝟏

𝟐
𝟑
𝟐

 ) and prob of zero IBD sharing < 0.1 

Table 2-1: Subject overlap within and between each study 
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Both PC analysis and the genomic inflation statistic were then used to assess whether 

population stratification was present amongst the European subjects in any of the three 

studies. For the BBCS, with both the lack of clustering when plotting the first two 

principal components (Figure 2-1), and the genomic inflation statistic for the data being 

close to 1 (λ = 1.015), it would seem that the BBCS does not suffer from population 

stratification. However, for the UK2 study, some clustering of subjects and a slight 

separation between cases and controls was found when plotting the first two principal 

components (Figure 2-2). The genomic inflation statistic was also slightly greater than 1 

(λ = 1.113), therefore, both the PC plot and the genomic inflation statistic suggest that 

population stratification may exist in the UK2 GWAS. 

 

Figure 2-1: BBCS GWAS principal-component plot 
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Figure 2-2: UK2 GWAS principal-component plot 

 

To examine how many PCs were needed in order to adequately adjust for any 

population stratification present in the data, PCs were created and the data was 

adjusted by the PCs, one at a time, to see what effect this had on the genomic inflation 

statistic. When adjusting the UK2 study by ten PCs, the genomic inflation statistic 

decreased from 1.113 to 1.035, meaning that the inflation statistic was much closer to 

1. Even though both Figure 2-1 and the genomic inflation statistic for the BBCS GWAS 

indicated that population stratification might not be present, the genomic inflation 

statistic can be decreased further by adjusting the data by four PCs (1.015 to 1.014). 

Adjusting the studies by a larger number of PCs, did not reduce the inflation statistic 

further for either study.  
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Figure 2-3: COGS principal-component plot 

 
For the COGS, there was shown to be some clustering amongst subjects when plotting 

the first two principal components, which would indicate that population stratification 

may be present (Figure 2-3). The genomic inflation statistic for the data was close to 2 

(λ = 1.980), but did decrease further when adjusting the data by nine PCs, and for 

study (λ = 1.335). Study was adjusted for by creating n-1 dummy variables, with n 

being the number of BCAC studies. When Michailidou et al (45, 51) analysed the 

COGS, they adjusted the data by nine PCs and for BCAC study in order to reduce the 

inflation statistic. They found that adjusting by more than nine PCs did not further 

decrease the inflation statistic.  

The genomic inflation statistic remained high, even after adjusting for nine PCs, which 

could indicate that population stratification had not been correctly adjusted for. 

However, this result is consistent with multiple studies drawn from across Europe. 

Yang et al (91) have previously explained that genomic inflation should be expected 

when conducting a GWAS, especially a large-scale GWAS, even after adjusting for 

population stratification. The measure was proposed before GWAS, and before it was 
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known that many genetic variants affect disease risk. It assumes that the test statistic 

for each SNP, apart from the few SNPs that are truly associated with the trait, should 

follow the distribution under the null hypothesis of no association (91). We now know 

that for many complex diseases, disease risk is influenced by many SNPs, which 

individually have a small effect on risk of disease. Therefore, many more SNPs than 

previously thought are in fact associated with the trait, meaning many SNPs will have a 

larger chi-squared statistic than previously expected. Then, with the iCOGS array being 

hugely enriched for associated SNPs, the SNPs in the COGS study, on average, will 

have many more SNPs with a larger chi-squared statistic, than many other studies.  

After QC, 3,628 cases, 3,581 controls and 483,185 SNPs remained in the UK2 study, 

1,609 cases, 1,609 controls and 268,776 SNPs in the BBCS, and 48,069 cases, 

43,481 controls and 172,995 SNPs remained in COGS after exclusions.  

The subjects and SNPs retained in the studies after QC were used to produce both 

GREML, and LDSC chip heritability estimates. To produce AVENGEME chip heritability 

estimates, polygenic score analyses needed to be conducted. Internal training and 

replication sets for each study were needed, and there needed to be independence 

across SNPs. To create the training and replication samples, each study, after QC, was 

split into approximately equal sized internal training and replication sets. Subjects were 

randomly assigned to a training or replication sample, whilst ensuring the sampling 

fraction was close to a half, and that the two samples were roughly equal in size. For 

the UK2 GWAS, 3,604 subjects were allocated to the training sample (sampling 

fraction = 0.498), and 3,605 subjects to the replication sample (sampling fraction = 

0.508). For the BBCS GWAS, 1,609 subjects were allocated to the training sample 

(sampling fraction = 0.500), and 1,609 subjects to the replication sample (sampling 

fraction = 0.500). For COGS, 45,768 subjects (sampling fraction = 0.526) were 

assigned to the training sample, and 45,782 subjects (sampling fraction = 0.524) to the 

replication sample. 
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To ensure independence across SNPs, the LD amongst the SNPs within each study 

training sample was measured, and a LD-thinning technique was used to reduce high 

LD. With the full studies being used to conduct various analyses in this thesis, this 

includes testing whether breast cancer is polygenic using polygenic score analysis, the 

whole studies after QC were also LD-thinned.  

2.3.3 LD-thinning 

As discussed in chapter 1, there are two different LD-thinning methods that can be 

used to deal with high correlation between SNPs; LD-based clumping and LD-based 

pruning. Both methods were used, separately, on the SNPs retained after QC.  

LD-based pruning was used to identify SNPs with a pairwise estimate of LD greater 

than 0.2 (𝑟2 > 0.2), using a sliding window of 50 SNPs, while sliding across the genome 

5 SNPs at a time. An 𝑟2 > 0.2 was used to prune the SNPs, as this tends to be the 

constraint used when pruning (71). For every group of correlated SNPs, one SNP was 

randomly retained whilst the others were removed. After QC and LD pruning, 90,907 

SNPs in the UK2 study, 75,259 SNPs in the BBCS, and 142,816 SNPs in COGS 

remained. As LD-pruning randomly retains a SNP from a group of SNPs in high LD, 

there was no need to separately LD-prune the training sample SNPs, once the study 

itself has been LD-pruned. The LD-pruned SNPs for the whole QC study, were retained 

in the internal training samples. Therefore, the internal training samples for a study, 

contained the same number of SNPs as the whole LD-pruned study sample.  

To conduct LD-based clumping, p-values for the association between each SNP and 

breast cancer were needed, in order to rank the SNPs by their association with the 

trait. A logistic regression model, with ancestry principal components, was used to test 

the association between each SNP and breast cancer outcome.  LD-based clumping 

was then used to identify correlated SNPs, with a 𝑟2 > 0.1. The most significant SNP 

from each group of correlated SNPs, based on the given p-values, was retained for 
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further analysis. After QC and LD clumping, 83,702 SNPs in the UK2 study, 67,379 

SNPs in the BBCS, and 44,181 SNPs in COGS remained. After LD clumping the 

internal training sets, 83,851 SNPs remained in the training set for the UK2 study, 

67,654 SNPs in the BBCS training set and 44,181 SNPs in the COGS training set.  

The number of SNPs retained after LD-based pruning were consistently larger than the 

number of SNPs retained after LD-clumping across all three breast cancer studies. 

This was because the 𝑟2 threshold used varied, with 𝑟2 > 0.1 being used for LD-

clumping and 𝑟2 > 0.2 for LD-pruning.  
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2.4 Analysis of polygenic scores 

The first analysis performed, involved testing whether there was evidence that the SNP 

effects from one GWAS, could be used to predict breast cancer risk in an independent 

GWAS. If there was shown to be evidence, it would suggest that breast cancer has a 

polygenic basis. Polygenic score analysis, and the BBCS and UK2 GWAS were used 

conduct this analysis. One breast cancer GWAS was set as the training GWAS, and 

the other was the replication GWAS. A polygenic score for each subject in the 

replication GWAS was constructed using the SNP effects from the training GWAS, 

which were estimated whilst adjusting for the relevant number of principal components 

to control for population stratification. Different subsets of SNPs, based on their 

individual association with breast cancer outcome in the training sample, were created. 

Polygenic scores were constructed for the testing sample individuals, using the SNP 

effects for the SNPs within each subset (p ≤ 1, p ≤ 0.7, p ≤ 0.4, p ≤ 0.1, p ≤ 0.05, p ≤ 

0.01, and p ≤ 0.001). The association between each polygenic score and breast cancer 

outcome, in the replication GWAS, was then tested using a logistic regression model. 

Replication sample ancestry principal components were also included in the model, in 

order to adjust for population stratification in the data. This polygenic score analysis 

was done bi-directionally, so that each GWAS was used as both the testing and 

replication set.  

There were found to be a low number of SNPs in union between the two GWAS, so to 

increase the number of SNPs in the analysis, imputed SNPs for the replication GWAS 

were incorporated in the analysis. The SNPs present in the training GWAS, were 

extracted from the imputed SNPs for the replication sample. The imputed SNPs were 

converted to PLINK best guess genotype format, and merged with the replication 

GWAS.  

The results from this analysis suggest there to be a significant association between the 

breast cancer polygenic scores, and breast cancer outcome (Table 2-2). A PRS for 
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BBCS subjects, based on UK2 SNP effects, was shown to be associated with breast 

cancer status when using all SNPs (p ≤ 1, p-value = 8.05e-07), and also for the more 

stringent p-value thresholds. Significant associations were also shown in the other 

direction, with the PRS for UK2 subjects, based on BBCS SNP effects, shown to be 

associated with breast cancer status in the UK2 GWAS. Including non-significant SNPs 

in the scores, did not have much of an effect on the significance of the association. The 

PRS based on all genotyped SNPs was still shown to be associated with breast cancer 

outcome (p ≤ 1, p-value = 2.67e-07). All associations between PRS and breast cancer 

outcome were significant, regardless of the SNPs used in the score. For each p-value 

threshold the area under the ROC curve (AUC) was also computed using the “pROC” 

package in R (92) (Table 2-2). An AUC percentage close to 100% would indicate that 

the risk score excellently predicts breast cancer status for women in the replication 

sample. Unsurprisingly, the polygenic scores constructed are currently poor predictors 

of breast cancer status (AUC: ~55% - 61%). This was to be expected as sample sizes 

are not yet large enough to produce SNP effects that are accurate enough to be used 

in risk prediction.          

With a significant association between each constructed polygenic score and breast 

cancer outcome observed for each SNP threshold, including the polygenic score 

constructed using all independent genotyped SNPs, it was then investigated whether 

SNPs that are more significantly associated with breast cancer are driving the 

observed associations. To do this, the SNPs with a p-value ≤ 0.001 in the training 

sample were excluded from each of the polygenic scores and then the association 

between each score and breast cancer outcome in the replication was tested.  

Even after removing SNPs with a p-value ≤ 0.001 from the scores, a significant 

association between each of the breast cancer polygenic scores and breast cancer 

outcome in the independent replication sample was still observed (Table 2-3). 

Significant associations were observed in both directions, with even the least stringent 
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polygenic score still being shown to be associated with breast cancer outcome in the 

replication sample. Again, the polygenic scores constructed are presently poor 

predictors of breast cancer status (AUC: ~54% - 60%). 

The results from these analyses indicate that a polygenic score based on GWAS SNPs 

could be used to predict breast cancer risk for women in an independent GWAS as 

significant associations between each score and breast cancer outcome in the 

replication sample was observed. These results therefore suggest that breast cancer 

has a polygenic basis. However, the computed AUC values suggest that the 

constructed polygenic scores are currently poor predictors of breast cancer outcome in 

the replication sample.   

 

Training  Replication  SNP threshold* No. SNPs** p-value AUC (%) 

UK2 GWAS BBCS GWAS p ≤ 1 82,704 8.05e-07 55.34 

  p ≤ 0.7 70,692 4.88e-07 55.41 

  p ≤ 0.4 50,893 3.75e-07 55.46 

  p ≤ 0.1 18,645 9.17e-07 55.19 

  p ≤ 0.05 10,734 1.59e-07 55.76 

  p ≤ 0.01 2,849 9.35e-08 55.92 

  p ≤ 0.001 377 2.85e-07 55.84 

BBCS GWAS UK2 GWAS p ≤ 1 63,328 2.67e-07 60.54 

  p ≤ 0.7 53,563 2.49e-07 60.54 

  p ≤ 0.4 38,030 4.9e-08 60.62 

  p ≤ 0.1 13,156 1.2e-07 60.52 

  p ≤ 0.05 7,355 9.83e-07 60.43 

  p ≤ 0.01 1,808 1.64e-07 60.54 

  p ≤ 0.001 221 2.97e-07 60.52 

* Training sample SNPs association with breast cancer in training sample 
** The number of SNPs used in polygenic score analysis 
Note: AUC = Area under the ROC curve 

 

Table 2-2: Association between PRS and breast cancer outcome using two 
independent GWAS 
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Training  Replication  SNP threshold* No. SNPs** p-value AUC (%) 

UK2 GWAS BBCS GWAS 0.001 < p ≤ 1 82,327 1.89e-05 54.78 

  0.001 < p ≤ 0.7 70,315 1.21e-05 54.85 

  0.001 < p ≤ 0.4 50,516 1.04e-05 54.88 

  0.001 < p ≤ 0.1 18,268 6.12e-05 54.43 

  0.001 < p ≤ 0.05 10,357 2.79e-05 54.81 

  0.001 < p ≤ 0.01 2,472 3.36e-04 54.41 

BBCS GWAS UK2 GWAS 0.001 < p ≤ 1 63,107 6.18e-06 60.40 

  0.001 < p ≤ 0.7 53,342 5.88e-06 60.40 

  0.001 < p ≤ 0.4 37,809 1.49e-06 60.47 

  0.001 < p ≤ 0.1 12,935 9.31e-06 60.33 

  0.001 < p ≤ 0.05 7,134 1.37e-04 60.22 

  0.001 < p ≤ 0.01 1,587 4.95e-04 60.18 

* Training sample SNPs association with breast cancer in training sample 
** The number of SNPs used in polygenic score analysis 
Note: AUC = Area under the ROC curve 

 

Table 2-3: Association between PRS and breast cancer outcome using two 
independent GWAS - removing SNPs with p-value < 0.001 in the training set 
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2.5 Estimating chip heritability 

The concept of heritability, and the various forms of this measure, were briefly 

discussed in chapter 1. Much of the heritability for breast cancer is said to be missing, 

but with advances in computation and statistical methods, we are now able to estimate 

the proportion of phenotypic variation that can be explained by genotyped SNPs (chip 

heritability). A chip heritability estimate can be produced using unrelated individuals, 

and without having to first identify all associated SNPs, which is useful as GWAS are 

currently underpowered to detect all associated variants with current sample sizes.  

Three different methods, AVENGEME, GREML and LDSC, have been used to 

estimate the variation in liability to breast cancer that can be explained by genotyped 

SNPs. Estimates have been produced for the two breast cancer GWAS, and the 

COGS.  

As well as the chip heritability, the proportion of SNPs that have no effect on breast 

cancer will also be estimated for each study, using AVENGEME. 

2.5.1 Heritability explained by GWAS SNPs 

With the studies analysed being case control studies, and with the disease of interest 

being binary, the prevalence was needed in order to estimate chip heritability on a 

liability scale, and to adjust for ascertainment bias. The prevalence for breast cancer 

has been given as ~0.036 (6, 15), however the prevalence for bilateral breast cancer 

was not widely known. Treating the probability of developing the first primary breast 

cancer tumour, as independent to the probability of developing a second primary breast 

cancer tumour, the probability of developing two primary breast cancer tumours could 

be equal to the square of the primary breast cancer prevalence, which is ~0.001. 

However, a woman who has been diagnosed with breast cancer once, has an 

increased risk of developing a second primary breast cancer tumour, which therefore 

means that the risk of developing the second tumour is higher than developing the first 

primary breast cancer tumour (93). Therefore, the prevalence of bilateral breast cancer 
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would be slightly higher than 0.001, meaning that the chip heritability estimate 

produced assuming this prevalence, would be a lower bound estimate. This prevalence 

value was assumed for each of the three studies, even for the COGS as it contained a 

mixture of breast cancer cases, which included familial and bilateral cases. The 

prevalence was also assumed for the UK2 study, as it contained familial breast cancer 

cases, which also meant that the prevalence value should be smaller than the general 

breast cancer prevalence.  

In order to produce a ℎ𝑙
2 (chip heritability on the liability scale) estimate using 

AVENGEME, multiple z-scores, produced after conducting multiple polygenic score 

analyses, were needed. Scores were constructed using the training SNPs within each 

p-value threshold subset. The z-scores produced for each subset, and used to conduct 

the analysis, are given in the Appendix 2: Table 1 & 2. 

The AVENGEME ℎ𝑙
2 estimates based on GWAS SNPs retained after LD pruning 

ranged from 17% to 19%, whereas the estimates based on GWAS SNPs retained after 

LD clumping ranged from 16% to 21% (Table 2-4). The ℎ𝑙
2 estimate based on UK2 

SNPs retained after LD clumping were larger than the estimate produced when using 

SNPs retained after LD pruning, but the same was not shown for the BBCS GWAS, as 

LD pruned SNPs produced a higher ℎ𝑙
2 estimate. Both the GREML and LDSC ℎ𝑙

2 

estimates were smaller than the AVENGEME ℎ𝑙
2 estimates, with LDSC producing much 

smaller estimates than both AVENGEME and GREML (ℎ𝑙
2: 5.7% - 6.5%). This is not 

the first time that LDSC chip heritability estimates have been found to be smaller than 

GREML estimates. Yang et al. (94) state that when using the same data sets, chip 

heritability estimates produced using LDSC have tended to be smaller than those 

produced using GREML. Yang et al. believed that it is possible that this could be to do 

with errors when using a reference panel to estimate LD scores.  
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The 95% CI for the ℎ𝑙
2 estimates produced for the BBCS GWAS were much wider than 

those produced for the UK2 GWAS, thus indicating that the BBCS estimates produced 

were less precise. With the sample size for the BBCS being smaller than the UK study, 

this would explain why the 95% CIs for ℎ𝑙
2 estimates are wider for the BBCS, than they 

are for the UK2 study. On the Wiki FAQ page for LDSC, this is further confirmed as 

Bulik-Sullivan (95) warn that LDSC can produce very noisy estimates, if the sample 

size used is less than 5,000 subjects. The 95% CIs for the GREML ℎ𝑙
2 estimates were 

narrower than those produced when using the other two estimation methods, 

suggesting that the estimates produced using this method were more precise, than 

those produced using the other two methods.  

 

              AVENGEME ℎ𝑙
2 (95% CI) GREML ℎ𝑙

2 (95% CI) LDSC ℎ𝑙
2 (95% CI) 

GWAS LD-pruning LD-clumping   

UK2 0.171 (0.112, 0.229) 0.209 (0.152, 0.265) 0.143 (0.110, 0.176)                  0.057 (0.000, 0.114) 

BBCS 0.188 (0.070, 0.307) 0.158 (0.047, 0.272) 0.108 (0.037, 0.179) 0.065 (0.000, 0.192) 

Notes: By assuming normally distributed estimators, the 95% confidence intervals for GREML and LD 

score regression were converted from the standard errors given for each ℎ𝑙
2 estimate. 

Table 2-4: Chip heritability estimates (ℎ𝑙
2) for GWAS SNPs  

 

The estimated proportion of markers that have no effect on breast cancer risk (π01), 

based on SNPs genotyped for either GWAS, was also estimated when using 

AVENGEME to estimate ℎ𝑙
2 (Table 2-5). The estimated π01  for the UK2 GWAS SNPs 

was larger than the estimate produced for the BBCS, when using LD pruned SNPs to 

conduct the analysis. However, the opposite was shown when conducting the analysis 

on LD clumped SNPs. The results mainly suggest that less than 10% of the GWAS 

SNPs have an effect on breast cancer risk, but with the 95% CIs for all estimates being 

very wide, and the BBCS π01 estimate being much smaller than the other estimates 

(π01 = 0.485), it meant that a reasonable conclusion about the data could not be made. 
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 π01 (95% CI) 

GWAS LD-pruning LD-clumping 

UK2 0.934 (0.000, 0.976) 0.900 (0.000, 0.960) 

BBCS 0.485 (0.000, 0.994) 0.980 (0.000, 0.998) 

Table 2-5: Estimated proportion of null SNPs (π01) for GWAS                       

 

2.5.2 Heritability explained by custom array SNPs 

With it estimated that up to 20.9% of the variation in liability to breast cancer, could be 

explained by genotyped GWAS SNPs, the next obvious step was to estimate how 

much variation in liability to breast cancer can be explained by custom array SNPs. 

Estimates were produced using AVENGEME, GREML and LDSC. A prevalence of 

0.001 was assumed, and in order to produce AVENGEME ℎ𝑙
2 estimates, multiple z-

scores, from regressing a PRS and breast cancer outcome for different p-value 

thresholds, were produced (Appendix 2: Table 3).  

With ~90,000 individuals in the COGS, the sample size was too large for GCTA to 

compute the genetic relationship matrix needed for GREML to estimate ℎ𝑙
2. To produce 

a GREML ℎ𝑙
2 estimate, a subset of 10,000 subjects were used, with these 10,000 

randomly extracted whilst maintaining similar proportions across the BCAC studies to 

those for the whole of COGS.  

The results from this analysis suggested that up to 15% of the variation in liability to 

breast cancer, could be explained by the custom array SNPs (Table 2-6). A surprising 

find was that the AVENGEME estimate based on LD-pruned SNPs was observed to be 

larger than the estimate produced after LD-clumping SNPs. By retaining the SNP with 

the strongest association with breast cancer outcome in each LD block, you would 

expect these SNPs to explain a larger amount of the variation in disease, than those 

randomly retained. There were over three times as many SNPs retained after LD-

pruning, than there were after LD-clumping, which might explain why the LD-pruning 
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estimate was larger than the LD-clumping estimate. The GREML estimate, based on a 

reduced number of individuals, but a larger number of SNPs than those retained after 

LD-thinning, was much closer to the AVENGEME LD-clumped estimate, than the LD-

pruned estimate.  

The ℎ𝑙
2 estimates based on GWAS SNPs were larger than the estimates based on the 

custom array SNPs. But with many more variants being genotyped for a GWAS, this is 

not surprising. With the ℎ𝑙
2 estimates based on GWAS SNPs having a wider 95% CI 

than the estimates based on the custom array, the GWAS ℎ𝑙
2 estimates were less 

precise. This was to be expected as the number of women genotyped for the COGS, 

was much larger than the number of women genotyped for either GWAS. The LDSC ℎ𝑙
2 

estimate was roughly double both the AVENGEME estimate based on LD-clumped 

SNPs, and the GREML estimate. It was fairly close to the AVENGEME estimate based 

on LD-pruned SNPs, but it also had a relatively wide 95% CI. The standard error for a 

LDSC ℎ𝑙
2 estimate will usually be fairly large, if less than 200,000 SNPs are used to 

produce an estimate (95). With the number of SNPs analysed being under 200,000, the 

LDSC ℎ𝑙
2 estimate based on SNP genotyped for the COGS, was therefore fairly 

imprecise.  

 

        AVENGEME ℎ𝑙
2 (95% CI) GREML ℎ𝑙

2 (95% CI) LDSC ℎ𝑙
2 (95% CI) 

LD-pruning LD-clumping   

0.143 (0.137, 0.150) 0.059 (0.055, 0.063) 0.078 (0.060,0.096) 0.146 (0.091,0.201) 

Notes: By assuming normally distributed estimators, the 95% confidence intervals for GREML and 

LD score regression were converted from the standard errors given for each ℎ𝑙
2 estimate. 

Table 2-6: Chip heritability (ℎ𝑙
2) estimates for COGS 
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Using LD-clumped COGS SNPs, it was estimated that approximately 70% of the SNPs 

genotyped on the iCOGS array were null SNPs (Table 2-7). The estimate was slightly 

lower than the estimate produced using LD-pruned COGS SNPs, where it was 

estimated that approximately 79% of the SNPs genotyped on the iCOGS array were 

null SNPs.  

Both π01  estimates were mainly lower than the estimates produced for the genotyped 

GWAS SNPs, which was to be expected as the SNPs on the iCOGS array had been 

chosen for their association with breast cancer, based on the results from previous 

studies. This meant that the array was enriched for breast cancer associated SNPs, so 

the proportion of SNPs with an effect on breast cancer risk should be higher. In 

addition, the COGS SNPs retained after LD-clumping would contain, on average, a 

larger number of associated breast cancer SNPs, than would be retained after LD-

pruning. Therefore, it could be expected that the estimated proportion of null SNPs for 

COGS, based on LD-clumped SNPs, would be lower than the estimate produced using 

LD-pruned SNPs. The estimates produced in Table 2-7 for COGS were more precise 

than those produced for the two GWAS (Table 2-5) as the 95% CIs for the COGS 

estimates were shown to be narrower than the 95% CI for the GWAS estimates. With 

COGS having a much larger sample size, this was expected.  

 

π01 (95% CI) 

LD-pruning LD-clumping 

0.788 (0.762, 0.810) 0.696 (0.636, 0.743) 

Table 2-7: Estimated proportion of null SNPs (π01) for COGS 
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2.6 Discussion 

The aim of this chapter was to find evidence to suggest that a large number of SNPs, 

collectively explain a proportion of the heritability for breast cancer. With published 

genome-wide significant loci explaining a small proportion of the genetic variation for 

the disease, the remaining genetic variation for the disease needs to be accounted for.  

Using two breast cancer GWAS, the BBCS and the UK2 study, and up to 82,704 

autosomal SNPs, significant polygenic components for breast cancer were observed. A 

breast cancer polygenic score, based on all autosomal SNPs, was shown to be 

significantly associated breast cancer outcome in an independent sample (p-value < 

0.05). The same was observed when decreasing the number of SNPs in the polygenic 

score, by applying stricter inclusion thresholds. Even when the polygenic score was 

constructed using as few as 221 SNPs, the score was still significantly associated with 

breast cancer outcome. Other studies have tended to focus on genome-wide significant 

loci when examining whether a polygenic score can be used to predict disease risk in 

an independent sample. This is through the belief that increasing the number of SNPs 

in the score, by including SNPs not reaching genome-wide significance, it will cause 

the score to become noisy, which could reduce predictive power. However, if the 

number of SNPs used in the score is reduced, there is a risk of being too stringent, 

which could lead to true associations being excluded. This in itself could also lead to a 

reduction in power to detect an association between the score and trait. With significant 

associations between score and breast cancer outcome observed when including a 

large number of SNPs in the score, it suggests that power was not compromised. 

When the number of SNPs was reduced, the association was still significant, so again, 

this would suggest that power was not compromised.  

Even though the association results indicated that the SNP effects from one breast 

cancer GWAS could be used to predict breast cancer risk in an independent GWAS, 

sample sizes are currently not large enough to make accurate risk predictions using the 
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polygenic scores derived in this analysis. This was affirmed by the computed AUC 

values which were approximately 54% - 60%. The individual SNP effect estimates are 

not yet accurate enough, but risk prediction will be feasible once the sample sizes 

increase. These results do however indicate that a large number of SNPs collectively 

explain the variation in breast cancer risk, and this was still observed after removing 

SNPs with a p-value ≤ 0.001 (lowest threshold), thus suggesting that breast cancer is a 

polygenic trait.  

Also in this chapter, three different methods were used to estimate chip heritability on 

the liability scale, with each one producing a different estimate with varying 95% CIs. 

Common GWAS SNPs were estimated to explain between 12%-48% of the genetic 

variation in liability to breast cancer (liability scale heritability = ~44%). SNPs 

genotyped on the iCOGS array were found to capture between 13%-33% of the genetic 

variation in liability to breast cancer. These results shown that SNPs that have not been 

shown to reach genome-wide significance, do explain some of the genetic variation in 

breast cancer risk. These results were similar to those produced for other complex 

diseases, where common SNPs have been shown to explain approximately a third of 

the variation in a trait. By using larger sample sizes than used by Lu et al.(86) to 

produce a breast cancer ℎ𝑙
2 (ℎ𝑙

2: 13%, 95% CI:[0%-56%]), more precise estimates have 

been produced. The 95% CI for the published breast cancer ℎ𝑙
2 estimate was quite 

wide, but the point estimate, considering the width of the 95% CI, is not too dissimilar to 

the ℎ𝑙
2 estimates produced for the BBCS and UK2 studies. After estimating the genetic 

variation that can be explained by genotyped SNPs, there is still shown to be some 

unexplained genetic variation in breast cancer liability. The variation may be explained 

by rare causal SNPs that have an MAF lower than those picked up on the GWAS 

array, or by interactions. 

Focussing on the 95% CIs alone, out of the three methods, GREML was shown to 

produce the most precise GWAS based ℎ𝑙
2 estimate. However, when including more 
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individuals in the analysis, by producing ℎ𝑙
2 estimates based on COGS, AVENGEME 

was shown to produce a more accurate ℎ𝑙
2 estimate. The GREML method could not be 

applied to the full COGS sample, so a subset of 10,000 subjects was used to produce 

a GREML ℎ𝑙
2 estimate. This was the disadvantage of using this method, as it meant 

that I could not take advantage of the large COGS sample. LDSC was also found to be 

an unsuitable method to estimate ℎ𝑙
2 from COGS data because the number of SNPs 

genotyped on the iCOGS array was less than 200,000, which meant that estimate 

precision was compromised. AVENGEME produced the most accurate ℎ𝑙
2 estimate for 

the COGS, and, compared to the other two methods, it was able to handle both the 

large sample size and the reduced number of SNPs well. Palla & Dudbridge (88) have 

shown, using simulations, that the accuracy of AVENGEME estimates can be improved 

by clumping SNPs with a 𝑟2 = 0.1, rather than pruning SNPs, or using a less stringent 

𝑟2 threshold when clumping. We can see from looking at the results in both Table 2-4 

and Table 2-6, that the ℎ𝑙
2 estimates based on LD clumped SNPs have narrower 95% 

CIs, than the 95% CIs for the estimates produced using LD-pruning SNPs. As an LD-

thinning method, LD-clumping SNPs is generally preferred over LD-pruning. This is 

because it allows the SNPs with the strongest association with the trait, and possibly 

the SNPs that are most likely to be the causal SNP, out of a group of SNPs in high LD 

to be retained in an analysis.  

The ℎ𝑙
2 AVENGEME estimates suggest that GWAS SNPs explain a larger proportion of 

the genetic variation in breast cancer risk, compared to the SNPs genotyped on the 

iCOGS array. This was expected, as there were many more SNPs genotyped for the 

GWAS, then there were for the COGS. The estimated proportion of null markers 

present in either GWAS, were different to the proportion of null markers estimated to be 

present in the COGS. The proportion of null SNPs in the COGS, was estimated to be 

smaller than the proportions estimated for either GWAS. This was anticipated, as the 

iCOGS array is enriched for breast cancer associated SNPs. The ℎ𝑙
2 and π01 estimates 
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produced after LD-clumping the GWAS SNPs, ranged from 16%-21% and 90%-98%, 

respectively. These AVENGEME estimates are consistent with the AVENGEME 

estimates produced for other complex disease. Using published association results for 

polygenic scores and meta-analyses data, Palla & Dudbridge (88) have used 

AVENGEME to produce ℎ𝑙
2 and π01 for five diseases; rheumatoid arthritis, celiac 

disease, myocardial infarction, type II diabetes and schizophrenia. The ℎ𝑙
2 estimates 

ranged from 13%-34%, with the π01 estimate ranging from 85%-97%, which is similar to 

the estimates that were produced for the two breast cancer GWAS. Even though 

AVENGEME had not produced the most precise ℎ𝑙
2 estimates for GWAS SNPs, out of 

the three methods used in this analysis presented in this chapter, the user does benefit 

from being able to also estimate the proportion of null SNPs in a study. Similar to 

LDSC, AVENGEME can produce ℎ𝑙
2 estimates based on summary statistics, but unlike 

LDSC, AVENGEME has been shown to work well with studies where fewer than 

200,000 SNPs have been genotyped. AVENGEME has also been shown to handle 

large samples, in terms of sample size, whereas GREML has not. Overall, 

AVENGEME has been shown to produce relatively precise ℎ𝑙
2 estimates, considering 

sample size, and has been shown to work well with both GWAS and the larger COGS. 

Another method that can be used estimate chip heritability is LDAK (Linkage 

Disequilibrium-Adjusted Kinship) (96, 97). The chip heritability method is not as widely 

used as GREML or LDSC, and has not been used to produce estimates in this thesis, 

which could be considered a limitation. Unlike the other methods used in this thesis, 

LDAK estimates chip heritability under the assumption that SNPs in regions of low LD 

contribute more genetic variation in disease, than SNPs in high LD regions. On the 

other hand GREML, for example, assumes that the genetic variation explained by a 

group of SNPs is influenced by the number of SNPs in the group, with each SNP 

explaining the same amount of genetic variation. When using LDAK, the LD between 

SNPs is taken into consideration. If the two SNPs are in high LD, LDAK would expect 
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these SNPs to contribute half of the genetic variation of that explained by two SNPs 

that are not in LD. It is assumed that the signal of a SNP should be virtually captured 

by the SNPs it is in high LD with, so it may not be necessary to include this SNP when 

estimating the genetic variance explained. For a group of SNPs, LDAK allocates a 

weight to each SNP, with SNPs in low LD regions being assigned a higher weight than 

those in high LD regions. A SNP is given a weighting of zero if it is in high LD with 

nearby SNPs. In order to use LDAK to estimate chip heritability, raw genotype data is 

needed, summary statistics cannot be used.  

This results in this chapter show the importance of continuing to use, and increase the 

size of, GWAS in order to identify genetic variants associated with breast cancer risk. 

Larger sample sizes are also needed to improve estimate precision, which is evident 

from looking at the estimates produced in this chapter. The chip heritability estimates 

produced using smaller sample sizes, have tended to have wider 95% CI, or larger 

standard errors. Samples therefore need to be as large as possible, in order to improve 

precision. The ℎ𝑙
2 estimates produced, however, do show that GWAS have the 

potential to identify many more genetic variants, once sample sizes increase, as this 

will improve the power to detect the associated SNPs. At the time of writing this thesis, 

the OncoArray was under development (54) and the UK Biobank data, based on 

500,000 individuals had announced its release. With the release of these large 

datasets, in terms of SNPs and the number of individuals genotyped, comes the 

exciting prospect of discovering many more breast cancer associated loci, if the 

estimates produced in this chapter are anything to go by.  
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Chapter 3 Genome partitioning of genetic 
variation for breast cancer 
 
3.1 Introduction  

In the previous chapter, the variation in liability to breast cancer that could be explained 

by genotyped SNPS ( ℎ𝑙
2) was estimated for the two breast cancer GWAS, and the 

COGS. In this chapter, the chip heritability contribution for different SNP subsets will be 

estimated in order to partition the  ℎ𝑙
2 estimates produced in chapter 2 by minor allele 

frequency (MAF), chromosome and SNP annotation. Partitioning the variance 

explained by genotyped SNPs will improve our understanding of how this variation is 

spread across the genome. If sections of the genome are found to explain more 

variation for breast cancer then other regions, then it could indicate areas of the 

genome where causal variants are more likely to be positioned.  

3.1.1 Literature on genetic partitioning 

Partitioning the genetic variance explained by GWAS SNPs allows for the identification 

of areas of the genome that could harbour causal variants. Genomic partitioning 

studies have been carried out on a variety of complex traits including schizophrenia 

(58), Alzheimer’s disease, multiple sclerosis and endometriosis (98). From reviewing 

the partitioning studies, it was evident that genetic variance was commonly partitioned 

by MAF, chromosome or SNP annotation. 

3.1.1.1  Partitioning by SNP MAF 

Stratifying SNPs based on their MAF, and estimating the genetic variation that can be 

explained by the stratified SNPs, allows us to better understand how genetic variation 

is distributed across different MAFs. From reviewing the partitioning studies that have 

been carried out, it was evident that GCTAs GREML was the method that tended to be 

used when partitioning genetic variation by MAF (98, 99). GREML can be used to 
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stratify all genotyped SNPs by their MAF, and produce an estimate of the variance 

explained by each MAF group.  

Using GREML, Lee et al.(58) have partitioned the estimated genetic variation in liability 

for schizophrenia (ℎ𝑙
2 = 23%, se = 1%) by MAF, in order to explore whether common 

variants play an important role in the genetic basis of the disease. SNPs were assigned 

to one of five MAF bins; 0.01-0.1, 0.1-0.2, 0.3-0.4 and 0.4-0.5, with the genetic 

variation explained by the SNPs in each bin estimated. The 0.01-0.1 bin was estimated 

to explain the least amount of genetic variation (2%, se= 1%) compared to the other 

MAF bins, which each explained ~5% of the genetic variation (se = 1%). The authors 

believed this could have been due to the reduced number of SNPs in that bin, as SNPs 

with a MAF< 0.01 were removed in a QC step before undertaking the analysis, 

therefore causing less common SNPs to be under-represented. With this result, Lee at 

al. concluded that a considerable proportion of the genetic variation in liability was due 

to common causal variants.  

Another study, conducted by Lee et al. (98), has also estimated  ℎ𝑙
2 for different traits 

using GWAS SNPs, and then partitioned this by SNP MAF. Three traits were 

examined; Alzheimer’s disease, multiple sclerosis and endometriosis. GREML was 

used to produce  ℎ𝑙
2 estimates, based on GWAS SNPs retained after QC. The  ℎ𝑙

2 

estimates for Alzheimer’s disease, multiple sclerosis and endometriosis were 26% (se 

= 4%, 488,532 SNPs and 10,135 individuals), 24% (se = 3%, 499,757 SNPs and 7,139 

individuals) and 30% (se = 3%, 293,474 SNPs and 3,557 individuals), respectively.  

SNPs for each of the traits were then assigned to one of the following MAF bins: MAF 

< 0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4 and 0.4-0.5, and then the ℎ𝑙
2 for each bin was estimated 

using GREML. As expected, summing the ℎ𝑙
2 estimate across the MAF bins for all three 

traits produced a summed estimate that was similar to the overall  ℎ𝑙
2 estimate 

produced for the trait. The 0.3-0.4 MAF bin was shown to explain the most genetic 

variation for all three traits, compared to the other MAF bins (Alzheimer’s: ℎ𝑙
2 = 8%, se 
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= 3%, MS: ℎ𝑙
2 = 9%, se = 3% and endometriosis: ℎ𝑙

2 = 8%, se = 3%). Common SNPs 

with a MAF > 0.1 were shown to explain a large proportion of the genetic variation for 

each of the three traits, with the proportion being approximately 90%.  

Sieradzka et al. (99) have also used MAF partitioning, this time to investigate whether 

common genetic variants are important in the aetiology of psychotic experiences. 

Sieradzka et al. used three approaches to estimate SNP heritability, for each of 

following psychotic experiences; paranoia, hallucinations, cognitive disorganization 

(CD), grandiosity, anhedonia and negative symptoms (NS). MAF-stratification 

(partitioning by MAF) was one of three approaches used to estimate SNP heritability. 

Six MAF bins were used in the analysis to stratify SNPs; MAF< 0.05, 0.05-0.1, 0.1-0.2, 

0.2-0.3, 0.3-0.4 and 0.4-0.5. GREML was then used to estimate the genetic variance 

explained by the SNPs in each MAF bin, for each psychotic experience. The sum of the 

chip heritability estimates produced for each partitioned MAF bin were shown to be 

fairly consistent with the overall chip heritability estimate produced for each psychotic 

experience. For two psychotic experiences, CD and Anhedonia, the MAF bin that 

explained the most genetic variation was the MAF < 0.05 bin (CD: 8.9%, se = 8% and 

Anhedonia: 21.4%, se = 8%). Over 40% of the genetic variation for Hallucinations and 

NS was estimated to be explained by SNPs within the 0.2-0.3 MAF bin (Hallucinations: 

5.6%, se = 9% and NS: 4.7%, se = 9%). For Grandiosity and Paranoia, it was SNPs 

within the 0.3-0.4 and the 0.4-0.5 MAF bin, respectively, that explained the most 

genetic variation (Grandiosity: 12.1 %, se = 9% and Paranoia: 15.7%, se = 8%). The 

results from this analysis showed that, for the majority of the adolescent psychotic 

experiences analysed, SNPs with an MAF > 0.05 explain a larger proportion of the 

genetic variation in disease.  

3.1.1.2  Partitioning by chromosome 

Partitioning genetic variation by chromosome can be used to investigate whether 

specific chromosomes explain more of the genetic variation for disease, than other 
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chromosomes. If this is shown to be the case, it could indicate that the chromosome 

harbours a larger number of causal variants. The analysis can also be used to examine 

whether the variance explained by a chromosome is proportional to its length (Mb). If 

there is found to be a relationship between chromosome length and the variance 

explained, it would imply that the disease has a polygenic basis, as the results would 

suggests that polygenic effects are spread evenly across the genome. When the 

chromosome group estimates are summed, the summed estimate should be close to 

the overall chip heritability estimate. If the two are not close, it indicates that population 

stratification may be present in the data. Population stratification could cause LD 

between chromosomes, which in turn would cause the genetic variation explained by 

each chromosome, when individually estimated, to be overestimated, as the variation 

explained by one chromosome could include the variation from other chromosomes 

(98, 100). 

In a study conducted by Yang et al.(100), previously mentioned in chapter 2, the 

genetic variation for height, von Willebrand factor (vWF), QT interval (QTi) and BMI 

were estimated using GREML. They found that ~45% (se = 2.9%, 11,576 individuals) 

of the phenotypic variation in height, ~17% (se = 2.9%, 11,558 individuals) in BMI, 

~25% (se = 5.1%, 6,641 individuals) in vWF and ~21% (se = 5%, 6,567 individuals) in 

QTi could be explained by 565,040 autosomal SNPs. The genetic variance for the four 

traits was then partitioned by chromosome and regressed against chromosome length 

(Mb), using a linear regression model. The results from this analysis suggested that the 

variance explained by each chromosome was proportional to chromosome length for 

both height and QTi, as there was shown to be a strong linear relationship between the 

two variables (height: p = 1.4 x 10−6 and 𝑅2= 0.695, QTi: p = 1.1 x 10−3  and 𝑅2= 

0.422). The same however could not be shown for vWF and BMI, where the linear 

association between the two variables for the two traits was non-significant, with a 

small 𝑅2 (vWF: p = 0.524 and 𝑅2= 0.021, BMI: p = 0.214 and 𝑅2= 0.076). Yang et al. 
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concluded from these results that even though there was shown to be a linear 

relationship between the estimated variance for a chromosome and chromosome 

length, the relationship was imperfect. Some chromosomes of similar length were 

found not to explain a similar proportion of variance, with variability across 

chromosomes being observed. This was especially the case for vWF and BMI, where a 

non-significant linear association between chromosome length and genetic variation 

explained was observed. Yang et al. explained that for vWF, much of the genetic 

variation for the trait is explained by a common SNP that maps within a gene (ABO). 

This would mean that the genetic variation for this trait is not as evenly spread across 

the genome, as the other traits.  

As well as partitioning ℎ𝑙
2 by MAF, Lee et al. (58) have also partitioned the ℎ𝑙

2 for 

schizophrenia by chromosome using GREML. When summing up the genetic variation 

explained by each individual chromosome, the estimated ℎ𝑙
2 for schizophrenia was 

26%. This was compared to the overall ℎ𝑙
2 estimate for schizophrenia, which was 

estimated to be 23%. From this, Lee at al. concluded that there was little evidence of 

population stratification being present in the data. Lee et al. also tested whether there 

was a significant linear relationship between chromosome length, and the genetic 

variation explained by a chromosome. They found evidence to suggest that a 

significant linear relationship between the two exists (p = 2.6 x 10−8 and 𝑅2= 0.89), 

thus suggesting that schizophrenia has a polygenic basis.  

Having partitioned the ℎ𝑙
2 by MAF for Alzheimer’s disease, MS and endometriosis, Lee 

et al.(98) also partitioned the ℎ𝑙
2 estimates by chromosome, using GREML. For all three 

traits, the authors stated that they found the sum of the individual ℎ𝑙
2 estimates for each 

chromosome, to be similar to the overall ℎ𝑙
2 estimate. This meant that there was no 

evidence to suggest that population stratification affected the data. Lee et al. found that 

for MS and endometriosis, the estimated ℎ𝑙
2 for each chromosome was linearly related 

to chromosome length (MS: p = 0.007 and 𝑅2= 0.31 and endometriosis: p = 0.003 and 
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𝑅2= 0.37). The same was not initially shown for Alzheimer’s (p = 0.49 and 𝑅2= 0.024), 

until chromosome 19 was removed, which then made the relationship significant (p = 

0.02 and 𝑅2= 0.25). Therefore, a linear relationship between the genetic variance 

explained by a chromosome and chromosome length was shown for all three traits, 

when chromosome 19 was omitted from the Alzheimer’s analysis.  

3.1.1.3  Partitioning by SNP annotation 

The genetic variation for a trait can be partitioned by SNP annotation, with SNP 

annotation being the function or effect that a SNP has. Yang et al. (100) have also 

partitioned genetic variation by SNP annotation, by partitioning ℎ𝑙
2 onto intergenic and 

genic regions of the genome. SNPs were assigned to either intergenic or genic regions. 

Three different genic boundaries were used, ±0 kb, ±20 kb and ±50 kb, with these 

being based on the SNPs distance from protein coding genes. This meant that three 

different partitioning analyses were performed for each of the four traits, one analysis 

for each differently defined genic group. Consistently, genic SNPs were found to 

explain a larger proportion of the variation for each trait, even for the different genic 

boundaries (±0 kb, ±20 kb and ±50 kb). Yang et al. then partitioned the ℎ𝑙
2 for intergenic 

and genic regions onto chromosome. The results from this analysis mainly showed that 

proportionally, genic regions explain more variation than intergenic regions across the 

chromosomes. On chromosome 9, the genic region was, however, shown to explain a 

much larger proportion of the genetic variation in vWF, than the intergenic region. As 

mentioned previously, it was known by Yang et al. that ABO on chromosome 9 

explained a large amount of genetic variation for the trait, so this would explain why the 

genic region for this chromosome explained a much larger proportion of the genetic 

variance for vWF (101). 

Lee et al.(98) partitioned the genetic variation for Alzheimer’s disease, MS and 

endometriosis by two categories, SNPs located in genes and SNPs not located in 

genes. For endometriosis, the estimated ℎ𝑙
2 explained by SNPs located in genes was 
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the same as the estimated ℎ𝑙
2 explained by SNPs not located in genes (Genes: ℎ𝑙

2 = 

13%, se = 3% and not in genes: ℎ𝑙
2 = 13%, se = 3%). However, for Alzheimer’s disease 

and MS, the estimated ℎ𝑙
2 explained by SNPs located in genes was larger than the 

estimated ℎ𝑙
2 explained by SNPs not located in genes (Alzheimer’s - Genes: ℎ𝑙

2 = 15%, 

se = 3% and not in genes: ℎ𝑙
2 = 9%, se = 3%, MS - Genes: ℎ𝑙

2 = 19%, se = 3% and not 

in genes: ℎ𝑙
2 = 11%, se = 3%).  

Gusev et al.(102) have partitioned the genetic variation explained by regulatory and 

coding variants for eleven diseases: rheumatoid arthritis, Crohn disease, type 1 

diabetes, ulcerative colitis, MS, ankylosing spondylitis, schizophrenia, bipolar disorder, 

coronary artery disease, hypertension and type 2 diabetes. The genome was 

annotated based on six categories: coding, untranslated region (UTR), promoter, 

DNasel hypersensitivity sites (DHSs), intronic and intergenic. SNPs were then 

assigned to one of six categories, with each SNP assigned to only one category. 

Gusev et al. analysed both genotyped SNPs and 1000 Genomes imputed SNPs, as 

well as simulating data for both. The genetic variation for each category was estimated 

using GREML, and after conducting a meta-analysis of the results across all eleven 

traits, DHSs SNPs were shown on average to explain ~79% (se=8%) of the heritability 

for imputed SNPs and 38% (se=4%) for genotyped SNPs. Using LDAK, instead of 

GREML, Speed et al.(97) have also estimated the proportion of genetic variation that 

can be explained by DHSs SNPs. Genetic variation was partitioned for ten diseases 

and for  nine of the ten diseases, the same data as that used by Gusev et al. was 

analysed. Speed et al. observed that, on average, DHSs explained 25% of chip 

heritability. This was much lower than the average estimate of ~79% estimated by 

Gusev et al. The average then reduced very slightly to 24% when averaging over 42 

traits instead of ten. This result shows that the average amount that DHSs SNPs 

contribute to chip heritability varies depending on the method used, with the LDAK 
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method suggesting that DHSs contribute much less than originally estimated when 

using GREML.  
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3.2 Partitioning analyses 

The chip heritability contribution for different SNP subsets were estimated in order to 

partition the chip heritability estimates produced for breast cancer in chapter 2. 

AVENGEME was able to handle both the smaller GWAS studies, and the larger COGS 

study, as well as the number of SNP genotyped in the studies, which made it an 

appropriate method to conduct the genome partitioning analysis. Also, AVENGEME 

had never been used to conduct a genome partitioning analysis, so it was a great 

opportunity to conduct the first genomic partitioning analysis using both polygenic risk 

scores and AVENGEME. For each partitioning analysis, the SNPs from each study 

were grouped, and both chip heritability and the proportion of null SNPs were 

estimated for each subset. 

3.2.1 Genetic variance partitioned by MAF 

In order to estimate the proportion of genetic variation in breast cancer liability that can 

be explained by common SNPs, UK2, BBCS and COGS SNPs were partitioned by 

MAF. The SNPs retained in each study after QC and LD-clumping (𝑟2 > 0.1) were 

assigned to one of five MAF bins; MAF<0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4 and 0.4-0.5. The 

association between SNP and breast cancer risk was then tested for the SNPs within 

each MAF bin, whilst adjusting for the relevant number of principal components for 

each study. Within each MAF bin, the SNPs were then grouped by their p-value and a 

polygenic score was constructed. The association between the polygenic score and 

breast cancer outcome was then tested, for each p-value group. From this, multiple z-

scores were produced, which were then used to yield both a chip heritability estimate, 

and an estimate of the proportion of null SNPs for each MAF bin (ℎ𝑙 𝑏𝑖𝑛

2  and 𝜋01𝑏𝑖𝑛
). The 

multiple z-scores for each p-value interval, within each MAF bin for all three studies can 

be found in Appendix 3.  
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3.2.1.1 GWAS 

Summing the ℎ𝑙 𝑏𝑖𝑛

2  estimates across all five MAF bins produced a summed estimate 

close to the overall ℎ𝑙
2 estimates for the BBCS and UK2 GWAS given in Table 2-4 

(Table 3-1). This was expected, and actually hoped for, as this had been preciously 

observed for other complex diseases (98) (99)   and because the same SNPs had 

been used in both analyses.  

For the UK2 GWAS, the estimated ℎ𝑙 𝑏𝑖𝑛

2  ranged from 0.012 to 0.067 across the MAF 

range, and 0.019 to 0.049 for the BBCS GWAS. The largest proportion of breast 

cancer variation captured by GWAS SNPs was observed in the 0.1-0.2 MAF bin, with 

the UK2 0.1-0.2 bin producing a ℎ𝑙 𝑏𝑖𝑛

2  estimate of 0.067 (95% CI: [0.036, 0.099]), and 

0.049 for the BBCS GWAS (95% CI: [0.000, 0.110]). For both studies, the MAF bin that 

contained the largest proportion of SNPs was also the 0.1-0.2 bin. The second largest 

ℎ𝑙 𝑏𝑖𝑛

2  estimate, for both the UK2 and BBCS, was produced based on the SNPs 

assigned to the 0.2-0.3 MAF bin (UK2: ℎ𝑙 𝑏𝑖𝑛

2  = 0.060, 95% CI: [0.035, 0.085] and 

BBCS: ℎ𝑙 𝑏𝑖𝑛

2  = 0.048, 95% CI: [0.000, 0.099]). Both ℎ𝑙 𝑏𝑖𝑛

2  estimates for this MAF bin 

were fairly close to the largest ℎ𝑙 𝑏𝑖𝑛

2  estimate, therefore, much of the genetic variation in 

breast cancer liability could be explained by SNPs with a MAF between 0.1 and 0.3. 

For the UK2 GWAS, approximately 94% of the estimated genetic variance for breast 

cancer, on the liability scale, could be explained by common SNPs (MAF > 0.1), and 

for the BBCS GWAS the percentage was ~88%. Therefore, for both GWAS, the results 

showed that common genotyped SNPs with MAF > 0.1 capture a large proportion of 

the genetic variation in liability for breast cancer.  
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GWAS MAF bin No. SNPs (Proportion) ℎ𝑙 𝑏𝑖𝑛

2  (95% CI) Overall ℎ𝑙
2* 

UK2  < 0.1 20,800 (24.8%) 0.012 (0.000, 0.039)  

 0.1-0.2 25,715 (30.7%) 0.067 (0.036, 0.099)  

 0.2-0.3 15,382 (18.3%) 0.060 (0.035, 0.085)  

 0.3-0.4 11,678 (13.9%) 0.038 (0.016, 0.059)  

 0.4-0.5 10,276 (12.3%) 0.041 (0.021, 0.061)  

 Total 83,851 0.218 0.209 

BBCS  < 0.1 14,114 (20.9%) 0.019 (0.002, 0.074)  

 0.1-0.2 20,168 (29.8%) 0.049 (0.000, 0.110)  

 0.2-0.3 13,301 (19.7%) 0.048 (0.000, 0.099)  

 0.3-0.4 10,559 (15.6%) 0.022 (0.000, 0.069)  

 0.4-0.5 9,512 (14.1%) 0.023 (0.001, 0.062)  

 Total 67,654 0.161 0.158 

* AVENGEME ℎ𝑙
2 estimates produced in table 2.3 

Table 3-1: Partitioning LD clumped GWAS SNPs by MAF 

 

The proportion of null markers within each MAF bin (𝜋01𝑏𝑖𝑛
) was also estimated (Table 

3-2). For both the UK2 and BBCS GWAS, the MAF bin estimated to have the smallest 

𝜋01𝑏𝑖𝑛
 was the 0.1-0.2 MAF bin (UK2 𝜋01𝑏𝑖𝑛

 = 0.000, 95% CI: [0.000, 0.956] and BBCS 

𝜋01𝑏𝑖𝑛
 = 0.241, 95% CI: [0.000, 1.000]). The UK2 𝜋01𝑏𝑖𝑛

 estimate for the 0.1-0.2 MAF 

bin was found to be extremely small, with the estimate suggesting that less than 1% of 

the SNPs within that MAF bin had no effect on breast cancer risk. With the 95% CI for 

this estimate being extremely wide (95% CI: [0.000, 0.956]), along with the other 𝜋01𝑏𝑖𝑛
 

estimates produced for the UK2 MAF bins, a reasonable conclusion based on 𝜋01𝑏𝑖𝑛  

estimates could not be made. 

The BBCS 𝜋01𝑏𝑖𝑛  estimate for the 0.1-0.2 MAF bin was larger than the UK2 𝜋01𝑏𝑖𝑛  

estimate, with the estimate suggesting that approximately 24% of the SNPs within the 

bin were null. Similarly, the 95% CI for the 𝜋01𝑏𝑖𝑛  estimate was very wide (95% CI: 

[0.000, 1.000]), and this was also found to be true for the majority of the BBCS MAF 

bins, so the precision of these estimates had to be questioned. However, for two of the 

MAF bins, MAF < 0.1 and 0.4-0.5, the 95% CI were fairly narrow. The 𝜋01𝑏𝑖𝑛
 estimates 

for those two MAF bins indicated that over 99% of the genotyped SNPs within the two 
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MAF bins were null SNPs. With the 95% CIs for the estimated 𝜋01𝑏𝑖𝑛
 produced for the 

other MAF bins being very wide, it is difficult to comment on how these two 𝜋01𝑏𝑖𝑛
  

estimates compare.  

 

GWAS MAF bin No. SNP (Proportion) 𝜋01𝑏𝑖𝑛
 (95% CI) 

UK2 < 0.1 20,800 (24.8%) 0.991 (0.000, 0.998) 

 0.1-0.2 25,715 (30.7%) 0.000 (0.000, 0.956) 

 0.2-0.3 15,382 (18.3%) 0.843 (0.000, 0.957) 

 0.3-0.4 11,678 (13.9%) 0.856 (0.000, 0.981) 

 0.4-0.5 10,276 (12.3%) 0.877 (0.000, 0.974) 

 Total 83,851  

BBCS < 0.1 14,114 (20.9%) 0.998 (0.897, 1.000) 

 0.1-0.2 20,168 (29.8%) 0.241 (0.000, 1.000) 

 0.2-0.3 13,301 (19.7%) 0.870 (0.000, 1.000) 

 0.3-0.4 10,559 (15.6%) 0.986 (0.000, 0.999) 

 0.4-0.5 9,512 (14.1%) 0.993 (0.928 0.998) 

 Total 67,654  

Table 3-2: Estimated proportion of null SNPs (𝜋01𝑏𝑖𝑛
) for MAF bins based on GWAS 

SNPs 

 

3.2.1.2 COGS 

For the COGS, the ℎ𝑙 𝑏𝑖𝑛

2  estimates produced for each MAF bin ranged from 0.010-

0.018 (Table 3-3). The summed ℎ𝑙
2 estimate across all five MAF bins was fairly close to 

the ℎ𝑙
2 estimate produced in Table 2-6 (ℎ𝑙

2 clumped = 0.059, 95% CI: [0.055, 0.063]). A 

reasonably large proportion of the ℎ𝑙
2 was shown to be explained by common SNPs 

with an MAF > 0.1 (78%). Just like the BBCS and UK2 study, the majority of the COGS 

SNPs used to estimate ℎ𝑙
2 had a MAF between 0.1 and 0.2. In this instance, the ℎ𝑙 𝑏𝑖𝑛

2  

estimate produced for each MAF bin seemed to reflect the number of SNPs within the 

bin, with the 0.1-0.2 MAF bin explaining the largest proportion of the overall estimate ℎ𝑙
2 

(12,564 SNPs, ℎ𝑙 𝑏𝑖𝑛

2 = 0.018, 95% CI:[ 0.016, 0.020]). Dividing the ℎ𝑙 𝑏𝑖𝑛

2  by the number 

of SNPs within the bin, produced a per-SNP ℎ𝑙 𝑏𝑖𝑛

2  for each MAF bin, which was shown 
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to be similar across the MAF bins. This would imply that the ℎ𝑙 𝑏𝑖𝑛

2  estimate for an MAF 

bin is influenced by the number of SNPs assigned to the bin.  

 

MAF bin No. SNPs (Proportion) ℎ𝑙 𝑏𝑖𝑛

2  (95% CI) ℎ𝑙
2* Per-SNP ℎ𝑙 𝑏𝑖𝑛

2  

< 0.1 9,937 (22.5%) 0.012 (0.010, 0.014)  1.21e-06 

0.1-0.2 12,564 (28.4%) 0.018 (0.016, 0.020)  1.43e-06 

0.2-0.3 8,465 (19.2%) 0.012 (0.010, 0.014)  1.42e-06 

0.3-0.4 6,944 (15.7%) 0.010 (0.008, 0.011)  1.44e-06 

0.4-0.5 6,271 (14.2%) 0.013 (0.011, 0.014)  2.07e-06 

Total 44,181 0.064 0.059  

* ℎ𝑙
2 given in Table 2-6, based on clumped SNPs 

Table 3-3: Partitioning COGS SNPs by MAF 

 

Compared to the BBCS and UK2 GWAS, the 95% CIs for the 𝜋01𝑏𝑖𝑛  estimates 

produced for the COGS were a lot narrower, which would suggest that these 𝜋01𝑏𝑖𝑛  

estimates were more precise than those given Table 3-2. The 𝜋01𝑏𝑖𝑛
 estimate produced 

for the 0.4-0.5 MAF bin was the largest estimate produced across all five bins (𝜋01𝑏𝑖𝑛
= 

0.930, 95% CI: [0.751, 1.000]). However, all 𝜋01𝑏𝑖𝑛  estimates were estimated to be 

close to 90%, so the estimated proportion of null SNPs in each bin were similar across 

the different MAF bins. Assuming that the underlying model is correct, a proportion of 

the SNPs are assumed to be null, and the remaining SNP effects are normally 

distributed on the standardised genotype scale (15). Therefore, approximately, 90% of 

the SNPs within each bin have been estimated to be null SNPs, which could be an 

unexpectedly high result considering the iCOGS array is enriched for breast cancer 

SNPs. However, not all the SNPs genotyped on the custom array have been shown to 

be associated with breast cancer. SNPs were included on the array if they have been 

shown to be associated with breast cancer, thought to have an association with breast 

cancer, shown to be associated with either ovarian or prostate cancer, or thought to be 

associated with either ovarian or prostate cancer.  
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MAF bin SNP (Proportion) 𝜋01𝑏𝑖𝑛
 (95% CI) 

< 0.1 9,937 (22.5%) 0.878 (0.833, 1.000) 

0.1-0.2 12,564 (28.4%) 0.911 (0.878,1.000) 

0.2-0.3 8,465 (19.2%) 0.924 (0.817, 1.000) 

0.3-0.4 6,944 (15.7%) 0.891 (0.776,1.000) 

0.4-0.5 6,271 (14.2%) 0.930 (0.751,1.000) 

Total 44,181  

Table 3-4: Estimated proportion of null SNPs (𝜋01𝑏𝑖𝑛
) for each MAF bin based on 

COGS SNPs 

 

3.2.2 Genetic variance partitioned by chromosome 

Susceptibility loci for breast cancer have been identified across the genome, with SNPs 

on each chromosome contributing to the overall chip heritability for the disease. In this 

section, the estimated proportion of variation in breast cancer liability that can be 

explained by GWAS SNPs will be partitioned by chromosome. To perform this analysis, 

SNPs retained after QC and LD-clumping for each study were grouped by the 

chromosome they are positioned on. For each chromosome group, internal training and 

replication samples were used to construct a polygenic score for the replication 

individuals, based on the SNP effects estimated using the training sample. Within each 

chromosome group, the association between each SNP and breast cancer outcome 

was tested using a logistic regression model, with a number of principal components 

included in the model in order to adjust for population stratification. The number of 

principal components used was study dependent. Within each chromosome group, the 

SNPs were then grouped by their association p-value and a polygenic score was 

constructed for each p-value interval, based on the SNPs and their effect size within 

the interval. The association between each PRS and breast cancer risk in the 

replication sample was then tested using a logistic regression model, with principal 

components included in the model. This was performed for each chromosome, with the 

z-scores produced given in Appendix 4: Tables 1,2 & 3. The z-scores were then used 
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to produce both a  ℎ𝑙 𝑏𝑖𝑛

2  and 𝜋01𝑏𝑖𝑛
 estimate for each chromosome subset using 

AVENGEME. 

3.2.2.1 UK2 study 

Summing the ℎ𝑙 𝑏𝑖𝑛

2  estimates across the 22 chromosomes produced a summed 

estimate similar to the ℎ𝑙
2 estimate produced in chapter 2, indicating that population 

stratification has been adjusted for (ℎ𝑙
2 clumped = 0.209 vs. ℎ𝑙 𝑏𝑖𝑛

2  sum = 0.220) (Table 

3-5). Collectively, SNPs mapping to either chromosome 5 or chromosome 10 were 

observed to have a larger ℎ𝑙 𝑏𝑖𝑛

2  estimate compared to the other chromosomes (chr 5 

ℎ𝑙 𝑏𝑖𝑛

2 = 0.028, 95% CI: [0.014, 0.043] and chr 10 ℎ𝑙 𝑏𝑖𝑛

2  = 0.028, 95% CI: [0.014, 0.041]) 

(Table 3-5 and Figure 3-1). Interestingly, when looking at the number of published 

genome-wide significant breast cancer SNPs that map to each chromosome (45, 51), 

there were found to be more published SNPs mapping to chromosomes 5 and 10 than 

the other chromosomes (Table 3-6). Currently, nine published genome-wide significant 

breast cancer SNPs map to chromosome 2, which makes the ℎ𝑙 𝑏𝑖𝑛

2  estimate for 

chromosome 2 unrealistic (chr 2 ℎ𝑙 𝑏𝑖𝑛

2 = 0.000, 95% CI: [0.000, 0.014]. The 95% CI for 

this estimate does however suggest that the ℎ𝑙 𝑏𝑖𝑛

2  estimate can range from 0 to 0.014. 

Therefore both this, and the fact that genome-wide significant SNPs have been found 

to map to this chromosome, suggest that the proportion of genetic variation explained 

by SNPs on this chromosome is not zero. Published breast cancer SNPs were found to 

be present on all chromosomes, so it is unlikely that any of the chromosomes explain 

none of the genetic variation in breast cancer liability. Also, considering how small the 

ℎ𝑙 𝑏𝑖𝑛

2 estimates are, the 95% CI for all ℎ𝑙 𝑏𝑖𝑛

2  estimates could be considered fairly wide.  

It was apparent from Figure 3-1 that the ℎ𝑙 𝑏𝑖𝑛

2  estimate for a chromosome was not 

necessarily reflective of chromosome length (Mb). If this were true, the ℎ𝑙 𝑏𝑖𝑛

2  would be 

shown to decrease, as the chromosome number increases. To formally test the 

relationship between ℎ𝑙 𝑏𝑖𝑛

2  estimate and chromosome length, a linear regression model 
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was fitted to the data (Figure 3-2). From this, a weak linear relationship between 

chromosome length and the variation in liability explained by each chromosome was 

observed (𝑅2 = 0.114) (Figure 3-2). However, the relationship was non-significant, 

meaning that there was no evidence to suggest that the coefficient was different from 0 

(p-value = 0.124). 

 

Chromosome No. SNPs ℎ𝑙 𝑏𝑖𝑛

2  (95% CI) ℎ𝑙
2* 

1 6,694 0.016 (0.000, 0.032)  

2 6,473 0.000 (0.000, 0.014)  

3 5,551 0.008 (0.000, 0.023)  

4 5,100 0.016 (0.002, 0.030)  

5 5,156 0.028 (0.014, 0.043)  

6 5,120 0.009 (0.000, 0.023)  

7 4,596 0.016 (0.003, 0.030)  

8 4,283 0.015 (0.001, 0.028)  

9 3,900 0.008 (0.000, 0.021)  

10 4,364 0.028 (0.014, 0.041)  

11 4,105 0.010 (0.000, 0.022)  

12 4,181 0.015 (0.003, 0.028)  

13 3,157 0.004 (0.000, 0.015)  

14 2,845 0.001 (0.000, 0.012)  

15 2,705 0.002 (0.000, 0.012)  

16 2,852 0.008 (0.001, 0.020)  

17 2,731 0.016 (0.006, 0.027)  

18 2,719 0.000 (0.000, 0.011)  

19 2,067 0.000 (0.000, 0.009)  

20 2,435 0.011 (0.001, 0.021)  

21 1,363 0.000 (0.000, 0.007)  

22 1,454 0.008 (0.000, 0.016)  

Total 83,851 0.220 0.209 

* AVENGEME ℎ𝑙
2 estimates produced in table 2.3 

Table 3-5: Partitioning UK2 clumped SNPs by chromosome 

 

 

 



103 
 

Chromosome Number of published SNPs* 

1 9 

2 9 

3 5 

4 2 

5 11 

6 9 

7 4 

8 7 

9 5 

10 10 

11 5 

12 4 

13 2 

14 5 

15 1 

16 4 

17 3 

18 3 

19 3 

20 1 

21 1 

22 4 

* Taking into consideration lead SNPs only 

Table 3-6: Published breast cancer genome-wide significant SNPs on each 
chromosome 
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Figure 3-1: Proportion of variance in liability explained by UK2 clumped SNPs from 
each chromosome (95% CI error bars) 

 

Figure 3-2: Proportion of variance in liability explained by UK2 clumped SNPs from 
each chromosome against chromosome length (Mb) 
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The proportion of null SNPs within each chromosome was also estimated (Table 3-7). 

For chromosomes 2 and 18, the estimated ℎ𝑙 𝑏𝑖𝑛

2  and 𝜋01𝑏𝑖𝑛
 were identical (chr 2: ℎ𝑙 𝑏𝑖𝑛

2 = 

0.000, 𝜋01𝑏𝑖𝑛
 =0.988 and chr 18: ℎ𝑙 𝑏𝑖𝑛

2  = 0.000, 𝜋01𝑏𝑖𝑛
 = 0.998), as these were the 

values that maximised the likelihood numerically. Across the chromosomes, there was 

found to be much variation in the 𝜋01𝑏𝑖𝑛
 estimates produced, with the estimates found 

to range from 0-1. Also, over half of the estimates had a very wide 95% CI, meaning 

that a reasonable conclusion based on these estimate could not be made. The 𝜋01𝑏𝑖𝑛
 

estimates for chromosome 10, chromosome 16, chromosome 18 and chromosome 19 

had the narrowest 95% CIs. For these chromosomes, the 𝜋01𝑏𝑖𝑛
 estimates ranged from 

0.782-0.998, with the majority being over 0.930. With the other chromosomes 𝜋01𝑏𝑖𝑛
 

estimates found to have wide 95% CIs, a reasonable conclusion cannot be drawn from 

this analysis. 
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Chromosome No. SNPs 𝜋01𝑏𝑖𝑛
 (95% CI) 

1 6,694 0.000 (0.000, 0.985) 

2 6,473 0.998 (0.530, 1.000) 

3 5,551 0.953 (0.000, 0.981) 

4 5,100 0.000 (0.000, 0.979) 

5 5,156 0.886 (0.342, 0.968) 

6 5,120 0.000 (0.000, 0.979) 

7 4,596 0.626 (0.000, 0.976) 

8 4,283 0.893 (0.000, 0.974) 

9 3,900 0.001 (0.001, 0.971) 

10 4,364 0.937 (0.837, 0.975) 

11 4,105 0.931 (0.000, 0.973) 

12 4,181 0.811 (0.000, 0.974) 

13 3,157 0.951 (0.000, 1.000) 

14 2,845 0.991 (0.000, 1.000) 

15 2,705 0.005 (0.005, 0.957) 

16 2,852 0.981 (0.847, 1.000) 

17 2,731 0.927 (0.686, 0.957 

18 2,719 0.998 (0.853, 1.000) 

19 2,067 0.782 (0.772, 0.922) 

20 2,435 0.259 (0.000, 0.952) 

21 1,363 1.000 (0.000, 1.000) 

22 1,454 0.685 (0.000, 0.916) 

Total 83,851  

Table 3-7: Proportion of null UK2 SNPs (𝜋01𝑏𝑖𝑛
) within each chromosome 

 

3.2.2.2 British Breast Cancer Study 

For the BBCS GWAS, summing the ℎ𝑙 𝑏𝑖𝑛

2  estimates across the 22 chromosomes did 

not produce a summed estimate close to the ℎ𝑙
2 estimate produced in Table 2-4 (Table 

3-8). The summed ℎ𝑙 𝑏𝑖𝑛

2  estimate was 0.256, whereas the overall ℎ𝑙
2 estimate was 

estimated to be 0.158, which meant that there was a difference of 0.098 between the 

two estimates. A difference between the two would indicate that population stratification 

is a problem in the data. In general, the 95% CIs for each chromosome estimate were 

wider than those for the UK2 estimates. With the BBCS study sample size being just 

under half the size of the UK2 study, the result confirms that sample size affects 
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estimate precision. When producing 22 separate estimates and then summing them 

together, it would just take a small amount of variation in the ℎ𝑙 𝑏𝑖𝑛

2  estimates, for the 

summed ℎ𝑙 𝑏𝑖𝑛

2  estimate to be different to the overall ℎ𝑙
2 estimate, which in itself is fairly 

variable (ℎ𝑙
2 95% CI: [0.047,0.272]). Therefore, when summing the ℎ𝑙 𝑏𝑖𝑛

2  estimates 

across 22 chromosome, the inaccuracy of each binned estimate becomes more 

apparent. With population stratification being adjusted for, and the genomic inflation 

statistic being close to 1 (1.014), population stratification should not be present in the 

data.  

The ℎ𝑙 𝑏𝑖𝑛

2  estimates for chromosomes 5, chromosome 6, chromosome 14, 

chromosome 15, chromosome 17, chromosome 18, chromosome 19 and chromosome 

20 were approximately 0, which would indicate that SNPs mapping to these 

chromosomes either do not contribute to the heritability for breast cancer, or have little 

effect on breast cancer risk. However, with the 95% CI intervals for these estimates 

being wide, it could not be concluded that SNPs mapping to these chromosomes do 

not explain any of the estimated ℎ𝑙
2. Nonetheless, it would have been unwise to have 

drawn this conclusion as genetic mutations within genes such as TERT, MAP3K1 and 

RAD51, are located on these chromosomes, and have been shown to be associated 

with breast cancer risk (44, 103, 104). Also, each chromosome has been shown to 

have at least one published genome-wide significant breast cancer SNP mapping to it.  

Chromosome 2 SNPs were estimated to explain a larger proportion of the genetic 

variation in breast cancer, compared to the other chromosomes (Table 3-8 and Figure 

3-3) (ℎ𝑙 𝑏𝑖𝑛

2 = 0.042, 95% CI: [0.010, 0.075]). For the UK2 GWAS however, the ℎ𝑙 𝑏𝑖𝑛

2  

estimate for SNPs genotyped on chromosome 2 was approximately 0. The 95% CI for 

this estimate suggested that this estimate could in fact be non-zero as the 95% CI had 

an upper limit that was equal to 0.014 (95% CI: [0.000, 0.014]). The upper 95% CI limit 

was still not as large as 0.042, which was the ℎ𝑙 𝑏𝑖𝑛

2  estimate produced for BBCS SNPs 

on chromosome 2. Located on chromosome 2 is the CASP8 gene, which has been 
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linked to breast cancer risk, meaning that a ℎ𝑙 𝑏𝑖𝑛

2  estimate of 0 for this chromosome 

would be very unlikely (105). 

 

Chromosome No. SNPs ℎ𝑙 𝑏𝑖𝑛

2  (95% CI) ℎ𝑙
2* 

1 5,313 0.015 (0.000, 0.049)  

2 5,333 0.042 (0.010, 0.075)  

3 4,585 0.025 (0.000, 0.055)  

4 4,128 0.041 (0.012, 0.069)  

5 4,190 0.000 (0.000, 0.015)  

6 4,176 0.000 (0.000, 0.021)  

7 3,632 0.017 (0.001, 0.043)  

8 3,551 0.007 (0.000, 0.031)  

9 3,168 0.002 (0.000, 0.026)  

10 3,482 0.008 (0.001, 0.030)  

11 3,207 0.026 (0.001, 0.051)  

12 3,366 0.037 (0.014, 0.064)  

13 2,515 0.011 (0.000, 0.034)  

14 2,275 0.000 (0.000, 0.024)  

15 2,122 0.000 (0.000, 0.012)  

16 2,220 0.007 (0.000, 0.0270)  

17 2,102 0.000 (0.000, 0.018)  

18 2,286 0.000 (0.000, 0.009)  

19 1,645 0.000 (0.000, 0.013)  

20 1,937 0.000 (0.000, 0.015)  

21 1,173 0.012 (0.000, 0.028)  

22 1,248 0.005 (0.000, 0.021)  

Total 67,654 0.256 0.158 

* AVENGEME ℎ𝑙
2 estimates produced in table 2.3 

Table 3-8: Partitioning BBCS clumped SNPs by chromosome 

 

When plotting the estimated ℎ𝑙 𝑏𝑖𝑛

2  for each chromosome, there was no obvious 

relationship between the estimated ℎ𝑙 𝑏𝑖𝑛

2  and chromosome length (Figure 3-3). 

However, from assessing Figure 3-4 and fitting a linear regression model to the data, to 

test whether a significant  linear relationship between the two variables existed, it was 

apparent that there was a significant linear relationship between chromosome length 
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and the estimated ℎ𝑙
2 for SNPs on each chromosome (𝑅2 = 0.315, p-value = 0.007). 

Therefore, the results suggested that breast cancer has a polygenic basis. 

 

Figure 3-3: Proportion of variance in liability explained by BBCS clumped SNPs from 
each chromosome 

 

Figure 3-4: Proportion of variance in liability explained by BBCS clumped SNPs from 

each chromosome against chromosome length (Mb) 
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The proportion of null SNPs within each chromosome was also estimated for the BBCS 

GWAS (Table 3-9). For chromosomes 5, chromosomes 6, chromosomes 14, 

chromosomes 15, chromosomes 17 and chromosomes 20, and chromosomes 18 and 

chromosomes 19, the same ℎ𝑙 𝑏𝑖𝑛

2  and 𝜋01𝑏𝑖𝑛  estimates were produced as these were 

the values that maximised the likelihood numerically. The 𝜋01𝑏𝑖𝑛
estimate for 

chromosome 2, the chromosome estimated to explain the most variation (Table 3-8), 

was estimated to be 0.122 (95% CI: [0.122, 0.982]) (Table 3-9). This was a low 𝜋01𝑏𝑖𝑛
, 

which matched the lower bound value of the 95% CI, and suggested that 87.8% of the 

SNPs mapping to chromosome 2 had an effect on breast cancer risk. With the 95% CI 

for this estimate being wide, and with most of the other autosomal chromosomes 

having a wide 95% CI, a reasonable conclusion based on the 𝜋01𝑏𝑖𝑛
 estimates could 

not made. 
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Table 3-9: Proportion of null BBCS SNPs (π01bin) within each chromosome 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chromosome No. of SNPs 𝜋01𝑏𝑖𝑛
 (95% CI) 

1 5,313 0.992 (0.000, 1.000) 

2 5,333 0.122 (0.122, 0.982) 

3 4,585 0.919 (0.000, 0.992) 

4 4,128 0.000 (0.000, 0.962) 

5 4,190 0.998 (0.000, 1.000) 

6 4,176 0.998 (0.776, 1.000) 

7 3,632 0.986 (0.000, 1.000) 

8 3,551 0.988 (0.000, 1.000) 

9 3,168 1.000 (0.000, 1.000) 

10 3,482 0.997 (0.944, 1.000) 

11 3,207 0.000 (0.000, 0.986) 

12 3,366 0.948 (0.807, 0.987) 

13 2,515 0.714 (0.000, 0.714) 

14 2,275 0.998 (0.000, 1.000) 

15 2,122 0.998 (0.426, 1.000) 

16 2,220 0.977 (0.000, 1.000) 

17 2,102 0.998 (0.444, 1.000) 

18 2,286 1.000 (0.466, 1.000) 

19 1,645 1.000 (0.782, 1.000) 

20 1,937 0.998 (0.816, 1.000) 

21 1,173 0.007 (0.007,0.955) 

22 1,248 0.002 (0.002, 0.958) 

Total 67,654  
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3.2.2.3 COGS 

In addition to partitioning the ℎ𝑙
2 by chromosome for the two GWAS, the estimated ℎ𝑙

2 

explained by SNPs genotyped for the COGS was also partitioned by chromosome. 

Summing the ℎ𝑙 𝑏𝑖𝑛

2  estimates for each chromosome, produced an estimate that was 

close to the ℎ𝑙
2 estimate produced for the COGS, given in Table 2-6 (Table 3-10).  

The SNPs mapping to chromosome 10 were estimated explain the largest proportion of 

genetic variation in liability for breast cancer, compared to the SNPs mapping to other 

autosomal chromosomes (ℎ𝑙 𝑏𝑖𝑛

2  = 0.006, 95% CI: [0.005, 1.000]) (Table 3-10) (Figure 

3-5). Again, this is one of the chromosomes, the other being chromosome 5, that 

currently has the most published genome-wide significant breast cancer SNPs 

mapping to it. However, the 95% CI for this estimate was fairly wide, so the precision of 

the ℎ𝑙 𝑏𝑖𝑛

2  estimate needs to be questioned. Apart from chromosomes 1, chromosome 2 

and chromosome 3, the 95% CIs for the ℎ𝑙 𝑏𝑖𝑛

2  estimates were shown to be very wide 

(Table 3-10 and Figure 3-6). The 95% CIs for the ℎ𝑙 𝑏𝑖𝑛

2  estimates were so wide, that the 

upper limits for the majority of chromosomes could not be seen when visualising the 

estimates and their 95% CIs (Figure 3-6). 

From plotting the estimated ℎ𝑙 𝑏𝑖𝑛

2  for each chromosome and chromosome length, it 

seemed like there was a linear relationship between the two variables (Figure 3-7). A 

linear regression model was used to formally test the relationship, and the estimated 

ℎ𝑙 𝑏𝑖𝑛

2  for each chromosome and chromosome length were shown to have a significant 

linear relationship (𝑅2 = 0.498, p-value = 0.00025). With SNPs on the iCOGS array 

being genotyped for their relationship with breast, ovarian and prostate cancer or 

based on previous analyses, and not because they tag most of the genome, some 

parts of the genome may be underrepresented on the array. With the SNP not 

necessarily representing the genome, it might be better to assess the relationship 

between the number of SNPs genotyped for each chromosome, then chromosome 
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length. When testing this relationship, there was shown to be a significant linear 

relationship between the number of SNPs on a chromosome and the estimated ℎ𝑙 𝑏𝑖𝑛

2  

for each chromosome (𝑅2 = 0.642, p-value = 7.36e-06) (Figure 3-8). The significant 

linear relationship observed, suggest that the genetic variation in liability to breast 

cancer explained by COGS SNPs, is spread evenly across the genome.  

 

Chromosome No. of SNPs ℎ𝑙
2 (95% CI) ℎ𝑙

2* 

1 3,406 0.004 (0.003, 0.005)  

2 3,480 0.005 (0.003, 0.006)  

3 2,876 0.005 (0.004, 0.006)  

4 2,559 0.002 (0.001, 1.000)  

5 2,632 0.005 (0.004, 1.000)  

6 2,783 0.005 (0.004, 1.000)  

7 2,398 0.002 (0.001, 1.000)  

8 2,351 0.004 (0.003, 1.000)  

9 2,055 0.003 (0.002, 1.000)  

10 2,498 0.006 (0.005, 1.000)  

11 2,224 0.004 (0.003, 1.000)  

12 2,212 0.005 (0.004, 1.000)  

13 1,688 0.000 (0.000, 1.000)  

14 1,496 0.002 (0.002, 1.000)  

15 1,383 0.001 (0.001, 1.000)  

16 1,437 0.003 (0.002, 1.000)  

17 1,475 0.001 (0.001, 1.000)  

18 1,371 0.001 (0.001, 1.000)  

19 1,170 0.001 (0.001, 1.000)  

20 1,197 0.001 (0.001, 1.000)  

21 690 0.000 (0.000, 1.000)  

22 800 0.001 (0.001, 1.000)  

Total 44,181 0.063 0.059 

* AVENGEME ℎ𝑙
2 estimates produced in table 2.5 

Table 3-10: Partitioning COGS SNPs by chromosome 
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Figure 3-5: Proportion of variance in liability explained by COGS clumped SNPs on 
each chromosome 

 

Figure 3-6: Proportion of variance in liability explained by COGS clumped SNPs on 
each chromosome (95% CI error bars) 
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Figure 3-7: Proportion of variance in liability explained by COGS clumped SNPs from 
each chromosome against chromosome length (Mb) 

 

 

Figure 3-8: Proportion of variance in liability explained by COGS clumped SNPs from 
each chromosome against the number of SNPs 
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For each chromosome, the proportion of iCOGS SNPs with no effect on breast cancer 

risk, was also estimated (Table 3-11). The 𝜋01𝑏𝑖𝑛
 estimates were all observed to be 

greater than 0.567, with approximately half of the 𝜋01𝑏𝑖𝑛
 estimates having fairly narrow 

95% CIs. The 95% CIs were narrower than those for the BBCS and UK2 𝜋01𝑏𝑖𝑛
 

chromosome estimates. Again, this would have been because the COGS had a larger 

sample size than the BBCS and UK2 GWAS. Some of the 𝜋01𝑏𝑖𝑛
 and  ℎ𝑙 𝑏𝑖𝑛

2  estimates 

were identical as these were the values that maximised the likelihood numerically. 

Chromosome 16 was estimated to have the largest proportion of null SNPs mapping to 

a chromosome, compared to the other chromosomes, with the result suggesting that 

~96% of the SNPs mapping to this chromosome have no effect on breast cancer risk 

(𝜋01𝑏𝑖𝑛
: 0.959 (95% CI: [0.959, 1.000]) (Table 3-11). The 𝜋01𝑏𝑖𝑛

  estimates produced for 

COGS cannot be compared to those produced for the BBCS and UK2 GWAS, because 

the estimates have very wide 95% CIs. But, it can be said that most of the 𝜋01𝑏𝑖𝑛
 

estimates were observed to be less than 0.95, with the proportions shown to be fairly 

consistent across the chromosomes.  
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Chromosome No. of SNPs 𝜋01𝑏𝑖𝑛
 (95% CI) 

1 3,406 0.841 (0.539, 1.000) 

2 3,480 0.921 (0.549, 1.000) 

3 2,876 0.813 (0.453, 1.000) 

4 2,559 0.950 (0.385, 1.000) 

5 2,632 0.906 (0.402, 1.000) 

6 2,783 0.786 (0.435, 1.000) 

7 2,398 0.874 (0.343, 1.000) 

8 2,351 0.895 (0.895, 1.000) 

9 2,055 0.847 (0.847, 1.000) 

10 2,498 0.923 (0.370, 1.000) 

11 2,224 0.890 (0.890 1.000) 

12 2,212 0.830 (0.830, 1.000) 

13 1,688 0.936 (0.936, 1.000) 

14 1,496 0.916 (0.916, 1.000) 

15 1,383 0.621 (0.621, 1.000) 

16 1,437 0.959 (0.959, 1.000) 

17 1,475 0.940 (0.940, 1.000) 

18 1,371 0.719 (0.719, 1.000) 

19 1,170 0.923 (0.923, 1.000) 

20 1,197 0.567 (0.567, 1.000) 

21 690 0.955 (0.955, 1.000) 

22 800 0.877 (0.877, 1.000) 

Total 44,181  

Table 3-11: Proportion of null COGS SNPs (𝜋01𝑏𝑖𝑛
) within each chromosome 
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3.2.3 Genetic variance partitioned by SNP annotation 

The estimated ℎ𝑙
2 for the two GWAS was partitioned by SNP annotation to examine 

whether, across the genome, SNPs mapping to intergenic regions explain a larger 

proportion of the estimated ℎ𝑙
2, compared to SNPs that map to gene regions. The 

estimated ℎ𝑙
2 for the COGS was also partitioned by SNP annotation to explore whether 

the SNPs genotyped on the iCOGS array that map to intergenic regions, explain a 

greater proportion of the ℎ𝑙
2, compared to the other SNPs. The majority of breast 

cancer susceptibility loci identified so far, map to non-coding, intergenic regions of the 

genome (106). Even though a larger number of susceptibility loci have been shown to 

map to intergenic regions of the genome, it is still possible that variants residing within 

genes explain more of the genetic variation in breast cancer. This analysis therefore 

aimed to test whether SNPs mapping to intergenic regions of the genome explain a 

larger proportion of ℎ𝑙
2, compared to SNPs mapping elsewhere in the genome.  

GWAS and COGS SNPs retained after QC and LD-clumping were annotated using the 

ENSEMBL Variant Effect Predictor (VEP) web interface (107). The web interface 

enables you to upload a list of SNP identifiers, these being the SNPs you wish to 

annotate, for a given species. ENSEMBL’s VEP then reports the effect of each SNP 

that has been annotated. Not all of the SNPs uploaded have been annotated by 

ENSEMBL, so annotation information was not provided for some of the SNPs. This 

meant that the total number of SNPs analysed for each study in this section, were 

lower than the total number of SNPs used for the previous analyses conducted in this 

chapter.  

The SNP information for annotated SNPs was exported into an Excel spreadsheet, 

which was then used to group the SNPs. Each SNP was identified as being 1 of the 18 

SNP annotations given in Table 3-12. To examine whether gene variants explained a 

larger proportion of the ℎ𝑙
2 compared to other SNPs, annotated SNPs were grouped 
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into three categories; intergenic variants, regulatory variants and gene variants (Table 

3-12). Each SNP belonged to a unique annotation group, which meant that none of the 

SNPs overlapped. The SNPs were grouped with the aid of the sequence ontology tree 

diagram (108) given in Appendix 5: Diagram 1.  

 

SNP annotation Annotation group 

3 prime UTR variant Gene variant 

Intron variant Gene variant 

Intergenic variant Intergenic variant 

Downstream gene variant Intergenic variant 

Upstream gene variant Intergenic variant 

Splice donor variant Gene variant 

Non coding transcript exon variant Gene variant 

Regulatory region variant Regulatory variant 

Missense variant Gene variant 

Synonymous variant Gene variant 

Splice region variant Gene variant 

Stop gained Gene variant 

5 prime UTR variant Gene variant 

Stop lost Gene variant 

TF binding site variant Regulatory variant 

Splice acceptor variant Gene variant 

Start lost Gene variant 

Stop retained variant Gene variant 

Table 3-12: SNP annotation groups 

 

Once the SNPs had been grouped, the internal training and replication samples for 

each study were used to construct a threshold PRS for the replication sample 

individuals, based on the SNPs within each annotation group.  A logistic regression 

model, with principal components included as covariates, was used to estimate the 

SNP effects for the SNPs within each annotation group. These SNPs effects were 

grouped by their p-value, and then for each p-value threshold within an annotation 

group, a polygenic score was constructed for the women in the replication sample. A 
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logistic regression model, with principal components included as covariates, was then 

used to test the association between each polygenic score and breast cancer risk. The 

z-scores produced, given in Appendix 6: Tables 1,2 & 3, were then used to estimate 

both the  ℎ𝑙 𝑏𝑖𝑛

2  and 𝜋01𝑏𝑖𝑛
 for each annotation group.  

 

3.2.3.1 GWAS 

When annotating the GWAS SNPs, it was found that a larger number of the SNPs were 

annotated as being gene variants, compared to intergenic and regulatory variants 

(Table 3-13). This was surprising as there are a lot more non-genic SNPs than genic 

SNPs in the genome, so one would not have expected most of the SNPs to be genic 

SNPs. The SNPs annotated were the genotyped SNPs retained after LD clumping. It 

could be that the SNPs that have the strongest association with breast cancer in an LD 

block, tend to be genic. To assess whether a greater number of genic SNPs were 

retained in the analysis because of clumping, SNPs retained after LD pruning were 

annotated. It was found that even after randomly pruning SNPs, the majority of SNPs 

were annotated as being genic, which indicates that this finding was not a result of 

clumping the SNPs. It was therefore not clear why a greater number of SNPs were 

found to be genic, than non-genic.  

Using the annotations given by VEP, gene variants were collectively estimated to 

explain a larger proportion of the ℎ𝑙
2, compared to intergenic and regulatory variants 

(UK2: ℎ𝑙 𝑏𝑖𝑛

2 = 0.117, 95% CI: [0.074, 0.160] and BBCS: ℎ𝑙 𝑏𝑖𝑛

2 = 0.150, 95% CI: [0.056, 

0.245]). The 95% CI for the BBCS gene variant ℎ𝑙 𝑏𝑖𝑛

2  estimate was wider than the UK2 

ℎ𝑙 𝑏𝑖𝑛

2  estimate, but there was little difference in the actual gene variant ℎ𝑙 𝑏𝑖𝑛

2  estimates 

produced. 

With more SNPs being annotated as gene variants, than either intergenic or regulatory 

variants, the ℎ𝑙 𝑏𝑖𝑛

2  estimates were divided by the number of SNPs within each 
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annotation group to produce an approximate estimate of the per-SNP ℎ𝑙 𝑏𝑖𝑛

2 . This was 

conducted in order to assess whether individually, gene variants do explain more 

genetic variation, or whether it was just because the gene variant group contained the 

largest number of SNPs. Per UK2 SNP, SNPs mapping to intergenic regions were 

estimated to explain a slightly larger proportion of the ℎ𝑙
2, than SNPs mapping to either 

gene or regulatory regions. However, the difference between the per-SNP ℎ𝑙 𝑏𝑖𝑛

2  

estimates across the three groups was minuscule. So per-UK2 SNP, it could not be 

concluded whether one type of variant explained more ℎ𝑙
2 than another.  

Per-BBCS SNP, SNPs mapping to gene regions explained a larger proportion of the 

ℎ𝑙
2, than SNPs mapping to either intergenic or regulatory regions. There was shown to 

be a slightly more noticeable difference between the BBCS per-SNP ℎ𝑙 𝑏𝑖𝑛

2  estimate for 

each annotation group, then there was between the UK2 per-SNP ℎ𝑙 𝑏𝑖𝑛

2  estimates. With 

the largest per-SNP ℎ𝑙 𝑏𝑖𝑛

2  estimate varying between the two GWAS, a conclusion 

based on these results could not be made.  

 

GWAS Annotation group No. SNPs ℎ𝑙 𝑏𝑖𝑛

2  (95% CI) ℎ𝑙 𝑏𝑖𝑛

2  per-SNP 

UK2  Intergenic variant 32,406 0.089 (0.054, 0.125) 2.75e-06 

 Regulatory variant 3,757 0.009 (0.000, 0.022) 2.50e-06 

 Gene variant 47,642 0.117 (0.074, 0.160) 2.45e-06 

 Total 83,805 0.215  

BBCS  Intergenic variant 25,119 0.017 (0.000, 0.074) 6.74e-07 

 Regulatory variant 2,916 0.005 (0.000, 0.024) 1.71e-06 

 Gene variant 35,916 0.150 (0.056, 0.245) 4.18e-06 

 Total 63,951 0.172  

Table 3-13: Partitioning GWAS SNPs by SNP annotation  
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The 𝜋01𝑏𝑖𝑛
 was also estimated for each annotation group, for each GWAS (Table 3-14). 

For the UK2 GWAS, the gene variant group was estimated to have the smallest 

proportion of null SNPs, compared to the other two annotation groups (𝜋01𝑏𝑖𝑛
= 0.000, 

95% CI: [0.000, 0.949]) (Table 3-14). The estimate suggests that < 1% of the SNPs do 

not have an effect on breast cancer risk. However, the 95% CI for this estimate was 

found to be very wide, so the precision of the estimate was questioned. It was also 

estimated that ~6% of the SNPs in the regulatory group did not have an effect on 

breast cancer risk, again, the 95% CI for this estimate was found to be very wide.  

Similarly to the UK2 GWAS, the gene variant group for the BBCS was estimated to 

contain the lowest proportion of null SNPs, with the estimate suggesting that ~95% of 

the SNPs within the group have no effect on breast cancer risk (𝜋01𝑏𝑖𝑛
= 0.948, 95% CI: 

[0.000, 0.995]). The estimates produced for both the regulatory and intergenic group 

suggest that none of the SNPs in either group have an effect on breast cancer risk. 

This was an unrealistic result, but with extremely wide 95% CI, the estimate was not 

very precise. With the 95% CIs for all three groups being extremely wide, a conclusion 

could not be made based on these estimates.  

 

 Annotation group No. SNPs 𝜋01𝑏𝑖𝑛
 (95% CI) 

UK2 GWAS Intergenic variant 32,406 0.943 (0.745, 0.983) 

 Regulatory variant 3,757 0.056 (0.056, 0.997) 

 Gene variant 47,642 0.000 (0.000, 0.949) 

 Total 83,805  

BBCS GWAS Intergenic variant 25,119 1.000 (0.000, 1.000) 

 Regulatory variant 2,916 1.000 (0.000, 1.000) 

 Gene variant 35,916 0.948 (0.000, 0.995) 

 Total 63,951  

Table 3-14: Proportion of GWAS null SNPs (𝜋01𝑏𝑖𝑛
) within each annotation group 
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3.2.3.2 COGS 

For the COGS, a large majority of the genotyped SNPs were annotated as being genic 

SNPs, with the largest proportion of ℎ𝑙
2 then being explained by genic SNPs (Table 

3-15).. The second largest group, the intergenic variant group, was also the group that 

explained the second largest proportion of ℎ𝑙
2. The ℎ𝑙 𝑏𝑖𝑛

2  estimate based on regulatory 

variants was found to be quite small in comparison to the ℎ𝑙 𝑏𝑖𝑛

2  estimates produced for 

intergenic and gene variants. The 95% CIs for each ℎ𝑙 𝑏𝑖𝑛

2  estimate was found to be a 

lot narrower than the 95% CIs for the SNP annotation group ℎ𝑙 𝑏𝑖𝑛

2  estimates produced 

in the previous section, for the two GWAS.  

When estimating the ℎ𝑙 𝑏𝑖𝑛

2  per-SNP, there was shown to be little difference in the per-

SNP estimates, with genic SNPs only estimated to explain a tiny bit more ℎ𝑙
2 than 

intergenic or regulatory region SNPs.  

 

Annotation group No. SNPs ℎ𝑙 𝑏𝑖𝑛

2  (95% CI) ℎ𝑙 𝑏𝑖𝑛

2  per-SNP 

Intergenic variant 16,933 0.022 (0.020, 0.024) 1.30e-06 

Regulatory variant 1,969 0.003 (0.002, 0.004) 1.52e-06 

Gene variant 24,606 0.039 (0.036, 0.042) 1.58e-06 

Total 43,508 0.064  

Table 3-15: Partitioning COGS SNPs by SNP annotation 
 
 

The annotation group estimated to have the largest 𝜋01𝑏𝑖𝑛  was the regulatory variant 

group (𝜋01𝑏𝑖𝑛
 = 0.906, 95% CI: [0.832, 0.963]) (Table 3-16). This estimate suggested 

that ~91% of the genotyped regulatory SNPs had no effect on breast cancer risk. The 

gene variant group was observed to have the smallest 𝜋01𝑏𝑖𝑛
, with the estimate 

suggesting that ~85% of the genotyped genic SNPs have no effect on breast cancer 

risk (𝜋01𝑏𝑖𝑛
 = 0.854, 95% CI: [0.828, 0.879]). The annotation group estimated to have 

the smallest 𝜋01𝑏𝑖𝑛
 was also the gene variant group for the two GWAS, but for the 
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COGS, the 95% CI for the estimate was much narrower. All in all, the 95% CIs for all 

COGS SNP annotation group  𝜋01𝑏𝑖𝑛
 estimates were narrow, which indicated that the 

estimates produced were fairly precise.  

Annotation group No. of SNPs 𝜋01𝑏𝑖𝑛
 (95% CI) 

Intergenic variant 16,933 0.879 (0.846, 0.906) 

Regulatory variant 1,969 0.906 (0.832, 0.963) 

Gene variant 24,606 0.854 (0.828, 0.879) 

Total 43,508  

Table 3-16: Proportion of COGS null SNPs (𝜋01𝑏𝑖𝑛
) within each annotation group 

 
 

Overall, a limited interpretation could be made between the COGS and GWAS 

annotation group ℎ𝑙 𝑏𝑖𝑛

2  and  𝜋01𝑏𝑖𝑛
 estimates because the 95% CIs for most of the 

GWAS estimates were very wide. Based on the COGS results, the results suggested 

that overall gene variants explain a higher proportion of the ℎ𝑙
2 for the COGS. Also, per 

marker, SNPs mapping to a gene regions were estimated to explain more genetic 

variation than regulatory and intergenic variants, but only a very tiny bit more. 
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3.3 Partitioning the COGS by cancer type 

As previously mentioned, the iCOGS array is a custom array where, based on previous 

study results, SNPs were genotyped for their association with either breast, prostate or 

ovarian cancer. In order to explore how much of the estimated ℎ𝑙
2 can be explained by 

the SNPs genotyped for their association with breast cancer, the ℎ𝑙
2 was partitioned by 

cancer type. SNPs retained after QC and LD-clumping were split into two groups; 

breast cancer SNPs and prostate/ovarian cancer SNPs. SNPs genotyped for their 

association with breast cancer were grouped together, and the SNPs not associated 

with breast cancer were grouped together (prostate/ovarian cancer SNPs).  

For each partitioned group, internal COGS training and replication samples were used 

to construct an interval PRS for the replication sample subjects. The SNP effects for 

each SNP, within a p-value interval, within the partitioned group, were used to 

construct an interval PRS. The SNP effects were estimated using a logistic regression 

model, with nine principal components and study included as covariates in the model. 

The association between each polygenic score and breast cancer outcome, in the 

replication sample, was tested in order to produce multiple z-scores (Appendix 7: 

Table 1). These z-scores, whilst assuming a prevalence of 0.001, were then used to 

estimate the ℎ𝑙 𝑏𝑖𝑛

2  and 𝜋01𝑏𝑖𝑛
 for the two groups.  

Summing the ℎ𝑙 𝑏𝑖𝑛

2  estimates for each group, produced a summed estimate close to 

the ℎ𝑙
2 estimate produced for the COGS (Table 3-17). There was found to be little 

difference between the ℎ𝑙 𝑏𝑖𝑛

2  estimate based on breast cancer SNPs, and the 

ℎ𝑙 𝑏𝑖𝑛

2 estimate based prostate/ovarian SNPs (breast cancer ℎ𝑙 𝑏𝑖𝑛

2 = 0.031 vs. 

prostate/ovarian cancer ℎ𝑙 𝑏𝑖𝑛

2 = 0.029). However, with there being approximately 60% 

more prostate/ovarian SNPs than breast cancer SNPs, breast cancer SNPs, per-SNP, 

explained a larger proportion of the COGS based ℎ𝑙
2 estimate for breast cancer.  

The estimated 𝜋01𝑏𝑖𝑛
 for each group was approximately 70%, with the 95% CIs for the 
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two 𝜋01𝑏𝑖𝑛
 estimates being rather narrow (breast cancer 𝜋01𝑏𝑖𝑛

 = 0.698, 95% CI: [0.633, 

0.750] and prostate/ovarian: 𝜋01𝑏𝑖𝑛
 = 0.682, 95% CI: [0.565, 0.763]). Both the ℎ𝑙 𝑏𝑖𝑛

2  and 

𝜋01𝑏𝑖𝑛
 estimates were very similar across the two groups, which suggested that the 

SNPs genotyped for their relationship with either prostate or ovarian cancer risk, also 

explain a reasonable proportion of the genetic variation in breast cancer risk.  

 

 No. SNPs ℎ𝑙 𝑏𝑖𝑛

2  (95% CI) 𝜋01𝑏𝑖𝑛
 (95% CI) 

Breast cancer SNPs 16,761  0.031 (0.028, 0.033) 0.698 (0.633, 0.750) 

Prostate/ovarian cancer SNPs 27,420 0.029 (0.026,0.032) 0.682 (0.565, 0.763) 

Total 44,181 0.060  

Table 3-17: Partitioning the COGS SNPs by cancer type 
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3.4 Discussion 

In this chapter, the genetic variance explained by genotyped SNPs was partitioned by 

chromosome, MAF and SNP annotation, to examine how the genetic variation for 

breast cancer is spread across the genome. Understanding how genetic variation is 

spread across the genome, by computing the heritability contribution of various SNP 

subsets, could narrow down the search for causal variants and enable the development 

of drug targets.  

Partitioning the two GWAS by MAF showed that common genetic variants, with a MAF 

greater than 0.1, explained a large proportion of the genetic variation for breast cancer 

(> 88%), which was found to be consistent with other MAF partitioning studies (98). If 

rarer SNPs are not in high LD with more common SNPs, then it is possible for rarer 

SNPs to be underrepresented on a GWAS array. Therefore, much more of the genetic 

variation in breast cancer could be explained by rarer SNPs, with an MAF < 0.1, than 

estimated in this chapter. Not including many of the rarer SNPs would also lead to an 

underestimation of the genetic variation in breast cancer that can be explained by 

genetic variants. But based on the chip heritability estimates produced in chapter 2, it 

can be said that common SNPs (MAF > 0.1) genotyped on the array, explain a larger 

proportion of the genetic variation in breast cancer risk that is explained by genotyped 

SNPs. The same result was also shown for COGS, with common SNPs explaining over 

80% of the estimated liability scale chip heritability. 

For the BBCS GWAS and the COGS, a significant linear relationship between the 

estimated genetic variance explained by a chromosome and chromosome length, or 

the number of SNPs on a chromosome, was observed. This observation was 

consistent with other studies carried out on other complex diseases, however the 

relationship for the BBCS GWAS was not as strong as observed for other complex 

diseases, such as endometriosis and MS, where an 𝑅2 of 0.37 and 0.31 had been 

observed (98). A weak linear relationship was observed for the UK2 GWAS, but the 
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association was found to be non-significant. With larger sample sizes, and therefore 

more precise estimations, the relationship between the estimated variance explained 

by a chromosome and chromosome length, may become statistically significant. With 

the whole genome not necessarily represented by the SNPs genotyped on the iCOGS 

array, it was thought that it might be better to assess the relationship between the 

number of SNPs genotyped for each chromosome and chromosome contribution. The 

linear relationship was found to be even stronger for the COGS when assessing the 

relationship between genetic variation contribution for a chromosome, and the number 

of SNPs genotyped for each chromosome. For some of the chromosomes, the genetic 

variation explained by SNPs mapping to the chromosomes was estimated to be zero. 

This was an unrealistic estimate as at least one published genome-wide significant 

breast cancer SNP has been shown to map to each chromosome. It was also found 

that the 95% CIs for many of the estimates produced when partitioning by 

chromosome, including the COGS estimates, were fairly wide which meant that the 

estimates were not entirely accurate. This inaccuracy could have been due to the 

reduced number of SNPs used in the analysis when partitioning.  

As well as partitioning the SNPs by their MAF and chromosome position, SNPs were 

also grouped by SNP annotation in order to investigate whether SNPs residing in 

intergenic regions could explain a larger proportion of the genetic variation in breast 

cancer, compared to those mapping to gene regions. The reasoning behind this 

analysis was that to date a large number of identified breast cancer susceptibility loci 

have been found to map to intergenic regions of the genome. It had not yet be explored 

whether variants mapping to intergenic regions explain a larger proportion of the 

genetic variation in breast cancer, compared to other variants. Unfortunately, due to 

study sample sizes, a conclusion could not be drawn from the GWAS partitioning 

analyses as the 95% CIs for the SNP annotation subset chip heritability estimates were 

very wide. However, the 95% CIs for the COGS SNP annotation subset chip heritability 
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estimates were fairly narrow, with the results suggesting that overall gene variants 

explain a higher proportion of the liability scale chip heritability. With there being a 

larger number of gene variants than intergenic and regulatory variants, the genetic 

variation explained per-marker was assessed and compared across the three subsets. 

Per-marker, there was shown to be little difference in the estimated per-SNP chip 

heritability estimates, so there was little evidence to suggest that variants mapping to 

intergenic regions, were more enriched than those mapping to genic or regulatory 

regions 

For the COGS, there was found to be little difference between the proportion of liability 

scale chip heritability explained by breast cancer SNPs, and the proportion explained 

by prostate/ovarian cancer SNPs. However, with there being a smaller number of 

breast cancer SNPs than prostate/ovarian cancer SNPs, the results indicated that the 

breast cancer SNPs could be more enriched than the prostate/ovarian cancer SNPs. 

With COGS SNPs estimated to explain ~6% of the variation in liability to breast cancer, 

and breast cancer SNPs genotyped on the custom array explaining ~50% of this 

variation, it was observed that the remaining ~50% could explained by prostate/ovarian 

cancer associated SNPs. This result confirms the importance of not restricting breast 

cancer analyses to only the SNPs thought to be related to breast cancer, as “non-

breast cancer” SNPs were shown to explain a similar proportion of the genetic variation 

in liability to breast cancer.  

The analysis presented in this chapter has enabled me to examine how the genetic 

variation in breast cancer liability is spread across the genome for two breast cancer 

GWAS and the COGS. The results from the GWAS partitioning analyses provided 

further evidence that breast cancer is a polygenic disease, with there being some 

evidence that the genetic variation for the disease can be explained by SNPs spread 

across the genome. It also showed that a substantial proportion of the genetic variation 

in breast cancer liability could be explained by common SNPs (MAF > 0.1). Wide 95% 
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CIs meant that it hard to draw reasonable conclusions for many of the results 

produced, particularly for the proportion of null SNPs estimates and the SNP 

annotation results.  

It was expected that there might be some differences between the GWAS and the 

COGS, in how genetic variation is spread across the genome, because of the SNPs 

genotyped. Genotyped GWAS SNPs are spread across most of the genome, whereas 

for COGS SNPs, some parts of the genome might be underrepresented. But the results 

from the COGS partitioning analyses suggested that genetic variation explained by the 

iCOGS SNPs was spread across the genome. The results for the COGS partitioning 

analyses also indicated that common SNPs (MAF > 0.1) on the array explained a large 

proportion of the genetic variation in breast cancer liability, and that per-SNP breast 

cancer related SNPs explained more genetic variation than “non-breast cancer” SNPs. 

The COGS SNP annotation partitioning analyses suggested that intergenic SNPs, per-

SNP, did not explain a larger proportion of the genetic variation in breast cancer 

liability, compared to genic and regulatory SNPs.  

At the time of writing, AVENGEME had not yet been used to partition chip heritability 

for any complex disease, and this was the first analysis to partition the genetic variation 

for breast cancer by either MAF, chromosome or SNP annotation. Due to large 95% 

CIs for many of the GWAS results, especially those produced for the BBCS GWAS, it 

was hard to draw a reasonable conclusion as the precision of the estimates had to be 

questioned. The 95% CIs for the ℎ𝑙 𝑏𝑖𝑛

2  and  𝜋01𝑏𝑖𝑛
 estimates produced in this chapter 

varied from fairly narrow to extremely wide (95% CI: [0.000 to 1.000]). Both the number 

of SNPs and individuals used to conduct the polygenic score analyses would have had 

an effect on the precision of the AVENGEME estimates. With partitioning analyses, 

SNPs are binned accordingly and then the proportion of genetic variance explained by 

each bin is estimated. Binning SNPs and then constructing multiple PRS by 

thresholding the SNPs in each bin, in order to used AVENGEME to produce bin 
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estimates, would have reduced the number of SNPs used in each PRS. This, along 

with the differences in sample size across the studies, would have affected the 

precision of the estimates and would explain why some 95% CIs are wider than others. 

With much larger studies being conducted and released in the near future, it would be 

beneficial to replicate and improve the precision of the estimates, and the partitioning 

results produced in this chapter, in a much larger breast cancer sample.  
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Chapter 4 Examining whether a shared 
polygenic basis between breast cancer and BMI 
exists 

 

4.1 Introduction 

With breast cancer being a complex disease, a disease that is influenced by both 

environmental and genetic risk factors, it has been difficult to establish all risk factors 

associated with the disease. A number of risk factors associated with breast cancer risk 

have, however, been identified. Some risk factors are modifiable, meaning that they 

can either be controlled or changed, with BMI being an example of such a factor. 

Modifiable risk factors are favoured in public health as it may be possible to reduce 

disease risk through lifestyle changes. For example, a postmenopausal woman with a 

high BMI could reduce her risk of breast cancer by lowering her BMI through exercise 

and diet. Risk factors can also be reproductive factors, which are usually considered 

non-modifiable, with such examples including age at menarche, parity and age at 

menopause (109). These factors are much harder to control, that is if it is even possible 

to control them. Breast cancer risk factors include a mixture of modifiable and 

reproductive factors, which include BMI, age at menarche, age at menopause, age at 

first pregnancy, age, use of oral contraceptive, family history of disease and use of 

hormone replacement therapy (110). Some of these risk factors have been shown to 

have a positive effect on breast cancer risk, whilst others have been shown to have a 

negative effect on disease risk. BMI has been shown to be associated with breast 

cancer risk, but the effect BMI has on breast cancer risk depends on menopausal 

status (111-116). Premenopausal women with a BMI > 22, have a reduced risk of 

developing breast cancer, whereas postmenopausal women are at an increased risk 

(116). Another breast cancer risk factor is age at menarche, this being the age at which 
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a woman has her first menstrual cycle. The younger a woman’s age at menarche, the 

higher her risk is of developing breast cancer (110, 117). For every one year decrease 

in age, a woman’s breast cancer risk increases by 5% (117). The age at which a 

woman begins menopause also affects breast cancer risk, with women who have a late 

menopause, over the age of 55, being twice as likely to develop breast cancer than 

women who start menopause before the age of 45 (110). For every year increase in 

age, a woman’s breast cancer risk increases by approximately 3% (117). The age at 

which a woman first gives birth is another breast cancer risk factor, with there being an 

increase in the lifetime risk of breast cancer if a woman does not give birth, or if her first 

birth is at a later age (110). There is a small increase in the relative risk of developing 

breast cancer for women who take the oral contraceptive pill (110). For women who 

take the oral contraceptive pill, or for up to 10 years after stopping, those who begin 

taking the contraceptive pill before the age of 20, have a higher risk of developing 

breast cancer than women who begin at an older age (110). Also, women that use 

hormone replacement therapy, have an increased risk of developing breast cancer 

(110). For every year of use, a woman’s relative risk of breast cancer increases by a 

factor of 1.023 if she uses hormone replacement therapy, or for up to 4 years after she 

has stopped using it (110). Percent mammographic breast density (PMD) is another 

breast cancer risk factor, with women who have dense breast tissue in over 75% of 

their breast, being up to 5 times more likely to develop breast cancer, compared to 

women with a PMD < 5% (78, 118). 

For a variety of complex polygenic diseases, studies have examined whether 

associated risk factors have a shared polygenic pathway with the disease of interest, 

which if shown, would suggest that there is an overlap in the genetic architecture 

between them. In this chapter, polygenic scoring has been used to examine whether 

there is evidence that BMI, a measure used to deem whether an individual is a healthy 

weight, and breast cancer have a shared polygenic basis. BMI is a measure that is 
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based on an individual’s weight and height measurement, with the formula being 

weight in kilograms divided by height in metres squared. An adult is classified as 

underweight if they have a BMI < 18.5, within normal range if 18.5 ≤ BMI < 25, 

overweight if BMI ≥ 25 and obese if their BMI ≥ 30 (119). In 2015, the adult prevalence 

for obesity in England, Scotland, Wales and Northern Ireland was published as being 

27%, 28.8%, 23.5% and 25%, respectively (120, 121). The prevalence of obesity has 

increased within each country in recent years, and is predicted to continue to increase 

in the future (122). This is worrying as BMI has not only been shown to be associated 

with breast cancer risk, but also with many other chronic diseases, such as type-2 

diabetes (123) and cardiovascular disease (124). BMI is known to be heritable, with up 

to 97 BMI susceptibility risk loci having been identified at the time of conducting the 

analysis in this chapter (125). With both BMI and breast cancer having a polygenic 

basis, it examined whether there was evidence of a shared polygenic basis. If evidence 

of an overlap is found, it would suggest that the association between BMI and breast 

cancer can partly be explained by genetics. However, unlike Mendelian randomization, 

establishing genetic overlap between traits does not establish causality.  
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4.2 Previous literature on shared genetic basis 

Polygenic scores, constructed using two trait populations, can be used to examine 

whether there is evidence that two traits have a shared polygenic basis (60). Multiple 

studies have examined whether a shared polygenic pathway exists between two or 

more traits using polygenic scores. An example of such a study, includes a study 

conducted by The International Schizophrenia Consortium (ISC) (61). Using European 

individuals, the ISC tested for evidence of a shared genetic basis existing between 

schizophrenia and bipolar disorder using polygenic score analysis. The training set 

comprised of 3,322 schizophrenia cases and 3,587 controls, and two independent 

bipolar disorder replication samples were used, the WTCCC (1,829 cases and 2,935 

controls) and STEP-BD (Systematic Treatment Enhancement Program for Bipolar 

Disorder) (955 cases and 1,498 controls). Polygenic scores were constructed for the 

replication sample individuals for five p-value significance thresholds; p < 0.1, p < 0.2, p 

< 0.3, p < 0.4, p < 0.5, these being based on the individual significance of the 

schizophrenia SNPs. The association between these polygenic scores and bipolar 

disorder were then tested. The ISC found evidence that polygenic scores, constructed 

using an ensemble of schizophrenia SNPs that had not all reached genome-wide 

significance, were associated with bipolar disorder risk. The polygenic score based on 

schizophrenia SNPs with a p-value < 0.5, was associated with bipolar disorder in both 

replication samples (WTCCC: p-value = 1 x 10-12 and STEP-BD: p-value = 7 x 10-9). 

With this finding, the ISC concluded that there was evidence of a shared genetic basis 

existing between schizophrenia and bipolar disorder. Additionally, they used polygenic 

scores to test whether there was evidence that schizophrenia had a shared polygenic 

basis with various non-psychiatric diseases (coronary artery disease, Crohn’s disease, 

hypertension, rheumatoid arthritis, type I diabetes and type II diabetes) (61). The 

association between the schizophrenia based polygenic score and each of the non-

psychiatric traits was non-significant, for all p-value thresholds (p-value > 0.05). 
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Therefore, there was no evidence to suggest that a shared polygenic basis exists 

between schizophrenia, and any of the non-psychiatric diseases tested.  

The Cross-Disorder Group of the Psychiatric Genomics Consortium (CDG-PGC) have 

examined whether there is evidence of a shared polygenic pathway between multiple 

traits (126). Using individuals of European ancestry, the CDG-PGC tested whether 

there was evidence of a shared polygenic basis existing between five psychiatric 

disorders: autism spectrum disorder (4,788 trio cases, 4788 trio pseudo controls, 161 

cases and 526 controls), attention deficit-hyperactivity disorder (1,947 trio cases, 1947 

trio pseudo controls, 840 cases and 688 controls), bipolar disorder (6,990 cases and 

4,820 controls), major depressive disorder (9,227 cases and 7,383 controls) and 

schizophrenia (9,379 cases and 7,736 controls) using polygenic score analysis (126). 

Each disorder was used as the training sample, with the remaining disorders then used 

as the replication sample. Multiple polygenic scores were constructed for each 

replication sample individual, based on various training sample SNP p-value 

thresholds. A significant cross-disorder overlap was observed between bipolar 

disorder, major depressive disorder and schizophrenia. A significant polygenic overlap 

was not detected between either attention deficit-hyperactivity disorder or autism 

spectrum disorder, with other disorders.  

Using UK Biobank data (N > 100,000) and large GWAS consortium data, both LDSC 

and polygenic score analysis were used by Hagenaars et al. (127) to find evidence of a 

shared polygenic basis existing between various cognitive functioning and educational 

traits (Biobank data), and 24 health related phenotypes (GWAS consortium summary 

data). The cognitive and educational traits included reaction time, verbal-numerical 

reasoning, memory and educational attainment. Health related traits included various 

vascular-metabolic diseases, neuropsychiatric disorders, brain measures, physical and 

physiological measures and life-course cognitive traits and proxies. For the polygenic 

score analysis, the GWAS summary data for the 24 heath related phenotypes were 
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used to construct multiple polygenic scores, for five different p-value threshold: p < 

0.01, p < 0.05, p < 0.1, p < 0.5 and all GWAS SNPs, for the individuals in the UK 

Biobank sample. The association between the multiple polygenic scores and the UK 

Biobank phenotypes; reaction time, memory, verbal-numerical reasoning and 

educational attainment, was tested. LDSC was used to measure the level of genetic 

overlap between the traits by estimating the genetic correlation between the traits. 

Hagenaars et al. observed significant genetic correlations and significant associations 

between the cognitive functioning and educational traits (UK Biobank), and many of the 

health related outcomes (GWAS consortium). From this the authors concluded that the 

results indicated that there was genetic overlap between cognitive functions, and 

physical and mental health diseases. A study conducted by Bulik-Sullivan et al. (128) 

also assessed the correlation between multiple traits using LDSC. Bulik-Sullivan et al. 

tested for significant correlations between 24 traits using GWAS summary data, with 

each trait having a sample of at least 10,000 individuals. The traits studied included 

BMI, ulcerative colitis, schizophrenia, bipolar disorder and years of education. After 

adjusting for multiple-testing, a number of significant correlations were detected, with 

these including significant correlations between ulcerative colitis and childhood obesity, 

anorexia nervosa and BMI and anorexia nervosa and schizophrenia.  

Not all studies have succeeded in finding evidence of a shared genetic basis between 

traits. A study conducted by Goris et al.(129) failed to find evidence of a shared genetic 

basis existing between multiple sclerosis (MS) (4,088 cases and 7,144 controls) and 

amyotrophic lateral sclerosis (ALS) (3,762 cases), when using a polygenic score 

analysis. The authors constructed polygenic scores for different p-value thresholds, 

based on the GWAS SNPs for one trait, for subjects in the remaining independent 

sample. The association between the score and independent replication trait was then 

tested. The associations were observed to be non-significant, which meant that Goris 

et al. found no evidence for a shared polygenic basis existing between MS and ALS.  
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For breast cancer, a genetic overlap has been demonstrated. PMD, the dense area of 

the breast divided by the total breast area, is a known risk factor for breast cancer and 

evidence has been found to suggest that PMD and breast cancer have a shared 

genetic basis (78, 130, 131). Varghese et al. (78) found evidence of a shared genetic 

basis existing between PMD and breast cancer using a polygenic score analysis. Using 

a published meta-analysis of five mammographic breast density GWAS, Varghese et 

al. constructed ten different polygenic scores using 1%-10% of the PMD SNPs, these 

being the top 1%-10% (up to 50,899 SNPs) of PMD SNPs after ranking the SNPs by 

their association with PMD. Each polygenic score was then tested for its association 

with breast cancer outcome in 3,628 breast cancer cases and 5,190 controls, using a 

logistic regression model. There was shown to be a significant association between the 

scores constructed using the top 3%-10% of SNPs and breast cancer risk, which 

indicated that through a large number of common variants, PMD and breast cancer 

have a shared genetic basis. A couple of years later, a meta-analysis was conducted 

by Lindstrom et al. (130), which focussed on loci associated with either of the three 

mammographic density phenotypes; dense area, non-dense area or percent density. 

From the identified genome-wide significant loci for all three phenotypes, Lindstrom et 

al. found that four mammographic density associated loci had previously been 

associated breast cancer. To add to this, Lindstrom et al. discovered four novel loci 

associated with the mammographic density phenotype, which were already known to 

be associated with breast cancer risk. With this result, Lindstrom et al. concluded that 

the analysis further proved that there was a shared genetic basis between breast 

cancer and mammographic density. To date, however, there have been no studies of 

genetic overlap between other known risk factors and breast cancer, using a large 

number of SNPs.  
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4.3 BMI data 

BMI summary data, together with the BBCS GWAS, UK2 GWAS and the COGS, were 

used to assess whether there was evidence of a polygenic overlap in the genetic 

architecture between BMI and breast cancer. The BMI summary data used to conduct 

the analysis in this chapter, was collected as part of a BMI meta-analysis conducted by 

the Genome-wide Investigation of ANThropometric measures (GIANT) consortium, and 

is available in the public domain (125). The summary data was based on up to 339,224 

subjects, extracted from 125 studies: 82 BMI GWAS and 43 Metabochip studies. The 

Metabochip is a custom Illumina iSelect genotyping array with approximately 200,000 

genetic variants of interest genotyped on it (132). The genetic variants genotyped were 

those that had been identified as being related with either metabolic, cardiovascular 

and/or anthropometric traits (132). For each of the genetic variants, beta effects and p-

values, for their association with BMI, were given. 
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4.4 Proposed method 

LDSC and polygenic score analysis were used in this chapter to test whether there was 

evidence of a shared polygenic basis existing between breast cancer and BMI. For the 

polygenic score analysis, multiple polygenic score analyses were conducted, first using 

published genome-wide significant SNPs and then a large number of SNPs en-masse. 

4.4.1 Genetic correlation between breast cancer and BMI 

The genetic correlation between breast cancer and BMI was estimated using LDSC, 

via the web interface LD hub.  

LDSC estimates the correlation between two traits using the following equation (128): 

𝐸[𝑧1𝑗𝑧2𝑗] =  
√𝑁1𝑁2 𝜌𝑔

𝑀
 ℓ𝑗 +  

𝜌𝑁𝑠

√𝑁1𝑁2

 

Where, 𝑧1𝑗 and 𝑧2𝑗 are the z-scores for study 1 and study 2 for SNP j and the sample 

sizes of the two studies are denoted as 𝑁1 and  𝑁2. The genetic correlation between 

the two traits is denoted as 𝜌𝑔, ℓ𝑗 is the LD score and the total number of markers is 

given as 𝑀. The phenotypic correlation is denoted as 𝜌 and this is between the number 

of overlapping samples (𝑁𝑠).   

The genetic covariance is estimated by regressing the z-scores for study 1 and study 2 

(𝑧1𝑗 and 𝑧2𝑗) against  ℓ𝑗√𝑁1𝑗𝑁2𝑗 and then multiplying this by 𝑀, where 𝑁1𝑗 and 𝑁2𝑗 are 

the sample sizes for SNP j in study 1 and study 2, respectively.  

Similar to when using LDSC to produce a chip heritability estimate, the subjects and 

SNPs retained in the studies after QC were used to estimate the genetic correlation 

between breast cancer and BMI. 
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 4.4.2  Shared polygenic basis (genome-wide significant SNPs) 

Polygenic scores were constructed for the subjects in the breast cancer studies, using 

the SNP effects of up to 97 published BMI genome-wide significant loci (125), and the 

“--score” command in PLINK. Four separate analyses were performed, one with each 

breast cancer study (BBCS, UK2 and COGS) as the replication sample, and the fourth 

combining the two breast cancer GWAS to form a larger GWAS replication set. A 

reduced number of the published BMI SNPs had been genotyped in the three breast 

cancer studies, so to increase the number of SNPs in the polygenic score analysis, the 

BMI SNPs were extracted from the imputed GWAS SNPs (PLINK best guess) for the 

GWAS subjects and used in the replication set. However, this was only possible for the 

two GWAS, as I only had access to the genotyped COGS SNPs, so not as many SNPs 

were included in the BMI-COGS PRS analysis. The association between the polygenic 

scores and breast cancer outcome, for the breast cancer replication sample, was then 

tested using a logistic regression model.  

A PRS was also constructed based on up to 94 published genome-wide significant 

breast cancer SNPs, these being SNPs discovered by Michailidou et al.(51), or in 

studies published prior to this study. The SNP effects were estimated using either the 

combined GWAS, in order to increase the sample size to improve the accuracy of the 

SNP effect estimates, or the COGS. Therefore, two analyses were conducted, with BMI 

being the replication sample trait. Having BMI as the replication trait, meant that the “--

score” command in PLINK could not be used, as individual genotype data would be 

needed. With there being no individual genotype information for the replication trait, 

only summary data, a different way of constructing the score was required. To 

overcome this problem “grs.summary”, an R function from the “gtx” R package (133), 

was used to construct a polygenic score and test for its association with BMI. This R 

function uses training sample SNP effects, the aligned SNP effects in the replication 

sample, and the standard errors for the SNP effects in the replication sample to do this.  
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The “grs.summary” R function uses the PRS formula, given in chapter 1, to test the 

association between a PRS and a replication trait, which in this case is BMI. To test the 

association between score and BMI, a linear regression model can be used, such that: 

𝑦𝑗 =  𝑦0 +  𝛼𝑃𝑅𝑆𝑗 +  𝜀𝑗   

Where 𝑦𝑗 is the replication trait BMI for individual j, 𝑦0 is the constant, 𝑃𝑅𝑆𝑗 is the 

polygenic score for individual j, 𝛼 is the PRS regression coefficient, and 𝜀𝑗 is the error 

term. 

Dastani et al. (134) state that the PRS regression coefficient (𝛼) can be estimated by 

using the following equation:  

𝛼̂ ≅  
∑ 𝛽̂𝑖𝑤̂𝑖𝑠̂𝑖

−2𝑚
𝑖=1

∑ 𝛽̂𝑖
2

𝑠̂𝑖
−2𝑚

𝑖=1

  

With, 

𝑠𝑒(𝛼̂) ≅  √
1

∑ 𝛽̂𝑖
2

𝑠̂𝑖
−2𝑚

𝑖=1

 

 where, m is the total number of SNPs used to construct the polygenic score,  𝛽̂𝑖 refers 

to the 𝑖-th SNP effect estimated for the training sample trait using the training sample, 

𝑤̂𝑖 is the 𝑖-th SNP effect for the replication trait estimated from the replication sample 

(summary data) and 𝑠̂𝑖 is the corresponding replication sample standard error estimate 

for the 𝑖-th SNP. It is assumed that independence across all m SNPs used in the PRS 

holds.  

The nested chi-squared test statistic (𝜒1
2) for the association between BMI and the PRS 

is then estimated as (135): 

𝜒1
2  ≅  (

𝛼̂

𝑠𝑒(𝛼̂)
) 2 
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For each analysis, regardless of the method used, the same effect allele for each SNP 

was used across the training and replication samples.  

4.4.3 Shared polygenic basis (en-masse and p-value thresholding) 

For the en-masse analysis, polygenic scores were constructed using the SNP effect of 

SNPs genotyped for each of the breast cancer studies. Polygenic scores were not 

constructed using the BMI SNP effects, as LD-removal could not be performed on the 

summary data at the time the analysis was conducted. Without LD-removal, 

independence across SNPs could not be assumed. Four separate analyses were 

conducted, one with each breast cancer study (BBCS, UK2 and COGS) as the training 

sample, and the fourth analysis combining the two breast cancer GWAS, in order to 

improve the accuracy of the SNP effect estimates. The replication sample trait in these 

analyses was BMI, which meant that that the PLINK “--score” command could not be 

used. So for these analyses, the R function “grs.summary” was used. For the analyses 

conducted using GWAS, BMI consortium dataset SNPs were extracted from the 

imputed GWAS SNPs (PLINK best guess), and used in the training set. This was 

carried out, in order to increase the number of SNPs present in the polygenic score 

analysis Before estimating the SNP effects for the training sample SNPs, both QC and 

LD clumping (r2 < 0.1) were performed on each training sample. The SNP effects were 

then estimated for each training study using a logistic regression model, with the 

relevant number of principal components for each study included as covariates in the 

model, in order to adjust for population stratification. The training sample SNP effects 

were grouped according to their strength of association with breast cancer outcome, 

using the following p-value thresholds: p ≤ 1, p ≤ 0.7, p ≤ 0.4, p ≤ 0.1, p ≤ 0.05, p ≤ 0.01 

and p ≤ 0.001. For each group of SNPs, “grs.summary” was used, along with the 

corresponding BMI beta coefficients and standard errors for the same SNPs, extracted 

from the BMI consortium summary data, to produce an association p-value. For each 
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analysis, the same effect allele for each SNP was used across the training and 

replication samples.  

4.4.3.1 Variance explained by the polygenic score (en-masse and p-value thresholding) 

When using the “grs.summary” function, the Nagelkerke’s pseudo R2 variance was also 

estimated and produced for each of the scores, for each p-value threshold. The 

measure can be used to quantify the proportion of variance that can be explained in the 

replication sample, by the training sample derived polygenic score. In the 

“grs.summary” function, the chi-square statistic produced for the association between 

replication trait and the PRS, is divided by the number of subjects in the replication 

study, to produce a pseudo R2 estimate: 

𝑝𝑠𝑒𝑢𝑑𝑜 𝑅2 =
𝜒1

2

𝑁
 

Where, N is the number of individuals in the replication sample. 
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4.5 Shared polygenic basis analysis 
 

4.5.1 Genetic correlation between breast cancer and BMI 

Using all three breast cancer studies separately, LDSC, implemented using LD hub, 

was used to estimate the genetic correlation between breast cancer and BMI. The 

results suggested that the strength of the correlation between breast cancer and BMI 

were not different from zero for each of the breast cancer studies (correlation p-values 

> 0.05) (Table 4-1). Considering the estimated correlation strength between breast 

cancer and BMI, the standard errors were also observed to be fairly large. With the 

BBCS GWAS having less than 5,000 individuals, and the number of SNPs in the 

analysis being less than 200,000 for the COGS, the correlation estimates were 

expected to be fairly noisy (95, 128).  

Overall, the results from the correlation analyses suggested that breast cancer and BMI 

were not significantly correlated (p-value > 0.05), thus there was no evidence to 

suggest that breast cancer and BMI have a shared polygenic basis.  

 

 BMI 

Breast cancer study Correlation Standard error p-value 

UK2 GWAS -0.0725 0.1073 0.4992 

BBCS GWAS  0.0625 0.1298 0.6302 

COGS -0.0412 0.0522 0.4301 

Table 4-1: Genetic correlation between breast cancer and BMI 
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4.5.2 Shared polygenic basis (genome-wide significant SNPs) 

4.5.2.1 Published genome-wide BMI SNPs 

In the following analyses PLINKs “--score" command and a logistic regression model, 

with the relevant PCs included as covariates in the model to adjust for population 

stratification, were used to examine whether there was evidence to suggest that a 

shared polygenic basis exists between BMI and breast cancer.  

Polygenic scores were constructed for the breast cancer study subjects using the SNP 

effects extracted from the GIANT consortium summary BMI data, for published 

genome-wide significant BMI SNP (97 SNPS). Not all published SNPs were 

represented in the polygenic score, as a number of the BMI genome-wide significant 

SNPs had not be either genotyped or imputed for the breast cancer studies. The 

association between various polygenic scores and breast cancer outcome, in the 

breast cancer studies, was then tested. A non-significant association between the BMI 

derived polygenic score and breast cancer outcome was observed for both breast 

cancer GWAS (UK2 p-value = 0.951 and BBCS p-value = 0.799) (Table 4-2). 

Therefore, genetic overlap between BMI and breast cancer was not observed, when 

using known genome-wide significant BMI SNPs. 

 

Training sample Replication sample No. SNPs p-value 

BMI UK2 35 0.951 

BMI BBCS 24 0.799 

Table 4-2: Shared genetic basis - BMI and breast cancer GWAS (logistic regression 
model) 

 

The replication sample used in the analysis was increased, by combining the UK2 

GWAS and the BBCS GWAS, to see whether this improved the significance of the 

association. Increasing the sample size of the replication set did not improve the 

significance of the association, there was still found to be a non-significant association 
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between the BMI derived score and breast cancer outcome in the combined breast 

cancer GWAS sample (p-value = 0.972) (Table 4-3).  

 

Training sample Replication sample No. SNPs p-value 

BMI Combined GWAS 35 0.972 

Table 4-3: Shared genetic basis - BMI and breast cancer GWAS combined (logistic 
regression model) 

 

The association between the BMI derived polygenic score and breast cancer risk was 

then tested, with the COGS as the replication sample. A polygenic score, constructed 

for the COGS subjects using BMI SNPs, was not significantly associated with breast 

cancer risk in the COGS (p-value = 0.806) (Table 4-4). The number of SNPs used to 

construct the polygenic score for the COGS subjects, was considerably less than the 

number used to construct the scores for the GWAS individuals (Table 4-2and Table 

4-3). In this section, no evidence was found to suggest that BMI and breast cancer 

have a shared polygenic basis. With only a small number of SNPs included in the 

polygenic scores, the genetic signal across the two traits could be underrepresented 

and restricted. There may be SNPs that affect both traits, but the small number of BMI 

SNPs analysed might have no effect on breast cancer risk. 

 

Training sample Replication sample No. SNPs p-value 

BMI COGS 10 0.806 

Table 4-4: Shared genetic basis - BMI and COGS (logistic regression model) 

 

4.5.2.2 Published genome-wide breast cancer SNPs 

Next, breast cancer derived polygenic scores were constructed using the SNP effects 

for published genome-wide significant breast cancer SNPs, estimated using the 

subjects in the combined UK2/BBCS GWAS and the COGS. The two GWAS were 
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combined for this analysis to improve the accuracy of the SNP effect estimates used in 

the polygenic score. Again, not all published breast cancer SNPs were used in the 

analysis, as the SNPs were either not imputed for either breast cancer GWAS, or not 

present in the BMI consortium summary data. For the following analyses in this section, 

the “grs.summary” R function was used to test the association between the breast 

cancer derived polygenic scores and BMI. The breast cancer SNP effects were 

estimated using a logistic regression model, with the relevant number of PCs for each 

study included as covariates in the model, in order to correct for any population 

stratification present in the data. 

There was found to be a weak significant association between the combined GWAS 

breast cancer derived polygenic score and BMI (p-value = 0.035) (Table 4-5), but the 

association was not as strong as previously observed between other traits.  

 Published breast cancer SNPs 

Training sample No. SNPs p-value 

Combined GWAS 68 0.035 

Table 4-5: Published breast cancer SNPs (GWAS) and BMI (grs.summary method) 

 

Increasing both the training sample size and the number of SNPs used in the polygenic 

score, by using the COGS as the training sample, improves the strength of the 

association between the breast cancer derived polygenic score and BMI (p-value = 

0.009) (Table 4-6). Increasing the sample size of the training sample should have 

improved the accuracy of the SNP effect estimates using in the score, compared to 

those produced using the combined breast cancer GWAS, as a larger number of 

individuals had been used to produce the estimates.  

 Published breast cancer SNPs 

Training sample No. SNPs p-value 

COGS 71 0.009 

Table 4-6: Published breast cancer SNPs (COGS) and BMI (grs.summary method) 
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With significant associations observed between two different polygenic scores, based 

on genome-wide significant breast cancer SNPs, and BMI, the results would indicate 

that there could be shared genetic overlap between breast cancer and BMI. In the next 

section, the analysis has been taken further by investigating whether a significant 

association can be detected when using all genotyped SNPs, en-masse.  

 

4.5.3 Shared polygenic basis (en-masse and p-value thresholding) 

Using a much larger number of SNPs, than used in the previous analyses, it was tested 

whether evidence of a shared polygenic basis between the two traits can also be found 

when not restricting the score to genome-wide significant SNPs only. The association 

between multiple PRS, derived using SNPs within different p-value thresholds, and BMI 

was tested using the “grs.summary” R function.  

There was found to be a non-significant association between the UK2 derived breast 

cancer polygenic score, based on all SNPs (p-value threshold p ≤ 1, SNPs = 100,109), 

and BMI (p-value = 0.560) (Table 4-7). For each of the UK2 derived polygenic scores, 

the association between the score and BMI was non-significant (p-value > 0.05), this 

was even observed for the score derived using only SNPs with a p ≤ 0.001. There was 

also shown to be non-significant association between the BBCS derived breast cancer 

polygenic score, based on all SNPs (p-value threshold p ≤ 1, SNPs = 94,666), and BMI 

(p-value = 0.055) (Table 4-8). The association was, however, borderline non-significant 

(p-value = 0.055), but the strength of the association did not improve further when 

being more stringent and restricting the SNPs used in the score. Therefore, the results 

in Table 4-7 and Table 4-8 did not provide evidence of a shared polygenic basis 

existing between breast cancer and BMI.  
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p-value threshold No. SNPs p-value 

p ≤ 1 100,109 0.560 

p ≤ 0.7 88,215 0.567 

p ≤ 0.4 66,794 0.575 

p ≤ 0.1 27,326 0.610 

p ≤ 0.05 16,854 0.299 

p ≤ 0.01 5,108 0.344 

p ≤ 0.001 853 0.366 

Table 4-7: Performing grs.summary for different p-value intervals (UK2) 

 

p-value threshold No. SNPs p-value 

p ≤ 1 94,666 0.055 

p ≤ 0.7 83,458 0.062 

p ≤ 0.4 62,092 0.217 

p ≤ 0.1 23,788 0.456 

p ≤ 0.05 13,962 0.822 

p ≤ 0.01 3,761 0.450 

p ≤ 0.001 519 0.858 

Table 4-8: Performing grs.summary for different p-value intervals (BBCS) 

 

To test whether a significant association could be achieved by increasing the sample 

size of the training set, the two breast cancer GWAS were combined. The association 

between the combined GWAS breast cancer score and BMI was nonetheless still non-

significant,  when not restricting the SNPs used in the score (p-value threshold p ≤ 1, 

SNPs = 96,667) (p-value = 0.073) (Table 4-9). A significant association was observed 

between the combined breast cancer GWAS derived score and BMI for four of the p-

value thresholds (p ≤ 0.4, p ≤ 0.1, p ≤ 0.05 and p ≤ 0.01), but not the p ≤ 0.001 

threshold (p-value = 0.943, SNPs = 873). Like the results produced Table 4-5 and 

Table 4-6, the strength of the associations were not as strong as seen in other studies, 

but it was evidence that many common genetic variants of small effect could contribute 

to BMI.   
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p-value threshold No. SNPs p-value 

p ≤ 1 96,667 0.073 

p ≤ 0.7 85,543 0.065 

p ≤ 0.4 64,497 0.043 

p ≤ 0.1 26,009 0.029 

p ≤ 0.05 15,927 0.023 

p ≤ 0.01 4,776 0.028 

p ≤ 0.001 873 0.943 

Table 4-9: Performing grs.summary for different p-value intervals (combined GWAS) 

 

To increase the sample size of the training set further, the SNP effects in the polygenic 

score were based on the SNPs genotyped for the COGS, but with this came a 

decrease in the number of SNPs used to derive the polygenic scores. The number of 

SNPs in union between those genotyped on the iCOGS array and those genotyped for 

the GIANT consortium was 41,386, which was approximately half the number of SNPs 

in union between the breast cancer GWAS and the GIANT consortium SNPs. This 

could therefore have a negative effect on the results, as many SNPs across the 

genome might not be represented in the analyses, leading to loss of genetic signal.  

There was a non-significant association between the COGS derived breast cancer 

polygenic score, based on all SNPs (p-value threshold p ≤ 1, SNPs = 41,386), and BMI 

(p-value = 0.715) (Table 4-10). For each of the COGS derived polygenic scores, the 

association between the score and BMI was non-significant (p-value > 0.05), even for 

the score derived using only SNPs with a p ≤ 0.001. These results therefore did not 

provide evidence of a shared polygenic basis existing between breast cancer and BMI. 
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p-value threshold No. SNPs p-value 

p ≤ 1 41,386 0.715 

p ≤ 0.7 34,396 0.759 

p ≤ 0.4 24,482 0.618 

p ≤ 0.1 9,560 0.199 

p ≤ 0.05 5,816 0.275 

p ≤ 0.01 1,954 0.081 

p ≤ 0.001 526 0.064 

Table 4-10: Performing grs.summary for different p-value intervals (COGS) 
 

Combined GWAS derived polygenic scores were the only scores shown to have a 

significant association with BMI, none of the other polygenic scores derived in this 

section were observed to have a significant association with BMI. By increasing the 

size of the breast cancer training sample further, and including as many genetic 

variants in the score as there are in Table 4-7, Table 4-8 and Table 4-9, a much lower 

p-value could potentially be observed.  

As well as testing the association between multiple PRS and BMI, the variation in BMI 

explained by the breast cancer derived polygenic scores was also estimated (Pseudo 

R2). The combined GWAS derived score explained the largest amount of variation in 

BMI (Figure 4-1) (Appendix 8). It was estimated that up to 0.0017% of the variation in 

BMI can be explained by genotyped breast cancer SNPs. Considering the combined 

GWAS polygenic score had the greatest association with BMI, this was not a surprising 

result as the Pseudo R2 is based on the chi-squared statistic. The BMI variance 

explained by the combined GWAS score was also not as large as seen with other 

traits, for example, a schizophrenia based polygenic score has been shown to explain 

over 0.4% of the variation in bipolar disorder (61). The limited variance explained in 

BMI was not surprising as the associations observed in other studies have typically 

been stronger than those observed in this analysis. As the Pseudo R2 is based on the 

chi-squared statistic, one would expect the Pseudo R2 to be larger in the other studies. 

 



153 
 

 

Figure 4-1: Polygenic score analysis - estimating the variance explained by the score in 
BMI 
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4.6 Discussion  

We know that BMI is risk factor for breast cancer, and that both BMI and breast cancer 

have a polygenic basis, but we do not know whether there is a polygenic overlap 

between the two traits. Finding evidence of a genetic overlap between the two 

phenotypes could help improve risk prediction and the development of treatments, by 

enabling the two phenotypes to be studied together (60). Studies have tended to use 

either polygenic score analysis, LDSC or both methods, to test whether there is a 

shared polygenic basis between two traits. Bivariate GCTA (136) is another method 

that is used to test whether a shared genetic basis between two traits exists, but 

genotype data for both traits is needed (137). With summary data being used for one of 

the traits, bivariate GCTA could not be used.  

Using both LDSC and polygenic score analysis, I have tested whether there was 

evidence to suggest that breast cancer and BMI have a shared polygenic basis. As 

shown in chapter 2, LDSC tends to work best on larger samples, and the breast cancer 

studies used were not as large as those used in other shared polygenic basis studies. 

As stated previously in this chapter, studies have been conducted by Bulik-Sullivan et 

al.(128) and Hagenaars et al.(127) in order to examine for significant correlations 

between multiple traits using LDSC, with the use of either GWAS summary data or UK 

Biobank data. Each trait in the Bulik-Sullivan et al. study had a sample size of at least 

10,000 individuals, so the individual studies were much larger than the breast cancer 

GWAS used to conduct the analyses in this chapter. Both autism spectrum disorder 

and infant head circumference had a sample size of approximately 10,000 individuals, 

which was a similar size to the combined breast cancer GWAS sample size. Many of 

the significant associations detected by Bulik-Sullivan et al., tended to be between 

traits with larger sample sizes. Hagenaars et al. (127) also found significant genetic 

correlations when using up to 112,151 UK Biobank individuals and GWAS SNPs to 

perform their analyses, this again being a much larger sample than the GWAS sample 
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sizes used to perform the analyses in this chapter. The COGS used in this chapter was 

just as large sample size wise, but the number of genetic variants was limited. From 

the LDSC correlation analysis conducted in this chapter, the results suggested that 

there was no evidence of a shared polygenic basis between breast cancer and BMI. 

The estimated correlation was very weak and non-significant for each of the breast 

cancer studies, therefore suggesting that the null hypothesis that the estimated 

correlation coefficient is equal to zero cannot be rejected. It was also found, as 

expected because of the number of SNPs and subjects analysed, that the correlation 

estimates produced were fairly noisy.  

With sample sizes being too small to gain statistical power using LDSC, polygenic 

scores were also used. First the analysis focused on published genome-wide SNPs 

that have been individually identified for breast cancer and BMI. A polygenic score 

constructed using up to 35 genome-wide significant BMI SNPs, failed to be shown to 

be associated with breast cancer outcome in an independent sample. However, when 

using up to 71 genome-wide significant breast cancer SNPs to construct a polygenic 

score in an independent sample, the score was significantly associated with BMI (p-

value BBCS/UK2= 0.035 and p-value COGS = 0.009). With the combined GWAS p-

value being borderline significant, the significance of the association was not as 

significant as one would hope.   

An en-masse polygenic score approach was then adopted, in which a polygenic score 

was constructed for multiple p-value thresholds, based on each SNPs association with 

breast cancer outcome in the training sample. These polygenic scores were then 

tested for their association with BMI in the independent sample (GIANT consortium 

summary data). The only breast cancer scores shown to be associated with BMI were 

the combined GWAS derived polygenic scores, based on SNPs with p ≤ 0.4, p ≤ 0.1, p 

≤ 0.05 and p ≤ 0.01. The p-values were again, not as small as one would hope for, but 

nonetheless still significant. For the sample sizes and the number of SNPs used in 
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these analyses, the statistical power to detect a genetic correlation was under 50%, 

with the power being considerably lower for the COGS (~6%). By increasing the 

number of breast cancer cases in future analyses, the power to detect an association 

between the score and independent outcome will improve. 

The results from the analyses presented in this chapter indicate that when focussing on 

known BMI susceptibility genetic variants alone, there is no evidence of a shared 

polygenic basis between BMI and breast cancer. However, there is evidence to 

suggest that there is a shared polygenic basis between breast cancer and BMI when 

polygenic scores are based on published breast cancer susceptibility variants. By being 

less stringent on the breast cancer GWAS SNPs used to construct the polygenic score, 

significant associations were also observed, providing further evidence that breast 

cancer and BMI have a shared polygenic basis.   

This was the first study to assess whether breast cancer and BMI could have a shared 

polygenic basis, which means that the analyses presented in this chapter were novel.  

A limitation was that BMI was the only risk factor analysed, no other breast cancer risk 

factors were examined. As stated previously in this chapter, there are many known 

breast cancer risk factors. Unfortunately at the time of conducting the analysis, I did not 

have access to data on other breast cancer risk factors. Another limiting factor is that 

BMI has a varying effect on breast cancer risk, depending on a woman’s menopausal 

status. As premenopausal women with a BMI greater than 22 have a decreased risk of 

breast cancer, compared to postmenopausal women with a BMI greater than 22, it 

would have been better to stratify by menopausal status and then maybe a more 

pronounced association may have been detected. The GWAS data used to conduct the 

analyses did not have this information available, so I was unable to stratify by 

menopausal status. Age could be used as a surrogate for menopausal status, but 

again, this information was not available for all individuals. An additional limitation is 

that for the shared polygenic basis analysis based on genome-wide significant BMI 
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SNPs, only a limited number of BMI SNPs were present in each breast cancer studies. 

This meant that the polygenic scores constructed in each of the analyses were based 

on a restricted number of SNPs, therefore the genetic signal across the two traits could 

be underrepresented and limited. The number of SNPs used in a score could have 

been increased using proxy SNPs. If a published BMI SNP was not found to have been 

genotyped in the breast cancer study, it may be that a SNP that is in high LD with the 

published SNP could have been genotyped instead. The proxy SNP could have be 

used to represent the absent published SNP in the score, thus increasing the number 

of SNPs used in the score. Another way of increasing the number of SNPs present in 

the score would have been by imputing the breast cancer studies for the published 

genome-wide significant BMI SNPs myself. 

With the findings suggesting that breast cancer and BMI may have a shared polygenic 

basis, future breast cancer shared polygenic basis analyses should be conducted. 

Many of the shared polygenic basis studies conducted recently have analysed multiple 

traits, using large samples and GWAS SNPs. The same should happen in breast 

cancer, across breast cancer and many known breast cancer risk factors, using a much 

larger samples and GWAS SNPs. This could provide further insight into the genetic 

architecture of breast cancer, which could aid the future development of treatments and 

disease prevention strategies.  
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Chapter 5 Testing for evidence of PRS-
environmental factor interactions and PRS-SNP 
interactions 

 

5.1 Introduction 

For most diseases, including breast cancer, both environmental and genetic risk factors 

have been shown to influence disease risk. The influence that a factor has, be it 

environmental or genetic, on disease risk may be modified by another factor through an 

interaction. In recent years, interaction studies have been performed in order to 

improve the identification of individuals, within specific populations, who may be at an 

increased risk of developing a given disease. With much of the heritability for many 

complex diseases, including breast cancer, being unexplained, it could be that the 

effect a genetic factor has on disease is either heightened or reduced with the 

exposure to specific environmental factors (138). In this chapter, an environmental 

factor will refer to any non-genetic disease risk factor.   

In breast cancer, and other complex diseases, interaction studies have been used to 

find evidence for the existence of gene-environmental factor interactions. In recent 

years, with many diseases being shown to be highly polygenic, studies have begun to 

adopt a polygenic approach to test for gene-environmental interactions, believing that 

more than one genetic variant may be involved in an interaction (139). Peyrot et 

al.(140) have performed such a study. They examined whether there was evidence that 

a polygenic score for major depressive disorder, based on different p-value thresholds, 

could be modified by childhood trauma. Childhood trauma is a major risk factor for 

major depressive disorder, and in this study the risk factor was measured as a score 

that ranged from 0-8 based on four domains: emotional neglect, psychological abuse, 

physical abuse and sexual abuse. A total of 32,870 SNP effects, based on a meta-
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analysis conducted by the Psychiatric Genomics Consortium using 7,544 cases and 

7,754 controls, were used in the analysis. For 1,645 major depressive disorder cases 

and 340 controls, a polygenic score was constructed for multiple p-value thresholds. 

Peyrot et al. tested for both a departure from multiplicativity and a departure from 

additivity, to test for interactions. From this, Peyrot et al. found evidence for interaction 

effects between multiple polygenic scores and childhood trauma, which helped the 

authors to conclude that individuals are at an increased risk of developing major 

depressive disorder if they have both a high PRS and have been exposed to childhood 

trauma. Another major depressive disorder and childhood trauma interaction study was 

published a couple of years later, this time by Mullins et al.(139), but with the additional 

risk factor adult stressful life events. Mullins et al. tested whether a polygenic score for 

major depressive disorder interacted with either adult stressful life events or childhood 

trauma. A polygenic score was constructed using SNPs effects from summary data 

based on a mega-analysis on major depressive disorder (7,615 cases and 7,931 

controls), conducted by the Psychiatric Genomics Consortium. Polygenic scores were 

constructed for 1,605 major depressive disorder cases and 1,064 controls with stressful 

life event data, and 240 major depressive disorder cases and 272 controls with 

childhood trauma data. Polygenic scores were then constructed for multiple p-value 

thresholds for up to 87,737 SNPs. Mullins et al. found evidence of a significant 

interaction existing between the major depressive disorder derived polygenic scores 

and childhood trauma, but no significant interactions were found between any of the 

polygenic scores and stressful life events. Salvatore et al.(141) have also conducted a 

PRS x environmental interaction study. Salvatore et al. examined whether there was 

evidence that a polygenic score for alcohol problems could be modified by either 

parental knowledge or peer deviance. A polygenic score was constructed for multiple 

p-value thresholds using up to 1,231,165 SNPs. The SNP effects, used to construct the 

polygenic scores for 1,162 subjects from an independent alcohol problem study 

(FinnTwin12), were estimated using GWAS results based on the Avon Longitudinal 
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Study of Parents and Children (ALSPAC) study, which included 4,304 European 

individuals. The polygenic score constructed using SNPs with a p ≤ 0.05 was estimated 

to explain the largest proportion of variation in alcohol problems, so Salvatore et al. 

then used this polygenic score to test for a PRS-parental knowledge and PRS-peer 

deviance interaction. A multiple regression analysis was used with alcohol problems as 

the dependent variable, and sex, PRS, environment factors and PRS x environmental 

factor as covariates in the model. The results from this analysis indicated that PRS-

environmental factor interactions, with both factors, existed as both interaction were 

found to be significant (PRS x parental knowledge p-value = 0.02 and PRS x peer 

deviance p-value = 0.04).  

More recently, an interaction study based on UK Biobank data was conducted by 

Tyrrell et al.(142) to examine whether a polygenic score for BMI, constructed using 69 

BMI associated SNPs, interacted with any one of the twelve measures of obesogenic 

environments and behaviour factors, to have an effect on obesity. Such factors 

included TV watching, vigorous activity and sedentary behaviour. The SNP effects 

used in the polygenic score were based on SNPs from the GIANT consortium, which 

contained up to 339,224 individuals. The UK Biobank study was used to provide 

information on obesogenic environmental factors for up to 120,000 individuals. Using a 

linear regression model with BMI as the dependent variable, Tyrrell et al. found 

evidence an interaction between the BMI polygenic score and three of the twelve 

obesogenic measures: self-reported TV watching, self-reported physical activity and 

the Townsend deprivation index (measure of social-economic position).  

However, not all studies conducted have successfully found evidence of PRS-

environmental factor interactions. A recent study conducted by Trotta et al. (143) tested 

whether there was evidence that a polygenic score for schizophrenia, interacted with 

childhood adversity to have an effect on psychosis. The polygenic score for 

schizophrenia was constructed using genome-wide significant SNP effects, extracted 

from a large mega-analysis conducted by the Schizophrenia Working Group of the 
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Psychiatric Genomics Consortium. A polygenic score was constructed for multiple p-

value thresholds, for 80 psychosis cases and 110 controls. To test for a PRS-childhood 

adversity interaction, a logistic regression model was used, with psychosis outcome as 

the dependent variable and the PRS, childhood adversity and the PRS-childhood 

adversity interaction as independent variables. Age, sex, educational level and ten 

principal components were also adjusted for. The interaction between the polygenic 

score and childhood adversity was non-significant (p-value = 0.632), therefore Trotta et 

al. failed to find evidence of an interaction. The authors concluded that the effect the 

schizophrenia polygenic score had on psychosis was not modified by the presence of 

childhood adversity. However, with very small number of subjects used in this study, 

the power to detect a significant interaction would have been very low. With the study 

being underpowered, it is possible that with a much larger replication sample, an 

interaction may be detected. These are just a number of the interaction studies that 

have been conducted to date.  

 

In breast cancer, a number of SNP-environmental interaction studies have been 

conducted, but there has been an absence of PRS-environmental interaction studies. 

Campa et al. (144) have examined, using 8,576 breast cancer cases and 11,892 

controls, whether there was evidence that 17 published susceptibility breast cancer loci 

individually interact with a number of established breast cancer risk factors, to have an 

effect on breast cancer risk. The study focused on nine breast cancer risk factors: age 

at menarche, parity, age at menopause, use of hormone replacement therapy, family 

history, height, BMI, smoking status and alcohol consumption. Two models for each 

SNP-environmental factor pair were constructed, the first model with breast cancer as 

the outcome and both the SNP and environmental factor as independent variables, 

whilst adjusting for age, study, ethnicity and country. The second model contained the 

same variables, but with an additional SNP-environmental factor interaction. A 

likelihood ratio test was then used to compare the goodness of fit of the two models, for 
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each SNP-environmental factor pair. No significant interactions were detected, so the 

authors concluded that there was no evidence that these known common variants 

strongly modified the associations between the environmental risk factors and breast 

cancer. A larger study, conducted using data from 24 BCAC studies involving up to 

34,793 breast cancer cases and 41,099 controls of European ancestry, was later 

performed by Nickels et al. (145). They investigated whether interactions existed 

between 23 breast cancer susceptibility SNPs, and 10 environmental risk factors (age 

at menarche, parity, breast feeding, BMI, height, oral contraceptive use, menopausal 

hormone therapy use, alcohol consumption, cigarette smoking and physical exercise). 

Using a similar approach to Campa et al. (144), they identified significant interactions 

between a number of published breast cancer risk loci and age at menarche, parity, 

breast feeding, BMI, height, oral contraceptive use, menopausal hormone therapy use, 

alcohol consumption, cigarette smoking and physical activity.  

Mavaddat et al.(52) have examined whether there is evidence that a polygenic score, 

based on 77 published genome-wide significant SNPs, interacts with either age or 

family history to have an effect on either the occurrence of overall breast cancer 

outcome, estrogen receptor (ER)-positive breast cancer or ER-negative breast cancer. 

Polygenic scores were constructed for 46,450 breast cancer cases, 27,074 ER-positive 

breast cancer cases, 7,413 ER-negative breast cancer cases and 42,599 controls, 

taken from BCAC, using SNP effects based on previously published results produced 

for 77 genome-wide significant SNPs. Multiple age group intervals were formed, and a 

logistic regression model was used to test whether interactions were significant. For 

overall breast cancer and ER-positive breast cancer, there was shown to be a 

significant interaction between age and PRS, but the same could not be shown for PRS 

and family history. A problem with this analysis was that a large number of the 

published genome-wide significant SNPs have been previously identified using BCAC 

data. Using SNP effects based on published results to construct polygenic scores for 

the women in the BCAC sample would then mean that there will be some subject 
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overlap in the training and replication sample, meaning that the two samples would not 

completely independent. This could have therefore inflated the association between the 

score and the breast cancer outcome in the replication sample, and caused 

inaccuracies in the interaction analysis. This omission should be considered when 

drawing a conclusion based on the analyses conducted for this study. 

SNP-SNP interactions are another form of interaction that tends to be examined. With 

broad-sense heritability including epistasis effects, the differences in the broad-sense 

and the narrow-sense heritability estimates could be explained partially by SNP-SNP 

interactions. For breast cancer, Mavaddat et al.(52) have tested whether individual 

SNPs interact with each other to have an effect on breast cancer risk. The SNPs used 

were 77 known genome-wide significant SNPs breast cancer SNPs, published at the 

time the analysis was conducted. There was found to be no evidence of SNP x SNP 

interactions existing between any of the 77 SNPs. With breast cancer being a 

polygenic trait, it is possible that interactions between a combination of SNPs and an 

individual SNP may exist. This has not been examined yet in breast cancer, but a PRS-

SNP interaction could show that the effect a polygenic score has on a trait is modified 

by a single SNP.  

At the time of conducting the analyses presented in this chapter, there had been no 

PRS-environmental factor interaction studies conducted using an en-masse polygenic 

score for breast cancer. In the studies that had been conducted, the PRS had been 

constructed using only SNPs that had been identified as genome-wide significant, 

either independently, or in a PRS. 
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5.2 Proposed method 

In this chapter, two main analyses have been performed. The first analysis focuses on 

establishing whether the effect a breast cancer polygenic score has on breast cancer 

outcome is modified by either BMI or age at menarche. The second analysis tested 

whether the effect a breast cancer polygenic score has on breast cancer outcome is 

modified by individual genotyped SNPs. To date, breast cancer interaction studies 

have tended to focus on a limited number of SNPs, these being the susceptibility SNPs 

discovered by the time the research was conducted. It has been tested whether known 

susceptibility SNPs interact with an environmental factor individually, or whether a PRS 

x environmental factor interaction is present, when combining the known susceptibility 

SNPs. With breast cancer being a polygenic trait, and with much of the genetic 

variation in breast cancer yet to be explained by individual genetic variants, an en-

masse polygenic approach was instead adopted for the following analyses. With many 

associated genetic variants yet to be discovered, the en-masse approach will enable 

unknown associated SNPs to be represented in the analyses. As an en-masse 

polygenic approach has been used, the analyses have mainly focused on the two 

breast cancer GWAS (UK2 and BBCS), so that as many SNPs as possible across the 

genome could be represented in the analysis.  

In the following analyses, the PRS-environmental interactions tested were PRS-age at 

menarche and PRS-BMI. Both age at menarche and BMI are breast cancer risk 

factors, and in chapter 2 it was observed that breast cancer polygenic scores, for 

different p-value thresholds, could be used to predict breast cancer outcome. With that 

in mind, it was tested whether there was evidence to suggest that the two risk factors 

interact with breast cancer polygenic scores, to influence breast cancer outcome. Out 

of the many known breast cancer risk factors, these two risk factors were chosen 

because there is evidence that individual breast cancer genetic variants interact with 

either one of these risk factors (145), and the data for these factors were available in 
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one of the GWAS. Both BMI and age at menarche data were present in the BBCS 

GWAS, but not the UK2 GWAS. Not only were the number of BMI and age at 

menarche subjects limited because the data was only available for subjects in one of 

the GWAS, but not all of the women present in the BBCS had this information. Only 

approximately half of the cases in the GWAS had either BMI or age at menarche data, 

with none of the controls having this information. With a very small of subjects with 

either BMI or age at menarche information, and with larger studies, previously 

conducted, being unable to detect significant interactions, a case-only approach was 

adopted in order to improve the statistical power to detect any present interactions.  

5.2.1 Case-only design 

Interaction studies are known to suffer from reduced statistical power, with sample 

sizes needing to be larger than most other study types in order to detect a present 

interaction. As stated in the preceding chapters, the UK2 and BBCS GWAS are both 

relatively small, sample size wise, but they do offer genome-wide coverage. Research 

has suggested that a case-only analysis can be more effective at detecting 

interactions, than case-control studies of the same size (146). However, caution should 

be taken when using only cases to detect an interaction (147).  A systematic review 

and meta-analysis investigating bias in both case-only gene-environment interactions 

studies, and gene-gene interaction studies was executed by Dennis et al.(147). 

Generally case-only studies do not incur more bias than case-control studies, but the 

review did find that correlation between the genotype and environmental factor was the 

main cause of bias in case-only interaction studies. With a case-only study, two 

assumptions should hold in order to reduce the risk of bias. The first assumption is that 

the interacting factors being tested should be independent of each other in the general 

population, and the second assumption is that the disease of interest should be rare.  
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Assuming that we wish to test for an interaction between two factors, a logistic 

regression model can be fitted to the data such that:  

𝑙𝑜𝑔𝑖𝑡𝑃(𝑌 = 1) = ln (
𝑃

1 − 𝑃
) =  𝛽0 + 𝛽1𝐺 + 𝛽2 𝐸 + 𝛽3 𝐺 ×  𝐸 

Where, 𝑌 is the disease (binary),  𝛽0 is the intercept, 𝛽1 and 𝛽2 are the coefficients for 

the genetic factor (𝐺) and the risk factor (𝐸), respectively. The interaction between 𝐺 

and 𝐸 is given as 𝐺 ×  𝐸, with the coefficient 𝛽3. The probability of disease is denoted 

as 𝑃 (𝑃 ∈ [0,1]), and ln (
𝑃

1−𝑃
) is the log-odds (ln (

𝑃

1−𝑃
) ∈ [−∞, +∞]). 

The interaction term (𝛽3) can be defined as: 

𝛽3 =
𝑂𝑅𝐺 × 𝐸

𝑂𝑅𝐺𝑂𝑅𝐸
 

Where, 𝑂𝑅𝐺 × 𝐸, 𝑂𝑅𝐺 and 𝑂𝑅𝐸 are the odds of risk for individuals with both 𝐺 and 𝐸 

present together, just 𝐺 present and just 𝐸 present, respectively. 

From this, the odds ratio for the 𝐺 and 𝐸 in cases (𝑂𝑅𝑐𝑎𝑠𝑒−𝑜𝑛𝑙𝑦) can be written as:  

𝑂𝑅𝑐𝑎𝑠𝑒−𝑜𝑛𝑙𝑦 =  𝛽3  × 𝑂𝑅𝑐𝑜𝑛𝑡𝑟𝑜𝑙−𝑜𝑛𝑙𝑦 

Where, 𝑂𝑅𝑐𝑜𝑛𝑡𝑟𝑜𝑙−𝑜𝑛𝑙𝑦 the odds ratio for the 𝐺 and 𝐸 in controls. 

If it can be assumed that 𝐺 and 𝐸 are independent and that the disease is rare, then 

𝑂𝑅𝑐𝑜𝑛𝑡𝑟𝑜𝑙−𝑜𝑛𝑙𝑦 = 1, which then means that (148, 149):  

𝑂𝑅𝑐𝑎𝑠𝑒−𝑜𝑛𝑙𝑦 =  𝛽3  

So,  𝛽3 can be estimated using only cases. 

Assuming that 𝐺 is a binary variable, a logistic regression model can be fitted to the 

data for cases only, such that (149): 

𝑙𝑜𝑔𝑖𝑡𝑃(𝐺 = 1) =  𝛽0 +  𝛽1𝐸 
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With a continuous 𝐺, this being the polygenic score, a linear regression model can 

instead be fitted to the case data: 

𝐺 =  𝛽0 + 𝛽1𝐸 

If there is shown to be a linear relationship between the 𝐺 and 𝐸, then this could be 

evidence that an interaction exists. This approach can also be applied when testing for 

PRS × SNP interactions. 

Independence between the 𝐺 and 𝐸 can be a strong assumption to make, and it is 

thought that many case-only interaction analyses are conducted even though the 

assumption may not hold (150). It was uncertain whether each of the polygenic scores 

and either age at menarche, BMI and the genotyped SNPs are truly independent in the 

population. However, as explained later in this chapter, information on the 

environmental factors were only available for a small proportion individuals in the 

studies used in this thesis, all of which were breast cancer cases. This meant that it 

was not possible to conduct a case-control interaction analysis, therefore a case-only 

interaction analysis was performed instead.  

 The prevalence throughout this thesis has been assumed to be 0.1%, which could be 

considered rare. Therefore, this makes it more likely that the assumption holds.  

5.2.2 PRS x environmental factor interactions 

Two breast cancer risk factors, one modifiable risk factor (BMI) and the other a 

reproductive risk factor (age at menarche), were included in the PRS x risk factor 

interaction analysis. A case-only approach was adopted for this analysis. A polygenic 

score was constructed for women who had been diagnosed with breast cancer in the 

BBCS GWAS, who also had either a BMI measure or a menarche age. The SNP 

effects used in the polygenic score were estimated using the remaining BBCS cases 

who did not have either BMI or age at menarche information, the BBCS controls and 

the UK2 individuals. A logistic regression model was used to estimate the individual 
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SNP effects used in the score, whilst including ancestry principal components as 

covariates in the model to adjust for population stratification. The SNPs were then 

sorted by their association significance with breast cancer into multiple threshold 

groups, these being: p ≤ 1, p ≤ 0.7, p ≤ 0.4, p ≤ 0.1, p ≤ 0.05, p ≤ 0.01 and p ≤ 0.001. A 

polygenic score, based on the SNP effects for the SNPs in each threshold group, was 

then constructed for either the BMI BBCS cases, or the age at menarche BBCS cases. 

The scores were then tested for their association with either BMI or age at menarche 

using a linear regression model, whilst adjusting for four ancestry principal 

components: 

𝑃𝑅𝑆𝑐𝑎𝑠𝑒−𝑜𝑛𝑙𝑦 =  𝛽0 +  𝛽1BMI𝑐𝑎𝑠𝑒−𝑜𝑛𝑙𝑦 +  𝛽2𝑃𝐶1 +   𝛽3𝑃𝐶2 +  𝛽4𝑃𝐶3 +  𝛽5𝑃𝐶4  

𝑃𝑅𝑆𝑐𝑎𝑠𝑒−𝑜𝑛𝑙𝑦 =  𝛽0 + 𝛽1AM𝑐𝑎𝑠𝑒−𝑜𝑛𝑙𝑦  +  𝛽2𝑃𝐶1 +   𝛽3𝑃𝐶2 +  𝛽4𝑃𝐶3 +  𝛽5𝑃𝐶4 

Where, BMI𝑐𝑎𝑠𝑒−𝑜𝑛𝑙𝑦 and AM𝑐𝑎𝑠𝑒−𝑜𝑛𝑙𝑦 are the BBCS case sample with BMI and age at 

menarche data, respectively. The ancestry principal components for the BBCS cases 

are defined as 𝑃𝐶1, 𝑃𝐶2 , 𝑃𝐶3 and 𝑃𝐶4, with 𝛽2to 𝛽5 being the corresponding 

coefficients for 𝑃𝐶1 to 𝑃𝐶4. 

For a separate PRS-environmental factor analysis, the COGS was used to estimate the 

SNP effects used to construct the polygenic score for the BBCS BMI and age at 

menarche breast cancer cases. A logistic regression model was used to estimate the 

individual SNP effects used in the score, with nine ancestry principal components and 

sub study included as covariates in the model. The SNPs were then organised by their 

significance with breast cancer into multiple threshold groups, the same thresholds 

used in the GWAS analysis. The SNP effects for the SNPs in each threshold group 

were then used to construct a PRS for either the BMI BBCS cases, or the age at 

menarche BBCS cases. The scores were then tested for their association with either 

BMI or age at menarche using a linear regression model, with four principal 

components included in the model.  
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In order to increase the number of SNPs present in the polygenic scores, the UK2 and 

COGS training SNPs were extracted from the imputed BBCS SNPs for the age at 

menarche and BMI BBCS cases. The imputed BMI and age at menarche BBCS breast 

cancer case sets were then used as the replication sample in the polygenic score 

analysis.  

If a significant association between the polygenic score and environmental factor is 

shown, it would suggest that an interaction exists between the environmental factor 

and the breast cancer polygenic score. 

5.2.3 PRS x SNP interactions 

In chapter 2, it was observed that polygenic scores based on GWAS SNPs were 

significantly associated with breast cancer risk in an independent GWAS. It was shown 

that a PRS constructed using all independent GWAS SNPs en-masse, regardless of 

their individual significance with the trait, was significantly associated (p-value < 0.05) 

with breast cancer risk in an independent GWAS. This was also the case when being 

more stringent on the SNPs used to construct the polygenic scores. The significant 

associations observed were bi-directional, polygenic scores for both GWAS were 

shown to significantly predict risk of breast cancer in the other GWAS. This analysis 

was taken further by examining whether any of the SNPs used to construct a polygenic 

score, significantly interact with the polygenic score to have an effect on breast cancer 

risk. With each of the scores being significantly associated with breast cancer risk in an 

independent sample, does the presence of a certain SNP in the score, modify the 

effect the score has on the trait (PRS x SNP interaction)?  A case-only approach was 

used to examine whether there was evidence of such interactions present.  

For this analysis, multiple polygenic scores were constructed using individual SNP 

effects estimated using BBCS cases and controls. The scores constructed were based 

on SNPs, which included imputed BBCS SNPs based on the UK2 GWAS SNPs, with 
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an individual p ≤ 1, p ≤ 0.7, p ≤ 0.4, p ≤ 0.1, p ≤ 0.05, p ≤ 0.01 and p ≤ 0.001. Individual 

training sample SNP effects were estimated using a logistic regression model, with four 

ancestry principal components included as covariates in the model.  

For each polygenic score, the SNPs effects of m SNPs were used to construct a score 

in the replication sample cases (UK2 GWAS) using the PRS formula: 

𝑃𝑅𝑆̂𝑚 (𝑐𝑎𝑠𝑒−𝑜𝑛𝑙𝑦) =  ∑ 𝛽̂𝑗1𝐺𝑗 (𝑐𝑎𝑠𝑒−𝑜𝑛𝑙𝑦)

𝑚

𝑗=1

   

Let 𝛽̂𝑗1 be the SNP effect for SNP 𝑗 based on the training sample (BBCS GWAS) 

estimated using a logistic regression model with four principal components included as 

covariates, and 𝐺𝑗(𝑐𝑎𝑠𝑒−𝑜𝑛𝑙𝑦) be the coded allele, with 0,1 and 2 for SNP 𝑗 for only the 

cases in the replication sample (UK2 GWAS).   

To test whether one of the SNPs used to construct a score significantly interacts with 

the score, the SNP effect for the SNP is subtracted from polygenic score, for each 

replication sample individual.  

The polygenic score used in the interaction analysis, excluding the SNP effect of the 

tested SNP, is then: 

𝑃𝑅𝑆̂𝑚−1 (𝑐𝑎𝑠𝑒−𝑜𝑛𝑙𝑦) =  𝑃𝑅𝑆̂𝑚 (𝑐𝑎𝑠𝑒−𝑜𝑛𝑙𝑦) − SNP𝑎 

= (∑ 𝛽̂𝑗1𝐺𝑗 (𝑐𝑎𝑠𝑒−𝑜𝑛𝑙𝑦)

𝑚

𝑗=1

) − 𝛽̂𝑎1𝐺𝑎 (𝑐𝑎𝑠𝑒−𝑜𝑛𝑙𝑦) 

Where, SNP𝑎 is a tested SNP that was initially used to construct the score, 𝛽̂𝑎1 is the 

SNP effect for SNP𝑎 and 𝐺𝑎 (𝑐𝑎𝑠𝑒−𝑜𝑛𝑙𝑦) is the coded allele (0,1 and 2) for SNP𝑎 for 

replication cases only. This analysis is performed under the assumption that there is no 

LD between the individual SNP being tested and all the SNPs present in the polygenic 

score.  
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The interaction between 𝑃𝑅𝑆̂𝑚−1 and SNP𝑎 can then be tested using a linear regression 

model: 

𝑃𝑅𝑆̂𝑚−1 (𝑐𝑎𝑠𝑒−𝑜𝑛𝑙𝑦) =  𝛽0 + 𝛽1SNP𝑎 (𝑐𝑎𝑠𝑒−𝑜𝑛𝑙𝑦)  +  𝛽2𝑃𝐶1 +  … + 𝛽11𝑃𝐶10 

 

Where, 𝛽0 is the intercept and 𝛽1 is the coefficient for SNP𝑎 for case subjects only. 

The first ten principal components used to minimise any population stratification 

present are denoted as 𝑃𝐶1 to 𝑃𝐶10, with 𝛽2to 𝛽11 being the corresponding coefficients 

for 𝑃𝐶1 to 𝑃𝐶10. 

By testing for multiple interactions between a threshold polygenic score and the SNPs 

within that same threshold, multiple comparisons should be corrected for. One would 

expect, at a 5% significance level, that 5% of the interactions tested are significant by 

chance alone. Therefore, to adjust for multiple comparisons, the false discovery rate 

(FDR) was used.  

 
 
 
 
 
 
 
 
 
 
 
 



5.3 PRS x risk factor interaction analysis 

In order to perform the PRS x risk factor analyses, two independent samples were 

needed and one of them, the replication sample, needed to contain individuals with 

BMI or age at menarche data. The main focus of these interaction analyses was to 

establish whether there was evidence of an interaction existing between a breast 

cancer polygenic score, that represents SNPs across the genome, and either BMI or 

age at menarche. With the data I had access to, BMI and age at menarche data was 

only available for BBCS subjects, I did not have this information for the UK2 or COGS 

subjects. This meant that only a small number of individuals could then be used to test 

for an interaction, so in order to improve the statistical power to detect an interaction, a 

case-only approach was implemented. The BBCS cases with either BMI or age at 

menarche data were assigned to the replication sample, and the remaining BBCS 

cases, those without either BMI or age at menarche data, and controls were assigned 

to the training set. The UK2 GWAS was combined with BBCS training sample to 

increase the number of individuals in the training sample, in order to improve the 

precision of the SNP effect estimates used to construct the polygenic score. For the 

BMI interaction analysis, this meant that the combined GWAS training sample 

consisted of 4,316 cases and 5,190 controls, with the replication set containing 921 

BBCS cases. For the age at menarche interaction analysis, the combined GWAS 

training set contained 4,312 cases and 5,190 controls, with the replication set 

containing 925 BBCS cases. 

To increase the training sample size further, and test whether a score enriched for 

breast cancer associated SNPs interacts with either breast cancer risk factors, the 

COGS was used as the training sample in a separate interaction analysis. For the BMI 

analysis with COGS subjects as the training sample, the training sample consisted of 

all European COGS subjects (48,064 cases and 43,486 controls), with the replication 

sample containing 921 BBCS cases. For the age at menarche analysis with the COGS 
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subjects as the training sample, the training sample again consisted of 48,064 cases 

and 43,486 controls, with the replication sample containing 925 BBCS cases. Even 

though the COGS training set data was external to the BBCS GWAS, the number of 

BBCS subjects in the replication sample could not be increased further as the BMI and 

age at menarche information was only available for those BBCS subjects. BMI in the 

replication sample was found to range from 16.57 to 47.22 when including the women 

that are considered to be outliers (“underweight” to “obese”) (Figure 5-1), and the mean 

BMI for women in the replication sample was calculated to be 26.71, which is just 

within the “overweight” interval (25 ≤ BMI < 30). The age at which a woman in the 

replication sample has her first menstruation cycle ranged from 9 to 20 years when 

including women that are considered to be outliers (Figure 5-2), with the mean age 

being 13 years.  
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Figure 5-1: Boxplot of BMI distribution for replication sample 

 

 

 

 

 

 

 

 

 

 

 Figure 5-2: Boxplot of age at menarche distribution for replication sample 
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The SNPs used to construct the multiple polygenic scores were the SNPs retained 

after QC and LD-clumping (𝑟2 > 0.1). In order to increase the number of SNPs used to 

construct the polygenic scores for the BBCS cases, imputed SNPs were used. The 

UK2 SNPs retained after QC and LD-clumping (𝑟2 > 0.1) that had not been genotyped 

in the BBCS, were extracted from the BBCS imputed SNPs for all BBCS individuals. 

This then meant that up to 82,823 SNPs were used to construct the polygenic scores 

for the BBCS cases. Imputed SNPs were also used in the analyses when the COGS 

was the training sample. The COGS SNPs retained after QC and LD-clumping (𝑟2 > 

0.1), that had not been genotyped in the BBCS, were extracted from the BBCS imputed 

SNPs for the BBCS cases used in the replication sample. Using imputed SNPs in the 

COGS based analyses meant that up to 41,651 SNPs were used to construct the 

polygenic scores for the BBCS BMI or age at menarche cases. After computing the 

scores, a linear regression model was used to test whether a breast cancer risk score 

was linearly associated with either BMI or age at menarche, with four principal 

components included as covariates in the model. 

There was shown to be a non-significant linear association between age at menarche 

and the breast cancer polygenic score derived from 82,823 UK2/BBCS SNPs (p ≤ 1, p-

value = 0.602) (Table 5-1). The same was shown for each p-value threshold, none of 

the UK2/BBCS derived polygenic scores for the BBCS age at menarche subjects had a 

significant linear association with age at menarche in the BBCS cases. A significant 

linear association between age at menarche and the breast cancer polygenic score 

derived using 41,651 COGS SNPs (p ≤ 1, p-value = 0.020) was however observed, 

suggesting that an interaction between the two exists (Table 5-1). A significant 

association between age at menarche and PRS was also observed for the score 

constructed using SNPs with a p-value ≤ 0.7 and a p -value ≤ 0.4 (association p-value 

= 0.016 and association p-value = 0.042). The significant associations observed, were 

however not as significant as one would have hoped. Nonetheless, the results still 
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suggested a significant PRS x age at menarche interaction, when there was less of a 

restriction on the SNPs included in the polygenic score and when the score was based 

on the SNP effects estimated using the COGS.   

The linear association between BMI and the breast cancer polygenic score derived 

from 82,823 UK2/BBCS SNPs (p ≤ 1, p-value = 0.153) was observed to be non-

significant (Table 5-2). This was also found to be the case for most of the scores 

constructed using UK2/BBCS SNP estimates. A significant association was, however, 

observed between BMI and the breast cancer polygenic score derived using 377 

GWAS SNPs (p ≤ 0.001, p-value = 0.040). The result suggested a significant PRS x 

BMI interaction existed when there was a restriction on the BBCS/UK2 SNPs included 

in the polygenic score. The same was not shown for any of the COGS derived 

polygenic scores, so there was no evidence to suggest an interaction between BMI and 

any of the breast cancer polygenic scores existed, when using COGS SNP effects.  

 

  Age at menarche 

Training set Replication set p-value threshold No. SNPs p-value 

UK2/BBCS BBCS cases p ≤ 1 82,823 0.602 

  p ≤ 0.7 70,783 0.658 

  p ≤ 0.4 50,954 0.799 

  p ≤ 0.1 18,675 0.822 

  p ≤ 0.05 10,751 0.967 

  p ≤ 0.01 2,853 0.361 

  p ≤ 0.001 377 0.208 

COGS BBCS cases p ≤ 1 41,651 0.020 

  p ≤ 0.7 34,575 0.016 

  p ≤ 0.4 24,590 0.042 

  p ≤ 0.1 9,597 0.427 

  p ≤ 0.05 5,833 0.527 

  p ≤ 0.01 1,962 0.959 

  p ≤ 0.001 529 0.131 

Table 5-1: Linear regression: breast cancer polygenic score and age at menarche 
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  BMI 

Training set Replication set p-value threshold No. SNPs p-value 

UK2/BBCS BBCS cases p ≤ 1 82,823 0.153 

  p ≤ 0.7 70,783 0.190 

  p ≤ 0.4 50,954 0.211 

  p ≤ 0.1 18,675 0.200 

  p ≤ 0.05 10,751 0.494 

  p ≤ 0.01 2,853 0.774 

  p ≤ 0.001 377 0.040 

COGS BBCS cases p ≤ 1 41,651 0.838 

  p ≤ 0.7 34,575 0.828 

  p ≤ 0.4 24,590 0.795 

  p ≤ 0.1 9,597 0.130 

  p ≤ 0.05 5,833 0.169 

  p ≤ 0.01 1,962 0.287 

  p ≤ 0.001 529 0.309 

Table 5-2: Linear regression: breast cancer polygenic score and BMI 
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5.4 PRS x SNP interaction analysis 

To examine whether individual SNPs modify the combined effect of SNPs on breast 

cancer risk, significant PRS x SNP interactions were tested for. All possible pair-wise 

interactions between individual SNPs and the PRS were tested, with the training 

sampling consisting of BBCS subjects and the replication sample represented by UK2 

study cases. In order to maintain a large number of SNPs in the PRS, only the two 

GWAS were analysed. Imputed SNPs were also included in the analysis, to further 

increase the number of SNPs in the analysis. SNP effects were estimated using the 

BBCS subjects and a logistic regression model, with four principal components 

included as covariates.  

Before correcting for multiple comparisons, 3,539 significant interactions between the 

PRS constructed using all independent GWAS SNPs, minus the one tested SNP, and 

individual SNPs were observed. After correcting for multiple comparisons using a FDR 

of 5%, no significant interactions were observed when using all SNPs in a score. For 

the p ≤ 0.001 interval there were found to be 217 significant interactions, out of 220 

tested PRS x SNP interactions, when testing at a 5% significant level. This meant that 

approximately 99% of the tested interactions were observed to be significant, which 

was a lot greater than the 5% that would be expected by chance. Even after correcting 

for multiple comparisons using a FDR of 5%, all 217 significant interactions were still 

observed. For the p ≤ 0.01 interval, 432 significant interactions were observed, 89 of 

which were still significant after adjusting for multiple comparisons. After adjusting the 

association p-values by the FDR for the polygenic scores and SNP interaction tests 

constructed using SNPs with p-value thresholds p ≤ 0.05 to p ≤ 1, no SNPs were found 

to be significantly associated with the polygenic score constructed using the remaining 

SNPs within the same bin. Therefore, for these bins no evidence was found to suggest 

that individual SNPs interact with the constructed polygenic scores.  
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Focusing on the intervals where significant interactions were still observed after 

correcting for multiple testing (p ≤ 0.01 and p ≤ 0.001), there were found to be 17 

common SNPs between those significant after FDR in p ≤ 0.01 and p ≤ 0.001 bins. 

None of the 17 common SNPs have previously been shown to be associated with 

breast cancer or other traits at genome-wide significance, in fact none of the 89 single 

SNPs in the p ≤ 0.01 interval have currently been found to reach genome-wide 

significance for any traits. Seven of the 217 SNPs observed to significantly interact with 

the PRS constructed using SNPs with a p ≤ 0.001 are published genome-wide 

significant breast cancer SNPs (Table 5-4).  

With approximately 99% of the SNP x PRS interactions being found to be significant 

after adjusting by an FDR of 5% for the p ≤ 0.001 bin, this may suggest that there could 

be SNPs in the score which are highly correlated with the individual SNP being tested. 

None of the individual SNPs were found to be highly correlated with the remaining 

SNPs used to construct the PRS (all correlations were r2 < 0.2), meaning that it was 

unlikely that the linear association was driven by correlation between the individual 

SNPs and those used in the score. This was also found to be the case for the p ≤ 0.01 

analysis as none of the 89 SNPs were found to be highly correlated with the remaining 

SNPs used to construct the PRS (all correlations were r2 < 0.2).  

The results indicate that it could be possible that individual SNPs modify the combined 

effect of SNPs on breast cancer risk, with some of the individual SNPs having 

previously been observed to be associated with breast cancer risk. With each 

polygenic score in chapter 2 having been shown to be significantly associated with 

breast cancer risk in an independent sample, the results from the PRS x SNP 

interaction analysis suggest that the presence of a certain SNPs in either the p ≤ 0.01 

or p ≤ 0.001 score, could modify the effect the score has on breast cancer risk. 

However, this is a case-only analysis, so it would be best to see whether the 

interactions replicate in a case-control setting.  
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PRS No. SNPs* Sig. interactions** FDR** 

p ≤ 1 66,339 3,539 0 

p ≤ 0.7 55,786 2,959 0 

p ≤ 0.4 39,217 2,139 0 

p ≤ 0.1 13,442 887 0 

p ≤ 0.05 7,474 622 0 

p ≤ 0.01 1,813 432 89 

p ≤ 0.001 220 217 217 

* The number of SNPs with a p-value less than or equal to the given PRS threshold        
** p-value < 0.05                                                                              

No. SNPs-1 = the number of SNPs  used to construct the PRS 

For the FDR, the total no. SNPs in the PRS were used as the number of tests 

Table 5-3: Testing for sig. interactions between SNPs and 𝑃𝑅𝑆̂𝑚−1 (𝑐𝑎𝑠𝑒−𝑜𝑛𝑙𝑦) 

 

 

SNP Chromosome Position 

rs11249433 1 10566215 

rs13387042 2 217905832 

rs12655019 5 56195790 

rs865686 9 110888478 

rs1219648 10 123346190 

rs10995190 10 64278682 

rs3803662 16 52586341 

Table 5-4: Published genome-wide significant breast cancer SNPs found to 
significantly interact with PRS 
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5.5 Discussion 

In chapter 2, it was observed that polygenic scores constructed using breast cancer 

GWAS SNPs from one GWAS were associated with breast cancer status in an 

independent GWAS. To investigate this further, I tested whether there was evidence 

that the effect a breast cancer polygenic score has on breast cancer risk could be 

modified by either BMI or age at menarche. For other complex diseases, with a 

polygenic basis, evidence of PRS-environmental factor interactions have been 

established (139-142). Individual breast cancer susceptibility variants have been 

previously shown to interact with BMI and age at menarche, but this was the first time 

that it has been tested whether an en-masse breast cancer PRS interacts with either 

risk factor.  

Initially, for an interaction analysis, the two breast cancer GWAS would have been 

considered small, sample size wise. The size of the replication GWAS was reduced 

further as only a limited number of BBCS cases had either BMI or age at menarche 

information. As only cases had BMI or age at menarche data, and to improve the 

power to detect significant interactions, a case-only approach was implemented. To 

conduct a case-only interaction analysis, it is assumed that the disease being studied is 

rare and that in the population the gene and environment factors being tested are 

independent. The problem with assuming independence is that, typically, there is 

uncertainty as to whether the assumption holds (149). Therefore, great care should be 

taken when drawing a conclusion based on the results of a case-only interaction 

analysis for this reason. Even though there was some uncertainty as to whether the 

assumption of independence holds between the breast cancer polygenic scores and 

BMI, age at menarche and the genotyped SNPs, a case-only analysis was conducted 

because information on the environmental factors were only available for a small 

proportion of cases genotyped in the studies used in this thesis. The interactions 

should also be tested using a case-control interaction analysis in a much larger number 
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of individuals.  

For the case-only interaction analysis conducted in this chapter, multiple polygenic 

scores were constructed for the BBCS cases who had either age at menarche or BMI 

information, for different p-value thresholds. A linear regression model was then used 

to model a PRS and an environmental factor, with a significant association providing 

evidence that a significant interaction exists. As none of the UK2/BBCS derived 

polygenic scores had a significant linear relationship with age at menarche, there was 

no evidence to suggest that a polygenic score constructed using GWAS SNPs interacts 

with age at menarche. A number of the scores constructed using SNPs genotyped on 

the iCOGS custom array were, however, shown to be significantly associated with age 

at menarche, thus suggesting that an interaction exists. The scores derived using 

COGS SNPs with a p-value ≤ 1, p-value ≤ 0.7 and p-value ≤ 0.4 were shown to be 

significantly associated with age at menarche (p < 0.05). When being more stringent on 

the choice of SNPs used to construct the polygenic score, the associations become 

non-significant. The results suggest that the breast cancer scores constructed using a 

large number of independent genotyped SNPs, could interact with age at menarche to 

have an effect on breast cancer risk. However, no significant associations were 

observed between BMI and any of the polygenic scores constructed, using either 

UK2/BBCS SNPs, or COGS SNPs. The PRS x environmental factor analyses 

conducted in this chapter would have only had up to 25% power to detect a PRS 

association with BMI. Therefore, the analyses should be replicated in a larger sample, 

preferably a sample with a greater number of individuals with BMI and age at 

menarche information.  

BMI and age at menarche are not the only environmental factors that have been 

identified as breast cancer risk factors. Further analyses should therefore be conducted 

to examine whether other breast cancer risk factors, such as percent mammographic 

density, interact with breast cancer polygenic scores. Unfortunately, at the time of 
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performing the analyses conducted in this chapter, I did not have access to data that 

would have enabled me to investigate whether interactions between PRS and other 

breast cancer risk factors exist. The data for other breast cancer risk factors was 

available, but it would have been too time consuming to apply for it, and this would 

have delayed my analyses. 

In this chapter, it was also examined whether any of the genotyped GWAS SNPs 

interacted with a polygenic score to have an effect on breast cancer risk. Significant 

associations were found, and surprisingly for the p ≤ 0.001 interval it was found that 

approximately 99% of the tested interactions were observed to be significant, which 

was a lot greater than the 5% that would be expected by chance. Even after adjusting 

for multiple testing using an FDR < 5%, a number of significant associations were 

observed for the scores constructed using SNPs with a p ≤ 0.01 and p ≤ 0.001. For the 

other intervals, no significant interactions were observed after adjusting for multiple 

testing. After measuring the correlation between the individual SNPs and those used in 

the PRS for the significant interactions, none of the individual SNPs were found to be 

highly correlated with the remaining SNPs used to construct the PRS. Only 17 SNPs 

were found to significantly interact with the PRS based on remaining SNPs with a p ≤ 

0.01 and p ≤ 0.001, with none of the SNPs shown to significantly interact with any of 

the other scores (p ≤ 1, p ≤ 0.7, p ≤ 0.4, p ≤ 0.1 and p ≤ 0.05) after correcting for 

multiple testing. There was therefore no evidence to suggest that these SNPs 

interacted with other PRS, just those based on SNPs with a p ≤ 0.01 and/or p ≤ 0.001. 

None of the individual SNPs were found to be highly correlated with any of the 

remaining SNPs used to construct the p ≤ 0.01 and p ≤ 0.001 scores, therefore 

suggesting that correlation between SNPs is not driving the significant linear 

association, and that it is possible that these SNPs are interacting with the scores. With 

this being a case-only analysis, it should be tested whether the same can be shown 

when conducting a case-control interaction analysis.  
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Chapter 6 Analysis of breast cancer 
susceptibility loci by Capture Hi-C (CHi-C) 
 
6.1 Introduction 

As it becomes possible to genotype a larger number individuals, for a larger number of 

genetic variants, it is expected that the number of breast cancer susceptibility loci 

identified will increase. However, it is not even clear for many of the breast cancer 

susceptibility variants identified to date which variant is the causal variant, or how 

disease risk is influenced by the variant. Many of the breast cancer susceptibility loci 

identified so far map to non-protein-coding regions of the genome, or regions of the 

genome that contain no genes (gene deserts), thus making it difficult to understand 

their function (106). Not understanding the underlying biological mechanism for 

susceptibility variants hinders the development of breast cancer prevention methods 

and treatments (151). This has not just been the case in breast cancer, the majority of 

susceptibility loci identified for other complex diseases so far also map to non-coding 

regions or gene-deserts (152-154).  

Through studying genome structure, it is possible to gain a better understanding of the 

functions of these loci. It has been suggested that loci mapping to non-coding regions 

of the genome, could have an effect on disease risk through physical interactions with 

other loci across the genome, with these other loci not necessarily being positioned 

close to the susceptibility loci (106). It could be that when DNA is coiled up in its 3D 

structure, that regions of the genome that are not next to each other linearly, come 

together and physically interact in 3D space.  

In this chapter, the Capture Hi-C (CHi-C) procedure (106) has been used to identify 

physical interactions between known breast cancer susceptibility loci (bait), and other 

loci across the genome (target). The analysis aims to identify physical interactions, 
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which could potentially explain the underlying biological mechanisms of how the 

susceptibility loci effect breast cancer risk.  
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6.2 Capture Hi-C 

CHi-C is a chromatin procedure used to test for physical chromatin interactions 

between a capture region, this being a pre-specified genomic location where a locus of 

interest maps to, and an unrestricted area of the genome. It has been hypothesised 

that a number of disease susceptibility variants mapping to non-coding regions of the 

genome, or gene-deserts, could be physically interacting with other loci to have an 

effect on disease risk. The CHi-C procedure enables this hypothesis to be explored. 

CHi-C is just one example of a Chromosome Conformation Capture (3C) based 

method, which can be used to test whether such physical interactions exist. There are 

various 3C-based methods used to test for said interactions, including Circularized 

Chromosome Conformation Capture (4C), Chromosome Conformation Capture Carbon 

Copy (5C), Hi-C and CHi-C, with the type of interactions tested at any one time 

differing between them (Figure 6-1) (155). 3C is an approach used to test for 

interactions between a single pair of loci (one-by-one approach). 4C is used to test for 

interactions between a single locus and multiple other loci (one-by-all approach) and 

5C is used to test for interactions between many loci and their targets, but both within 

specific regions (many-by-many approach). Hi-C is used to test for interactions 

between any loci across the genome, known as an all-by-all approach. Capture Hi-C is 

an extension of the Hi-C method but differs in that a many-by-all approach is used and 

that the resolution of the analysis is improved, which allows for the analysis of GWAS 

risk loci (106).  

To form CHi-C libraries using specific cell-lines, the first step is to covalently cross-link 

DNA-DNA using formaldehyde (Figure 6-2) (156). This formulates chromatin 

crosslinking which fixes the cells so that the points where the loci are physically 

interacting in the 3D structure are fixed together. After this a restriction enzyme, such 

as HindIII, is used to cut the fixed chromatin into pieces (fragments). The ends of the 

chromatin pieces are then joined together by DNA ligation and purified to remove 
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crosslinks (reverse crosslink). A label is added to each purified pair, with these pairs 

being known as di-tags. The DNA itself is also sheared into fragments using the same 

restriction enzyme. The di-tags where at least one end maps to the capture region are 

retained for analysis. There are two ends to every di-tag, one end is the bait fragment, 

and the other end is the target fragment. Depending on the analysis being carried out, 

usually based on where the target fragment maps to, a number of di-tags will be further 

excluded. The analysis itself involves testing for significant physical interactions 

between a capture region fragment and a fragment mapping to another region of the 

genome. Interactions can be classified as being either cis-interactions or trans-

interactions. Cis-interactions are those where the two fragments forming a di-tag map 

to the same chromosome, whereas trans-interactions are two fragments that map to 

different chromosomes.  

The formation of the CHi-C libraries analysed in this chapter, as explained in this 

section, were conducted by Dr. Fletcher and her team at the ICR.   
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Figure 6-1: Different 3C-based method interaction approaches 

 

 

Figure 6-2: Crosslinking, digestion and ligations steps 
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6.2.1 Previous Literature 

CHi-C is a method that has been used to identify significant physical interactions 

between established disease susceptibility risk loci and other, seemingly unrelated, 

regions of the genome for diseases such as breast cancer (106), colorectal cancer 

(157) and numerous autoimmune diseases (158). 

Dryden et al. (106) have used the CHi-C procedure to test whether long-range physical 

interactions exist for three breast cancer loci (2q35, 8q24.21 and 9q31.2), that each 

map to gene deserts, with other loci in the genome. All three loci had been previously 

shown to be associated with ER-positive breast cancer, but had not been found to be 

strongly associated with ER-negative breast cancer risk. Three control loci were also 

included in the analysis, these being randomly selected gene-poor regions of a similar 

size to the breast cancer loci, but with no known association with breast cancer risk. 

Three different cell-lines were used to conduct the analysis, two of which were breast 

cancer cell-lines (BT483 and SUM44) and the other a non-breast cancer cell-line 

(GM06990), which was set as the control. For each cell-line, two biological replicates 

were generated, these being two different libraries produced for the same cell-line. Di-

tags were generated for each biological replicate, for each cell-line. Dryden et al. 

examined whether significant physical interactions existed between fragments mapping 

to one of the capture loci and fragments mapping to another locus, this being either 

within the capture region (capture-to-capture interactions), but not interacting with itself, 

or 5Mb either side of the capture region (bait-to-5Mb interactions). For each cell line, 

Dryden et al. tested whether physical interactions between fragments occurred more 

often than expected by chance alone using the negative binomial regression method. 

This method first involved filtering out interactions deemed to be noise for each cell-line 

and biological replicate, using a truncated negative binomial distribution and the trans-

chromosomal interaction counts for each bait fragment. The trans-chromosomal 

interaction counts for a bait fragment were the number of times the bait fragment 
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interacted with another locus on a different chromosome. Then for each cell-line a 

negative binomial regression model was fitted to what was considered to be genuine 

signal. Significant bait-to-5Mb and capture-to-capture interactions were identified, with 

some target ends shown to map to protein-coding genes. 

Using the same CHi-C method and analysis as described by Dryden et al (106), Martin 

et al. (158) examined whether significant physical interactions existed between 

fragments mapping to susceptibility loci for four autoimmune diseases: Rheumatoid 

arthritis, type 1 diabetes, psoriatic arthritis and juvenile idiopathic arthritis, and other 

regions of the genome. The two cell-lines, human B (GM12878) and T (Jurkat), were 

used to conduct the analysis as these were the most relevant cell-lines for these four 

diseases. Using the negative binomial regression method, significant bait-to-5Mb 

physical interactions and capture-to-capture physical interactions were tested for. 

Martin et al. identified many significant physical interactions and found that for a 

number of these interactions, the target end mapped to candidate genes or to the other 

autoimmune disease. The authors concluded that future work should be carried out in 

order to characterise the functionality of the identified interactions.  

Jager et al. (157) have also used the CHi-C procedure to examine for significant 

physical cis and trans-interactions for 14 susceptibility colorectal cancer loci in three 

different colorectal cancer cell-lines (LS174T, LoVo and Colo205). The authors took a 

different approach and instead used the continuous Weibull distribution to perform their 

analysis, instead of the negative binomial distribution. Using this approach, Jager et al. 

identified a mixture of significant physical cis and trans-interactions for many of the loci. 
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6.3 Capture Hi-C data 

The CHi-C data analysed consisted of loci that has previously been identified, in 

publications up until the year 2013, as being associated with overall breast cancer risk, 

and/or ER-positive breast cancer risk and/or ER-negative breast cancer risk. The loci 

analysed had either been discovered by Michailidou et al.(45), or in previous published 

studies. Not all published loci identified by the year 2013 were analysed, as some loci 

were not included in the analysis because of sequencing problems. 63 associated 

breast cancer loci were analysed, the remaining loci were based on six random SNPs 

and three random regions of the genome, 50kb, 100kb and 500kb in length to act as 

controls. These control loci/regions had not been identified as being associated with 

breast cancer risk. 

CHi-C libraries were generated from seven cell-lines, two of these being estrogen 

receptor (ER)-positive breast cancer cell-lines (T47D and ZR751), two ER-negative 

breast cancer cell-lines (BT20 and MDAMB231), a normal breast epithelial cell-line 

(Bre80) and two control non-breast cancer cell-lines: a liver cancer cell-line (HepG2) 

and a lymphoblastoid cell-line (GM06990). With a number of the published loci 

analysed shown to be strongly only associated with either ER-positive breast cancer or 

ER-negative breast cancer, ER-positive and ER-negative cell-lines were used to 

generate some of the CHi-C libraries. When generating the libraries two biological 

replicates were produced for each cell-line, which meant that in total 14 CHi-C libraries 

were created. Each biological replicate for each cell-line were sequenced, and up to 71 

million di-tags, with both ends uniquely mapping to the human reference genome, were 

generated. The locus of interest is defined as the capture region, and fragments 

mapping within this region are known as bait fragments. The fragments that these bait 

fragments pair with, are the target fragments. Together these paired fragments form a 

di-tag, with one end of the di-tag mapping to the capture region and the other end 

mapping to the target region. The fragments were created by partitioning regions of the 
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genome into many sections, these sections being the same length as the enzyme used 

to split up the region (HindIII). These di-tags, along with the formed libraries, were 

generated by Dr. Olivia Fletcher and her team from the ICR. 

Some of the fragments combined to form a di-tag, may not actually physically interact 

with each other, so their interaction count would be zero. For other fragments pairs, the 

two fragments do physically interact a number of times, meaning their interaction count 

would be greater than zero. It is however possible for bait and target fragments to 

physically interact by chance, not necessarily for biological reasons. Therefore, the 

objective of the analysis was to only acknowledge di-tags where the number of times 

the two fragments physically interact, is greater than would be expected by chance 

alone. These physical interactions would likely signify an interaction of biological 

importance.  
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Locus SNPs* ER status** Locus no. 

22q12.1 rs17879961, rs132390 positive 1 

22q13.1 rs6001930 both 2 

21q21.1 rs2823093 positive 3 

21q21.2 rs200691 neither 4 

20q13.13 rs6125607 neither 5 

19p13.1 rs8170  negative 6 

19p13.11 rs4808801 positive 8 

19q13.31 rs3760982  both 9 

18q11.2 rs527616 positive 10 

18q11.2 rs1436904 positive 11 

17q22 rs6504950 positive 12 

16q12.1 rs3803662  positive 13 

16q12.2 rs17817449 both 14 

16q23.2 rs13329835 both 16 

14q13.3 rs2236007 both 17 

14q24.1 rs2588809 positive 18 

14q24.1 rs999737 both 19 

14q32.11 rs941764 both 20 

13q13.1 rs11571833 negative 21 

12p13.1 rs12422552  both 22 

12p11.22 rs10771399  both 23 

12q22 rs17356907 both 24 

12q24.21 rs1292011 positive 25 

11p15.5 rs3817198 positive 26 

11q13.1 rs3903072  both 27 

11q13.3 rs554219, rs78540526 positive 28 

11q24.3 rs11820646  both 30 

10p15.1 rs2380205 both 31 

10p12.31 rs11814448, rs7072776 positive 32 

10q21.2 rs10995190 both 33 

10q22.3 rs704010 both 34 

10q23.1 rs7071985  neither 35 

10q25.2 rs7904519 negative 36 

10q26.13 rs2981579 positive 38 

9p21.3 rs1011970 both 39 

9q31.2 rs10759243 positive 40 

9q31.2 rs865686 positive 41 

8p12 rs9693444 positive 42 

8q21.11 rs6472903 both 43 

8q21.11 rs2943559 both 44 

8q24.21 rs13281615 both 45 
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Locus SNPs* ER status** Locus no. 

8q24.21 rs11780156 both 46 

7q35 rs720475 both 47 

6p25.3 rs11242675 both 48 

6p23 rs204247 positive 49 

6q14.1 rs17529111 negative 50 

6q22.31 rs1337863 neither 51 

6q25.1 rs12662670, rs2046210 negative 52 

5p15.33 rs10069690 negative 53 

5p12 rs10941679 positive 55 

5q11.2 rs889312 positive 56 

5q11.2 rs10472076, rs1353747 both 57 

5q33.3 rs1432679 both 58 

4q24 rs9790517 positive 59 

4q34.1 rs6828523 positive 60 

3p26.1 rs6762644 both 61 

3p24.1 rs4973768 positive 62 

3p24.1 rs12493607 positive 63 

2p24.1 rs12710696 both 64 

2q14.2 rs4849887 negative 65 

2q31.1 rs2016394 positive 66 

2q31.2 rs1550623 positive 67 

2q33.1 rs1045485 neither 68 

2q35 rs13387042 positive 69 

2q35 rs16857609 both 70 

1p36.22 rs616488 negative 71 

1p31.1 rs66916276 neither 72 

1p13.2 rs11552449 both 73 

1p11.2 rs11249433 positive 74 

2p25.1 500 kb*** neither 77 

5q31.2 100 kb*** neither 78 

1p13.3 50 kb*** neither 79 

* Breast cancer associated SNPs mapping to the locus  

** ER status for associated breast cancer     
 *** random region 

Table 6-1: Loci used for CHi-C analyses 
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6.4 Methods  

The CHi-C procedure was used to examine for significant long-range physical 

interactions at 72 loci, which included 63 breast cancer susceptibility loci, six random 

SNPs and three random genome regions. Two separate analyses were performed on 

all seven cell-lines separately. This was the first time that the CHi-C procedure had 

been used to simultaneously analyse such a large number of capture regions, 

especially in breast cancer where only three capture regions had been previously 

assessed. Dryden et al. had previously focussed their analysis on six capture loci, 

three of these being strongly associated with ER-positive breast cancer, with the three 

remaining loci acting as control loci. In this CHi-C analysis, 63 breast cancer 

susceptibility loci and nine control loci were analysed using seven cell-lines. The 

analysis was also conducted using a larger number of cell-lines as seven cell-lines had 

been analysed, which is over double the number used by Dryden et al.  

 The first analysis involved testing for significant physical bait-to-5Mb interactions, 

these being defined as interactions where one end of the di-tag mapped to one of 72 

capture loci, and the other mapping to an area within 5 Mb of the capture region (“bait-

to-5Mb” analysis). For the second analysis, it was tested whether significant physical 

interactions existed between fragments which both map within the capture region 

(“capture-to-capture” analysis). A number of the target capture loci mapped to regions 

of the genome that overlapped with other capture loci (Appendix 9: Table 1). This 

meant that some of the target fragments for one locus were found to map within 

another capture locus. Therefore, technically the interaction was not just a capture-to-

capture interaction, it was also an interaction between a bait fragment and a target 

fragment of a different locus. For this reason, significant physical interactions were 

removed from the capture-to-capture analysis results if it was found that a target 

fragment mapped to an overlapping capture region, and were instead included in the 

bait-to-5Mb analysis results.  
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The method used and developed by Dryden et al. (106) was used to perform both the 

bait-to-5Mb and capture-to-capture analyses. In this thesis, this method shall be 

referred to as the negative binomial regression method. Significant physical 

interactions found to occur across most cell-lines, when using this method, were 

investigated further using Ensembl (159). The genome browser was used to examine 

whether any genes of biological significant mapped within the target end of the 

recurring significant physical interactions. To further assess the plausibility of the 

observed significant physical interactions, a second method, CHiCAGO (Capture Hi-C 

Analysis of Genomic Organisation)(160), was also used to test for significant physical 

interactions. At the time of conducting the analysis, CHiCAGO was a newly developed 

CHi-C method. CHiCAGO was used to perform a bait-to-5Mb analysis, using the same 

CHi-C libraries as those used when performing the analysis with the negative binomial 

regression method. CHiCAGO, however, was not used to examine for capture-to-

capture physical interactions as it was unable to adjust for the bias that materialises 

when conducting this type of interaction analysis.  

6.4.1 Brownian and technical noise 

The overall aim of the analyses performed in this chapter was to establish significant 

physical interactions between bait and target fragments. Occasionally two fragments 

will physically interact randomly, with there being no biological reasoning behind the 

interaction. These physical interactions are noise, and do not reflect true signal. There 

are two main sources of noise that need to be considered where performing a CHi-C 

analysis, Brownian noise and technical noise (106, 160). Brownian noise is the noise 

attributed to fragment pairs that physically interact randomly, by chance. These 

interactions are dependent on distance, with the physical interaction count increasing 

as the distance between fragment pairs decreases. Technical noise on the other hand 

is not dependent on distance, it is noise that is made up of fragment pairs that have 

interacted due to experimental bias, with this including bias that has resulted from 
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sequencing errors. Both forms of noise should be accounted for when testing for 

significant interactions, in order for a meaningful conclusion to be made. Both the 

negative binomial regression method and CHiCAGO have taken these noise 

components into consideration, but have done so differently.  

6.4.2 Negative binomial regression method 

The negative binomial regression method was the main method used to conduct both 

bait-to-5Mb and capture-to-capture interaction analyses conducted in this thesis. Di-

tags, where one end mapped to a capture region fragment and the other to a non-

capture region fragment within 5Mb (bait-to-5Mb), were analysed separately and 

differently to the di-tags when both ends of the di-tag mapped to the capture region 

(capture-to-capture). These two analyses were performed separately for all seven cell-

lines.  

6.4.2.1 Significant bait-to-5Mb interactions 

Once di-tags were established and libraries generated for each cell-line by Dr. Fletcher 

(161), the first step was to separate the fragments pairs considered to be noise from 

the true signal. Dryden et al. (106) have previously separated noise from real signal by 

assessing the interactability of each fragment analysed. They deemed interactability as 

the tendency a fragment has of interacting with other fragments. The interactability of a 

bait fragment can be measured by counting the number of trans-chromosomal 

interactions that a bait fragment has, this being the number of physical interactions it 

has with other fragments that map to a different chromosome. It is assumed that these 

collisions represent random interactions, with it being expected that across all captured 

fragments, the counts are similar if bias is not present (106). The counts for each 

captured fragment (bait) were used to classify each fragments interactability as either 

low or high, with low counts suggesting that the bait fragment represents stochastic 

noise, and high counts suggesting genuine signal. These two components, stochastic 

noise and genuine signal, together form a bimodal distribution. A distribution that can 
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be used to model count data is needed to model the trans-chromosomal interaction 

counts. The Poisson and the negative binomial distribution are two distributions that 

can be used to model count data. The Poisson distribution would be a suitable 

distribution to model count data if the mean and variance are equal, but when 

modelling on the trans-chromosomal interaction counts, this cannot be assumed to be 

true as the variance tends to be larger than the mean. The negative binomial 

distribution on the other hand is a lot more flexible, and does not assume that the mean 

and variance are equal. This therefore makes it an ideal distribution to be used when 

data is overdispersed.   

Individually, for each cell-line and biological replicate, a truncated negative binomial 

model was fitted to what was thought to be genuine signal based on the trans-

chromosomal counts, this being the second component of the bimodal distribution. A 

histogram of the trans-chromosomal counts for di-tags present on one cell-line, for one 

biological replicate was used to help decide what threshold should be used to separate 

noise from genuine signal. An example of such a histogram can be observed in Figure 

6-3, with the plot being fairly similar to the plots produced for each biological replicate, 

for each cell-line. From Figure 6-3, it is apparent that the counts form a bimodal 

distribution, in which there are two components. A peak in frequency can be observed 

when the trans-interaction count for a fragment is small, this is considered as the noise 

component of the bimodal distribution. The histograms were used to help set the 

truncation point for the truncated negative binomial for the second component of the 

bimodal distribution. The truncation point was used to filter out any bait fragments that 

have a trans-chromosomal count in the lowest 5% of the negative binomial distribution. 

Fragments with trans-chromosomal counts under this threshold were excluded from 

any further analyses, as these were regarded as noise. In the example presented in 

Figure 6-3, the truncation point was set to 4,000, with the threshold then fixed to 2,585. 
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This meant that bait fragments with a trans-interaction count less than 2,585, were 

excluded from the analysis. 

 

 

 

 

Figure 6-3: Histogram of trans-interaction counts 
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For each cell-line, the di-tags that had not been excluded from each of the two 

replicates were then analysed together. This meant that in total, seven different bait-to-

5Mb interaction analyses were conducted. The filtered di-tags for each cell-line were 

split into 1 percentile bins, these being based on distance, in order to smooth the data. 

The “glm.nb” function in R was then used to fit the negative binomial regression model 

to the physical interaction counts for each fragment pair in the filtered dataset, for each 

bin. Experimental bias is corrected for by including the natural log of the trans-

chromosomal counts for the two biological replicates separately as a covariate in the 

model. To also correct for the distance between interacting fragments, the natural log 

of distance (distance between the mid-points of the two fragments that form a fragment 

pair) was also included as a covariate in the model. 

The observed interaction counts were then compared to those under the negative 

binomial regression model in order to obtain p-values for each fragment pair. The FDR 

was then used to adjust the p-values to account for multiple testing, with an FDR < 1% 

being used to signify a significant physical interaction.    

 

6.4.2.1 Significant capture-to-capture interactions 

A slightly different approach was used to test for significant capture-to-capture physical 

interactions, than the one used for the bait-to-5Mb analysis. With two ends of each 

capture-to-capture di-tag mapping to the capture region, the interactability of both ends 

of the di-tag were examined. For each cell-line, a histogram of the trans-interactions 

counts for both the bait and target fragments were assessed, for each biological 

replicate. Similarly to the bait-to-5Mb analysis, these histograms were used to set the 

truncation point for the truncated negative binomial, in order to set the threshold used 

to filter out the bait and target fragments with a trans-interaction count in the lowest 5% 

of the negative binomial distribution.  
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For each cell-line, the di-tags that have not been excluded from each of the two 

replicates were then analysed together, with the filtered data for each cell-line also 

being split into 1 percentile bins based on distance. A negative binomial regression 

model was then fitted to each bin, with experimental bias being corrected for by 

including the product of the natural log of the trans-interaction counts for both ends of 

each di-tag as covariates in the model, for the two biological replicates separately. 

Distance was also corrected for by taking the natural log of the distance between 

interacting fragments and including it as a covariate in the model. Similarly to the bait-

to-5Mb analysis, the FDR was then used to adjust the p-values to account for multiple 

testing, with an FDR < 1% being used to signify a significant physical interaction.    

 

6.4.3 CHiCAGO 

After conducting the CHi-C analysis using the negative binomial regression method, 

CHiCAGO, an R package developed by Cains et al.(160), was used to also analyse the 

CHi-C. The package was used to examine whether significant bait-to-5Mb interactions 

detected using the negative binomial regression method, were also identified when 

using a different method. CHiCAGO can be used to detect significant bait-to-5Mb 

physical interactions, not capture-to-capture interactions, as it does not adjust for the 

interactability of both fragment ends. This meant that only the bait-to-5Mb results were 

compared.  

6.4.3.1 Significant bait-to-5Mb interactions 

CHiCAGO uses two count distributions, the Poisson and the negative binomial 

distribution, to create a two-component model in order to model the interaction count 

distribution (160). 
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Let 𝑋𝑏𝑡 be the number of physical interaction counts between target end t  and bait end 

b. 

Under the null hypothesis, it can be assumed that (160): 

𝑋𝑏𝑡 = 𝐵𝑏𝑡 + 𝑇𝑏𝑡 

Where, 𝑋𝑏𝑡 consists of two components, Brownian noise (𝐵𝑏𝑡)  and technical noise 

(𝑇𝑏𝑡). 

Brownian and technical bias are treated as two different entities, with the Poisson 

distribution used to model technical noise (𝑇𝑏𝑡) and the negative binomial distribution 

used to model Brownian noise 𝐵𝑏𝑡, such that (160): 

𝑇𝑏𝑡~ 𝑃𝑜𝑖𝑠(𝜆𝑏𝑡) 

𝐵𝑏𝑡~𝑁𝐵(𝜇𝑏𝑡 , 𝑟) 

where,  𝜆𝑏𝑡 is the mean trans-chromosomal interaction count between each bait-target 

fragment pair consisting of a bait fragment b and a target fragment t. Each fragment is 

binned according to their trans-chromosomal interaction count, and 𝜆𝑏𝑡 is estimated as 

the mean trans-chromosomal interaction count across two bins, one of which contains 

bait fragment b and the other that contains target fragment t. The dispersion parameter 

of the negative binomial distribution is 𝑟, with this being estimated by finding the 𝑟 that 

maximises the likelihood of the negative binomial regression model. 

Cairns et al.(160) define 𝜇𝑏𝑡 as (160): 

𝜇𝑏𝑡 =  𝑠𝑏𝑠𝑡𝑓(𝑑𝑏𝑡) 

with, 𝑠𝑏 being the bait fragment specific bias and 𝑠𝑡 the target fragment specific bias.  

𝑓(𝑑𝑏𝑡) represents the frequency of bait-target interactions over distance 𝑑𝑏𝑡, which is 

the distance between the midpoint of bait fragment b and target fragment t, and is 

dependent on the distance between the bait fragment and the target fragment.  
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To estimate 𝜇𝑏𝑡, 𝑓(𝑑𝑏𝑡) is first estimated, then 𝑠𝑏 and then 𝑠𝑡 is finally estimated.   

The distance from the centre of a given bait fragment b,  is split up into 20kb bins. The 

average interaction count for target end fragments falling within individual 20kb bins, 

𝑋̅𝑏𝑖𝑛𝑏
, is calculated, whilst ignoring bait-to-bait fragment pairs and fragment pairs where 

the interaction count is equal to zero.   

The geometric mean count over all bins at distance 𝑑𝑏𝑖𝑛 is then used to estimate 

𝑓(𝑑𝑏𝑖𝑛), which can then be used to estimate 𝑓(𝑑𝑏𝑡) by fitting a cubic function on a log-

log scale, and then extrapolating beyond distance 𝑑𝑏𝑖𝑛. 

Cairns et al.(160) estimate 𝑠𝑏 using both 𝑋̅𝑏𝑖𝑛𝑏
 and 𝑓(𝑑𝑏𝑖𝑛): 

𝑠̂𝑏 = 𝑚𝑒𝑑𝑖𝑎𝑛𝑏𝑖𝑛  
𝑋̅𝑏𝑖𝑛𝑏

𝑓(𝑑𝑏𝑖𝑛)
   

 

Target end fragments are pooled together based on the number of non-zero trans-

chromosomal interactions the target fragments are involved in. CHiCAGO then 

assumes that the target ends in each pooled group have the same target bias, 𝑠𝑡, with 

𝑠𝑡 then being estimated by taking the median bait and target fragment interaction count 

across the pooled bins. 

When working with more than one biological replicate, k, the 𝑋𝑏𝑡 for each replicate, 

𝑋𝑏𝑡𝑘, is calculated. The overall 𝑋𝑏𝑡 is then calculated by taking the nearest integer of 

the following equation (160): 

𝑋𝑏𝑡 =  
∑ 𝑠𝑘𝑋𝑏𝑡𝑘𝑘

∑ 𝑠𝑘𝑘
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Where, 𝑠𝑘 is a sample-specific scaling factor, such that (160):                                         

                                                              𝑠𝑘 = 𝑚𝑒𝑑𝑖𝑎𝑛𝑏(
𝑀𝑏𝑘

𝐺𝑏
) 

With, Mbk being the number of fragments present within 1.5mb of each bait fragment, 

divided by the number of other ends present within 1.5Mb of the bait fragment. The 

geometric mean of Mbk  across the replicates is then taken to estimate 𝐺𝑏.   

Using the Delaporte model, it is then tested whether the observed interaction counts 

are greater than those expected under the model. The p-values obtained are then 

weighted in order to adjust for multiple testing, as well as the tendency for interactions 

to occur more when fragments are closer together than when they are further apart. 

Many more long-range interactions will be tested than shorter range interactions, which 

would cause there to be many type-1 errors amongst the long-range interactions (160). 

Therefore, CHiCAGO assigns and adjusts each p-value by a weight, which is allocated 

to a pair of fragments based on how likely it is that the pair of fragments will interact, 

with this being established by the distance between two fragments. A larger weight is 

given to fragment pairs that are closer together, with the maximum weight being 

assigned when the distance between the bait and target fragment is zero. The p-values 

are divided by their weights to construct weighted p-values, which means that the p-

values for close fragment pairs will get smaller.  

These p-values are then converted into log-transformed scores where: 

𝑠𝑡𝑏 = 𝑚𝑎𝑥(0, − 𝑙𝑜𝑔 𝑄𝑡𝑏 − 𝑙𝑜𝑔 𝑤𝑚𝑎𝑥) 

where, 𝑄𝑡𝑏 is the weighted p-value and 𝑤𝑚𝑎𝑥 is the maximum weight values, this being 

the value of the weight when the distance between the bait and target fragment is zero.  

Cairns et al.(160) suggest that a score greater than 5 should be used to indicate that a 

physical interaction is significant.  
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6.5 Negative binomial regression method analyses  

The Negative binomial regression method was used to test for physical bait-to-5Mb 

interactions and bait-to-bait interactions. The significant interactions detected using the 

negative binomial regression method have been included in a journal paper that is 

currently under review (161).  

6.5.1 Bait-to-5Mb interaction analysis  

The analysis conducted in this section aimed to identify significant physical interactions 

between individual HindIII bait fragments that mapped to 1 of 72 capture regions, and 

individual HindIII target fragments mapping within 5 Mb of the corresponding capture 

region, using the negative binomial regression, in all seven cell-lines. 

In total, 50 of the 72 capture loci had at least one bait HindIII fragment that significantly 

interacted with a target HindIII fragment within 5Mb of the capture region, in at least 

one cell-line (FDR<0.01) (Table 6-2). For some of the loci, no significant interactions 

were observed in any of the cell-lines. These loci were not included in Table 6-2. In all 

seven cell-lines, bait fragments mapping to 14q24.1 (locus 18), 11q13.3 (locus 28), 

10p12.31 (locus 32), 3p26.1 (locus 61), 2q31.1 (locus 66), 2q35 (locus 70), and the 

random 500 kb region were shown to significantly interact (FDR < 0.01) with fragments 

mapping to a target region within 5Mb of the bait fragment. The loci 14q24.1, 11q13.3 

and 2q31.1 have all been shown to be associated with ER-positive breast cancer risk, 

and both 3p26.1and 2q35 have been shown to be associated with both ER-positive 

and ER-negative breast cancer. None of the bait fragments mapping to capture loci 

associated with ER-negative breast cancer, were found to have significant interactions 

across all cell-lines. Fragments mapping to two loci associated with ER-negative breast 

cancer, 19q13.1 (locus 6) and 5p15.33 (locus 53), were shown to only significantly 

interact with target fragments in the ER-negative cell-lines.  

Focus then moved onto establishing whether any of the target end HindIII fragments 

were frequently interacted with. For a number of the significant bait-to-5Mb interactions, 
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the target end of the interacting pair mapped to the same HindIII fragment in all seven 

cell-lines (Table 6-3). Bait fragments mapping to the capture locus 14q24.1 (locus 18) 

significantly interacted with two consecutive HindIII fragments targets (69,255,090-

69,263,908 bp), and the single HindIII fragment (69,280,294-69,288,644 bp), in all 

seven cell-lines. In six cell-lines, bait fragments mapping to this capture locus were 

found to also significantly interact with two HindIII fragments that map either side of the 

target HindIII fragment, 69,280,294-69,288,644 bp (69,276,282-69,280,293 bp and 

69,288,645-69,296,090 bp). In at least six cell-lines, fragment mapping to the capture 

locus 11q13.3 (locus 28) significantly interacted with six consecutive HindIII target end 

fragments (68,843,286-68,882,444 bp), as well as four consecutive HindIII fragments 

(68,886,551-68,910,597 bp). Also, in at least six cell-lines, bait fragments mapping to 

10p12.31 (locus 32) were found to significantly interact with two consecutive HindIII 

fragments (23,274,447-23,280,039 bp). A bait fragment within the capture locus 3p26.1 

(locus 61) was observed to significantly interact with three consecutive target end 

HindIII fragments in all seven cell-lines (5,086,339-5,113,690 bp), with the same being 

shown for the capture locus 2q35 (locus 70) (217,552,337-217,565,782 bp). Finally, in 

all seven cell-lines bait fragments mapping to the 500kb region were found to 

significantly interact with the target end fragment, 11,272,832-11,276,344 bp. 2q35 bait 

fragments were also shown to significant interact with a target fragment mapping  to 

11,272,095-11,272,831 bp, in six of the cell-lines. 

Concentrating on the significant interactions that were present in at least six cell-lines, 

Ensembl (159), the genome browser, was used to examine whether any known breast 

cancer or cancer related genes reside within the same region as the target ends. The 

gene, IGFBP5, has been shown to have an important role in breast cancer and maps 

to 217,552,337-217,565,782 bp. This gene has been shown to have a role in breast 

cancer metastasis, but the exact role of IGFBP5 is not fully understood (162). Target 

fragments (69,255,090-69,263,908 bp) were found to map to ZFP36L1, a protein 

coding gene that has fairly recently been linked to breast cancer (163). The protein 
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coding genes ARMC3 and TPCN2 are positioned within the target fragments mapping 

to 23,274,447-23,280,039 bp and 68,843,286-68,882,444 bp, respectively. ARMC3 

functions include metastasis and tumour initiation (164), and TPCN2 is an ion transport 

gene that contains SNPs that have been shown to be associated with pigmentation 

traits (165). 

With some of the significant physical interactions observed across most of the cell-lines 

and target ends mapping to protein coding genes, the interactions would seem 

plausible.  
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      Cell-lines 

      ER+ve ER+ve ER-ve ER-ve Lymph LC Normal 

Locus  
Locus 
no. 

ER 
status*  

T47D ZR751 BT20 MDA GM0 HepG2 Bre80 

22q12.1 1 positive 0 1 0 0 0 0 5 

21q21.2 4 neither 2 4 0 0 0 0 0 

20q13.13 5 neither 2 5 0 43 0 2 265 

19p13.1 6 negative 0 0 76 0 0 0 0 

19p13.11 8 positive 0 0 42 14 3 16 5 

19q13.31 9 both 0 0 0 0 2 0 1 

18q11.2 11 positive 0 24 0 0 0 0 3 

17q22 12 positive 231 30 0 1 1 0 63 

16q12.2 14 both 298 229 11 18 0 0 10 

16q23.2 16 both 80 7 0 0 0 0 0 

14q13.3 17 both 50 61 0 0 0 0 64 

14q24.1 18 positive 240 62 19 33 283 14 51 

13q13.1 21 negative 14 0 32 0 17 1 2 

12p13.1 22 both 0 8 0 4 11 0 23 

12q24.21 25 positive 3 1 3 0 0 6 8 

11p15.5 26 positive 1 0 183 16 0 21 0 

11q13.1 27 both 0 274 0 20 0 0 0 

11q13.3 28 positive 319 26 81 342 43 69 91 

10p12.31 32 positive 6 10 10 50 41 56 62 

10q22.3 34 both 7 4 0 32 0 1 9 

10q26.13 38 positive 15 14 0 0 0 0 14 

9p21.3 39 both 0 15 0 NA 11 0 68 

9q31.2 40 positive 25 0 0 6 0 0 0 

9q31.2 41 positive 24 31 0 0 0 0 11 

8p12 42 positive 0 0 0 13 0 0 38 

8q21.11 44 both 114 1,728 0 0 33 0 10 

8q24.21 45 both 1,007 4 0 5 85 0 4 

8q24.21 46 both 17 48 0 103 6 0 75 

6p25.3 48 both 4 0 0 0 0 0 2 

6p23 49 positive 0 0 0 8 0 0 0 

6q22.31 51 neither 3 0 0 0 0 0 3 

6q25.1 52 negative 0 9 0 0 1 0 0 

5p15.33 53 negative 0 0 13 1 0 0 0 

5p12 55 positive 0 24 0 0 0 0 0 

5q11.2 56 positive 101 47 0 8 1 2 53 

5q11.2 57 both 0 1 0 0 0 0 7 

5q33.3 58 both 20 31 0 0 0 0 0 

4q24 59 positive 0 10 0 0 122 0 0 

3p26.1 61 both 497 193 147 161 140 5 179 

3p24.1 62 positive 80 1 0 0 0 0 2 

3p24.1 63 positive 161 0 0 0 0 0 19 

2p24.1 64 both 13 3 0 0 0 0 0 



Locus  
Locus 
no. 

ER 
status*  

T47D ZR751 BT20 MDA GM0 HepG2 Bre80 

2q31.1 66 positive 33 24 238 5 16 58 56 

2q35 69 positive 4 6 12 0 0 0 0 

2q35 70 both 262 201 83 9 10 65 19 

1p36.22 71 negative 1 0 1 0 1 0 1 

1p31.1 72 neither  47 65 0 1 4 0 110 

1p13.2 73 both 2 1 2 0 0 0 2 

1p11.2 74 positive 0 307 0 0 0 0 0 

500kb** 77 neither 390 80 36 186 61 1 218 

 
* ER status for associated breast cancer  
** random region                     
 Abbreviations: Lymph = Lymphoblastoid, LC = Lung cancer, Normal = Normal breast epithelial,  
                         MDA = MDAMB231 and GM0 = GM06990 

Table 6-2: No. of significant near-cis interactions (<5Mb) (FDR < 0.01) using the 
negative binomial regression 
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Locus 
Locus 
No. 

 Target fragment (bp) Cell-lines with significant interactions (FDR < 0.01)** 

14q24.1 18 69,255,090-69,257,981 Bre80 BT20 GM0 HepG2 MDA T47D ZR751 

14q24.1 18 69,257,982-69,263,908 Bre80 BT20 GM0 HepG2 MDA T47D ZR751 

14q24.1 18 69,272,186-69,275,832 Bre80 GM0 HepG2 MDA T47D ZR571 
 

14q24.1 18 69,276,282-69,280,293 Bre80 GM0 HepG2 MDA T47D ZR751 
 

14q24.1 18 69,280,294-69,288,644 Bre80 BT20 GM0 HepG2 MDA T47D ZR751 

14q24.1 18 69,288,645-69,296,090 Bre80 BT20 GM0 MDA T47D ZR751 
 

11q13.3 28 68,843,286-68,856,786 Bre80 BT20 GM0 HepG2 MDA T47D 
 

11q13.3 28 68,856,787-68,858,830 Bre80 BT20 GM0 HepG2 MDA T47D 
 

11q13.3 28 68,858,831-69,961,119 Bre80 BT20 GM0 HepG2 MDA T47D 
 

11q13.3 28 68,861,120-68,873,431 Bre80 BT20 GM0 HepG2 MDA T47D ZR751 

11q13.3 28 68,873,432-68,882,444 Bre80 BT20 GM0 HepG2 MDA T47D ZR751 

11q13.3 28 68,886,551-68,886,942 Bre80 BT20 GM0 HepG2 MDA T47D ZR751 

11q13.3 28 68,886,943-68,891,662 Bre80 BT20 GM0 HepG2 MDA T47D ZR751 

11q13.3 28 68,891,663-68,903,868 Bre80 BT20 GM0 HepG2 MDA T47D 
 

11q13.3 28 68,903,869-68,910,597 Bre80 BT20 GM0 HepG2 MDA T47D 
 

11q13.3 28 69,060,151-69,065,192 Bre80 BT20 GM0 HepG2 MDA T47D 
 

11q13.3 28 69,065,355-69,075,253 Bre80 BT20 GM0 HepG2 MDA T47D 
 

10p12.31 32 23,274,447-23,277,011 Bre80 BT20 GM0 HepG2 MDA T47D ZR751 

10p12.31 32 23,277,012-23,280,039 Bre80 BT20 GM0 MDA T47D ZR751 
 

5q11.2 56 55,563,961-55,567,802 Bre80 GM0 HepG2 MDA T47D ZR751 
 

3p26.1 61 5,025,725-5,026,309 Bre80 BT20 GM0 MDA T47D ZR751 
 

3p26.1 61 5,026,310-5,027,008 Bre80 BT20 GM0 MDA T47D ZR751 
 

3p26.1 61 5,027,009-5,028,985 Bre80 BT20 GM0 MDA T47D ZR751 
 

3p26.1 61 5,028,986-5,031,964 Bre80 BT20 GM0 MDA T47D ZR751 
 

3p26.1 61 5,044,212-5,059,881 Bre80 BT20 GM0 MDA T47D ZR751 
 

3p26.1 61 5,086,339-5,095,364 Bre80 BT20 GM0 HepG2 MDA T47D ZR751 

3p26.1 61 5,095,365-5,098,932 Bre80 BT20 GM0 HepG2 MDA T47D ZR751 

3p26.1 61 5,098,933-5,113,690 Bre80 BT20 GM0 HepG2 MDA T47D ZR751 

3p26.1 61 8,679,662-8,683,220 BT20 GM0 HepG2 MDA T47D ZR751 
 

3p26.1 61 8,773,633-8,780,364 Bre80 BT20 GM0 MDA T47D ZR751 
 

2q31.1 66 172,445,057-172,452,793 Bre80 BT20 GM0 HepG2 MDA T47D 
 

2q31.1 66 172,540,029-172,543,826 Bre80 BT20 GM0 HepG2 MDA T47D 
 

2q31.1 66 172,543,827-172,548,319 Bre80 BT20 GM0 HepG2 MDA T47D 
 

2q31.1 66 172,664,112-172,667,431 Bre80 BT20 HepG2 MDA T47D ZR751 
 

2q35 70 217,546,853-217,552,336 Bre80 BT20 HepG2 MDA T47D ZR751 
 

2q35 70 217,552,337-217,560,726 Bre80 BT20 GM0 HepG2 MDA T47D ZR751 

2q35 70 217,560,727-217,563,272 Bre80 BT20 GM0 HepG2 MDA T47D ZR751 

2q35 70 217,563,273-217,565,782 Bre80 BT20 GM0 HepG2 MDA T47D ZR751 

500kb*  77 11,272,095-11,272,831 Bre80 BT20 GM0 MDA T47D ZR751 
 

500kb * 77 11,272,832-11,276,344 Bre80 BT20 GM0 HepG2 MDA T47D ZR751 

500kb*  77 12,855,737-12,861,599 Bre80 BT20 GM0 MDA T47D ZR751 
 

500kb*  77 12,861,952-12,864,091 Bre80 BT20 GM0 MDA T47D ZR751 
 

500kb*  77 12,864,092-12,865,712 Bre80 BT20 GM0 MDA T47D ZR751 
 

500kb*  77 13,069,699-13,073,697 Bre80 BT20 GM0 MDA T47D ZR751 
 

500kb*  77 13,139,748-13,143,874 Bre80 BT20 GM0 MDA T47D ZR751 
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Locus   Target fragment (bp) Cell-lines with significant interactions (FDR < 0.01)** 

500kb*  77 15,697,232-15,701,484 Bre80 BT20 GM0 MDA T47D ZR751 
 

500kb*  77 15,701,485-15,705,850 Bre80 BT20 GM0 MDA T47D ZR751 
 

 *random region  **Significant interactions between that specific capture region and target fragment 
 Abbreviations: MDA = MDAMB231 and GM0 = GM06990 

Table 6-3: Common locus-target end interactions for six or more cell-lines (negative 
binomial regression) 
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6.5.2 Capture-to-capture interaction analysis  

After conducting the bait-to-5Mb interaction analysis, it was tested whether any 

significant physical interactions existed between individual HindIII bait fragments 

mapping to 1 of 72 capture regions, and individual HindIII target fragments mapping 

within the corresponding capture region bait (FDR<0.01). A number of the capture loci 

overlapped with other capture loci, meaning that they partly mapped to the same 

location in the genome. The overlapping loci are given in Appendix 9: Table 1. For this 

analysis, any bait fragments found to significantly interact with a target fragment that 

was positioned on more than one locus, were removed from the capture-to-capture 

results and included in the bait-to-5Mb results. 

In total, bait fragments mapping to 41 capture loci were found to significantly interact 

with target fragments mapping within the capture region (FDR<0.01) ( 

Table 6-4). Only one locus, 22q13.1 (locus 6), was found to have bait fragments that 

significantly interacted with capture target fragments in all seven cell-lines. The 

22q13.1 locus has been shown to be associated with both ER-positive breast cancer 

and ER-negative breast cancer, which is interesting as interactions have been shown 

in all seven cell-lines, which are a mixture of ER-positive, ER-negative and normal/non-

breast cancer cell-lines. To investigate this further, it was examined whether there were 

any common significant capture-to-capture fragment interactions for this locus, in all 

seven cell-lines (Table 6-5).  There was only found to be one common interaction in all 

seven cell-lines, this was with the target HindIII fragment positioned at 41,042,083-

41,042,910 bp. At the time of writing, no genes or associated breast cancer variants 

had yet been mapped to this region.  

Three loci were observed as having significant capture-to-capture interactions in six 

cell-lines, these were 11q13.1 (locus 27), 2q33.1 (locus 68) and the random 500 kb 

region. Fragments mapping to 11q13.1 were found to consecutively interact with seven 

target fragments within the region 65,533,743-65,580,061 bp. The gene, OVOL1 is a 
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transcription factor that maps within this target region (166). For the same capture 

region, fragments were found to significantly interact with multiple consecutive target 

fragments. Bait fragments interacted with three consecutive target fragments 

(65,590,364-65,607,749 bp), as well as two consecutive target fragments (65,616,145-

65,627,751 bp), another three consecutive fragments (65,704,518-65,719,776 bp) and 

finally two consecutive fragments positioned at 65,725,868-65,754,245 bp. This 

capture region was shown to have the largest number of significant capture-to-capture 

interactions in six cell-lines. The gene, SNX32, maps within to the target region 

65,616,145-65,627,751 bp, and the gene, SART1, maps to 65,725,868-65,754,245 bp. 

Within both of these genes are SNPs that have been shown to be associated with 

breast cancer risk. The SNP rs656040 (65,621,057 bp) resides in SNX32 and has been 

shown to be associated with breast cancer risk, but a genome-wide association has not 

observed (167). The gene SART1 has been linked to the maintenance of normal 

mitosis (168). For the locus 2q33.1, bait fragments within this capture region were 

shown to significantly interact with two consecutive target fragments (202,040,793-

202,050,567 bp), as well as another two consecutive target fragments (202,067,137-

202,073,354 bp) in six cell-lines. Two genes, CFLAR and CASP10 map to the 

202,040,793-202,050,567 bp target region, with the CASP10 gene also mapping within 

the 202,067,137-202,073,354 bp target region. CASP10 is a gene known to cause 

apoptosis to happen, which is linked to both the origin and the progression of cancer 

(169). Variants mapping on both CASP10 and CFLAR have been shown to interact 

with variants mapping to CASP8 (170, 171), a gene shown to be associated with breast 

cancer risk and apoptosis (105, 169, 172-175).  

Other significant capture-to-capture interactions that were observed in six of the cell-

lines, included a bait fragment mapping to 11q15.5 interacting with target fragments 

based at 65,657,866-65,663,289 bp, 65,664,081-65,668,293 bp and 65,669,066-

65,692,121 bp. The gene, FOSL1, maps to both the 65,657,866-65,663,289 bp target 
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region, and the 65,664,081-65,668,293 bp target region. This gene has been 

previously shown to be involved in transformation, proliferation and metastasis in many 

forms of cancer, and research suggests that this gene may be an important prognostic 

marker for breast cancer therapy (176). DRAP1, a protein-coding gene, maps within 

the 65,669,066-65,692,121 bp target region, but to my knowledge this gene has not yet 

been linked to cancer.  

Bait fragments mapping to 2q33.1 were shown to significantly interact with fragments 

based at 202,015,774-202,019,501 bp and 202,020,801-202,025,048 bp, in six of the 

cell-lines. CFLAR was found to map to these target regions. Bait fragments based on 

the random 500 kb region were found to significantly interact with target fragments 

based at 11,727,964-11,733,174 bp and 11,918,735-11,921,166 bp in six of the cell-

lines. No genes were found to be positioned on these regions. With the majority of the 

genes found to map to the target regions shown to play a role in either breast cancer or 

cancer, many of the significant interactions have been shown to be both meaningful 

and plausible. Findings are summarised in Table 6-6. 
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Locus Locus no. ER status T47D ZR751 Bre80 Hep BT GM0 MDA 

22q12.1 1 positive 0 1 0 0 0 0 0 

22q13.1 2 both 5 12 11 3 2 10 5 

20q13.13 5 neither 0 0 0 0 52 0 0 

19p13.1 6 negative 0 0 2 4 8 3 3 

19p13.11 8 positive 1 0 3 2 1 0 0 

14q24.1 18 positive 1 6 0 1 7 0 1 

14q24.1 19 both 0 1 0 0 15 0 0 

14q32.11 20 both 0 0 1 0 0 0 1 

13q13.1 21 negative 0 0 1 0 1 0 0 

12p13.1 22 both 0 0 0 0 0 1 0 

12p11.22 23 both 0 0 15 0 0 0 1 

12q22 24 both 0 0 1 0 0 0 0 

11p15.5 26 positive 0 0 0 3 16 0 14 

11q13.1 27 both 221 0 118 210 247 99 448 

11q13.3 28 positive 0 0 0 0 21 0 2 

10p12.31 32 positive 0 1 5 0 2 10 0 

9p21.3 39 both 0 41 0 0 0 0 NA 

9q31.2 41 positive 0 2 0 0 0 0 0 

8p12 42 positive 0 0 1 0 0 0 1 

8q21.11 44 both 0 13 0 0 0 0 1 

8q24.21 46 both 0 0 0 0 0 0 1 

7q35 47 both 0 0 3 0 0 0 0 

6p25.3 48 both 0 0 1 0 0 0 1 

6p23 49 positive 0 0 5 0 0 0 0 

6q25.1 52 negative 35 0 0 0 0 0 0 

5p15.33 53 negative 0 0 0 2 1 0 0 

5p12 55 positive 0 66 21 1 1 0 0 

4q24 59 positive 11 0 14 8 0 33 1 

3p26.1 61 both 36 29 6 0 0 0 0 

3p24.1 62 positive 0 84 51 0 0 0 0 

2p24.1 64 both 2 0 0 0 0 0 1 

2q14.2 65 negative 0 0 0 4 0 0 0 

2q31.1 66 positive 0 0 0 0 3 1 0 

2q33.1 68 neither 32 0 143 101 101 169 27 

2q35 70 both 21 75 0 0 17 0 0 

1p36.22 71 negative 2 0 46 0 2 0 16 

1p31.1 72 neither 3 9 10 0 0 0 5 

1p13.2 73 both 0 1 3 0 1 0 0 

500kb** 77 neither 241 36 83 57 0 9 15 

100kb** 78 neither 0 0 20 0 0 0 1 

50kb** 79 neither 0 0 2 0 0 0 0 

* ER status for associated breast cancer     ** random region 

 Abbreviations: MDA = MDAMB231, Hep = HepG2, BT = BT20 and GM0 = GM06990 

 
Table 6-4: No. of significant capture-to-capture interactions (FDR < 0.01) using the 

Negative binomial regression 
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Locus  
Locus 
No. 

Target fragment (bp) 
  
                  Cell-lines with significant interactions (FDR < 0.01)**  
  

22q13.1 6 41,042,083-41,042,910 Bre80 BT20 GM0 HepG2 MDA T47D ZR751 

11q13.1 27 65,533,743-65,538,089 Bre80 BT20 GM0 HepG2 MDA T47D  

11q13.1 27 65,538,090-65,541,319 Bre80 BT20 GM0 HepG2 MDA T47D  

11q13.1 27 65,541,320-65,542,524 Bre80 BT20 HepG2 MDA MDA T47D  

11q13.1 27 65,542,525-65,560,509 Bre80 BT20 GM0 HepG2 MDA T47D  

11q13.1 27 65,560,510-65,566,871 Bre80 BT20 GM0 HepG2 MDA T47D  

11q13.1 27 65,566,872-65,577,503 Bre80 BT20 GM0 HepG2 MDA T47D  

11q13.1 27 65,577,504-65,580,061 Bre80 BT20 GM0 HepG2 MDA T47D  

11q13.1 27 65,590,364-65,596,909 Bre80 BT20 GM0 HepG2 MDA T47D  

11q13.1 27 65,596,910-65,600,556 Bre80 BT20 GM0 HepG2 MDA T47D  

11q13.1 27 65,600,557-65,607,749 Bre80 BT20 GM0 HepG2 MDA T47D  

11q13.1 27 65,616,145-65,627,750 Bre80 BT20 GM0 HepG2 MDA T47D  

11q13.1  27 65,627,751-65,646,743 Bre80 BT20 GM0 HepG2 MDA T47D  

11q13.1  27 65,657,866-65,663,289 Bre80 BT20 GM0 HepG2 MDA T47D  

11q13.1  27 65,664,081-65,668,293 Bre80 BT20 GM0 HepG2 MDA T47D  

11q13.1  27 65,669,066-65,692,121 Bre80 BT20 GM0 HepG2 MDA T47D  

11q13.1 27 65,704,518-65,705,449 Bre80 BT20 GM0 HepG2 MDA T47D  

11q13.1  27 65,705,450-65,712,307 Bre80 BT20 GM0 HepG2 MDA T47D  

11q13.1  27 65,712,308-65,719,776 Bre80 BT20 GM0 HepG2 MDA T47D  

11q13.1  27 65,725,868-65,736,505 Bre80 BT20 GM0 HepG2 MDA T47D  

11q13.1  27 65,736,506-65,754,245 Bre80 BT20 GM0 HepG2 MDA T47D  

2q33.1 68 202,015,774-202,019,501 Bre80 BT20 GM0 HepG2 MDA T47D  

2q33.1 68 202,020,801-202,025,048 Bre80 BT20 GM0 HepG2 MDA T47D  

2q33.1 68 202,040,793-202,047,685 Bre80 BT20 GM0 HepG2 MDA T47D  

2q33.1 68 202,047,686-202,050,567 Bre80 BT20 GM0 HepG2 MDA T47D  

2q33.1 68 202,067,137-202,068,586 Bre80 BT20 GM0 HepG2 MDA T47D  

2q33.1 68 202,068,587-202,073,354 Bre80 BT20 GM0 HepG2 MDA T47D  

500kb* 77 11,727,964-11,733,174 Bre80 GM0 HepG2 MDA T47D ZR751  

500kb*  77 11,918,735-11,921,166 Bre80 GM0 HepG2 MDA T47D ZR751   

*random region  **Significant interactions between that specific capture region and target fragment 
 Abbreviations: MDA = MDAMB231 and GM0 = GM06990 

Table 6-5: Common capture-to-capture interactions across cell-lines using the negative 
binomial regression 
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Capture locus  SNP Target fragment/s (Mb) Genes* Gene information 

11q13.3 rs3903072 65,533,743-65,580,061 OVOL1 Transcription factor 

11q13.3 rs3903072 65,616,145-65,627,751 SNX32 Associated with BrCA  

11q13.3 rs3903072 65,725,868-65,754,245 SART1 Associated with BrCA  

Maintenance of normal mitosis 

11q15.5  65,657,866-65,663,289 

65,664,081-65,668,293 

FOSL1 Transformation, proliferation 
and metastasis in many types 
of cancers 

2q33.1 rs1045485 202,040,793-202,050,567 CFLAR/CASP10 Variants shown to interact with 
CASP8 (gene linked to 
apoptosis and BrCa) 

2q33.1 rs1045485 202,067,137-202,073,354 CASP10 Apoptosis- linked to origin & 
progression of cancer & 
variants shown to interact with 
CASP8 (gene linked to 
apoptosis and BrCa) 

2q33.1 rs1045485 202,015,774-202,019,501 
202,020,801-202,025,048 

CFLAR Variants shown to interact with 
CASP8 (gene linked to 
apoptosis and BrCa) 

* protein coding genes mapping to the target fragment/s region 

BrCa = Breast cancer 

Table 6-6: Plausible significant capture-to-capture interactions 
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6.6 CHiCAGO analysis  
 

6.6.1 Bait-to-5Mb interaction analysis 

Once the CHi-C analysis had been conducted using the negative binomial regression 

method, CHiCAGO was then used to test for significant bait-to-5Mb interactions. Once 

the analysis was conducted, the number of significant physical interactions across all 

capture loci were summed for the two methods separately, for each cell-line. A larger 

number of significant interactions were observed in each cell-line when using 

CHiCAGO, compared to the number observed when using the negative binomial 

regression method (Figure 6-4). With the analyses conducted involving a large number 

of loci (72 loci), any differences in the number of significant interactions detected for 

each locus, by each method, would accumulate across the loci. This could explain the 

large difference in the number of interactions between the two methods. However, the 

two methods differ in how they detect significant interactions and control for type-1 

errors, so it was expected that there would be a difference in the number of significant 

interactions detected. CHiCAGO uses two count distributions to test for significant 

interactions, the Poisson distribution and the negative binomial distribution, with this 

being known as the Delaporte distribution. An interaction was deemed significant if it 

occurred more often than expected under the Delaporte distribution, with p-values 

weighted based on the distance between the two “interacting” fragments. The negative 

binomial regression method on the other hand only uses the negative binomial 

distribution to test for significant interactions, and p-values are adjusted for multiple 

testing using the FDR. With the two methods controlling for type-1 errors differently, 

one using the FDR and the other using weights, the methods will be controlling for 

these errors at a different rate. Therefore, it would have been better to compare the two 

methods on a common scale, but the weights used to weight the CHiCAGO derived p-

values were not given when conducting the analysis, so the original p-values could not 

be computed.  
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The two methods did identify a number of the same significant interactions, with 50% of 

the negative binomial regression interactions also being detected by CHiCAGO for the 

T47D cell-line, 49% for the ZR751 cell-line, 81% for the Bre80, 89% for the HepG2, 

38% for the BT20 cell-line, 70% for the GM0 cell-line and 67% for the MDA cell-line. In 

six or more cell-lines, fragments mapping to many of the capture loci were shown to 

significantly interact with certain target HindIII fragments for both methods (FDR < 0.01 

and score > 5) (Table 6-7). Fragments mapping to the capture locus 14q24.1 (locus 18) 

were observed to significantly interact with two consecutive target fragments mapping 

to 69,255,090-69,263,908 bp, as well as two consecutive target fragments mapping to 

69,276,282-69,288,644 bp. For both methods, bait fragments mapping to 11q13.3 

(locus 28) were shown to significantly interact with two consecutive target fragments 

mapping to 68,843,286-68,858,830 bp, another two consecutive target fragments 

mapping to 68,861,120-68,882,444 bp, as well three consecutive target fragments 

mapping to 68,886,551-68,903,868 bp. Fragments mapping to 10p12.31 (locus 32) 

significantly interacted with two consecutive target fragments 23,274,447-23,280,039 

bp, and fragments mapping to 5q11.2 (locus 56) significantly interacted with four 

consecutive target fragments 5025725-5031964 bp, in both methods. Finally fragments 

mapping to 3p26.1 (locus 61) significantly interacted with three consecutive target 

fragments mapping to 5,086,339-5,113,690 bp, and fragments mapping to 2q35 (locus 

70) were observed to significantly interact with four consecutive target fragments 

mapping to 217,546,853-217,565,782 bp. With these physical bait-to-5Mb fragment 

interactions being significant for both methods, and with known breast cancer or cancer 

genes mapping within some of the target regions, the interactions seem plausible. A 

summary of the most plausible bait-to-5Mb interactions are given in Table 6-8. 

 

 

 



220 
 

 

T47D cell-line                                                   ZR751 cell-line 

 

                   Bre80 cell-line                                                     HepG2 cell-line 

 

                   BT20 cell-line                                                   GM06990 cell-line 

 

                                                        MDAMB231 cell-line 

Figure 6-4: Venn diagrams to compare the no. significant interactions in each cell-line 
when using the negative binomial regression method (NegBin) and CHiCAGO 
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Locus Locus 
No. 

Target fragment (bp) Cell-lines with significant interactions** 

14q24.1 18 69,255,090-69,257,981 Bre BT20 GM0 Hep MDA T47D ZR751 

14q24.1 18 69,257,982-69,263,908 Bre BT20 GM0 Hep MDA T47D ZR751 

14q24.1 18 69,272,186-69,275,832 Bre GM0 Hep MDA T47D ZR751  

14q24.1 18 69,276,282-69,280,293 Bre GM0 Hep MDA T47D ZR751  

14q24.1 18 69,280,294-69,288,644 Bre BT20 GM0 Hep MDA T47D ZR751 

11q13.3 28 68,843,286-68,856,786 Bre BT20 GM0 Hep MDA T47D   

11q13.3 28 68,856,787-68,858,830 Bre BT20 GM0 Hep MDA T47D   

11q13.3 28 68,861,120-68,873,431 Bre BT20 GM0 Hep MDA T47D ZR751 

11q13.3 28 68,873,432-68,882,444 Bre BT20 GM0 Hep MDA T47D ZR751 

11q13.3 28 68,886,551-68,886,942 Bre BT20 GM0 Hep MDA T47D ZR751 

11q13.3 28 68,886,943-68,891,662 Bre BT20 GM0 Hep MDA T47D ZR751 

11q13.3 28 68,891,663-68,903,868 Bre BT20 GM0 Hep MDA T47D   

11q13.3 28 69,060,151-69,065,192 Bre BT20 GM0 Hep MDA T47D   

11q13.3 28 69,065,355-69,075,253 Bre BT20 GM0 Hep MDA T47D   

10p12.31 32 23,274,447-23,277,011 Bre BT20 GM0 Hep MDA T47D ZR751 

10p12.31 32 23,277,012-23,280,039 Bre BT20 GM0 MDA T47D ZR751  

5q11.2 56 55,563,961-55,567,802 Bre GM0 Hep MDA T47D ZR751  

3p26.1 61 5,025,725-5,026,309 Bre BT20 GM0 MDA T47D ZR751  

3p26.1 61 5,026,310-5,027,008 Bre BT20 GM0 MDA T47D ZR751  

3p26.1 61 5,027,009-5,028,985 Bre BT20 GM0 MDA T47D ZR751  

3p26.1 61 5,028,986-5,031,964 Bre BT20 GM0 MDA T47D ZR751  

3p26.1 61 5,044,212-5,059,881 Bre BT20 GM0 MDA T47D ZR751  

3p26.1 61 5,086,339-5,095,364 Bre BT20 GM0 Hep MDA T47D ZR751 

3p26.1 61 5,095,365-5,098,932 Bre BT20 GM0 Hep MDA T47D ZR751 

3p26.1 61 5,098,933-5,113,690 Bre BT20 GM0 Hep MDA T47D ZR751 

2q31.1 66 172,540,029-172,543,826 Bre BT20 GM0 Hep MDA T47D   

2q31.1 66 172,664,112-172,667,431 Bre BT20 Hep MDA T47D ZR751  

2q35 70 217,546,853-217,552,336 Bre BT20 Hep MDA T47D ZR751  

2q35 70 217,552,337-217,560,726 Bre BT20 GM0 Hep MDA T47D ZR751 

2q35 70 217,560,727-217,563,272 Bre BT20 GM0 Hep MDA T47D ZR751 

2q35 70 217,563,273-217,565,782 Bre BT20 Hep MDA T47D ZR751  

500 kb* 77 11,272,832-11,276,344 Bre BT20 GM0 Hep MDA T47D   

* 500 kb random region   ** Negative binomial regression: FDR < 0.01 and CHiCAGO: score > 5 

 Abbreviations: MDA = MDAMB231, GM0 = GM06990, Bre80 = Bre and Hep = HepG2 

Table 6-7: Common locus-target end interactions for six or more cell-lines (detected by 
both the negative binomial regression method and CHiCAGO) 
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Capture locus  Target fragment/s (Mb) Genes* Gene information 

14q24.1 69,255,090-69,257,981 

69,257,982-69,263,908 

ZFP36L1 Linked to BrCa 

11q13.3 68,843,286-68,856,786 

68,856,787-68,858,830 

TPCN2 Ion transport 

10p12.31 23,274,447-23,277,011 ARMC3 Metastasis and tumour initiation 

10p12.31 23,277,012-23,280,039 ARMC3 Metastasis and tumour initiation 

2q35 217,552,337-217,560,726 IGFBP5 BrCa metastasis 

* protein coding genes mapping to the target fragment/s region 

BrCa = Breast cancer 

Table 6-8: Plausible significant bait-to-5Mb interactions 
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6.7 Discussion 

Many genetic variants have been identified as being associated with breast cancer risk, 

but how they influence disease risk is not quite understood as many of the variants 

map to non-coding regions of the genome. The CHi-C procedure can be used to 

establish significant physical interactions between loci that are not necessarily close on 

the genome, but come into contact physically when they are in their 3D state.  

In this chapter a large-scale CHi-C analysis was performed using 72 loci and seven 

cell-lines, and to my knowledge this was the largest CHi-C analysis performed to date. 

CHi-C analyses tend to focus on testing for physical interactions for a small number of 

susceptibility loci, therefore making this analysis unique as up to 72 loci have been 

analysed in seven cell-lines. There was found to be evidence of both bait-to-5Mb 

interactions, and capture-to-capture interactions for many of the loci analysed across 

various cell-lines. Some of the significant physical interactions were present across all 

cell-lines, and a number of the target end fragments were found to map to genes 

known to have a role in cancer and/or breast cancer. This therefore provided evidence 

that it is possible that some of the susceptibility loci could be interacting with other 

regions of the genome to have an effect on breast cancer risk.  

Three of the analysed loci have already been analysed by Dryden et al. (106) in a 

previous CHi-C analysis using two breast cancer cell-lines, BT483 and SUM44, and the 

control non-breast cancer cell-line, GM06990. The loci analysed were 2q35 

(rs13387042), 8q24.21 (rs13281615) and 9q31.2 (rs865686). For 2q35, Dryden et al. 

identified 20 (BT483), 45 (SUM44) and zero (GM06990) significant bait-to-5Mb 

physical interactions (FDR < 0.01). For 8q24.21, they identified three (BT483), zero 

(SUM44) and 108 (GM06990) significant bait-to-5Mb interactions (FDR < 0.01). For 

9q31.2, four (BT483), zero (SUM44) and zero (GM06990) significant bait-to-5Mb 

interaction were identified. Similarly, for the GM06990 cell-line in my analysis, zero 

significant interaction peaks were identified for 2q35 and the same for 9q31.2. No 
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interactions were observed for all three loci for the HepG2 cell-line, a liver cancer cell-

line and no interactions were observed for 2q35 in the Bre80 cell-line (normal breast 

epithelial cell-line). For 8q24.21, 85 significant interaction peaks were identified, which 

was fairly similar to the number of interactions found by Dryden et al. (106). In the four 

breast cancer cell-lines analysed in this chapter, significant interactions were detected 

for all three loci, but not in all four cell-lines. For 9q31.2, 24 (T47D), 31 (ZR751), zero 

(BT20) and zero (MDAMB231) significant bait-to-5Mb interactions (FDR < 0.01) were 

detected. For 8q24.21, 1,007 (T47D), four (ZR751), zero (BT20) and five (MDAMB231) 

significant bait-to-5Mb interactions (FDR < 0.01) were detected. For 2q35, four (T47D), 

six (ZR751), twelve (BT20) and five (MDAMB231) significant bait-to-5Mb interactions 

(FDR < 0.01) were detected. It was rather surprising how many significant interactions 

were detected for the 8q24.21 locus in the T47D cell-line, as the number detected was 

much larger than detected in other cell-line in this analysis, and in the analysis 

conducted by Dryden et al. It was also the largest number of interactions detected 

across all loci, therefore, this is an inconsistent result.   

CHiCAGO, another method used to analyse CHi-C data, was also used to test for near-

cis interactions. The results from this analysis were compared to those produced when 

using the negative binomial regression, and it was found that the number of significant 

interactions identified by CHiCAGO exceeded the number discovered when using the 

negative binomial regression. It was expected that the two methods would identify a 

different number of significant interactions as the methods varied in the distribution 

used and how they adjusted for the various forms of bias. CHiCAGO used weights to 

adjust the p-values for multiple testing and bias associated with the distance between 

bait and target fragments, whereas the negative binomial method adjusted p-values 

using the FDR. A fairly recent comparison was made between CHiCAGO and an 

alternative regression model that modelled technical and Brownian noise differently by 

Eijsbouts (177), with Eijsbouts focussing on the interactions of promoters only 
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(promoter CHi-C). Using two different promoter CHi-C datasets, that were similar 

biologically, Eijsbouts tested whether CHiCAGO would identify a similar number of 

significant interactions between the two datasets. Between the two datasets, CHiCAGO 

detected more significant interactions in one of the datasets than the other, so there 

was thought to be a problem with design of the detection algorithm or the parameters 

used by CHiCAGO. With this Eijsbouts used an alternative regression method, which 

similar to CHiCAGO, also uses the lengths of interacting fragments to predict 

interaction counts. Trans-chromosomal interaction counts are also used and the 

regression method also allows the predictors in the model to be estimated 

simultaneously, whereas the CHiCAGO parameters are estimated in a set order. Bins 

between the two methods were set differently, with the bins in the regression model 

able to contain interactions that span different distance ranges. The regression method 

did perform differently, Eijsbouts found that the regression model was more consistent 

in detecting interactions between the two promoter CHi-C datasets, then CHiCAGO, 

however, there was still some inconsistency. CHiCAGO, therefore, has been previously 

shown to detect a different number of significant interactions to an alternative method. 

With the there being a large number of loci analysed in this chapter, any differences in 

the number of interactions detected across the two methods would acuminate. It would 

have been better if I was able to compare the two methods by their p-values before 

adjusting by the FDR or a weight, but the CHiCAGO weights used were not given for 

each p-value.  

A number of interesting significant physical interactions were, however, detected for 

both methods and in most of the cell-lines. Bait fragments mapping to 14q24.1 were 

observed to significantly interact with target fragments in ZFP36L1, a gene that has 

been previously linked to breast cancer (163). Bait fragments mapping to 10p12.31 and 

2q35 were found to significantly interact with target fragments mapping to ARMC3 and 

IGFBP5, respectively, with both genes being linked to cancer metastasis.  
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Some of the significant capture-to-capture physical interactions detected by the 

negative binomial method were detected in most cell-lines. A number of the target end 

fragments mapped to genes that have previously been linked to breast cancer.   

Analysis should next focus on establishing the importance of the other end fragments 

that the loci analysed have been shown to significantly interact with, especially the 

physical interactions that were shown to be significant in both methods. From just 

focussing on the interactions present across most of the cell-line, the results seem 

plausible as target end fragments have been shown to map to genes that have been 

linked to breast cancer or cancer.  
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Chapter 7 Summary of thesis and future 
research 

 

7.1 Thesis summary 

In recent years, GWAS have been used to discover many variants associated with a 

variety of complex diseases and traits. In breast cancer alone, over 90 genetic variants 

have been shown to be associated with disease risk. By estimating the heritability for 

many complex diseases, and then quantifying how much of the estimated heritability 

can be explained by variants associated with disease, it has been found that much of 

the heritability is unexplained. It has been widely hypothesised that there are many 

more variants associated with disease risk, but with small effect sizes, they are 

currently not reaching genome-wide significance as current GWAS are believed to be 

underpowered to detect such associations. The statistical power of a GWAS is affected 

by study sample size, and it is believed that as study size continue to increase, there 

will be many more susceptibility variants discovered. To increases sample sizes, and to 

improve the power to detect genome-wide significant loci, researchers have been 

collaborating and combining individual GWAS to form large consortia. In the last few 

years, large consortia have helped to discover many of the susceptibility variants that 

have been discovered to date.  

Due to the polygenic nature of many diseases, research has begun focusing on the 

combined effect multiple genetic variants have on disease risk. Polygenic scoring has 

been used to assess whether genetic signal is present amongst an ensemble of SNPs. 

With research suggesting that diseases are polygenic, polygenic scores have also 

been used to examine whether there is evidence of a shared polygenic basis existing 

between seamlessly independent traits, whether PRS x risk factor interactions exists, 
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and to estimate how much genetic variation in a trait could be explained by genotyped 

SNPs. 

The aim of this thesis was to explain some of the “missing heritability” for breast cancer 

using polygenic scores, constructed using genotyped GWAS and custom array SNPs. 

A polygenic score analysis was used in chapter 2 to find evidence that the estimated 

SNP effects from one breast cancer GWAS, could be used to predict breast cancer risk 

in an independent GWAS. For different SNP inclusion thresholds, in both directions, 

the constructed PRS were shown to be significantly associated with breast cancer 

outcome in an independent GWAS. This result helps to confirm that breast cancer has 

a polygenic basis. With even more evidence found to strengthen the case that breast 

cancer has a polygenic basis, the polygenic nature of the disease should be 

considered when conducting genetic analyses.  

Once it was shown that many genetic variants influence breast cancer risk, it was then 

estimated how much of the genetic variation for breast cancer on the liability scale, 

could be explained by genotyped SNPs. With known susceptibility variants not 

explaining a lot of the genetic variation in breast cancer, I wanted to examine the 

potential genotyped SNPs had in explaining the heritability of breast cancer. Few 

estimates for breast cancer have been produced based on all genotyped SNPs. 

Previous chip heritability estimates were either estimated using a smaller sample size 

than the studies used in the thesis, or were estimated for a subtype of breast cancer 

instead of overall breast cancer (86, 87). Using much larger breast cancer studies, 

researchers have estimated the contribution genome-wide significant SNPs have in 

explaining the familial risk of breast cancer (45, 51). Estimating the genetic variation in 

breast cancer that can be explained by SNPs, and not just the familial risk, allows an 

assessment to be made of the ability the SNPs have in explaining the genetic variation 

in breast cancer for the general population. Breast cancer is not completely familial, so 

estimating the genetic variation explained in breast cancer on the liability scale allows 
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for a better understanding of the disease. Using three different estimation methods, 

which differ in how they estimate chip heritability, the variance explained by genotyped 

GWAS SNPs and custom array SNPs was estimated. GREML uses the genetic 

relatedness between unrelated individuals and a mixed linear model to estimate chip 

heritability, whereas LDSC uses the LD between SNPs, and AVENGEME uses 

polygenic score analysis results and maximum likelihood estimation to estimate chip 

heritability. Based on GWAS SNPs, chip heritability estimates indicated that genotyped 

GWAS SNPs explain up to half of the genetic variation in breast cancer liability (~16%-

21%). Custom array SNPs explained a smaller proportion of the variation in breast 

cancer liability, with SNPs genotyped on the array explaining between ~6%-14% of the 

genetic variation on the liability scale. This was to be expected, as a smaller number of 

independent SNPs had been genotyped on this array. The chip heritability estimates 

varied across the different estimation methods, with GREML and AVENGEME 

estimates shown to be more precise than LDSC estimates. The chip heritability 

estimates produced show that with increased sample sizes, GWAS have the potential 

to identify many more associated SNPs that collectively explain a larger proportion of 

the genetic variation in breast cancer risk, than can be explained by the genome-wide 

significant SNPs identified to date.  

The next natural step was to partition the estimated chip heritability for each study, in 

order to develop a better understanding of how genetic variation is spread across the 

genome. This was the first time that a genome partitioning analysis had been 

conducted for breast cancer. Being able to partition the chip heritability estimates was 

an advantage of producing estimates on the liability scale, as opposed to the familial 

risk based estimates, usually reported in breast cancer. The chip heritability estimates 

were partitioned by MAF, chromosome and SNP annotation using polygenic score 

analysis and AVENGEME. With the AVENGEME method having never been used to 

conduct a genome partitioning analysis, and the method accuracy either being similar 
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or better than the other estimation methods, it was used to perform the partitioning 

analyses.  

Partitioning by MAF showed that over 78% of the estimated chip heritability could be 

explained by common SNPs within each study. It is therefore evident that a large 

proportion of the genetic variation in breast cancer liability can be explained by 

common SNPs with an MAF > 0.1. The finding was consistent with other genome 

partitioning studies that had been conducted for other traits, meaning that the observed 

result was plausible.  

When partitioning the chip heritability estimates by chromosome, a weak linear 

association between the genetic variance explained by a chromosome, and 

chromosome length (Mb) was observed. This result suggests that the genetic variation 

for the breast cancer is spread evenly across the genome, which, again, suggests that 

breast cancer is a polygenic disease. The association was, however, not significant for 

the UK2 GWAS. When partitioning the estimated genetic variation in breast cancer 

liability by chromosome for the COGS, there was also shown to be a positive significant 

linear association between the genetic variance explained by a chromosome, and the 

number of SNPs genotyped for each chromosome. These results are similar to other 

published chromosome partitioning studies, but a stronger linear association has 

usually been observed. With the per chromosome estimates produced being fairly 

imprecise, it could be that by improving precision by increasing sample size, as GWAS 

sample sizes were smaller than those used in the published studies, the association 

might strengthen.  

Partitioning the chip heritability based on SNP annotation led to inconsistent results 

with large confidence intervals, which meant that a reasonable conclusion could not be 

made. For the UK2 GWAS, per-SNP estimates were fairly similar across the three 

annotation groups. UK2 SNPs mapping to intergenic regions of the genome were 

estimated to explain slightly more of the genetic variation in breast cancer liability, than 

SNPs mapping to either gene or regulatory regions. However, there was actually little 
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difference between the three per-SNP estimates. For the BBCS, SNPs mapping to 

gene regions were shown, per-SNP, to explain a larger proportion of the genetic 

variation in breast cancer liability compared to SNPs mapping to either intergenic or 

regulatory regions. Again, the differences between these estimates, per-SNP, was 

actually fairly small, but slightly larger than observed when performing this analysis on 

the UK2 GWAS. For the COGS, per-SNP, SNPs mapping to regulatory regions were 

estimated to explain a larger amount of genetic variation in breast cancer liability, 

compared to the SNPs mapping to either intergenic or gene regions. The actual 

differences, per-SNP, between the three estimates were again fairly small. With there 

being only a small difference between the per-SNP estimates for each study, and the 

preciseness of the estimates being questioned, it was difficult to draw a conclusion 

from this partitioning analysis.  

The SNPs present on the iCOGS array, were chosen based on previous breast cancer, 

ovarian and prostate cancer GWAS results. The chip heritability estimate for the COGS 

was partitioned based on the cancer type the SNPs were related to on the array. 

COGS SNPs were separated into two groups, breast cancer related SNPs and SNPs 

related to either prostate or ovarian cancer. The genetic variation explained by the 

SNPs in each group was then estimated. When partitioning by related cancer type, 

there was shown to be little difference between the two estimates produced, but per-

SNP, “breast cancer SNPs” were estimated to explain more of the genetic variation in 

breast cancer liability than “prostate/ovarian cancer SNPs”. This result indicates that 

“prostate/ovarian cancer SNPs” do make up a proportion of the genetic signal in breast 

cancer, but much more of the genetic signal can be attributed to “breast cancer SNPs”.  

Overall, the precision of many of the chip heritability estimates produced for individual 

subsets based on GWAS had to be questioned, as the 95% CIs for the subset 

estimates tended to be wide. When the COGS chip heritability estimate was 

partitioned, the subset estimate 95% CIs were found to be much narrower than those 

for the GWAS. The SNPs genotyped for the COGS in total explained a smaller 
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proportion of the genetic variation in breast cancer liability than all the genotyped 

GWAS SNPs. Therefore, partitioning GWAS SNPs would provide much more insight 

into the genetic architecture of breast cancer, but with current estimates lacking 

precision, much larger sample sizes would be needed for a more precise conclusion to 

be made based on GWAS. The results do however suggest that breast cancer is a 

polygenic disease, with the much of the genetic variation in the disease being 

explained by common SNPs (MAF > 0.1) across the genome.  

In chapter 4, both LDSC and polygenic score analysis was used to investigate whether 

there was evidence to suggest that BMI, a breast cancer risk factor, has a shared 

polygenic basis with breast cancer. This was the first time that it has been tested 

whether there is evidence of a shared polygenic basis existing between the two 

phenotypes. It is possible that many shared genetic variants across the two traits could 

explain why BMI and breast cancer are associated. Evidence of a shared polygenic 

basis could enable BMI and breast cancer to be studied together, which could 

potentially aid the development of new treatments, or help to identify women at an 

increased risk of developing the disease. Summary BMI data from the GIANT 

consortium was used, along with the breast cancer studies, to examine whether there 

was evidence of a genetic overlap between the two phenotypes. Using LDSC, via the 

web interface LD hub, the genetic correlation between breast cancer and BMI was 

estimated. The results from the correlation analyses suggested that breast cancer and 

BMI were not significantly correlated (p-value > 0.05). Therefore from this analysis 

there was no evidence to suggest that breast cancer and BMI have a shared polygenic 

basis. It was also tested whether a polygenic score for women in the breast cancer 

studies, constructed using the BMI summary data for published BMI susceptibility 

variants, was associated with breast cancer risk. The results from this analysis 

indicated that there was no associated between the BMI derived polygenic score and 

breast cancer outcome. It was then tested whether a polygenic scores based on 
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published breast cancer SNPs could be used to predict BMI, with significant 

associations being observed. To examine this further, en-masse breast cancer derived 

polygenic scores were conducted for multiple p-value thresholds, and tested for their 

association with BMI. Evidence of a shared polygenic basis between breast cancer and 

BMI was observed, as some of the scores were shown to be associated with BMI, but a 

number of these significant associations could be considered borderline significant. 

The associations observed were not as significant as those detected for other shared 

genetic basis studies, but with the sample sizes having up to 50% power to detect 

genetic correlation, increasing the size of the breast cancer study used could improve 

the strength of the association.  

Multiple significant associations between different breast cancer derived polygenic 

scores, and breast cancer outcome were observed in chapter 2. The next objective 

was to test for PRS x risk factor interactions, to examine whether there was evidence to 

suggest that breast cancer risk factors could be modifying the effect these scores have 

on breast cancer risk. BMI and age at menarche, factors that have been shown to be 

significantly associated with breast cancer risk in previous studies, were the breast 

cancer risk factors analysed. For this analysis, a case-only approach was adopted in 

order to improve the power to detect any significant associations, as the number of 

GWAS individuals with either BMI or age at menarche data was very small. In one of 

the analyses conducted, the breast cancer cases from the BBCS, with either age at 

menarche or BMI data, were assigned to the replication sample, with the remaining 

BBCS subjects being combined with UK2 subjects to form the training sample. For 

another analysis, the COGS study was set as the training sample, with the BBCS age 

at menarche/BMI cases assigned to the replication sample. Significant polygenic score 

and age at menarche linear associations were observed for COGS derived polygenic 

scores. Scores constructed using either all independent COGS SNPs, SNPs with a 

breast cancer association p-value ≤ 0.7 or a p-value ≤ 0.4 were observed to have a 
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significant linear association with age at menarche. The results suggested that these 

breast cancer polygenic scores could be interacting with age at menarche to have an 

effect on breast cancer risk. A significant linear relationship between PRS and age at 

menarche was not shown for the more stringent p-value thresholds. This indicated that 

the effect that an en-masse PRS has on breast cancer risk, could potentially be 

modified by a woman’s age at menarche. For BMI, only one significant linear 

association was observed, and that was for the most stringent p-value threshold (p-

value ≤ 0.001), estimated using the combined GWAS sample. This result suggests that 

an interaction between this breast cancer PRS and BMI may exist, but as with many of 

the other associations, the association was borderline significant. With many of the 

associations observed being borderline significant, this analysis should be repeated in 

a larger sample to assess whether there is in fact evidence of either PRS x BMI or PRS 

x age at menarche interactions.  

In addition to testing whether two breast cancer risk factors interacted with multiple 

breast cancer derived polygenic scores, it was examined whether the effect a breast 

cancer polygenic score has on breast cancer could be modified by individual 

genotyped SNPs. Independent SNPs were assigned to a p-value threshold bin, based 

on their individual significance with breast cancer. A polygenic score was constructed 

for each bin, with each SNP within the same bin being removed from the score. It was 

tested whether the removed SNP had a significant linear association with the newly 

formed score. After adjusting for multiple testing using an FDR of 5%, SNP x PRS 

significant interactions based on SNPs with a p ≤ 0.01 and p ≤ 0.001 were still 

observed, but not for the other SNP intervals. Therefore, there was some evidence to 

suggest that interactions could exist, between some of the SNP and PRS combinations 

tested. With the analysis being a case-only analysis, and the number of significant 

interactions greatly exceeding 5% (99%) for p ≤ 0.01, it should be further investigated 

whether these interactions are significant when conducting a case-control interaction 

analysis.  
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GWAS to date have been used to identify over 90 susceptibility breast cancer loci, but 

with many of these loci mapping to gene-deserts or non-coding regions of the genome, 

understanding fully how they affect breast cancer risk, or trying to pin point the causal 

variant, has been difficult. In chapter 6, CHi-C analysis was used to test whether 

susceptibility loci affect breast cancer risk through significant physical interactions with 

other loci, which map to genes or coding regions. Significant long-range interactions 

were observed for a large number of the loci, with some of the significant interactions 

occurring in most of the cell-lines. A number of the significant interactions seemed 

plausible as they occurred across most, if not all, of the cell-lines, with the target end 

mapping to a gene known to be somewhat associated with either breast cancer or 

cancer. The results therefore indicate that other loci could explain how genetic variants 

in gene deserts, or non-coding regions, affect breast cancer risk.  
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7.2 Strengths 

This thesis has explored the underlying polygenic architecture of breast cancer using 

current approaches and methods. So far, breast cancer studies have tended to 

estimate the genetic variation in the familial breast cancer risk explained by discovered 

breast cancer susceptibility loci. One study has produced a chip heritability estimate for 

breast cancer, but the estimates produced and presented in this thesis were estimated 

using larger sample sizes (86). Estimating chip heritability allows the potential 

genotyped SNPs have in explaining the genetic variation of a trait, to be assessed 

without first having to discover all associated SNPs. This is a major advantage, as 

currently sample sizes are not large enough discover many of the associated variants, 

so these estimates allow us to examine whether much more of the genetic variation in 

a trait can be explained by SNPs currently not reaching genome-wide significance. 

Producing chip heritability estimates for both GWAS and custom array SNPs allows the 

two types of array to be compared, in terms of how much potential the SNPs 

genotyped on the array have in explaining the genetic variation in breast cancer. The 

estimates produced in this thesis indicate that we should continue to increase GWAS 

sample sizes, as much more of the genetic variation in breast cancer liability can be 

explained by GWAS SNPs, than the SNPs on the custom array.  

To my knowledge, this was the first time that chip heritability estimates for breast 

cancer have been partitioned by either MAF, chromosome or SNP annotation. 

Therefore conducting these analyses provided insight into how the genetic variation for 

the disease is spread across the genome. At the time of writing AVENGEME had never 

been used to perform a genomic partitioning analysis, therefore the work presented in 

this thesis showed that it can be used to conduct this type of analysis. Future 

partitioning analyses, however, should be conducted using a larger sample than used 

in this thesis. With sample sizes increasing and more summary data becoming 

available, AVENGEME will be a great method to use to estimate chip heritability and 
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conduct a partitioning analysis because it seems to provide reliable estimates with 

large studies, and can be used with summary data. LDSC can also be used on 

summary data, but AVENGEME is more reliable than LDSC with smaller studies, and 

can be used to estimate other parameters, such as the proportion of null SNPs.  

For the majority of the analyses conducted in this thesis “deep” scores were used, 

which meant that all genotyped SNPs were represented in the analysis, regardless of 

their individual association with breast cancer. Most breast cancer studies to date have 

conducted their analyses using only genome-wide significant SNPs, meaning that 

much of the genetic signal across the genome has not been captured in their analyses. 

In this thesis, en-masse and more stringent polygenic scores were used to conduct 

various polygenic score analyses. This enabled much more of the genetic signal to be 

captured and represented in the analyses, than if only genome-wide significant SNPs 

had been used, as there are many more associated breast cancer SNPs, just studies 

have been underpowered to detect many of them.  

The CHi-C analysis, presented in chapter 6, is a recent approach that has been used to 

gain a better understanding of the underlying biological mechanisms behind how 

susceptibility loci affect disease risk. The CHi-C analysis conducted for this thesis, and 

for a publication in collaboration with Dr. Fletcher, is the largest breast cancer CHi-C 

analysis to date (161). With over 60 capture loci and seven cell-lines analysed, to my 

knowledge, it is also currently one of the largest CHi-C analysis to have been 

performed for any complex disease. Two different methods were used to test for 

significant physical interactions between capture and target fragments, with a number 

of the physical interactions being found to be significant when using both methods, and 

across most cell-lines. This reinforces the plausibility of the results produced. 

With the majority of the analyses conducted in this thesis having never been performed 

for breast cancer, it has meant that the results produced have enabled us to improve 

our knowledge of the disease. 
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7.3 Limitations 

After estimating and partitioning the chip heritability estimates for each study and 

finding 95% CIs to be wide, it became clear that the number of individuals in the two 

GWAS were not large enough to produce fairly accurate estimates. The number of 

cases and controls in the GWAS would have led to some of the studies being 

underpowered, with it being estimated for the shared polygenic basis analysis that less 

than 50% power was achieved. With interaction analyses already suffering from being 

underpowered, compared to other analyses, the PRS x risk factor interaction analyses 

would have been especially underpowered as the replication sample sizes were very 

small. A case-only approach was adopted in order to improve the power to detect an 

association, but even after applying this approach, the studies would have still been 

underpowered. The case-only approach improves power but this is compared to a 

case-control study of the same size. Only 921 subjects had BMI information, and all 

921 of them were breast cancer cases. Conducting a case-only analysis using the 921 

cases, would be better powered than a case-control analysis with a combined total of 

921 cases and controls. With BMI and age at menarche information only available for 

case subjects anyway, a case-only approach had to be applied regardless. The PRS x 

risk factor analyses conducted had achieved under 25% power, meaning that, 

unsurprisingly, the studies were underpowered.  

To date, many modifiable and non-modifiable factors have been shown to be 

associated with breast cancer risk. In the shared polygenic basis analysis only one risk 

factor was analysed, and for the PRS x risk factor analyses, two risk factors were 

analysed. Information on other breast cancer risk factors were not provided for the 

subjects in the GWAS data I had access to. Due to time constraints, in regard to 

applying for and analysing new data, other PRS x risk factor interaction and shared 

polygenic basis analyses were not conducted. If I had more time, I would have applied 

for percent mammographic density GWAS data from the Markers of Density (MODE) 
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consortium (78). Using this data, Varghese et al.(78) have previously shown that 

polygenic scores based on SNP effects estimated using this study were associated 

with breast cancer outcome, suggesting genetic overlap between the two phenotypes. 

Lindstrom et al.(130) have previously tested whether there are shared loci between 

breast cancer and three different mammographic density phenotypes; dense area, non-

dense area and percent density. It would be interesting to test whether there is 

evidence of a shared polygenic basis between dense area and non-dense area, and 

breast cancer as it could indicate that these measures are driving the shared polygenic 

basis between percent mammographic density and breast cancer. Summary data on 

menopause age and age at menarche has been made available in the public domain 

by the Reproductive Genetics (ReproGen) Consortium (178-180). Therefore, I could 

have been tested whether there was evidence of a shared polygenic basis existing 

between breast cancer and either of the two non-modifiable risk factors.  

For the BMI shared polygenic basis analysis that was conducted in this thesis, only 

genome-wide significant BMI SNPs were used to a score for the women in the breast 

cancer studies, whereas an en-masse approach would have been better. A reduced 

number of SNPs were used in the analysis because at the time of conducting the 

analysis, I was unable to find a way to make sure that all the SNPs used in the score 

were independent, based on summary data. It is however possible to LD clump 

summary SNPs using the LD information for the SNPs, based on a reference panel 

such as 1000 Genomes Project data. PLINK can be used, along with the reference 

panel, to LD thin a list of SNPs. The estimated summary data weights for the LD 

thinned SNPs could then be used to construct a polygenic score for the women in the 

breast cancer studies. With these results, AVENGEME could then be used to estimate 

how much variation in breast cancer liability could be explained by BMI SNPs.  
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7.4 Conclusion & future work 

This year with the release of new genetic data from the UK Biobank for up to 500,000 

genotyped individuals, 13,000 of which are breast cancer cases (181), as well as the 

OncoArray with data on breast cancer and various other cancers, and potentially data 

from the 100,000 genomes, we are soon going to experience an influx of large genetic 

studies for a variety of complex diseases. Not only will these genetic datasets enable 

researchers to access and analyse a larger number of individuals, but also a greater 

number of genetic variants. With larger studies, and more consortium summary data 

becoming available over the next few years, we will gain an even better understanding 

of the genetic basis of many complex diseases, including breast cancer. With 

AVENGEME being able to handle large sample sizes and summary data, future breast 

cancer analyses could explore whether with an increase in sample size, the precision 

of chip heritability estimates for partitioned subsets of SNPs improve. Larger studies 

could also be used to re-assess whether there is evidence of PRS x risk factor 

interactions, or a shared polygenic basis, between breast cancer and various other 

traits. The analysis conducted in the thesis should not only be replicated in a larger 

sample, but it ought to be also tested whether the same results can be shown within a 

different population. With larger studies, the analyses performed in this thesis could 

also be conducted for different subtypes of cancer, such as ER-negative breast cancer, 

which is a poor prognosis cancer subtype.  

The polygenic score analyses presented in this thesis could be conducted on not only 

women, but also on men to gain a better understanding of male specific breast cancer. 

The disease is a lot rarer in males, with approximately 1% of people being diagnosed 

with breast cancer being male (182), yet the number of men being diagnosed with the 

disease is increasing. With there being an increase in the number of men being 

diagnosed with breast cancer, a better understanding of the disease is needed. Male 

breast cancer is also thought to be polygenic, with many SNPs of small effect being 
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associated with the disease. A number of the SNPs shown to be associated with 

female breast cancer risk, have also been shown to be associated with male specific 

breast cancer (183). Therefore, it would also be beneficial to assess whether there is a 

shared polygenic basis between male and female breast cancer, which if shown could 

enable the two diseases to be studied together.  

Sample sizes are currently not large enough to gain the accuracy needed for polygenic 

scores to be able to be used to predict an individual’s risk of breast cancer. Risk scores 

are however being combined with environmental factor data and methylation data, to 

enable stratified risk prediction. The FORECEE (Female Cancer Prediction Using 

Cervical Omics to Individualise Screening and Prevention) project  is a European 

collaboration that is currently running, with the aim to identify women at high risk of 

either breast, cervical, endometrial or ovarian cancer using cervical smear cells (184). 

It is hoped that by modelling a woman’s risk of any of these four cancers, based on 

both environmental and genetic data, that women will be given a score and advised on 

how they can lower their risk. This score will be used to stratify women for observation, 

for example, women at an increased risk could be asked to have more frequent 

mammogram scans. 

With breast cancer being a complex disease, it has been difficult to fully understand 

what causes the disease, and discover all associated risk factors. With many complex 

diseases to date shown to be influenced by many genetic variants, polygenic analyses 

have become important in helping to establish how genetics influence disease risk. The 

results presented in this thesis help to confirm that breast cancer is a polygenic trait, 

whereby many genetic variants with small effect sizes influence disease risk. By 

estimating the proportion of genetic variation in breast cancer liability that can be 

explained by GWAS SNPs, it has been shown that much of the “missing heritability” in 

breast cancer can be explained by GWAS SNPs. Therefore, as sample sizes increase, 

we should continue to find more SNPs associated with disease risk and account for 
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more of the genetic variation in disease, but  it is also expected that the additional 

genetic variants discovered will have even smaller effect sizes than we are currently 

observing (185). Therefore, identifying causal SNPs may become even more 

challenging (185).  

With current sample sizes, breast cancer polygenic scores have been shown to be 

associated with breast cancer outcome in an independent sample. Therefore, with 

increased sample size, also comes the possibility of using breast cancer polygenic 

scores to predict an individual’s breast cancer risk. There is some evidence to suggest 

that breast cancer and BMI may have a shared polygenic basis, that breast cancer 

PRS may be modified by breast cancer risk factors, and that physical interactions 

between risk loci and other loci across the genome exists. Access to larger samples 

will further improve our understanding of the underlying polygenic basis for breast 

cancer. For risk prediction and precision medicine to become a possibility, and for 

present and future findings to be utilised, it is fundamental that breast cancer studies 

continue to increase the number of SNPs and women genotyped.  
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Appendices 

Appendix 1: Ethical approval for studies used in thesis 

Table 1: Ethical approval committees for the individual studies in UK2  

Study Acronym Country Approval Committee 

ICR Familial Breast and Ovarian 
Cancer Study 

BOCS UK The London Multi-Centre Research Ethics Committees 

Prospective Study of Outcomes in 
Sporadic Versus Hereditary Breast 
Cancer 

POSH UK South West Multi-centre Research Ethics Committee 

 

 

Table 2: Ethical approval committees for the BBCS  

Study Acronym Country Approval Committee 

British Breast Cancer Study BBCS UK South East Multi-Centre Research Ethics Committee  
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Table 3: Ethical approval committees for the individual studies in BCAC (European 

descent) 

Study Acronym Country Approval Committee 

Australian Breast 
Cancer Family Study 

ABCFS Australia The University of Melbourne Health Sciences Human 
Ethics Sub-Committee (HESC) 

Amsterdam Breast 
Cancer Study 

ABCS Netherlands Leiden University Medical Center (LUMC) Commissie 
Medische Ethiek and Protocol Toetsingscommissie van 
het Nederlands Kanker Instituut/Antoni van 
Leeuwenhoek Ziekenhuis 

Bavarian Breast 
Cancer Cases and 
Controls 

BBCC Germany Friedrich-Alexander-Universitat Erlangen-Nurnberg 
Medizinische Fakultat Ethik-Commission 

British Breast 
Cancer Study 

BBCS UK South East Multi-Centre Research Ethics Committee  

Breast Cancer In 
Galway Genetic 
Study 

BIGGS Ireland Galway University College Hospital Clinical Research 
Ethical Committee 

Breast Cancer Study 
of the University 
Clinic Heidelberg 

BSUCH Germany Medizinische Fakultat Heidelberg Ethikkommission  

CECILE Breast 
Cancer Study 

CECILE France Comite Consultatif de Protection des Personnes dans la 
Recherche Biomedicale de Bicetre 

Copenhagen 
General Population 
Study 

CGPS Denmark Kobenhavns Amt den Videnskabsetiske Komite 

Spanish National 
Cancer Centre 
Breast Cancer Study 

CNIO-BCS Spain Hospital Universitario La Paz Comite Etico de 
Investigacion Clinica 

California Teachers 
Study 

CTS USA UC Irvine: Office of Research Institutional Review Board 

DEMOKRITOS DEMOKRIT
OS 

Greece National Centre of Scientific Research "Demokritos" 
Ethics Committee and Aristotle University of 
Thessaloniki Medical School Ethics Committee 

ESTHER Breast 
Cancer Study 

ESTHER Germany Ruprecht-Karls-Universitat Medizinische Fakultat 
Heidelberg Ethikkommission 

Gene Environment 
Interaction and 
Breast Cancer in 
Germany 

GENICA Germany Rheinische Friedrich-Wilhelms-Universitat Medizinische 
Einrichtungen Ethik-Kommission 

Helsinki Breast 
Cancer Study 

HEBCS Finland Helsingin ja uudenmaan sairaanhoitopiiri (Helsinki 
University Central Hospital Ethics Committee) 

Hannover-Minsk 
Breast Cancer Study 

HMBCS Belarus Medizinische Hochschule Hannover Ethik-Kommission 

Karolinska Breast 
Cancer Study 

KARBAC Sweden Lokala Forskningsetikkommitten Nord 

Kuopio Breast 
Cancer Project 

KBCP Finland Pohjois-Savon Sairraanhoitopiirin Kuntayhtyma 
Tutkimuseettinen Toimikunta 

Kathleen 
Cuningham 
Foundation 
Consortium for 
Familial Breast 
Cancer/Australian 
Ovarian Cancer 
Study 

kConFab/A
OCS 

Australia kConFab: The Queenland Institute of Medical Research 
Human Research Ethics Committee (QIMR-HREC) 

AOCS: Peter MacCallum Cancer Centre Ethics 
Committee 

Leuven 
Multidisciplinary 
Breast Centre 

LMBC Belgium Commissie Medische Ethiek van de Universitaire 
Ziekenhuizen Kuleuven 

Mammary 
Carcinoma Risk 
Factor Investigation 

MARIE Germany Ruprecht-Karls-Universitat Medizinische Fakultat 
Heidelberg Ethikkommission 

Milan Breast Cancer 
Study Group 

MBCSG Italy Comitato Etico Indipendente della Fondazione IRCCS 
"Istituto Nazionale dei Tumori" 
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Study Acronym Country Approval Committee 

Mayo Clinic Breast 
Cancer Study 

MCBCS USA Mayo Clinic IRB 

Melbourne 
Collaborative Cohort 
Study 

MCCS Australia The Cancer Council Victoria Human Research Ethics 
Committee 

Multi-ethnic Cohort MEC USA University of Southern California Health Sciences 
Campus IRB 

Montreal Gene-
Environment Breast 
Cancer Study 

MTLGEBCS Canada McGill University IRB 

Norwegian Breast 
Cancer Study 

NBCS Norway Regional Komite for Medisinsk Forskningsetikk 
(Helseregion III Universitetet I Bergen, Universitetet I 
Oslo, Helseregion Sor, Helseregion II, and Ost-Norge) 

Nashville Breast 
Health Study 

NBHS USA Institutional review boards of Vanderbilt University 
Medical Center  

Oulu Breast Cancer 
Study 

OBCS Finland Ethical Committee of the Medical Faculty of University of 
Oulu and Northern Ostrobothnia Hospital District Ethical 
Committee 

Ontario Familial 
Breast Cancer 
RegistrY 

OFBCR Canada Mount Sinai Hospital Research Ethics Board 

Leiden University 
Medical Centre 
Breast Cancer Study 

ORIGO Netherlands Medical Ethical Committee and Board of Directors of the 
Leiden University Medical Center (LUMC) 

The Stefanie 
Spielman Breast 
Bank and the 
Columbus Area 
Control Sample 
Bank, Ohio State 
University 

OSU USA OSU Cancer Institutional Review Board 

NCI Polish Breast 
Cancer Study 

PBCS Poland National Institute of Health (NIH) IRB 

Karolinska 
Mammography 
Project for Risk 
Prediction of Breast 
Cancer - Case-
Control Study 

pKARMA Sweden Regionala Etikprovningsnamnden i Stockholm (Regional 
Ethical Review Board in Stockholm) 

Rotterdam Breast 
Cancer Study 

RBCS Netherlands Medische Ethische Toetsings Commissie Erasmus 
Medisch Centrum 

Roswell Park 
Cancer Center 
biorepository, 
Roswell Park 
Cancer Institute 

RPCI USA RPCI Institutional Review Board 

Singapore and 
Sweden Breast 
Cancer Study 

SASBAC Sweden Regionala Etikprovningsnamnden i Stockholm (Regional 
Ethical Review Board in Stockholm) 

Sheffield Breast 
Cancer Study 

SBCS UK South Sheffield Research Ethics Committee 

Study of 
Epidemiology and 
Risk factors in 
Cancer Heredity 

SEARCH UK Multi Centre Research Ethics Committee (MREC) 

Städtisches Klinikum 
Karlsruhe Deutsches 
Krebsforschungszen
trum Study 

SKKDKFZS Germany Ethics Committee of the Medical Faculty Heidelberg 

IHCC-Szczecin 
Breast Cancer Study 

SZBCS Poland Komisji Bioetycznej Pomorskiej Akademii Medycznej 

UK Breakthrough 
Generations Study 

UKBGS UK South East Multi-Centre Research Ethics Committee  
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Appendix 2: z-scores for multiple threshold bins 

Table 1: LD-clumped SNPs (internal GWAS) 

GWAS p-value threshold No. of SNPs z-score 

UK2  1-0.7 12,465 1.481 

 0.7-0.4 20,279 1.522 

 0.4-0.1 32,900 4.214 

 0.1-0.05 7,746 3.853 

 0.05-0.01 7,820 2.656 

 0.01-0.001 2,354 3.135 

 < 0.001 287 2.413 

 Total 83,851  

BBCS 1-0.7 10,865 -0.241 

 0.7-0.4 16,942 -0.057 

 0.4-0.1 26,359 1.371 

 0.1-0.05 6,004 3.066 

 0.05-0.01 5,699 0.288 

 0.01-0.001 1,603 1.451 

 < 0.001 181 2.161 

 Total 67,654  

 

Table 2: LD-pruned SNPs (internal GWAS) 

GWAS p-value threshold No. of SNPs z-score 

UK2  1-0.7 26,969 0.540 

 0.7-0.4 27,005 1.183 

 0.4-0.1 27,368 3.065 

 0.1-0.05 4,691 2.219 

 0.05-0.01 3,895 3.138 

 0.01-0.001 873 2.841 

 < 0.001 107 1.538 

 Total 90,907  

BBCS 1-0.7 22,355 0.142 

 0.7-0.4 22,609 1.554 

 0.4-0.1 22,739 0.988 

 0.1-0.05 3,711 3.547 

 0.05-0.01 3,100 0.972 

 0.01-0.001 675 -0.292 

 < 0.001 71 1.422 

 Total 75,259  
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Table 3: LD-pruned and LD-clumped SNPs (internal COGS) 

LD-removal p-value threshold No. of SNPs z-score 

Pruning 1-0.7 40,183 31.255 

 0.7-0.4 39,928 9.438 

 0.4-0.1 43,831 20.042 

 0.1-0.05 8,334 17.372 

 0.05-0.01 7,557 21.298 

 0.01-0.001 2,413 24.152 

 < 0.001 570 23.249 

 Total 142,816  

Clumping 1-0.7 7,526 37.507 

 0.7-0.4 10,948 5.077 

 0.4-0.1 16,562 15.205 

 0.1-0.05 3,876 10.511 

 0.05-0.01 3,783 14.574 

 0.01-0.001 1,239 17.261 

 < 0.001 247 15.486 

 Total 44,181  
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Appendix 3: z-scores for multiple MAF bins 

Table 1: LD-clumped UK2 GWAS (internal GWAS) 

GWAS MAF bin Interval No. SNPs (Proportion) z-score 

UK2  < 0.1 1-0.7 20,800 (24.8%) -0.389 

  0.7-0.4  0.042 

  0.4-0.1  0.276 

  0.1-0.05  -0.181 

  0.05-0.01  0.666 

  0.01-0.001  1.083 

  < 0.001  0.462 

 0.1-0.2 1-0.7 25,715 (30.7%) 0.059 

  0.7-0.4  1.423 

  0.4-0.1  3.221 

  0.1-0.05  2.237 

  0.05-0.01  0.958 

  0.01-0.001  0.732 

  < 0.001  1.145 

 0.2-0.3 1-0.7 15,382 (18.3%) 1.632 

  0.7-0.4  1.664 

  0.4-0.1  1.787 

  0.1-0.05  2.876 

  0.05-0.01  2.281 

  0.01-0.001  2.231 

  < 0.001  1.114 

 0.3-0.4 1-0.7 11,678 (13.9%) 1.304 

  0.7-0.4  -0.689 

  0.4-0.1  2.242 

  0.1-0.05  3.923 

  0.05-0.01  0.032 

  0.01-0.001  1.467 

  < 0.001  1.219 

 0.4-0.5 1-0.7 10,276 (12.3%) 1.860 

  0.7-0.4  0.874 

  0.4-0.1  2.745 

  0.1-0.05  0.011 

  0.05-0.01  2.413 

  0.01-0.001  1.821 

  < 0.001  1.520 

  Total 83,851  
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Table 2: LD-clumped BBCS GWAS (internal GWAS) 

GWAS MAF bin Interval No. SNPs (Proportion) z-score 

BBCS  < 0.1 1-0.7 14,114 (20.9%) 0.210 

  0.7-0.4  -0.885 

  0.4-0.1  1.438 

  0.1-0.05  0.030 

  0.05-0.01  0.588 

  0.01-0.001  0.073 

  < 0.001  2.336 

 0.1-0.2 1-0.7 20,168 (29.8%) 0.170 

  0.7-0.4  -0.755 

  0.4-0.1  0.923 

  0.1-0.05  2.731 

  0.05-0.01  0.182 

  0.01-0.001  0.137 

  < 0.001  -0.269 

 0.2-0.3 1-0.7 13,301 (19.7%) -0.442 

  0.7-0.4  1.230 

  0.4-0.1  0.906 

  0.1-0.05  0.708 

  0.05-0.01  0.956 

  0.01-0.001  0.753 

  < 0.001  0.314 

 0.3-0.4 1-0.7 10,559 (15.6%) -0.118 

  0.7-0.4  1.130 

  0.4-0.1  -0.023 

  0.1-0.05  1.162 

  0.05-0.01  0.069 

  0.01-0.001  0.529 

  < 0.001  0.910 

 0.4-0.5 1-0.7 9,512 (14.1%) -0.402 

  0.7-0.4  -0.611 

  0.4-0.1  0.077 

  0.1-0.05  2.308 

  0.05-0.01  -1.121 

  0.01-0.001  1.530 

  < 0.001  2.015 

  Total 67,654  

 

 

 

 



261 
 

Table 3: LD-clumped COGS (internal COGS) 

Study MAF bin Interval No. SNPs (Proportion) z-score 

COGS  < 0.1 1-0.7  1.306 

  0.7-0.4  1.932 

  0.4-0.1  7.412 

  0.1-0.05  5.910 

  0.05-0.01  5.612 

  0.01-0.001  7.013 

  < 0.001  12.961 

 0.1-0.2 1-0.7  1.127 

  0.7-0.4  3.958 

  0.4-0.1  8.327 

  0.1-0.05  4.647 

  0.05-0.01  7.558 

  0.01-0.001  10.347 

  < 0.001  22.066 

 0.2-0.3 1-0.7  0.141 

  0.7-0.4  2.571 

  0.4-0.1  6.423 

  0.1-0.05  4.371 

  0.05-0.01  7.190 

  0.01-0.001  6.878 

  < 0.001  19.796 

 0.3-0.4 1-0.7  -0.773 

  0.7-0.4  2.282  

  0.4-0.1  5.912 

  0.1-0.05  4.064 

  0.05-0.01  5.778 

  0.01-0.001  8.495 

  < 0.001  14.051 

 0.4-0.5 1-0.7  1.211 

  0.7-0.4  0.108,  

  0.4-0.1  7.023  

  0.1-0.05  5.255  

  0.05-0.01  7.638  

  0.01-0.001  6.633  

  < 0.001  25.987 

  Total   
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Appendix 4: z-scores for multiple chromosome bins 
 

Table 1: LD-clumped UK2 GWAS (internal GWAS) 

GWAS Interval Chr. No. SNPs z-score Chr. No. SNPs z-score 

UK2 0.7 < P ≤ 1 1 6,694 0.465 12 4,181 0.865 
 0.4 < P ≤ 0.7   0.998   0.624 
 0.1 < P ≤ 0.4   1.165   0.654 
 0.05 < P ≤ 0.1   1.225   0.865 
 0.01< P ≤ 0.05   1.096   2.029 
 0.001 < P ≤ 0.01   -0.926   1.527 
  P ≤ 0.001   0.535   -0.579 

 0.7 < P ≤ 1 2 6,473 0.696 13 3,157 -0.917 
 0.4 < P ≤ 0.7   1.485   0.354 
 0.1 < P ≤ 0.4   -0.406   -0.071 
 0.05 < P ≤ 0.1   -0.751   0.559 
 0.01< P ≤ 0.05   -0.797   0.560 
 0.001 < P ≤ 0.01   0.543   1.018 
  P ≤ 0.001   0.366   -0.553 

 0.7 < P ≤ 1 3 5,551 0.993 14 2,845 1.285 
 0.4 < P ≤ 0.7   0.357   -1.443 
 0.1 < P ≤ 0.4   -0.061   0.086 
 0.05 < P ≤ 0.1   0.746   1.346 
 0.01< P ≤ 0.05   1.400   -0.182 
 0.001 < P ≤ 0.01   -0.502   0.038 
  P ≤ 0.001   0.715   0.210 

 0.7 < P ≤ 1 4 5,100 0.886 15 2,705 -1.530 
 0.4 < P ≤ 0.7   1.023   -0.010 
 0.1 < P ≤ 0.4   2.378   1.463 
 0.05 < P ≤ 0.1   0.858   0.642 
 0.01< P ≤ 0.05   -0.503   -1.124 
 0.001 < P ≤ 0.01   0.819   -0.205 
  P ≤ 0.001   -0.666   -0.742 

 0.7 < P ≤ 1 5 5,156 -1.049 16 2,852 -0.114 
 0.4 < P ≤ 0.7   -1.750   1.720 
 0.1 < P ≤ 0.4   2.332   0.317 
 0.05 < P ≤ 0.1   3.071   1.269 
 0.01< P ≤ 0.05   2.071   -0.072 
 0.001 < P ≤ 0.01   2.076   1.285 
  P ≤ 0.001   1.428   2.608 

 0.7 < P ≤ 1 6 5,120 2.130 17 2,731 -0.830 
 0.4 < P ≤ 0.7   1.708   -0.494 
 0.1 < P ≤ 0.4   1.519   1.852 
 0.05 < P ≤ 0.1   0.579   0.338 
 0.01< P ≤ 0.05   -1.161   2.567 
 0.001 < P ≤ 0.01   -0.487   1.503 
  P ≤ 0.001   -0.474   2.331 

 0.7 < P ≤ 1 7 4,596 1.944 18 2,719 -0.847 
 0.4 < P ≤ 0.7   -0.036   0.012 
 0.1 < P ≤ 0.4   1.733   -1.590 
 0.05 < P ≤ 0.1   1.056   -0.314 
 0.01< P ≤ 0.05   0.498   1.219 
 0.001 < P ≤ 0.01   1.184   1.443 
  P ≤ 0.001   0.482   -0.154 
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GWAS Interval Chr. No. SNPs z-score Chr. No. SNPs z-score 

UK2 0.7 < P ≤ 1 8 4,282 1.234 19 2,067 1.568 
 0.4 < P ≤ 0.7   0.861   1.517 
 0.1 < P ≤ 0.4   0.873   0.173 
 0.05 < P ≤ 0.1   0.367   -0.812 
 0.01< P ≤ 0.05   1.285   -0.284 
 0.001 < P ≤ 0.01   0.722   -0.342 
  P ≤ 0.001   2.779   -2.192 

 0.7 < P ≤ 1 9 3,900 -1.534 20 2,435 0.208 
 0.4 < P ≤ 0.7   0.223   0.153 
 0.1 < P ≤ 0.4   1.692   1.784 
 0.05 < P ≤ 0.1   1.105   -0.430 
 0.01< P ≤ 0.05   -0.191   2.257 
 0.001 < P ≤ 0.01   -0.010   1.019 
  P ≤ 0.001   -0.137   -1.017 

 0.7 < P ≤ 1 10 4,364 -0.307 21 1,363 0.446 
 0.4 < P ≤ 0.7   -0.762   0.397 
 0.1 < P ≤ 0.4   2.097   0.093 
 0.05 < P ≤ 0.1   2.483   0.518 
 0.01< P ≤ 0.05   1.898   -0.840 
 0.001 < P ≤ 0.01   2.266   0.265 
  P ≤ 0.001   3.840   1.382 

 0.7 < P ≤ 1 11 4,105 0.118 22 1,454 0.417 
 0.4 < P ≤ 0.7   -0.661   1.018 
 0.1 < P ≤ 0.4   0.105   1.707 
 0.05 < P ≤ 0.1   2.415   -0.342 
 0.01< P ≤ 0.05   0.392   1.147 
 0.001 < P ≤ 0.01   1.584   0.265 
  P ≤ 0.001   -0.214   1.259 
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Table 2: LD-clumped BBCS GWAS (internal GWAS) 

GWAS Interval Chr. No. SNPs z-score Chr. No. SNPs z-score 

BBCS 0.7 < P ≤ 1 1 5,313 0.765 12 3,366 3,366 
 0.4 < P ≤ 0.7   1.976   -0.410 
 0.1 < P ≤ 0.4   -0.261   0.948 
 0.05 < P ≤ 0.1   0.236   1.484 
 0.01< P ≤ 0.05   0.790   1.455 
 0.001 < P ≤ 0.01   0.239   2.115 
  P ≤ 0.001   1.701   2.443 

 0.7 < P ≤ 1 2 5,333 -0.489 13 2,515 -0.533 
 0.4 < P ≤ 0.7   -0.942   1.832 
 0.1 < P ≤ 0.4   2.174   -0.486 
 0.05 < P ≤ 0.1   3.061   0.154 
 0.01< P ≤ 0.05   0.869   0.555 
 0.001 < P ≤ 0.01   -0.428   1.467 
  P ≤ 0.001   0.412   -0.046 

 0.7 < P ≤ 1 3 4,585 -1.164 14 2,275 -0.947 
 0.4 < P ≤ 0.7   -0.347   -0.826 
 0.1 < P ≤ 0.4   0.407   -0.067 
 0.05 < P ≤ 0.1   2.532   -0.576 
 0.01< P ≤ 0.05   1.127   -1.109 
 0.001 < P ≤ 0.01   0.060   1.662 
  P ≤ 0.001   0.560   1.119 

 0.7 < P ≤ 1 4 4,128 1.116 15 2,122 -0.533 
 0.4 < P ≤ 0.7   -0.518   1.832 
 0.1 < P ≤ 0.4   3.128   -0.486 
 0.05 < P ≤ 0.1   1.634   0.154 
 0.01< P ≤ 0.05   -0.153   0.555 
 0.001 < P ≤ 0.01   0.938   1.467 
  P ≤ 0.001   -0.009   -0.046 

 0.7 < P ≤ 1 5 4,190 -0.317 16 2,220 -0.947 
 0.4 < P ≤ 0.7   -2.100   -0.826 
 0.1 < P ≤ 0.4   -0.381   -0.067 
 0.05 < P ≤ 0.1   -0.208   -0.576 
 0.01< P ≤ 0.05   -0.462   -1.109 
 0.001 < P ≤ 0.01   0.195   1.662 
  P ≤ 0.001   -0.815   1.119 

 0.7 < P ≤ 1 6 4,176 -0.850 17 2,102 -0.483 
 0.4 < P ≤ 0.7   -0.616   0.818 
 0.1 < P ≤ 0.4   0.127   -1.253 
 0.05 < P ≤ 0.1   0.377   0.960 
 0.01< P ≤ 0.05   -0.621   -0.100 
 0.001 < P ≤ 0.01   -0.672   -2.177 
  P ≤ 0.001   -0.540   -0.113 

 0.7 < P ≤ 1 7 3,632 0.161 18 2,286 -0.746 
 0.4 < P ≤ 0.7   0.165   -1.619 
 0.1 < P ≤ 0.4   0.686   0.145 
 0.05 < P ≤ 0.1   -0.708   1.447 
 0.01< P ≤ 0.05   1.471   0.813 
 0.001 < P ≤ 0.01   0.573   0.009 
  P ≤ 0.001   2.006   0.340 

 0.7 < P ≤ 1 8 3,551 -0.005 19 1,645 0.066 
 0.4 < P ≤ 0.7   -0.571   0.974 
 0.1 < P ≤ 0.4   -0.433   -0.160 
 0.05 < P ≤ 0.1   0.325   0.880 
 0.01< P ≤ 0.05   -0.232   -1.388 
 0.001 < P ≤ 0.01   2.049   -1.110 
  P ≤ 0.001   -0.109   0.757 
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GWAS Interval Chr. No. SNPs z-score Chr. No. SNPs z-score 

BBCS 0.7 < P ≤ 1 9 3,168 -0.239 20 1,937 0.028 
 0.4 < P ≤ 0.7   -0.774   0.125 
 0.1 < P ≤ 0.4   1.288   -1.030 
 0.05 < P ≤ 0.1   0.809   -0.876 
 0.01< P ≤ 0.05   -1.001   -1.093 
 0.001 < P ≤ 0.01   -0.019   -1.319 
  P ≤ 0.001   1.565   0.057 

 0.7 < P ≤ 1 10 3,482 -0.257 21 1,173 1.794 
 0.4 < P ≤ 0.7   -0.004   -0.074 
 0.1 < P ≤ 0.4   0.458   -0.161 
 0.05 < P ≤ 0.1   -0.956   -0.975 
 0.01< P ≤ 0.05   0.355   -1.119 
 0.001 < P ≤ 0.01   0.524   0.742 
  P ≤ 0.001   2.208   -0.362 

 0.7 < P ≤ 1 11 3,207 2.809 22 1,248 0.325 
 0.4 < P ≤ 0.7   1.281   0.780 
 0.1 < P ≤ 0.4   -0.163   -0.566 
 0.05 < P ≤ 0.1   2.021   1.545 
 0.01< P ≤ 0.05   0.607   -1.727 
 0.001 < P ≤ 0.01   2.024   -0.625 
  P ≤ 0.001   -1.821   -0.548 
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Table 3: LD-clumped COGS (internal COGS) 

 Interval Chr No. SNPs z-score Chr. No. SNPs z-score 

COGS 0.7 < P ≤ 1 1 3,406 0.397  12 2,212 0.843 
 0.4 < P ≤ 0.7   1.648    1.797 
 0.1 < P ≤ 0.4   3.960    5.471  
 0.05 < P ≤ 0.1   2.472    4.243 
 0.01< P ≤ 0.05   5.255    3.857 
 0.001 < P ≤ 0.01   2.555   5.724 
  P ≤ 0.001   6.353   10.146 

 0.7 < P ≤ 1 2 3,480 0.880   13 1,688 0.045 
 0.4 < P ≤ 0.7   2.397     0.219 
 0.1 < P ≤ 0.4   4.287     2.244 
 0.05 < P ≤ 0.1   3.379     0.418 
 0.01< P ≤ 0.05   3.426     0.211 
 0.001 < P ≤ 0.01   4.278    1.200 
  P ≤ 0.001   11.430   1.886 

 0.7 < P ≤ 1 3 2,876 0.834  14 1,496 0.611 
 0.4 < P ≤ 0.7   2.092    1.962 
 0.1 < P ≤ 0.4   5.222    1.754 
 0.05 < P ≤ 0.1   3.443   1.806 
 0.01< P ≤ 0.05   5.109    2.403 
 0.001 < P ≤ 0.01   4.395    4.417 
  P ≤ 0.001   8.376   8.033 

 0.7 < P ≤ 1 4 2,559 1.624 15 1,383 0.811 
 0.4 < P ≤ 0.7   0.414   0.952 
 0.1 < P ≤ 0.4   0.869   4.100 
 0.05 < P ≤ 0.1   0.025    0.263 
 0.01< P ≤ 0.05   3.496   1.272 
 0.001 < P ≤ 0.01   2.841    2.863 
  P ≤ 0.001   6.170   1.615 

 0.7 < P ≤ 1 5 2,632 0.489 16 1,437 1.223 
 0.4 < P ≤ 0.7   1.248     0.402 
 0.1 < P ≤ 0.4   5.149     1.755  
 0.05 < P ≤ 0.1   1.190     2.030  
 0.01< P ≤ 0.05   4.290     3.232 
 0.001 < P ≤ 0.01   5.640    2.484 
  P ≤ 0.001   12.370   14.253 

 0.7 < P ≤ 1 6 2,783 0.260  17 1,475 0.697 
 0.4 < P ≤ 0.7   2.024    0.475 
 0.1 < P ≤ 0.4   5.374    1.657 
 0.05 < P ≤ 0.1   4.192    1.740 
 0.01< P ≤ 0.05   5.694    2.056 
 0.001 < P ≤ 0.01   4.947    1.795 
  P ≤ 0.001   8.600   5.242 

 0.7 < P ≤ 1 7 2,398 0.663  18 1,371 1.153 
 0.4 < P ≤ 0.7   0.671    0.592 
 0.1 < P ≤ 0.4   2.700    2.793 
 0.05 < P ≤ 0.1   1.692    1.138 
 0.01< P ≤ 0.05   2.434    1.992 
 0.001 < P ≤ 0.01   3.261    1.959 
  P ≤ 0.001   3.755   1.715 

 0.7 < P ≤ 1 8 2,351 0.130 19 1,170 0.372 
 0.4 < P ≤ 0.7   0.549   2.804 
 0.1 < P ≤ 0.4   2.324   1.550 
 0.05 < P ≤ 0.1   3.896   1.206 
 0.01< P ≤ 0.05   2.253   2.281 
 0.001 < P ≤ 0.01   6.821   2.028 
  P ≤ 0.001   8.768   5.520 
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 Interval Chr. No. SNPs z-score Chr. No. SNPs z-score 

COGS 0.7 < P ≤ 1 9 2,055 2.221 20 1,197 0.995 
 0.4 < P ≤ 0.7   1.177   0.742 
 0.1 < P ≤ 0.4   3.728   2.591 
 0.05 < P ≤ 0.1   3.876   1.902 
 0.01< P ≤ 0.05   4.198   1.385 
 0.001 < P ≤ 0.01   2.909   3.535 
  P ≤ 0.001   7.864   0.018 

 0.7 < P ≤ 1 10 2,498 0.757   21 690 0.578 
 0.4 < P ≤ 0.7   3.050     0.432 
 0.1 < P ≤ 0.4   4.276     1.202 
 0.05 < P ≤ 0.1   2.973     0.689 
 0.01< P ≤ 0.05   4.072     0.871 
 0.001 < P ≤ 0.01   5.963   1.027 
  P ≤ 0.001   18.465   2.996 

 0.7 < P ≤ 1 11 2,224 0.408   22 800 0.757 
 0.4 < P ≤ 0.7   1.356     0.952 
 0.1 < P ≤ 0.4   4.399     1.650 
 0.05 < P ≤ 0.1   2.498    3.250 
 0.01< P ≤ 0.05   3.984     1.927 
 0.001 < P ≤ 0.01   6.018   1.685 
  P ≤ 0.001   11.859   4.835 
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Appendix 5: SNP annotation tree  

Diagram 1: Term tree for the Variant Effect Predictor (VEP) tool  

 

 

 

Source: http://www.sequenceontology.org/so_wiki/index.php/Variant_Annotation_tools 
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Appendix 6: z-scores for multiple SNP annotation bins 

Table 1: LD-clumped UK2 GWAS (internal GWAS) 

 

Annotation group Interval z-score No. SNPs 

Intergenic variant 0.7 < P ≤ 1 1.276 32,406 

 0.4 < P ≤ 0.7 0.172  

 0.1 < P ≤ 0.4 2.124  

 0.05 < P ≤ 0.1 2.872  

 0.01< P ≤ 0.05 2.590  

 P ≤ 0.01 3.467  

Regulatory variant 0.7 < P ≤ 1 0.547 3,757 

 0.4 < P ≤ 0.7 0.544  

 0.1 < P ≤ 0.4 0.641  

 0.05 < P ≤ 0.1 0.508  

 0.01< P ≤ 0.05 1.602  

 P ≤ 0.01 -0.101  

Gene variant 0.7 < P ≤ 1 0.735 47,642 

 0.4 < P ≤ 0.7 1.742  

 0.1 < P ≤ 0.4 3.839  

 0.05 < P ≤ 0.1 2.709  

 0.01< P ≤ 0.05 1.091  

 P ≤ 0.01 2.230  
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Table 2: LD-clumped BBCS GWAS (internal GWAS) 

 

Annotation group Interval z-score No. SNPs 

Intergenic variant 0.7 < P ≤ 1 1.115 25,119 

 0.4 < P ≤ 0.7 -0.815  

 0.1 < P ≤ 0.4 1.428  

 0.05 < P ≤ 0.1 0.710  

 0.01< P ≤ 0.05 -1.832  

 P ≤ 0.01 1.649  

Regulatory variant 0.7 < P ≤ 1 -0.638 2,916 

 0.4 < P ≤ 0.7 0.329  

 0.1 < P ≤ 0.4 0.024  

 0.05 < P ≤ 0.1 0.229  

 0.01< P ≤ 0.05 -0.705  

 P ≤ 0.01 1.438  

Gene variant 0.7 < P ≤ 1 1.115 35,916 

 0.4 < P ≤ 0.7 0.521  

 0.1 < P ≤ 0.4 1.033  

 0.05 < P ≤ 0.1 2.664  

 0.01< P ≤ 0.05 1.230  

 P ≤ 0.01 1.745  
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Table 3: LD-clumped COGS (internal COGS) 

 

Annotation group Interval z-score No. SNPs 

Intergenic variant 0.7 < P ≤ 1 0.547 16,933 

 0.4 < P ≤ 0.7 1.377  

 0.1 < P ≤ 0.4 8.203  

 0.05 < P ≤ 0.1 6.888  

 0.01< P ≤ 0.05 8.227  

 P ≤ 0.01 21.447  

Regulatory variant 0.7 < P ≤ 1 -0.496 1,969 

 0.4 < P ≤ 0.7 2.417  

 0.1 < P ≤ 0.4 1.803  

 0.05 < P ≤ 0.1 3.749  

 0.01< P ≤ 0.05 1.581  

 P ≤ 0.01  8.838  

Gene variant 0.7 < P ≤ 1 1.842 24,606 

 0.4 < P ≤ 0.7 4.677  

 0.1 < P ≤ 0.4 12.789  

 0.05 < P ≤ 0.1 6.872  

 0.01< P ≤ 0.05 11.910  

 P ≤ 0.01 30.265  
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Appendix 7: z-scores for COGS cancer type 

Table 1: Multiple z-scores for breast cancer and ovarian or prostate SNPs (COGS) 

Cancer type Interval z-score No. SNPs 

Breast 0.7 < P ≤ 1 37.136 16,761 

 0.4 < P ≤ 0.7 2.363  

 0.1 < P ≤ 0.4 10.459  

 0.05 < P ≤ 0.1 8.324  

 0.01< P ≤ 0.05 12.308  

 0.001 < P ≤ 0.01 14.880  

  P ≤ 0.001 14.360  

Ovarian or prostate 0.7 < P ≤ 1 8.873 27,420 

 0.4 < P ≤ 0.7 4.599  

 0.1 < P ≤ 0.4 11.562  

 0.05 < P ≤ 0.1 6.993  

 0.01< P ≤ 0.05 9.237  

 0.001 < P ≤ 0.01 10.367  

  P ≤ 0.001 7.627  
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Appendix 8: Genetic variance explained by PRS in BMI 

 

Table 1: Genetic variance explained by breast cancer PRS in BMI (Pseudo R2) 

p-value threshold Training sample R2 variance explained (%) 

1 BBCS 0.001225 

0.7 BBCS 0.001158 

0.4 BBCS 0.000509 

0.1 BBCS 0.000185 

0.05 BBCS 0.000017 

0.01 BBCS 0.000191 

0.001 BBCS 0.00001 

1 UK2 0.000113 

0.7 UK2 0.000109 

0.4 UK2 0.000105 

0.1 UK2 0.000087 

0.05 UK2 0.00036 

0.01 UK2 0.000298 

0.001 UK2 0.000272 

1 Combined GWAS 0.001069 

0.7 Combined GWAS 0.001135 

0.4 Combined GWAS 0.001366 

0.1 Combined GWAS  0.001585 

0.05 Combined GWAS 0.001721 

0.01 Combined GWAS 0.001616 

0.001 Combined GWAS 0.000002 

1 COGS 0.000044 

0.7 COGS 0.000031 

0.4 COGS 0.000083 

0.1 COGS 0.00055 

0.05 COGS 0.000398 

0.01 COGS 0.001015 

0.001 COGS 0.001144 
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Appendix 9: Overlapping loci 

Table 1: Overlapping target loci 

Locus Locus no. Overlaps  Locus Locus no. Overlaps 

22q12.1 1   9q31.2 41 40 

22q13.1 2   8p12 42  

21q21.1 3   8q21.11 43 44 

21q21.2 4   8q21.11 44 43 

20q13.13 5   8q24.21 45 46 

19p13.1 6   8q24.21 46 45 

19p13.11 8   7q35 47  

19q13.31 9   6p25.3 48  

18q11.2 10   6p23 49  

18q11.2 11   6q14.1 50  

17q22 12   6q22.31 51  

16q12.1 13   6q25.1 52  

16q12.2 14   5p15.33 53  

16q23.2 16   5p12 55  

14q13.3 17   5q11.2 56 57 

14q24.1 18   5q11.2 57 56 

14q24.1 19   5q33.3 58  

14q32.11 20   4q24 59  

13q13.1 21   4q34.1 60  

12p13.1 22   3p26.1 61  

12p11.22 23   3p24.1 62 63 

12q22 24   3p24.1 63 62 

12q24.21 25   2p24.1 64  

11p15.5 26   2q14.2 65  

11q13.1 27   2q31.1 66 67 

11q13.3 28   2q31.2 67 66 

11q24.3 30   2q33.1 68  

10p15.1 31   2q35 69 70 

10p12.31 32   2q35 70 69 

10q21.2 33   1p36.22 71  

10q22.3 34 35  1p31.1 72  

10q23.1 35 34  1p13.2 73  

10q25.2 36   1p11.2 74  

10q26.13 38   2p25.1 77  

9p21.3 39   5q31.2 78  

9q31.2 40 41  1p13.3 79  

 

 




