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Heat early warning systems and action plans use temperature
thresholds to trigger warnings and risk communication. In this
study, we conduct multi-state analyses, exploring associations
between heat and all-cause and cause-specific hospitalizations, to
inform the design and development of heat-health early warning
systems. We used a two-stage analysis to estimate heat-health
risk relationships between heat index and hospitalizations in 1,617
counties in the United States for 2003-2012. The first stage in-
volved a county-level time series quasi-Poisson regression, using
a Distributed Lag Non-Linear Model, to estimate heat-health asso-
ciations. The second stage involved a multivariate random-effects
meta-analysis to pool county-specific E-R associations across larger
geographic scales, such as by state or climate region. Using results
from this two-stage analysis, we identified heat index ranges
that correspond with significant heat-attributable burden. We
then compared those with the National Oceanic and Atmospheric
Administration National Weather Service (NWS) heat alert criteria
used during the same time period. Associations between heat
index and cause-specific hospitalizations vary widely by geogra-
phy and health outcome. Heat-attributable burden starts to occur
at moderately hot heat index values, which in some regions are
below the alert ranges used by the NWS during the study time
period. Locally-specific health evidence can beneficially inform and
calibrate heat alert criteria. A synchronization of health findings
with traditional weather forecasting efforts could be critical in the
development of effective heat-health early warning systems.
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Introduction
Extreme heat is an established hazard. Risk for a range of condi-
tions is associated with extreme heat exposure (1, 2), including
morbidity from heat illness (3), electrolyte and renal dysfunc-
tion (4, 5), and exacerbations of chronic respiratory (6) and
cardiovascular (7) disease, as well as all-cause mortality (8). The
association between the particular temperatures at which risks are
manifested and the magnitude of the effects vary regionally due
to acclimatization, air conditioning prevalence, demography, and
other factors (9).

Successful risk management varies by setting and includes
prevention strategies ranging from engineering controls such as
air conditioning, management controls such as shifts in work
schedules and activity restrictions, and behavioral controls en-
couraged through heat early warning systems and action plans
(10). These systems and plans are activities that link forecasts
of heat exposure with risk communication and risk reduction
activities aimed at reducing exposure and limiting adverse health
impacts among the exposed such as cooling centers, neighbor
check-ins, and maintenance of air conditioning availability (11),
that have been linked with reduced morbidity and mortality.

Given variability in temperature thresholds at which risks in-
crease, one central consideration in heat early warning systems is
the threshold at which warnings should be issued (12). Guidance

recommends setting thresholds based on analysis of associations
between heat exposure (measured using a variety of metrics)
and adverse health effects (10). In the United States (U.S.), the
National Oceanic and Atmospheric Administration’s National
Weather Service (NWS) issues excessive heat watch, warning, and
heat advisory alerts as weather conditions warrant. While NWS
provides guidance to its Weather Forecast Offices (WFOs) on
appropriate thresholds for issuing these alerts,WFOs are encour-
aged to work with local officials to define locally appropriate alert
thresholds (13). There is no standard protocol for incorporating
local epidemiological analyses, as relevant data and expertise may
not be locally available. In addition to these constraints, risk
assessment has been complicated by a lack of consensus regarding
exposure assessment (e.g. which temperature metrics to use),
standardization of heat-sensitive health outcomes (e.g. morbidity
measures or mortality) and resulting heat attributable health
impacts, and standard analytical approaches, despite emerging
consensus in the field that best practices include basing thresh-
olds on recent time-series analyses of the relationship between
temperature and the best available local health data (10, 14).
Recent analyses have demonstrated that morbidity impacts, when
available, may be most appropriate, as these outcomes are more
prevalent than mortality endpoints (15, 16).

In many locales in the U.S., this goal remains aspirational.
While risks associated with heat exposure in the U.S. have been
well characterized for certain at-risk populations and regions
(6, 17, 18, 19), there have been no comprehensive, national-

Significance

Heat early warning systems and action plans have been shown
to reduce risks of heat exposure, and best practice recom-
mends that plans be built around local epidemiologic evi-
dence and emergency management capacity. This evaluation
provides useful information for heat early warning system
and action plan administrators regarding the temperature
ranges at which health impacts are manifest, the morbidity
outcomes most sensitive to heat, and alignment between
alert thresholds and temperatures at which disease burden
is most pronounced. The results suggest opportunities for
improvement and for refinement of prevention messaging
as well as coordination between meteorological and public
health authorities at multiple levels before, during, and after
periods of extreme heat.
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Table 1. State-specific population and heat index distribution with information on heat index values for issuing heat alerts

Climate
region

State Number of
counties
with
population
greater than
10,000
people

Average
yearly state
population
(2003-2012)*

Percent of
average
yearly US
population
(2003-2012)

Daily maximum heat index (°F) distribution Median
and range
of heat
index
values
used for
issuing
heat
alerts

5th

Percentile
25th

Percentile
Median 75th

Percentile
95th

Percentile

Central Illinois 87 12.6 M 4.2 62 74 82 91 104 109 (101,
118)

Indiana 88 6.4 M 2.1 64 75 82 91 103 108 (100,
116)

Kentucky 99 4.1 M 1.4 67 78 85 93 104 107 (101,
116)

Missouri 89 5.7 M 1.9 67 79 88 98 109 109 (102,
116)

West
Virginia

44 1.7 M 0.6 64 74 80 87 96 104 (96,
113)

East North
Central

Iowa 76 2.8 M 0.9 63 75 83 92 106 110 (98,
120)

Northeast Maryland 24 5.7 M 1.9 65 75 83 90 100 104 (97,
111)

New York 61 19.3 M 6.4 61 71 78 84 95 100 (95,
111)

Rhode
Island

5 1.1 M 0.4 59 69 75 83 93 101 (93,
113)

Northwest Oregon 29 3.7 M 1.2 57 67 74 80 88 90 (82,
101)

South Kansas 39 2.5 M 0.8 68 80 89 99 109 108 (98,
114)

Southeast Florida 65 18.3 M 6.1 85 92 96 100 105 109 (107,
111)

Georgia 127 9.1 M 3.0 76 85 91 97 104 107 (101,
111)

North
Carolina

97 9.1 M 3.0 71 82 88 95 102 107 (102,
112)

Virginia 115 7.7 M 2.5 67 77 85 92 101 106 (100,
112)

Southwest Arizona 14 6.1 M 2.0 82 90 96 101 106 104 (96,
109)

Colorado 38 4.7 M 1.6 61 74 80 84 89 91 (91, 92)
Utah 20 2.6 M 0.9 59 73 81 85 90 100 (100,

104)
West California 55 36.5 M 12.1 69 77 82 86 91 92 (86, 97)

Nevada 10 2.5 M 0.8 73 83 90 94 99 99 (93,
103)

West North
Central

Nebraska 27 1.5 M 0.5 65 78 86 95 107 109 (104,
115)

South
Dakota

18 0.6 M 0.2 60 73 82 89 100 106 (100,
112)

*only including counties in the state with population greater than 10,000
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Fig. 1. Overall exposure-response associations for various hospitalization outcomes, by U.S. climate regions

Fig. 2. State-specific attributable fraction and number of hospitalizations above minimum morbidity heat index for a cumulative lag period of 2 days
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Fig. 3. Region-specific heat-sensitive zones with heat alert criteria

Fig. 4. States with hospitalization data and U.S. climate regions

scale investigations of regional-scale relationships between heat and morbidity-based health outcomes for the general population.
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Moreover, most assessments have estimated average health risks
for combined endpoints across an entire summertime heat ex-
posure spectrum, ignoring the known differential sensitivity of
certain outcomes to specific temperature ranges (15, 20). As a
result, a clear, consistent nationwide assessment of adverse health
impacts associated with heat exposure in the U.S. has been elu-
sive, complicating the work of setting appropriate local warning
thresholds. This disconnect has the potential to compromise the
efficacy of heat risk communication, and to limit the public health
utility of related activities such as surveillance for heat-related
illness.

In this study, we performedmulti-state analyses to explore re-
lationships between extreme heat and hospitalizations, covering
a majority of the U.S. population. The hospitalizations data that
are used for this study are a census of all hospital admissions, re-
gardless of age or insurance provider. Specifically, our objectives
for this assessment were as follows: 1) to explore the relationship
between heat index (21), which is a heat metric that combines
the effect of humidity and temperature, and hospitalizations
across heat index ranges observed during summer months; 2)
to develop exposure-response (E-R) associations for all-cause
and cause-specific hospitalizations, including cardiovascular, res-
piratory, diabetic, renal, and fluid and electrolyte illnesses; 3) to
synthesize heat-attributable burden—adverse health impacts in
terms of fractions and numbers, and 4) to identify heat index
ranges, stratified by U.S. climate region (22) that correspond with
significant adverse health impacts, and to compare those against
current NWS heat alert criteria for those same regions.

Results

Our assessment examined approximately 50 million inpatient
hospitalization records, covering 1,617 counties across 22 states
for the summer months of 2003-2012, to model the relationship
between heat index and adverse health outcomes. This multistate
hospitalization database accounts for every single patient treated
as an inpatient in hospitals, regardless of any age criteria or the
type of insurance used to pay for services. We provide a state-
specific summary of population coverage and number of counties
included in this assessment inTable 1. Also inTable 1, we show the
population-weighted distribution of daily maximum heat index
and the range of values for which heat alerts are typically issued.
We provide the crude rates of summertime hospitalizations from
all causes and for specific outcomes in the supplemental section
(See SI Appendix, Table S1) for this article. The states considered
for this assessment accounted for 55.1% of the U.S. total pop-
ulation and are spread out across all nine U.S. climate regions.
We excluded 390 counties for population size of less than 10,000
though this exclusion only reduced the sample size of inpatient
hospitalization records by 0.6%.

For most states, the median heat alert criteria fell between
the 95th and 99th percentile summertime heat index distribution.
Whilemost of the states in the same climate region share a similar
temperature climatology, we found significant intra-regional vari-
ability in the Southwest climate region; (e.g. comparing Arizona
with Colorado andUtah). However, this variation was mostly due
to the high summertime heat index values prevalent in metropoli-
tan areas of Phoenix, Arizona and surrounding areas.

For this analysis, associations between heat index and hos-
pitalization outcomes during summer months were assessed
through a two-stage time-series analysis. Non-linear and delayed
associations were estimated for each county, and then pooled at
state and climate region level through a meta-regression analysis.
Risk estimates for hospitalizations are reported in terms of mean
percent change (and 95% CI) in daily hospitalizations for heat
index above the Minimum Morbidity Heat Index (MMHI). The
MMHI corresponds to the heat index value above which heat-
related morbidity risk starts to increase. County-specific maps

of MMHI for each hospitalization outcome are provided in the
supplemental section of this article (See SI Appendix, Figure S1).
In Figure 1, we present the mean percent change (and 95% CI)
in daily hospitalizations observed for summertime heat index val-
ues for each climate region. Comparing across health outcomes,
we found that the largest increases in slope of the overall E-
R associations were observed for outcomes such as renal fail-
ure, and fluid and electrolyte related disorders; cardiovascular,
respiratory and diabetes related illnesses showed a steady but
much lower percent increase in daily hospitalizations for a unit
change in heat index values. For all-cause hospitalizations, we
found statistically significant E-R associations for most states
over a wide-range of heat index values, however the effect sizes
were much smaller when compared to renal failure, and fluid and
electrolyte disorders related hospitalizations. Also noteworthy
were the findings on the varying risk sensitivity of cause-specific
health outcomes to moderately high heat index values, indicating
that the health burden from heat exposure is apparent below heat
alert thresholds (denoted by golden bands in Figure 1).

Figure 1: Overall exposure-response associations for various
hospitalization outcomes, by U.S. climate regions*

*Percent change in risk estimated from the minimummorbid-
ity heat index for a cumulative lag period of 2 days

We present the state-specific heat-attributable adverse health
impacts, i.e., the heat attributable fraction (AF) and attributable
number (AN) per summer, in Figure 2 for each hospitalization
outcome considered in this assessment. We summarize the mean
and 95% confidence interval (CI) for AF and AN across all heat
index values above the MMHI.

Figure 2: State-specific attributable fraction and number
of hospitalizations above minimum morbidity heat index for a
cumulative lag period of 2 days

For most states, AFs associated with renal failure and fluid
and electrolyte related disorders showed a much greater sensitiv-
ity to heat index values aboveMMHI than other health outcomes;
Within each state and for a given hospitalization outcome, the
county level variation in AF was minimal; however, significant
county-level differences were observed between hospitalization
outcomes (See SI Appendix, Figure S2). County level maps for
cardiovascular and respiratory diseases, as well as hospitalizations
for all causes, showed a similar pattern with most counties having
a mean AF that is lesser than or equal to 1.3%. For renal failure
and fluid and electrolyte related disorders, mean AFs were signif-
icantly higher than for other outcomes, with some counties having
meanAFs greater than 3%. For diabetes-related hospitalizations,
regional differences were observed with mean AFs greater for
counties in Northwest, Southwest, and West but relatively lower
for counties in other regions. The spatial patterns of mean ANs
(See SI Appendix, Figure S3) reflect location-specific baseline
numbers for each hospitalization outcome, which are mostly
driven by population sizes. Essentially, areas with high risk and
small population sizes have comparable burden to areas with low
risk but a fairly substantial population. Moreover, for a given
location, heat-attributable adverse health impacts are distributed
unevenly across summertime heat index values. Summary of AF
(See SI Appendix, Table S2) and AN (See SI Appendix, Table
S3) by heat index ranges for each hospitalization outcome and
by state are provided in the supplemental section of this article.
In most states, AFs and ANs correspond well with person-days of
exposure observed under each heat index range.

In Figure 3, we translate information gleaned from afore-
mentioned results on heat-attributable adverse health impacts
into a one-dimensional heat chart. In doing so, we identify “heat-
sensitive zones,” based on heat index ranges at which positively
significant adverse health impacts (AFs/ANs) are observed for
different climate regions and health outcomes considered in this
assessment. The chart also offers a comparison between heat
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index ranges used for issuing alerts and those associatedwith peak
adverse health impacts. Evidently, in colder regions of the U.S.,
e.g., the Central Region, a large proportion of adverse health
impacts tend to occur at moderate heat index ranges—well below
the heat index values used by someWFOs at the time of this study
for issuing alerts. In warmer regions of the U.S., e.g., the South
Region, heat index ranges that are sensitive to adverse health
impacts overlap with those used for issuing alerts. However, in
certain regions, e.g., the Southwest Region, peak adverse health
impacts are observed at heat index ranges that are above the
median heat alert criteria.

Figure 3: Region-specific heat-sensitive zones with heat alert
criteria

Discussion

Our assessment is novel in scope, scale, and has implications for
current and future risk management related to heat exposure.
Prior assessments that have tried to identify heat alert thresholds
based on heat-health risk relationships are either city-specific
or for communities covering a few states (23, 24). This study’s
novelty lies in the comprehensive assessment of heat exposure
on various morbidity outcomes, including those that are less
well characterized in published literature. In addition, we use
a nationally consistent study design that employed a systematic
modeling framework to link exposure to fine-scale, cause-specific
hospitalizations to characterize adverse health impacts for the
general population across climatologically diverse locations. We
generated overall E-R associations and attributable health risk /
burden estimates based on the census of all hospital admissions
for the states included in this assessment, representing all climatic
regions of the U.S., providing a firm basis to demonstrate prevail-
ing heat-attributable health impacts at various public health deci-
sion making scales. We showed the importance of assessing mul-
tiple health outcomes, as risk sensitivity (slope) and magnitude
of cause-specific E-R associations tend to differ across outcomes.
We also identified a systematic dissociation in some geographic
areas between the temperatures at which heat alerts are issued
and the temperatures at which peak impacts are observed.

This misalignment in some geographic areas between the
temperatures at which health burdens become significant and
temperatures at which alerts are issued raises critical questions.
Following the methodology of issuing heat alerts based on the
extremity of heat index distribution regardless of differential
population sensitivity, could generally fail to account for a large
proportion of heat-attributable adverse health impacts observed
at moderately hot conditions. This may be an important consid-
eration, especially among those populations residing in cooler
regions, with no structural adaptations such as air conditioning.
While it is likely that there should be better alignment between
alert thresholds and regional heat epidemiology, it is not clear
exactly where warning thresholds should be set. There are a
number of issues to consider, including the potential for warn-
ing fatigue (18). Conversely, in warmer locations, peak heat-
attributable burden occurs past the median temperature for heat
alerts, yet the burden curves generally show a monotonic rise
above these threshold temperatures, raising questions about the
effectiveness of current intervention strategies, heat alert mes-
saging, and related activities. Potentially, this highlights inherent
communication challenges in delivering actionable risk informa-
tion and prevention guidelines to various stakeholders, including
vulnerable populations. Additional research regarding specific
protective measures and appropriate timing for risk reduction
measures is needed to inform future risk management decisions.

Our results show promise for the use of regionally-specific
health evidence to inform and calibrate heat alert protocols (24).
Further, graduated heat alert protocols may help warn for low,
moderate, and peak adverse health impacts. Such graduated

alerts, such as the air quality index (25), are currently used to
identify areas impacted by poor air quality. In addition to empiri-
cal alignment of warnings with risks, such recalibrated heat alerts
and more specific messaging might improve message relevance
and facilitate better stakeholder engagement (26). In addition,
web-enabled resources detailing individual preventative options
(27), especially at low andmoderately high temperatures, coupled
with graduated community-level interventions, such as opening
cooling shelters (28) during more extreme situations like heat
waves, could potentially minimize heat-related adverse health
impacts more effectively. These initiatives could strengthen heat
preparedness and response capabilities, but require additional
coordination across various local, state, and federal agencies.

There are some limitations to our assessment. Although our
analysis included hospitalizations for more than 1200 counties
covering 55% of the total U.S. population, E-R associations may
not fully characterize the underlying heat-health relationship in
areas that are sparsely populated or in regions where certain key
states are omitted. While adding more counties would improve
population coverage and generalizability of the findings, data
access limitations prevented inclusion of additional counties. An-
other limitation is the identification of state- and region-level heat
index ranges that are used for issuing alerts. Our primary goal was
to explore the discrepancy between heat index values used for
issuing alerts and those that are associated with significant heat
attributable health burden for the time period used in this assess-
ment; however, heat alert criteria, which are set by WFOs, are
occasionally revised and sometimes changed based on epidemio-
logic evidence (23). Further, this assessment does not present any
evidence on how some of the population-level health risks can be
modified by individual risk factors (age, race, occupational status)
or by community-level factors (poverty, density, land use and land
cover). We plan to address these considerations in future work.
Despite including robust daily, county-level environmental pre-
dictors in our time-series analyses, our results may be affected by
residual confounding (29), especially should there be an omitted
or misspecfied confounder that fluctuates over time in a manner
similar to heat index. Further, exposure misclassification could
result from using modeled data sources, especially in areas where
modeled estimates of heat metrics do not comport well with
those derived from station based measurements. Lastly, relying
on ambient weather data may also misrepresent true exposures,
particularly in regions where prevalence of air conditioning is
higher (30).

Heat-related illnesses are preventable (31) adverse health
outcomes. Heat early warning systems and action plans have been
shown to reduce risks of heat exposure, and best practice recom-
mends that plans be built around local epidemiologic evidence
and emergency management capacity. Our evaluation provides
useful information for heat early warning system and action plan
administrators regarding the temperature ranges at which health
impacts are manifest, the morbidity outcomes most sensitive to
heat, and alignment between alert thresholds and temperatures
at which disease burden is most pronounced. The results suggest
opportunities for improvement and for refinement of prevention
messaging as well as coordination between meteorological and
public health authorities at multiple levels before, during, and
after extreme heat events. Improving risk management related
to extreme heat involves multiple stakeholders and input from
a range of disciplines. Our results could be a starting point for
enhanced dialogue among various stakeholders involved in heat-
health activities and for enhanced collaboration among various
organizations, including those that facilitated our access to high
resolution health data and expertise on weather forecasting and
statistical modeling. Furthering these collaborations to develop
a community of practice for systematically assessing and dis-
seminating weather-related health impacts could strengthen pre-

681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748

6 www.pnas.org --- --- Footline Author

749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816



Submission PDF

paredness and response capacity, increase public awareness, and
potentially reduce the substantial burden of disease associated
with extreme heat.

Materials and Methods
Meteorological data

Hourly meteorological predictions from the North American Land
Data Assimilation System Phase 2 (NLDAS) model (32), available for
temperature, humidity, and other weather parameters at 0.125 de-
grees grid resolution. The hourly gridded data were made available
to the Centers for Disease Control and Prevention as part of an in-
teragency agreement with the National Aeronautics and Space Admin-
istration. We first calculated hourly heat index using hourly temper-
ature and humidity information at a grid level. The heat index for-
mula, which was obtained from NWS’ weather prediction center website
(https://www.wpc.ncep.noaa.gov/html/heatindex equation.shtml). This for-
mula was a refinement of the regression equation presented by Roth-
fusz (33). Furthermore, we used a multi-stage geo-imputation approach to
convert grid-level meteorological data to county-level estimates. We first
calculated the population within each NLDAS grid cell using 2010 population
estimates by U.S. Census blocks. We then converted NLDAS grid polygons
with population information to centroids and related all the grid cell cen-
troids to the counties in the conterminous U.S. based on a containment
relationship. If a county did not have a grid cell centroid within its boundary,
we assigned a grid cell centroid closest to the county boundary. Finally, we
created a population-weighted average from all the grid cell centroids to
obtain county-level estimates of daily maximum heat index, for the summer
months (May 1 through September 30) and for years 2003-2012. We used
daily maximum heat index as the primary exposure metric in this health risk
assessment.

In addition, we obtained data on heat alerts (excessive heat warnings,
watches, and heat advisories) from NWS for 2007-12. This dataset contained
information on the WFO and the warning area within that WFO jurisdiction
for which alerts were issued, as well as the date of alerts. We also gathered
information on the geographical boundaries for warning areas within WFO,
which changed over time during 2007-2012. Since the warning areas do not
spatially align with county boundaries, we used spatial analysis techniques
to reconcile boundary differences. First, we related the centroid of each U.S.
Census block to the warning areas, and created a census-block level alert
database with date information. Subsequently, we aggregated this block-
level dataset to counties, and created a daily, county-level heat alert dataset.
Further, we merged this alert database with county-level daily maximum
heat index information. We used the resulting county-level linked database
to summarize median, 5th and 95th percentile heat index values used for
issuing alerts by state and climate region. Our intent was to capture the most
common range of heat index values used for issuing alerts within each state
or climate region, knowing that heat alerts are specific to area served by the
WFO and are seldom issued to cover large geographic areas.

Hospitalization data
We accessed hospitalizations data for 22 states (Arizona [AZ], California

[CA], Colorado [CO], Florida [FL], Georgia [GA], Iowa [IA], Illinois [IL], Indi-
ana [IN], Kansas [KS], Kentucky [KY], Maryland [MD], Missouri [MO], North
Carolina [NC], Nebraska [NE], Nevada[NV], New York [NY], Oregon [OR],
Rhode Island [RI], South Dakota [SD], Utah [UT], Virginia [VA], West Virginia
[WV]) spread out across 9 U.S. climate regions (Central, East North Central,
Northeast, Northwest, South, Southeast, Southwest, West, West North Cen-
tral) from the Agency for Health Research and Quality (AHRQ) Healthcare
Cost Utilization Project (HCUP) (34) for the years 2003–2012. These are
inpatient records for all patients visiting a hospital in these states. Figure
4 provides a map summary of the states with hospitalization data and their
relationship to climate regions; a description of these regions is available
from the NCEI (www.ncdc.noaa.gov/monitoring-references/maps/us-climate-
regions.php). Using the Clinical Classification Software (CCS) developed by
AHRQ (https://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp), we selected
daily patient records for all available diagnoses combined and for the follow-
ing illnesses based on the principal or secondary diagnoses: cardiovascular
(CCS: 98-101, 106-110, 115) (7, 35), respiratory-related (CCS: 122, 127-128)
(6, 35, 36), diabetes (CCS: 49-50), renal failure (CCS: 157) and electrolyte
imbalance (CCS: 55) (5, 36). We summarized the extracted patient records
for these conditions for the summer months to obtain counts by county of
residence and day.

Figure 4: States with hospitalization data and U.S. climate regions
Statistical Analysis
We conducted a two-stage analysis (37) to estimate E-R relationships

for all-cause and cause-specific hospitalizations across states and climatic
regions. The theory and development of methods for modeling overall E-R
associations, conducting meta-analysis, and estimating attributable risk from
distributed lag models are articulated in several research articles published
in scientific journals (37, 38, 39, 40, 49). A succinct summary of various aspects
of our statistical analyses is provided below:

Assessment of the exposure-response (E-R) associations: county-level
time series analyses (first stage)

The first stage involved a county-level time series quasi-Poisson regres-
sion using a Distributed Lag Non-Linear Model (DLNM) for the summer
months (May 1 through September 30) to estimate location-specific heat
index-morbidity associations. This class of models can describe complex non-
linear and lagged dependencies through the combination of two functions
specified in a cross-basis term of the exposure variable, defining both
exposure-response association and the lag-response distribution (38).

The model formula is as follows:

where is the number of hospitalizations in day and county . The cross-

basis term of heat index is a bi-dimensional function s and coeffi-
cients which defines an exposure-lag-response risk surface accounting for
2 days of lag. It included a natural cubic B-spline function with internal knots
at 50th and 90th percentile of the county-specific heat index distribution in
the E-R dimension, and a strata function defining two levels in lag 0 and lag
1-2. This simplified the computational demands of our modeling approach,
and at the same time captured the main association and the potential
harvesting. However, we considered modeling overall E-R associations by
fitting a natural spline with two internal knots equally-spaced on the log-
scale for various lag periods, ranging from 0 to 7 days. State-specific lag-
response relationships between heat index and various health outcomes
considered in this assessment are provided in the supplemental section
(See SI Appendix, Figure S4-S9) of this article. While, the most appropriate
cumulative lag period varied by state, a 2-day period seemed the most
sensitive across most states and health outcomes. And perusing previously
published literature (41, 42, 43, 44, 45) reiterated that a 2-day cumulative
lag period for exploring delayed effects of heat exposure on hospitalizations
was appropriate. The main model also included a linear function of daily 24-
hr average fine particulate matter concentration ( , average 8-hr ozone
daily maximum concentration ( , indicators for day of the week ( ,

indicator for year , natural cubic B-spline of the day of the year
with four degrees of freedom to control for seasonality and
natural cubic B-spline of the time with 2 degrees of freedom for long-term
trends . Each bi-dimensional function was reduced to uni-
dimensional overall cumulative E-R curves, which were then used as input
for the second-stage pooled analysis. We excluded counties with an average
population of less than 10,000 people for the analysis period to avoid model
convergence issues resulting from small sample size.

Assessment of the exposure-response (E-R) associations: pooled analyses
to generate state and county-level summaries (second stage)

Our second stage involved a multivariate random-effects meta-
analysis30,31 to pool the county-specific uni-dimensional overall cumulative
E-R associations generated in the first stage across larger geographic scales,
such as by state or climate region. The meta-analytic model included a
geographic scale factor (indicator for climate region or state) used for
predicting E-R associations. We evaluated for residual heterogeneity in
the meta-analytic model by examining the Cochran Q test results and I2

statistic (39, 46). We then used the fitted meta-analytical model to derive the
best linear unbiased prediction (BLUP) of the overall cumulative exposure-
response association in each county (37). BLUP-based predictions allow
sparsely populated areas, which are typically characterized by imprecise
effect estimates, to borrow information from largely populated neighboring
areas that share similar characteristics (38, 39). County-specific MMHI (47, 48),
which corresponds to a minimum morbidity percentile between the 25th and
the 75th percentiles of the summertime heat index distribution, was derived
from the BLUPs of the overall cumulative exposure-response association in
each location.

Estimation of the heat-attributable adverse health impacts
The MMHI was used as the reference point for estimating the number

and fraction of hospitalizations attributable heat (AN, AF). AN was calculated
as the sum of all hospitalizations in days with heat index values higher
than the estimated MMHI in a specific county. AF corresponded to the
ratio of AN by the the total number of hospitalizations. (49). We calculated
empirical confidence limits using Monte Carlo simulations (n = 2000), as-
suming a multivariate normal distribution of the BLUP-based predictions.
We also calculated ANs and AFs, by 5 °F increments in heat index, for each
hospitalization outcome considered in this assessment. Figure 3 combines
this attributable burden information with the heat index ranges used for
issuing heat alerts. First, heat-sensitive zones were derived using region-
specific heat-attributable burden information for all outcomes considered
in this assessment, and are denoted in Figure 3 as “horizontal bars”—shaded
in a yellow (low burden) to red (high burden) color gradient. The operating
range for this heat-sensitive zone is the heat index values over which the
attributable burden is statistically significant. In addition, heat index ranges
that are associated with peak burden were identified by “red-checkered
boxes.” Lastly, the heat index range used for issuing heat alerts (denoted by
“shaded gray area”) and median heat alert criteria (denoted by “gray vertical
bar”) were juxtaposed with region-specific heat-sensitive zones.
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All primary statistical analyses were performed with R software (version
3.0.3) using the packages dlnm and mvmeta. We used SAS v9.4 and ArcGIS
9.3 for descriptive analysis and for creating displays.
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All-causes

All 

cardiovascular 

related

All respiratory 

related
Diabetes related

Fluid and 

Electrolyte 

disorders related

Renal failure 

related

Illinois 12.7 M 338 271 113 106 92 28

Indiana 6.4 M 309 254 115 108 89 28

Kentucky 4.3 M 377 304 151 123 104 33

Missouri 5.9 M 366 297 130 121 103 30

West Virginia 1.8 M 446 364 179 150 117 39

East North Central Iowa 3. M 287 230 95 88 81 21

Maryland 5.7 M 660 534 224 219 249 70

New York 19.3 M 305 247 98 98 76 24

Rhode Island 1.1 M 310 252 111 94 74 34

Northwest Oregon 3.7 M 215 169 69 65 62 20

South Kansas 2.8 M 272 214 87 86 88 22

Florida 18.3 M 321 265 106 105 95 31

Georgia 9.3 M 262 213 83 88 86 29

North Carolina 9.1 M 298 238 95 94 85 31

Virginia 7.8 M 244 195 79 77 74 25

Arizona 6.1 M 283 216 88 87 98 30

Colorado 4.8 M 204 154 69 56 71 21

Utah 2.6 M 160 112 42 41 46 14

California 36.5 M 232 185 73 79 68 22

Nevada 2.6 M 249 197 84 76 79 25

Nebraska 1.8 M 248 190 76 67 64 19

South Dakota 0.8 M 243 189 85 73 75 18

Southeast

Southwest

West

West North Central

Table S1: State-specific crude rates for hospitalization outcomes

Climate region State

Average yearly 

state population 

(2003-2012)

Summertime (May - Sep) crude rate for hospitalizations (per 10,000)

Central

Northeast



Figure S1: County-level minimum morbidity heat index (MMHI) (°F), by hospitalization outcomes



Figure S2: County-level mean attributable fraction (%) above MMHI for a cumulative 2-day lag period, by hospitalization outcomes 



Figure S3: County-level mean attributable number per summer above MMHI for a cumulative 2-day lag period, by hospitalization outcomes 



Figure S4: Lag-Response relationship between heat index and hospitalizations from all causes, by state
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Figure S5: Lag-Response relationship between heat index and cardiovascular related hospitalizations, by state
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Figure S6 Lag-Response relationship between heat index and respiratory related hospitalizations, by state
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Figure S7: Lag-Response relationship between heat index and diabetes related hospitalizations, by state
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Figure S8: Lag-Response relationship between heat index and fluid and electrolyte disorders related hospitalizations, by state
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Figure S9: Lag-Response relationship between heat index and renal failure related hospitalizations, by state
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All-Cause
All cardiovascular 

related

All respiratory 

related 
Diabetes related

Fluid and electrolyte 

disorders related
Renal failure related

Person-

Days

County-

Days

Mean AF (95%CI) 

(%)

Mean AF (95%CI) 

(%)

Mean AF (95%CI) 

(%)

Mean AF (95%CI) 

(%)

Mean AF (95%CI) 

(%)

Mean AF (95%CI) 

(%)

(71-75)°F 13 10 -0.00  (-0.00, -0.00) -0.00  (-0.01, -0.00) -0.00  (-0.01, -0.00) -0.01  (-0.01, -0.00) -0.01  (-0.01, -0.00) -0.02  (-0.02, -0.01)

(76-80)°F 17 15 0.06  (0.03, 0.09) 0.05  (0.02, 0.08) 0.04  (0.00, 0.08) 0.10  (0.06, 0.13) 0.09  (0.05, 0.13) 0.12  (0.06, 0.18)

(81-85)°F 15 15 0.13  (0.08, 0.19) 0.12  (0.06, 0.18) 0.08  (0.00, 0.17) 0.21  (0.13, 0.28) 0.21  (0.13, 0.30) 0.24  (0.11, 0.36)

(86-90)°F 13 15 0.18  (0.11, 0.24) 0.15  (0.08, 0.22) 0.11  (0.02, 0.20) 0.25  (0.16, 0.34) 0.29  (0.20, 0.39) 0.33  (0.18, 0.48)

(91-95)°F 10 12 0.17  (0.11, 0.22) 0.14  (0.08, 0.19) 0.10  (0.04, 0.16) 0.19  (0.13, 0.26) 0.30  (0.23, 0.37) 0.34  (0.22, 0.45)

(96-100)°F 7 9 0.14  (0.10, 0.17) 0.11  (0.07, 0.14) 0.08  (0.05, 0.12) 0.12  (0.08, 0.16) 0.28  (0.23, 0.33) 0.32  (0.23, 0.40)

(101-105)°F 4 6 0.09  (0.07, 0.11) 0.06  (0.04, 0.09) 0.06  (0.03, 0.08) 0.05  (0.03, 0.08) 0.22  (0.19, 0.25) 0.26  (0.19, 0.32)

(106-110)°F 3 4 0.06  (0.04, 0.07) 0.03  (0.02, 0.05) 0.04  (0.02, 0.05) 0.02  (-0.00, 0.04) 0.19  (0.16, 0.21) 0.22  (0.16, 0.27)

(71-75)°F 12 12 -0.02  (-0.02, -0.02) -0.02  (-0.02, -0.02) -0.03  (-0.03, -0.02) -0.02  (-0.03, -0.01) -0.04  (-0.04, -0.03) -0.03  (-0.04, -0.02)

(76-80)°F 19 18 0.06  (0.05, 0.07) 0.06  (0.05, 0.07) 0.07  (0.06, 0.09) 0.06  (0.05, 0.08) 0.09  (0.07, 0.11) 0.08  (0.05, 0.10)

(81-85)°F 15 15 0.15  (0.12, 0.17) 0.14  (0.11, 0.16) 0.18  (0.14, 0.22) 0.15  (0.11, 0.19) 0.21  (0.16, 0.25) 0.19  (0.12, 0.25)

(86-90)°F 14 14 0.22  (0.18, 0.26) 0.19  (0.15, 0.23) 0.25  (0.19, 0.30) 0.22  (0.16, 0.27) 0.32  (0.25, 0.39) 0.31  (0.20, 0.41)

(91-95)°F 11 12 0.19  (0.16, 0.23) 0.16  (0.12, 0.19) 0.19  (0.14, 0.24) 0.18  (0.14, 0.22) 0.33  (0.27, 0.39) 0.36  (0.26, 0.45)

(96-100)°F 8 8 0.13  (0.11, 0.16) 0.09  (0.06, 0.11) 0.09  (0.06, 0.12) 0.11  (0.08, 0.14) 0.28  (0.23, 0.32) 0.34  (0.26, 0.41)

(101-105)°F 4 4 0.07  (0.05, 0.08) 0.03  (0.02, 0.05) 0.03  (0.01, 0.04) 0.05  (0.03, 0.06) 0.19  (0.17, 0.22) 0.26  (0.20, 0.31)

(106-110)°F 2 3 0.03  (0.03, 0.04) 0.01  (0.00, 0.02) 0.02  (0.01, 0.03) 0.02  (0.01, 0.03) 0.14  (0.12, 0.15) 0.18  (0.14, 0.22)

(71-75)°F 10 10 -0.03  (-0.03, -0.02) -0.02  (-0.03, -0.02) 0.00  (-0.02, 0.03) -0.05  (-0.06, -0.05) -0.05  (-0.06, -0.04) -0.07  (-0.08, -0.06)

(76-80)°F 16 17 0.01  (0.00, 0.01) 0.01  (0.00, 0.01) 0.03  (-0.00, 0.05) 0.01  (0.00, 0.01) 0.01  (0.01, 0.02) 0.02  (0.02, 0.03)

(81-85)°F 15 15 0.06  (0.04, 0.08) 0.06  (0.04, 0.07) 0.04  (0.02, 0.07) 0.08  (0.06, 0.10) 0.14  (0.10, 0.17) 0.20  (0.16, 0.25)

(86-90)°F 16 17 0.11  (0.07, 0.15) 0.10  (0.06, 0.13) 0.05  (0.01, 0.09) 0.12  (0.08, 0.16) 0.27  (0.21, 0.33) 0.41  (0.31, 0.50)

(91-95)°F 15 15 0.11  (0.06, 0.15) 0.08  (0.03, 0.12) 0.01  (-0.04, 0.07) 0.09  (0.04, 0.15) 0.34  (0.26, 0.41) 0.54  (0.41, 0.66)

(96-100)°F 10 9 0.05  (0.02, 0.09) 0.02  (-0.02, 0.06) -0.02  (-0.06, 0.01) 0.03  (-0.01, 0.06) 0.27  (0.21, 0.32) 0.44  (0.34, 0.53)

(101-105)°F 5 5 0.02  (0.00, 0.04) -0.00  (-0.02, 0.02) -0.03  (-0.05, -0.01) -0.01  (-0.03, 0.01) 0.19  (0.16, 0.23) 0.32  (0.25, 0.38)

(106-110)°F 3 3 0.02  (0.01, 0.03) 0.00  (-0.01, 0.02) -0.01  (-0.03, 0.00) -0.00  (-0.02, 0.01) 0.14  (0.12, 0.17) 0.20  (0.14, 0.25)

(71-75)°F 7 7 -0.02  (-0.03, -0.02) -0.01  (-0.02, -0.01) -0.01  (-0.02, -0.00) -0.01  (-0.02, -0.00) -0.03  (-0.04, -0.02) -0.04  (-0.05, -0.02)

(76-80)°F 13 13 -0.01  (-0.01, -0.01) -0.01  (-0.01, -0.01) -0.01  (-0.01, -0.00) -0.01  (-0.01, -0.00) -0.01  (-0.02, -0.01) -0.02  (-0.02, -0.01)

(81-85)°F 14 14 0.05  (0.04, 0.06) 0.04  (0.03, 0.05) 0.03  (0.02, 0.05) 0.04  (0.02, 0.05) 0.06  (0.04, 0.08) 0.07  (0.04, 0.10)

(86-90)°F 15 15 0.14  (0.11, 0.16) 0.13  (0.10, 0.15) 0.09  (0.05, 0.13) 0.11  (0.08, 0.15) 0.16  (0.11, 0.21) 0.18  (0.10, 0.26)

(91-95)°F 13 13 0.20  (0.16, 0.24) 0.19  (0.15, 0.22) 0.12  (0.07, 0.17) 0.18  (0.13, 0.22) 0.27  (0.20, 0.34) 0.31  (0.20, 0.42)

(96-100)°F 11 11 0.22  (0.18, 0.26) 0.20  (0.16, 0.24) 0.12  (0.06, 0.16) 0.21  (0.16, 0.25) 0.38  (0.31, 0.44) 0.45  (0.34, 0.56)

(101-105)°F 9 9 0.19  (0.16, 0.22) 0.16  (0.13, 0.20) 0.07  (0.04, 0.11) 0.19  (0.15, 0.22) 0.42  (0.37, 0.48) 0.53  (0.45, 0.62)

(106-110)°F 7 6 0.16  (0.13, 0.19) 0.13  (0.10, 0.16) 0.04  (0.01, 0.06) 0.16  (0.13, 0.19) 0.45  (0.40, 0.50) 0.62  (0.52, 0.71)

(71-75)°F 16 16 -0.00  (-0.01, 0.01) -0.00  (-0.01, 0.01) -0.01  (-0.03, 0.02) 0.01  (-0.01, 0.02) -0.00  (-0.02, 0.01) -0.02  (-0.04, 0.01)

(76-80)°F 21 22 0.12  (0.09, 0.14) 0.10  (0.07, 0.13) 0.07  (0.01, 0.12) 0.19  (0.15, 0.22) 0.16  (0.11, 0.22) 0.53  (0.46, 0.61)

(81-85)°F 16 16 0.13  (0.09, 0.17) 0.11  (0.07, 0.15) 0.06  (0.01, 0.12) 0.23  (0.18, 0.28) 0.27  (0.19, 0.34) 0.85  (0.75, 0.96)

(86-90)°F 15 15 0.10  (0.04, 0.15) 0.06  (0.01, 0.11) 0.03  (-0.03, 0.10) 0.17  (0.11, 0.23) 0.35  (0.25, 0.45) 1.05  (0.90, 1.20)

(91-95)°F 10 9 0.01  (-0.03, 0.05) -0.02  (-0.06, 0.03) 0.00  (-0.04, 0.05) 0.02  (-0.03, 0.07) 0.27  (0.20, 0.35) 0.73  (0.60, 0.84)

(96-100)°F 4 4 -0.03  (-0.05, -0.00) -0.04  (-0.06, -0.02) -0.00  (-0.03, 0.02) -0.05  (-0.08, -0.03) 0.15  (0.11, 0.19) 0.35  (0.27, 0.43)

(101-105)°F 2 1 -0.00  (-0.01, 0.01) -0.01  (-0.02, -0.00 0.02  (0.01, 0.03) -0.02  (-0.03, -0.01) 0.08  (0.06, 0.10) 0.14  (0.09, 0.18)

(106-110)°F 1 0 0.01  (0.01, 0.01) 0.01  (0.00, 0.01) 0.02  (0.01, 0.02) 0.01  (0.00, 0.01) 0.03  (0.02, 0.04) 0.04  (0.01, 0.06)

(71-75)°F 11 11 -0.02  (-0.02, -0.01) -0.02  (-0.02, -0.01) -0.00  (-0.01, 0.00) 0.00  (-0.00, 0.01) -0.02  (-0.03, -0.01) -0.05  (-0.06, -0.04)

(76-80)°F 15 16 0.05  (0.04, 0.06) 0.05  (0.04, 0.05) 0.02  (0.01, 0.03) 0.02  (0.01, 0.04) 0.06  (0.04, 0.07) 0.16  (0.14, 0.18)

(81-85)°F 16 16 0.16  (0.13, 0.19) 0.14  (0.11, 0.16) 0.08  (0.03, 0.12) 0.11  (0.07, 0.15) 0.17  (0.12, 0.22) 0.51  (0.43, 0.58)

(86-90)°F 14 14 0.23  (0.18, 0.27) 0.18  (0.14, 0.23) 0.11  (0.05, 0.18) 0.18  (0.12, 0.23) 0.25  (0.17, 0.33) 0.72  (0.60, 0.82)

(91-95)°F 10 10 0.17  (0.13, 0.20) 0.13  (0.10, 0.17) 0.08  (0.03, 0.13) 0.15  (0.11, 0.20) 0.24  (0.17, 0.30) 0.68  (0.57, 0.77)

(96-100)°F 8 7 0.11  (0.08, 0.14) 0.08  (0.05, 0.11) 0.05  (0.01, 0.09) 0.11  (0.08, 0.15) 0.21  (0.15, 0.27) 0.56  (0.47, 0.65)

(101-105)°F 5 5 0.05  (0.03, 0.07) 0.02  (0.00, 0.04) 0.01  (-0.02, 0.03) 0.06  (0.04, 0.09) 0.17  (0.13, 0.21) 0.39  (0.32, 0.45)

(106-110)°F 3 3 0.02  (0.00, 0.03) 0.00  (-0.01, 0.02) -0.02  (-0.03, -0.00) 0.02  (0.00, 0.04) 0.13  (0.10, 0.15) 0.27  (0.21, 0.32)

(71-75)°F 12 13 0.00  (-0.02, 0.03) 0.01  (-0.03, 0.06) 0.04  (-0.02, 0.10) -0.02  (-0.03, -0.00) -0.03  (-0.04, -0.02) -0.07  (-0.08, -0.05)

(76-80)°F 17 18 0.01  (-0.01, 0.03) 0.02  (-0.03, 0.06) 0.04  (-0.01, 0.10) 0.03  (0.01, 0.05) 0.06  (0.04, 0.08) 0.14  (0.11, 0.17)

(81-85)°F 17 17 0.05  (0.01, 0.09) 0.04  (-0.00, 0.08) 0.04  (-0.02, 0.09) 0.09  (0.02, 0.15) 0.21  (0.13, 0.29) 0.49  (0.36, 0.60)

(86-90)°F 16 15 0.08  (0.02, 0.14) 0.06  (0.01, 0.12) 0.05  (-0.03, 0.12) 0.11  (0.01, 0.19) 0.34  (0.23, 0.46) 0.75  (0.56, 0.91)

(91-95)°F 13 12 0.10  (0.03, 0.16) 0.07  (0.01, 0.13) 0.08  (-0.01, 0.15) 0.07  (-0.02, 0.16) 0.43  (0.31, 0.54) 0.88  (0.69, 1.05)

(96-100)°F 7 6 0.06  (0.03, 0.10) 0.04  (0.01, 0.08) 0.07  (0.02, 0.11) 0.01  (-0.04, 0.05) 0.30  (0.24, 0.36) 0.58  (0.47, 0.68)

(101-105)°F 3 3 0.04  (0.02, 0.06) 0.03  (0.01, 0.05) 0.04  (0.02, 0.06) 0.01  (-0.02, 0.03) 0.19  (0.16, 0.23) 0.37  (0.31, 0.44)

(106-110)°F 1 1 0.02  (0.01, 0.02) 0.02  (0.01, 0.02) 0.01  (0.00, 0.02) 0.01  (0.00, 0.02) 0.08  (0.07, 0.10) 0.15  (0.13, 0.18)

(71-75)°F 19 22 0.05  (0.04, 0.07) 0.05  (0.03, 0.07) 0.06  (0.02, 0.11) 0.06  (0.05, 0.08) 0.13  (0.10, 0.16) 0.09  (0.06, 0.12)

(76-80)°F 20 20 0.14  (0.10, 0.18) 0.12  (0.09, 0.17) 0.15  (0.10, 0.20) 0.18  (0.14, 0.22) 0.36  (0.30, 0.43) 0.29  (0.20, 0.38)
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Virginia
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region
State

Heat Index 

index range

Frequency by days 

of expsoure (%)

Mean and (95CI) Attributable Fraction (AF) per Summer

East North 

Central

Iowa

Northeast Maryland

New York

Table S2: State-specific mean (95% CI) attributable fraction (AF) of hospitalizations for a cumulative lag period of 2 days, by heat index ranges



All-Cause
All cardiovascular 

related

All respiratory 

related 
Diabetes related

Fluid and electrolyte 

disorders related
Renal failure related

Person-

Days

County-

Days

Mean AF (95%CI) 

(%)

Mean AF (95%CI) 

(%)

Mean AF (95%CI) 

(%)

Mean AF (95%CI) 

(%)

Mean AF (95%CI) 

(%)

Mean AF (95%CI) 

(%)

Climate 

region
State

Heat Index 

index range

Frequency by days 

of expsoure (%)

Mean and (95CI) Attributable Fraction (AF) per Summer

(81-85)°F 14 11 0.17  (0.12, 0.22) 0.14  (0.09, 0.19) 0.18  (0.13, 0.23) 0.22  (0.16, 0.28) 0.47  (0.39, 0.54) 0.42  (0.32, 0.52)

(86-90)°F 11 8 0.19  (0.15, 0.24) 0.15  (0.10, 0.20) 0.22  (0.18, 0.26) 0.23  (0.18, 0.29) 0.57  (0.50, 0.64) 0.56  (0.46, 0.67)

(91-95)°F 7 5 0.16  (0.13, 0.19) 0.11  (0.08, 0.15) 0.20  (0.18, 0.22) 0.17  (0.14, 0.21) 0.49  (0.44, 0.53) 0.50  (0.43, 0.57)

(96-100)°F 3 2 0.11  (0.09, 0.13) 0.07  (0.05, 0.09) 0.14  (0.12, 0.15) 0.11  (0.09, 0.13) 0.35  (0.33, 0.38) 0.39  (0.34, 0.44)

(101-105)°F 1 1 0.05  (0.04, 0.05) 0.03  (0.02, 0.04) 0.05  (0.05, 0.06) 0.04  (0.04, 0.05) 0.16  (0.15, 0.17) 0.19  (0.17, 0.21)

(106-110)°F 0 0 0.02  (0.02, 0.03) 0.02  (0.01, 0.02) 0.02  (0.02, 0.02) 0.02  (0.02, 0.03) 0.09  (0.08, 0.09) 0.11  (0.09, 0.12)

(71-75)°F 20 21 0.07  (-0.02, 0.16) 0.06  (-0.03, 0.16) 0.10  (-0.03, 0.24) 0.11  (-0.02, 0.23) 0.27  (0.10, 0.43) 0.44  (0.26, 0.63)

(76-80)°F 22 22 0.21  (-0.04, 0.45) 0.18  (-0.07, 0.43) 0.25  (-0.12, 0.61) 0.30  (-0.05, 0.64) 0.76  (0.32, 1.19) 1.28  (0.72, 1.83)

(81-85)°F 11 10 0.22  (0.04, 0.40) 0.20  (0.01, 0.39) 0.22  (-0.06, 0.49) 0.29  (0.02, 0.55) 0.72  (0.38, 1.05) 1.18  (0.71, 1.64)

(86-90)°F 9 9 0.30  (0.13, 0.48) 0.28  (0.09, 0.47) 0.27  (0.02, 0.52) 0.38  (0.12, 0.62) 0.88  (0.55, 1.19) 1.28  (0.84, 1.71)

(91-95)°F 6 5 0.29  (0.17, 0.40) 0.27  (0.15, 0.39) 0.24  (0.07, 0.39) 0.33  (0.16, 0.50) 0.74  (0.54, 0.94) 0.93  (0.62, 1.22)

(96-100)°F 2 2 0.17  (0.11, 0.22) 0.16  (0.10, 0.22) 0.13  (0.05, 0.21) 0.19  (0.11, 0.27) 0.41  (0.31, 0.51) 0.52  (0.36, 0.67)

(101-105)°F 1 1 0.06  (0.04, 0.08) 0.06  (0.04, 0.08) 0.04  (0.01, 0.07) 0.08  (0.05, 0.11) 0.15  (0.12, 0.18) 0.23  (0.16, 0.29)

(106-110)°F 0 0 0.03  (0.02, 0.04) 0.03  (0.01, 0.04) 0.02  (-0.00, 0.04) 0.03  (0.01, 0.05) 0.08  (0.05, 0.10) 0.09  (0.06, 0.13)

(71-75)°F 19 15 0.11  (0.05, 0.17) 0.12  (0.06, 0.18) 0.08  (0.02, 0.14) 0.24  (0.16, 0.32) 0.11  (0.01, 0.21) 0.56  (0.41, 0.71)

(76-80)°F 18 16 0.18  (0.08, 0.27) 0.20  (0.10, 0.30) 0.04  (-0.02, 0.11) 0.40  (0.28, 0.52) 0.21  (0.04, 0.36) 0.98  (0.72, 1.21)

(81-85)°F 14 14 0.35  (0.26, 0.43) 0.35  (0.26, 0.43) 0.19  (0.12, 0.25) 0.50  (0.39, 0.59) 0.50  (0.36, 0.63) 1.06  (0.84, 1.25)

(86-90)°F 6 7 0.27  (0.23, 0.31) 0.26  (0.22, 0.30) 0.20  (0.16, 0.24) 0.32  (0.27, 0.36) 0.44  (0.37, 0.51) 0.64  (0.53, 0.74)

(91-95)°F 2 3 0.15  (0.13, 0.16) 0.13  (0.12, 0.15) 0.13  (0.11, 0.15) 0.17  (0.15, 0.19) 0.26  (0.23, 0.29) 0.34  (0.28, 0.39)

(96-100)°F 1 1 0.05  (0.05, 0.06) 0.05  (0.04, 0.05) 0.05  (0.04, 0.06) 0.07  (0.06, 0.07) 0.10  (0.09, 0.11) 0.12  (0.10, 0.14)

(101-105)°F 0 0 0.02  (0.02, 0.02) 0.02  (0.01, 0.02) 0.03  (0.02, 0.03) 0.04  (0.03, 0.04) 0.05  (0.04, 0.06) 0.08  (0.05, 0.09)

(106-110)°F 0 0 0.00  (0.00, 0.01) 0.00  (0.00, 0.01) 0.01  (0.00, 0.01) 0.01  (0.01, 0.01) 0.01  (0.01, 0.02) 0.02  (0.01, 0.03)

(71-75)°F 7 7 -0.05  (-0.07, -0.03) -0.05  (-0.07, -0.04) 0.00  (-0.02, 0.02) -0.02  (-0.04, 0.00) -0.04  (-0.09, -0.00) -0.15  (-0.19, -0.11)

(76-80)°F 11 11 -0.02  (-0.05, 0.01) -0.02  (-0.03, -0.01) -0.00  (-0.01, 0.01) -0.01  (-0.02, 0.00) -0.00  (-0.06, 0.05) -0.06  (-0.08, -0.04)

(81-85)°F 14 14 0.02  (-0.01, 0.05) 0.02  (0.01, 0.03) 0.01  (-0.01, 0.03) 0.01  (-0.00, 0.03) 0.06  (-0.00, 0.12) 0.08  (0.05, 0.11)

(86-90)°F 14 15 0.04  (0.00, 0.08) 0.04  (0.00, 0.08) 0.04  (-0.01, 0.09) 0.04  (-0.00, 0.09) 0.11  (0.05, 0.17) 0.19  (0.10, 0.29)

(91-95)°F 14 14 0.05  (0.01, 0.09) 0.05  (-0.02, 0.11) 0.08  (-0.01, 0.17) 0.07  (-0.01, 0.15) 0.16  (0.09, 0.23) 0.28  (0.11, 0.46)

(96-100)°F 13 13 0.08  (0.03, 0.13) 0.07  (0.00, 0.14) 0.13  (0.04, 0.21) 0.08  (-0.01, 0.16) 0.28  (0.20, 0.36) 0.39  (0.18, 0.59)

(101-105)°F 10 11 0.13  (0.08, 0.17) 0.11  (0.05, 0.17) 0.15  (0.09, 0.22) 0.07  (0.00, 0.14) 0.43  (0.35, 0.51) 0.48  (0.29, 0.67)

(106-110)°F 8 7 0.15  (0.10, 0.19) 0.13  (0.08, 0.18) 0.15  (0.10, 0.20) 0.09  (0.03, 0.14) 0.49  (0.41, 0.57) 0.66  (0.46, 0.84)

(71-75)°F 0 1 -0.00  (-0.00, 0.00) 0.00  (-0.00, 0.00) 0.00  (-0.00, 0.01) -0.00  (-0.01, 0.00) -0.01  (-0.01, -0.01) -0.01  (-0.02, -0.01)

(76-80)°F 2 2 -0.01  (-0.02, -0.01) -0.00  (-0.01, 0.00) 0.00  (-0.01, 0.02) -0.01  (-0.02, -0.00) -0.04  (-0.05, -0.03) -0.06  (-0.07, -0.04)

(81-85)°F 4 4 -0.03  (-0.04, -0.02) -0.02  (-0.02, -0.01) -0.01  (-0.03, 0.00) -0.03  (-0.04, -0.01) -0.07  (-0.09, -0.06) -0.09  (-0.11, -0.08)

(86-90)°F 11 12 -0.04  (-0.05, -0.03) -0.03  (-0.04, -0.01) -0.03  (-0.05, -0.02 -0.04  (-0.05, -0.02) -0.10  (-0.11, -0.08) -0.13  (-0.15, -0.11)

(91-95)°F 27 25 0.04  (0.02, 0.06) 0.03  (0.01, 0.04) 0.05  (0.03, 0.07) 0.04  (0.02, 0.06) 0.09  (0.06, 0.11) 0.11  (0.07, 0.15)

(96-100)°F 33 31 0.30  (0.23, 0.37) 0.22  (0.15, 0.29) 0.30  (0.21, 0.39) 0.29  (0.21, 0.37) 0.58  (0.47, 0.69) 0.72  (0.57, 0.87)

(101-105)°F 19 19 0.34  (0.29, 0.39) 0.28  (0.22, 0.33) 0.21  (0.16, 0.26) 0.36  (0.31, 0.40) 0.64  (0.56, 0.71) 0.84  (0.72, 0.97)

(106-110)°F 4 5 0.10  (0.08, 0.11) 0.08  (0.07, 0.09) 0.05  (0.04, 0.06) 0.11  (0.10, 0.12) 0.16  (0.14, 0.18) 0.23  (0.18, 0.26)

(71-75)°F 3 3 -0.01  (-0.02, -0.01) -0.01  (-0.01, 0.00) 0.00  (-0.01, 0.01) -0.01  (-0.02, -0.00) -0.02  (-0.03, -0.02) -0.06  (-0.08, -0.05)

(76-80)°F 8 7 -0.02  (-0.03, -0.01) -0.01  (-0.03, 0.01) -0.01  (-0.02, 0.00) -0.02  (-0.04, -0.01) -0.05  (-0.06, -0.04) -0.10  (-0.11, -0.08)

(81-85)°F 12 11 -0.01  (-0.02, 0.00) -0.00  (-0.02, 0.02) -0.00  (-0.01, 0.00) -0.01  (-0.02, -0.01) -0.02  (-0.03, -0.02) -0.04  (-0.04, -0.03)

(86-90)°F 20 18 0.04  (0.02, 0.06) 0.03  (0.01, 0.04) 0.05  (0.03, 0.07) 0.06  (0.04, 0.08) 0.12  (0.09, 0.15) 0.13  (0.08, 0.17)

(91-95)°F 22 22 0.14  (0.11, 0.18) 0.09  (0.07, 0.12) 0.16  (0.10, 0.21) 0.19  (0.14, 0.23) 0.41  (0.33, 0.48) 0.44  (0.33, 0.55)

(96-100)°F 18 20 0.25  (0.21, 0.28) 0.17  (0.14, 0.21) 0.22  (0.17, 0.27) 0.27  (0.22, 0.31) 0.62  (0.55, 0.69) 0.85  (0.74, 0.97)

(101-105)°F 10 12 0.23  (0.21, 0.25) 0.18  (0.15, 0.20) 0.17  (0.14, 0.19) 0.21  (0.19, 0.23) 0.52  (0.47, 0.56) 0.83  (0.75, 0.91)

(106-110)°F 3 4 0.10  (0.09, 0.11) 0.08  (0.07, 0.09) 0.06  (0.05, 0.07) 0.09  (0.08, 0.10) 0.22  (0.20, 0.24) 0.36  (0.31, 0.40)

(71-75)°F 8 10 -0.00  (-0.01, 0.00) 0.01  (-0.00, 0.02) 0.00  (-0.02, 0.02) -0.02  (-0.03, -0.00) -0.05  (-0.06, -0.04) -0.09  (-0.10, -0.08)

(76-80)°F 12 14 0.00  (-0.01, 0.01) 0.01  (-0.00, 0.02) 0.02  (-0.01, 0.05) -0.01  (-0.02, 0.00) -0.02  (-0.04, -0.01) -0.05  (-0.07, -0.04)

(81-85)°F 14 14 0.02  (0.01, 0.04) 0.02  (0.00, 0.03) 0.03  (-0.00, 0.07) 0.02  (0.01, 0.03) 0.07  (0.05, 0.09) 0.11  (0.09, 0.13)

(86-90)°F 18 17 0.07  (0.05, 0.09) 0.04  (0.02, 0.06) 0.04  (0.01, 0.07) 0.08  (0.05, 0.10) 0.23  (0.19, 0.27) 0.36  (0.31, 0.41)

(91-95)°F 19 17 0.12  (0.09, 0.16) 0.08  (0.04, 0.11) 0.03  (-0.00, 0.05) 0.13  (0.09, 0.18) 0.43  (0.36, 0.50) 0.66  (0.56, 0.75)

(96-100)°F 14 12 0.13  (0.10, 0.15) 0.08  (0.05, 0.11) 0.01  (-0.01, 0.03) 0.12  (0.08, 0.15) 0.51  (0.45, 0.56) 0.76  (0.67, 0.84)

(101-105)°F 7 6 0.09  (0.07, 0.10) 0.06  (0.04, 0.08) 0.01  (-0.00, 0.02) 0.07  (0.05, 0.09) 0.38  (0.34, 0.40) 0.57  (0.51, 0.63)

(106-110)°F 2 2 0.05  (0.04, 0.05) 0.04  (0.03, 0.04) 0.02  (0.01, 0.03) 0.04  (0.03, 0.05) 0.18  (0.16, 0.20) 0.30  (0.26, 0.33)

(71-75)°F 11 12 -0.00  (-0.01, 0.01) 0.01  (-0.00, 0.02) 0.09  (0.06, 0.13) -0.01  (-0.03, 0.00) -0.05  (-0.06, -0.04) -0.05  (-0.06, -0.04)

(76-80)°F 16 17 0.01  (0.00, 0.02) 0.01  (-0.00, 0.03) 0.12  (0.07, 0.17) 0.01  (-0.01, 0.02) 0.04  (0.03, 0.05) 0.04  (0.03, 0.05)

(81-85)°F 16 16 0.04  (0.02, 0.06) 0.03  (0.01, 0.05) 0.07  (0.04, 0.10) 0.03  (0.01, 0.05) 0.18  (0.15, 0.21) 0.20  (0.16, 0.23)

(86-90)°F 17 17 0.09  (0.05, 0.12) 0.06  (0.03, 0.09) 0.04  (0.03, 0.05) 0.05  (0.02, 0.09) 0.36  (0.30, 0.42) 0.41  (0.32, 0.48)

(91-95)°F 14 13 0.10  (0.06, 0.13) 0.06  (0.03, 0.10) 0.04  (0.03, 0.05) 0.08  (0.04, 0.11) 0.43  (0.36, 0.49) 0.50  (0.41, 0.58)
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(96-100)°F 10 9 0.09  (0.06, 0.12) 0.05  (0.02, 0.08) 0.07  (0.06, 0.09) 0.09  (0.06, 0.12) 0.41  (0.35, 0.45) 0.49  (0.42, 0.56)

(101-105)°F 5 4 0.07  (0.06, 0.09) 0.04  (0.03, 0.06) 0.09  (0.08, 0.10) 0.08  (0.07, 0.10) 0.28  (0.25, 0.30) 0.35  (0.30, 0.39)

(106-110)°F 2 1 0.05  (0.05, 0.06) 0.05  (0.04, 0.05) 0.06  (0.05, 0.06) 0.05  (0.04, 0.05) 0.12  (0.11, 0.14) 0.18  (0.15, 0.20)

(71-75)°F 1 4 -0.02  (-0.02, -0.01) -0.02  (-0.03, -0.01) -0.00  (-0.01, 0.01) -0.02  (-0.03, -0.01) -0.03  (-0.04, -0.02) -0.03  (-0.05, -0.02)

(76-80)°F 5 11 -0.06  (-0.09, -0.03) -0.07  (-0.10, -0.03) 0.01  (-0.05, 0.06) -0.07  (-0.13, -0.02) -0.10  (-0.15, -0.06) -0.11  (-0.19, -0.04)

(81-85)°F 9 21 -0.04  (-0.07, -0.01) -0.05  (-0.09, -0.02) 0.01  (-0.04, 0.06) -0.06  (-0.11, -0.01) -0.06  (-0.11, -0.02) -0.07  (-0.13, -0.01)

(86-90)°F 14 19 -0.01  (-0.05, 0.03) -0.02  (-0.06, 0.02) 0.02  (-0.03, 0.07) -0.03  (-0.09, 0.02) -0.02  (-0.07, 0.04) -0.03  (-0.10, 0.05)

(91-95)°F 19 16 0.13  (0.08, 0.18) 0.09  (0.03, 0.15) 0.11  (0.04, 0.19) 0.09  (0.03, 0.16) 0.22  (0.14, 0.30) 0.24  (0.12, 0.35)

(96-100)°F 18 12 0.28  (0.18, 0.39) 0.18  (0.07, 0.29) 0.28  (0.14, 0.41) 0.23  (0.11, 0.36) 0.55  (0.39, 0.71) 0.61  (0.37, 0.83)

(101-105)°F 20 9 0.44  (0.20, 0.67) 0.25  (0.00, 0.49) 0.51  (0.21, 0.81) 0.38  (0.08, 0.67) 0.96  (0.62, 1.31) 1.17  (0.64, 1.65)

(106-110)°F 11 4 0.27  (0.12, 0.43) 0.10  (-0.07, 0.28) 0.31  (0.14, 0.49) 0.17  (-0.01, 0.35) 0.79  (0.55, 1.02) 1.12  (0.71, 1.52)

(71-75)°F 12 14 -0.00  (-0.01, 0.01) -0.00  (-0.01, 0.01) -0.00  (-0.01, 0.01) -0.00  (-0.02, 0.01) -0.01  (-0.03, 0.00) -0.03  (-0.05, -0.01)

(76-80)°F 22 21 0.18  (0.14, 0.23) 0.14  (0.09, 0.19) 0.12  (0.05, 0.20) 0.17  (0.11, 0.24) 0.31  (0.23, 0.39) 0.54  (0.43, 0.65)

(81-85)°F 26 19 0.43  (0.33, 0.53) 0.32  (0.22, 0.43) 0.28  (0.15, 0.42) 0.46  (0.32, 0.58) 0.79  (0.63, 0.95) 1.40  (1.14, 1.67)

(86-90)°F 17 11 0.37  (0.29, 0.45) 0.25  (0.17, 0.34) 0.23  (0.12, 0.32) 0.46  (0.35, 0.56) 0.84  (0.69, 0.97) 1.37  (1.11, 1.62)

(91-95)°F 5 5 0.15  (0.12, 0.19) 0.11  (0.07, 0.14) 0.11  (0.07, 0.15) 0.21  (0.16, 0.26) 0.36  (0.30, 0.42) 0.51  (0.39, 0.63)

(96-100)°F 0 1 0.03  (0.02, 0.03) 0.02  (0.01, 0.03) 0.03  (0.02, 0.03) 0.04  (0.03, 0.05) 0.05  (0.04, 0.06) 0.06  (0.04, 0.09)

(101-105)°F 0 0 0.00  (0.00, 0.00) 0.00  (0.00, 0.00) 0.00  (0.00, 0.00) 0.00  (0.00, 0.00) 0.00  (0.00, 0.00) 0.00  (0.00, 0.00)

(106-110)°F 0 0 0.00  (0.00, 0.00) 0.00  (0.00, 0.00) 0.00  (0.00, 0.00) 0.00  (0.00, 0.00) 0.00  (0.00, 0.00) 0.00  (0.00, 0.00)

(71-75)°F 10 11 0.00  (-0.00, 0.01) 0.00  (-0.00, 0.01) 0.09  (-0.05, 0.23) 0.01  (0.00, 0.02) 0.01  (-0.00, 0.02) 0.01  (-0.00, 0.02)

(76-80)°F 20 24 0.16  (0.08, 0.24) 0.14  (0.05, 0.22) 0.09  (-0.03, 0.22) 0.29  (0.17, 0.40) 0.32  (0.17, 0.45) 0.36  (0.14, 0.57)

(81-85)°F 27 26 0.37  (0.15, 0.58) 0.32  (0.06, 0.55) 0.05  (0.00, 0.09) 0.74  (0.40, 1.06) 0.82  (0.41, 1.20) 0.97  (0.32, 1.55)

(86-90)°F 18 13 0.33  (0.14, 0.51) 0.24  (0.02, 0.45) 0.18  (-0.01, 0.36) 0.62  (0.33, 0.90) 0.85  (0.51, 1.17) 1.10  (0.49, 1.63)

(91-95)°F 5 4 0.10  (0.04, 0.16) 0.08  (0.01, 0.15) 0.07  (0.01, 0.13) 0.15  (0.06, 0.24) 0.27  (0.16, 0.38) 0.39  (0.20, 0.54)

(96-100)°F 1 1 0.02  (-0.00, 0.04) 0.02  (-0.01, 0.04) 0.01  (-0.01, 0.03) 0.03  (0.00, 0.07) 0.05  (0.02, 0.08) 0.06  (-0.00, 0.11)

(101-105)°F 0 0 0.00  (-0.00, 0.01) 0.00  (-0.00, 0.01) 0.00  (0.00, 0.00) 0.00  (-0.01, 0.01) 0.01  (-0.00, 0.02) 0.01  (-0.00, 0.02)

(106-110)°F 0 0 0.00  (0.00, 0.00) 0.00  (0.00, 0.00) 0.00  (0.00, 0.00) 0.00  (0.00, 0.00) 0.00  (0.00, 0.00) 0.00  (0.00, 0.00)

(71-75)°F 14 11 -0.01  (-0.03, 0.01) -0.01  (-0.03, 0.01) -0.01  (-0.04, 0.01) -0.03  (-0.05, -0.01) -0.01  (-0.04, 0.01) -0.01  (-0.05, 0.02)

(76-80)°F 24 15 0.15  (0.08, 0.22) 0.13  (0.06, 0.20) 0.07  (-0.02, 0.16) 0.17  (0.08, 0.25) 0.43  (0.34, 0.53) 0.50  (0.36, 0.64)

(81-85)°F 21 17 0.24  (0.15, 0.33) 0.20  (0.11, 0.29) 0.17  (0.06, 0.26) 0.31  (0.21, 0.41) 0.73  (0.62, 0.84) 0.93  (0.76, 1.09)

(86-90)°F 11 14 0.15  (0.13, 0.18) 0.13  (0.10, 0.16) 0.11  (0.09, 0.14) 0.20  (0.17, 0.22) 0.45  (0.41, 0.49) 0.60  (0.54, 0.66)

(91-95)°F 8 12 0.12  (0.09, 0.14) 0.10  (0.07, 0.13) 0.07  (0.04, 0.10) 0.14  (0.11, 0.17) 0.33  (0.29, 0.37) 0.41  (0.35, 0.46)

(96-100)°F 6 8 0.10  (0.08, 0.12) 0.08  (0.06, 0.10) 0.07  (0.05, 0.09) 0.13  (0.10, 0.15) 0.28  (0.25, 0.31) 0.36  (0.31, 0.40)

(101-105)°F 3 4 0.06  (0.05, 0.07) 0.05  (0.04, 0.06) 0.06  (0.05, 0.06) 0.08  (0.07, 0.09) 0.17  (0.16, 0.19) 0.23  (0.21, 0.25)

(106-110)°F 1 1 0.03  (0.03, 0.03) 0.02  (0.02, 0.03) 0.03  (0.03, 0.03) 0.04  (0.04, 0.04) 0.08  (0.08, 0.09) 0.11  (0.09, 0.12)

(71-75)°F 4 9 -0.03  (-0.05, -0.01) -0.03  (-0.05, -0.00) 0.00  (-0.03, 0.04) -0.03  (-0.07, 0.01) -0.05  (-0.08, -0.02) -0.03  (-0.08, 0.02)

(76-80)°F 11 22 -0.01  (-0.08, 0.06) -0.02  (-0.09, 0.05) 0.02  (-0.08, 0.12) -0.02  (-0.12, 0.07) 0.02  (-0.10, 0.14) 0.09  (-0.07, 0.25)

(81-85)°F 16 24 0.04  (-0.04, 0.13) 0.02  (-0.07, 0.11) 0.06  (-0.06, 0.18) 0.02  (-0.09, 0.13) 0.17  (0.01, 0.33) 0.24  (0.04, 0.44)

(86-90)°F 17 13 0.10  (0.05, 0.14) 0.06  (0.01, 0.10) 0.05  (-0.01, 0.11) 0.08  (0.03, 0.14) 0.28  (0.20, 0.36) 0.26  (0.15, 0.37)

(91-95)°F 18 7 0.17  (-0.04, 0.38) 0.11  (-0.11, 0.33) 0.04  (-0.26, 0.34) 0.20  (-0.09, 0.49) 0.48  (0.16, 0.79) 0.33  (-0.20, 0.84)

(96-100)°F 19 4 0.36  (0.03, 0.71) 0.20  (-0.17, 0.57) 0.17  (-0.27, 0.59) 0.34  (-0.12, 0.79) 1.03  (0.52, 1.52) 0.81  (-0.03, 1.60)

(101-105)°F 7 1 0.23  (0.08, 0.38) 0.12  (-0.05, 0.29) 0.13  (-0.05, 0.31) 0.18  (-0.03, 0.37) 0.65  (0.41, 0.87) 0.59  (0.13, 0.99)

(106-110)°F 1 0 0.03  (-0.01, 0.06) 0.02  (-0.02, 0.06) -0.00  (-0.06, 0.05) 0.03  (-0.03, 0.08) 0.08  (0.01, 0.14) 0.06  (-0.08, 0.17)

(71-75)°F 8 8 -0.11  (-0.12, -0.09) -0.11  (-0.13, -0.09) -0.18  (-0.20, -0.15) -0.09  (-0.12, -0.06) -0.11  (-0.14, -0.08) -0.23  (-0.28, -0.18)

(76-80)°F 12 13 0.01  (0.01, 0.01) 0.01  (0.01, 0.01) 0.01  (0.01, 0.02) 0.01  (0.00, 0.01) 0.00  (-0.01, 0.01) 0.01  (0.00, 0.02)

(81-85)°F 18 18 0.20  (0.16, 0.24) 0.21  (0.17, 0.26) 0.31  (0.24, 0.38) 0.17  (0.10, 0.24) 0.07  (-0.01, 0.15) 0.37  (0.23, 0.50)

(86-90)°F 15 15 0.30  (0.22, 0.39) 0.32  (0.24, 0.41) 0.45  (0.32, 0.58) 0.25  (0.13, 0.38) 0.05  (-0.11, 0.20) 0.52  (0.25, 0.78)

(91-95)°F 12 13 0.34  (0.25, 0.44) 0.36  (0.26, 0.45) 0.46  (0.31, 0.59) 0.26  (0.12, 0.39) 0.11  (-0.07, 0.28) 0.55  (0.24, 0.84)

(96-100)°F 10 9 0.32  (0.23, 0.41) 0.32  (0.23, 0.41) 0.36  (0.24, 0.49) 0.21  (0.08, 0.33) 0.22  (0.05, 0.37) 0.46  (0.17, 0.73)

(101-105)°F 7 7 0.26  (0.19, 0.32) 0.25  (0.17, 0.32) 0.24  (0.14, 0.32) 0.14  (0.04, 0.23) 0.31  (0.18, 0.43) 0.33  (0.09, 0.55)

(106-110)°F 5 4 0.17  (0.12, 0.23) 0.15  (0.09, 0.21) 0.22  (0.14, 0.29) 0.09  (0.00, 0.16) 0.27  (0.15, 0.38) 0.37  (0.12, 0.60)

(71-75)°F 11 11 0.07  (-0.03, 0.17) 0.01  (-0.09, 0.09) 0.27  (0.09, 0.44) 0.10  (-0.07, 0.26) 0.01  (-0.01, 0.02) 0.15  (-0.18, 0.46)

(76-80)°F 15 15 0.06  (-0.04, 0.15) 0.01  (-0.08, 0.10) 0.25  (0.09, 0.41) 0.11  (-0.04, 0.26) 0.09  (-0.02, 0.18) 0.13  (-0.17, 0.40)

(81-85)°F 17 17 0.03  (-0.02, 0.08) 0.01  (-0.07, 0.10) 0.12  (0.03, 0.21) 0.06  (-0.03, 0.14) 0.21  (-0.01, 0.44) 0.07  (-0.06, 0.19)

(86-90)°F 14 14 0.03  (-0.00, 0.06) 0.03  (-0.06, 0.13) 0.07  (0.02, 0.11) 0.06  (0.00, 0.11) 0.24  (-0.04, 0.50) 0.18  (0.01, 0.33)

(91-95)°F 10 10 0.07  (0.01, 0.12) 0.06  (-0.03, 0.15) 0.16  (0.07, 0.24) 0.14  (0.04, 0.23) 0.15  (-0.08, 0.34) 0.40  (0.11, 0.65)

(96-100)°F 6 6 0.09  (0.03, 0.14) 0.07  (-0.01, 0.14) 0.20  (0.11, 0.29) 0.17  (0.07, 0.27) 0.10  (-0.09, 0.27) 0.41  (0.17, 0.62)

(101-105)°F 3 4 0.08  (0.03, 0.13) 0.06  (-0.00, 0.11) 0.18  (0.10, 0.26) 0.14  (0.06, 0.22) 0.06  (-0.05, 0.17) 0.32  (0.13, 0.48)

(106-110)°F 2 2 0.07  (0.03, 0.10) 0.04  (-0.01, 0.08) 0.14  (0.08, 0.20) 0.10  (0.04, 0.16) 0.10  (0.01, 0.18) 0.25  (0.08, 0.39)
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Fluid and electrolyte 

disorders related
Renal failure related

Person-

Days

County-

Days

Mean AN (95%CI) Mean AN (95%CI) Mean AN (95%CI) Mean AN (95%CI) Mean AN (95%CI) Mean AN (95%CI) 

(71-75)°F 13 10 -12  (-21, -3) -11  (-19, -3) -7  (-11, -2) -8  (-12, -4) -8  (-12, -4) -6  (-7, -4)

(76-80)°F 17 15 251  (137, 370) 179  (80, 279) 54  (1, 108) 127  (77, 177) 108  (63, 155) 41  (21, 62)

(81-85)°F 15 15 571  (322, 816) 406  (204, 617) 117  (6, 236) 275  (175, 378) 245  (150, 342) 83  (39, 126)

(86-90)°F 13 15 750  (452, 1037) 522  (281, 765) 151  (25, 282) 332  (219, 451) 341  (231, 453) 117  (63, 170)

(91-95)°F 10 12 709  (476, 924) 469  (282, 657) 143  (58, 232) 259  (179, 342) 352  (266, 434) 118  (78, 157)

(96-100)°F 7 9 588  (438, 733) 362  (230, 488) 119  (65, 172) 163  (112, 214) 326  (266, 381) 113  (82, 142)

(101-105)°F 4 6 381  (292, 471) 211  (130, 292) 80  (48, 110) 71  (38, 104) 254  (215, 291) 91  (67, 112)

(106-110)°F 3 4 247  (183, 310) 117  (60, 172) 55  (31, 77) 25  (-2, 51) 214  (185, 242) 77  (58, 94)

(71-75)°F 12 12 -39  (-46, -31) -32  (-38, -25) -19  (-24, -15) -14  (-18, -10) -22  (-25, -18) -5  (-7, -3)

(76-80)°F 19 18 120  (97, 145) 95  (74, 115) 54  (42, 66) 44  (33, 54) 50  (37, 62) 13  (8, 18)

(81-85)°F 15 15 288  (234, 342) 221  (176, 266) 131  (102, 160) 104  (79, 127) 117  (89, 144) 33  (20, 45)

(86-90)°F 14 14 422  (346, 501) 310  (244, 376) 180  (139, 222) 149  (113, 183) 181  (140, 220) 55  (36, 73)

(91-95)°F 11 12 377  (309, 445) 251  (193, 311) 139  (105, 172) 125  (96, 153) 189  (153, 223) 63  (45, 80)

(96-100)°F 8 8 256  (208, 305) 141  (99, 185) 67  (45, 88) 74  (56, 93) 159  (133, 182) 59  (47, 72)

(101-105)°F 4 4 129  (102, 158) 51  (25, 77) 21  (9, 32) 32  (20, 43) 110  (95, 125) 46  (36, 55)

(106-110)°F 2 3 68  (51, 84) 21  (5, 36) 16  (9, 23) 16  (9, 23) 78  (68, 87) 32  (25, 38)

(71-75)°F 10 10 -40  (-48, -31) -27  (-35, -19) 2  (-13, 16) -28  (-32, -23) -21  (-25, -17) -9  (-11, -8)

(76-80)°F 16 17 10  (5, 16) 8  (3, 12) 17  (-2, 33) 4  (2, 6) 6  (4, 9) 3  (2, 4)

(81-85)°F 15 15 98  (68, 126) 70  (47, 93) 28  (11, 44) 41  (30, 53) 58  (45, 72) 27  (21, 34)

(86-90)°F 16 17 172  (114, 227) 119  (74, 165) 31  (4, 58) 60  (39, 82) 116  (88, 142) 55  (41, 67)

(91-95)°F 15 15 165  (94, 235) 96  (38, 154) 9  (-24, 42) 46  (19, 74) 145  (110, 177) 72  (55, 89)

(96-100)°F 10 9 85  (30, 137) 27  (-19, 72) -15  (-39, 7) 13  (-7, 32) 114  (89, 138) 59  (45, 72)

(101-105)°F 5 5 37  (8, 66) -6  (-30, 19) -19  (-31, -8) -4  (-14, 6) 83  (70, 97) 43  (34, 51)

(106-110)°F 3 3 31  (11, 50) 1  (-17, 19) -8  (-16, 0) -2  (-10, 6) 61  (50, 71) 27  (19, 33)

(71-75)°F 7 7 -49  (-61, -37) -25  (-35, -14) -9  (-16, -2) -7  (-14, -1) -17  (-23, -11) -7  (-9, -4)

(76-80)°F 13 13 -23  (-28, -18) -13  (-18, -10) -5  (-7, -2) -4  (-7, -2) -8  (-10, -6) -3  (-4, -2)

(81-85)°F 14 14 104  (81, 125) 74  (54, 92) 23  (12, 34) 27  (17, 36) 35  (24, 45) 12  (8, 17)

(86-90)°F 15 15 284  (222, 344) 214  (163, 262) 66  (35, 94) 79  (53, 102) 96  (66, 124) 32  (18, 45)

(91-95)°F 13 13 415  (331, 494) 315  (247, 378) 90  (49, 127) 122  (88, 153) 160  (119, 197) 54  (35, 73)

(96-100)°F 11 11 461  (374, 540) 339  (269, 406) 86  (46, 122) 143  (109, 173) 221  (180, 258) 79  (59, 98)

(101-105)°F 9 9 404  (337, 468) 279  (222, 336) 55  (27, 79) 130  (106, 153) 248  (216, 279) 93  (78, 108)

(106-110)°F 7 6 335  (280, 387) 217  (167, 264) 27  (8, 45) 111  (91, 129) 264  (235, 291) 108  (91, 123)

(71-75)°F 16 16 -1  (-8, 6) -2  (-8, 5) -2  (-10, 6) 2  (-1, 5) -1  (-4, 3) -1  (-3, 0)

(76-80)°F 21 22 90  (66, 112) 64  (43, 83) 21  (5, 38) 49  (39, 59) 34  (22, 44) 37  (32, 42)

(81-85)°F 16 16 104  (72, 135) 70  (43, 96) 20  (3, 37) 60  (46, 73) 55  (39, 70) 59  (52, 66)

(86-90)°F 15 15 74  (33, 114) 40  (4, 73) 11  (-11, 31) 45  (28, 61) 72  (52, 93) 72  (62, 83)

(91-95)°F 10 9 8  (-22, 40) -11  (-38, 17) 1  (-14, 15) 5  (-7, 18) 56  (41, 72) 50  (42, 58)

(96-100)°F 4 4 -20  (-36, -3) -27  (-41, -12) -1  (-8, 7) -13  (-20, -7) 32  (23, 40) 24  (19, 30)

(101-105)°F 2 1 -4  (-11, 4) -8  (-15, -2) 5  (2, 9) -5  (-9, -2) 17  (13, 21) 9  (6, 12)

(106-110)°F 1 0 7  (4, 10) 4  (2, 7) 6  (4, 7) 2  (1, 4) 7  (5, 9) 3  (1, 4)

(71-75)°F 11 11 -12  (-16, -9) -10  (-13, -8) -1  (-3, 1) 1  (-0, 3) -5  (-7, -3) -3  (-4, -2)

(76-80)°F 15 16 42  (35, 49) 30  (24, 36) 6  (2, 9) 6  (3, 9) 13  (9, 17) 10  (8, 11)

(81-85)°F 16 16 130  (108, 152) 89  (70, 107) 21  (9, 32) 27  (17, 36) 40  (28, 51) 30  (26, 35)

(86-90)°F 14 14 183  (148, 215) 120  (92, 146) 30  (13, 47) 44  (31, 58) 58  (40, 76) 43  (36, 49)

(91-95)°F 10 10 138  (109, 165) 86  (63, 109) 22  (8, 35) 38  (27, 49) 54  (39, 69) 40  (34, 46)

(96-100)°F 8 7 90  (66, 113) 51  (30, 71) 13  (2, 23) 28  (19, 37) 49  (35, 62) 34  (28, 39)

(101-105)°F 5 5 39  (22, 55) 15  (0, 29) 2  (-5, 8) 15  (9, 22) 39  (29, 48) 23  (19, 27)

(106-110)°F 3 3 15  (4, 26) 2  (-8, 11) -5  (-9, -0) 5  (0, 9) 29  (22, 35) 16  (13, 19)

(71-75)°F 12 13 18  (-60, 97) 44  (-86, 170) 52  (-23, 129) -20  (-35, -6) -47  (-63, -33) -27  (-33, -21)

(76-80)°F 17 18 46  (-21, 110) 47  (-86, 177) 56  (-17, 133) 34  (12, 56) 87  (57, 119) 56  (44, 67)

(81-85)°F 17 17 179  (38, 320) 118  (-15, 243) 46  (-28, 115) 109  (30, 186) 302  (190, 410) 193  (144, 237)

(86-90)°F 16 15 317  (78, 543) 193  (19, 362) 63  (-42, 155) 132  (16, 240) 487  (327, 647) 295  (222, 358)

(91-95)°F 13 12 366  (115, 610) 208  (28, 386) 100  (-7, 195) 85  (-26, 193) 602  (442, 768) 349  (272, 414)

(96-100)°F 7 6 231  (97, 365) 125  (18, 228) 85  (30, 135) 7  (-48, 63) 426  (342, 514) 229  (187, 269)

(101-105)°F 3 3 142  (75, 209) 85  (30, 138) 48  (22, 73) 7  (-22, 36) 274  (226, 321) 147  (121, 172)

(106-110)°F 1 1 68  (42, 93) 49  (28, 69) 15  (4, 25) 17  (5, 28) 119  (98, 138) 61  (50, 71)

(71-75)°F 19 22 314  (225, 407) 232  (157, 309) 120  (39, 199) 119  (85, 150) 191  (150, 231) 42  (26, 58)

(76-80)°F 20 20 820  (601, 1036) 593  (415, 785) 284  (186, 382) 338  (258, 418) 537  (442, 632) 135  (94, 175)

(81-85)°F 14 11 990  (715, 1277) 669  (435, 906) 338  (249, 426) 412  (306, 518) 690  (580, 800) 196  (147, 242)

East North 

Central

Iowa

Northeast Maryland

New York

Central Illinois

Indiana

Kentucky

Missouri

West 

Virginia

Table S3: State-specific mean (95% CI) attributable number (AN) of hospitalizations for a cumulative lag period of 2 days, by heat index ranges

Climate 

region
State

Heat Index 

index range

Frequency by 

days of expsoure 

(%)

Mean and (95CI) Attributable Number (AN) per Summer



(86-90)°F 11 8 1140  (855, 1425) 708  (470, 940) 416  (344, 485) 440  (336, 549) 840  (731, 944) 260  (211, 308)

(91-95)°F 7 5 943  (758, 1131) 547  (393, 705) 374  (336, 411) 329  (264, 396) 718  (649, 783) 233  (200, 265)

(96-100)°F 3 2 634  (528, 738) 351  (260, 443) 257  (234, 279) 208  (174, 245) 518  (480, 556) 179  (156, 201)

(101-105)°F 1 1 269  (231, 305) 148  (117, 181) 101  (91, 110) 83  (70, 97) 241  (225, 256) 87  (77, 97)

(106-110)°F 0 0 132  (110, 154) 73  (55, 91) 39  (32, 46) 40  (30, 50) 129  (120, 140) 49  (42, 56)

(71-75)°F 20 21 23  (-7, 53) 17  (-9, 42) 12  (-3, 29) 11  (-2, 23) 21  (8, 34) 16  (9, 23)

(76-80)°F 22 22 67  (-12, 146) 49  (-19, 116) 29  (-14, 72) 30  (-5, 64) 59  (25, 93) 45  (26, 65)

(81-85)°F 11 10 72  (13, 131) 54  (2, 104) 26  (-7, 57) 29  (2, 55) 57  (30, 82) 42  (25, 58)

(86-90)°F 9 9 99  (42, 156) 76  (25, 125) 32  (2, 61) 37  (12, 62) 69  (43, 93) 46  (30, 61)

(91-95)°F 6 5 94  (57, 132) 73  (40, 106) 28  (9, 46) 33  (16, 49) 58  (42, 74) 33  (22, 43)

(96-100)°F 2 2 55  (37, 73) 43  (27, 59) 15  (6, 24) 19  (11, 27) 32  (24, 40) 19  (13, 24)

(101-105)°F 1 1 21  (15, 27) 16  (10, 21) 5  (2, 8) 8  (4, 10) 12  (9, 14) 8  (6, 10)

(106-110)°F 0 0 10  (6, 14) 8  (4, 11) 2  (-1, 4) 3  (1, 5) 6  (4, 8) 3  (2, 4)

(71-75)°F 19 15 87  (41, 131) 77  (38, 114) 20  (5, 36) 59  (39, 77) 25  (1, 47) 41  (30, 51)

(76-80)°F 18 16 142  (65, 215) 127  (63, 186) 11  (-5, 28) 97  (67, 126) 48  (8, 84) 71  (52, 88)

(81-85)°F 14 14 276  (208, 339) 220  (164, 271) 48  (30, 65) 120  (95, 142) 117  (83, 146) 77  (61, 91)

(86-90)°F 6 7 214  (182, 244) 161  (135, 186) 51  (40, 62) 76  (65, 86) 102  (86, 118) 46  (38, 53)

(91-95)°F 2 3 116  (103, 128) 84  (73, 95) 33  (28, 37) 41  (36, 46) 60  (53, 67) 25  (21, 28)

(96-100)°F 1 1 42  (37, 46) 29  (25, 33) 13  (11, 15) 16  (14, 18) 24  (20, 26) 9  (7, 11)

(101-105)°F 0 0 16  (13, 19) 10  (7, 13) 6  (5, 8) 9  (7, 10) 11  (9, 13) 6  (4, 7)

(106-110)°F 0 0 3  (2, 5) 2  (1, 3) 2  (1, 2) 2  (2, 3) 3  (2, 4) 2  (1, 2)

(71-75)°F 7 7 -34  (-49, -19) -28  (-34, -21) 1  (-3, 5) -4  (-9, 0) -10  (-19, -1) -8  (-10, -6)

(76-80)°F 11 11 -14  (-33, 5) -11  (-14, -8) -0  (-2, 2) -2  (-4, -0) -1  (-14, 11) -3  (-4, -2)

(81-85)°F 14 14 13  (-8, 34) 11  (5, 18) 2  (-2, 6) 3  (-0, 7) 13  (-1, 27) 4  (3, 6)

(86-90)°F 14 15 27  (3, 52) 22  (3, 40) 8  (-3, 19) 9  (-0, 19) 24  (10, 38) 11  (5, 16)

(91-95)°F 14 14 33  (4, 62) 24  (-8, 56) 18  (-1, 36) 14  (-2, 31) 35  (19, 51) 16  (6, 25)

(96-100)°F 13 13 55  (22, 88) 38  (2, 73) 27  (8, 46) 16  (-2, 34) 62  (44, 80) 22  (10, 33)

(101-105)°F 10 11 85  (55, 115) 57  (25, 87) 33  (19, 48) 15  (0, 29) 94  (77, 111) 27  (16, 37)

(106-110)°F 8 7 99  (70, 127) 68  (42, 93) 32  (21, 42) 19  (7, 30) 107  (89, 124) 36  (26, 46)

(71-75)°F 0 1 -10  (-22, 1) 1  (-10, 13) 7  (-2, 16) -4  (-13, 4) -16  (-21, -11) -8  (-11, -5)

(76-80)°F 2 2 -64  (-98, -31) -15  (-50, 21) 8  (-17, 32) -23  (-47, -1) -70  (-87, -55) -32  (-39, -25)

(81-85)°F 4 4 -161  (-210, -114) -74  (-119, -32) -23  (-50, 3) -52  (-80, -23) -128  (-151, -107) -53  (-60, -46)

(86-90)°F 11 12 -242  (-304, -181) -125  (-181, -71) -64  (-93, -35) -75  (-104, -44) -166  (-196, -138) -71  (-82, -61)

(91-95)°F 27 25 240  (144, 333) 141  (70, 215) 97  (49, 145) 80  (44, 118) 154  (104, 200) 62  (41, 83)

(96-100)°F 33 31 1784  (1370, 2175) 1090  (752, 1413) 588  (402, 764) 556  (402, 709) 1012  (818, 1196) 407  (323, 492)

(101-105)°F 19 19 2004  (1706, 2286) 1352  (1088, 1596) 417  (313, 512) 686  (589, 774) 1107  (971, 1235) 477  (406, 547)

(106-110)°F 4 5 563  (496, 626) 407  (349, 459) 100  (79, 121) 219  (195, 240) 278  (241, 315) 128  (103, 150)

(71-75)°F 3 3 -27  (-41, -13) -10  (-27, 5) 3  (-4, 10) -9  (-16, -2) -19  (-25, -13) -17  (-20, -15)

(76-80)°F 8 7 -49  (-72, -27) -18  (-51, 12) -5  (-14, 3) -19  (-28, -11) -41  (-51, -32) -25  (-29, -22)

(81-85)°F 12 11 -21  (-43, 1) -4  (-38, 31) -2  (-7, 2) -8  (-12, -4) -20  (-24, -15) -10  (-11, -8)

(86-90)°F 20 18 98  (56, 140) 54  (24, 84) 38  (19, 56) 48  (32, 65) 96  (72, 120) 34  (22, 46)

(91-95)°F 22 22 345  (255, 431) 182  (131, 229) 119  (77, 159) 151  (114, 188) 320  (263, 374) 116  (88, 145)

(96-100)°F 18 20 587  (492, 676) 336  (266, 399) 167  (129, 203) 213  (176, 248) 488  (429, 542) 227  (196, 257)

(101-105)°F 10 12 554  (498, 608) 343  (293, 389) 127  (108, 146) 170  (149, 189) 408  (372, 440) 222  (200, 241)

(106-110)°F 3 4 235  (214, 255) 151  (134, 168) 47  (38, 55) 71  (62, 80) 175  (159, 189) 96  (84, 106)

(71-75)°F 8 10 -8  (-29, 13) 13  (-7, 34) 2  (-18, 20) -13  (-22, -4) -39  (-47, -31) -26  (-29, -23)

(76-80)°F 12 14 8  (-24, 40) 20  (-10, 49) 17  (-11, 45) -6  (-15, 2) -19  (-30, -9) -14  (-19, -10)

(81-85)°F 14 14 65  (27, 104) 40  (5, 73) 30  (-2, 60) 19  (10, 27) 53  (40, 67) 31  (24, 37)

(86-90)°F 18 17 186  (125, 242) 92  (45, 141) 35  (7, 63) 65  (44, 88) 177  (147, 207) 101  (86, 114)

(91-95)°F 19 17 331  (233, 422) 164  (90, 238) 23  (-2, 47) 113  (74, 152) 333  (278, 386) 184  (157, 209)

(96-100)°F 14 12 341  (259, 420) 176  (112, 241) 7  (-11, 25) 102  (69, 132) 391  (345, 434) 211  (186, 233)

(101-105)°F 7 6 238  (197, 280) 132  (97, 168) 8  (-3, 20) 61  (46, 76) 290  (265, 312) 159  (143, 174)

(106-110)°F 2 2 128  (109, 146) 77  (61, 93) 18  (10, 25) 34  (26, 42) 139  (124, 152) 83  (72, 93)

(71-75)°F 11 12 -4  (-20, 13) 8  (-7, 23) 57  (35, 79) -7  (-15, 1) -30  (-35, -25) -10  (-11, -8)

(76-80)°F 16 17 24  (1, 46) 19  (-1, 39) 74  (45, 102) 4  (-6, 14) 22  (15, 28) 7  (5, 10)

(81-85)°F 16 16 78  (44, 109) 45  (17, 71) 43  (25, 59) 16  (3, 28) 101  (83, 117) 38  (31, 45)

(86-90)°F 17 17 159  (96, 218) 89  (39, 137) 23  (15, 30) 31  (9, 52) 206  (169, 238) 78  (62, 92)

(91-95)°F 14 13 185  (118, 248) 93  (39, 144) 24  (20, 28) 45  (23, 65) 244  (205, 278) 95  (78, 111)

(96-100)°F 10 9 169  (117, 219) 72  (28, 113) 45  (37, 52) 54  (38, 69) 232  (202, 258) 94  (80, 107)

(101-105)°F 5 4 135  (107, 161) 66  (42, 88) 54  (46, 61) 48  (40, 57) 158  (141, 172) 67  (58, 76)

(106-110)°F 2 1 98  (89, 108) 72  (63, 80) 34  (31, 37) 28  (24, 32) 71  (64, 78) 34  (29, 38)

(71-75)°F 1 4 -33  (-43, -24) -26  (-34, -18) -2  (-7, 4) -12  (-18, -7) -19  (-24, -14) -6  (-10, -4)

(76-80)°F 5 11 -103  (-158, -49) -87  (-133, -41) 4  (-27, 34) -38  (-69, -8) -60  (-87, -34) -21  (-36, -7)

(81-85)°F 9 21 -77  (-129, -24) -71  (-114, -30) 3  (-23, 31) -31  (-57, -6) -37  (-64, -12) -13  (-25, -2)

Southwest Arizona

Northwest Oregon

South Kansas

Southeast Florida

Georgia

North 

Carolina

Virginia

Northeast

New York

Rhode 

Island



(86-90)°F 14 19 -17  (-81, 45) -29  (-79, 22) 10  (-19, 40) -18  (-48, 9) -9  (-41, 22) -5  (-18, 9)

(91-95)°F 19 16 222  (133, 313) 118  (45, 192) 59  (19, 100) 51  (17, 83) 132  (85, 178) 44  (22, 64)

(96-100)°F 18 12 491  (306, 673) 242  (88, 388) 150  (75, 223) 125  (57, 192) 328  (232, 423) 114  (69, 155)

(101-105)°F 20 9 756  (354, 1158) 325  (6, 641) 278  (115, 435) 202  (42, 356) 576  (370, 782) 217  (120, 307)

(106-110)°F 11 4 470  (201, 735) 134  (-92, 365) 169  (75, 265) 91  (-7, 187) 471  (327, 608) 209  (132, 283)

(71-75)°F 12 14 -2  (-10, 6) -1  (-8, 5) -0  (-4, 4) -1  (-4, 2) -4  (-9, 1) -3  (-5, -1)

(76-80)°F 22 21 178  (133, 224) 102  (65, 138) 40  (17, 63) 46  (29, 63) 105  (79, 131) 54  (43, 65)

(81-85)°F 26 19 416  (322, 512) 234  (159, 313) 92  (49, 137) 121  (86, 155) 265  (212, 321) 140  (114, 167)

(86-90)°F 17 11 355  (276, 433) 184  (121, 247) 74  (40, 104) 122  (92, 150) 283  (234, 329) 137  (111, 162)

(91-95)°F 5 5 149  (117, 180) 78  (51, 105) 35  (21, 48) 55  (42, 68) 123  (101, 142) 51  (39, 63)

(96-100)°F 0 1 26  (21, 32) 15  (10, 20) 8  (5, 11) 10  (7, 13) 18  (13, 22) 6  (4, 9)

(101-105)°F 0 0 0  (0, 0) 0  (0, 0) 0  (0, 0) 0  (0, 0) 0  (0, 0) 0  (0, 0)

(106-110)°F 0 0 0  (0, 0) 0  (0, 0) 0  (0, 0) 0  (0, 0) 0  (0, 0) 0  (0, 0)

(71-75)°F 10 11 1  (-1, 3) 1  (-1, 2) 9  (-5, 25) 1  (0, 2) 1  (-0, 2) 0  (-0, 1)

(76-80)°F 20 24 66  (32, 97) 41  (15, 65) 10  (-4, 24) 31  (18, 42) 37  (20, 53) 13  (5, 21)

(81-85)°F 27 26 153  (61, 237) 92  (19, 160) 5  (0, 10) 78  (42, 111) 97  (49, 141) 36  (12, 57)

(86-90)°F 18 13 137  (59, 210) 71  (7, 129) 20  (-1, 39) 65  (34, 94) 101  (60, 138) 41  (18, 60)

(91-95)°F 5 4 43  (17, 67) 23  (2, 44) 7  (1, 14) 16  (6, 25) 32  (19, 45) 14  (8, 20)

(96-100)°F 1 1 8  (-1, 17) 4  (-4, 12) 1  (-1, 4) 4  (0, 7) 6  (2, 10) 2  (-0, 4)

(101-105)°F 0 0 2  (-1, 4) 1  (-1, 3) 0  (0, 0) 0  (-1, 1) 1  (-0, 2) 0  (-0, 1)

(106-110)°F 0 0 0  (0, 0) 0  (0, 0) 0  (0, 0) 0  (0, 0) 0  (0, 0) 0  (0, 0)

(71-75)°F 14 11 -104  (-255, 47) -87  (-216, 47) -31  (-96, 36) -95  (-158, -27) -35  (-103, 31) -12  (-41, 17)

(76-80)°F 24 15 1247  (672, 1842) 881  (406, 1368) 189  (-53, 425) 500  (245, 737) 1075  (836, 1312) 390  (280, 500)

(81-85)°F 21 17 2037  (1281, 2765) 1382  (739, 1990) 443  (161, 699) 910  (610, 1182) 1811  (1524, 2088) 728  (594, 859)

(86-90)°F 11 14 1279  (1061, 1510) 874  (686, 1056) 305  (229, 380) 565  (478, 646) 1118  (1020, 1215) 471  (423, 521)

(91-95)°F 8 12 977  (764, 1201) 685  (499, 862) 185  (106, 263) 405  (315, 496) 825  (728, 919) 321  (278, 363)

(96-100)°F 6 8 842  (668, 1006) 571  (426, 709) 178  (131, 227) 364  (301, 430) 690  (614, 764) 280  (245, 313)

(101-105)°F 3 4 542  (459, 624) 350  (280, 422) 153  (135, 172) 244  (215, 272) 432  (391, 471) 181  (162, 199)

(106-110)°F 1 1 260  (232, 289) 165  (140, 191) 78  (70, 86) 113  (102, 123) 203  (187, 219) 83  (74, 91)

(71-75)°F 4 9 -17  (-30, -4) -13  (-25, -2) 0  (-7, 8) -6  (-13, 1) -11  (-17, -4) -2  (-5, 1)

(76-80)°F 11 22 -8  (-50, 35) -10  (-46, 28) 4  (-18, 25) -4  (-23, 13) 3  (-21, 27) 6  (-4, 16)

(81-85)°F 16 24 28  (-27, 81) 8  (-37, 53) 12  (-13, 37) 4  (-17, 24) 34  (2, 66) 15  (3, 28)

(86-90)°F 17 13 61  (35, 88) 29  (6, 51) 10  (-2, 23) 16  (6, 27) 57  (41, 72) 16  (9, 23)

(91-95)°F 18 7 106  (-23, 240) 54  (-55, 168) 9  (-55, 73) 38  (-17, 94) 96  (32, 159) 21  (-13, 53)

(96-100)°F 19 4 229  (16, 448) 99  (-86, 283) 36  (-58, 127) 66  (-24, 153) 206  (103, 304) 51  (-2, 101)

(101-105)°F 7 1 147  (51, 241) 59  (-26, 143) 28  (-10, 65) 34  (-5, 71) 129  (83, 175) 37  (8, 62)

(106-110)°F 1 0 18  (-5, 41) 10  (-10, 29) -1  (-12, 10) 5  (-5, 16) 16  (2, 28) 4  (-5, 11)

(71-75)°F 8 8 -39  (-46, -33) -31  (-36, -26) -20  (-23, -17) -9  (-12, -6) -11  (-14, -8) -6  (-8, -5)

(76-80)°F 12 13 3  (2, 4) 3  (2, 4) 2  (1, 2) 1  (0, 1) 0  (-1, 1) 0  (0, 0)

(81-85)°F 18 18 73  (58, 90) 60  (47, 73) 36  (28, 44) 17  (10, 24) 7  (-1, 15) 10  (6, 14)

(86-90)°F 15 15 113  (83, 144) 93  (69, 117) 51  (37, 66) 25  (12, 37) 4  (-11, 19) 15  (7, 22)

(91-95)°F 12 13 128  (93, 161) 102  (74, 129) 52  (36, 68) 26  (12, 39) 11  (-7, 27) 15  (7, 24)

(96-100)°F 10 9 119  (87, 151) 92  (65, 117) 42  (28, 55) 21  (8, 33) 21  (5, 35) 13  (5, 20)

(101-105)°F 7 7 96  (70, 120) 70  (49, 90) 27  (17, 37) 14  (4, 23) 30  (17, 41) 9  (3, 16)

(106-110)°F 5 4 64  (44, 84) 44  (26, 60) 25  (16, 33) 9  (0, 16) 25  (14, 36) 11  (3, 17)

(71-75)°F 11 11 10  (-5, 25) 1  (-10, 11) 14  (5, 22) 4  (-3, 11) 0  (-0, 1) 2  (-2, 5)

(76-80)°F 15 15 8  (-5, 21) 1  (-9, 11) 13  (4, 21) 5  (-2, 11) 4  (-1, 8) 1  (-2, 4)

(81-85)°F 17 17 4  (-3, 11) 2  (-7, 11) 6  (1, 11) 2  (-1, 6) 9  (-1, 19) 1  (-1, 2)

(86-90)°F 14 14 4  (-1, 8) 4  (-7, 14) 3  (1, 5) 2  (0, 5) 11  (-2, 22) 2  (0, 4)

(91-95)°F 10 10 10  (1, 17) 7  (-3, 16) 8  (3, 12) 6  (2, 10) 6  (-4, 15) 4  (1, 7)

(96-100)°F 6 6 12  (4, 20) 8  (-1, 15) 10  (6, 15) 7  (3, 12) 5  (-4, 12) 4  (2, 7)

(101-105)°F 3 4 11  (4, 18) 6  (-0, 12) 9  (5, 13) 6  (2, 10) 3  (-2, 7) 3  (1, 5)

(106-110)°F 2 2 10  (4, 15) 4  (-1, 9) 7  (4, 10) 4  (2, 7) 4  (0, 8) 3  (1, 4)
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