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SUMMARY

Network modules—topologically distinct groups of
edges and nodes—that are preserved across data-
sets can reveal common features of organisms, tis-
sues, cell types, and molecules. Many statistics to
identify such modules have been developed, but
testing their significance requires heuristics. Here,
we demonstrate that current methods for assessing
module preservation are systematically biased and
produce skewed p values. We introduce NetRep,
a rapid and computationally efficient method that
uses a permutation approach to score module pres-
ervation without assuming data are normally distrib-
uted. NetRep produces unbiased p values and can
distinguish between true and false positives during
multiple hypothesis testing. We use NetRep to quan-
tify preservation of gene coexpression modules
across murine brain, liver, adipose, and muscle tis-
sues. Complex patterns of multi-tissue preservation
were revealed, including a liver-derived house-
keeping module that displayed adipose- and mus-
cle-specific association with body weight. Finally,
we demonstrate the broader applicability of NetRep
by quantifying preservation of bacterial networks in
gut microbiota between men and women.

INTRODUCTION

Modern high-throughput technologies generate a large amount

of genomic, transcriptomic, metabolomic, and proteomic data.

Rather than consider each measurement in isolation, network

inference techniques integrate these -omic data to identify

meaningful biological relationships between components. In

general, these approaches represent each measured variable

as a node and the relationships between variables as edges

that connect nodes; in aggregate, the connected edges and no-

des comprise the network. Statistical analysis of these networks
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can identify and characterize gene modules, gene regulatory

networks, protein-protein interactions, microbial networks and

predict diverse molecular interactions (Abraham et al., 2014;

Barabási et al., 2011; Dagan, 2011; Faust and Raes, 2012; Lusis

and Weiss, 2010; Schadt, 2009).

Typically, a research project investigates one or more sub-

graphs of these inferred networks, for example, a group of genes

associated with disease pathogenesis. These are commonly

referred to as network ‘‘modules’’ (Gustafsson et al., 2014; Roti-

val and Petretto, 2014). The next step for many studies is to

assess whether a network module(s) is wholly or partially pre-

served in an independent dataset(s); preservation is taken as

an indication that the module is biologically relevant. Module

preservation analysis can be used to quantify the replication of

modules (Emilsson et al., 2008; Fuller et al., 2007; Hawrylycz

et al., 2012; Miller et al., 2010; Ritchie et al., 2015; Xia et al.,

2006), to determine their changes across conditions (Fuller

et al., 2007; Keller et al., 2008; van Nas et al., 2009), to examine

their tissue specificity (Cai et al., 2010; Keller et al., 2008), and

to identify modules conserved across different species (Boyle

et al., 2014; Gerstein et al., 2014; Stuart et al., 2003).

Module preservation analyses are both timely and increasingly

common, given recent concerns about the reproducibility and

generality of research findings (Collins and Tabak, 2014). How-

ever, rigorous statistical methodology for assessing module

preservation has received little attention. Module preservation

is typically assessed via visual inspection and/or tabulation of

module composition after application of the same network infer-

ence and module detection algorithms in the second (i.e., test)

dataset (Boyle et al., 2014; Gerstein et al., 2014; Keller et al.,

2008; Miller et al., 2010; van Nas et al., 2009; Xia et al., 2006).

A major limitation to these approaches is that they cannot sys-

tematically capture information about the network topology,

i.e., the relationships between nodes in the module of interest.

These relationships encode important biological information.

For example, node degree (how many other nodes any given

node is connected to) is a common metric analyzed in network

studies, as it can indicate relative importance to the network.

Genes that are highly connected are often essential to an organ-

ism’s survival (Carlson et al., 2006; Jeong et al., 2001), andwithin

a module, node degree can be used as a measure of relative
, July 27, 2016 ª 2016 The Author(s). Published by Elsevier Inc. 71
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biological importance (Horvath and Dong, 2008; Langfelder

et al., 2013).

To address this problem, Langfelder et al. developed a suite

of statistics for quantifying the preservation of a module’s topol-

ogy in an independent dataset where the same module or a

subset of nodes has been measured (Langfelder et al., 2011).

Their module preservation statistics were primarily designed

for networks inferred through weighted gene coexpression

network analysis (WGCNA) (Zhang and Horvath, 2005). These

are weighted, complete networks, which are defined through a

power transform on the correlation structure calculated be-

tween all pairs of genes. Each gene is connected to every other

gene with an edge weight between 0 and 1 denoting connection

strength. Modules can either be defined as genes belonging to a

pathway of interest or discovered de novo through clustering of

the network (Zhang and Horvath, 2005). Seven module preser-

vation statistics are used to quantify module preservation. For

convenience, their definitions are given in the Experimental Pro-

cedures and their biological interpretation in the Supplemental

Experimental Procedures. Broadly speaking, they measure

whether the density and connectivity of a module are preserved

in a second test dataset. The density statistics assess whether

nodes composing a module remain strongly connected in the

test dataset and whether measurements in each sample are

similar across the module’s nodes. The connectivity statistics

assess whether the pattern of node-node relationships are

similar between the discovery and test datasets (Langfelder

et al., 2011). This approach uses Z scores to determine whether

any test statistic is significant. The null hypothesis is that the

module of interest is not preserved, and thus the value of

each statistic should not be higher than expected by chance,

assuming each statistic follows a normal distribution. However,

Langfelder et al. found that Z scores were typically abnormally

large, leading to many false positives in simulation. Conse-

quently, heuristic tests for significance were formulated (Lang-

felder et al., 2011).

The number of modules and datasets undergoing module

preservation analyses is increasing as large multi-omic datasets

with dozens of tissues, cell lines, conditions, and corresponding

metadata become common and openly available. In particular,

studies are now performing unbiased discovery of preserved

gene coexpression modules (Cai et al., 2010; Melé et al., 2015)

and identifying tissue-specific andmulti-tissuemodules (Pierson

et al., 2015; GTExConsortium, 2015).Multiple testing becomes a

problem for studies assessing preservation of many modules

across many datasets; false positives may be detected due to

the large number of statistical tests. Typically this is addressed

through multiple testing adjustment of p values or thresholds

for significance. It is therefore crucial that preservation p values

are unbiased and accurately calibrated in order to control type I

(false positive) and type II (false negative) errors (Bender and

Lange, 2001). Heuristic tests cannot be adjusted for multiple

testing, and thus such studies are susceptible to increased

type I and II error rates.

Robust and unbiased p values should be determined in the

absence of distributional assumptions by permutation testing.

When this principle is applied to module preservation analyses,

the module preservation statistics are calculated when shuffling

node identifiers in the test dataset to determine their distribu-
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tions under the null hypothesis. The true value of each statistic

is then compared to the empirical null distribution to obtain

a permutation test p value. However, at least w permuta-

tions are required to estimate significance at a threshold of

1/w (Phipson and Smyth, 2010). The analysis of large data-

sets, together with the concomitant multiple testing correction

burden, necessitates increasingly stringent significance thresh-

olds, making permutation-based significance testing computa-

tionally challenging.

Here, we address this challenge by developing a rapid and

efficient approach for assessing module preservation, available

as an R package, NetRep. We use NetRep to create and assess

the empirical null distributions of Langfelder et al.’s suite of mod-

ule preservation statistics when inferring weighted gene coex-

pression networks in a publicly available resource of mouse

adipose, brain, liver, and muscle tissue expression (Yang et al.,

2006). We show the majority of these statistics have non-normal

distributions and are thus in need of a permutation approach.

Next, we demonstrate NetRep’s scalability to large-scale mod-

ule preservation analysis by performing permutation tests to

quantify cross-tissue gene coexpression module preservation.

We identify and characterize multi-tissue modules associated

with mouse body weight. Consequently, we uncover a body

weight-associated module with differential adipose and muscle

tissue expression. Finally, we explore the broader applicability

of Langfelder et al.’s suite of module preservation statistics by

using NetRep to quantify the preservation of gut microbial com-

munity networks between men and women from publicly avail-

able 16S rRNA gene sequence data (HumanMicrobiome Project

Consortium, 2012).

RESULTS

Rapid Module Preservation Analysis
We have developed a time- and memory-efficient method for

massively parallel calculation of module preservation statistics.

The software is available as an R package, NetRep, which can

be downloaded from https://github.com/InouyeLab/NetRep.

Implementation details are provided in the Supplemental Exper-

imental Procedures.

To examine the null distributions of the module preservation

statistics in an empirical setting, we applied NetRep to publicly

available gene expression data for brain, adipose, liver, and

muscle tissues from a BxH mouse cross (Yang et al., 2006).

From 334 total mice, there were 249 brain, 295 adipose, 306

liver, and 319 muscle tissue samples available for analysis

(Experimental Procedures). Figure 1 illustrates the workflow of

network construction, module detection, and module preserva-

tion analysis. We inferred weighted gene coexpression networks

(Experimental Procedures; Zhang and Horvath, 2005) for each

tissue, identifying 38, 66, 29, and 32 distinct coexpression mod-

ules in the brain, liver, adipose, and muscle tissues, respectively

(Figure S1). For a module, we refer to the tissue it was initially

identified in as its ‘‘discovery’’ tissue, and other tissues where

its preservation is being tested as ‘‘non-discovery’’ tissues.

A runtime comparison of NetRep versus WGCNA’s

modulePreservation function for calculating permutations for

these modules is provided in the Supplemental Experimental

Procedures (see also Figure S2). Briefly, NetRep was, on

https://github.com/InouyeLab/NetRep
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Figure 1. WorkflowofNetwork Construction, Module Detection, and

Module Preservation Analysis Workflow on the BxH Mice Tissue

Expression

First, the correlation structure (coexpression) between probes was calculated

from the gene expression in each tissue. Next the interaction network was

inferred and modules were detected using weighted gene coexpression

network analysis (WGCNA) (Experimental Procedures). Finally, the topological

preservation of each module was assessed in each non-discovery tissue

using their respective gene expression, correlation structure, and interaction

network matrices.
average, 11 times faster than WGCNA and used less memory

when run in parallel. The runtime of NetRep depended on multi-

ple factors, as follows: the number of dataset comparisons,

number of permutations for each comparison, sample size,

and the sum of the squared sizes of modules included in the

analysis. Pairwise comparison of the 165 modules across 4

mouse tissues with 100,000 permutations took approximately

8 days when NetRep was parallelized over 40 cores.
Null Distributions of Module Preservation Statistics
We investigated the normality of the seven module preservation

statistics by comparing permutation-based null distribution

quantiles to theoretical normal distribution quantiles (Figure S3).

For each discovered module, module preservation statistics

were calculated on 100,000 random gene sets of identical size

in each non-discovery tissue (Experimental Procedures). Across

all 38 brain modules, 66 liver modules, 29 adipose modules, and

32 muscle modules, 495 null distributions were generated for

each module preservation statistic. We observed strong non-

normality of null distributions generated for the average edge

weight, density of correlation structure, and concordance of cor-

relation structure statistics (Figure S3). Moderate non-normality

was also observed in null distributions for the other four statis-

tics. We also observed increasing non-normality with decreasing

module size, particularly for modules of <100 probes (Figure S3).

This shows that the assumption of normality required for Z score

statistics is often violated.

Todetermine theconsequences of non-normality,wematched

Z score p values and permutation p values calculated for

each module and preservation test statistic. Substantial inflation

of the Z scores and corresponding deflation of p values was

observed for average edge weight, density of correlation struc-

ture, and concordance of correlation structure (Figure 2). Moder-

ate inflation was also observed for module coherence and

average node contribution (Figure 2). These results are consis-

tent with the extremely low p values that motivated heuristic sig-

nificance thresholds (Langfelder et al., 2011), indicating that a

non-parametric approach is necessary to produce unbiased

p values.

We further investigated the test statistic with themost extreme

deviation from normality, the average edgeweight statistic. Edge

weights in interaction networks inferred with WGCNA are calcu-

lated through a power transform on the absolute correlation

coefficient. This power transform acts as a soft-threshold: it

penalizes weak correlation coefficients toward zero. The soft-

threshold power is chosen under the assumption that the result-

ing network should be scale free (Experimental Procedures;

Zhang and Horvath, 2005). Under this assumption, the distribu-

tion of the weighted degree of the network follows an inverse

power law where a few hub genes are strongly connected in

the network, while most genes are only weakly connected (Bar-

abási and Albert, 1999; Stumpf and Porter, 2012). To test the

impact of the scale-free assumption on the null distribution

normality, we calculated the average edge weight statistic on

10,000 permutations in the muscle tissue for the 66 liver mod-

ules, varying the soft-threshold exponent used to define the

edge weights. We observed a trend toward non-normality as

the exponent increased, indicating that the scale-free assump-

tion contributes to non-normality for this statistic (Figure S4).

We similarly generated null distributions for the concordance of

weighted degree as it is also calculated from the edge weights

in the interaction network; however, its deviation from normality

was only mild and did not change as the exponent increased

(Figure S5). These analyses indicate that the non-normality of

preservation test statistics can be influenced by the distribution

of node degree.

To assess the performance of NetRep and the permutation

approach for quantifying module preservation, we simulated a
Cell Systems 3, 71–82, July 27, 2016 73



Figure 2. Comparison of Permutation p Values to Z Test p Values for Each of the 165 BxH Mice Modules when Tested in Their Three Non-
discovery Tissues

The mean and standard deviation of the 495 null distributions were used to calculate the Z test p values. Null distributions were generated from 100,000 per-

mutations. p values were plotted on a�log10 scale. Tests where the permutation test p value was incomparable to the Z test p values (2,229 of 3,465 tests where

permutation test p% 13 10�5, the smallest permutation p value possible with 100,000 permutations) are not shown. Z tests with p < 13 10�10 are not plotted (25

data points for the average edge weight statistic with a minimum p = 1 3 10�63, 11 data points for the concordance of correlation structure statistic with a

minimum p = 1 3 10�19, and 21 data points for the density of correlation structure statistic with a minimum p = 1 3 10�28).
discovery gene expression dataset containing negative and pos-

itive control modules of varying sizes and three test datasets with

varying noise levels (Supplemental Experimental Procedures).

Positive control modules were simulated to have identical topol-

ogy in each test dataset, while negative control modules were

simulated as random. We estimated permutation p values for

each simulated module in each test dataset using NetRep. In

total, we performed 3,000 tests for each module preservation

statistic (10 modules 3 3 test datasets 3 100 simulations), esti-

mating permutation p values with 10,000 permutations per test.

At a significance threshold of p% 13 10�4 (the smallest possible

p value that can be obtained from 10,000 permutations; Supple-

mental Experimental Procedures), NetRep was able to success-

fully detect preservation of positive control modules while being

robust to false positives (Figure S6). Sensitivity varied by statistic

but decreased as noise increased ormodule size decreased (Fig-

ure S6). The module preservation statistics were nearly always

robust to false positives, with the exception of themodule coher-

ence statistic, which falsely detected preservation for large nega-

tive control modules (R500 genes) in the presence of low and

medium levels of simulated noise (Figure S6). These results indi-

cate that NetRep is sensitive and can distinguish between true

and false positives under most conditions.
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Cross-Tissue Module Preservation in Mouse
Transcriptomic Data
We next examined the preservation of each discovered module

in other tissues by evaluating the permutation p values for each

of the 495 null distributions (Experimental Procedures). We

defined strong evidence for a module’s preservation in another

tissue as all test statistics achieving p < 0.0001, weak evidence

if one or more, but not all, test statistics were p < 0.0001, and

no evidence if no test statistics are p < 0.0001. The significance

threshold of 0.0001 was chosen to Bonferroni adjust for the 495

tests performed for each preservation statistic. Figure 3 provides

a summary view of the cross-tissue module preservation in the

BxH mice, and Figure 4 shows the preservation evidence for

each module in each non-discovery tissue.

We observed widespread preservation for modules in all four

tissues (Figures 3A and 3B). 85 of 165modules (52%) had strong

evidence of preservation in at least one other non-discovery tis-

sue, and 41 modules (25%) had strong evidence of preservation

in all non-discovery tissues (Figure 3A). In contrast, only 21 mod-

ules (13%) had no evidence for preservation in any other tissue,

suggesting tissue specificity of these modules (Figures 3A and

3C). In comparing NetRep results with those obtained through

summary Z score and heuristic thresholds (Supplemental
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Experimental Procedures; Langfelder et al., 2011), the two ap-

proaches mostly obtained similar levels of evidence for preser-

vation (Table S1). However, differences in preservation were

observed for 120 of the 495 (24%) module preservation tests.

In terms of module preservation, 55 (24%) of the modules found

to be strongly preserved by heuristics were classified as weakly

preserved by NetRep. Similarly, 44 (54%) of the modules found

to be not preserved by heuristic were classified as weakly

preserved by NetRep (Table S1). Therefore, NetRep was more

stringent in the evidence required to call a module either strongly

preserved or not preserved.

The liver had the lowest proportion of modules preserved in at

least one other tissue; however, it had twice as many modules in

total thananyother tissue.Manyof thesewere small (<100genes)

and had only weak evidence for preservation (Figure 4). Only the

brain and liver had anymoduleswith noevidence for preservation

in all three non-discovery tissues (Figures 3 and 4). These results

were broadly consistent with recent results from the GTEx con-

sortium, who observed high similarity between coexpression

network modules across nine human tissues (including adipose

and muscle tissues) (GTEx Consortium, 2015).

In total, NetRep found that 41 modules (10 discovered in adi-

pose tissue, 12 in brain, 10 in liver, and 9 in muscle) were pre-

served in all non-discovery tissues. Analysis of Gene Ontology

(GO) terms and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathways for each module (Supplemental Experimental

Procedures) showed that these were putative housekeeping

modules, which were most frequently enriched for genes

involved in translation, and to a lesser extent transcription and

basic cellular functions, e.g., cell cycle, apoptosis, and DNA

repair (Table S2). The putative housekeeping modules were

most frequently enriched for genes coding for ribosomal proteins

with 10 of 41 putative housekeeping modules enriched for the

Ribosome pathway in KEGG (Table S2).
Multi-tissue Weight-Associated Modules
The BxHmice were bred to enhance differentiation of cardiovas-

cular disease risk traits such as obesity and circulating lipids

(Yang et al., 2006). Previous coexpression network analysis of

the BxH mice focused on the identification of modules associ-

ated with mouse weight (Chen et al., 2008; Ghazalpour et al.,

2006). We asked whether modules with strong evidence of

preservation in more than one tissue (‘‘multi-tissue’’ modules)

were associated with obesity. We therefore tested each multi-

tissue module’s summary expression (first principal component;

Experimental Procedures) for an association with mouse weight

in any tissue for which there was strong evidence for its preser-

vation (Supplemental Experimental Procedures). Significant as-

sociation with weight was defined as p < 0.0001 (Bonferroni

correction). Each regression model was adjusted for sex due

to its strong effect on both mouse weight and gene expression

(Fuller et al., 2007; Ghazalpour et al., 2006; Yang et al., 2006).

Of the 85 multi-tissue modules, 43 modules were significantly

associated with mouse body weight in either their discovery tis-

sue or in a tissue where it was strongly preserved, comprising 57

body weight associations in total (Table S3). Twenty-seven

(32%) of these multi-tissue modules were also putative house-

keeping modules. Weight was most frequently associated with

modules in adipose tissue (28 of 57 associations) and liver tissue

(24 of 57 associations). Notably, there were many cases where

multi-tissue modules were not associated with weight in the tis-

sue they were identified in, but displayed a significant associa-

tion in one or more of the tissues in which they were preserved

(Table S3). In total, 13 multi-tissue modules were associated

with mouse weight in multiple tissues (Table S3). Notably, we

observed different directions of weight association across tis-

sues for five modules: i.e., in tissue A, an increase in weight

was associated with a decrease in module summary expression,

but in tissue B an increase in weight was associated with an
Cell Systems 3, 71–82, July 27, 2016 75
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increase inmodule summary expression or vice versa (Table S3).

For these five modules, visualization of the network topology

indicated the weight-associated differential summary expres-

sion reflected differential whole-module expression for twomod-

ules: liver module 35 and brain module 20. We focus on liver

module 35 (LM35) for subsequent investigation (Figure 5).

LM35 is a putative housekeeping module consisting of 99

genes (permutation test p % 1 3 10�5 for all statistics in the
76 Cell Systems 3, 71–82, July 27, 2016
brain, adipose, and muscle tissues). Consistent with previous

analysis of the putative housekeeping modules, GO term and

KEGG pathway enrichment indicated LM35 was primarily en-

riched for ribosomal genes involved in translation (Table S4).

While a majority of probes in LM35 were specific to the custom

microarray design and thus lacking gene annotation, 17 of its

24 annotated genes coded for ribosomal proteins (Table S5).

Increased body weight was associated with increased LM35
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Figure 5. BxH Mice Liver Module 35

(A) Network topology in the liver (discovery tissue). From top to bottom: heatmap of the correlation structure (Pearson correlation), heatmap of the interaction

network edge weights, normalized weighted degree (calculated within the module and normalized by the maximum value), and node contribution (Pearson

correlation between each probe and the summary expression profile). Probes are ordered by descending order of weighted degree.

(B) Network topology in adipose, muscle, and brain tissues. Probes are ordered as in the liver tissue. Grey bars denote probes either missing, or not passing

quality control, in the respective tissue.

(C) Scatter plots of standardized LM35 summary expression versus body weight. Points on the scatter plot are colored by sex (males in blue, females in red), and

linear regressionmodels were adjusted for gender (lines shown are fitted within genders). An ‘‘*’’ next to the tissue name indicates significant weight association in

Table S3. Models were robust to outliers (mice with summary expression < �3 SD). Variance explained indicates the proportion of variance in liver module 35

(LM35) expression explained by the summary expression vector in each tissue (i.e., the module coherence).
expression in adipose tissue (p = 3 3 10�8) and decreased

LM35 expression in muscle tissue (p = 3 3 10�6) (Figure 5).

Consistent with this, its summary expression profile was nega-

tively correlated between the adipose and muscle tissues (Pear-

son’s r = �0.13) and the expression of 64 of its 99 probes were

negatively correlated across the two tissues, suggesting that

the relationship between body weight and LM35 was tissue spe-

cific—genes associated with weight were simultaneously upre-

gulated in the adipose tissue and downregulated in the muscle

tissue.

We subsequently tested 20 other cardiometabolic traits for as-

sociation with LM35 expression in adipose and muscle tissues

(Table S6). Consistent with the direction of the weight associa-

tions, increased insulin, total cholesterol, and total fat were

associated with increased adipose expression and decreased
muscle expression (false discovery rate [FDR] q < 0.025;

Table S6). These changes in LM35 expression were also associ-

ated with a decrease in the ratio of glucose over insulin

(Table S6). Increased LM35 adipose expression was associated

with increased glucose, other fat, body length, and monocyte

chemotactic protein-1 (MCP-1) (Table S6). On the other hand,

decreased LM35 muscle expression was associated with

increased abdominal fat, free fatty acids, total cholesterol, and

LDL+VLDL, but a decreased ratio of HDL to LDL+VLDL

(Table S6). Our findings indicate the tissue specificity of LM35

function and its relationships with phenotypes.

Overall, these analyses highlight that NetRep can be used to

determine whether the relationships between genes are pre-

served, but separate investigation of preserved modules is

required to determine whether module function is preserved. In
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the case of multi-tissue analyses, this may elucidate differential

inter-tissue module regulation.

Preservation of Gut Microbial Community Networks
To demonstrate the broader applicability of NetRep, we inferred

microbial community networks in gut samples of 62 healthy adult

men and 65 healthy adult women from the Human Microbiome

Project (HMP) Consortium (Human Microbiome Project Con-

sortium, 2012). The nodes in these networks corresponded to

operational taxonomic units (OTUs), and we generated OTU net-

works with the commonly utilized SparCC approach (Friedman

and Alm, 2012) (Experimental Procedures). From 152 distinct

OTUs, we identified 17 and 21 communities of co-occurring

OTUs in the male and female gut samples, respectively (Figures

6A and 6B). Using NetRep, we subsequently tested the preser-

vation of the male gut communities in the female network and

vice versa. Permutation p values were estimated from null distri-

butions drawn from 10,000 permutations of OTU labeling in

the respective test datasets (Figure 6C). We considered each

module preservation statistic significant where p < 0.001 to Bon-

ferroni adjust for the 38 tests performed for each statistic.

Unlike weighted gene coexpression networks, where all indi-

viduals in a population have more or less the same genes,

OTU networks are relatively sparse due to the variable pres-

ence/absence of microbial taxa in the gut. Module sizes in

OTU networks were also substantially smaller (range: 2–12 no-

des). Thus, in applying the module preservation statistics to

OTU networks, it was clear that some statistics would be more

appropriate than others. We found that concordance of node

contribution, concordance of correlation structure, and concor-

dance of weighted degree statistics were not suitable for assess-

ing preservation of these OTUmodules. In addition to their small

size, OTU modules tended to have uniform structure across

nodes in terms of their SparCC correlation coefficient, node

contribution, and weighted degree. This led to low values for

these statistics in cases where the node contribution, SparCC

correlation coefficient, and weighted degree were high across

all nodes, due to dramatic changes in node rank caused by

tiny variations in these values. Further, these module preserva-

tion statistics could not be evaluated where the node contribu-

tion, SparCC correlation coefficient, and weighted degree were

identical for all nodes in amodule. This always occurred formod-

ules composed of two OTUs (Figure 6C), for which the weighted

degree was always identical for both nodes and there was only

one SparCC correlation coefficient. The sparsity of the network

also meant the concordance of weighted degree could often

not be calculated. This occurred where a module had no edges

between any nodes in the test network (e.g., male module 7 in

the female gut samples; Figure 6), which occurred frequently

when generating null distributions for all modules, reducing the

power of the permutation tests.

Therefore, in applying the module preservation statistics and

NetRep to sparse networks and small modules, we recommend

assessing module coherence, average node contribution, den-

sity of correlation structure, and average edge weight. Using

these four statistics, we defined strong evidence for module

preservation where all four were significant (p < 0.001), weak ev-

idence if one or more were significant, and no evidence if none of

these four were significant. Ignoring modules composed of only
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two OTUs, for which obvious false negatives were prevalent,

we observed widespread preservation of microbial communities

found in the men’s gut samples, with 50% (4 of 8) of their

OTU modules having strong evidence of preservation in the

women’s gut samples (Figure 6D). The women’s gut microbial

communities were less preserved, with 20% (2 of 10) of their

OTU modules having strong evidence of preservation in the

men’s gut samples (Figure 6D). However, four of six women’s

gut OTU modules that had weak evidence of preservation (mod-

ules 2, 3, 9, and 10) were almost identical to OTU modules iden-

tified in the men’s gut samples, suggesting comparative levels

of preservation between women’s and men’s gut microbial

communities.

DISCUSSION

Accurate and unbiased assessment of the replication and pres-

ervation of network modules requires permutation testing of

network feature similarity. However, the current approach em-

ploys heuristics to assess significance due to the computational

burden of these calculations (Langfelder et al., 2011). While heu-

ristics may be appropriately employed for a small number of

modules, the scale of module preservation and replication ana-

lyses now requires a rapid and statistically rigorous method to

enable adjustment for multiple hypothesis testing, consequently

allows confident investigation of the underlying biology. In this

study, we have empirically shown that module preservation sta-

tistics are typically non-normal under the null hypothesis of non-

preservation and thus have developed a rapid and efficient

approach for assessing module preservation through permuta-

tion testing: NetRep.

In addition to assessment of reproducibility, module preser-

vation analysis can be used to ask questions about conserved

biological interactions and functions across spatial locations

or species (Langfelder et al., 2011). Application of NetRep

to a multi-tissue gene expression dataset showed widespread

preservation of gene coexpression network modules across

brain, adipose, liver, and muscle tissues in a BxH mouse

cross. Housekeeping modules, those preserved in all four

tissues, were enriched for genes involved in basic cellular

processes, most notably ribosomal genes involved in trans-

lation. Subsequent investigation of multi-tissue modules asso-

ciated with body weight revealed that preserved modules

can exhibit differential intramodule expression across tissues,

and we have identified a housekeeping module linked to

obesity and insulin resistance with increased adipocyte

expression and decreased muscle expression in overweight

mice.

Previous studies have identified multi-tissue modules driving

obesity in mice and humans, with concordant expression across

tissues (Chen et al., 2008; Emilsson et al., 2008). Here, we found

that multi-tissue modules may be differentially expressed across

tissues with corresponding phenotypic differences. The liver

module LM35 exhibited negative, positive, and negative associ-

ations with body weight in liver, adipose, and muscle tissues,

respectively. Perhaps consistent with its tissue-specific direc-

tions of body weight association, LM35 was enriched for genes

encoding ribosomal proteins, which maintain putative house-

keeping functions. However, the gene set comprising LM35
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Figure 6. Preservation of Gut Microbial Communities across Males and Females Participating in the Human Microbiome Project

(A and B) Microbial communities inferred from the male (A) and female (B) gut samples. Nodes correspond to operational taxonomic units (OTUs) and numeric

labels indicate their unique identifier. The colored shapes drawn around OTUs indicate community (module) assignment. Edge widths indicate strength of the

correlation coefficient and color and linetype indicate positive (red, solid line) or negative (blue, dashed line) coefficients. Edge weights were defined as the

absolute value of the correlation coefficient for the purpose of module detection (Experimental Procedures). Note that many OTUs present in male modules are

also present in female modules and vice versa, and some male and female modules overlap.

(C) Heatmaps of permutation p values when assessing module preservation in the other sex. Permutation p values were estimated from null distributions

generated from 10,000 permutations. Grey cells indicate tests where the permutation p value could not be calculated.

(D) Evidence of preservation for each OTU module in the other sex (‘‘strong’’ evidence is blue, ‘‘weak’’ is yellow, ‘‘none’’ is red). See Table S7 for the taxonomic

assignments of OTUs participating in modules with strong evidence of preservation.
was the only multi-tissue housekeeping module that exhibited

significant patterns of differential body weight association.

Furthermore, LM35 was associated with several obesity related

traits, including a decreased ratio of glucose over insulin, sug-

gesting an association with decreased insulin sensitivity. The

link between insulin sensitivity, obesity, and adipocytes is well
established (Hotamisligil et al., 1993; Kahn and Flier, 2000;

Kahn et al., 2006), and consistent with this link, the adipose

expression of LM35 was associated with circulating MCP-1

levels. MCP-1 has been shown to be secreted by adipocyte cells

as well as overexpressed in obese mice, and it has been shown

to decrease insulin-stimulated glucose uptake in vitro (Kanda
Cell Systems 3, 71–82, July 27, 2016 79



et al., 2006; Sartipy and Loskutoff, 2003). The phenotypic asso-

ciations of LM35 across tissues may be explained by possible

coexpression with obesity-linked genes in the adipose and mus-

cle tissue, which did not coexpress with the module in the liver

tissue where the module was identified.

We also showed that NetRep can be successfully applied

to OTU networks derived for 16S microbiome data and have

offered recommendations for dealing with the relative sparsity

of these networks. In doing so, we identified several gut OTU

modules that were preserved between men and women in the

HMP data. Consistent with expectation, preserved modules

largely involved multiple OTUs from the same genus (e.g., Dialis-

ter, Bacteroides, and Ruminococcus modules). A more diverse

module comprising OTUs from the Clostridiales order, particu-

larly Faecalibacterium prausnitzii, Coprococcus, Butyrivibrio,

and Clostridium, was also preserved (male module 2, female

module 5). F. prausnitzii has been linked to various human dis-

eases, including inflammatory bowel disease, celiac disease,

and obesity, and has been the subject of intense research to un-

derstand its specific functions, both individually and as part of

communities, in the human gut (Miquel et al., 2013). Our analyses

suggest that F. prausnitzii is part of a broader preserved Clostri-

diales community that may have functional consequences.

Further studies in larger sample sizes may offer more power to

detect additional members of this community, its variation

across sexes, and its relevance to disease. Identification of gut

microbial communities that change in composition between

sexes may offer insight into diseases, such as irritable bowel

syndrome, which have different prevalences in males and

females (Canavan et al., 2014; Kassinen et al., 2007).

In recent years, studies have begun generating and analyzing

datasets containing gene expression measured in dozens

of tissues and cell types, for example, the Genotype-Tissue

Expression (GTEx) Consortium (GTEx Consortium, 2015), the

Immunological Genome (ImmGen) (Shay and Kang, 2013), and

the Immune Variation (ImmVar) projects (De Jager et al., 2015).

Similar scale studies are investigating microbiota spatiotempo-

rally and in conjunction with other -omics data (Alivisatos et al.,

2015; Human Microbiome Project Consortium, 2012; Integrative

HMP (iHMP) Research Network Consortium, 2014). Already,

multiple module preservation analyses have been performed

on the GTEx pilot data (Melé et al., 2015; Pierson et al., 2015;

GTEx Consortium, 2015), and here we have performed an initial

preservation analysis of microbiome network modules between

men and women. With large-scale expression studies increasing

in scale and complexity, and the emergence of other types of da-

tasets of similar scale, there is an urgent need for powerful and

accurate statistical methodologies that quantify module replica-

tion and preservation. Here, we have presented an approach

for rapid assessment of network module preservation and repro-

ducibility that makes possible unbiased large-scale comparative

analysis.
EXPERIMENTAL PROCEDURES

Full experimental procedures and data details can be found in the Supple-

mental Experimental Procedures. For the Humap Microbiome Project, details

of institutional review boards are given in Human Microbiome Project Con-

sortium (2012). For the mouse data, these are given in Yang et al. (2006).
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Network Inference and Module Detection

Network inference andmodule detection were performed on a per-tissue basis

for the BxH mouse cross using WGCNA v.1.43.1 with the default parameters

(Langfelder and Horvath, 2008). First, the correlation structure (coexpression)

for each tissue was calculated as the Pearson correlation coefficient between

all probes passing quality control (Supplemental Experimental Procedures).

Next, the network of interactions between probes was constructed by taking

the element-wise absolute value of the correlation coefficient and exponentiat-

ing it to the smallest power such that the distribution of the weighted node de-

gree (i.e., the sum of all edge weights for each node) of the resulting network

was approximately scale free (scale-free topology criterion R2 > 0.85) (Zhang

and Horvath, 2005). This results in a dense, complete network where edge

weights can take values between 0 and 1, most pairs of probes are connected

with extremely small edge weights, and the comparatively few strongly corre-

lated probes are connected with strong edge weights. The automated selection

procedure selected the exponents of 12, 5, 4, and12 for the brain, liver, adipose,

and muscle tissues, respectively (Figure S7). Subsequently, the topological

overlap dissimilarity (Zhang andHorvath, 2005) between probeswas calculated

and hierarchically clustered using the average linkage method. Hierarchically

nestedmoduleswere identified from the results dendrogram using the dynamic

tree cut algorithmwith default parameters (Langfelder et al., 2008). Similar mod-

ules were merged together using an iterative process in which modules whose

summary expression profile (first principal component, see below) clustered

together (hierarchical average linkage) below a height of 0.2 were joined.

Network inference and module detection were performed separately for the

HMP male and female gastrointestinal samples. First, 16S rDNA reads were

clustered by sequence similarity (R97%) to representative sequences with

known taxonomic assignments (Supplemental Experimental Procedures). Sub-

sequent OTU tables were filtered to gastrointestinal samples collected on the

first visit for 127 individuals. Next, the correlation structure between the 152

non-rare OTUs (Supplemental Experimental Procedures) was calculated using

SparCC, a method for calculating unbiased correlation coefficients in sparse,

compositional data (Friedman andAlm, 2012). The interaction network between

OTUswas defined as themagnitude of the correlationwhere the SparCC corre-

lation coefficient was significant at p < 0.005 in a bootstrap test. Modules were

subsequently defined as groups of OTUs connected with significant positive

SparCC correlation coefficients. The bootstrap p values were calculated using

the estimator described by Phipson and Smyth (2010) (Supplemental Experi-

mental Procedures), and the threshold p < 0.005 was chosen as it provided

the best separation of OTUs into distinct modules for testing with NetRep.

Module Preservation

Seven statistics were used to quantify whether the relationships and correla-

tion structure between nodes composing each module were replicated or

preserved when measured in a different dataset (Langfelder et al., 2011).

Here, we have renamed the statistics so that they are accessible to a wider

audience andmeaningful when applied to networks inferred from data sources

(Table 1). Each module preservation statistic—their biological interpretation,

application to different data sources, and network inference methods—are

discussed in the Supplemental Experimental Procedures.

A permutation procedure was employed to characterize the distribution of

each statistical test under the null hypothesis of non-replication and non-pres-

ervation. Specifically, each module preservation statistic was re-calculated

when shuffling the node labels in the test dataset. The node labels in the dis-

covery dataset were left unchanged. Nodes that were not present in both the

discovery and test dataset were ignored both when calculating the module

preservation statistics and when shuffling the node labels in the test dataset.

Under the alternate hypothesis of replication/preservation, the test statistics

calculated on the non-permuted dataset were expected to be higher than

when calculated on random sub-graphs in the test dataset. Permutation

p values were then calculated from these null distributions using the estimator

described by Phipson and Smyth (2010), which provides a conservative esti-

mate of the p value appropriate for multiple testing adjustment (Supplemental

Experimental Procedures).

Module Summary Profiles

The summary profile for each module was calculated as the first principal

component of module w. Specifically, each summary profile was calculated



Table 1. Definitions of the Module Preservation Statistics

NetRep Name WGCNA Name Definition

Module coherence proportion of variance explained meanððcorðg½t�ðwÞ
i ;Eig

½t�ðwÞ
1 ÞÞ2Þ

Average node contribution mean sign-aware module membership meanðsignðcorðg½d�ðwÞ
i ;Eig

½d�ðwÞ
1 ÞÞ,corðg½t�ðwÞ

i ;Eig
½t�ðwÞ
1 ÞÞ

Concordance of node contributions correlation of module membership corðcorðg½d�ðwÞ
i ;Eig

½d�ðwÞ
1 Þ ; corðg½t�ðwÞ

i ;Eig
½t�ðwÞ
1 ÞÞ

Density of correlation structure mean sign-aware coexpression meanðsignðC½d�ðwÞÞ,C½t�ðwÞÞ
Concordance of correlation structure correlation of coexpression corisjðC½d�ðwÞ;C½t�ðwÞÞ
Average edge weight mean adjacency meanisjða½t�ðwÞ

ij Þ
Concordance of weighted degree correlation of intramodular connectivities corððP

j

isj

aiÞ½d�ðwÞ; ðP
j

isj

aiÞ½t�ðwÞÞ

The NetRep name indicates the name of the statistic in the main text, while the WGCNA name indicates the name given to the statistics by Langfelder

et al. (2011). Mathematical symbols are as follows: for n variablesmeasured acrossm samples,G refers to them3 nmatrix of observations,C refers to

the n3 n square matrix containing the pairwise correlation coefficients between variables, and A refers to the n3 n square adjacency matrix denoting

the connection strength (edge weight) between each pair of variables (nodes). Lowercase g, c, and a refer to individual elements of the matrices de-

noted by their respective uppercase letter. The superscripts [d] and [t] indicate whether the respective entity, formula, or network is obtained/calcu-

lated from the discovery or test dataset, respectively. The subscript letters i and j denote individual variables/nodes in module w. The superscript (w)

indicates that the entity/formula that it is attached to is obtained/calculated on all nodes j (or all pairs of nodes i,j) in module w. For example, g
½t�ðwÞ
i

denotes a vector of observations for node i (which belongs to module w) in the test dataset, and a
½d�ðwÞ
ij indicates the edge weight between nodes i

and j (both of which belong to module w) in the discovery dataset. Eig
ðwÞ
1 refers to the summary profile of the module w (first principal component;

Experimental Procedures). The sign function evaluates to 1 if its argument is a positive value or �1 if its argument is a negative value. The cor function

calculates Pearson’s correlation coefficient between two vectors.
as the first eigenvector of a singular value decomposition ofG(w). Two solutions

exist for every eigenvector; both contain the same values, but with opposite

signs. Thus, the summary profile is chosen as the eigenvector that is positively

correlated with the average of G(w) across samples. This ensures that the

eigenvector is oriented in the same direction as the data.

For interpretability, we refer to the summary profile as the ‘‘summary expres-

sion’’ profile when calculated on the BxH mice gene coexpression network

modules, although this vector is commonly referred to as the ‘‘module eigen-

gene’’ in the weighted gene coexpression network literature (Langfelder and

Horvath, 2008). For the HMP gut communitymodules, we refer to the summary

profiles as the community ‘‘summary abundance.’’
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