
1006  |  	�  Methods Ecol Evol. 2018;9:1006–1016.wileyonlinelibrary.com/journal/mee3

 

Received: 6 October 2017  |  Accepted: 10 December 2017

DOI: 10.1111/2041-210X.12968

R E S E A R C H  A R T I C L E

A fast likelihood solution to the genetic clustering problem

Marie-Pauline Beugin1,2 | Thibault Gayet1,3 | Dominique Pontier1 |  
Sébastien Devillard1 | Thibaut Jombart4

1Univ Lyon, Laboratoire de Biométrie et 
Biologie Evolutive, CNRS, Université Claude 
Bernard Lyon 1, Villeurbanne, France
2ANTAGENE, Animal Genomics Laboratory, La 
Tour de Salvagny, France
3Office National de la Chasse et de la Faune 
Sauvage, Unité Cervidés Sangliers, Montfort, 
Birieux, France
4Department of Infectious Disease 
Epidemiology, School of Public Health, MRC 
Centre for Outbreak Analysis and 
Modelling, Imperial College London, London, 
UK

Correspondence
Thibaut Jombart
Email: thibautjombart@gmail.com
and
Marie-Pauline Beugin
Email: marie.pauline.beugin@gmail.com

Funding information
Medical Research Council Centre for Outbreak 
Analysis and Modelling; National Institute for 
Health Research—Health Protection Research 
Unit for Modelling Methodology; LabEx 
ECOFECT, Grant/Award Number: ANR-11-
LABX-0048

Handling Editor: Thomas Hansen

Abstract
1.	 The investigation of genetic clusters in natural populations is an ubiquitous prob-

lem in a range of fields relying on the analysis of genetic data, such as molecular 
ecology, conservation biology and microbiology. Typically, genetic clusters are de-
fined as distinct panmictic populations, or parental groups in the context of hybridi-
sation. Two types of methods have been developed for identifying such clusters: 
model-based methods, which are usually computer-intensive but yield results 
which can be interpreted in the light of an explicit population genetic model, and 
geometric approaches, which are less interpretable but remarkably faster.

2.	 Here, we introduce snapclust, a fast maximum-likelihood solution to the genetic 
clustering problem, which allies the advantages of both model-based and geometric 
approaches. Our method relies on maximising the likelihood of a fixed number of 
panmictic populations, using a combination of geometric approach and fast likeli-
hood optimisation, using the Expectation-Maximisation (EM) algorithm. It can be 
used for assigning genotypes to populations and optionally identify various types of 
hybrids between two parental populations. Several goodness-of-fit statistics can 
also be used to guide the choice of the retained number of clusters.

3.	 Using extensive simulations, we show that snapclust performs comparably to current 
gold standards for genetic clustering as well as hybrid detection, with some advan-
tages for identifying hybrids after several backcrosses, while being orders of magni-
tude faster than other model-based methods. We also illustrate how snapclust can 
be used for identifying the optimal number of clusters, and subsequently assign indi-
viduals to various hybrid classes simulated from an empirical microsatellite dataset.

4.	 snapclust is implemented in the package adegenet for the free software R, and is 
therefore easily integrated into existing pipelines for genetic data analysis. It can be 
applied to any kind of co-dominant markers, and can easily be extended to more 
complex models including, for instance, varying ploidy levels. Given its flexibility 
and computer-efficiency, it provides a useful complement to the existing toolbox 
for the study of genetic diversity in natural populations.
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1  | INTRODUCTION

The identification of groups of genetically related individuals within 
a population, sensu population subdivision, is an ubiquitous prob-
lem in most fields in which genetic data analysis plays an import-
ant role including molecular ecology, evolutionary and conservation 
genetics. Quantifying the magnitude of the population subdivision, 
assessing whether the genetic differentiation matches with the spa-
tial repartition of subpopulations or not, and, identifying from which 
genetic units individuals belong or come have been the focus of at-
tention of population geneticist from the inception of population ge-
netics (Wright, 1951). Specific applications include, for example, the 
definition of panmictic groups (Corander, Waldmann, & Sillanpää, 
2003; Falush, Stephens, & Pritchard, 2003; Pritchard, Stephens, & 
Donnelly, 2000), the classification of isolates into distinct lineages 
in microbiology (Feil, Li, Aanensen, Hanage, & Spratt, 2004; Maiden 
et al., 1998), the investigation of social or ecological units in mo-
lecular ecology (Jombart, Devillard, & Balloux, 2010; Sugg, Chesser, 
Stephen Dobson, & Hoogland, 1996), and the identification of var-
ious types of hybrids in conservation genetics (Allendorf, Leary, 
Spruell, & Wenburg, 2001; Anderson & Thompson, 2002; Vähä & 
Primmer, 2006). Because of this wealth of applications, genetic clus-
tering has received considerable interest from the methodologists 
community. Seeking the number of genetic clusters from a set of 
individual genotypes and assigning individuals into clusters has be-
come a gold standard in population genetics, and, a large number 
of statistical methods have been developed and used routinely for 
nearly two decades (Anderson & Thompson, 2002; Corander et al., 
2003; Falush et al., 2003; Jombart et al., 2010; Pritchard et al., 
2000).

While there is no single taxonomy of methods, a natural sep-
aration can be made between “model-based” approaches, which 
use a population genetics model to compute a likelihood, includ-
ing maximum-likelihood (ML) and Bayesian methods (Anderson & 
Thompson, 2002; Corander et al., 2003; Dupanloup, Schneider, & 
Excoffier, 2002; Falush et al., 2003; Pritchard et al., 2000), and “geo-
metric” approaches, which cluster individuals based on their dis-
tances in the genetic space spanned by allelic data, without assuming 
a specific population genetics model (Feil et al., 2004; Jombart et al., 
2010). In genetic clustering problems, the likelihood is defined as 
the probability that the set of genotypes under consideration was 
generated under a given population structure and model of evolu-
tion. As such, these methods are more readily interpretable: individ-
ual group membership probabilities genuinely reflect the probability 
that the individual “belongs” to the different groups. Unfortunately, 
these methods are typically computer-intensive, as they involve the 
exploration of a high-dimensional parameter space, using optimis-
ation procedures (Dupanloup et al., 2002) or Markov Chain Monte 
Carlo (MCMC) techniques (Corander et al., 2003; Falush et al., 2003; 
Pritchard et al., 2000; Vähä & Primmer, 2006). While more efficient 
implementations have been developed (Alexander, Novembre, & 
Lange, 2009; Raj, Stephens, & Pritchard, 2014; Tang, Peng, Wang, & 
Risch, 2005), geometric approaches remain an appealing alternative, 

as they are typically orders of magnitude faster, while producing 
comparably accurate results under a range of simulation scenarios 
(Jombart et al., 2010). The main limitation of geometric approaches 
lies in the fact that their results are harder to interpret biologically. 
Indeed, these methods typically identify clusters from pairwise ge-
netic distances, without providing group membership probabilities 
(Jombart et al., 2010; Legendre & Legendre, 2012), so that weak 
separation between clusters or admixture patterns cannot be distin-
guished from strong, clear-cut population structure. To some extent, 
this issue can be addressed, using exploratory approaches such as 
the DAPC (Jombart et al., 2010), to visualise cluster diversity in a 
reduced space and even estimate group assignment probabilities, 
but these probabilities merely reflect genetic proximities, and can-
not be interpreted as probabilities that an individual belongs to a 
given population.

Here, we combine both types of approaches to formulate a new 
clustering method called “snapclust,” which retains the advantages 
of both worlds. Our method relies on the most common population 
genetics model which underlies the Hardy–Weinberg (HW) equilib-
rium to compute the likelihood of a given clustering solution. Rapid 
convergence to ML estimates of clusters is achieved by combining 
geometric approaches (Jombart et al., 2010; Legendre & Legendre, 
2012) and the Expectation-Maximisation (EM) algorithm (Dempster, 
Laird, & Rubin, 1977). In practice, our method allows to select the 
optimal number of clusters within a set of genotypes, and provides 
results where group assignment scores are genuine probabilities 
that a given genotype was generated in various populations under 
HW model, while remaining essentially as fast as geometric ap-
proaches (Jombart et al., 2010). Our method can also be used for 
identifying various types of hybrids between two parental popula-
tions. Besides, being an ML estimation method, snapclust can also 
be combined with goodness-of-fit statistics such as Akaike infor-
mation criterion (AIC; Akaike, 1998) or the Bayesian information 
criterion (BIC; Schwarz, 1978) to guide the choice of the optimal 
numbers of clusters.

In this paper, we describe the model underlying snapclust 
and its implementation, and then compare the performance of 
our method with current gold-standards for genetic clustering 
(STRUCTURE; Pritchard et al., 2000; Falush et al., 2003), BAPS, 
adegenet’s find.cluster (Jombart et al., 2010) and hybrid identifica-
tion (NEWHYBRIDS; Anderson & Thompson, 2002). Using a large 
number of simulations, we assessed the impact of the number of 
loci, the dispersal model, the level of genetic differentiation be-
tween populations, and the number of populations (when looking 
at multiple clusters without hybrids), on the performance of the 
different methods. We also provide a worked example based on the 
analysis of a simulated dataset to illustrate typical results provided 
by the method. Here, snapclust is implemented in the package ade-
genet (Jombart, 2008; Jombart & Ahmed, 2011) for the R software 
(R Core Team 2017), thus being readily compatible with a wealth of 
tools for genetic data analysis in R (Goudet, 2005; Jombart et al., 
2017; Kamvar, Tabima, & Grünwald, 2014; Paradis, 2010; Popescu, 
Huber, & Paradis, 2012).
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2  | MATERIALS AND METHODS

2.1 | Rationale of snapclust

2.1.1 | Model likelihood

We consider a dataset of allelic profiles x = {xi,j} where i indexes 
individuals (i = 1, …, N) and j indexes loci (j = 1, …, J), so that xi,j is a 
vector of allele counts for individual i at locus j. The likelihood of our 
model is defined as the probability of observing these data given a 
clustering solution g = {g(i)}, where g(i) defines the group of individual 
i, with groups indexed by k = 1, …, K. Under the HW model, this 
likelihood is defined as:

where M is the probability mass function of the multinomial distribu-
tion, fg(i),j is the vector of allele frequencies in group g(i) at locus j, and 
π is the ploidy of the organism considered. Allele frequencies within 
a group are directly computed as the relative frequencies of each al-
lele in this group. Assuming independence between loci, the likelihood 
term for the genotype i is given by the following:

where fg(i) = {fg(i),1 ,…, fg(i),J} and xi = {xi,1, …, xi,J}. If we further assume 
independence of individuals conditional on their group memberships, 
the general likelihood is given by the following:

where f = {f1 ,…, fK}. In practice, we will consider the log-likelihood of a 
clustering solution defined as follows:

Note that while the current implementation of snapclust considers 
a constant ploidy across individuals and loci, the formula above can 
readily be extended to varying ploidy, in which case π will become an 
individual- or locus-specific term.

Assuming that all clusters have been sampled, the probability p(g(i) =  
k) that an individual i belongs to a group k is defined by the stan-
dardised likelihood:

2.1.2 | Modelling hybridisation

The clustering model above can be readily extended to accommodate 
the presence of hybrids. For simplicity, we consider a case where hy-
brids are obtained from two parental populations A and B. The allelic 
composition fH,j(w) of a hybrid population H at locus j is defined as a 
mixture of the allele frequencies of two parental populations, fA,j and 
fB,j. This mixture is defined by the hybridisation coefficient w, which in-
dicates the proportion of the genomes of the hybrid population com-
ing from the parental population A, so that:

Modelling of hybridisation through the coefficient w is very flexible, 
as it enables the specification of any kind of hybrids between A and 
B. For instance, first-generation hybrids (F1) correspond to w = 0.5, 
while first- and second-generations backcrosses with A that cor-
respond to w = 0.25 and w = 0.125 respectively. The likelihood of a 
hybrid is defined as before, but using the allele frequencies mixture 
as follows:

2.1.3 | Optimisation procedure

Here, snapclust achieves fast likelihood maximisation using the EM 
algorithm (Dempster et al., 1977), in which the vector of group mem-
bership g is treated as a latent variable. In this respect, our approach is 
closely related to K-means clustering, except that snapclust maximises 
a log-likelihood rather than between-group distances (Jombart et al., 
2010). The EM algorithm proceeds by alternating computation of the 
likelihood, and assignment of individuals to their most likely cluster. 
Allele frequencies are updated at each iteration, using their maximum 
likelihood estimation, that is, the mean frequencies of alleles in in-
dividuals of a given group. The algorithm, adapted from the use of 
EM for maximising likelihood in mixed distribution problems (Fraley & 
Raftery, 2002), can be formalised through the following steps:

1.	 define initial group assignments g (see “starting point” below)
2.	 (expectation step) update allele frequencies f within each group, 

computed as the relative frequencies of alleles amongst individuals 
of this group; compute group membership probabilities p(g(i) = k) 
for all individuals i and groups k

3.	 (maximisation step) update the group definition g: based on group 
membership probabilities computed in step 2, assign each individ-
ual to their most likely group

4.	 return to step 2 until convergence

We assume convergence when the difference in log-likelihoods in 
two successive iterations becomes negligible, that is, is less than an arbi-
trary threshold (set to 10−10 by default).

2.1.4 | Starting point

The EM algorithm typically converges very fast, generally within 10 
iterations in the simulated and empirical datasets described here. 
Unlike some other optimisation procedures and MCMC, it is a de-
terministic algorithm, so that it always converges to the same so-
lution for a given starting point (step 1). As a consequence, it is 
unfortunately also prone to being trapped in local maxima, yielding 
suboptimal results for some starting points. To avoid this issue, we 
implemented several options to define the initial clusters used as 
starting point of the algorithm. The first strategy, borrowed from 
the original implementation of K-means in R (R Core Team, 2017), 
is a “brute force” approach in which the algorithm is run multiple 

p(xi,j|fg(i),j,Π)=M(xi,j, fg(i),j, π)

p(xi|fg(i), π)=Πjp(xi,j|fg(i),j, π)

p(x|f, g,π)=Πip(xi|fg(i), π)

LL(g)=
∑

i

∑

j

M(xi,j, fg(i),j,π)

p(g(i)=k)=p(xi|g(i)=k, fk, π)∕
∑

q

p(xi|g(i)=q, fq, π)

fH,j(w)=wfA,j+ (1−w)fB,j

p(xi|g(i)=H, fA, fB,w, π)=Πjp(xi,j|fH,j, π)
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times, using each time a randomly defined group assignment, and 
retaining the solution with the highest likelihood. The second strat-
egy which we introduce here is to use fast geometric approaches 
such as Ward’s clustering (Legendre & Legendre, 2012) or K-means 
after dimension reduction (Jombart et al., 2010) to set up the ini-
tial clusters. Based on our simulated datasets, random initial groups 
with 50 independent replicates, K-means, and Ward initialisation all 
gave similar results. By default, we recommend using Ward as it will 
be faster for most datasets. The three methods are available in the 
implementation of the algorithm, as well as any other user-defined 
initial clusters.

2.1.5 | Finding the optimal number of clusters

The advantage of using a ML approach is that different models can 
be compared using classical goodness-of-fit statistics. While a full 
comparison of model selection techniques for genetic clustering is 
beyond the scope of the present paper, we have implemented four 
different information criteria shown to be useful for selecting the true 
number of clusters in the case of mixtures of distributions (Akogul & 
Erisoglu, 2016). These statistics all rely on measuring the lack of fit of 
the model (deviance), and use different penalties for the complexity of 
the model (number of free parameters). The first, AIC (Akaike, 1998), 
is probably the most frequently used for models comparison. Noting 
L’ the estimated maxima of LL(g), the AIC of our model is computed as:

where the first term is the deviance of the model, and the second term 
corresponds to the complexity of the model, with P being the total 
number of alleles in the dataset across J loci. The complexity reflects 
the fact that for each of the K groups, (P − J) independent allele fre-
quencies are estimated, so that the total number of free parameters of 
the model is (K (P − J)). We also implemented the variant of the AIC for 
small sample sizes, defined as (Akogul & Erisoglu, 2016):

A popular alternative to AIC and AICc is the BIC (Schwarz, 1978), 
which also relies on a penalised deviance, albeit putting a stronger 
cost on complexity:

Finally, we also implemented the Kullback Information Criterion (KIC, 
Cavanaugh, 1999), which gave the best overall results for detecting 
the number of clusters from mixtures of multivariate normal distribu-
tions (Akogul & Erisoglu, 2016):

All these statistics have similar behaviours in that the lower values 
typically indicate better fits. In practice, a sharp decrease in the statis-
tics values with increasing numbers of clusters is most likely to reveal 
the optimal numbers of clusters (Jombart et al., 2010).

2.1.6 | Implementation and availability

snapclust is implemented in the R package adegenet (Jombart,  
2008; Jombart & Ahmed, 2011) version 2.1.0, available via R’s  
native package installation system as well as on github  
(https://github.com/thibautjombart/adegenet). The function snapclust.
em implements the basic method, including different options for de-
fining the initial state of the EM algorithm and the model for hybrids 
classification. The functions AIC, AICc, BIC and KIC implement 
the respective goodness-of-fit statistics. The function snapclust.
em.choose.k derives clustering solutions for increasing numbers 
of clusters and computes the associated goodness-of-fit statistics, so 
that it can guide the choice of the optimal number of clusters. The 
method is documented in a dedicated online tutorial available by 
typing adegenet::adegenetTutorial(‘snapclust’) in a R 
session. Code and documentation are released under GPL ≥ 2 license.

2.2 | Simulations

2.2.1 | Simulated datasets without hybrids

The datasets were simulated using QuantiNEMO (Neuenschwander, 
Hospital, Guillaume, & Goudet, 2008) with the parameters indicated 
in Table 1. We chose to simulate single nucleotide polymorphism 
(SNP) markers and explored a wide range of possible configurations 
by varying four simulation parameters: the number of loci, the dis-
persal model, the rate of dispersion, and the number of populations. 
The different rates of dispersal led to different levels of differentiation 
between populations. All combinations of dispersal rate and number 
of loci were tested as the number of loci and the differentiation level 

AIC=−2L� +2(K(P−J))

AICc=−2L� +2(K(P−J)N)∕(N−KP+KJ−1)))

BIC=−2L� + ln(N)(K(P−J))

KIC=−2L� +3(K(P−J)+1)

Parameter Value Parameter Value

Generations 10,000 Population size 100

Number of loci [20, 50, 80, 150, 300, 
500]

Number of alleles 2

Dispersal model Migrant-pool island model 
or 1-D stepping stones 
model

Mutational model K-allele model

Dispersal rate [0, 0.001, 0.002, 0.003, 
0.005, 0.01]

Mutation rate 0

Number of 
populations

2–15 Mating system Random mating

TABLE  1 Parameters used in the 
simulations using the computer program 
QuantiNEMO

https://github.com/thibautjombart/adegenet
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are expected to define jointly the resolution of a panel of genetic 
markers (Vähä & Primmer, 2006). This led to 36 combinations of pa-
rameters. Ten independent random replicates were obtained for each 
combination leading to 360 simulated datasets. To avoid prohibitive 
computational times, we allowed the number of populations and the 
dispersal model to vary randomly across replicate, rather than adding 
systematically new combinations of parameters to the pool of data to 
simulate. The number of individuals per population was fixed to 100.

2.2.2 | Simulated datasets with hybrids

The simulated datasets used for the clustering of hybrids were 
derived from the previous simulations, by sampling two parental 
populations (P1, P2) at random in each of the 360 simulated datasets 
described before. For each, hybrids were simulated using the function 
hybridize of the adegenet package to obtain F1 hybrids (P1 × P2), 
first-generation backcrosses (BC1: F1 × P1 and F1 × P2), and second-
generation backcrosses (BC2: (F1 × P1) × P1 and (F1 × P2) × P2). Each 
simulated dataset was formed by 100 individuals from P1 and P2 each, 
and 10 individuals from each hybrid class (i.e. 50 hybrids in total). 
While arbitrary, these sample sizes yielded a sufficient number of 
hybrids to analyse while retaining enough individuals to characterize 
the genetic makeup of parental populations.

2.2.3 | Analyses of simulated datasets 
without hybrids

Our simulation study focussed on comparing snapclust to existing 
standard for the assignment of individual genotypes to groups (rather 
than inferring the true number of clusters). Therefore, the number 
of clusters was fixed to the known number of populations within 
the simulated dataset for all presented analyses. The clustering of 
individuals in absence of hybrids was performed using the snapclust, 
structure 2.3.4 (Falush et al., 2003; Hubisz, Falush, Stephens, & 
Pritchard, 2009; Pritchard et al., 2000), BAPS 5.4 (Cheng, Connor, 
Sirén, Aanensen, & Corander, 2013; Corander et al., 2003; Tang, 
Hanage, Fraser, & Corander, 2009), and adegenet’s find.clusters 
(Jombart et al., 2010). The snapclust analysis was carried out using 
default parameters (group assignment initialisation using the “ward” 
option). STRUCTURE analyses were carried out, using an admixture 
model with correlated allele frequencies between populations and 
no a priori information on population membership. The program was 
run ten times for result consistency purposes, with MCMC length 
of 500,000 after a burn-in of 100,000 iterations. Individuals were 
assigned to the cluster for which their posterior assignment probability 
was the highest. For BAPS, we performed a “mixture clustering” 
analysis. Finally, we ran the function find.clusters retaining 90% 
of the total variation in the initial dimension reduction step.

As clusters identified in these previous analyses are not labelled, 
it was impossible to judge if individuals were assigned to their true 
cluster. To assess the quality of the results and compare the different 
methods, we used pairwise comparisons of individuals instead, ex-
amining whether pairs of individuals where adequately placed in the 

same, or different clusters. We used two complementary measures 
to do so calculated on each of the 360 simulated dataset analysed. 
The true positive rate (TPR) was defined as the proportion of individ-
uals belonging to the same population which were indeed clustered 
together by the method. The true negative rate (TNR) was defined as 
the proportion of individuals which did not belong to the same popu-
lation and were adequately placed in different groups by the method. 
Note that the Rand index (Rand, 1971), which can be used for com-
paring unlabelled clusters, is proportional to (TPR + TNR), so that the 
present analyses should give a more detailed account of clustering 
results than the Rand index alone. The impact of the different simula-
tion parameters on TPR and TNR was assessed using separate multi-
variate linear regressions. As classical linear regression is designed to 
predict a response variable which can take any positive or negative 
values, a logit transformation was applied to the proportions, so that 
log(TPR/1 − TPR) and log(TNR/1 − TNR) were used as response vari-
ables. We preferred a linear regression on these rates to a binomial 
generalized linear model (GLM) for practical reasons. The calculation 
of TPR and TNR being based on all pairwise comparisons of individ-
uals within simulated datasets, a binomial GLM would have required 
millions of observations to be included, leading to prohibitive compu-
tations. Instead, 360 TPR and TNR values were analysed, that is, one 
per simulation.

We tested for the effects of the number of loci, the dispersal 
model, the overall Fst between simulated populations, the number 
of populations, and the clustering method. We also investigated po-
tential two-way interactions between the clustering method and the 
four simulation parameters we varied (Table 1), as well as between the 
number of loci and the Fst. Backward stepwise model selection based 
on AIC was used to retain significant predictors, and confirmed using 
classical likelihood ratio tests. Bonferroni correction was used to ac-
count for multiple testing with a target type 1 error of 1%. When as-
sessing the overall differences between methods across all simulations 
and thus across all conditions of differentiation, number of loci and 
populations and dispersal model, we compared TPR and TNR predicted 
by the respective models by transforming predicted logit rates back to 
their original scale.

2.2.4 | Analyses of simulated datasets with hybrids

The clustering of individuals in the presence of hybrids was carried 
out using snapclust and the computer program newhybrids (Anderson 
& Thompson, 2002). The snapclust analysis was carried out, using the 
default parameters and specifying hybridisation coefficients for F1, 
first (BC1) and second (BC2)-generation backcrosses (hybrid.coef 
values: 0.5, 0.25, 0.125). The NEWHYBRIDS analysis was carried out, 
using Jeffreys’s prior and setting the burn-in period to 100,000, with a 
MCMC length of 500,000 iterations. Ten repetitions were carried out 
for each simulated dataset. Unlike the previous comparison, paren-
tal and hybrid classes are labelled, so that it was possible to compare 
the methods by directly examining how well they assigned individuals 
to their actual hybrid group, using the mean correct group assignment, 
computed as the proportion of individuals whose type (parental, F1, 
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BC1 and BC2) was correctly identified. In addition, we also examined 
the group membership probability calculated by each method for the 
true group, later referred to as the “support” for the true group. As be-
fore, the impact of the different simulation parameters on the perfor-
mance of the methods was assessed, using multiple linear regression 
on logit probabilities, with separate models for the mean correct group 
assignment, and the support to the true group. In both cases, the fol-
lowing predictors were included: number of loci, dispersal model, Fst, 
as well as the hybrid class (parental, F1, first or second back-cross), 
and the clustering method. Interaction were investigated between the 
method and the simulation parameters, and between the number of 
loci and the Fst. As before, variable selection was achieved using back-
ward stepwise selection based on AIC and likelihood ratio tests, using 
a Bonferroni correction to account for multiple testing with a target 
type 1 error of 1%.

2.3 | Illustration using microsatellite data

To complement the simulation study which assessed the overall 
performances of our method, we illustrated its practical application by 
reproducing a typical analysis of microsatellite markers data, starting 
with the identification of the most likely number of clusters, followed 
by the assignment of individuals to groups, and the description 
of relationships between groups. We simulated hybrids from an 
empirical dataset of 30 microsatellite markers typed for 15 breeds 
(Laloë, Jombart, Dufour, & Moazami-Goudarzi, 2007), distributed 
as the “microbov” dataset in adegenet. Parental populations were 
obtained by sampling 30 individuals from the Lagunaire and 30 from 
the Salers populations. Hybrids were simulated using the function 
hybridize, to obtain 30 F1 hybrids, and then 30 of each first and 
second backcrosses, resulting in 210 individuals. While arbitrary, these 
numbers replicate a situation where hybrids are more numerous than 
parental populations, as could be the case in nature when studying 
large hybridisation zones.

We first carried out a global clustering analysis on this data-
set, looking for the optimal number of clusters, using AIC (function 
snapclust.em.choose.k) in order to confirm that K = 2 parental 

populations was the optimal solution. We then looked for potential 
hybrids (function snapclust.em), using hybridisation coefficients 
corresponding to F1 (0.5), first-generation backcross (0.25, 0.75) and 
second-generation backcross individuals (0.125, 0.875). Group mem-
bership probabilities were visualised using the function compoplot. 
As a complement, we also explored the diversity between hybrid 
classes using a discriminant analysis of principal components (DAPC; 
Jombart et al., 2010), employing cross-validation to determine the op-
timal number of principal components to retain. The R script required 
to reproduce the simulated data and run the analyses are provided in 
Supplementary Material.

3  | RESULTS

3.1 | Clustering of individuals without hybrids

All four different methods exhibited very good performances in terms 
of TPR (most results above 90%) and near perfect TNR, showing that 
clusters present in the simulated dataset were overall well recovered 
by all approaches (Figure 1). Runtime analysis showed that snapclust 
was on average 27 times faster than BAPS and about 120,000 times 
faster than STRUCTURE, with an average analysis time below a sec-
ond (Table S1).

Multivariate linear regression captured a large fraction of the vari-
ation in logit(TPR) values (Adjusted R2: 61%, Table S2). Predicted TPR 
and TNR we pooled by methods across all simulations to compare 
overall performances of the different approaches. The results showed 
marginal variations in performances of the methods, with mean pre-
dicted TPR varying from 96.7% (IQR: 95.4%–99.1%) for find.clusters to 
99.0% (IQR: 98.5%–99.7%) for BAPS, with 98.0% (IQR: 97.1%–99.5%) 
for STRUCTURE and 98.1% (IQR:97.3%–99.6%) for snapclust. Similar 
results were observed for TNR values, although the model explained a 
smaller fraction of the variance (Adjusted R2: 44%, Table S3). Predicted 
TNR values were very high for all four methods: 96.7% (IQR: 95.4%–
99.1%) for find.clusters, 98.9% (IQR: 98.6%–99.7%) for BAPS, 98.1% 
(IQR: 97.1%–99.5%) for STRUCTURE, and 98.1% for snapclust (IQR: 
97.3%–99.5%).

F IGURE  1 Comparison of the various 
methods on simulated genetic clusters. 
Notes: This figure shows the distribution 
of (a) the true positive rates (TPR) and 
(b) true negative rates (TNR) obtained 
over all the 360 simulations for the four 
different methods: snapclust (SC), BAPS 
(B), STRUCTURE (S) and find.clusters (FC) 
for the clustering of individuals in absence 
of hybrids. This width of the enveloppes 
reflects the density of points

(a) (b)
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Other parameters impacted the performances of the different 
methods in terms of TPR and TNR (Tables S2 and S3). In both cases, 
increased number of loci and larger Fst generally improved TPR and TNR 
values, although a saturation effect was observed so that the effects 
of large numbers of loci and stronger Fst effectively cancelled out. For 
instance, for Fst of approximately 0.1, the increase in the number of loci 
from 50 to 500 allowed to increase the TPR from 0.88 to 0.97 across all 
methods, while the same increase in the number of loci for Fst of approx-
imately 0.6 yielded TPR values ranging between 0.99 and 1. In addition, 
increasing the number of populations led to improved TNR (Table S3).

3.2 | Clustering of individuals with hybrids

Results based on the proportion of correct assignment and the support 
to the true group both showed similar patterns, with stark contrast 
between snapclust and NEWHYBRIDS (Figure 2, Tables S4–S5). The 
final model of the proportion of correct assignment explained most 
of the variation in the results (adjusted R2 = 63.78%). Increased num-
ber of loci (t = 23.32; p = 2.74 × 10−110) and stronger Fst (t = 31.28; 
p = 5.094 × 10−185) generally improved group prediction, although 
a significant yet negligible saturation effect was observed between 
the two (t = −5.046; p = 4.78 × 10−7). While hybrid classes were on 
average harder to identify than parental populations, with the low-
est success observed for deeper backcrosses, the two methods be-
haved very differently: NEWHYBRIDS seemed to recover parental 
populations more efficiently, but snapclust exhibited improved perfor-
mances for the identification of hybrids in deeper levels of hybridisa-
tion (Figure 2, Table S4–S5). This contrast was strongest for BC2, in 
which the odd ratio of accurate group predictions averaged to 4.80 in 
snapclust (95% CI: 2.09–11.01) compared to NEWHYBRIDS. Results 
were qualitatively identical when examining the support to the true 
group (Figure 2, Table S5), although the difference in odd ratio for BC2 
was smaller, with an average of 1.74 (95% CI: 1.05–2.87). As for the 

clustering comparison, snapclust also proved more computer efficient, 
being on average 525,000 times faster than NEWHYBRIDS, with an 
average runtime of 0.54 s.

3.3 | Illustration on the microbov data

AIC values computed for increasing values of K showed a sharp de-
crease at K = 2, with only marginal improvements for K = 3, hinting 
to the existence of two major clusters (Figure 3a) here formed by the 
parental populations (Salers and Lagunaire). Other goodness-of-fit 
statistics (AICc, BIC, KIC) also pointed to K = 2, but AIC showed the 
most clear-cut result (Figure S1). Subsequent analysis with snapclust in-
cluding F1 hybrids as well as first- and second-generation backcrosses 
shows well-identified parental clusters, as well as a large number of 
individuals assigned to the hybrid classes (Figure 3b). Parental and F1 
hybrids groups were well identified, with 98.3% and 93.3% of success-
ful individual assignment, respectively. Deeper hybrid classes were 
much harder to recover, with 51.7% of the BC1 and only 16.7% of BC2 
correctly identified. This result is, however, in line with expectations 
in the presence of weak genetic differentiation. Indeed, while moder-
ate genetic differentiation was observed between parental populations 
(Fst = 0.157), the average differentiation between BC2 and the “neigh-
bouring” groups (closest parent and BC1) was negligible (Fst < 0.01). This 
lack of differentiation was confirmed by a DAPC retaining 20 dimen-
sions (Figure S2), which showed that individuals were structured along 
a cline of genetic differentiation between the two parental populations, 
with considerable overlap between “neighbouring” groups (Figure 3c).

4  | DISCUSSION

We have introduced “snapclust,” a new genetic clustering method 
which achieves fast maximum likelihood identification of the optimal 

F IGURE  2 Comparison of snapclust (red) and NEWHYBRIDS (blue) for the identification of hybrids using simulated data. Notes: This figure 
shows the distributions of (a) the mean proportion of correct group assignment and (b) the support (i.e. group membership probability) for the 
true class across all simulated datasets. Three hybrid classes are considered in the simulations in addition to the parental class: first-generation 
hybrids (F1), first-generation backcrosses (BC1) and second-generation backcrosses (BC2). This width of the enveloppes reflects the density of 
points

(a) (b)
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number of clusters within a set of genotypes, assignment of individ-
uals to panmictic populations, and can also be used to detect vari-
ous classes of hybrids. The analyses of simulated data show that our 
method performs as well as current gold standards for genetic clus-
tering under the investigated models. Indeed, while statistically sig-
nificant differences were observed in TPR and TNR across methods 
with BAPS exhibiting the best results, these differences were small 
in terms of absolute performance: predicted TPR was 97% for snap-
clust compared to 98% for BAPS, and predicted TNR exceeded 99% 
for both methods. When used to detect hybrids, snapclust exhibited 
different performances from NEWHYBRIDS, being less accurate for 
identifying parental populations but better at recovering deeper hy-
brid classes such as second-generation backcrosses, while being again 

tremendously more computer efficient. The combination of likelihood 
estimation and EM algorithm for cluster detection is not new (Fraley & 
Raftery, 2002), and has been used successfully as a fast yet powerful 
alternative to more complex likelihood-based methods in other fields 
than population genetics (Fraley & Raftery, 1998). As such, we believe 
the kind of approach introduced here offers exciting prospects for 
extending previous efforts to make model-based genetic clustering 
methods more computer-efficient (Alexander et al., 2009; Raj et al., 
2014; Tang et al., 2005).

The fact that snapclust is orders of magnitude faster than other 
model-based approaches gives it a substantial practical advantage, es-
pecially when the analysis needs to be run multiple times, as is the case 
when investigating different values of K, when conducting a simple 

F IGURE  3  Illustration of snapclust using simulated hybrids from cattle breed microsatellite data. Notes: (a) Representation of the Akaike 
Criterion value according to the number of populations (K) considered. (b) Representation of the individual probability of assignment obtained 
with the function snapclust.em for the different types of individuals present in the dataset. (c) Representation of the first axis of the discriminant 
analysis of principal components carried out on the hybrid groups found using the snapclust analysis

(a) (c)

(b)
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simulation study, or when using resampling strategy to assess statis-
tical uncertainty. This latter aspect in particular is worth investigat-
ing, as our method does not, unlike Bayesian approaches (e.g. BAPS, 
STRUCTURE) include a natural measure of uncertainty in the form of 
distributions of group membership probabilities for each individual. 
For snapclust, an alternative approach to assess statistical uncertainty 
may be to use bootstrap, in which case the method would be to run a 
large number of times (e.g. 100) on datasets obtained by random res-
ampling (with replacement) of the loci. Such approach would provide 
a distribution of group membership probabilities for each individual 
(one per run), and thereby a measure of uncertainty. Bootstrap on loci 
can readily be implemented, using existing tools for genetic data han-
dling (Jombart, 2008; Jombart & Ahmed, 2011; Kamvar et al., 2014). It 
would be relatively easy to apply in the case of hybridisation between 
two parental clusters, in which case clusters are labelled, and therefore 
comparable across different runs. In the general case of unlabelled 
clusters, however, the difficulty of matching clusters across different 
runs will first need to be overcome for this approach to be applied.

While our simulation study required substantial computational re-
sources, there are undoubtedly many more scenarios and methods to 
explore, involving a wider range of population genetics models, opti-
misation procedures, and potentially various types of genetic markers. 
The relative effects of selection, recombination, and linkage disequilib-
rium remain to be investigated. The latter may be of first concern, as it 
would break the assumption of independence between loci, in which 
case our model only approximates the actual, unknown likelihood. 
This said, the very same assumption underpins maximum likelihood 
phylogenetic reconstruction, which has nonetheless proved tremen-
dously useful over the past decades (Felsenstein, 1981, 2004). We also 
note that our simulation study compared assignment of individuals to 
groups across different methods, assuming the true number of clusters 
was known. Examining performances for inferring the optimal number 
of clusters would have led to prohibitive computational times, and was 
beyond the scope of this study. Further work dedicated to investigat-
ing this specific issue would undoubtedly be useful. In particular, the 
choice of the adequate measure of goodness-of-fit, and the potential 
impact of maximum likelihood approximation through the EM algo-
rithm should be given further consideration. With this in mind, we im-
plemented four different statistics measuring the goodness-of-fit of 
clustering solutions, which should hopefully provide the needed flexi-
bility for future investigations of the “true K.”

In our simulations, the number of loci and levels of genetic differ-
entiation varied independently, so that the resolution of the datasets 
may not have been sufficient for detecting some of the hybrid classes, 
especially the second-generation backcrosses (Vähä & Primmer, 2006). 
While this was not a problem for comparing the relative performances 
of snapclust and NEWHYBRIDS, ensuring sufficient resolution should 
be a primary concern in empirical studies. Ideally, further work will 
formulate guidelines for defining the minimum resolution required for 
recovering specific hybrid classes. As a pragmatic alternative, we sug-
gest comparing clustering solutions involving different degrees of hy-
bridisation, and selecting the model providing the best fit of the data 
(e.g. sensu AIC).

The approach described here is flexible, as it can accommodate 
any type of co-dominant markers including microsatellites and SNPs, 
and can readily be extended to varying ploidy levels. Interestingly, 
it can also be extended to other genetic models as well, including 
potentially more complex ones. Contrary to Bayesian approaches 
which need hundreds of thousands or even millions of iterations to 
reach mixing and provide a representative sample from the posterior 
distribution, our fast likelihood maximisation using the EM algorithm 
converges in a few iterations—typically less than 10 in our simula-
tions. As a consequence, our approach could have great potential 
for addressing more complex population genetics model, as long as 
their likelihood is tractable or can be reasonably approximated. One 
potential obstacle to such extensions is that group memberships 
need to be treated as a discrete variable, where individuals essen-
tially belong to one group. This will exclude mixture models in which 
individuals effectively have multiple origins. A workaround for this 
issue may be to model “mixed groups” explicitly, as we have done in 
our hybridisation model.

Our method is implemented in the R package adegenet (Jombart, 
2008; Jombart & Ahmed, 2011), which supports a wide range of data 
including microsatellites, SNPs, and amino-acid sequences, and imple-
ments several methods for exploring genetic data (Jombart, Pontier, 
& Dufour, 2009), revealing spatial patterns (Jombart, Devillard, 
Dufour, & Pontier, 2008), or investigating genetic clusters (Jombart 
et al., 2010). Interoperability between different tools has been a long-
standing issue in genetic data analysis (Excoffier & Heckel, 2006). We 
hope the availability of snapclust in the same environment as a wealth 
of other tools for population genetics (Archer, Adams, & Schneiders, 
2017; Goudet, 2005; Kamvar et al., 2014; Paradis, 2010) and phylo-
genetics (Bortolussi, Durand, Blum, & François, 2006; Jombart et al., 
2017; Popescu et al., 2012; Revell, 2012; Schliep, 2011) will enhance 
its usefulness for the community.
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