
ARTICLE

Metabolite changes in blood predict the onset
of tuberculosis
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New biomarkers of tuberculosis (TB) risk and disease are critical for the urgently needed

control of the ongoing TB pandemic. In a prospective multisite study across Subsaharan

Africa, we analyzed metabolic profiles in serum and plasma from HIV-negative, TB-exposed

individuals who either progressed to TB 3–24 months post-exposure (progressors) or

remained healthy (controls). We generated a trans-African metabolic biosignature for TB,

which identifies future progressors both on blinded test samples and in external data sets and

shows a performance of 69% sensitivity at 75% specificity in samples within 5 months of

diagnosis. These prognostic metabolic signatures are consistent with development of sub-

clinical disease prior to manifestation of active TB. Metabolic changes associated with pre-

symptomatic disease are observed as early as 12 months prior to TB diagnosis, thus enabling

timely interventions to prevent disease progression and transmission.
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In 2017, 10 million cases of tuberculosis (TB) disease and 1.6
million deaths due to TB were recorded globally1, making it
the deadliest infectious disease on Earth. A quarter of the

world’s population is estimated to be latently infected with
Mycobacterium tuberculosis (Mtb), and of these, less than 10%
will develop active TB disease during their lifetime2. Notably, the
risk of TB incidence is 10-fold higher in individuals within the
first year after infection3.

Novel, cost-effective tools for control of TB must include not
only new and improved drugs and vaccines, but also assays for
rapid and sensitive diagnosis of TB1. Defining biomarkers for risk
of disease coupled with early and accurate TB diagnosis will
enable strategies for prevention and early treatment to prevent
progression to advanced disease pathology as well as transmis-
sion. Moreover, identifying infected people at high risk of
developing TB will facilitate targeted enrollment into drug trials
and post-exposure vaccine trials, thus profoundly reducing
the number of study participants and trial costs and duration.

Until recently, the only measurable biomarkers associated with
increased risk of developing TB were positive TST or IGRA test
results4. However, these tests have poor specificity for identifying
incident TB as over 95% of HIV-negative and ~70% of HIV-
positive individuals with TST/IGRA positivity never progress to
active TB disease5. Mass preventive therapy based on IGRA/TST
screening in TB endemic countries would therefore require
treatment of 50–80% of the population. This translates to treat-
ment of an estimated 85 people with latent TB to prevent a single
case of active TB according to currently available IGRA tests6,
thus putting many healthy individuals at unnecessary risk of
adverse events. Such a strategy would neither be cost-effective nor
feasible and would not prevent re-infection in high-incidence
situations. This was demonstrated by the Thibela trial which
enrolled South African mine workers in a setting with an 89%
prevalence of latent MTB infection7 but mass isoniazid preventive
therapy did not reduce TB incidence8.

The Grand Challenges in Global Health GC6-74 project (GC6
project) was initiated in 2003 with the goal of identifying TB
biomarkers with prognostic potential. The study encompassed
4462 HIV-negative participants across multiple African field sites
(Supplementary Figure 1), reflecting different regions and ethni-
cities. All participants were household contacts of newly diag-
nosed TB index cases and were followed for 2 years post-
exposure, with blood samples taken at enrollment and at specified
follow-up time points. This design provided a unique opportunity
to investigate the prospective risk of TB in exposed individuals.
The collection of samples from South, West, and East African
field sites allowed for comparisons between sites and development
of a trans-African biosignature.

Blood transcriptomic biomarkers of TB that discriminate
patients from healthy individuals have been identified in several
studies9. In a recent prospective study10, a 16-gene transcriptomic
signature was identified in the Adolescent Cohort Study (ACS)
with the power to predict progression to active TB. The signature
was validated with samples from two African sites from the GC6
project showing a sensitivity of 66% and a specificity of 80% in
the 12 months preceding the diagnosis of TB. In further pursu-
ance of a transcriptomic risk signature, a combination of 2 gene
pairs was found to predict risk of TB at 62% sensitivity and 63%
specificity in the tested population11. In another promising
approach on the same cohort, circulating miRNAs from serum
samples were shown to similarly approach 65% specificity at 62%
sensitivity12.

Metabolic profiling has been successfully applied for biomarker
discovery in several non-communicable diseases13–16, but rarely
in infectious diseases. To our knowledge, no studies thus far have
demonstrated the capability of metabolic profiling in predicting

progression to an infectious disease in samples from healthy
donors. In TB, metabolic profiling was found to discriminate
between TB patients and healthy individuals17,18, and our pre-
vious study identified a metabolomic biosignature which dis-
criminates patients from healthy controls with remarkably high
accuracy19 (AUC > 0.98; 95% CI: 0.97–1.00).

Here, we investigated longitudinal changes in metabolic pro-
files in serum and plasma from household contacts of adults with
pulmonary TB who either remained healthy (controls) or devel-
oped TB (progressors) and applied machine learning techniques
to discover metabolite signatures that predict risk of progression
to TB across Africa. Amongst recruited individuals, 2.2% pro-
gressed to TB (progressors) whilst the rest remained asympto-
matic until the end of the 2 years observation period (controls).
All analyzed blood samples from household contacts were col-
lected before TB diagnosis and therefore represent clinically
asymptomatic individuals.

Two hypotheses were tested: (i) are there metabolites that can
predict progression from infection to TB; and, if yes, (ii) does
prediction rely on innate metabolic risk factors, or on metabolic
processes occurring during disease progression? Accordingly,
predictive metabolites fell into the following classes: (a) meta-
bolites that reflect baseline (BL) risk factors and show a con-
sistently significant difference between progressors and controls.
We term these risk-associated metabolites, as these indicate a
higher likelihood of progression to TB; (b) metabolites predictive
of active TB, which show time-dependent differences between
study groups, indicating progression to disease. We term these
disease-associated metabolites, as the absolute difference in
abundances between progressors and controls increases towards
clinical manifestation of TB implying that these metabolites are
indicators of the host response to subclinical TB.

Results
Study cohorts. To aid the detection of biomarkers which would
be potentially applicable across the African continent, study
participants were recruited at field sites in East, West, and South
Africa (Fig. 1).

Within the GC6-74 cohorts, 4462 HIV-negative healthy
household contacts of 1098 index TB cases were recruited from
2006 to 2010 with the follow-up completed in 2012 at four
African sites included in this study (Fig. 1), i.e., SUN
(Stellenbosch University, South Africa), MRC (Medical Research
Council Unit, The Gambia), AHRI (Armauer Hansen Research
Institute, Ethiopia), and MAK (Makerere University, Uganda).

A total of 97 individuals who developed active TB within the 2
year follow-up period (progressors) were included in this study
and matched at a ratio of 1:4 with participants who remained
healthy during the 2-year follow-up period (controls). A total of
751 serum or plasma samples from these individuals were
analyzed using untargetted mass spectrometry (Supplementary
Table 5).

Initial samples collected upon enrollment were termed baseline
(BL) samples. Further samples were taken 6 and 18 months post-
exposure, provided that the participant had remained TB free at
the time of sample collection. The progressor samples were also
retrospectively labeled for time to TB, i.e., the number of months
prior to actual diagnosis of active TB (as opposed to time post
exposure). Before the analysis, for each site, samples from two
thirds of all individuals were selected as training set, and the
remaining samples as a blinded test set.

Biosignature model building and validation. We pursued an a
priori determined analysis strategy. The design and validation of
biosignatures derived from metabolic profiling comprised three
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stages: (i) generate signatures (machine learning models) based
on training set samples only; (ii) validate the models using blin-
ded samples from the test set; (iii) further validate the findings
using external, independent data sets.

In the first step, we used the training set samples to optimize
the machine learning procedure. We used 10-fold cross-
validation as a measure for internal evaluation of the models on
the training set (Supplementary Figure 3, Supplementary Table 6),
and we tested to what extent the machine models in the training
set were predictive between sites (Supplementary Figure 4,
Supplementary Table 7).

Finally, once we had ensured that the methodology produced
significant predictions in a cross-validation test within the
training set and that there was a comparability between results
from different sites and sample types, we trained random forest
models20 comprising the entire training set (model Total) or BL
samples only (model Total/Baseline).

Each biosignature was then validated by making a blinded
prediction on the test set only. All models and results are
summarized in Supplementary Tables 10 and 11.

Figure 2a and b shows the performance of the universal
models (Total and Total/Baseline, respectively) on the
final validation set. The Total model significantly validates on
the overall validation set, including all four sites, for both
proximate samples (< 5 months to TB diagnosis; AUC: 0.78;
95% CI: 0.62–0.94, Wilcoxon q = 0.0033), and distal samples
(≥ 5 months to TB diagnosis; AUC: 0.68; 95% CI: 0.58–0.79;
Wilcoxon q = 0.0033; see Supplementary Table 10). Assuming a
required minimum of 75% specificity21, this corresponds to 53%
sensitivity for all samples, and 69% for proximate samples.

The signatures also validated on the South Africa and The
Gambia cohorts independently (Supplementary Table 11). While
these signatures did not significantly validate separately on

samples from the smaller Ethiopia and Uganda cohorts, which
contained only four TB-progressors in each test set, the Total/
Baseline signature did validate on proximate samples if these two
cohorts were considered jointly (AUC: 0.68; 95% CI: 0.51–0.85).

The high performance on the proximate samples was not due
to samples collected within days from the diagnosis. If samples
collected 1 month or less before the diagnosis time point were
excluded from the analysis, the model performance in the
proximate data set increased to an AUC of 0.82 (95% CI:
0.57–1.00).

We next scrutinized the constructed models to understand
what classes of metabolites were discriminatory. To this end, we
applied an enrichment test to metabolites ordered by their relative
importance in either of the models Total and Total/Baseline
(Supplementary Table 9). We tested the enrichment of 42 sets of
modules which included both, categories of biochemical com-
pounds (such as amino acids) as well as clusters of metabolites
identified in TB in prior work19. We found significant enrichment
of amino acids (CERNO test q < 0.01 for both models) as well a
significant enrichment in the cluster containing glycocholate,
taurocholenate, kynurenine, and cortisol (CERNO test q < 0.05;
Fig. 2c) in the Total/Baseline model. Among the top 25
compounds, the disease-associated markers dominated (Supple-
mentary Table 9).

Validation with independent data sets. To further test our
findings, we sought validation in independent data sets. Having
identified a metabolic signature of risk for TB which increased
during TB progression, we asked whether there is a common
biological denominator between progression toward TB and
clinically apparent TB. We hypothesized that in such a case, the
changes of metabolites that we have previously described19 for TB
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Fig. 1 Consort diagram for the study. The samples were collected at: SUN, Stellenbosch University, South Africa; MRC, Medical Research Council Unit, The
Gambia; AHRI, Armauer Hansen Research Institute, Ethiopia; MAK, Makerere University, Uganda
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could also predict risk of progression from infection to disease.
To test this, we used the data set from healthy individuals and
tuberculosis patients described earlier19. This data set is referred
hereafter as TB-HEALTHY data set.

We first asked whether the models derived from all individuals
in the GC6-74 training set (model Total) can also correctly
classify patients suffering from TB even though all individuals in
the GC6 training set were asymptomatic. To this end, we have
applied the Total model described above to the TB-HEALTHY
data set. Indeed, our Total model discriminated healthy
individuals from active TB cases (AUC 0.92; 95% CI: 0.87–0.97;
Supplementary Figure 5).

Furthermore, we asked the reverse question, whether metabo-
lite profiles of TB patient samples can be used to predict
progression toward disease in healthy individuals. Here, we tested
a model derived from TB-HEALTHY on the prospective GC6-74
samples (both training and test samples, since the TB-HEALTHY
data set is completely independent). Serum metabolite levels from
44 TB patients and 92 controls from the TB-HEALTHY data set
were used to train a random forest classifier, which was then
directly applied to the longitudinal data from the present study.

The TB-HEALTHY signature was significantly predictive for
the GC6-74 data (overall AUC 0.68; 95% CI: 0.64–0.73,
corresponding to 50% sensitivity at 75% specificity) and similarly
showed a stronger performance for proximate samples (overall
AUC 0.82; 95% CI: 0.75–0.89, 73% sensitivity at 75% specificity;
Fig. 3a). For the largest sample sets, from The Gambia and South
Africa, the performance on proximate samples showed AUCs of
0.86 (95% CI: 0.75–0.96) and 0.81 (95% CI: 0.69–0.93),
respectively (Supplementary Table 12). Intriguingly, the TB-
HEALTHY model performed at least as well as the biosignatures
derived from the GC6-74 study itself.

Both TB-HEALTHY and Total models included a number of
shared metabolites as strongest predictors. Among the top twenty
predictors from both models, sixteen were shared between the
two models, including kynurenine, cortisol, bile acids, 3-carboxy-
4-methyl-5-propyl-2-furanpropanoate acid (CMPF), and trypto-
phan, and variable importance score (mean decrease in Gini
coefficient) was significantly correlated between both models
(Pearson correlation, 0.89, p= 0.00). These results support the

hypothesis that the prognostic biosignature of subclinical TB is
similar to the signature for diagnosis of TB.

A model with 10 features predicts TB progression. The models
created hitherto were based on all available features present in the
data set; however, for a practical implementation, a much lower
number of variables is required. On the other hand, reducing the
number of features negatively impacts the performance of a
model.

We have determined the relationship between the number of
features used in a model for the TB-HEALTHY and the model
performance data set using leave-one-out cross-validation
(Supplementary Figure 6) and, based on this, we have generated
post-hoc a model reduced to only 10 features, including five
disease-associated metabolites and one risk-associated metabolite
(unidentified features were excluded from the model). While the
reduction of the number of features decreased the observed
performance of the reduced model on the validation set, it was
similar to the model including all features and had significant
predictive power for all cohorts except the Uganda samples (Fig. 4
and Supplementary Table 13).

Metabolomic signatures are specific for TB. We next deter-
mined whether the predictive signatures identified in the GC6-74
study specifically discriminates TB from other respiratory dis-
eases (ORD), since observed changes of metabolites such as
cortisol could reflect a more general inflammatory state rather
than a specific TB signature. To test this hypothesis, we collected
an additional independent set of plasma samples from The
Gambia from patients reporting with symptoms suggestive of
active TB. These patients were later on diagnosed with either TB
or ORD (including chronic obstructive pulmonary dis-
ease (COPD), asthma, pneumonia, and other respiratory tract
infections).

We applied the Total model trained on all samples from the
GC6-74 study to the metabolic profiles from TB and ORD
patients within this separate Gambian cohort. We observed a
specific and sensitive discrimination between TB and
ORD (AUC: 0.87; 95% CI: 0.80–0.93; Supplementary Figure 5),
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Fig. 2 Machine learning models (biosignatures) discriminating between progressors and controls. Panels show receiver–operator characteristic (ROC)
curves. The three panels correspond to the three models tested: a, model Total which was generated using all training set samples; b, model Total/Baseline
which was generated using only BL training set samples. Model evaluation was stratified by time to TB diagnosis: all, evaluation on all test set samples;
proximate, evaluation on test set samples collected < 5 months before TB diagnosis; distal:≥ 5 months. c Results of enrichment test on metabolites ordered
by their importance in the Total and Total/Baseline models. The metabolite sets correspond to biochemical groups and clusters of metabolites identified
previously in TB patients. Color intensity corresponds to p-value, and symbol size corresponds to the strength of the enrichment. P-values were corrected
for multiple testing, and AUC was used as a measure of effect size
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indicating that the predictive models detect disease-specific
biology.

Again, we reversed this procedure, testing whether metabolic
profiles derived from the TB-ORD data set can be used to detect
the progression to TB in healthy individuals. We constructed a
random forest machine learning model based on TB-ORD
samples and applied it to classify the GC6-74 samples. The
model showed substantial predictive power (Fig. 3c, d) with AUC
for proximate samples ranging from 0.73 to 0.92 (see Supple-
mentary Table 14) with six predictors shared with the Total
model. The variable importance of the metabolites was
significantly correlated between the TB-ORD and Total models
(Pearson correlation, 0.69, p= 0.00). This demonstrates that the
same metabolites that specifically distinguish TB patients from
ORD patients—including cortisol and CMPF—also distinguish
progressors from controls.

We conclude that the signature differentiating TB progressors
from controls represents an alteration in metabolic state specific
to TB pathology.

Temporal changes and time-independent profiles. To better
understand metabolic changes and biological mechanisms

underlying TB progression, we used linear modeling to identify
individual metabolites (i) that significantly differ in relative
abundance between progressors and controls and (ii) that show a
significant increase over time in progressors only.

Observed differences between progressors and controls were
consistent with previously published differences between active
TB and healthy or latent TB-infected individuals19, including
alterations in the relative abundances of particular amino acids,
bile acids, and cortisol. For example, several amino acids,
including histidine (generalized linear model, GLM, q= 7.7 ×
10−05), alanine (GLM q= 7.7 × 10−05), and tryptophan (GLM
q= 0.00022) had significantly lower abundances in the
progressor group, while cortisol (GLM q= 1.7 × 10−05) was
higher in progressors.

Clear differences between progressors and controls were
more prominent in the proximal than in the distal samples (Sup-
plementary Table 15, Fig. 5, Supplementary Figure 7). This
was confirmed by significant dependence of metabolite
abundances from time to diagnosis (Supplementary Table 16).
Figure 5 illustrates the significant differences in temporal
regulation of metabolites. Cortisol and kynurenine levels in
progressors begin to deviate from controls at about
12 months prior to active TB. In contrast, the amino acids
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histidine and glutamine start to deviate by 9 and 6 months prior
to clinical TB (Fig. 5b, e).

Kynurenine is a crucial metabolite of the indoleamine 2,3-
dioxygenase pathway thought to play a critical role in
immunoregulation of TB, and was among the most prominent
markers for active TB in our previous study. Although we did not
find any significant differences in the relative abundance of

kynurenine when the progressors were compared to controls, the
increase of kynurenine over time to TB diagnosis was significant
(linear model q= 2 ×10−05).

Enrichment testing on compounds significantly increasing over
time to TB diagnosis showed a significant enrichment for long
chain fatty acids (CERNO test q= 5.6 ×10−05, AUC= 0.77),
cluster of kynurenines, taurocholates, and cortisol (CERNO test
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q= 5.6 ×10−05, AUC= 0.81), and lipids (CERNO test q=
0.00095, AUC= 0.64; Supplementary Table 17).

Finally, we attempted to identify risk-associated metabolites.
To this end, we searched for metabolites with consistent, time-
independent differences between progressors and controls at time
points distal from TB diagnosis. Two metabolites were differen-
tially abundant at times far from diagnosis of active TB
(Supplementary Figure 7). Cotinine, a xenobiotic metabolite of
nicotine was consistently more abundant in progressors than in
controls even more than a year before the diagnosis (Fig. 5c; GLM
q= 0.0064). The presence of cotinine correlated with both,
smoking status and smoking intensity (see Supplementary
Figure 8), illustrating the ability of metabolic profiling to identify
static environmental risk factors simultaneously with dynamic
disease processes. Indeed, smoking alone was a predictor for
progression (OR= 2, χ² p= 0.00042), especially in the SUN
cohort, where smoking was common (OR= 4.6, χ²
p= 3.1 × 10−07). In addition, progressors showed an increased
abundance of mannose in samples collected immediately post-
exposure (linear model q < 10−4).

Discussion
The ability to detect TB at an early stage after exposure to Mtb,
but before clinical symptoms arise, allows early intervention
needed for control of the continuing pandemic. Biosignatures that
indicate risk factors or signs of “preclinical TB” in otherwise
healthy individuals could be harnessed for early treatment to
prevent clinical disease and dissemination. Here, we demonstrate
that changes in serum or plasma abundances of small metabolic
compounds identify individuals who progressed to clinical TB.
The magnitudes of these changes increased as disease onset
approached. Several metabolites associated with TB progression
in this study had been found previously to differ between TB
patients and healthy individuals in a previous study19. By com-
paring TB patients with patients suffering from other pulmonary
diseases, we here demonstrate that these metabolite differences
are specific to TB. Accordingly, the identified metabolomic sig-
natures demonstrate specific and robust performance in pre-
dicting subclinical TB and progression to active TB.

We further demonstrate the utility of metabolic profiling for
predicting progression to TB by successful application of a TB
diagnostic signature derived from an independent study cohort19.
Both the descriptive analysis of changes of serum abundances and
the comparison of the machine learning models show that
changes in concentrations of metabolites in progressors were well
aligned to differences in these metabolites between TB patients
and healthy individuals. This strongly supports the hypothesis
that metabolic profiling identifies subclinical TB. In fact, for
proximate samples, at 75% specificity, the sensitivity of these
models approached (TB-HEALTHY, 73%) or exceeded (TB-
ORD, 76%) the proposed requirements for a target product
profile for the development of a test for predicting progression to
active TB disease21.

Interestingly, the performance of models based on external
data sets was better than that of the models derived from the
progressors vs. controls of the GC6 cohort. This can be explained
as follows: the signature derived from asymptomatic individuals is
based on a less pronounced phenotype of a slowly emerging TB,
which might lead to a noisy signature. In contrast, a clearly
defined signature based on TB patients who all show the mole-
cular markers of symptomatic, clinical TB performs well when
applied to noisy data. A similar phenomenon has been observed
for transcriptomic data22, where the more pronounced TB sig-
natures from HIV-positive patients performed better even when
applied to the noisier data from HIV-negative patients.

Despite differences in sample type, life style, genotype, diet, etc.
between the different cohorts, a single predictive metabolic sig-
nature predicted progression across these cohorts and popula-
tions. Consistent with this, the TB-HEALTHY signature derived
from a cohort in South Africa showed a strong performance when
applied to proximate samples from The Gambia (AUC: 0.86; 95%
CI: 0.75–0.96) and Ethiopia (AUC: 0.89; 95% CI: 0.75–1.00).

In this study, we have not included HIV-positive individuals by
design, even though the interplay between these two diseases
plays a pivotal role in TB epidemiology. It is unknown to what
extent the presence of opportunistic infections and the perturbed
immune responses associated with HIV infection will alter the
predictive signatures. However, previous studies show hardly any
overlap between the TB and HIV metabolic profiles23,24, with
plasma glutamate being the only biomarker common for both TB
and HIV24.

While both tuberculin skin test positive (TST+) and negative
(TST−) individuals were enrolled in the study, we observed less
than 10 conversion events in the whole study and could not find
any conclusive evidence for a link between TST conversion and
metabolite profiling (see “Methods” for details).

Temporal changes in metabolite levels between progressors
and healthy controls were concordant with the hypothesis that
metabolic profiling detects subclinical disease in progressors,
rather than capturing a set of stable risk-associated markers. For
example, the abundances of amino acids that were previously
shown to be decreased in TB19 showed a gradual decline in
progressor samples approaching clinical diagnosis (Fig. 5). This
has been further corroborated by comparing the signatures of
progressors with the signatures of TB patients, suggesting a
quantitative rather than qualitative change from the subclinical
stage of TB development preceding clinical diagnosis to clinical
TB, at least at the molecular level.

In contrast to metabolites characteristic for TB, cotinine and
mannose were detected at elevated levels irrespective of time to
TB onset. As a nicotine metabolite, cotinine is associated with
smoking, a well defined risk factor25 for the development of active
TB and can act synergistically on disease risk with alcohol con-
sumption26. The higher basal levels of cotinine and related
metabolites corresponds to the fact that reported smoking was
higher in the progressors from the South African cohort than in
the predominantly Muslim population of The Gambia. Interest-
ingly, the levels of cotinine approached the levels in the
healthy population at time of TB diagnosis, which tempts us to
speculate that smoking intensity decreases with disease progres-
sion. While cotinine as a biomarker is redundant (as it merely
reflects smoking status), it does serve as a positive control,
demonstrating that risk factors can be identified with our
approach.

Mannose, another metabolite showing differences between
progressors and controls irrespective of time to diagnosis, plays a
central role in mammalian energy generation and regulation, and
can have both beneficial and detrimental effects27. The con-
sistently elevated levels of mannose in progressors may hint to an
impaired glucose tolerance or insulin resistance28,29 and could
even be associated with an inherent risk of developing type 2
diabetes30 in these individuals. The observation of differences
in mannose and cotinine levels at basal time points emphasizes
that metabolic markers of risk could be detected by metabolic
profiling.

C-glycosyltryptophan has previously been observed to be
negatively correlated with lung function31. The progressors in our
study showed significant differences in the abundance of this
compound during the time prior to diagnosis. This might reflect
impaired lung function as a result of inflammatory responses
during disease progression.
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Decreasing glutamine levels are observed under inflammatory
conditions and this nonessential amino acid may become essen-
tial during infection and disease32,33, such that dietary supple-
mentation of glutamine can be beneficial in some patient
populations34. Glutamine is required for the proper functioning
of the immune system and during mycobacterial infection lym-
phocytes, neutrophils, and macrophages rapidly consume
glutamine32,35. In this respect, the gradual drop in glutamine
levels observed in progressors likely reflects increasingly exacer-
bated lung pathology in these individuals.

Changes in amino acid and cortisol levels can be detected as
early as 12 months before disease onset, becoming even more
prominent toward clinical diagnosis of TB. We conclude that
manifestation of active TB is the apex of a prolonged process
which remains subclinical for many months. Since these
metabolomic changes can already be detected during the
asymptomatic phase, metabolic profiling allows stratification
of TB risk in individuals with latent TB into high- and low-
risk individuals, as was recently shown for blood tran-
scriptomic signatures of TB risk10–12. The metabolomic sig-
natures identified here can potentially be combined with
transcriptomic signatures to further improve sensitivity and
specificity of TB risk prediction11. This signature can identify
high-risk individuals in the absence of available sputum for
microbiological diagnosis, facilitating treatment prior to
development of disease pathology when the bacterial load and
the likelihood of disease transmission is low. A proof of
concept trial is currently underway stratifying participants
based on the 16-gene transcriptomic correlate of risk10 to test
its potential for targeted intervention (clinicaltrials.gov iden-
tifier: NCT02735590). While the development of a diagnostic
test for a metabolite can be a costly process, such tests are
already available for a number of relevant compounds such as
cortisol.

Along with identifying high-risk individuals for prophylactic
treatment, these risk signatures have potential value for clinical
trials of new intervention measures. Selecting such individuals for
participation has the potential to increase the power and benefit
of clinical trials, reducing participant numbers, and trial duration,
thereby lowering trial cost and increasing trial effectiveness.
Furthermore, the biological insights provided by metabolic pro-
filing in addition to peripherial blood transcriptomics may aid in
the development of host-directed therapies.

Undoubtedly, before practical point-of-care application of a
metabolomic signature further studies are needed. An important
consideration for metabolomic studies is the availability of
inexpensive quantitative procedures for the metabolites of inter-
est36. As some of these are readily available (e.g., cortisol), a
follow-up study should focus on those metabolites which can be
determined by simple procedures, using our data set as a guide
line.

Furthermore, our study did not include samples from the
progressors collected after clinical diagnosis and instead relied on
separate data sets which included TB patients. Hence, a detailed
time course characterization of patients before clinical diagnosis
as well as during and after treatment would be an important step
to corroborate our results and to progress toward practical
implementation of a metabolic signature.

Blood metabolomic profiles are not exclusively dependent on
processes ongoing in peripheral blood cells, but can also provide
biological information on host–pathogen interplay at the site of
disease and in other tissues37. We are confident that a trans-
African prognostic signature for TB consisting of disease-
associated and specific metabolites can be constructed. Thus,
our metabolomic signature will contribute both to TB control and
to better understanding of TB pathogenesis.

Methods
Study design and participants. We recruited 4462 HIV-negative healthy house-
hold contacts of 1098 index TB cases across in the GC6-74 cohorts in four African
sites included in this study. We enrolled 1197 contacts of 209 index cases in South
Africa (SUN) between February 27th, 2006 and December 14th, 2010, 1948 con-
tacts of 402 index cases in The Gambia (MRC) between March 5th, 2007 and
October 21st, 2010, 818 contacts of 154 index cases in Ethiopia (AHRI) between
February 12th, 2007, and August 3rd, 2011, and 499 contacts of 181 index cases in
Uganda (MAK), between June 1st, 2006 and June 8th, 2010. Follow-up visits in the
GC6-74 household contacts cohorts concluded on November 28th, 2012 in South
Africa, October 22nd, 2012 in The Gambia, August 16th, 2012 in Ethiopia, and
May 4th, 2012 in Uganda.

The study includes several cohorts with varying study designs and geographic
sites, all with a prospective longitudinal design to identify prospective correlates of
risk of TB. All sites adhered to the Declaration of Helsinki and Good Clinical
Practice guidelines in the treatment of all study participants.

The household contact study design included participants from four African
sites: South Africa, The Gambia, Ethiopia, and Uganda, as part of the Bill and
Melinda Gates Grand Challenges 6–74 study. The GC6-74 cohorts consisted of
4462 HIV-negative participants, aged 10–60 years, with no clinical signs of
pulmonary TB. Participants had to be household contacts of an index TB case, who
was at least 15-year-old, with a confirmed positive sputum smear for acid fast
bacilli, diagnosed within the last 2 months. For all sites, adult participants, or legal
guardians of participants aged 10–17 years old, provided written or thumb-printed
informed consent to participate after careful explanation of study aims and any
potential risks.

Participants who progressed to active TB disease within the 2-year follow-up
period were considered progressors (TB classifications A-K, Supplementary
Tables 1, 2). For the TB-ORD validation set, the individuals were classified as TB if
they were culture positive using Mycobacteria Growth Indicator Tube, or as ORD,
if they were confirmed culture-negative. Of 145 patients, 124 (86%) had an
undefined respiratory tract infection; 6 (4%) had bacterial pneumonia; 4 (2.8%) had
COPD; 2 (1.4%) had asthma; 1 (0.7%) had emphysema, and 4 (2.8%) had no final
diagnoses. All were followed for 2 months and checked for clinical improvement.
In addition, all subjects were confirmed culture-negative (40 days of culture) with
two separate samples to exclude the possibility of TB.

Study exclusion criteria were current or previous anti-retroviral treatment,
history of TB, pregnancy, participation in drug and/or vaccine clinical trials and
chronic disease diagnosis or immunosuppressive therapy within the past 6 months,
and living in the study area for less than 3 months. Furthermore, participants who
developed incident TB were only included in the study if they developed incident
TB disease 3 months after enrollment. This was to ensure that no-one had
undiagnosed clinical TB at the time of household contact and collection of the
baseline sample. If a person had TB at any point in their lifetime before the GC6-74
study, they were excluded from enrollment into the study. A positive HIV rapid
test was furthermore an exclusion criterion of samples from this study. The
percentages of individuals who completed month 24 examination were 87% for
SUN, 84% for MRC, and 80% for MAK.

Each progressor was matched to four non-progressors/controls, who remained
healthy during follow-up, by site, age class, sex, and wherever possible year of
recruitment (classifications R and S, Supplementary Tables 1, 2). Age included four
classes: <18, 18–25, 25–36, and >36 years of age, and year of enrollment had three
categories: 2006/2007, 2008, and 2009/2010.

The South African cohort was recruited from the communities of Ravensmead,
Uitsig, Adriaanse, and Elsiesriver and clinical sites affiliated with the University of
Stellenbosch and Tygerberg Hospital Infectious Disease Clinic in Cape Town,
South Africa. The study protocol was approved by the Stellenbosch University
Institutional Review Board (ref no. N05/11/187). South African participants do not
receive isoniazid preventative treatment per South African national treatment
guidelines. Samples were collected from participants at enrollment (baseline
samples), and 18 months. The Gambian cohort was recruited from the Greater
Banjul area and Medical Research Council (MRC) outpatient departments in The
Gambia. The site protocol was approved by the Joint Medical Research Council
and The Gambian Government ethics review committee, Banjul, The Gambia;
(reference no. SCC.1141vs2). The Ethiopian cohort was recruited from Arada, T/
Haimanot, Kirkos, and W-23 clinical centers in Addis Ababa, Ethiopia. The site
protocol was approved by the Armauer Hansen Research Institute (AHRI)/All
Africa Leprosy, TB, and Rehabilitation Training Center (ALERT) ethics
committees; reference no. P015/10. Finally, the Ugandan cohort was recruited from
the Uganda National Tuberculosis and Leprosy Program treatment center at the
Old Mulago Hospital and surrounding communities in Kampala, Uganda. The site
protocol was approved by the ethics committees of University Hospitals Case
Medical Centre (reference no. 12-95-08) and the Uganda National Council for
Science and Technology; (reference no. MV 715); these participants received
preventative treatment. For these three sites, samples were collected at enrollment
(baseline), 6 and 18 months post-enrollment. Samples from all four sites were
shipped to the central biobank at the University of Cape Town for analysis, and
processing was approved under the University of Cape Town Human Research
Ethics Committee HREC; reference no. 013/2013 (Supplementary Table 3).

All samples were collected from individuals who were asymptomatic at the time
of their clinical exam.
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Tuberculin skin test (TST). In a majority of individuals, a tuberculin skin test
(TST) was conducted at baseline. In the South African and Ugandan subsets, the
vast majority of the individuals showed a positive response (TST+, ≥ 10 mm)
already at the baseline (Supplementary Table 4), and more individuals converted
throughout the study. In the Ugandan and Gambian subsets, ≥ 40% individuals
were TST+. For eight individuals (six from The Gambia and two from South
Africa), samples before and after conversion were available.

We have tested post hoc for association between TST and metabolite
abundances. First, we used paired Wilcoxon test to compare samples before and
after conversion for the control individuals for which before and after conversion
samples were available. Then, we tested Spearman correlation between the TST size
reported and the abundances of compounds at baseline. Next, we compared the
abundances of compounds in control individuals with TST ≤ or ≥ than 10 mm by
Wilcoxon test. In both tests, the p-values were corrected for multiple testing using
the Benjamini–Hochberg method. Finally, we trained random forest machine
learning models on the compound data for discrimination between TST+ and
TST−.

Wilcoxon or Spearman tests revealed no differences in any of the comparisons.
For the two main sets (South Africa and The Gambia), as well as for one of the
small sets (Uganda), we found no evidence of any link between TST results and
metabolic profiles. Random forest model cross-validated on the 32 baseline control
samples from Ethiopia, however, revealed a significant discrimination between the
TST+ and TST− individuals (AUC: 0.90; 95% CI: 0.78–1.00, q-value 4.7 × 10−05)
even though individual compounds did not significantly differ between TST+ and
TST− individuals. The model did not validate when applied to the other data sets
(South Africa, The Gambia, Uganda) or the remaining samples from Ethiopia.

Training and test set. Prior to analysis, progressor samples were divided between
test and training sets in such manner that the resulting sets had identical stratifi-
cation in respect to age, sex, and sample time to TB (Supplementary Figure 2). For
each sample, at most four (where available) matched control samples from dif-
ferent donors were selected. These sets were locked and the test set was blinded. All
analyses, including metabolomic profiling and bioinformatic analyses, were per-
formed first on the blinded dataset. Machine learning models derived from the
training set were applied to the test set and locked prior to unblinding.

Metabolic profiling. Plasma was derived from ficoll separation of blood samples
during PBMC isolation. Serum was derived from clotted blood tubes. For serum
collection, SST Vacutainer tubes from BD were used, centrifuged for 10 min at
2500×g within 2 h of blood draw, aliquoted, and stored at −70 °C until analysis.
Ugandan plasma samples were diluted in RPMI. Samples were stored at –80 °C
until processed. TB-ORD plasma samples were derived from heparinized blood
following centrifugation and frozen at −20 °C prior to shipment.

Sample preparation was carried out at Metabolon, Inc. as follows38: recovery
standards were added prior to the first step in the extraction process for quality
control purposes. To remove protein, dissociate small molecules bound to protein
or trapped in the precipitated protein matrix, and to recover chemically diverse
metabolites, proteins were precipitated with methanol under vigorous shaking for
2 min (Glen Mills Genogrinder 2000) followed by centrifugation. The resulting
extract was divided into four fractions: one for analysis by reverse phase ultra-
performance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS;
positive ionization), one for analysis by reverse phase UPLC-MS/MS (negative
ionization), one for analysis by gas chromatography–mass spectrometry (GC-MS),
and one sample was reserved for backup. For the TB-ORD samples (i.e., TB vs.
other respiratory diseases), the resulting extract was divided into five fractions: two
for analysis by two separate reverse phase UPLC-MS/MS methods with positive ion
mode electrospray ionization (ESI; “UPLC-MS/MS Pos Early” and “UPLC-MS/MS
Pos Late”), one for analysis by reverse phase UPLC-MS/MS with negative ion mode
ESI “UPLC-MS/MS Neg”), one for analysis by Hydrophilic Interaction Liquid
Chromatography (HILIC)/UPLC-MS/MS with negative ion mode ESI (“UPLC-
MS/MS Polar”), and one sample was reserved for backup.

Three types of controls were analyzed in concert with the experimental samples:
samples generated from a pool of human plasma extensively characterized by
Metabolon, Inc. served as technical replicate throughout the dataset; extracted
water samples served as process blanks; and a cocktail of standards spiked into
every analyzed sample allowed instrument performance monitoring. Instrument
variability was determined by calculating the median relative standard deviation
(RSD) for the standards that were added to each sample prior to injection into the
mass spectrometers (median RSD= 3–5%; n ≥ 30 standards). Overall process
variability was determined by calculating the median RSD for all endogenous
metabolites (i.e., non-instrument standards) present in 100% of the pooled human
plasma samples (median RSD= 9–12%; n= several hundred metabolites,
depending on the matrix tested). Experimental samples and controls were
randomized across the platform run.

Mass spectrometry analysis. For non-targeted MS analysis, extracts were sub-
jected to either UPLC-MS/MS or GC-MS. The chromatography was standardized
and, once the method was validated, no further changes were made. As part of
Metabolon’s general practice, all columns were purchased from a single

manufacturer’s lot at the outset of experiments. All solvents were similarly pur-
chased in bulk from a single manufacturer’s lot in sufficient quantity to complete
all related experiments. For each sample, vacuum-dried samples were dissolved in
injection solvent containing eight or more injection standards at fixed concentra-
tions, depending on the platform. The internal standards were used both to assure
injection and chromatographic consistency. Instruments were tuned and calibrated
for mass resolution and mass accuracy daily.

The UPLC-MS/MS platform38 utilized a Waters ACQUITY UPLC and a
Thermo Scientific Q-Exactive high resolution/accurate mass spectrometer
interfaced with a heated electrospray ionization (HESI-II) source and Orbitrap
mass analyzer operated at 35,000 mass resolution. The sample extract was dried
then reconstituted in solvents compatible to each method. Each reconstitution
solvent contained a series of standards at fixed concentrations to ensure injection
and chromatographic consistency. One aliquot was analyzed using acidic, positive
ion-optimized conditions (“UPLC-MS/MS Pos”), and the other using basic,
negative ion-optimized conditions (“UPLC-MS/MS Neg”) in two independent
injections using separate dedicated columns (Waters UPLC BEH C18-2.1 × 100
mm, 1.7 μm). Extracts reconstituted in acidic conditions were gradient-eluted using
water and methanol containing 0.1% formic acid, while the basic extracts, which
also used water/methanol, contained 6.5 mM ammonium bicarbonate. For the TB-
ORD samples (i.e., TB vs. other respiratory diseases), one aliquot was analyzed
using acidic positive ion conditions, chromatographically optimized for more
hydrophilic compounds (“UPLC-MS/MS Pos Early”). In this method, the extract
was gradient-eluted from a C18 column (Waters UPLC BEH C18-2.1 × 100 mm,
1.7 μm) using water and methanol, containing 0.05% perfluoropentanoic acid
(PFPA) and 0.1% formic acid (FA). Another aliquot was also analyzed using acidic
positive ion conditions; however, it was chromatographically optimized for more
hydrophobic compounds (“UPLC-MS/MS Pos Late”). In this method, the extract
was gradient-eluted from the same aforementioned C18 column using methanol,
acetonitrile, water, 0.05% PFPA, and 0.01% FA and was operated at an overall
higher organic content. Another aliquot was analyzed using basic negative ion
optimized conditions using a separate dedicated C18 column (“UPLC-MS/MS
Neg”). The basic extracts were gradient-eluted from the column using methanol
and water, however with 6.5 mM ammonium bicarbonate at pH 8. The fourth
aliquot was analyzed via negative ionization following elution from a HILIC
column (“UPLC-MS/MS Polar” Waters UPLC BEH Amide 2.1 × 150 mm, 1.7 μm)
using a gradient consisting of water and acetonitrile with 10 mM Ammonium
Formate, pH 10.8. The MS analysis alternated between MS and data-dependent
MSn scans using dynamic exclusion. The scan range varied slighted between
methods but covered 80–1000m/z.

For samples destined for analysis by GC-MS, an aliquot of extract was dried
under vacuum desiccation for a minimum of 18 h prior to being derivatized under
nitrogen using bistrimethyl-silyltrifluoroacetamide. Derivatized samples were
separated on a 5% phenyldimethyl silicone column with helium as carrier gas and a
temperature ramp from 60° to 340 °C within a 17-min period. All samples were
analyzed on a Thermo-Finnigan Trace DSQ MS operated at unit mass resolving
power with electron impact (EI) ionization and a 50–750 atomic mass unit scan
range.

Compound identification, quantification, and data curation. Metabolites were
identified by automated comparison of the ion features in the experimental samples
to a reference library of chemical standard entries that included retention time,
molecular weight (m/z), preferred adducts, and in-source fragments as well as
associated MS spectra and curated by visual inspection for quality control using
software developed at Metabolon39. Identification of known chemical entities is
based on comparison with a spectral library of >4000 purified chemical standards.
Commercially available purified standard compounds have been acquired and
registered into LIMS for distribution to the UPLC-MS/MS and GC-MS platforms
for determination of their detectable characteristics. Known metabolites reported in
this study conform to the confidence Level 1 (the highest confidence level of
identification) of the Metabolomics Standards Initiative40,41, unless otherwise
denoted with an asterisk. Additional mass spectral entries have been created for
structurally unnamed biochemicals (> 5000 in the Metabolon library), which have
been identified by virtue of their recurrent nature (both chromatographic and mass
spectral). These compounds have the potential to be identified by future acquisition
of a matching purified standard or by classical structural analysis.

Peaks were quantified using area-under-the-curve. Raw area counts for each
metabolite in each sample were normalized to correct for variation resulting from
instrument inter-day tuning differences by the median value for each run-day,
therefore, setting the medians to 1.0 for each run. This preserved variation between
samples but allowed metabolites of widely different raw peak areas to be compared
on a similar graphical scale. Missing values were imputed with the observed
minimum after normalization.

Primary data. Metabolic profiling was carried out for each site, using either serum
or plasma samples. For a small number of samples, an insufficient amount of
plasma was available, so the sample was diluted using RPMI buffer. The sample
types taken from each study site are described in Supplementary Table 5. Metabolic
profiling was carried out by Metabolon Inc. The metabolic profiles identified a total
of 1701 unique metabolites. See Supplementary Data for details. Missing values
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(not detected metabolites) were imputed using a Winsorization procedure (mini-
mum value imputation).

The compatibility between serum and plasma samples was first tested using 36
time point/donor combinations for which both serum and plasma samples were
available. The median correlation between the samples was 0.82 with 89% of the
correlations significant (Pearson, q < 0.05) after correction for multiple testing.
Furthermore, machine learning models trained on one sample type from the
training set were tested on all other sample types in the training set (Supplementary
Table 8).

Data analysis planning. In order to avoid data dredging and post-hoc bias, we first
performed a detailed study on the training set only. Machine learning procedure
was optimized and comparisons within cohort (Supplementary Table 6) and
between cohorts (Supplementary Table 7) were conducted; differential abundance
analysis with regression models was initially performed on the training set only.
Based on the training set results, we put forward the hypothesis that we observe
markers of progression toward TB rather than risk-associated factors, and
accordingly planned the evaluation of the blinded set. Models were proposed and
applied to the blinded test set. After unblinding, the performance of the prediction
was evaluated for the regression models and repeated for the full dataset (as they
were considered to have a primarily exploratory function).

Machine learning. We selected random forest machine learning because we have
previously successfully applied these approaches to discriminate TB cases from
healthy controls19. We used the random forest machine learning algorithm as
implemented in the R package randomForest 4.642. The cross-validation within a
dataset was a modified k-fold procedure, in which all samples associated with an
individual were removed in the cross-validation process. When models were
trained and tested on different sample types (e.g., plasma samples were used to
train a model and serum samples were used to test the model), the model was
trained only on features which were found in both training and test sets, therefore
the number of features may differ depending on the test set. The numbers of
features used to train the models are shown in corresponding Supplementary
Tables.

Choosing a minimal classifer. In order to select a minimum size classifier, various
machine learning algorithms were applied using the interface available in the R
package caret43. The algorithms chosen were random forests (caret – rf), gen-
eralized boosted models (caret – gbm), neural networks (caret – nnet), and elastic-
net logistic regression (caret – glmnet). Each of these algorithms were trained on
the entire training set, and performance evaluated using the LOOCV procedure
described above. Model metabolites were ranked using the caret:varImp function,
which uses model-specific methods to rank features. Random forest and boosted
model importance was calculated as the increase in mean standard error on per-
mutation of the metabolite, linear model importance was the magnitude of the
metabolite coefficients, and neural network importance was calculated using
Garson’s algorithm to infer metabolite importance through network weights. After
calculating variable importance for machine learning algorithms trained on all
metabolites, models were retrained on the top 200 metabolites and importance
recalculated. This was repeated recursively to create models with 100, 50, 25, and
10 metabolites. An optimal non site-specific small model was selected by only
considering models with 50 or fewer metabolites, and calculating LOOCV AUCs
for each site individually. The final model was selected by considering the poorest
site-specific AUC from each model, i.e., the minimum site-specific AUC. The
model with the highest minimum site-specific AUC was selected.

Statistical analysis. For each of the three sample types (plasma, serum, and
plamsa diluted with RPMI), we removed metabolites with zero variance or without
identification and selected only metabolites found in all three sample types. Then,
we used a binomial regression model that included progressor/control grouping,
stratification grouping, time to TB, and sample type, and considered the contrast of
progressors vs. controls. We have used separate models to test the total dataset for
metabolites common to all three sample types, and for serum, plasma and plasma/
RPMI-specific metabolites. Furthermore, we have tested the dependence on time to
diagnosis for progressor samples for all metabolites using a linear mixed model
using the lme4 package44.

For data standarization for visualization purposes, we fit a model that included
all controlled variables except for the progressor/control grouping, and used the
residuals from that model as standardized relative abundance score, and visualized
the data with a LOESS fit.

To determine the compounds that were different between progressors and
controls, we have used five linear models: (i) overall differences between
progressors and controls, (ii) differences only for samples less than 5 months to
diagnosis, (iii) three separate models for each of the three sample types (plasma,
serum, and plasma/RPMI).

Enrichment analysis was performed using the tmod package45 and metabolic
profiling modules constructed from previously published metabolic profiles of TB
patients and healthy donors19.

Code availability. To ensure reproducibility of our findings, all data, scripts, and
software packages necessary to replicate the results and generate the figures are
available. The software versions used are available in Supplementary Table 18. The
manuscript text itself has been automatically generated from an available com-
putable document46, explicitly stating all undertaken calculations starting with the
primary data readouts. This manuscript has been prepared as an rmarkdown47

document. The manuscript source code, including all analyses performed as well as
data necessary to replicate all results and figures are available from the github
platform (https://github.com/january3/gc6metabolomics).

Data availability
Metabolomic data have been deposited to Metabolomic Workbench48, ID
PR000666 and are accessible under http://www.metabolomicsworkbench.org/data/
DRCCMetadata.php?Mode=Project&ProjectID=PR000666. Data used to generate
the figures 2–5 are available as a Source Data file.
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