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Abstract  

Introduction 

There are few data on the frequency of virological remission in African individuals 

after treatment with antiretroviral therapy (ART) in primary HIV infection (PHI).  

Methods 

We studied participants (n=82) from South Africa and Uganda in SPARTAC, the first 

trial of treatment interruption (TI) in African individuals with PHI randomized to 

deferred ART or 48 weeks of immediate ART. All were female and infected with 

non-B HIV subtypes, mainly C. We measured HIV DNA in CD4 T cells, CD4 count, 

plasma viral load (pVL), cell-associated HIV RNA and T cell activation and 

exhaustion. We explored associations with clinical progression and time to pVL 

rebound after TI (n=22). Data were compared with non-African SPARTAC 

participants. 

Results  

Pre-therapy pVL and integrated HIV DNA were lower in Africans compared with 

non-Africans (median 4.16 vs 4.72 log10 copies/ml and 3.07 vs 3.61 log10 

copies/million CD4 T-cells respectively; p<0.001). Pre-ART HIV DNA in Africans 

was associated with clinical progression (p=0.001, HR per log10 copies/million CD4 T 

cells increase (95% CI) 5.38 (1.95-14.79)) and time to pVL rebound (p=0.034, HR 

per log10 copies/ml increase 4.33 (1.12-16.84)). After TI, Africans experienced longer 

duration of viral remission than non-Africans (p<0.001; HR 3.90 (1.75-8.71). Five of 

22 African participants (22.7%) maintained VL<400 copies/ml over a median of 188 

weeks following TI.  
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Conclusion 

We find evidence of greater probability of virological remission following TI among 

African participants, although we are unable to differentiate between sex, ethnicity 

and viral subtype. The finding warrants further investigation. 
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Introduction 

There is no cure for HIV infection despite effective antiretroviral therapy (ART). 

Latently infected CD4 T cells (1) persist despite ART and decay slowly (2). Most 

people living with HIV (PLHIV) experience viral reactivation soon after ART 

interruption. However, studies of individuals who initiate ART early in primary HIV 

infection (PHI) have identified more rapid clearance of the reservoir (3-5) and cases 

of virological remission (6-8).  

As new strategies are developed to target the HIV reservoir (9), there has been an 

increase in the number of treatment interruption (TI) studies raising concerns over 

safety (10-12). An algorithm to predict individuals who might sustain undetectable 

plasma viral loads (pVL) after TI would therefore be of benefit. In SPARTAC (Short 

Pulse Antiretroviral Treatment at HIV-1 Seroconversion) (13), HIV DNA levels in 

CD4 T cells (14) and expression of immune checkpoint receptors PD-1, Tim-3 and 

Lag-3 (15) predicted time to pVL rebound after TI. Cell-associated HIV RNA (CA-

RNA) (16) – a marker of a more inducible reservoir – and the frequency of viral blips 

on ART (17) have also been shown to predict rebound viraemia. 

Most studies examining the HIV reservoir investigate European or North American 

participants infected with subtype B HIV. This is not representative of the global 

burden of disease, given that 70% of PLHIV are in Africa  and 50% of prevalent HIV 

infections are estimated to be due to subtype C (18). Whereas non-B viral subtypes 

respond well to ART (19), our current understanding of the reservoir may not 

translate to African or non-B infected populations, especially as variation in pVL, 

HIV DNA and CD4 T cell count is linked to ethnicity and geography (20). There may 

also be differences between both sex and HIV subtypes relating to replicative fitness, 
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biology of transmission and disease progression (21-26). We turned to SPARTAC to 

analyse outcomes after TI in African participants. 

 

Methods 

Participants and trial design. 

The design of the SPARTAC trial is reported elsewhere (13). SPARTAC was an 

international RCT of early ART, comparing 12 or 48 weeks of ART followed by 

treatment interruption (TI) with no immediate treatment. 366 adults within an 

estimated 6 months from seroconversion were recruited. All participants gave written 

informed consent (see Supplementary Material for details of ethics approvals, 

http://links.lww.com/QAD/B378). The primary endpoint was a composite of a CD4 T 

cell count of less than 350 cells/μL or initiation of long-term ART. Time of 

virological failure was defined as the first of two consecutive values of plasma viral 

load above 400 copies per ml. HIV RNA was measured at clinical sites by the Bayer 

(Chiron bDNA) assay (13). We restricted our analysis to participants who received 

either no ART or 48 weeks of ART. SPARTAC also recruited to a 12-week ART arm 

in which participants responded similarly to the untreated arm (8,13), so we have not 

included these participants in this sub-study.  

 

African participants for this sub-study were women from Uganda and South-Africa, 

infected with non-B HIV subtypes and randomised to receive ART for 48 weeks 

(ART48) or no therapy. (The SPARTAC trial only recruited female participants in 

these countries as recruitment was linked to a vaginal microbicide study). To qualify 

for this analysis of TI, participants had to have either received no ART, or to have 
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received between 45 and 50 weeks of ART and to have been fully suppressed (pVL 

<400 copies/ml) at TI. Of the 82 African participants in SPARTAC who were eligible 

for this sub-study and had samples available, 38 were randomised to ‘deferred ART’ 

and 44 to the ART48 arm. Of the latter, only 22 contributed to the analysis at the 

point of treatment interruption (S1 Fig, http://links.lww.com/QAD/B378). 

 

The data from the African participants are compared with data from subtype B-

infected participants recruited in the UK, Italy, Ireland, Australia and Brazil 

(subsequently referred to as the ‘non-African cohort’) which is described in detail 

elsewhere (14), and comprised 103 participants, all male and predominantly from the 

UK (66.0%). The same criteria for treatment duration and undetectable pVL as in the 

African cohort were used for the non-African cohort. 52 non-African participants had 

been randomised to receive 48 weeks of ART and 51 to no immediate treatment. 44 

samples were available for analyses at TI after 48 weeks of ART (Fig S1, 

http://links.lww.com/QAD/B378).   

 

Characteristics of participants at randomisation and TI, are shown in Table 1. Due to 

sample availability, not all assays were performed in all participants at all time-points. 

 

Measurement of HIV DNA. 

Thawed peripheral blood mononuclear cell (PBMC) samples were enriched for CD4 

T cells by negative selection (Dynabeads®Untouched™ Human CD4 T cells, 

Invitrogen) and CD4 T cell DNA extracted (QIAamp® DNA Blood Mini Kit, 

Qiagen). Cell copy number and total HIV DNA were quantified in triplicate using 
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albumin and HIV qPCR assays (27). The quantification of subtype C HIV DNA was 

validated comparing results from MJ4 and NL4-3 plasmids, containing subtype C and 

B HIV DNA sequences respectively. Integrated HIV DNA was measured by modified 

(14) Alu-gag nested qPCR (28). We measured total HIV DNA in African participants 

at both time-points (n=82 and 22 at baseline and TI, respectively) and integrated HIV 

DNA according to sample availability (n=54 and 22 at baseline and TI, respectively). 

HIV DNA data from the non-African participants were available from a previously 

published study (14). 

 

Flow Cytometry 

Cell surface staining was performed on thawed PBMCs from participants at baseline 

and TI according to sample availability (n=70/82 and 18/22, respectively). PBMCs 

from 10 healthy Africans were simultaneously run as controls. Two different panels 

of antibodies were used to explore markers of immune activation (CD25, CD69, 

CD38, HLA DR) and exhaustion (Lag-3, Tim-3, PD-1) (see Supplementary Material 

for full details, http://links.lww.com/QAD/B378).  

 

Unspliced cell-associated HIV-1 RNA Transcript quantitation. 

RNA was isolated from PBMCs of all 22 participants at TI, using the AllPrep 

DNA/RNA Mini kit (Qiagen) with the addition of an on-column double DNase 

digestion. The RNA assay was a modified version of those previously described (29, 

30). Briefly, complementary DNA was subjected to two rounds of PCR using semi-

nested primers. The HIV standard was generated in vitro transcribing the plasmid 

Sp5-NL4.3 (generously provided by the lab of D. Purcell) using the RiboMax Large 

Scale SP6 RNA production System (Promega). HIV RNA standards were diluted in 
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10ng/µL uninfected PBMC RNA. HIV measurements were normalized to input 

cellular RNA using the 18S gene with the Amplifluor Human/Mouse 18S rRNA 

Primer Set (FAM labelled; Millipore). The standards for this assay were derived from 

an HIV subtype B plasmid. Oligo dT and random hexamers were used for reverse 

transcription to remove any potential for subtype-specific bias. The HIV-specific 

component of the reaction was the same as for the HIV DNA assay, validated for 

subtype C amplification as above.  

 

HLA class I phenotyping 

HLA Class I type was determined to the oligo-allelic level using Dynal RELITM 

Reverse Sequence-Specific Oligonucleotide kits for the HLA-A, -B and –C loci 

(Dynal Biotech). To obtain four-digit typing, Dynal Biotech Sequence-Specific 

priming kits were used, in conjunction with the Sequence-Specific Oligonucleotide 

type.  

 

CD8 T cell ELISpot assays. 

HIV Gag-specific CD8 T cell responses were measured by IFN-γ ELISpot assays to 

overlapping peptides using methods described elsewhere (31, 32). 

 

Statistical analysis. 

Comparison of continuous variables was performed with Mann-Whitney, or 

Wilcoxon tests for matched samples. Spearman correlations were used to analyse HIV 

DNA, pVL and CD4 count associations. Correlations between virological, 
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immunological and reservoir markers were displayed through correlograms (R 

package “correlogram”), the order of biomarkers determined by hierarchical 

clustering. Associations between HIV DNA and immunological markers in the 

African participants were explored further with regression models. We used backward 

selection (exit criteria P<0.1) on variables presenting with P<0.2 in simple linear 

regression models to identify those to include in multivariable regression models. 

Integrated HIV DNA was not considered in these analyses because of the strong 

association with total HIV DNA. Association between baseline or TI markers and 

SPARTAC endpoints was assessed using Cox proportional hazards models. Kaplan-

Meier survival analysis and log-rank tests were used to compare remission periods 

after TI. All plots and statistics were made on RStudio version 0.98.1103. 

 

Results 

Characteristics of African participants. 

Characteristics of all participants at randomisation and TI, are shown in Table 1. For 

the African cohort, 82 female participants recruited from Uganda (n=8) and South-

Africa (n=74) had samples available at pre-therapy baseline. All were originally 

randomised within a median [interquartile range, IQR] of 13.6 [10.9–16.9] weeks 

from the estimated date of seroconversion. All infections were with non-B HIV 

subtypes, mainly C (62.2%). Median [IQR] age was 25.0 [21.0-31.8] years. 

Heterosexual intercourse was the main mode of HIV transmission. We studied 

participants who had been randomly assigned to receive either deferred ART (n=38) 

or 48 weeks of ART (‘ART48’ group; n=44). Only 22 of the 44 ART48 participants 

in this sub-analysis had both received 48 full weeks of ART and suppressed viral 
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replication (pVL < 400 copies/ml) at the time of TI (Table 1). As a result, even 

though baseline pre-therapy data are included for the 44 treated participants, only data 

for 22 are available for analysis at TI. (Of the 22 participants excluded, 13 received 

less than 46 weeks of ART and 9 had a pVL > 400 copies/ml at TI).  

Demographics of the African and non-African cohorts at randomisation and TI were 

similar except that time from the estimated date of seroconversion to randomisation 

was significantly longer in the African than non-African cohort with median [IQR] 

values of 13.6 [10.9-16.9] and 10.6 [7.1–13.6] weeks respectively (p< 0.001; Mann-

Whitney).  

 

Lower pVL and HIV DNA at baseline in African compared with non-African 

participants. 

We compared the African cohort with participants from Europe, Australia and Brazil 

(Table 1; ‘non-African cohort’), reported previously (14). At pre-therapy baseline, the 

median [IQR] pVL in the African cohort (4.16 [3.37–4.82] log10 copies/ml) was 

significantly lower than the non-African cohort (4.72 [4.06–5.27] log10 copies/ml) 

(p<0.001; Mann-Whitney) (Table 1; Fig 1A). CD4 T cell counts were not 

significantly different between the African and non-African cohorts at either baseline 

or TI (Table 1; Fig 1B). Mean CD4 T cell counts improved over the 48 weeks of ART 

for both cohorts, although this was only statistically significant for the African 

participants (p<0.001; Wilcoxon signed-rank test) (Fig 1B, Fig S2A). At baseline, 

integrated (but not total) HIV DNA was lower in Africans compared with non-

Africans (p<0.001; Mann-Whitney), while no difference in HIV DNA level was 

observed at TI (Table 1; Fig 1C, D). There was a significant decrease in both forms of 
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HIV DNA in African and non-African participants on ART (p<0.001 for both; 

Wilcoxon signed-rank test) (Fig 1C, D, Fig S2B), the magnitude of the change in total 

and integrated HIV DNA being greater in the non-African cohort (p = 0.013 and 

0.012 respectively; Wilcoxon signed-rank test). 

  

Correlates of HIV reservoir size in African participants. 

In African participants, total and integrated HIV DNA were closely correlated at 

randomisation and TI (p<0.001; rho=0.706 and 0.843 respectively; Spearman) (Fig 

S3A, B), and were inversely associated with CD4 T cell count at baseline (p<0.001, 

rho=-0.560 for both forms; Spearman) (Fig 1E) and TI (p=0.049, rho=-0.425 for both 

forms; Spearman) (Fig S3C, http://links.lww.com/QAD/B378). HIV DNA was 

positively correlated with baseline pVL (p<0.001; R = 0.47 and 0.60 for total and 

integrated HIV DNA respectively; Spearman) (Fig 1F).  

We wished to determine how these markers associated more broadly with other 

virological, immunological and reservoir markers, and employed principle component 

analysis with correlograms (33) to represent the clustering and strength of individual 

associations (Fig 2). At baseline and TI, PD-1, HLA-DR and Lag-3 on both CD4 and 

CD8 T cells clustered together with similar positive correlations (Fig 2A, B). At 

baseline, there was also clustering with CD38 on CD8 T cells and Tim-3 on CD4 T 

cells. Association of these markers with HIV DNA was also evident at pre-therapy 

baseline (Fig 2A, red box), but was stronger at TI (Fig 2B, red box). 

Associations between HIV DNA and immunological markers in the African 

participants were explored further with regression models. In the multivariable 
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analysis, Lag-3 expression on CD4 T cells, CD4 T cell count and pVL were 

independently associated with HIV DNA at baseline (Table S1, 

http://links.lww.com/QAD/B378). At TI, expression of Lag-3 and CD69 on CD4 T 

cells were associated with HIV DNA (Table S1, http://links.lww.com/QAD/B378).  

 

HIV DNA and clinical progression. 

The primary end-point in the SPARTAC trial was a composite of a CD4 T cell count 

decline to <350 cells/µl or initiation of long-term ART, and was used in this analysis 

as a correlate of disease progression (13). At baseline (n = 82), univariable Cox 

analyses identified HIV DNA (total and integrated), pVL and CD4 T cell count to be 

predictive of clinical progression (when adjusting for therapy), although only CD4 T 

cell count was independently associated with the primary endpoint in multivariable 

analyses (HR 0.47 per 100 cells/µl increase [CI 0.28-0.66]; p<0.001) (S2 Table, 

http://links.lww.com/QAD/B378). For T cell activation and exhaustion markers 

(when adjusted for ART duration), proportions of CD38+ and CD69+ CD4 T cells 

(p=0.008, HR 0.96 [0.93-0.98] and p=0.011, HR 1.47 [1.09-1.97], respectively), and 

Tim-3+ CD8 T cells (p=0.045, HR 0.91 [0.83-0.999]) were significantly associated 

with progression, although not in multivariable models (S3 Table, 

http://links.lww.com/QAD/B378). When measured at ART interruption, neither total 

nor integrated HIV DNA predicted progression (despite suggestive hazard ratios (HR 

[CI 95%]: 2.58 [0.19–34.69] and 10.2 [0.55–190.5], respectively) (S4 Table, 

http://links.lww.com/QAD/B378).  
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HIV DNA and time to viral rebound in African women. 

Next we turned to analyses of time to viral rebound after TI, utilising data from the 22 

African participants who received 48 weeks of ART and had undetectable pVL at TI. 

At baseline, total HIV DNA (HR 4.33 per log10 increase [CI 1.12-16.84]; p=0.034) 

and pVL (HR 1.93 per log10 increase [CI 1.17-3.17]; p=0.010) predicted time to pVL 

rebound in univariable models. When adjusted for pVL, CD4 T cell count or 

integrated HIV DNA, the association with pre-therapy total HIV DNA was no longer 

significant. When measured at TI, neither total (HR 3.48 per log10 increase [CI 0.78-

15.49]; p=0.102) nor integrated HIV DNA (HR 2.65 per log10 increase [CI 0.79-8.9]; 

p=0.114) were associated with time to viral rebound, despite supportive hazard ratios. 

No activation or exhaustion marker was predictive of time to viral rebound at any 

time point (S5 Table, http://links.lww.com/QAD/B378). 

 

Longer post-treatment remission in African women compared with non-African 

men. 

We next compared time to pVL rebound after stopping ART in the African and non-

African participants. Kaplan-Meier survival analysis revealed a significant delay in 

time to viral rebound in African compared to non-African participants (p<0.001; log-

rank test) (Fig 3A), which was supported in multivariable Cox models adjusting for 

HIV DNA and CD4 T cell count (S6 Table, http://links.lww.com/QAD/B378). All 

non-African participants eventually experienced viral rebound after TI (Fig 3A), 

however five of the 22 African women controlled viraemia below 400 copies/ml after 

TI until the end of follow-up (median [IQR] 4.48 years [3.99-4.65]). In subsequent 
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analyses, we refer to these five individuals from the African cohort as “post-treatment 

controllers” (PTC), as opposed to the 17 African “non-controllers” (NC). 

 

Comparison of post-treatment controllers and non-controllers.  

Time from seroconversion to ART initiation was similar in the African PTC (median 

[IQR] 17.6 [17.1-17.8]) and NC groups (14.3 [13.0-17.6] weeks) (p=0.147; Mann-

Whitney). At baseline, PTC had significantly lower pVL (p=0.041; Mann-Whitney) 

and higher CD4 T cell counts (p=0.011; Mann-Whitney) than NC. The median CD4 T 

cell count at TI was also higher in PTC (p=0.006; Mann-Whitney) (Fig 3B and C). A 

trend towards lower levels of total and integrated HIV DNA (p=0.058 and p=0.085, 

respectively; Mann-Whitney) in PTC was evident at baseline (Fig 3D and E). At ART 

interruption, no difference in total or integrated HIV DNA was found between groups 

(Fig 3D and E), however there was a trend for PTC to have lower levels of cell-

associated RNA, with median [IQR] values of -0.36 [-0.38-1.38] versus 1.51 [0.90-

2.10] log10 copies/million copies of 18S RNA respectively (P=0.153) (Fig 3F). The 

only statistically significant difference between PTC and NC in regards to T cell 

activation and exhaustion (Fig 3G to J) in univariate analysis, was a lower proportion 

of PD1+ CD8 T cells in PTC at TI (Fig 3J), (although this result did not survive 

Bonferroni correction for multiple comparisons).  

 

PTC maintain stable CD4 T cell counts and HIV DNA levels after TI 

Measures of pVL, CD4 T cell count, and total HIV DNA during follow-up are 

presented for the five PTCs (Fig 4). Four PTC had subtype C HIV while the subtype 
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was unknown for the fifth PTC individual, as no sequence could be obtained. Three 

PTC experienced pVL blips after TI (maximum blips: 1,690, 5,110, 560 copies/ml), 

whereas two maintained undetectable viraemia throughout follow-up (Fig 4A). Two 

of the PTC had undetectable pVL at randomisation, prior to starting ART, and one 

just above the detection limit, at 459 copies/ml (Fig 4A). CD4 T cell counts increased 

during the 48 weeks of ART (median [IQR] 772 [639-775] cells/µl at baseline vs 

1273 [1151-1294] cells/µl at TI) and then decreased after TI (although not 

significantly) when measured at the last documented trial time-point (962 [840-

1028]/µl), after a median of 204 weeks (range 156 - 252) (Figure 4B and D). Total 

HIV DNA levels remained stable (median [IQR] values of 3.17 [3.07-3.61] at 

baseline, 3.09 [3.03-3.18] at TI and 2.96 [2.86-3.23] copies/million CD4 T cells at 

end of follow-up (Fig 4C and E)). 

 

We looked for associations between PTC and HLA Class I – the key genetic 

association with HIV progression (34). Two participants with undetectable pVL prior 

to ART had the protective HLA-B*81:01 and made dominant responses to the HIV 

Gag TPQDLNTML epitope which is associated with control (35, 36); one of these 

also had B*35:01 (Table S7, http://links.lww.com/QAD/B378). In comparison, 

among 17 NC participants, 6 carried the disease susceptible allele HLA-B*58:02, and 

4 had protective alleles HLA-B*81:01 or HLA-B*57:03. 

 

Discussion 

The SPARTAC trial offered the unique opportunity to study the outcome of a 

randomised treatment interruption in African women with PHI infected with non-B 
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HIV subtypes. To our knowledge, our study is the first to both characterise the impact 

of treatment interruption in African participants treated at PHI and also to compare 

HIV reservoir dynamics in African and non-African participants within the same 

RCT. Whereas interrupting ART is not recommended in current guidelines, there is 

increasing interest in the value of an intensively monitored TI in studies testing for 

virological remission or the impact of a novel intervention on the reservoir or host 

immunity. However, stopping ART should only be done in the context of a clinical 

study with a clearly defined question and under close supervision. 

 

Our study has important confounding factors, which have been discussed previously 

(37), but which do not negate the difference in outcomes in the two study groups. 

First, we describe our cohorts as ‘African’ and ‘non-African’, although we could 

justifiably have described them as female and male. It has been previously 

documented that HIV-uninfected and infected women have higher CD4 T cell counts 

than men (38-42). In untreated individuals, HIV-infected women have lower pVL 

compared to men, including when adjusting for confounding factors (39, 43-45). HIV 

subtypes may also have differential characteristics, such as replication fitness and 

biology of transmission, which could impact disease progression and response to 

therapy (21, 22, 24-26). However, to date this has not been definitively proven in 

clinical cohorts due to confounders such as sex, ethnicity and heterogeneity in time 

intervals since seroconversion (46-48). Gender-matched studies will be necessary to 

determine whether sex or viral subtype is the major driver of our results as our non-

African cohort were all male. However, the practicalities of a sex-matched study from 

PHI in Africa are not straightforward and a similar dataset may be hard to reproduce. 
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Pre-therapy African participants had lower integrated HIV DNA and pVL than non-

African participants consistent with the sex difference and other studies (49). 

Correlations between pVL, CD4 T cell counts and HIV DNA have been previously 

described in African cohorts (20, 46, 50, 51), but without associated virological, 

immunological and clinical outcomes. HIV DNA levels pre-ART in the African 

participants correlated with pVL and several T cell activation and exhaustion markers 

(e.g. CD38, Lag-3, Tim-3). After 48 weeks of ART, Lag-3, CD69 and PD-1 

expression on CD4 T cells correlated with HIV DNA. That a number of these 

associations existed independently supports previous data showing that immune 

activation in HIV-infected African individuals correlates with pVL and inversely with 

CD4 count (52).  

 

In European cohorts, HIV DNA (14, 53-55) and immune activation and exhaustion (1, 

56-59) have been reported as independent predictors of clinical progression. Different 

rates of disease progression have been associated with non-B subtypes of HIV (39, 

47) and in untreated African individuals (60, 61). Consistent with these findings, we 

found baseline total and integrated HIV DNA, as well as several T cell activation and 

exhaustion markers, to be predictive of clinical progression in the African group.  

 

Our study is one of the first to explore biomarkers of progression in Africans after 

ART TI. Although no marker measured at TI was significantly associated with 

clinical outcome despite high hazard ratios, this may be related to small sample size. 
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This might explain the disparity with the findings from the larger non-African 

SPARTAC cohort where HIV DNA (both total and integrated) predicted the primary 

end-point when measured at TI (14).  

 

Even considering the variation between pVL and integrated (but not total) HIV DNA 

in the two cohorts at baseline, the extent of the difference in times to pVL rebound in 

the African and non-African cohort was unexpected. The five African individuals 

who did not experience pVL rebound during the course of follow up had lower pVL 

and higher CD4 counts than African non-controllers and lower HIV DNA levels prior 

to ART initiation. They also maintained higher CD4 counts at TI, and while no 

difference was found in HIV DNA levels, PTC had lower cell-associated RNA levels. 

Immune activation was similar in both groups, although there were fewer exhausted 

CD8 T cells in PTC based on a lower proportion of PD1+ cells. Three of the African 

PTC, therefore, exhibited characteristics more closely associated with T cell-mediated 

immune control as described in elite controllers, which again may also be impacted 

by the gender difference. This raises the important issue of discriminating post-

treatment control from treated ‘controllers’ in these analyses, and the key value of 

pre-therapy measurements. 

 

The best characterized cohort of post-treatment controllers is the VISCONTI study 

(6). The African PTC in our study had lower pVL and higher CD4 counts than 

VISCONTI PTC at baseline. Interestingly, African controllers had similar baseline 

levels of pVL and CD4 counts as spontaneous HIV controllers (HIC) described by 

Saez-Cirion et al. Occasional blips were recorded for some individuals in both 
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VISCONTI and our African controllers, and HIV DNA remained stable both on and 

off treatment. In VISCONTI, no over-representation of protective HLA class I alleles 

was described, whereas there was a high prevalence of risk alleles (6). We found the 

opposite picture in the African controllers, with none having disease susceptible 

alleles, and two making strong immune responses restricted by B*8101, a known 

protective allele. HIV-specific T cell immunity and subsequent escape (59) are drivers 

of viraemic control and rebound in untreated individuals, but are less well 

characterised in the context of post-treatment control. Finally, we showed that African 

controllers had comparable levels of immune activation to African non-controllers, 

whereas PTC in VISCONTI had low levels of T cell activation (6, 62).  

 

SPARTAC provided the unique opportunity to characterise the HIV reservoir in 

African individuals with PHI, with the additional strength of randomised treatment 

interruption and natural history arms. Although it is likely that our dataset was under-

powered for some of the outcomes, there was strong evidence for better virological 

control in the African participants after TI compared to the non-African cohort. 

However, the sustained control seen in five African women adds to the argument that 

the mechanisms driving the interaction between post-treatment remission and 

spontaneous control need further study.  
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Figure 1. Baseline and TI characteristics of reservoir-associated markers in the 

African and non-African cohorts. 

 

  

 

Reservoir-associated markers were compared between the African cohort (open 

boxes) and non-African cohort (grey boxes) at baseline (n = 82 and 103 respectively) 

and ART interruption (n = 22 and 44 respectively). Plasma viral load (A), CD4 T cell 

count (B), total HIV DNA (C) and integrated HIV DNA (D) were studied. 

Correlations between HIV DNA and CD4 T cell count (E) and plasma viral load (F) 

were considered at baseline (open and black dots for total and integrated HIV DNA 
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respectively). Integrated HIV DNA data at baseline were available for only 54 and 77 

participants from the African and non-African cohorts respectively. Comparisons 

were performed using non-parametric Mann Whitney tests. When studying the 

evolution after 48 weeks of ART, only data from participants with results at both time 

points were analysed and compared by paired Wilcoxon test. Correlations were tested 

using Spearman correlations. 

*** p < 0.001 
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Figure 2. Association between reservoir-associated and immunological markers 

in the African cohort. 

 

 

 

 

Correlograms of baseline (n = 70) (A) and ART interruption variables (n = 18) (B). 

Strength of associations is illustrated by pie charts and heat maps, red showing 

negative correlation and blue a positive correlation between parameters. Intensity of 

the colour and size of the pie is linked to the strength of the association. Variables 

were arranged by hierarchical clustering, in PC2/PC1 order. Immunological variables 

strongly associated together are indicated in the black box, and in red boxes if 

strongly associated with reservoir-associated markers. 
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Figure 3. Determinants of time to virological failure and sustained control in the 

African cohort  

 

 

 

(A) Survival analyses of time to viral rebound (weeks) of participants undertaking TI 

after 48 weeks of ART in the African cohort (dashed line, n = 22) and the non-African 

cohort (solid line, n = 44). Significance was determined by log-rank test. Reservoir-

associated markers were compared between the sustained controllers (SC; grey boxes; 

n = 5) and the non controllers (NC; open boxes; n = 17) from the African cohort: 
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plasma viral load (B) was measured at baseline, while CD4 T cell count (C), total 

HIV DNA (D) and integrated HIV DNA (E) were studied at both baseline and TI; 

unspliced cell-associated HIV RNA (F) was analysed at TI. Immunological markers 

were also compared in the sustained controllers (n = 5) and the non controllers (n = 16 

at baseline and 13 at TI). Expression of activation and exhaustion markers was 

studied on CD4 and CD8 T cells at baseline (G and I respectively) and TI (H and J 

respectively). Comparisons between the two groups were performed using non-

parametric Mann Whitney test, while comparison between time-points within a same 

group was done using a paired Wilcoxon test. 

* p < 0.05, ** p < 0.01 
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Figure 4. Individual evolution of reservoir-associated markers in sustained 

controllers from the African cohort during the follow-up period of the trial. 

 

 

Plasma viral load (A), CD4 T cell count (B) and total HIV DNA (C) were measured 

at different time-point throughout the clinical trial in the 5 sustained controllers. 

These individuals underwent 48 weeks of ART during primary HIV infection (grey 

area) then interrupted the treatment. Global evolution of CD4 T cell count (D) and 

total HIV DNA (E) in the group of sustained controllers was studied at pre-therapy 

baseline, ART interruption and last time point with samples available for total HIV 

DNA measurement (median of 204 weeks, min 156 - max 252 weeks). 
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Table 1. Participant characteristics for African and non-African participants. 

 

 

BASELINE ART INTERRUPTION 

  
Non-African 

(n = 103) 
African  
(n = 82) 

Non-African  
(n = 44) 

African  
(n = 22) 

Age (years) 35.0 [30.0 – 25.0 [21.0 – 36.0 [31.3 – 26.0 [21.3 – 

Number of males:females 103:0 0:82 44:0 0:22 

Country 

UK 
Uganda 
South 
Africa 
Other 

68 (66.0%) 
0 
0 

35 (34.0%)* 

0 
8 (9.8%) 

74 (90.2%) 
0 

27 [61.4%] 
0 
0 

17 [38.6%] 

0 
2 [9.1%] 

20 [90.9%] 
0 

HIV-1 clade 

A1 
B 
C 
D 
Unknown 

0 
103 (100%) 

0 
0 
0 

2 (2.4%) 
0 

51 (62.2%) 
3 (3.7%) 

26 (31.7%) 

0 
44 (100%) 

0 
0 
0 

1 (4.5%) 
0 

19 (86.5%) 
1 (4.5%) 
1 (4.5%) 

Time from seroconversion 
to randomisation 
(weeks) 

10.6 [7.1 – 
13.6] 

13.6 [10.9 – 
16.9] 

10.9 [7.3 – 
13.2] 

15.5 [13.2 – 
17.7] 

Plasma viral load 
(log10 copies/mL) 

4.72 [4.06 – 
5.27] 

4.16 [3.37 – 
4.82] 

<400 <400 

CD4 T cell count (cells/µl) 
560 [410 – 

715] 
611 [483 – 

759] 
767 [657 – 

989] 
869 [796 – 

1055] 

Total HIV DNA 
(log10 copies/million CD4 T 
cells) 

3.89 [3.46 – 
4.27] 

3.82 [3.44 – 
4.04] 

3.24 [2.89 – 
3.44] 

3.18 [3.06-
3.45] 

Integrated HIV DNA 
(log10 copies/million CD4 T 
cells) 

3.61 [3.32 – 
3.80] 

3.07 [2.81 – 
3.33] 

2.99 [2.71 – 
3.26] 

2.85 [2.59-
3.22] 

Time from randomisation 
to last plasma viral load 
measurement (months) 

50.2 [43.7 – 
56.7] 

48.6 [43.4 – 
52.6] 

53.6 [48.2 – 
61.6] 

50.2 [43.9 – 
54.9] 
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Data are presented as values for categorical data or medians and interquartile ranges 

[Q1-Q3] in brackets for continuous variables.  

* 14 from Australia, 12 from Italy, 8 from Brazil and 1 from Ireland. 
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