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Abstract

Sex worker mobility may have implications for health and access to care but has not been

described in sub-Saharan Africa. We described sex-worker mobility in Zimbabwe and a

mobility typology using data from 2,591 and 2,839 female sex workers in 14 sites from 2013

and 2016. We used latent class analysis to identify a typology of mobile sex workers. More

women travelled for work in 2016 (59%) than in 2013 (27%), usually to find clients with

more money (57% of the journeys), spending a median of 21 (2013) and 24 (2016) days

away. A five-class mixture model best fit the data, with 39% in an infrequent work-mobility

class, 21% in a domestic-high-mobility class, 16% in an international-high-mobility class,

16% in an infrequent opportunistic-non-work-mobility class, and 7% who travel with clients.

More-mobile classes were better educated; risk behaviours di�ered by class. Mobility is

increasing among sex worker in Zimbabwe, multi-faceted, and not explained by other

vulnerabilities.
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Background15

Sex work takes di�erent forms, but all involve the exchange of money or in-kind goods

or services for sex (Raluca Buzdugan, Shiva S Halli, et al., 2009; Harcourt and Donovan,

2005). Sex workers often experience stigma (Scambler and Paoli, 2008), police harassment,

arrest, client violence (Shannon and Csete, 2010), and worldwide are more likely to

be infected with HIV than women of the same age (Baral et al., 2012). Public-health20

programmes that meet the needs of sex workers are essential.

Sex work ‘typologies’ have been useful for understanding variation among sex workers

to improve the design of health programmes (Jain and Saggurti, 2012). Various typologies

have been used, for example: place of solicitation (Sinha, 1997), place of sex (Raluca

Buzdugan, Copas, et al., 2009), sex-work income (Hong et al., 2012), whether the primary25

purpose of the initial interaction is for exchanging sex (Harcourt and Donovan, 2005), and

age (Delany-Moretlwe et al., 2015). Most of the research on sex work typologies has come

from outside of sub-Saharan Africa.

Anecdotally, sex workers live highly-mobile lives, and there is evidence of high-levels of

mobility in the literature (Goldenberg et al., 2014; Reed et al., 2012). Mobility has many30

dimensions: people may move as individuals or with a partner or family; over various

geographic distances and may cross social or civic boundaries; with di�erent motivations

for moving; to destinations that di�er in various ways; more or less often (frequency);

for shorter or longer stays (duration); where they can use healthcare; and seasonally or

periodically throughout the year or over a lifetime (Brown and Bell, 2004; Taylor et al.,35

2011). Mobile populations vary in the impact they have on the sending and receiving

populations. A typology of sex-worker mobility that addresses the multiple-dimensional

variation in mobility has not been developed.

There is limited quantitative literature on mobility of female sex workers in sub-Saharan

Africa. Brothel-based sex work is less common in sub-Saharan Africa than in Asia, and40

therefore the extent of and reasons for moving may be di�erent. The little evidence

available suggests that mobility can be high and varies by context: surveys of female sex
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workers conducted in 1997-98 in four sub-Saharan cities found that the average proportion

of time spent in the city in the past year ranged from 69% in Cotonou (N=433) to 95% in

Ndola (N=332) (Morison et al., 2001). In the same years in Ghana, 17% of female sex45

workers surveyed (N=1,013) had ever worked outside of the country (Asamoah-Adu et al.,

2001). In Kenya, 403 women working on a highway spent 25% of 28 nights away from

home ‘base’, and fewer than 20% of women spent all 28 days at the same place (Ferguson

and Morris, 2007).

Although often associated with higher risks of HIV (see for example Reed et al. (2011),50

Reed et al. (2012), and Halli et al. (2010)) and other health concerns (for example,

depression in Patel et al. (2016)), mobility can be thought of as a form of capital (Hall,

2005), broadly defined as a ‘means to combine goals in space’ (Hooimeijer and Van der

Knaap, 1994). Short-term mobility that does not involve a semi-permanent change of

address (although it usually involves at least one overnight stay (Smith, 1989)) can be55

thought of as a complement of migration (Bell and Ward, 2000), that can o�er a lower-cost

substitute for permanent migration in some circumstances (Pollard, 1996). Immobility,

or stability (Hanson, 2005), may itself be a problem for women who need to find clients

with money. Exploring the mobility of sex workers places emphasis more ‘on work than

on sex’ (Vanwesenbeeck, 2001), conceptualising sex work first in terms of labour, and60

second in terms of sexual risk: a focus that has been called for by sex-work organisations

(RedTraSex, 2016).

We aimed to address the paucity of literature on mobility, especially in sub-Saharan

Africa, by developing a typology of mobile sex workers. Using data from Zimbabwe collected

in fourteen sites in 2013 and 2016, we explored the extent of sex worker mobility across a65

number of dimensions. We hypothesised that types of mobility would be characterisable

from the data, and that mobility would be associated with sociodemographic characteristics,

for example that younger women, aged less than 25, and older women aged more than 40

would be less likely to move for work because of weaker social networks and less inclination

to travel, respectively. Viewed as a form of capital, we hypothesised that mobility would70
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be associated with lower food insecurity, higher income per sex act, and more clients. With

access to a larger client-base, we hypothesised that mobility would strengthen bargaining

and be associated with higher reported condom-use with clients. We geolocated the names

of places that sex workers reported visiting within the last year and described the the

journeys, the sex workers’ mobility, and the mobility from the places that the samples75

were drawn from. The results of this analysis may inform the design of services in the

region, and mathematical models.

Methods

Setting and data collection

The data were collected as for the baseline and endline of the SAPPH-IRe trial, a80

cluster-randomised controlled trial of a complex intervention to reduce the proportion of

the sex-worker population with an infectious level of HIV using a combination of: PrEP

provision, immediate on-site ART initiation, and various forms of adherence support

(Hargreaves et al., 2016). Details of the survey procedures have been published (Cowan

et al., 2017); in short: for each of fourteen sites across the country, community mapping85

was conducted and between six and eight female sex workers purposively sampled as

representatives of sub-networks identified at each site. After consenting-to and completing

a face-to-face interview, and providing a blood spot, each woman was given two coupons

to invite her peers to participate in the survey. Women who presented with coupons

were asked for consent, interviewed, and asked for a blood spot, and given coupons two90

recruit two further female sex workers. This process of respondent-driven sampling (RDS,

Heckathorn (1997)) continued until approximately 200 women were recruited in each site.

Participants were compensated 5 USD for loss of earnings due to the interview, and a

further 2 USD for each peer recruited. Women were eligible to participate if they had

exchanged money for sex in the last 30 days, were at least 18 years old, and had lived in95

the site for the past six months.
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Measures

Demographics and sex-work characteristics

The questionnaire included questions on: age, marital status (married, separated,

divorced, widowed, never married), and highest education level completed (re-coded as ‘no100

education’, ‘primary only’, ‘secondary or above’). The measures of food security di�ered

between the two years, in 2013 women were coded as ‘food insecure’ if they reported any

of: no to ‘We can eat at least 2 meals a day’, yes to ‘sometimes we go to bed hungry’, or

yes to ‘in the last week, have you had to go an entire day without eating because there

was no food in your household?’; in 2016 women who reported yes to ‘in the past four105

weeks, was there ever no food to eat of any kind in your house because of lack of resources

to get food?’ were coded as food insecure (drawn from Swindale and Bilinsky (2006)).

Women were asked how old they were when they started sex work, how many clients they

had in the last week (and whether this was more or less than average), and whether they

consistently use condoms with clients (i.e. answered always to ‘in the past month how110

often did you use condoms with your clients?’ and no to ‘think again about all the clients

you had in the last month, have there been any times when you did not use condoms?’).

The data were collected using RDS, therefore women had a non-random chance of

being included in the survey. This could lead to bias, and the RDS-2 methodology inversely

weights each individual according to their visibility in the network (Volz and Heckathorn,115

2008). Women were asked how many other eligible women they knew, which was used to

estimate their ‘degree’ in the network, i.e. the extent that each woman is connected to

others. Often the number of eligible women each woman knows is used alone to weight

the data (Malekinejad et al., 2008), however this can be noisy, clumped around commonly

reported values (i.e. 10, 50), and contain outliers. Therefore, we used a method developed120

by McLaughlin et al. (2015) to impute ‘visibility’ of each woman in the network from the

number of eligible women that each woman knows, the time of the interview relative to

the start of survey, and position in the chain of referrals. The scores were normalised to

allow comparisons across sites. The purposively-selected women in each site were excluded
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from the analysis. Weighted proportions, weighted means, and weighted medians were125

calculated using the RDS-2 method, weighted by the inverse of the imputed visibility

score.

Mobility

Women were asked if they had worked in sex work anywhere other than the interview

site in the past 12 months, using the same question in both surveys. They were then asked130

to recall the places that they had been in reverse-chronological order. Women were asked

to name up-to five places were they had worked in sex work and the duration of stay at

each place. In 2016, women were also asked for the names and duration of stay in up-to

five places where they did not work in sex work; they were also asked for the total number

of places they visited, the reasons for visiting each place reported, and whether they used135

healthcare services while visiting. Duration was recorded as an ordered categorical variable

(e.g. ‘less than a week’, ‘1-2 weeks’, etc.), and was re-coded as a continuous variable in

days using the mid-point of each category so that it could be summarised across visits

for each woman (e.g. the median duration); in 2013 two periods were missed from the

questionnaire (see Appendix 1). The typical amount charged per sex act, which was140

also recorded as categorical, was re-coded as a continuous variable in dollars (e.g. ‘up to

$2’ became $1, ‘$2-5’ as $3.5, etc.). The data collection tools were piloted with sex-worker

peer educators.

Places were recorded as reported by the participant with the name of the village,

town or city, province, and country. These were written in the questionnaires by the145

interviewer, resulting in many spellings and misspellings. A full list of the places, as

named, was generated for each site and researchers based in Harare identified the latitude

and longitude coordinates of the places (‘geocoded’) by searching the Internet and using

Google Maps (Google, 2018). When the name of a country was given without any town

or city, the closest point on the Zimbabwean border from the site of interview was used.150

Distances between places were estimated using the Google Maps API with the func-

tion mapdist in R package ggmap (Kahle and Wickham, 2013). The distances were
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for travel along a road, reported in kilometres and the hours it would have taken to

travel by vehicle. Data on the province and country were downloaded from gadm.org

(http://www.gadm.org/download) and spatially joined with the data using the sp package155

(Pebesma and Bivand, 2005). The code is available in Appendix 5.

Statistical analysis

Describing mobility. The journeys from the site of interview to the place visited were

described in terms of the distance in kilometres, hours travelled, and the length of stay in

days. The proportion of journeys between provinces, international, and between majority160

Shona-speaking eastern provinces and Ndbele-speaking western provinces was calculated.

Places visited were categorised as ‘town or city’, ‘growth point (o�cial focal points for

decentralisation of services into rural areas) or business centre’, ‘mine or farm’, or ‘other’ –

other types of place included villages, resorts, and highways. Summaries were reported

using the median and inter-quartile range.165

To estimate the number of unique places visited per woman, the latitude and longitude

coordinates were rounded to one decimal place, which corresponds to approximately 10km2.

Women were not asked if they returned to the site of interview between visits, therefore

to summarise the distance travelled by each woman we calculated all of the possible

journeys between the destinations and the site of interview (see Figure 1), calculated the170

median of the minimum and maximum distances that each woman could have travelled,

and the median of 1000 medians from random draws of one journey per woman from all

the possible journeys. We also presented the total distance when assuming that women

returned to the site of interview between visits. Of the various features of mobility, we

described: distance, frequency, duration, total time spent away, motivation (i.e. reason175

for moving), and whether or not reported using healthcare during the visit. We reported

RDS-2 weighted medians and proportions.

We summarised the proportion of female sex workers who travelled and how long they

spent away at the for each interview site. We estimated the median overall days spent

away as a weighted average of the median time away for women who moved and the zero180
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time away for those who did not move. We were unable to explore the impact on the

receiving communities, for example how the number of women visiting a place compared

to the local number of sex workers.

Sex work typologies. Prior to our analysis we hypothesised a typology of mobility for sex

work. We hypothesised that mobile women would exhibit mobility behaviour consistent185

with three types:

(A) women who work in truck stops and travel with clients, with longer distances

travelled, including internationally, not staying for long periods, and reporting ‘to

get more clients’ or ‘travel with clients’ as the reasons.

(B) women who move seasonally or because of special events to specific places, with190

domestic travel to one or two places, staying for short periods, and reporting to ‘find

clients with more money’ as the only reason.

(C) women who move frequently over short distances to find new markets, with multiple

journeys over short distances, staying for moderate lengths of time, and giving

reasons ‘to find more clients’ or ‘to make more money by being new’.195

After listing the most common sets of reasons for moving, and inspecting correlations

between di�erent features of mobility, we used a latent class analysis (LCA) approach to

classifying types of women using a mixture model. LCA is a form of unsupervised machine

learning (Masyn, 2013). We used the depmixS4 package, which allows for both binary and

continuous manifest variables (Visser and Speekenbrink, 2010). We included the seven200

reasons that were reported for at least 5% of the journeys (the rest together as ‘other’),

and coded women by whether they ever gave each reason for any of the journeys reported.

We included whether or not any travel was international, whether she ever travelled to

a growth-point, or a mine, the median distance travelled, the median time away, and

whether she lives in a town (as opposed to at a truck stop/colliery). We did not include the205

number of di�erent places that women travelled to – this was very similar to the number of

visits and there may have been under-reporting of repeat visits. The median-journey-time
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was log-transformed to account for skewed distributions; the median time away could

not be transformed into a standard distribution and therefore was dichotomised into less

than or more than two-weeks; the number of visits was modelled as Poisson (count); the210

other variables were modelled as binomial distributions (i.e. with a logit link function).

To determine the number of classes, we ran the model for between two and 10 classes and

plotted the Bayesian Information Criterion (BIC or Schwartz criterion) (Nylund et al.,

2007) to identify a minimum using the ‘scree-plot’ method: better models were models at

the minimum of the BIC curve and with the fewest possible classes. We ran each model215

100 times with random starting values and plotted the 95% range to account for variation

in the BIC between model runs, and to help determine whether we were finding local

or global minima. We ran a series of diagnostics to evaluate the fit of models of classes

around the minimum of the BIC plot and used Bootstrapping to compare the candidate

models, described in Appendix 3.220

To report the variability of mobility across sites, we plotted the density of the locations

visited from each site in a 17x15 grid of 50x50km squares, organised by matched-pair

for the trial and labelled with the ‘type’ of place (e.g. city, colliery, truck stop) and the

proportion of the women who moved at each site who were members of each class identified

in the LCA.225

Associations between mobility and socioeconomic and behavioural risk factors. We explored

associations between mobility for sex work and sociodemographic characteristics by

describing women in each of the identified types of mobility, including those who had

not worked elsewhere. We used descriptive analysis, calculating the RDS-2 adjusted

proportions and medians.230

Ethics

[REDACTED TO ANONYMISE AUTHORS]
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Results

Demographics, sex work, mobility data

Demographic and sex-worker characteristics in both survey-rounds are shown in Table235

I. 2,591 women were recruited through RDS in 2013, and 2,839 in 2016, with similar

age profiles. In both years, around a third had no education, primary education, and

secondary education. Few women were married, the majority were divorced (1,652; 63%

in 2013 and 1,823; 64% in 2016). Participants supported on average 1 child, and 45% and

42% were food insecure in 2013 and 2016, respectively. The median age that started sex240

work was 23 in 2013 and 24 in 2016. Women had median 5 clients in the past week, who

were primarily solicited in bars, and 55% and 45% relied solely on selling sex for income

in 2013 and 2016, respectively. In 2013, 65% used condoms consistently with clients, 58%

in 2016. HIV prevalence was 60% in 2013 and 59% in 2016.

A higher proportion of female sex workers reported working elsewhere in the past 12245

months in 2016 (59%) than in 2013 (27%). A similar proportion stayed elsewhere without

working in 2016 (55%), such that 2,294 women (81%) reported any mobility in 2016. Of

the mobile women, 681 (97%) in 2013 and 2,293 (99.96%) in 2016 reported the name of at

least one place. The gazette of places worked or stayed contained 1,427 di�erently-spelled

place-names, for 471 places. The coordinates were identified for 6,541 (99%) of the places250

named; there were 929 places geo-coded in 2013, and 5,612 in 2016. In the 2013 survey, 27

women were missing place names, and 5 in 2016.

Features of mobility

The journeys are described in the upper panel of Table II. There were 929 journeys

in 2013, and 3,364 in 2016 that included sex work and 2,248 that did not include sex255

work. The median distance was higher for non-work mobility, although women stayed

for less time: median (inter-quartile range) of 4 (4-21) days as compared to 18 (4-21)

when working. Most journeys were within Zimbabwe, only between 10% and 17% were

to another country; even fewer (less than 10%) travelled between linguistic areas within
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Zimbabwe. For places where women worked in sex work, 164 di�erent places were visited260

a median (IQR) 2 (1, 6) times each in 2013, 270 places a median 3 (1, 11) times each in

2016, and 262 places were visited without working in 2016, for 2 (1, 7) times each.

In 2016, women reported up to six reasons for moving for each journey reported. The

most common reason to travel to places and work was to find clients with more money

(57%), followed by to find more clients (39%). For moves without work, the most common265

reason was to visit family (72%). The results of listing the most common combinations of

reasons given for travelling, and the correlations between the di�erent features of mobility

are reported in Appendix 2. In short, for travel that included sex work there were many

combinations of reasons given for each journey, and the most common accounted for a

small proportion of journeys. For moves without sex work, the most common combination270

was simply ‘to visit family’ and accounted for more than half of the total journeys. There

were few strong correlations between features of mobility (Appendix Figure A2).

Only 12% and 8% of visits included the use of healthcare (Table II).

Women who made at least one journey are described in the middle panel of Table II.

The mean (IQR) visits per person to places where they worked increased from 1 (1, 1) to275

2 (1, 3) between 2013 and 2016. In 2013 and 2016, women were away 21 and 24 days for

work, and 14 without working in 2016.

The median number of days in the past 12 months spent in the interview location in

2013 was 359, and 342 in 2016. 17 (1%) women reported spending more than the previous

12 months away working in 2016 (none in 2013), and 2 (0.1%) when not working. The280

median (IQR) total distances in kilometres to places from the site of interview (and back

again) was 356 (180, 662), 464 (229, 967), and 443 (208, 850) for 2013, 2016 with and

without working, respectively. The median figures were similar for the mean of the random

draws from the possible routes, but with narrower distributions.

Mobility described at the level of the sites of interview and the places visited is shown285

in the bottom panel of Table II. There was not considerable variation between sites,

although the variability in the duration away was higher for moves that involved sex work
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than for non-sex-work mobility.

Sex work-mobility types

The LCA mixture model converged for all 100 runs for each of 2 to 10 classes; the290

BIC plot is shown in Appendix Figure A3.0. After five classes there was a bi-modal

distribution of the BIC for each number of classes. For subsequent analyses we generated

model fits drawn from the part of the BIC distribution with the lower mode. Comparisons

between the models are described in Appendix 3. The five-class model was preferred;

the likelihood-ratio test found that the five-class model was superior to the four-class (LRT295

p-value=0.01) but did not show an advantage of choosing more complex models (LRT

p-value=0.29). The probability profiles of the manifest variables are shown in Figure

2, with the probability of the class members exhibiting the binary variables is shown in

grey-scale (black being 100%), and the journey times and number of visits are described

with the means in each class. We had hypothesised that there would be three types of300

mobile sex worker and our analysis identified five.

We expected to find a group of mobile sex workers who moved with clients but did not

stay for long period, and we found that this group was small (class 1, 7%). The second

expected group was those who move domestically moderately frequently to find clients,

which was similar to the largest class, class 5, with 39% of mobile women. The third305

was women who moved frequently over short distances staying for moderate lengths of

time, closely resembling class 4 with 21% of the mobile women. These women were very

likely to have visited a mine or farm for work. The two classes that we did not anticipate,

therefore, were classes 2 and 3. Class 3 were women who reported working at places they

had visited for reasons other than for work, and represented 16% of mobile women in the310

sample; class 2 were highly mobile and often travelled internationally over long distances

and represented 16% of mobile female sex workers.

The five-class model was used to predict class membership, the demographics of the

women in the classes are described in Table III, and by site in with density plots in

Figure 3. Few destinations from any one site accounted for more than 20% of the journeys315
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(purple on the figures). There was a strong correspondence between site and class, with

100% of the mobile women in a single class in 10 of the 14 sites, although no class was

only present in one site.

Women in the internationally mobile classes were more highly educated, more likely to

have been divorced, and less likely to have been widowed. There were only small di�erences320

overall in the median age of starting sex work, numbers of child dependents, and number

of clients. Women who worked while traveling for other reasons (class 3) where more

likely to be food insecure. Women who moved frequently over shorter distances (class

4) or with clients (class 1) were less consistent with condom use. Women who travelled

frequently domestically (class 4) were less likely to report that sex work was their only325

source of income. Non-mobile women had been living longer at the site. HIV prevalence,

visibility in the network, and the proportion who had stayed elsewhere in the last 12

months without working did not vary substantially between the classes.

Discussion

We have described the mobility of female sex workers in Zimbabwe, and identified five330

kinds of mobile sex worker. On average, women spent less than 10% of their time away

from the interview site, however many travelled long distances, and stayed away for weeks

at a time. Women of all ages and demographics reported moving for work. Contrary to

our hypotheses, we did not find more mobile women had lower food insecurity, and that

consistent condom use varied by the kind of mobility. We found that sex-worker mobility335

in Zimbabwe as increased dramatically between 2013 and 2016.

Our analysis faced a number of limitations. The first is that the inclusion criteria

required that women had lived at the site for at least six months, potentially excluding

some mobile women. The surveys took place over a short period and may have missed

any women who were travelling during that time. It is likely that these issues led to an340

underestimate of the extent of mobility, and underestimated the proportions of the more

mobile types of sex workers. The second is that the data were cross sectional, and we
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relied on recall over long periods to collect detailed data on mobility. Data on mobility

from a cohort followed over time would improve the measures, however recruitment for

cohort studies and follow-up of sex workers can be challenging (Ward and Day, 2006)345

which could reduce the representativeness of the study.

The analysis in this paper has a number of strengths. The places that women visited

were geocoded directly, rather than, for example, using the centroids of provinces or other

administrative areas. We took advantage of free and accessible software to calculate the

distances in terms of travel by car along roads: in Zimbabwe, where intercity roads are350

scarce, the Euclidean distance may underestimate the journey distance. We investigated

multiple dimensions of mobility, describing the features of mobility in detail at journey,

women, and place levels before categorising participants using LCA. Distinguishing between

moves for sex work and moves for other reasons resonates with the distinction between

mobility for production, e.g. for work, and mobility for consumption, e.g. for leisure (Bell355

and Ward, 2000). However, many women engaged in sex work when they moved for other

reasons, possibly reflecting the opportunistic and survival imperative behind much of sex

work.

Measuring mobility has an inherent temporal problem: over what period are mobility

events measured? Twelve months is relatively long, potentially a�ecting recall of visits360

which would underestimate mobility, while shorter periods might miss women who do not

travel often. Richardson and Seethaler (2001) have suggested using just the one last trip,

whenever it happened; however, had we used this we would not have been able to explore

how mobility varied at the individual level. Our analysis was quantitative only, although

we consulted with peer educators when developing the mobility tool for 2016. Qualitative365

data may have been informative for developing the typologies of sex worker by mobility.

Finally, we did not have data on the unit of movement (i.e. whether women travelled with

partners or children), or dates of travel that could have been used to explore seasonality

and periodicity. We were not able to investigate the impact of the women visiting on the

sex worker populations (Brown and Bell, 2004).370
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Non-sex workers in Zimbabwe are also increasingly mobile (Agency and International,

2016) (see Appendix 4 for a comparison between the de jure and de facto household

members in the 2010 and 2015 DHS surveys). Around 10% of people in the 2015 DHS

survey were staying somewhere other than their usual residence on the day that the survey

data was collected from their household. This is higher than the corresponding figure for375

sex workers in 2016: the median total time away in our survey of sex workers in 2016

was 28 and therefore we would expect to find (28/365) · 100% = 7.7% women away from

home if they were surveyed at home as for the DHS. However, since the RDS surveys were

conducted over two weeks at each site, it is possible that mobile women would not be

available to take part, as the DHS results emphasise. Women reported knowing a median380

of 9 others in 2016 who they could potentially recruit, however only 60% recruited two

others for the survey in waves 0-4; it is likely that many factors would contribute to this,

including mobility.

Our analysis identified five di�erent types of mobility based on multiple features.

Previous descriptions of sex worker mobility have focused on frequency (Reed et al., 2012),385

reasons for moving (especially whether physically forced, or tricked, or with own agency

(Agustín, 2005; Steen et al., 2015)), type of place visited (Halli et al., 2010), or crossing

national borders (Richter et al., 2014). Our analysis shows that these features overlap when

defining sex worker mobility. For example, 21% of the mobile women were domestically

mobile and travelled about two-and-a-half times per year over short distances, 16% rarely390

travelled explicitly because of sex work but travelled longer distances and worked while

visiting nonetheless, and just 7% travelled with a client and stayed for less than two weeks.

Literature on mobility in low income settings has described ‘circulatory’ migration or

mobility often as moves back and forth between two locations, or at least between places

to an original ‘home’ (Chapman and Prothero, 1983; Zelinsky, 1971), however whether all395

mobile people have a specific location called ‘home’ has been questioned (Behr and Gober,

1982). In our analysis we relaxed the assumption that the women returned to one fixed

place between visits, and although this did not have an enormous e�ect on the median
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distances covered, it did reduce long-distance outliers, which may be the journey patterns

that were the most unlikely (because women might prefer more e�cient routes connecting400

the visited places). In future research on mobility among sex workers, women should be

asked about how they travelled from one place to another and whether it included a return

‘home’, perhaps by completing a timeline of locations and time spent in each place.

We did not find that many women reported moving because of harassment or break-

down in relationships. Most women in Zimbabwe work independent of pimps or other405

intermediaries (Wilson et al., 1989). However, given the high rate of food insecurity

and that most of the women relied on sex work as their only source of income, mobility

should be interpreted within a conceptual model that acknowledges that personal agency

is constrained and influenced by, among other things, extreme poverty (Hagen-Zanker,

2008). More research, including qualitative research, is needed to investigate the health410

and well being impacts, both negative and positive, of mobility and stability among sex

workers.

Further research is needed to understand more about why women move within a

structural framework. Although we did not find that typologies of sex work were associated

with key indicators of behavioural risk, future work should explore the implications of415

mobility for access to healthcare, and for adherence to treatment regimens such as for

antiretroviral therapy.

Word count. 5,318
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la. T2` b?Q`i b2t �+i UAZ_V 9 U9- 9V 9 U9- 9V 9 U9- 9V 9 U9- 9V 9 U9- 3V 9 U9- 3V
*QKKmMBiv +QMbB/2` �b aq 3kc djW Rejc eRW RNNc ddW k98c djW 998c dkW d9Nc e8W

SH�+2 Q7 bQHB+Bi�iBQM
"�` dNc djW R8dc e8W RNdc ddW R3dc eyW jNdc edW e39c eyW
h2H2T?QM2 9c 9W Rdc dW Rjc 8W Nc jW jkc eW 8dc 8W
ai`22i R9c R9W 98c RNW jNc R9W 3Rc keW djc RjW kjyc kRW
GQ/;2 yc yW Rc RW kc RW 8c kW dc RW Nc RW
LQM2 Q7 i?2 �#Qp2 Ryc RyW RNc NW 3c jW j9c RyW d8c RjW R8Rc RjW

u2�`b HBpBM; �i bBi2 UAZ_V 8 Uj- NV d Uj- RNV d Uj- kkV N U9- k9V d Uj- kyV RR U9- keV
>Ao dNc dyW R99c 89W Rd8c edW RNyc 8jW j9Rc 8eW dR9c eRW
oBbB#BHBiv d Ue- NV e U9- NV d Ue- NV e U8- 3V e U9- 3V e U8- 3V
ai�v2/ 2Hb2r?2`2 eNc eRW R83c eyW Re9c ekW RNyc 88W jR8c 8yW ejec 89W

h�#H2 j, h?2`2 r2`2 8y rQK2M 2t+Hm/2/ UKBbbBM; /�i� QM �i H2�bi QM2 Q7 i?2 K�MB72bi p�`B�#H2bV- �M/ e rQK2M KBbbBM; /�i� QM rQ`FBM; 2Hb2r?2`2X *H�bb R i`�p2HH2/
rBi? +HB2MibX *H�bb k i`�p2HH2/ Q7i2M Qp2` HQM; /Bbi�M+2b �M/ BMi2`M�iBQM�HHvX *H�bb j rQ`F2/ r?2M i?2v i`�p2HH2/ 7Q` Qi?2` `2�bQMbX *H�bb 9 i`�p2HH2/ 7`2[m2MiHv Qp2`
b?Q`i /Bbi�M+2b 7Q` KQ/2`�i2 T2`BQ/bX *H�bb 8 KQp2/ /QK2biB+�HHv BM7`2[m2MiHvX
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6B;m`2 k, H�i2Mi +H�bb �M�HvbBb `2bmHibe

Visited growth point/business centre 19%

Visited mine/farm 2%

Clients with more money 12%

More clients 1%

Earn more for being new 2%

Travelled with client 100%

Know FSW there 5%

Anonymity 0%

Visit family 4%

0ther 9%

Lives in a town 64%

Median stay over two weeks 14%

Travelled internationally 34%

Median journey time (hours) 2.45

Class 1
(114, 7%)

Number of visits in 12 months 1.81

16%

14%

86%

68%

47%

15%

16%

14%

10%

32%

75%

71%

93%

3.58

Class 2
(263, 16%)

2.51

10%

14%

16%

6%

10%

3%

19%

3%

32%

49%

64%

62%

17%

2.04

Class 3
(264, 16%)

1.51

24%

100%

86%

62%

43%

4%

10%

7%

6%

14%

90%

40%

2%

1.21

Class 4
(343, 21%)

2.44

39%

0%

81%

64%

40%

3%

9%

8%

3%

12%

64%

56%

4%

1.64

Class 5
(624, 39%)

1.74

6B;m`2 k

j



6B;m`2 j, /2MbBiv Q7 /2biBM�iBQMb 7`QK bBi2b

Juru

Truck stop

Class 5: 100% 

Ngundu

Truck stop 

Class 1: 29% 
Class 4: 71% 

Bindura

Provincial Capital

Class 2: 100% 

Kariba

Fishing Town

Class 5: 100% 

Hwange

Mining Town

Class 5: 100% 

Magunje

Army Base

Class 4: 100% 

Marondera

Provincial Capital

Class 4: 100% 

Chivhu

Farming Town

Class 2: 100% 

Chinhoyi

Provincial Capital

Class 3: 100% 

Gwanda

Provincial Capital

Class 5: 100% 

Zvishavane

Mining Town

Class 1: 100% 

Kadoma

District Town

Class 4: 19% 
Class 5: 81% 

Gutu

Growth Point

Class 3: 16% 
Class 5: 84% 

Chipinge

District Town

Class 2: 17% 
Class 3: 83% 

0 ≥ 5%
6 − 10%
11 − 20%
> 20%

6B;m`2 j
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*�TiBQMb3

6B;m`2 R

AHHmbi`�iBQM Q7 i?2 TQbbB#H2 `Qmi2b #2ir22M TH�+2b pBbBi2/X aQHB/ HBM2b `2T`2b2MiRy

i?2`2@�M/@#�+F DQm`M2vb- /�b?2/@HBM2b `2T`2b2Mi QM2@r�v DQm`M2vbX h?2 }`bi +2HH UiQT H27iV

b?Qrb i?2 i?2`2@�M/@#�+F DQm`M2v i?�i Bb i?2 QMHv TQbbB#H2 QTiBQM rBi? Dmbi QM2 TH�+2Rk

`2TQ`i2/X h?2 b2+QM/ b?Qrb i?2 b2+QM/ TQbbB#H2 DQm`M2v B7 irQ TH�+2b �`2 `2TQ`i2/X *2HHb

i?`22 �M/ 7Qm` b?Qr i?2 irQ �//BiBQM�H DQm`M2vb TQbbB#H2 rBi? i?`22 TH�+2b `2TQ`i2/X GBM2R9

irQ b?Qrb i?2 7Qm` �//BiBQM�H DQm`M2vb TQbbB#H2 rBi? 7Qm` `2TQ`i2/ TH�+2b- �M/ i?2 #QiiQK

irQ `Qrb b?Qr i?2 2B;?i �//BiBQM�H DQm`M2vb TQbbB#H2 r?2M }p2 TH�+2b r2`2 `2TQ`i2/XRe

qQK2M �Hr�vb bi�`i 7`QK �M/ `2im`M iQ i?2 BMi2`pB2r bBi2 �M/ +�M +?QQb2 iQ `2im`M Q`

KQp2 iQ i?2 M2ti TH�+2b 7`QK 2�+? TH�+2 pBbBi2/- i?2`27Q`2 7Q` D TH�+2b i?2`2 �`2 D@R #BM�`vR3

/2+BbBQMb- �M/ ?2M+2 2D−1 DQm`M2vbX

6B;m`2 kky

_2bmHib Q7 i?2 }p2@+H�bb H�i2Mi +H�bb KQ/2H- rBi? i?2 +H�bb2b Q`/2`2/ #v bBx2 7`QK H27i iQ

`B;?iX 6Q` i?2 #BM�`v K�MB72bi p�`B�#H2b- i?2 TQbi2`BQ` T`Q#�#BHBiB2b �`2 b?QrM rBi? �kk

+QMiBMmQmb +QHQm`@b+�H2 7`QK r?Bi2 Ux2`Q T`Q#�#BHBivV iQ #H�+F URyy$W T`Q#�#BHBivVX h?2

2tTQM2MiB�i2/ BMi2`+2Tib Q7 i?2 K2/B�M DQm`M2v iBK2 �M/ MmK#2` Q7 pBbBib KQ/2Hb �`2k9

b?QrM- BX2X i?2 K2�M 7Q` i?2 +H�bbX

6B;m`2 jke

h?2 /2MbBiv Q7 `2TQ`i2/ pBbBib �`2 b?QrM 7Q` 2�+? BMi2`pB2r bBi2 UH�#2HH2/V- rBi? i?2 ivT2 Q7

TH�+2 �#Qp2 2�+? THQi- mbBM; � RdtR8 ;`B/ Q7 k88 8yt8yFK b[m�`2bX h?2 T`QTQ`iBQM Q7 i?2k3

KQ#BH2 rQK2M BM 2�+? +H�bb 7`QK i?2 bBt@+H�bb G*� KQ/2H �`2 b?QrM QM i?2 #QiiQK@H27i Q7

2�+? };m`2Xjy
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Mobility and sex work: why, where, when? A typology

of female-sex-worker mobility in Zimbabwe2

Appendices

29 August, 20184

Appendix 1: recoding of duration-away variable

Duration in days 2013 coding 2016 coding

0 — Did not spend the night

3.5 Less than a week Less than a week

17.5 — 1-2 weeks

21 2-4 weeks 2-4 weeks

60.8 1-3 months 1-3 months

152.1 — 4-6months

273.8 >6months >6months

1

Calum Davey




Appendix 2: configurations of reasons for moving6

Women could report multiple reasons for each journey reported. Therefore, we explored the

distribution of the reasons. We plotted the correlation at the journey-level between reasons,8

distance, and time spent away, separated by whether the visit included sex work. We listed

the configurations of reasons by frequency, and reported the twenty most common10

configurations. The rows show the no / yes (0/1) response for each reason for travelling, in

the following order: Clients with more money*, More clients*, Earn more for being new*,12

Travelled with client*, Know FSW there*, Familiar place, Anonymity, Holiday or festival,

Police harassment, Avoid regular clients, Avoid other FSW, Avoid boyfriend or husband,14

Avoid family, Be with boyfriend or husband, Visit family, Visit children, Work other than sex

work, To use medical services, Other. The reasons marked with an asterisk (*) were not16

offered for moves that did not included working in sex work (e.g. for the second table

below).18

cases
0-1-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0 656
1-1-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0 514
0-0-0-0-1-0-0-0-0-0-0-0-0-0-0-0-0-0-0 267
1-1-1-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0 239
0-0-1-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0 213
1-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0 200
0-1-1-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0 149
0-0-0-0-0-0-0-0-0-0-0-0-0-0-1-0-0-0-0 132
1-0-1-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0 98
0-0-0-1-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0 94
0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-1-0-0 71
0-0-0-0-0-0-0-0-0-0-0-0-0-1-0-0-0-0-0 60
0-1-0-1-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0 41
0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-1 35
1-1-0-0-0-0-1-0-0-0-0-0-0-0-0-0-0-0-0 33
0-0-0-0-0-0-0-0-0-0-1-0-0-0-0-0-0-0-0 31
0-0-0-0-0-0-1-0-0-0-0-0-0-0-0-0-0-0-0 29
0-0-0-0-0-1-0-0-0-0-0-0-0-0-0-0-0-0-0 23
1-1-0-1-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0 20
0-1-0-0-0-0-1-0-0-0-0-0-0-0-0-0-0-0-0 18

Remaining cases 441
Remaining reasons 145
Total 3364

For the 3,364 moves that included sex work, the most common combination accounted for

656 of the journeys, and the second 514, leaving 2,194 journeys with other combinations of20

reasons. In contrast, for moves that did not include sex work, the most common

combination of reasons constituted more than half of the total journeys (1,533/2,248; 68%).22
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cases
0-0-0-0-0-0-0-0-0-1-0-0-0-0 1533
0-0-0-0-0-0-0-0-0-0-0-1-0-0 222
0-0-0-0-0-0-0-0-0-0-0-0-0-1 218
0-0-0-0-0-0-0-0-0-0-1-0-0-0 71
0-0-1-0-0-0-0-0-0-0-0-0-0-0 61
0-0-0-0-0-0-0-0-0-1-1-0-0-0 37
0-0-0-0-0-0-0-0-1-0-0-0-0-0 27
0-0-0-0-0-0-0-0-0-0-0-0-1-0 20
0-0-0-0-0-0-0-0-0-1-0-0-0-1 12
0-0-1-0-0-0-0-0-0-1-0-0-0-0 7
1-0-0-0-0-0-0-0-0-0-0-0-0-0 7
0-0-0-0-0-1-0-0-0-0-0-0-0-0 5
0-0-0-0-0-0-0-0-0-1-0-0-1-0 2
0-0-0-0-0-0-0-0-1-1-0-0-0-0 2
0-0-0-0-0-0-0-1-0-0-0-0-0-0 2
0-0-0-0-1-0-0-0-0-0-0-0-0-0 2
0-1-0-0-0-0-0-0-0-0-0-0-0-0 2
0-1-0-0-0-0-0-0-0-1-0-0-0-0 2
1-0-0-0-0-0-0-0-0-1-0-0-0-0 2
0-0-0-0-0-0-0-0-0-0-1-0-1-0 1

Remaining cases 13
Remaining reasons 14
Total 2248

3



Fig. A2: correlations between reasons for moving

24
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We found little evidence of correlations between the reasons given for moving (see26

Appendix Figure A2) For moves that included sex work, there was a weak positive

correlation between moving for more money and more clients, and weak negative28

correlation between moving for more money and towards relationships, work other than sex

work, or travel with a client. For journeys that did not involve sex work, there was positive30

correlation between police harassment and anonymity; and negative correlations between

visiting family and work other then sex work and ‘other’.32
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Appendix 3: LCA diagnostics

Summary34

We ran a series of diagnositics to evaluate the fit of models of classes around the minimum

of the BIC plot, adapted from Garrett & Zeger (2000). We calculated the difference between36

the observed and expected frequencies of each binary variable, and the median of the

continuous variables. We computed the bivariate residuals comparing the observed and38

expected relationships between each of the binary variables. We plotted the observed and

expected number of visits reported, log of the median distance travelled, and the frequency40

of the 50 most common configurations of the reasons for travelling.

To compare the most persemoneous model with models with more classes, we used a42

bootstrap log-likelihood-ratio test (McLachlan, 1987). This test is more robust than tests that

make asymtotic assumptions (Reynolds & Templin, 2004). We followed the steps in Tekle,44

Gudicha & Vermunt (2016): the most parsimonious model was used to predict values for the

manifest variable; both of the models being compared were then fitted to this predicted data;46

the log-likelihood ratio was computed; this was repeated 500 times to produce a distribution

of the log-likelihood ratio under the null condition, and the observed log-likelihood ratio48

was compared to this distribution, with the p-value calculated as the proportion of the

distribution higher than the observed value. Finally, we presented the probabilities for each50

maniest variable in each class, and considered the substantive usefulness of additional

classes.52
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Variables in the LCA

Variable Data type Data transformation / link function

More clients Binary Logit

Clients with more money Binary Logit

Earn more for being new Binary Logit

Know FSW there Binary Logit

Travelled with client Binary Logit

Anonymity Binary Logit

Visit family Binary Logit

Other Binary Logit

Visited growth point Binary Logit

Visited mine or farm Binary Logit

Lives in a town Binary Logit

Median stay over two weeks Binary Logit

Travelled internationally Binary Logit

Median journey time (hours) >6months Log

Number of visits in 12 months >6months Poisson

References54

Garrett, E.S. & Zeger, S.L. (2000) Latent class model diagnosis. Biometrics. 56 (4), 1055–1067.

McLachlan, G.J. (1987) On bootstrapping the likelihood ratio test stastistic for the number of components in a56

normal mixture. Applied statistics. 318–324.

Reynolds, J.H. & Templin, W.D. (2004) Comparing mixture estimates by parametric bootstrapping likelihood58

ratios. Journal of Agricultural, Biological, and Environmental Statistics. 9 (1), 57.

Tekle, F.B., Gudicha, D.W. & Vermunt, J.K. (2016) Power analysis for the bootstrap likelihood ratio test for the60

number of classes in latent class models. Advances in Data Analysis and Classification. 10 (2), 209–224.
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Fig. A3.0: BIC62

Number of classes

BI
C

2 3 4 5 6 7 8 9 10

29
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00
29

 5
00

29
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00
30

 0
00

The BIQ figure (Figure A3.0) shows that between five and seven classes best fit the data. The64

grey vertical lines line show the 95% range of the results of 100 runs. The plot shows that

from five classes, or even from four, there is a bi-modal distribution in the BIC centered66

around 29 400 and 29 500. All three of these models produced predicted proportions of the

7



binary variables that were very similar to the observed data (see Figures A3.1, A3.2, and68

A3.3). The five-class model produced some large residuals in the bivariate residuals analysis,

especially for the ‘travelled with a client’ reason for moving, for six and seven classes the70

residuals were all moderate or small (see Figures A3.4, A3.5, and A3.6). The correlations

between observed and expected numbers of visits, log median distance, and combinations72

of reasons were similar for all three models (see Figures A3.7, A3.8, and A3.8).

In the bootstrap-log-likelihood ratio tests, there was evidence for a difference between the74

four-classs and the five-class models, but not between the five-class and the six-class models

(see Figures A3.10 and A3.11).76

Contrasting the class sizes predicted from each model (see Figures A3.12, A3.13, and A3.14),

and the probability profiles, revealed that there were few substantive differences between78

the five and six class models. Class 5 in the five-class model decomposed into classes 2 and 6

in the six-class model. Increasing the number of classes from four to five revealed the small80

class of women who often travelled with clients, who were otherwise classed with the

women who worked while moving for other reasons (class 3).82
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Observed and predicted proportions

Fig. A3.1: Five classes84

Observed Expected Difference

med.over2weeks 0.5 0.5 0

international 0.2 0.2 0

town 0.7 0.7 0

growthpoint 0.3 0.2 0

minefarm 0.3 0.2 0

r_1 0.5 0.5 0

r_2 0.7 0.7 0

r_3 0.3 0.3 0

r_4 0.1 0.1 0

r_5 0.1 0.1 0

r_7 0.1 0.1 0

r_15 0.1 0.1 0

r_other 0.2 0.2 0

visits 2.0 2.0 0

med.time 1.7 1.7 0

Fig. A3.2: Six classes

Observed Expected Difference

med.over2weeks 0.5 0.6 0.0

international 0.2 0.2 0.0

town 0.7 0.7 0.0

growthpoint 0.3 0.3 0.0

minefarm 0.3 0.3 0.0

r_1 0.5 0.5 0.0

r_2 0.7 0.6 0.0

r_3 0.3 0.4 0.0

r_4 0.1 0.1 0.0

r_5 0.1 0.1 0.0

r_7 0.1 0.1 0.0

r_15 0.1 0.1 0.0

r_other 0.2 0.2 0.0

visits 2.0 2.0 0.0

med.time 1.7 1.8 -0.1
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Fig. A3.3: Seven classes86

Observed Expected Difference

med.over2weeks 0.5 0.6 0.0

international 0.2 0.2 0.0

town 0.7 0.7 0.0

growthpoint 0.3 0.3 0.0

minefarm 0.3 0.2 0.0

r_1 0.5 0.5 0.0

r_2 0.7 0.7 0.0

r_3 0.3 0.3 0.0

r_4 0.1 0.1 0.0

r_5 0.1 0.1 0.0

r_7 0.1 0.1 0.0

r_15 0.1 0.1 0.0

r_other 0.2 0.2 0.0

visits 2.0 2.0 0.0

med.time 1.7 1.8 -0.1
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Bivariate residuals

Fig. A3.4: Five classes88

international town growthpoint minefarm r_1 r_2 r_3 r_4 r_5 r_7 r_15 r_other

med.over2weeks 0.3 8.9 4.4 2.7 4.7 1.9 0.3 0.2 7.4 0.9 4.3 3.7

international 9.6 14.6 2.5 0.9 0.3 4.7 0.2 0.4 1.2 2.6 5.2

town 5.8 11.6 3.1 4.7 12.8 2.1 2.2 2.5 5.8 14.0

growthpoint 7.1 6.5 4.0 7.6 4.1 8.8 6.3 9.3 17.7

minefarm 2.6 2.8 3.7 3.8 2.8 4.5 5.4 5.5

r_1 0.6 2.0 0.7 0.7 6.5 3.3 3.8

r_2 10.6 0.9 2.1 1.1 3.1 3.5

r_3 3.0 4.5 1.9 2.5 3.6

r_4 0.4 0.9 2.5 5.9

r_5 0.9 3.7 4.6

r_7 3.2 4.2

r_15 10.8

Fig. A3.5: Six classes

international town growthpoint minefarm r_1 r_2 r_3 r_4 r_5 r_7 r_15 r_other

med.over2weeks 6.7 4.7 8.7 6.2 7.3 9.0 5.6 6.2 8.8 7.5 19.5 5.9

international 1.3 8.3 1.0 1.2 1.5 3.5 0.2 0.9 6.2 4.6 0.6

town 11.9 1.4 1.4 1.1 1.6 0.3 1.1 4.6 2.8 1.8

growthpoint 4.1 3.4 5.9 3.8 3.0 6.6 5.9 4.9 9.2

minefarm 1.4 3.7 7.3 1.3 2.1 3.6 1.3 4.4

r_1 6.4 4.7 0.2 0.2 2.9 1.5 0.8

r_2 4.2 1.2 2.1 4.2 3.6 2.1

r_3 4.3 1.0 4.4 1.8 1.4

r_4 0.9 3.2 0.8 1.7

r_5 4.3 0.9 7.1

r_7 7.6 3.2

r_15 1.5
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Fig. A3.6: Seven classes90

international town growthpoint minefarm r_1 r_2 r_3 r_4 r_5 r_7 r_15 r_other

med.over2weeks 2.7 8.8 8.0 1.6 6.5 1.9 2.1 4.7 9.0 1.2 3.5 1.6

international 4.3 9.9 0.7 2.5 4.9 0.1 3.5 2.2 0.3 2.8 0.2

town 3.8 6.6 2.6 0.6 7.2 1.9 0.8 1.2 8.3 5.8

growthpoint 1.6 4.2 0.4 0.2 0.2 1.3 2.3 2.8 1.1

minefarm 3.3 2.2 1.2 2.6 2.1 1.0 11.4 0.7

r_1 7.4 2.8 6.4 2.6 5.5 7.1 10.9

r_2 27.2 1.2 1.7 0.4 4.0 3.2

r_3 2.9 1.6 8.5 2.4 3.9

r_4 0.8 1.0 3.4 1.3

r_5 0.9 3.5 0.8

r_7 6.2 0.5

r_15 8.6
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Observed vs expected plots (visits, log median distance, cases)

Fig. A3.7: Five classes92

Observed number of visits

Ex
pe

ct
ed

 n
um

be
r o

f v
isi

ts

1.0 2.0 3.0 4.0 5.0

0.
0

1.
0

2.
0

3.
0

4.
0

5.
0

6.
0

7.
0

8.
0

6
1

35
13
31
3
9

6
1
2

1

1
2
6

6

5
1

1

11
3

22
10
22
6

15

6

1

1

1

2

1

9
4
14
3
11

1
2

1

1

3
1
2

1

4

3

2

1
1
3

2

2

Observed log median distance

Ex
pe

ct
ed

 lo
g 

m
ed

ia
n 

di
st

an
ce

−1 0 1 2 3

−1
0

1
2

3
4

Observed cases

Ex
pe

ct
ed

 c
as

es

0 50 100

0
50

10
0

94

Fig. A3.8: Six classes

96
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Fig. A3.9: Seven classes98
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Bootstrap log-likelihood ratio tests

Fig. A3.10: 4-class and 5-class models102
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Fig. A3.11: 5-class and 6-class models104
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Classes and item probabilities106

Fig. A3.12: Four-class

108

Visited growth point/business centre 16%

Visited mine/farm 14%

Clients with more money 84%

More clients 66%

Earn more for being new 45%

Travelled with client 15%

Know FSW there 15%

Anonymity 13%

Visit family 10%

0ther 31%

Lives in a town 75%

Median stay over two weeks 70%

Travelled internationally 95%

Median journey time (hours) 3.43

Class 1
(280, 17%)

Number of visits in 12 months 2.48

24%

100%

85%

61%

43%

3%

10%
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15%

89%

41%
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1.22
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Fig. A3.12: Five-class – repeated from Figure 2 in manuscript110

Visited growth point/business centre 19%

Visited mine/farm 2%

Clients with more money 12%

More clients 1%

Earn more for being new 2%

Travelled with client 100%

Know FSW there 5%

Anonymity 0%

Visit family 4%

0ther 9%

Lives in a town 64%

Median stay over two weeks 14%

Travelled internationally 34%

Median journey time (hours) 2.45

Class 1
(114, 7%)

Number of visits in 12 months 1.81
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Fig. A3.13: Six-class
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Visited growth point/business centre 16%

Visited mine/farm 4%

Clients with more money 10%

More clients 1%

Earn more for being new 2%

Travelled with client 100%

Know FSW there 7%

Anonymity 0%

Visit family 4%

0ther 11%

Lives in a town 65%

Median stay over two weeks 19%

Travelled internationally 33%

Median journey time (hours) 2.4

Class 1
(118, 7%)

Number of visits in 12 months 1.78
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57%
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Fig. A3.14: Seven-class116

Visited growth point/business centre 79%

Visited mine/farm 45%

Clients with more money 93%

More clients 100%

Earn more for being new 79%

Travelled with client 15%

Know FSW there 35%

Anonymity 14%

Visit family 11%

0ther 32%
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Median stay over two weeks 33%
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Appendix 4: mobility in Zimbabwe DHS

dhs2011 <- read.dta(paste0(data.z,

'/ZW_2010-11_DHS/','zwhr62dt/','ZWHR62FL.DTA'))

dhs2015 <- read.dta(paste0(data.z,

'/ZW_2015_DHS/','zwhr71dt/','ZWHR71FL.DTA'))

# Total number of de jure household members gives the number of household members

# that usually live in the household -

# Total number of de facto household members gives the number of household members

#that slept in the household the previous night, including visitors.

# Standard recode manual for DHS 6: https://dhsprogram.com/pubs

#/pdf/DHSG4/Recode6_DHS_22March2013_DHSG4.pdf

diff11 <- as.data.frame(dhs2011$hv012 - dhs2011$hv013)

diff15 <- as.data.frame(dhs2015$hv012 - dhs2015$hv013)

# Count the households with people away

away11 <- car::recode(diff11[,1], "lo:0=0;1:hi=1")

away15 <- car::recode(diff15[,1], "lo:0=0;1:hi=1")

# Count the households with extra people staying

stay11 <- car::recode(diff11[,1], "lo:-1=1;0:hi=0")

stay15 <- car::recode(diff15[,1], "lo:-1=1;0:hi=0")

# Find the proportions

t4 <- cbind(rbind(weighted.mean(away11, (dhs2011$hv005/100000)),

weighted.mean(stay11, (dhs2011$hv005/100000))),

rbind(weighted.mean(away15, (dhs2015$hv005/100000)),

weighted.mean(stay15, (dhs2015$hv005/100000))))

colnames(t4) <- c('2010', '2015')

rownames(t4) <- c('Proportion away', 'Proportion staying')

print(xtable(t4, align = c('l','c','c')), comment = FALSE, booktabs = T,

sanitize.text.function = subheadings, size="\\fontsize{10pt}{10pt}\\selectfont")

2010 2015
Proportion away 0.09 0.12
Proportion staying 0.07 0.09
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Appendix 5: geocoding code120

# Load geocoding

gazette <- read.xlsx(

"../../Data/Zimbabwe/Locations/Locations_03_12_2017.xlsx", sheet=1)

gazette$Longitude <- as.numeric(as.character(gazette$Longitude))

gazette$Latitude <- as.numeric(as.character(gazette$Latitude))

# Load place types

types <- read.xlsx(

"../../Data/Zimbabwe/Locations/Zim_places_types_13_MAY_2018.xlsx")

types$Longitude <- as.numeric(as.character(types$Longitude))

types$Latitude <- as.numeric(as.character(types$Latitude))

types2 <- types %>%

filter(!is.na(Latitude)) %>%

group_by(Latitude, Longitude) %>%

summarise(cat = paste0(unique(category), collapse = ','))

gazette <- merge(gazette, types2,

by=c('Longitude', 'Latitude'), all.x=T)

# Remove duplicates and rows with missing location

gazette <- subset(gazette, !is.na(gazette$Longitude)

& duplicated(gazette$names)==FALSE)

[,c("names", "cat", "Longitude", "Latitude")]

# Load the locations of the sites

sites.t <- read.xlsx(

"../../Data/Zimbabwe/Locations/TrialSites.xlsx", sheet=1)

sites.t <- sites.t[,2:4]

# Merge the Lat / Long gazette from the site list and gazette

temp1 <- merge(temp1, sites.t, by.x="site_name", by.y="Site", all.x=T)

temp1 <- merge(temp1, gazette, by.x="citytown.v", by.y='names', all.x=T)

# Tidy up columns and names

temp1 <- temp1[c(vars, names(temp1[(length(temp1)-4):length(temp1)]))]

colnames(temp1) <- c(vars, 'lat0', 'lon0', "category", "lon1", "lat1")

names(temp1)[names(temp1)=="site_name"] <- "citytown"

# Add unique identifoer

temp1$uid <- paste0(temp1$id, '_', temp1$round)

temp1$visit.num <- as.numeric(temp1$visit.num)

temp1$citytown.v[temp1$citytown.v=="."] <- ""

temp1$citytown.v[is.na(temp1$citytown.v) &

(temp1$worked.elsewhere==1 | temp1$stayed.elsewhere==1)] <- ""

temp1$citytown.v[temp1$worked.elsewhere!=1 & temp1$visit.num<2] <- NA
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temp1$citytown.v[temp1$stayed.elsewhere!=1 & temp1$visit.num>2] <- NA

temp1 <- temp1[order(temp1$round, temp1$id, temp1$visit.num),]

# Round the coordinates

r <- 5 #sets the precision of the coordinates

temp1$lat0 <- as.numeric(round(temp1$lat0, r))

temp1$lon0 <- as.numeric(round(temp1$lon0, r))

temp1$lat1 <- as.numeric(round(temp1$lat1, r))

temp1$lon1 <- as.numeric(round(temp1$lon1, r))

# Spatial-join the district and provinces of the sites

#and the places visited (DIVA-GIS, Gadm)

zim1 <- readRDS(

"../../Data/Zimbabwe/Maps/ZWE_adm1.rds")

zim2 <- readRDS(

"../../Data/Zimbabwe/Maps/ZWE_adm2.rds")

ssa <- readOGR(

dsn = "../../Data/Maps/gadm28_levels/", layer = 'ssa')

# Sites

temp2 <- SpatialPointsDataFrame(

cbind(temp1$lon0, temp1$lat0),

data = temp1, proj4string = CRS(proj4string(zim2)))

# Province of Zim

temp2$province <- sp::over(temp2, zim1)$NAME_1

# District of Zim

temp2$district <- sp::over(temp2, zim2)$NAME_2

# Visits

temp3 <- subset(temp1, !is.na(temp1$lat1) & !is.na(temp1$lon1)) %>%

SpatialPointsDataFrame(

cbind(.$lon1, .$lat1),

data = ., proj4string = CRS(proj4string(zim2)))

# Country

temp3$v.country <- sp::over(temp3, ssa)$NAME_ENGLI

# Province of Zim

temp3$v.province <- sp::over(temp3, zim1)$NAME_1

# District of Zim

temp3$v.district <- sp::over(temp3, zim2)$NAME_2

# Combine the sites and visits
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temp1 <- merge(temp2@data,

temp3@data[,c('uid', 'round', 'visit.num',

'v.district', 'v.province', 'v.country')],

by=c('uid', 'round', 'visit.num'), all.x=T)

# Change the locations of in other countries that were non-specific

# to the closest point from the site interviewed

# List of the countries named:

countries <-

as.data.frame(cbind(c('Botswana', 'Democratic Republic of the Congo', 'Malawi',

'Mozambique', 'Namibia','South Africa',

'Swaziland', 'Tanzania', 'Zambia'),

c(round(-20.541716,r), round(-12.1534304,r), round(-13.2543,r),

round(-16.9644355, r),round(-22.287214,r), round(-22.3813,r),

round(-26.5108178,r), round(-9.323102,r), round(-13.3136,r)),

c(round(27.725915,r), round(27.8197753,r), round(34.3015, r),

round(32.8672797, r), round(19.967102,r), round(30.0319,r),

round(30.34142,r), round(32.767857, r),round(28.086757, r))))

countries$V1 <- as.character(countries$V1)

countries$V2 <- as.numeric(as.character(countries$V2))

countries$V3 <- as.numeric(as.character(countries$V3))

# Loop over the countries

for (i in 1:nrow(countries)){

c <- ssa[ssa@data$NAME_ENGLI == countries[i,1],]

x <- temp1 %>%

dplyr::filter(lat1 == countries[i,2] & lon1 == countries[i,3]) %>%

SpatialPointsDataFrame(

cbind(.$lon0, .$lat0),

data = ., proj4string = CRS(proj4string(ssa)))

y <- gNearestPoints(x[1,], c)

if (nrow(x@data)>1){

for (j in 2:nrow(x@data)){

y <- rbind(y, gNearestPoints(x[j,], c))

}

}

# Select only the points around the border

yy <- merge(as.data.frame(y),

x@data, by.x = c('x', 'y'),

by.y = c('lon0', 'lat0'), all = T) %>%
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filter(is.na(id)) %>%

dplyr::select(x, y) %>%

cbind(., x@data$uid, x@data$visit.num)

colnames(yy) <- c('x', 'y', 'uid', 'visit.num')

# Change the lat lon coordinates for selected women

temp1 <- temp1 %>%

merge(. , yy, by=c('uid', 'visit.num'), all.x = T) %>%

mutate(lon1.2 = ifelse(lat1 == countries[i,2]

& lon1 == countries[i,3], x, lon1),

lat1.2 = ifelse(lat1 == countries[i,2]

& lon1 == countries[i,3], y, lat1)) %>%

mutate(lon1 = lon1.2, lat1 = lat1.2)

temp1$lat1.2 <- NULL

temp1$lon1.2 <- NULL

temp1$x <- NULL

temp1$y <- NULL

}

# Collect distances from Google maps, create a journey reference guide

temp1$start <- paste0(as.character(round(temp1$lat0, digits=5)),", ",

as.character(round(temp1$lon0, digits=5)))

temp1$end <- paste0(as.character(round(temp1$lat1, digits=5)),", ",

as.character(round(temp1$lon1, digits=5)))

journeys <- temp1[!is.na(temp1$start), c('uid', 'start', 'end')]

# For women who visited more than one place, calculate the distance between the places

temp2 <- reshape(data = temp1,

direction = 'wide',

v.names = c("lat1", "lon1"),

timevar = "visit.num",

idvar = "uid")

temp2 <- temp2 %>%

dplyr::select(uid,

lat1.1.1, lon1.1.1,

lat1.1.2, lon1.1.2,

lat1.1.3, lon1.1.3,

lat1.1.4, lon1.1.4,

lat1.1.5, lon1.1.5,

lat1.2.1, lon1.2.1,

lat1.2.2, lon1.2.2,
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lat1.2.3, lon1.2.3,

lat1.2.4, lon1.2.4,

lat1.2.5, lon1.2.5)

m <- matrix(c(1,2,3,4,2,3,4,5), ncol=2)

# Journeys for work

for (i in 1:nrow(m)){

lat.dest1 <- paste0('lat1.1.', m[i,1])

lon.dest1 <- paste0('lon1.1.', m[i,1])

lat.dest2 <- paste0('lat1.1.', m[i,2])

lon.dest2 <- paste0('lon1.1.', m[i,2])

temp3 <- temp2[c('uid', lat.dest1, lon.dest1, lat.dest2, lon.dest2)]

temp3 <- cbind(temp3, apply(temp3[,2:3], 1, conc.coords),

apply(temp3[,4:5], 1, conc.coords))

colnames(temp3) <- c('uid', lat.dest1, lon.dest1, lat.dest2, lon.dest2, 'start', 'end')

temp3 <- temp3[temp3$start!='NA,NA' & temp3$end!='NA,NA', c('uid', 'start', 'end')]

journeys <- rbind(journeys, temp3)

}

# Journeys not for work

for (i in 1:nrow(m)){

lat.dest1 <- paste0('lat1.2.', m[i,1])

lon.dest1 <- paste0('lon1.2.', m[i,1])

lat.dest2 <- paste0('lat1.2.', m[i,2])

lon.dest2 <- paste0('lon1.2.', m[i,2])

temp3 <- temp2[c('uid', lat.dest1, lon.dest1, lat.dest2, lon.dest2)]

temp3 <- cbind(temp3, apply(temp3[,2:3], 1, conc.coords),

apply(temp3[,4:5], 1, conc.coords))

colnames(temp3) <- c('uid', lat.dest1, lon.dest1, lat.dest2, lon.dest2, 'start', 'end')

temp3 <- temp3[temp3$start!='NA,NA' & temp3$end!='NA,NA', c('uid', 'start', 'end')]

journeys <- rbind(journeys, temp3)

}

# Remove duplicates

journeys <- journeys[journeys$start!='NA, NA' & journeys$end!='NA, NA' &

!duplicated(journeys[c('start', 'end')]), ]

# Loop through Google searches with system delay to avoid error on Google server
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journey.ref <- c()

for (i in 1:nrow(journeys)){

x <- mapdist(journeys[i,"start"], journeys[i, "end"], mode = "driving")

journey.ref <- rbind.fill(journey.ref, x)

Sys.sleep(.1)

}

# Merge the journey distances with the main dataset

temp1 <- merge(temp1,

journey.ref, by.x = c('start', 'end'),

by.y = c('from', 'to'), all.x = T)

names(temp1)[names(temp1) == 'km'] <- 'dist.s2v'

names(temp1)[names(temp1) == 'hours'] <- 'time.s2v'

temp1[c('m', 'miles', 'seconds', 'minutes', 'hours')] <- NULL

# Merge the journey distances between places visited, in order

temp2 <- temp2[c('uid',

'lat1.1.1', 'lon1.1.1',

'lat1.1.2', 'lon1.1.2',

'lat1.1.3', 'lon1.1.3',

'lat1.1.4', 'lon1.1.4',

'lat1.1.5', 'lon1.1.5',

'lat1.2.1', 'lon1.2.1',

'lat1.2.2', 'lon1.2.2',

'lat1.2.3', 'lon1.2.3',

'lat1.2.4', 'lon1.2.4',

'lat1.2.5', 'lon1.2.5')]

# Create lat and lon columns in the journeys reference list

journey.ref$lat.start <- as.numeric(sub("\\, .*", "", journey.ref$from))

journey.ref$lon.start <- as.numeric(sub("^.*? ", "", journey.ref$from))

journey.ref$lat.end <- as.numeric(sub("\\, .*", "", journey.ref$to))

journey.ref$lon.end <- as.numeric(sub("^.*? ", "", journey.ref$to))

# Merge with the journeys between places in the order that they were named

for (i in 1:4){

# Places to work

temp2 <- merge(temp2,

journey.ref,

by.x = c(paste0('lat1.1.',i),
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paste0('lon1.1.',i),

paste0('lat1.1.', i+1),

paste0('lon1.1.',i+1)),

by.y = c('lat.start',

'lon.start',

'lat.end',

'lon.end'), all.x=T)

names(temp2)[names(temp2) == 'km'] <- paste0('dist.v2v1.', i)

names(temp2)[names(temp2) == 'hours'] <- paste0('time.v2v1.', i)

temp2[c('m', 'miles', 'seconds', 'minutes', 'hours', 'from', 'to')] <- NULL

# Places to stay

temp2 <- merge(temp2, journey.ref, by.x = c(paste0('lat1.2.',i),

paste0('lon1.2.',i), paste0('lat1.2.', i+1),

paste0('lon1.2.',i+1)),

by.y = c('lat.start', 'lon.start', 'lat.end', 'lon.end'), all.x=T)

names(temp2)[names(temp2) == 'km'] <- paste0('dist.v2v2.', i)

names(temp2)[names(temp2) == 'hours'] <- paste0('time.v2v2.', i)

temp2[c('m', 'miles', 'seconds', 'minutes', 'hours', 'from', 'to')] <- NULL

}

temp2 <- temp2[c('uid', 'dist.v2v1.1', 'dist.v2v1.2','dist.v2v1.3','dist.v2v1.4',

'dist.v2v2.1', 'dist.v2v2.2','dist.v2v2.3','dist.v2v2.4',

'time.v2v1.1', 'time.v2v1.2','time.v2v1.3','time.v2v1.4',

'time.v2v2.1', 'time.v2v2.2','time.v2v2.3','time.v2v2.4')]

temp3 <- reshape(data = temp2,

direction = 'long',

varying = c(list(c('dist.v2v1.1', 'dist.v2v1.2','dist.v2v1.3','dist.v2v1.4',

'dist.v2v2.1', 'dist.v2v2.2','dist.v2v2.3','dist.v2v2.4'),

c('time.v2v1.1', 'time.v2v1.2','time.v2v1.3','time.v2v1.4',

'time.v2v2.1', 'time.v2v2.2','time.v2v2.3','time.v2v2.4'))),

v.names = c('dist.v2v', 'time.v2v'),

timevar = "visit.num",

idvar = "uid")

# Add one to the visit number

temp3$v.num[temp3$visit.num<=4] <- paste0('1.', temp3$visit.num[temp3$visit.num<=4])

temp3$v.num[temp3$visit.num>4] <- paste0('2.', temp3$visit.num[temp3$visit.num>4]-4)

temp3$visit.num <- as.numeric(temp3$v.num)
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# Merge with the primary dataset

temp1 <- merge(temp1, temp3, by = c('uid', 'visit.num'), all.x = T)

# Add worked as SW in interview location

temp1$sw.int <- 1

# Add worked as SW at the visit location - all 'yes' since that is the question

temp1$sw.v <- 1

# Add types of place dummies

temp1$towncity[!is.na(temp1$category)] <- 0

temp1$towncity[temp1$category == 'border town' |temp1$category == 'city'

|temp1$category == 'town'|temp1$category == 'suburb'] <- 1

temp1$growthpoint[!is.na(temp1$category)] <- 0

temp1$growthpoint[temp1$category == 'growth point' |temp1$category == 'business centre'] <- 1

temp1$minefarm[!is.na(temp1$category)] <- 0

temp1$minefarm[temp1$category == 'mine' |temp1$category == 'farm'] <- 1

temp1$other[!is.na(temp1$category)] <- 0

temp1$other[!is.na(temp1$category)

& temp1$towncity!=1

& temp1$minefarm!=1

& temp1$growthpoint!=1] <- 1
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