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Context Regular physical activity has been shown to prevent major non-communicable 

diseases and improve physical and mental health. However, a quarter of adults and the 

majority of adolescents do not achieve the recommended level of physical activity in England. 

In recent years, the home and neighbourhood environments as determinants of physical 

activity have received attention because of their proximal influence on everyday behaviours, 

especially in young people. The current literature on adolescents is however limited. This 

thesis aims to investigate whether features of the home and neighbourhood environments – 

specifically, perceptions of the neighbourhood environment, ethnic density, neighbourhood 

trust and social support – predict physical activity and its change over time in an ethnically 

diverse and deprived adolescent population. 

Methods Longitudinal data from the Olympic Regeneration in East London (ORiEL) study 

(2012-2014) are used. Analyses are conducted on four physical activity outcomes, namely, 

walking to school, walking for leisure, outdoor physical activity, and pay and play physical 

activity. Models are estimated using generalised estimating equations, and novel methods for 

handling missing data with multilevel multiple imputation are applied. 

Results Analyses show that adolescents’ perceptions of their neighbourhood environment 

(including proximity, aesthetics, street connectivity, traffic safety and personal safety) and 

their changes over time do not consistently predict the forms of physical activity investigated. 

School-level ethnic density increases the chance of walking to school in some ethnic groups 

and decreases it in others; whereas walking for leisure and outdoor physical activity are not 

consistently associated with ethnic density. Adolescents with higher perceived trust in their 

neighbours have higher chances of reporting outdoor physical activity, and pay and play 

physical activity. Finally, general social support from family, friends and significant others is 

shown to predict walking for leisure and its change over time. In boys only, social support from 

friends predicts outdoor physical activity.  

Discussion This thesis advances the field methodologically and empirically by applying novel 

analytical approaches to important research questions. Results from this thesis contribute to 

our understanding of the individual, family, peer, community and neighbourhood influences 

on physical activity in adolescents. The predictors of physical activity identified in this thesis 

are mostly modifiable and therefore could be the target of policies and interventions that aim 

to improve physical activity. 
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Lack of physical activity is a global public health threat. Physical inactivity is estimated to cause 

6-10% of deaths from the major non-communicable diseases such as coronary heart disease, 

type 2 diabetes as well as breast and colon cancers (Lee et al. 2012). Whereas regular physical 

activity has been shown to benefit physical and mental health (Strong et al. 2005, U.S. 

Department of Health and Human Services 2008), 26% of adults and 87% of adolescents do 

not achieve the recommended level of physical activity in England (Health and Social Care 

Information Centre 2017, Scholes 2016).  

The characteristics of individuals alone have been shown to be insufficient to explain the 

variation in the prevalence of physical activity in the population. Following the principles of 

the socio-ecological model, researchers have investigated the multiple determinants of 

physical activity (Sallis et al. 2006). Amongst these, the neighbourhood and home 

environments have been hypothesised to play an important role by creating a context which 

promotes or demotes energy expenditure (Davison & Birch 2001, Papas et al. 2007). 

Understanding which features of the neighbourhood and home environments influence 

physical activity constitutes useful information for the development of public health policies 

and interventions because these features are potentially modifiable (Sallis et al. 2012). 

Adolescence appears to be a crucial period during which these determinants of physical 

activity can be addressed. This is because young adolescents spend most of their free and 

active time in their local area (Carlson et al. 2016, Pearce et al. 2009), while gradually spending 

more time without adult supervision (Mackett et al. 2007). It also appears that ethnic minority 

groups and deprived populations are at greater risk of physical inactivity (Griffiths et al. 2013, 

Owen et al. 2009, Sport London 2017) and this aspect is worth further exploration. The extent 

to which the neighbourhood and home environments may differentially affect ethnic 

minorities and deprived populations in the UK is currently unknown.  

In this thesis, I will try to answer why some young people living in deprived and ethnically 

diverse contexts are and remain physically active during adolescence, while others remain or 

become inactive. To achieve this, I will attempt to improve the understanding of the 

determinants of physical activity in adolescents by investigating the role of certain less 

explored aspects of the neighbourhood and home environments – namely, perceptions of the 

neighbourhood environment, ethnic density, neighbourhood trust and social support. More 

specifically, in this thesis I will aim to: 
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1. Investigate longitudinal associations between perceptions of the neighbourhood 

environment and three physical activity outcomes; 

2. Explore the associations between ethnic density and three physical activity outcomes; 

3. Investigate longitudinal associations between neighbourhood trust and four physical 

activity outcomes; 

4. Investigate longitudinal associations between social support and four physical activity 

outcomes. 

To achieve these four aims, I will use longitudinal data from the Olympic Regeneration in East 

London (ORiEL) study. Recent methods for handling missing data with multilevel multiple 

imputation will be applied, and longitudinal analyses will be conducted in respect of four 

physical activity outcomes, namely walking to school, walking for leisure, outdoor physical 

activity and pay and play physical activity.  

This thesis opens with a critical review of literature on the determinants of physical activity. In 

particular, chapter 2 critically assesses the literature on four potential determinants of physical 

activity of interest to this thesis: perceptions of the neighbourhood environment, ethnic 

density, social capital and social support. Chapter 2 ends with the presentation of research 

aims. 

Chapter 3 describes the data used in the analyses of this thesis. More specifically, this chapter 

briefly describes the scope and design of the ORiEL study, defines the four analytical samples 

used in this thesis, gives a brief overview of the extent of missing data in the ORiEL study, and 

finally presents the variables used in the analyses. 

Chapter 4 gives a detailed description of the methods used to analyse the data. The first part 

explains how missing data will be handled in the thesis and details why and how multilevel 

multiple imputation will be used to account for item non-response. The second part presents 

the statistical methods used for the main analyses.  

Findings of the thesis are described in chapters 5 to 8. Chapter 5 presents exploratory analyses 

of the associations between measures of perceptions of the neighbourhood and six physical 

activity outcomes using the baseline ORiEL data.  

Chapter 6 assesses longitudinal associations between perceptions of the neighbourhood and 

three physical activity outcomes: walking to school, walking for leisure and outdoor physical 

activity (aim 1). From a methodological perspective, chapter 6 determines the feasibility of 

multilevel multiple imputation to handle missing data in this thesis. 
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Chapter 7 presents findings on the associations between ethnic density and three physical 

activity outcomes (aim 2). Results from the imputation analyses specific to this chapter are 

briefly reported.   

Chapter 8 examines the associations between neighbourhood trust and social support and 

four physical activity outcomes: walking to school, walking for leisure, outdoor physical activity 

and pay and play physical activity (aims 3 and 4). Results from the imputation analyses specific 

to this chapter are also briefly reported.   

This thesis concludes with chapter 9, which provides a summary and discussion of study 

findings, a description of the study strengths and limitations, and recommendations for future 

research.  
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This thesis aims to improve understanding of the determinants of physical activity in 

adolescents by investigating the role of features of the neighbourhood and home 

environments which have received relatively less attention in the literature. First though, a 

critical engagement with the existing literature is required. This chapter provides an overview 

of previously conducted work on the determinants of physical activity. It provides a summary 

of the epidemiological state of the science on physical activity, presents the socio-ecological 

approach to physical activity and summarises the available evidence on multilevel 

determinants. Accordingly, the main objective of this review is to critically assess the literature 

on perceptions of the neighbourhood environment, ethnic density, social capital and social 

support and identify important gaps in knowledge. The research aims of this thesis are then 

presented at the end of the chapter.  

 
 

Physical activity is defined as ‘any bodily movement produced by skeletal muscles that 

requires energy expenditure’ (Caspersen et al. 1985). Physical activity can be subdivided into 

four domains, which correspond to how people spend their time. These are exercise, leisure 

and recreational activities; occupational or school activities; transportation or utilitarian 

activities; and household activities (Sallis et al. 2012). For many children and young 

adolescents, physical activity is a central part of daily routine. It is incorporated in playing and 

interacting with family and friends and does not generally entail a conscious decision to 

exercise (Koplan et al. 2005). Free play time, school physical activity, organised sport and 

transport to school are the main domains of physical activity in young people.  

In a seminal paper, Morris et al. (1953) reported that bus conductors and postmen, who were 

more physically active at work, had lower rates of cardiovascular mortality than bus drivers 

and government clerks, who were less active. The evidence on the benefits of physical activity 

has since accumulated and been synthesised in landmark official documents (Strong et al. 

2005; U.S. Department of Health and Human Services 1996, 2008). Participation in regular 

physical activity reduces the risk of premature death, coronary heart diseases, stroke, 

hypertension, type 2 diabetes, colon cancer and breast cancer. It further improves 
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cardiorespiratory and muscular fitness, prevents falls and reduces depression. In children and 

adolescents, there is strong evidence that regular physical activity benefits cardiovascular 

health, musculoskeletal health, and reduces hypertension. Evidence also suggests positive 

effects on mental, psychological and emotional health (Koplan et al. 2005, Strong et al. 2005). 

Physical activity is also a key determinant of energy expenditure and therefore contributes to 

energy balance and the prevention of weight gain in both adults and young people (World 

Health Organization 2004). In recent years, many studies have investigated the independent 

effect of sedentary behaviour on health. Current evidence suggests that it is prudent to 

recommend to minimise sedentary time; however, optimal recommendation levels of 

sedentary behaviour are currently unknown (Katzmarzyk 2010). The focus of this thesis is on 

physical activity, which in comparison to sedentary behaviour, has a stronger supporting 

evidence base, and well established recommendations for minimum activity levels. 

Globally, the WHO recommends that ‘adults should do at least 150 minutes of moderate-

intensity aerobic physical activity throughout the week or do at least 75 minutes of vigorous-

intensity aerobic physical activity throughout the week or an equivalent combination of 

moderate- and vigorous-intensity activity’. Current recommendations for children and 

adolescents are to accumulate a minimum of 60 minutes of moderate to vigorous physical 

activity each day (World Health Organization 2010). In the UK, guidelines additionally target 

the minimisation of sedentary behaviour, without further specification. Recommendations 

from the Chief Medical Office are as follows (Bull & Expert Working Groups 2010): 

1. All children and young people should engage in moderate to vigorous intensity 

physical activity for at least 60 minutes and up to several hours every day.  

2. Vigorous intensity activities, including those that strengthen muscle and bone, should 

be incorporated at least three days a week.  

3. All children and young people should minimise the amount of time spent being 

sedentary (sitting) for extended periods. 

The data available indicate that about one-quarter of the adult population is not sufficiently 

physically active worldwide (Sallis et al. 2016). The proportion of inactivity is estimated to 

range from 15% in Southeast Asia to about 38% in the Eastern Mediterranean (Sallis et al. 

2016). Globally, only one-quarter of adolescents (aged 11-17 years) meet public health 

recommendations on daily physical activity (Sallis et al. 2016), which partly reflects a decline 

in physical activity commonly observed between childhood and adolescence (Koplan et al. 

2005). Overall, women and girls are less active than men and boys (Hallal et al. 2012). In 
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England, 27% of adult women and 24% of men were considered not sufficiently active in 

2015/6; 79% of children aged 5-15 were not active for at least 60 minutes a day; and 87% of 

adolescents aged 13-15 did not reach daily recommended physical activity (Health and Social 

Care Information Centre 2017, Scholes 2016). 

Available data from various high-income countries, including England, seem to indicate two 

opposing trends in adults’ activity patterns over past decades: a promising upward trend in 

leisure-time physical activity is observed, but concurrently, occupational and transportation-

related physical activity are falling (Knuth & Hallal 2009, Stamatakis et al. 2007). Physical 

activity trends in young people are less clear than in adults. Physical activity seems to have 

decreased at school since the 1990s and there is some evidence that active transportation has 

decreased in high-income countries over the last 40 years (Knuth & Hallal 2009). A few recent 

studies have used objective measures to evaluate trends in physical activity, but no global 

picture has emerged and standardised accelerometer methods are still needed (Hallal et al. 

2012, Sallis et al. 2016). Recent data from the UK indicate a decrease from 28% in 2008 to 23% 

in 2015 in the proportion of boys aged 5-15 meeting the recommendations of physical activity, 

while the figure remained stable for girls (NatCen Social Research 2016). 

In summary, lack of physical activity is an important global public health threat. Physical 

inactivity has been estimated to cause 6-10% of death from the major non-communicable 

diseases such as coronary heart disease, type 2 diabetes and breast and colon cancers. If 

physical inactivity were eliminated, life expectancy would be expected to increase by 0.68 

years globally (Lee et al. 2012). Ding et al. (2016) further estimated that physical inactivity cost 

health-care systems 53.8 billion international dollars worldwide in 2013. Understanding the 

determinants of physical activity is therefore essential to public health.  

 
 

The previous section presented the health benefits of physical activity and some key physical 

activity figures which indicate that a great proportion of adolescents do not meet current 

recommendations. Since Morris et al.’s (1953) paper on occupational differences in physical 

activity, researchers have documented various predictors of physical activity. The current 

literature goes beyond the once dominant focus on individual determinants including personal 

characteristics, choices and behaviours (Diez-Roux 1998). In contrast, current research 

incorporates socio-ecological perspectives to the determinants of physical activity. It is 

currently established that a better understanding of the multilevel determinants of physical 

activity, that is the intrapersonal, interpersonal, organisational, community, and macro levels 
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of influence, can help designing public health policies and interventions to improve active 

living (Sallis et al. 2012). 

 

 

In the past decades, it has been recognised that policies and interventions aiming to improve 

health and health behaviours such as physical activity should not solely target individual risk 

factors, but also consider influences that are located outside the person (Egger & Swinburn 

1997, Hill & Peters 1998, Plotnikoff et al. 2013). Drawing on the early work of the Chicago 

School of Sociology (Park 1915, Sampson 2012) and Bronfenbrenner’s ecological systems 

theory (1979), socio-ecological models were proposed to conceptualise the multilevel 

determinants of health and to help develop policies and interventions (Flay & Petraitis 1994, 

McLeroy et al. 1988, Stokols 1992). These models distinguish between intrapersonal, 

interpersonal, organisational, community, and public policy levels of influence (Sallis et al. 

2008). In the UK, the socio-ecological framework proposed by Dahlgren and Whitehead (1991) 

has been particularly popular and its ‘rainbow’ diagram (Figure 2.1) has helped researchers to 

construct hypotheses about the multiple determinants of health and how they interact across 

different levels. The main determinants of health in Dahlgren and Whitehead’s diagram 

include: age, sex and constitutional factors; lifestyle factors; social and community networks; 

living and working conditions; and general socioeconomic, cultural and environmental 

conditions.  

 

Figure 2.1 The main determinants of health (Dahlgren & Whitehead 1991) 
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Socio-ecological models are expected to be particularly useful when they are tailored to a 

specific health status or health behaviour (McLeroy et al. 1988, Sallis et al. 2008). As a result 

several socio-ecological models for the study of the wider determinants of obesity and physical 

activity are currently available (Bauman et al. 2012, Booth et al. 2001, Egger & Swinburn 1997, 

Koplan et al. 2005, Kremers et al. 2006, Lakerveld et al. 2012, Sallis et al. 1998, 2006, Swinburn 

et al. 1999, 2011; World Health Organization 2004). The model proposed by Sallis et al. (2006) 

recognises the importance of identifying specific environmental and intra-individual influences 

for each domain of physical activity, i.e. active recreation, active transport, household 

activities, and occupational activities. Giles-Corti et al. (2005) further suggest developing 

conceptual models which account for the particular setting in which each type of physical 

activity takes place (e.g. in neighbourhoods, school, homes) because environmental 

determinants are likely to be specific to activity context. 

Amongst the many models available, the ANGELO framework (ANalysis Grid for Environments 

Linked to Obesity) proposed by Swinburn et al. (1999) has proven to be useful for 

conceptualising environmental influences on physical activity and dietary behaviours and has 

guided the development of subsequent models (e.g. Koplan et al. (2005) and Kremers et al. 

(2006)). This framework classifies environmental determinants according to two dimensions: 

i) the level of influence: micro-environmental settings (e.g. neighbourhood, home, school) vs. 

macro-environmental sectors (e.g. transport, health system); and, ii) the type of influence: 

physical, economic, politic and socio-cultural. In a more recent model, Bauman et al. (2012) 

differentiate five levels of determinants of physical activity: individual (psychological, 

biological), interpersonal (e.g. social support, cultural norms), environmental (social, built and 

natural environments), regional or national policy (e.g. transport systems, education, health), 

and global influences (e.g. economic development, urbanisation, global marketing). 

Other models have elaborated how the environment, intra-individual characteristics and 

health behaviours are linked together (Bauman et al. 2002, Pikora et al. 2002). In the 

environmental research framework for weight gain prevention (EnRG), Kremers et al. (2006) 

have argued that the environment may have a direct influence on health behaviours. Yet, its 

impact may also be mediated and moderated by various intra-individual characteristics. 

Mediators include various cognitive processes, such as attitudes, subjective norms and 

perceived behavioural controls which are assumed to influence behavioural intention, as 

conceptualised by the theory of planned behaviour. Lakerveld et al. (2012) have further 

described the psychological mediators and differentiated motivational meditators from self-

regulatory skills and perceptions of the environment. Moderators of the associations between 
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different environmental factors and health/health behaviour include socio-demographic 

characteristics, awareness of the features of the environment, health literacy and 

physiological factors. 

Another useful perspective on the multiple determinants of physical activity and obesity was 

proposed by Swinburn et al. (2011). Their model emphasises the differential population effects 

and the implementation difficulties of interventions targeting different levels of ‘drivers’ of 

obesity. ‘Systemic drivers’, such as policy and economic systems, which enable and promote 

growth and consumption, are expected to have the greater population effect, while being the 

most difficult to modify. ‘Environmental drivers’ are located at an intermediate level and 

include aspects such as the marketing environment. ‘Environmental moderators’ encompass 

more proximal socio-cultural and economic attributes of the environment, and are expected 

to amplify or attenuate the ‘systemic drivers’. According to Swinburn et al., ‘environmental 

moderators’ are more amenable to change and often the target of health promotion 

programmes.  

In summary, the literature on socio-ecological models for obesity and physical activity has 

acknowledged the multiple and multilevel determinants of physical activity. In addition, the 

specific domain of activity and the setting in which an activity is taking place are expected to 

have different determinants. The influence of the environment is expected to be moderated 

by individual factors, such as socio-demographics, and mediators have been suggested to 

explain the associations between the environment and physical activity. In particular, 

perceptions of the environment are expected to both mediate these associations and have 

their own independent effect. Finally, more proximal aspects of the environment such as 

features of the neighbourhood environment are more amenable to change and therefore 

could be straightforward targets for promotion programmes and interventions aiming to 

improve physical activity. The next section outlines the main evidence on the associations 

between physical activity and its multilevel predictors. 

 

 

Studies have examined potential determinants of physical activity at different levels, including 

socio-demographic, psychological, biological, interpersonal, community and macro-level 

factors. The global evidence has recently been reviewed in two Lancet series on physical 

activity (Bauman et al. 2012, Sallis et al. 2016).  
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In high-income countries, self-efficacy (i.e. confidence in your ability to achieve an objective in 

a specific situation) is the most consistent correlate of physical activity in adults and young 

people. Health status is another consistent individual-level correlate, and so is previous 

physical activity (Bauman et al. 2012). Sex is recognised as a determinant of physical activity 

in children aged 4-9 years and as a correlate in older age groups (Bauman et al. 2012)1. In 

adults, education, ethnicity and social support are consistent correlates. Family social support 

is an important correlate in children and adolescents (Sallis et al. 2016), whereas the evidence 

is mixed with respect to the association with both ethnicity and socio-economic status 

(Bauman et al. 2012). Amongst characteristics of the neighbourhood environment, proximity 

to destinations, neighbourhood aesthetics, and access to open space are the most consistent 

correlates of higher physical activity in both adults and young people (Sallis et al. 2016). 

Some of the evidence on the predictors of physical activity is specific to the national and local 

context. In the UK, differences in physical activity prevalence are reported at national, regional 

and local levels. These are likely to reflect the influence of general socio-economic, cultural 

and environmental conditions (Dahlgren & Whitehead 1991). Data from the latest Health 

Survey for England (British Heart Foundation 2017) indicate that South East England has the 

greatest proportion of adults achieving the recommended levels of physical activity (66%) and 

North West England the lowest (53%). Similar patterns are reported in children, with London 

and South East England being the regions with the highest levels of children physically active 

(Townsend et al. 2015). Data from the Active People Survey 2016 indicate important 

differences between local authorities within regions. East London, which is characterised by 

an ethnically diverse population and high levels of social, economic and environmental 

deprivation (McLennan et al. 2011, Office for National Statistics 2013a), has a lower proportion 

of adults reporting being physically active, compared to boroughs of central and South London 

(Sport London 2017). In Barking & Dagenham, one of the Boroughs of East London, 57% of 

adults reported being physically active in that study, compared to 72% in Richmond upon 

Thames. In a 2001 study of adolescents, Stansfeld (2003) confirmed the lower level of reported 

exercise in East London compared to the rest of England. 

Physical activity in the UK is also patterned according to individual- and household-level socio-

demographics. The evidence in adults indicates that the higher the household income, the 

higher the probability of reaching recommended level of physical activity (Townsend et al. 

                                                           
 

1 The distinction between correlate and determinant used by Bauman et al. (2012) reflects whether the 
evidence comes from cross-sectional or longitudinal data. 
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2015). The evidence regarding household socio-economic differences in children and 

adolescents is less consistent however (Brodersen et al. 2007, King et al. 2011, Townsend et 

al. 2015).  

Ethnic differences in health and health behaviours are well documented in the UK (Nazroo 

2001). Studies consistently showed that the non-White groups are at higher risk of poor health 

compared with the White groups (Nazroo 2014). Physical inactivity also appears to differ as a 

function of ethnicity (Williams et al. 2011). Early evidence in children and adolescents showed 

differences in self-reported physical activity (Fischbacher et al. 2004, Rogers et al. 1997). This 

was confirmed by an accelerometer-based study from Owen et al. (2009) showing that South 

Asian children (aged 9-10 year-old) were less active than the European White and Black 

African-Caribbean children. Results from the Millennium Cohort Study, confirmed these 

patterns in 8 year-olds (Griffiths et al. 2013). Owen et al. (2012) further indicate that the White 

European children were more likely to walk or cycle to school, the Black African-Caribbean 

children to travel by public transport, and the South Asian children to travel by car. Those 

travelling by car had significantly lower level of objectively measured physical activity during 

the commute but also in their everyday life.  

 
 

This section on the multilevel determinants of physical activity has indicated that the 

predictors of physical activity go beyond intrapersonal characteristics, and include a series of 

environmental factors ranging from the interpersonal environment to the macro 

environment. Some of these predictors are consistent across high-income countries, while 

others are specific to the UK. Amongst the multiple levels of hypothesised determinants, those 

located in the proximal environment, such as the neighbourhood environment, are more 

amenable to change and public health interventions (Swinburn et al. 2011), and are therefore 

relevant focus of inquiry. In particular, younger adolescents who are at high risk of physical 

inactivity, are likely to be affected by the neighbourhood and home environments because 

this is where they spend most of their free time (Carlson et al. 2016, Jones et al. 2009, Pearce 

et al. 2009)2. 

In the UK, the evidence has indicated that ethnic minorities and deprived populations are at 

higher risk of physical inactivity. These populations, who may spend a greater proportion of 

                                                           
 

2 The school is another proximal environment where adolescents are physically active. 
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their time in their local environment (Perchoux et al. 2013), are also expected to be more 

affected by some of the negative components of their neighbourhood environment, such as 

crime and disorder (Lovasi et al. 2009, McNeill et al. 2006, Suglia et al. 2016). Adolescents from 

deprived populations are therefore a relevant population target in order to study the influence 

of the local environment on physical activity, although few prior studies having focused on 

them specifically.  

Accordingly, this thesis will investigate aspects of the neighbourhood and home environments 

likely to affect adolescent physical activity behaviours, focusing on a deprived population. The 

remaining of this chapter will therefore critically review the related literature.  

 

 

Amongst the features of the neighbourhood and home environments, the built environment 

around home and school neighbourhoods has received a lot of attention in the literature 

(Harris et al. 2013). It has been suggested however that less intensively studied aspects of the 

neighbourhood and home environments could be equally relevant determinants of physical 

activity. These aspects fall into two broad and partly overlapping categories: the social 

environment and perceptions of the neighbourhood environment.  

Barnett and Casper (2001) have defined the social environment as ‘the immediate physical 

surroundings, social relationships, and cultural milieus within which defined groups of people 

function and interact’. Although there is no universal agreement on that specific definition, it 

is generally accepted that there are various mechanisms by which aspects of the social 

environment affect health and health behaviours by shaping norms, enforcing social control, 

enabling or constraining action, affecting stress and constraining choices. In a review, McNeill 

and colleagues (2006) identified three overarching categories commonly studied that 

represent five social environmental dimensions that are likely to influence health behaviours. 

According to the authors, interpersonal characteristics are captured by the study of (1) social 

support and social networks; social inequalities include (2) socioeconomic position and income 

inequality, and (3) racial discrimination; and neighbourhood and community characteristics are 

mostly studied through (4) neighbourhood factors, and (5) social cohesion and social capital. 

Suglia et al. (2016) have recently suggested that the neighbourhood social environment, which 

is less studied than the neighbourhood built environment, might be as relevant – if not more 

relevant – to explain differences in physical activity behaviours and obesity. The most 
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commonly studied aspects of the neighbourhood social environment are social cohesion, 

social capital, collective efficacy, social norms, neighbourhood crime and safety, aesthetics, 

poverty and segregation (Suglia et al. 2016). At the interpersonal level, social support from 

family and from peers are identified as an important aspect of the social environment and also 

deserve investigation (Mendonça et al. 2014).  

Other hypothesised determinants of physical activity in the local environment that have been 

less intensively studied than the objective built environment include perceptions of the 

neighbourhood environment. Perceptions usually target either i) aspects of the social 

environment, such as aesthetics and safety; or ii) aspects of the built environment, such as 

perceived proximity of destinations. In the recent literature, the latter have been recognised 

for being more than proxies for objective measures of the built environment (Orstad et al. 

2017) and there is a growing recognition that perceptions of the neighbourhood environment 

might be important predictors of physical activity and health more generally (Kent et al. 2017). 

The next sections review the evidence between physical activity and four aspects of the 

neighbourhood and home environments – namely, perceptions of the neighbourhood, ethnic 

density, social capital and social support. The specific constructs were selected because they 

are hypothesised to impact physical activity in young people and they have not been 

extensively studied in the literature. The focus of the review is on the evidence available in 

young people and in the UK.  

 
 

In the neighbourhoods and health literature, researchers have used several methods to 

operationalise characteristics of the neighbourhood environment. Self-reported instruments 

assess individual’s perceptions of his/her neighbourhood conditions (Brownson et al. 2009). 

These have historically been referred to as ‘subjective’ measures and are currently labelled as 

‘perceptions’ in the literature. Alternatively, ‘objective’ assessment of neighbourhood 

features are usually computed on the basis of routine administrative data and are also 

sometimes obtained from direct observation or virtual audits (Mooney et al. 2017). A greater 

use of Geographical Information Systems (GIS) has been observed in recent years which has 

allowed more sophisticated representations of how individuals are exposed to their 

neighbourhood environment (Brownson et al. 2009, Thornton et al. 2011).  

Over the last decade, perceptions of attributes of the neighbourhood environment have 

received a renewed attention (Maddison et al. 2009, Nasar 2008). Instead of considering 
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perceptions as proxies for more objective measures, researchers have acknowledged 

differences between the two types of approaches (Orstad et al. 2017). As an illustration, Sallis 

et al. (2006) distinguished between perceptions and objective measures by placing them at 

different levels of influence within their ecological model (section 2.3.1.). Empirical research 

that targeted the same feature of the environment, such as walkability, using objective and 

subjective measures has often reported low agreement between the two (Gebel et al. 2011). 

It has been recognised that perceptions are the product of ongoing social, cognitive and 

affective processes. Perceptions are indeed expected to be affected by physical characteristics 

of the surroundings, but also by a variety of personal characteristics such as values or gender, 

and social characteristics, such as socio-economic circumstances, cultural influences and social 

norms (Orstad et al. 2017). Therefore, it has been suggested that perceptions of the 

neighbourhood may be more proximal to health behaviour than objective measures, and 

mediate some of its influence (Lakerveld et al. 2012). Measures of perceptions often target 

features of the neighbourhood that are intrinsically qualitative – such as fear of crime, 

aesthetics or quality of local infrastructure (e.g. parks) – and are therefore difficult to capture 

using objective measures. As a result, the recent literature has indicated that objective 

measures and perceptions of the neighbourhood environment are complementary predictors 

of physical activity behaviours (Orstad et al. 2017). Whereas objective measures are more 

likely to capture the direct influence of neighbourhood physical characteristics, perceptions 

are the results of a complex interplay between the physical environment, social and intra-

individual processes.  

In an early paper, Pikora et al. (2003) distinguished between four dimensions of the 

neighbourhood environment: functionality, accessibility, aesthetics and safety. These 

dimensions have often served to conceptualise the influences of neighbourhood perceptions 

on physical activity (Brownson et al. 2009), and still form the basis of questionnaires used in 

major cross-national studies such as the NEWS (Neighbourhood Environment Walkability 

Scale) and ALPHA (Assessing Levels of PHysical Activity) questionnaires (Kerr et al. 2016, 

Saelens et al. 2003a, Spittaels et al. 2010). Functionality reflects the structural aspects of the 

local environment. It refers to characteristics of the streets and paths within a neighbourhood. 

Common measures of functionality include street connectivity, walkability, urban sprawl and 

the availability of pavement and cycling paths. Accessibility relates to the availability of 

commercial and community destinations in the neighbourhood such as local stores, 

recreational facilities and green spaces. Aesthetics refers to the overall attractiveness of the 

neighbourhood. It includes aspects such as architecture and maintenance. Safety 

encompasses both crime- and traffic-related safety and refers to the extent to which the 
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neighbourhood offers a context in which physical activity is constrained by (fear of) crime or 

dangerous traffic.  

Perceptions of the neighbourhood environment commonly discussed in the literature are 

reviewed in the following sections and include: perceived street connectivity (one of the 

aspects of functionality), perceived accessibility of destinations, perceived aesthetics, and 

perceived safety which includes crime-related and traffic-related safety.  

 

 

Street connectivity refers to the density of street connections and the directness of distances 

to local destinations. It is generally hypothesised that neighbourhoods with high connectivity 

or perceived connectivity, often measured by the number of intersections, have a better 

accessibility of destinations and are therefore likely to favour walking and cycling in the 

neighbourhood (Thornton et al. 2011). In parallel, the presence of cul-de-sacs in residential 

areas might favour physical activity in the neighbourhood because of reduced traffic volume, 

although it can be a barrier to active transportation.  

In adults, there is consistent evidence from cross-sectional and longitudinal studies that 

objectively measured street connectivity is positively associated with utilitarian walking, 

especially in Australia and in the US (Grasser et al. 2013, Hirsch et al. 2014, Knuiman et al. 

2014, Sugiyama et al. 2012). Similar associations have also been reported in adults using 

perceived street connectivity, especially in Europe (Sugiyama et al. 2012, Van Holle et al. 

2012). An Australian study has further indicated that in low-connectivity neighbourhoods, 

having a perception of better connectivity increased the chance of utilitarian walking (Koohsari 

et al. 2015a). Using data from the IPEN cross-national study, Sugiyama et al. (2014) found that 

the presence of cul-de-sacs, which is one of the indicators of low street connectivity, was also 

related with more recreational walking. These results suggest that the perception of the 

presence of cul-de-sacs is an indication of residential areas which are more pleasant for 

walking. In a qualitative study conducted in Australia, the presence of cul-de-sacs has also 

been associated with children outdoor play and independent mobility, which is parental 

permission to wander freely in the neighbourhood without adult supervision (Veitch et al. 

2006).  

In adolescents, the evidence base on the association between perceived street connectivity 

and physical activity is more restricted, and there is little consensus on what aspects of physical 

activity are associated with perceptions of street connectivity (Davison & Lawson 2006, Ding 

et al. 2011). A few cross-sectional studies indicate that adolescent’s perceived street 
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connectivity could be positively associated with walking and cycling to school (De Meester et 

al. 2013) and with non-organised leisure physical activity in adolescent girls (Mota et al. 2009). 

No evidence of an association was however found with total physical activity (Mota et al. 

2005), which could suggest, according to some authors, that adolescents are unable to 

meaningfully assess the connectivity of their environment (Davison & Lawson 2006). 

 

 

The accessibility of local amenities and services such as shops, schools, leisure facilities and 

green spaces can encourage active transportation to destinations and leisure physical activity 

at the destination itself, including sports, walking and cycling (Thornton et al. 2011). Perceived 

access to destinations might reflect residents’ awareness of their neighbourhood environment 

and therefore has the potential to better predict activity behaviour compared to objective 

measures. Perceptions may also capture dimensions of accessibility and of the broader local 

environment which are not captured by objective measures, such as quality, aesthetics or 

opening-time (Bedimo-Rung et al. 2005, Koohsari et al. 2015b, Papas et al. 2007). The three 

most common measures of perceived accessibility are access to local destinations, access to 

recreational facilities and access to parks.  

Accessibility and perceived accessibility of a variety of local destinations, including land use 

mix, are consistently positively associated with utilitarian walking (Sugiyama et al. 2012, 2014) 

and other physical activity in adults (Ding et al. 2013, Saelens et al. 2003b); yet, results from 

analyses of perceptions conducted in young people (which are cross-sectional for the most 

part) are mixed and more robust evidence is needed (Davison & Lawson 2006, Ding et al. 

2011). 

The perception of access to recreational facilities as well as objective measures are associated 

with leisure-time physical activity both in adults and in young people, although some studies 

found non-significant associations (Davison & Lawson 2006, Ding et al. 2011, Van Holle et al. 

2012). In longitudinal studies, both adolescents’ perceptions and parents’ perceptions have 

been shown to be associated with physical activity in young people. In the Netherlands, a 

longitudinal study of 5 year olds showed that parents’ perceived accessibility of physical 

activity facilities was associated with more minutes of outside play over the follow-up period 

of two years, independently of parenting influences and social capital (Remmers et al. 2014). 

In Hong Kong, a large study of adolescents’ physical activity revealed that perceived availability 

of sport facilities was longitudinally associated with leisure-time physical activity (Wong et al. 

2014). The baseline level of physical activity also appeared to be an effect modifier: a 
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significant effect of perception was observed only in adolescents who had initially reported a 

higher level of physical activity. 

The significance of green spaces and parks for physical activity has been widely investigated. 

Quantitative studies examining the association between perceived and objectively measured 

accessibility of green spaces and physical activity have shown mixed results, both in adults and 

young people (Davison & Lawson 2006, Ding et al. 2011, McCormack et al. 2004). A proposed 

explanation is that proximity to green spaces may be over-ridden by other attributes of green 

spaces such as safety, aesthetics or quality, which are usually not captured by survey 

instruments (McCormack et al. 2010). This interpretation is corroborated by the RECORD study 

of adults living in Paris (Chaix et al. 2014) which indicates that aggregated perceived quality of 

green spaces is associated with recreational walking in the neighbourhood. This suggests that 

the perceived quality of green spaces is an important dimension. 

Many studies have revealed inconsistencies between perceived and objectively measured 

accessibility with respect to green spaces, leisure facilities and other destinations (Lackey & 

Kaczynski 2009, Leslie et al. 2010, Macdonald et al. 2013, Macintyre et al. 2008, McCormack 

et al. 2008, Prins et al. 2009, Wang et al. 2015). In these studies, perceptions of accessibility 

were often better predictors of physical activity than objective measures. For example, the 

Australian longitudinal RESIDE study (Knuiman et al. 2014) confirmed the association between 

perceived access to various destinations and utilitarian walking in adults and provides 

evidence that perception of access to destinations may be a stronger predictor of utilitarian 

walking than objective measures. Furthermore, RESIDE participants who were relocated to a 

different neighbourhood appeared to increase their minutes of recreational and transport 

walking if they perceived their new neighbourhood as being more attractive, including in terms 

of land use mix, independently of objective measures of destinations (Giles-Corti et al. 2013). 

Final noteworthy findings are differences in perceived accessibility according to socio-

economic position (Lovasi et al. 2009, Orstad et al. 2017). In the US for example, Brownson et 

al. (2001) indicated that low income groups tend to report worse perception of accessibility to 

indoor and outdoor places to exercise. It should be noted however that there is mixed 

evidence in the UK as to whether deprived populations have lower objectively measured 

access to physical activity destinations (Hillsdon et al. 2007, Macintyre 2007, Molaodi et al. 

2012). 
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Areas which are considered pleasant, have lots of greenery and lower levels of graffiti and 

litter might encourage people to be physically active (Ellaway et al. 2005). Research on 

neighbourhood physical disorder (Mooney et al. 2017) – visual indications that the 

neighbourhood is being neglected or deteriorated – also suggests that signs of disorder can 

discourage physical activity, possibly by the mediation of increase in crime and fear of crime 

(Lorenc et al. 2013). Asking residents about how they perceive various aspects of their 

neighbourhood aesthetics and attractiveness is a common approach to assessing aesthetics 

(Brownson et al. 2009).  

The small body of literature relating aesthetics perceptions and physical activity – mainly 

walking – has been mixed and almost exclusively cross-sectional. Studies conducted in 

Australian adults indicate consistent positive associations between walking and measures of 

neighbourhood friendliness, attractiveness and pleasance (Ball et al. 2001, Giles-Corti & 

Donovan 2002, Humpel et al. 2004). In Europe, including in the UK, however, such findings 

were rarely corroborated (Foster et al. 2004, Van Holle et al. 2012). Some research has 

indicated that low-income and minority population tended to live in neighbourhoods that are 

perceived as less attractive and less safe (Giles-Corti & Donovan 2002, Lovasi et al. 2009, Sallis 

et al. 2011). There is however little evidence that aesthetics are associated with physical 

activity in those populations in the UK (Mason et al. 2011). 

Very few studies have investigated the associations between aesthetics and physical activity 

in young people (Davison & Lawson 2006, Ding et al. 2011). A cross-sectional study of 

Portuguese adolescents has indicated that adolescents who reported interesting things to look 

at while walking in their neighbourhood, had higher chances of being more physically active 

(Mota et al. 2005). Further investigations are needed to confirm whether these associations 

hold true in different contexts, for other measures of aesthetics, and to assess whether change 

in aesthetics perceptions could bring about change in physical activity.  

 

 

Safety is a widely studied aspect of the neighbourhood social environment in relationship to 

physical activity and obesity (Suglia et al. 2016). It is a complex concept and includes diverse 

components such as harm from strangers (‘stranger danger’), personal injury, bullying and 

road safety (Carver et al. 2008). In practice, quantitative studies usually distinguish between 

crime-related safety and traffic-related safety (Panter et al. 2008).  
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In young people, the study of perceived safety and physical activity is closely related to the 

concept of independent mobility, which is parental permission to wander freely in the 

neighbourhood without adult supervision. Studies on independent mobility indicate that 

children who have the freedom to play outdoors and travel actively without adult supervision 

accumulate more physical activity than those who do not (Schoeppe et al. 2013). However, 

independent mobility has declined over recent generations in many developed countries 

(Foster et al. 2014b). Such a decline is commonly attributed to heightened parental concern 

about neighbourhood safety, both from crime and traffic, so that low parental perception of 

safety is expected to be related to lower levels of physical activity in children (Carver et al. 

2008). Mobility restrictions resulting from parental safety concerns are furthermore expected 

to be more salient in girls (Carver et al. 2008). 

As children grow up, they spend progressively less time with parents and family and more time 

with their friends (Larson et al. 1996) and gradually gain more independent mobility from their 

parents (Mackett et al. 2007). As a result, both adolescents’ and parents’ perceptions of safety 

might have an influence on physical activity. The following review summarises the extent to 

which physical activity is associated with crime-related safety and traffic-related safety in 

young people.  

Amongst the various measures of crime-related safety, it is generally hypothesised that fear 

of crime, stranger danger and personal safety – all three involving emotion and anxiety – are 

strong predictors of physical activity, including walking (Foster & Giles-Corti 2008). These 

associations have been confirmed in qualitative studies in relation to outdoor physical activity, 

including in the UK (Lorenc et al. 2013), and are expected to be particularly relevant in 

deprived populations which are more at risk of crime-related safety issues (Lovasi et al. 2009). 

Results from quantitative studies, including more recent longitudinal studies have been mixed 

however (An et al. 2017, Carver et al. 2008, Davison & Lawson 2006, Panter et al. 2008). A few 

studies have nevertheless reported expected associations. For example, Alton et al. (2007) 

provided some evidence that pre-adolescents who reported that their parent worried little 

about stranger danger were more likely to walk more regularly. A Belgian study indicated weak 

evidence of cross-sectional association between a general measure of crime-related safety 

and active transport to school (De Meester et al. 2013). With respect to outdoor physical 

activity, a longitudinal study conducted in the US indicated that personal safety increased the 

chance of doing outdoor physical activity at follow-up, in particular in girls (Gómez et al. 2004). 

However, many other studies have found null results (An et al. 2017, Carver et al. 2008, 
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Davison & Lawson 2006). Differences in the outcome measurements, exposure measurements 

(parental vs. adolescent perception), study design (longitudinal vs. cross-sectional), or study 

setting do not appear to explain these inconsistencies in the quantitative evidence. A recent 

cross-sectional investigation has nevertheless suggested that the lack of consistency in the 

findings might be related to the lack of specificity of the physical activity measures. Comparing 

fear of stranger danger in adolescents and their parents, Esteban-Cornejo (2016) showed that 

parental perceptions were significantly associated with adolescent active transport but not 

with physical activity around the neighbourhood. Adolescents perceptions of safety were 

significantly higher than those of their parents, which had been previously documented 

(Carver et al. 2008). These results suggest that parental perceptions might still matter more 

than those of adolescents, despite the increase in independent mobility. Further research is 

needed to confirm these results. 

Similar to crime-related safety, there is limited evidence of a consistent association between 

perceived traffic-related safety and physical activity, including walking (An et al. 2017, Davison 

& Lawson 2006, Panter et al. 2008). For example, some cross-sectional evidence from Australia 

has indicated that parents tended to restrict children’s outdoor mobility if they perceived 

traffic safety to be an issue (Carver et al. 2005, Timperio et al. 2004). However, results from 

the longitudinal CLAN study did not confirm these associations using an objective measure of 

physical activity (Crawford et al. 2010). A study by Esteban-Cornejo et al. (2016) suggested 

that parental perceptions of traffic safety are related to physical activity in the neighbourhood 

and active transport, whereas adolescents’ perceptions were not. More studies on the role of 

adolescent perception of traffic safety are needed to confirm these results in European 

settings. 

The study of the influence of traffic-related safety on physical activity in adolescents might be 

complicated by the possibility that physical activity also influences perception of safety. In fact, 

Ogilvie et al. (2008) reported a negative correlation between active transportation and 

perceived traffic safety in adults. The authors suggested that the association might reflect a 

greater awareness of the actual dangers of walking or cycling amongst the more frequent 

active commuters whose higher level of physical activity could be influenced by other personal 

or motivational factors. If also present in young people, this might therefore hamper the ability 

to detect whether perceived safety also positively influences physical activity using 

observational longitudinal studies in the absence of objective change in traffic safety. 
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I have shown that some perceptions of the neighbourhood environment are correlated with 

several domains of physical activity, despite the diversity of measures and approaches used. 

The most consistent association appears to be between perceived access to destinations and 

walking and physical activity in adults, and perceived access to recreational facilities in both 

adults and young people. Reasonably consistent associations were also found between 

perceived connectivity and walking in adults. Other perceptions of the neighbourhood have 

shown mixed results in adults and young people, and most perceptions were understudied in 

young people.  

In addition to gaining more evidence on young people in general, it is important to understand 

whether adolescents own perceptions of their neighbourhood environment, as opposed to 

those of their parents, are relevant to predicting their physical activity behaviours. Other 

limitations have been identified in the literature. First, few studies have examined potential 

moderators of the relationship between perceptions of the neighbourhood environment and 

physical activity. In particular, gender differences have not been systematically documented 

despite well-established differences in the amount and types of physical activity between boys 

and girls. Second, most of the literature is based on small cross-sectional studies, which limits 

the effect size it is possible to detect and restricts conclusions about causality. Third, the 

current literature is dominated by North American and Australian investigations. More 

research is needed in the UK in order to corroborate results obtained in other settings and to 

explore potentially important contextual differences. Fourth, deprived and ethnic minority 

populations have been little studied, despite the fact that they are generally at greater risk of 

physical inactivity and are more likely to be more exposed to less supportive neighbourhood 

environments.  

 
 

In this section, I present the literature on a potential determinant of physical activity from the 

local environment that has received very little attention, namely ethnic density. In the ‘ethnic 

density effect’ literature, it is hypothesised that people from ethnic minority groups could 

benefit from being surrounded by people of their own ethnic group in their local environment 

(Pickett & Wilkinson 2008). The association with ethnic density has been documented for 

mental health outcomes (Shaw et al. 2012), and some recent investigations have indicated 

that own-group ethnic density could also be relevant for health behaviours, such as smoking 
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and drinking. By extension, it is expected that differences in ethnic density could also explain 

differences in physical activity behaviour, although the literature on the topic is rare. This 

section summarises the conceptual literature on ethnic density, explains how ethnic density is 

expected to influence physical activity and reviews the evidence on the association between 

ethnic density and health behaviours.  

 

 

Differences in health and health behaviours across ethnic groups have been well documented 

in the UK (Nazroo 2001, Owen et al. 2009, Whincup et al. 2010). Common explanations for 

these differences include genetic and biologic differences, migration effect, cultural 

differences in lifestyles, experiences of discrimination and racism and broader socio-economic 

inequalities (Nazroo 2014). In spite of these ethnic inequalities, some studies have indicated 

that, after adjusting for the concentration of deprivation and neighbourhood poverty, ethnic 

minorities who lived in ethnically dense areas had better mental health, and sometimes better 

physical health outcomes compared with those living in less ethnically dense areas (Bécares 

et al. 2012b, Shaw et al. 2012). This observation has been referred to as ‘the ethnic density 

effect’ in the literature and has led to the formulation of the ‘ethnic density hypothesis’, which 

is expected to apply to mental health, physical health and health behaviour outcomes (Bécares 

et al. 2011, Karlsen et al. 2002). Three main theoretical pathways – civic participation, social 

capital and social support, and exposure to racism and discrimination – are proposed to 

explain how ethnic density could influence health and health behaviours (Bécares & Nazroo 

2013, Shaw et al. 2012). The focus is on those relevant to physical activity, as summarised in 

Figure 2.2. 

First, higher ethnic density may enable greater civic engagement and political mobilisation 

(Karlsen et al. 2002) which might translate into improved services and infrastructures for the 

community, such as physical activity services and infrastructures, that are particularly relevant 

for the dominant ethnic groups in the local area (Whitley et al. 2006). Greater access to 

services might in turn favour health behaviours such as physical activity. To date, this 

hypothesised pathway has received little empirical investigation and support (Bécares 2009). 

Nonetheless Molaodi et al. (2012) showed that, in the UK, a higher ethnic concentration is 

associated with a greater density of physical activity facilities in the local environment for 

some ethnic minority groups (e.g. the Indian group), and a lower density for other groups (e.g. 

the Black Caribbean group). 
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Second, ethnic density is hypothesised to increase social capital and social support (Bécares & 

Nazroo 2013, Halpern & Nazroo 2000, Karlsen et al. 2002, Pickett & Wilkinson 2008). Higher 

own-group ethnic density is expected to be associated with a greater sense of community, a 

greater sense of belonging to an area and increased opportunity to build social networks. As 

shown in sections 2.4.3. and 2.4.4., mechanisms by which social capital and social support 

affect health and health behaviours (including physical activity) are well grounded in theory 

and have received empirical support.  

Third, ethnic density is expected to influence health and health behaviours by a reduction in 

exposure to racism and discrimination (Pickett & Wilkinson 2008, Whitley et al. 2006). 

Experienced racism is hypothesised to have a negative effect on perceived personal safety and 

has the potential to increase fear of crime and the perception of stranger danger, which are 

expected to have negative impacts on health and health behaviours (Karlsen et al. 2012, 

Lorenc et al. 2013, Rawlins et al. 2013). Ethnic density might protect against some of these 

negative effects. Indeed, a greater number of ethnic minority residents in a local environment 

is expected to reduce the number of potential crime offenders, to improve racism-related 

social norms and to lower tolerance against racist victimisation (Pickett & Wilkinson 2008, 

Whitley et al. 2006). In turn, these are hypothesised to translate into greater informal social 

control against interpersonal racial harassment. With respect to physical activity, it is expected 

that a higher ethnic density could provide more opportunities for physical activity by means 

of a reduction in fear of crime and an increase in perceived safety. Empirically, some studies 

have shown that experienced racism is lower in places with higher ethnic density, which results 

in a weaker association between racism and health (Bécares et al. 2012b). In addition, ethnic 

density might have a ‘buffering effect’ that moderates the negative impacts of racism on 

health (Das-Munshi et al. 2010). The increased social capital and social support brought about 

by ethnic density could provide additional resources to better cope with experiences of racism 

and discrimination, so that they would not translate into a reduction in health or a change in 

health behaviours (Bécares et al. 2009). 

These three theoretical pathways alone cannot explain why the empirical literature on the 

ethnic density effect in the UK has indicated contradictory ethnic density effects for different 

ethnic groups (Das-Munshi et al. 2010). In this thesis, I hypothesise that ethnic differences in 

ethnic density effects on health behaviours can be explained by differences in cultural 

identities and cultural norms across ethnic groups (Bécares et al. 2011). Indeed, different 

ethnic groups might have different norms with respect to what socially acceptable behaviours 

are, such as smoking, drinking, walking to school, and playing outside. I expect that, depending 
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on the underlying norms or cultural identities of an ethnic group, the benefits of greater ethnic 

density might be moderated (which is expressed by interactions in Figure 2.2). 

 

Figure 2.2 Conceptual model for the relationship between ethnicity, ethnic density and health behaviours 

 

 

Most of the literature on ethnic density was conducted in the US (Bécares et al. 2012b). Given 

the differences in migration history and socio-demographics dynamics of ethnic minorities 

between countries (Bécares et al. 2012a), the focus of this review is on the growing body of 

evidence coming from the UK. In the absence of evidence in physical activity, this section 

reviews a broader range of health behaviours and some health outcomes to give an overview 

of the extent to which the ethnic density hypothesis is supported by the current literature.  

Two published systematic reviews reported mixed results of an ethnic density hypothesis for 

mental health (Shaw et al. 2012), physical health and health behaviours (Bécares et al. 2012b). 

It appears, however, that – for at least some ethnic groups – an ethnic density effect was 

observed in most of the studies. In practice, ethnic density studies generally combine health 

survey data with available statistics on the ethnic composition of the residential area of survey 

participants. Studies to date are heterogeneous in terms of outcomes, ethnic groups, local 

area definitions, and overall research settings, which means that the distribution of the ethnic 

density variables varies greatly across studies.  

Measures of ethnic density are usually derived from population census data, where 

information on ethnicity is collected using self-classification and then aggregated to some 

geographic unit. Another way of assessing ethnic density is to directly ask survey participants 
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what proportion of residents is of the same ethnic group in their area. Such a measure of 

perceived ethnic density may reflect a person's experience of frequency and intensity of 

contact with co-ethnics. It is hypothesised that similar processes link objective and perceived 

measures of ethnic density to health and health behaviours but that perceived ethnic density 

captures the processes more precisely. This is because perceptions are not prescribed to 

administrative boundaries used in objective measures, and residents’ experience of 

neighbours and neighbourhood social interactions may be captured more effectively by the 

perceived ethnic density measure (Stafford et al. 2009). 

Convincing evidence for the ethnic density hypothesis was provided in relation to the mental 

health of adults living in England. Das-Munshi et al. (2010) used a large cross-sectional survey 

of Irish, Black Caribbean, Indian, Pakistani, Bangladeshi, and White British ethnic groups and 

measured ethnic density at middle layer super output area (MSOA) level. In their fully adjusted 

multilevel models, the researchers found a protective ethnic density effect for Irish and 

Bangladeshi groups and for all ethnic minority groups combined. Their study also indicated 

that living in areas of higher own-group density was associated with higher social support and 

less discrimination for some groups, although the measures of social support and experiences 

of discrimination used in the study did not seem to mediate the observed ethnic density 

effects.  

Only a handful of studies have investigated the association between ethnic density and health 

behaviours in the UK, and only a few more were identified in the US literature (Bécares et al. 

2012b). Bécares et al. (2011) examined the ethnic density hypothesis for alcohol consumption 

in adults among Black Caribbean, Black African, Indian, Pakistani, and Bangladeshi people 

using the 1999 and 2004 Health Survey for England. Ethnicity was defined at MSOA level in 

two ways: as one’s own ethnic density and as a typology of neighbourhoods based on their 

ethnic minority compositions. The results indicated a protective ethnic density effect for 

alcohol consumption among all ethnic minorities. However, ethnic density associations for 

adherence to sensible drinking were only found among Black African people living in areas of 

high own ethnic density. Overall, this study offers some insight into the relevance of social 

norms as plausible pathways by which ethnic density might influence health behaviours. 

Some recent studies have examined the association between smoking and ethnic density in 

adults. Uphoff et al. (2016) indicated that a higher South Asian density was associated with a 

lower probability of smoking during pregnancy among Pakistani women in a deprived context. 

The same pattern of association was not as clear for the White British women. These findings, 

combined with the fact that smoking was not as well accepted amongst the Pakistani women, 
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suggests that social norms might be responsible for the density effect observed. The second 

study on smoking behaviour was conducted in the London Boroughs of Hackney, Lambeth, 

Newham and Tower Hamlets using electronic health records of almost 700,000 patients 

(Mathur et al. 2017). The analysis was restricted to the majority ethnic group of White 

British/Irish, and six ethnic minority groups. Ethnic density was defined as own-group ethnic 

density at lower layer super output area (LSOA) level. Although the results might be subject to 

residual confounding due to the absence of individual-level socio-economic variables, the 

results indicate that a 10% increase in own-group ethnic density was associated with a 2–43% 

reduction in the odds of being a current smoker for all ethnic groups except for the Black 

Caribbean women, an ethnic group with much lower ethnic density distribution. Analysis of 

the shape of the associations indicate potential non-linear effects that differed by ethnic group 

and gender. Positive ethnic density associations were also found for the White British/Irish 

group and other White group, although the non-linear models indicated that the effect was 

only protective in very high-density neighbourhoods, whereas a reversed association was 

observed for mid-level ethnic densities. The effect of density was also much smaller in Indian 

and Bangladeshi men, two groups with high smoking prevalence. This study therefore seems 

to indicate that there might be a greater ethnic density effect in ethnic groups where smoking 

is least socially accepted, reinforcing the hypothesis that ethnic density effect might influence 

behaviours differently, depending on ethnic-specific norms.  

The vast majority of studies on ethnic density were conducted in adults. An exception is Astell-

Burt et al.’s (2012) study which investigated psychological well-being in adolescents aged 11-

16 years from 51 London schools, by combining two waves of the longitudinal DASH study. 

The study found little evidence of association with ethnic density, as opposed to a previous 

study conducted on adults (Shaw et al. 2012). An interesting aspect of the study is that the 

authors used both school and the residential neighbourhood to compute own-group ethnic 

density variables. 

 

 

The literature on the association between ethnic density and health in the UK indicates mixed 

results. Most studies have found some form of ethnic density associations but these 

associations were not consistent across all ethnic groups and all outcomes investigated. In 

contrast, the few studies that investigated the association between health behaviours and 

ethnic density were more consistent. A protective effect on alcohol consumption was found 

for all ethnic minorities, and smoking appeared to be less likely for most ethnic minorities as 
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ethnic density increased. Taken together, these result offer some insight into the relevance of 

social norms as a plausible mechanism by which ethnic density might influence health 

behaviours. This suggests that, depending on the social norms associated with a health 

behaviour within an ethnic group, an ethnic density effect might plausibly be observed.  

The ‘ethnic density effect’ sub-field is still growing. Over recent years, there have been a series 

of methodological improvements over earlier literature. Further, conceptually more 

homogeneous ethnic groupings have been used, such as the acknowledgment that 

Bangladeshi, Pakistani and Indian groups should not simply be classified as ‘South Asian’. Most 

recent studies tend to account for the structure of the data, although few accounted for 

potential bias due to missing data. More appropriate geographical scales are being used, with 

more and more neighbourhood data computed at LSOA level, as compared to MSOA, the latter 

being questioned as a relevant scale of contextual analysis (Stafford et al. 2009).  

Despite these improvements, limitations remain. The way ethnic density is operationalised 

still greatly varies from study to study, making it difficult to detect potential thresholds (Pickett 

et al. 2009) or non-linearity in the effect. Most studies indicate low average ethnic density 

values, which seem to be associated with an absence of effect (Mathur et al. 2017). Teasing 

out the relative influences of neighbourhood deprivation and ethnic density remains an issue, 

given the correlation between the processes of ethnic and economic segregation (Karlsen & 

Nazroo 2002). Focusing on homogeneously deprived areas might therefore help better test 

the ethnic density hypothesis even though results might not be generalisable to the general 

population (Uphoff et al. 2016). A further limitation of the current literature is its restricted 

ability to draw conclusions about causality because most of the literature relies on cross-

sectional data. Finally, there is a need for more evidence in young people and for other health 

behaviours, including physical activity.  

 

 

Social capital, social cohesion and neighbourhood trust are important components of the 

neighbourhood social environment (Suglia et al. 2016). Although these concepts are 

connected to some of components of neighbourhood perceptions reviewed in section 2.4.1., 

in particular crime-related safety, they are usually studied separately and are not included in 

neighbourhood perceptions instruments such as ALPHA (Spittaels et al. 2010) and NEWS 

(Saelens et al. 2003a). This section reviews the conceptual and empirical literature on the role 
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of social capital, social cohesion and neighbourhood trust to explain differences in health 

behaviours in general, and physical activity in particular.  

 

 

Social capital designates the resources that are accessed by individuals through their 

membership to a group or a network, including trust, norms of reciprocity and the ability to 

undertake collective action (Kawachi & Berkman 2014, Putnam 1993). It is a complex construct 

that has received contributions from numerous authors and disciplines across the social 

sciences (Coleman 1988, Portes 1998, Putnam 1995) and has been operationalised in different 

fashions (Kawachi & Berkman 2014, Szreter & Woolcock 2004). 

Social capital can be analysed at both the individual and group-level (Kawachi & Berkman 

2014). At the individual-level, it refers to resources that are available through the ego-centred 

network. Under this perspective, social capital is very close to the concept of social support 

(see section 2.4.4.), the difference being that social capital provides resources not only from 

close, strong ties (as social support does), but also from weak ties that bridge relationships 

across groups (Granovetter 1973). At the group-level, social capital is conceptualised as the 

collective characteristics through which individuals in a community, or living in a particular 

area, share norms and behaviours. Kawachi and Berkman (2014) identified three main 

mechanisms through which social capital can be potentially relevant to health outcomes and 

health behaviours, namely social contagion, collective efficacy and informal social control.  

Social contagion refers to the notion that behaviours tend to spread more quickly in a cohesive 

social network. Although the behaviours that spread via the group can sometimes be 

deleterious to health, it is hypothesised that parental involvement with their children, as well 

as their level of cohesion with other parents in the neighbourhood, may improve the ability of 

a community to adopt healthy norms. For example, a greater communication between 

neighbours may lead to a quicker diffusion and adoption of healthy behaviours because 

members of the community are in frequent contact and trust one-another (Kawachi et al. 

1999). Close ties between neighbours might also increase awareness about programmes and 

activities for young people available in the neighbourhood, which are likely to lead to healthy 

behaviours. 

Collective efficacy is the group-level equivalent of the notion of self-efficacy (Sampson 2012). 

It indicates the capacity and willingness of a group to intervene for a common goal. It results 

from the combination of social cohesion or mutual trust and shared expectation for social 
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control (e.g. threat of sanction by other member of the group). Resulting collective actions can 

lead to an improvement of health-promoting resources such as better access for physical 

activity facilities, construction of bicycle paths or better maintenance of public spaces and 

parks. 

Informal social control indicates the ability of a community to maintain social order and to 

intervene when deviant behaviours are witnessed (Kawachi & Berkman 2014). Social control 

operated by cohesive communities was shown to be effective to prevent juvenile delinquency 

and to improve the perception of safety in the neighbourhood (Sampson 2012). It is therefore 

expected to have potential benefits for physical activity in the neighbourhood, especially in 

young people.  

These three mechanisms – social contagion, collective efficacy, and informal social control – 

are thus likely to provide physical activity benefits to individuals through their connection to a 

group. It is expected that young people will benefit from their own peer connections but also 

from those of their parents and wider family. It should be added that social capital can have 

effects beyond the connected members of a group and have benefits for neighbours that did 

not contribute to it (Kawachi & Berkman 2014). For example, all neighbours can benefit from 

collective action of a restricted group to improve physical activity resources. 

 

 

There is currently no consensus on the operational definition and measurement of social 

capital (Kawachi & Berkman 2014, Lindström 2008, Ueshima et al. 2010). The two main 

measurement approaches are the network-based perspective and the social cohesion-based 

perspective (Kawachi & Berkman 2014, Legh-Jones & Moore 2012). In the network-based 

perspective, the investigator attempts to study social connections of the respondents and 

their significance. This approach has some degree of overlap with social support instruments 

(see section 2.4.4.), and is therefore less commonly employed in health surveys which often 

already measure social support (Kawachi & Berkman 2014). The social cohesion-based 

perspective is more common in population health surveys. Instruments usually either assess 

individual perceptions of social cohesion (e.g. perception of trust of other), which is sometimes 

called cognitive social capital, or measure the actual behaviour (e.g. participation in social 

organisations), which is known as structural social capital. The individual responses are studied 

either at the individual level, or as property of a group, such as the neighbourhood, using 

‘ecometric’ methods (Raudenbush & Sampson 1999). There are currently debates on whether 

trust is actually part of social capital or is a prerequisite for it (Kawachi & Berkman 2014). Trust 
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being a perceptual measure, it is also argued that individual-level measures of trust may 

sometimes poorly capture social capital and instead reflect individual-specific variations in 

cynical hostility, which is a general tendency to mistrust interpersonal relationships (Kawachi 

& Berkman 2014). In the US, the tools for measuring collective efficacy have gained some 

popularity following the work of Sampson and colleagues (see Sampson (2012) for an 

overview), but the collective efficacy approach remains uncommon in Europe.  

 

 

Social capital, social cohesion and collective efficacy were shown to be associated with a broad 

range of health behaviours, including alcohol consumption, drug abuse, juvenile delinquency 

and physical activity (Lindström 2008, McNeill et al. 2006). Most of the evidence in relation to 

physical activity comes from measures of social cohesion and trust and concerns the adult 

population. Evidence from the US indicates consistent association between social cohesion 

and total physical activity, based on both individual-level and group-level measures (Lindström 

2008). Outside the US, associations between individual trust and leisure-time or total physical 

activity have been established in various countries, including Sweden (Lindström 2011) and 

Japan (Ueshima et al. 2010). However, studies using neighbourhood-level measures of social 

capital have not always found associations with physical activity outcomes, as exemplified by 

a study in older adults from China (Gao et al. 2015). A large scale study from Canada has 

recently found that both individual-level and neighbourhood-level social cohesion were 

associated with physical activity in adults (Yip et al. 2016). However, results from the European 

SPOTLIGHT project (Mackenbach et al. 2016), which includes neighbourhoods from London, 

indicate little evidence of an association between adult leisure-time physical activity and 

neighbourhood-level social cohesion, and an inverse association was found with transport-

related physical activity. The SPOTLIGHT study further indicated that the use of ‘ecometric’ 

methods as opposed to simple mean aggregates to obtain neighbourhood-level measures did 

not have practical advantages. 

Some recent studies have compared aspects of social capital. A Japanese study (Ueshima et 

al. 2010) for example showed that neighbourhood trust or cognitive social capital was more 

important for physical activity than structural social capital measured by way of social 

participation. The results might, however, be specific to Japanese society, as suggested by the 

authors. In Montreal, a study based on various measures of social capital, including network-
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based measures, concluded that, unlike trust, network diversity was associated with physical 

inactivity (Legh-Jones & Moore 2012). 

There is limited evidence of an association between social capital and physical activity in 

children and adolescents, and most of it comes from the US. Carroll-Scott and colleagues’ 

study (2013) of a multi-ethnic population indicated that adolescents were likely to report more 

days of exercise if they also reported greater presence of social ties with friends and 

neighbours. In Chicago, Cradock et al. (2009) also indicated that adolescents from diverse 

neighbourhoods were more likely to participate in sports activity and to report physical activity 

at follow-up if they were living in a neighbourhood that had higher baseline level of social 

cohesion. In various American cities, Franzini et al. (2009) found that parent-reported 

collective efficacy, collective socialisation of children, exchange and social ties among 

neighbours were positively correlated with self-reported physical activity. Kimbro et al. (2011) 

also reported a small but positive association between collective efficacy and physical activity 

in young children, as reported by their mothers. Finally, a recent cross-national study showed 

that, in most high-income countries studied, collective efficacy was associated with 

objectively-measured total physical activity in 9-11 year old children (Sullivan et al. 2017), 

suggesting that the results documented in the US might generalise to other contexts. These 

results still need to be confirmed in Europe, including in the UK.  

 

 

This review showed that social capital and related constructs were consistently associated 

with leisure-time physical activity and total physical activity in the US and in other high-income 

countries, both in adults and adolescents. Some of the evidence in Europe has, however, 

indicated an absence of association in adults, and there is currently little information available 

in young people in Europe. The current literature is also limited in the sense that most of the 

evidence comes from cross-sectional studies, which restricts the opportunity to draw 

conclusions about causality. Finally, most of the literature captures total physical activity or 

leisure-based physical activity and does not explore how social capital could differently affect 

different forms or domains of physical activity.  

 
 

Social support is another important aspect of the social environment which has the potential 

to influence physical activity (McNeill et al. 2006). The notion of social support is close to the 
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concept of social network introduced in the previous section on social capital (cf. network-

based measures discussed in section 2.4.3.3.). The main difference between social support 

and social network is that the former usually refers to the benefits of close relationships such 

as families and friends, whereas the latter also includes resources provided by weaker 

connections (Kawachi & Berkman 2014). This section reviews the literature on the social 

support and physical activity. The focus is on young people, for whom specific theoretical 

hypotheses have been proposed, and a sizeable empirical literature exists.  

 

 

The evidence that social support is beneficial to physical and mental health is now 

considerable (Stansfeld 2006). In addition, there is a growing literature on the benefits of social 

support for health behaviours. The literature on physical activity has even identified social 

support as one of the most consistent correlates of physical activity in young people (Sallis et 

al. 2000, 2016). Social support describes resources provided from interpersonal relationships 

that can influence health and behaviours such as physical activity. These resources are diverse 

and include: psychological/emotional support (e.g. encouragement, praise), instrumental 

support (e.g. equipment, transport to a physical activity facility), co-participation (e.g. 

performing the activity with the adolescent), informational support (e.g. providing advice or 

instructions about an activity), and support as a role model (Langford et al. 1997). Parents, 

family members, and friends constitute the main sources of social support for physical activity 

(Mendonça et al. 2014).  

During pre-adolescent years, parental support for physical activity is expected to play an 

integral role in establishing physical activity in children’s free-time play outside of school. 

Multiple forms of parental support are expected to influence physical activity, including 

parental modelling of physical activity, encouragement and instrument support, such as 

providing transport to a physical activity facility. As children grow up, they spend progressively 

less time with parents and family and more time with their friends (Larson et al. 1996). A well-

established finding is that both adolescents’ feelings of support, closeness, and intimacy and 

objectively observed assessments of warmth and cohesion in adolescent-parent relationships 

decline during adolescence (Smetana et al. 2006). As a result, social support from friends is 

expected to emerge as a major source of influence on physical activity behaviours (Yao & 

Rhodes 2015). Over time, parent-child coactivity is likely to decrease, the influence of parental 

modelling is expected to decline, but instrumental support from parents is still expected to be 
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an important resource for physical activity. It has been suggested that peers could have a 

powerful influence on physical activity levels by providing various forms of support, in 

particular as positive communication through social norms and encouragements, co-

participation and role modelling (Maturo & Cunningham 2013). 

Another important theoretical consideration is that different types of physical activity (e.g. 

organised sports, active commuting) might be influenced by different aspects of social support 

and by different providers of such resources. For example, organised physical activity may 

require more parental support in the form of transport, equipment and enrolment than 

unstructured leisure-time physical activity (Edwardson & Gorely 2010). Friends, by contrast, 

are expected to provide more support to engage in more vigorous physical activities and 

competitive sports (Mendonça et al. 2014). 

 

 

Like many of the exposure variables reviewed in this thesis, social support has been assessed 

using a variety of survey instruments in the literature, and no gold standard has emerged to 

date (Yao & Rhodes 2015). It is mainly measured using parental- or self-reported 

questionnaires. Most questionnaires tap into one or more forms of support (emotional, 

instrumental, modelling or co-participation) and specify the source or provider of support, 

usually friends, family or parents (Mendonça et al. 2014). Unlike general social support scales 

such as the Multidimensional Scale of Perceived Social Support (MSPSS; (Zimet et al. 1990)), 

most instruments used in the field are specifically designed to capture social support for 

physical activity, using a generic reference to physical activity in the survey question (e.g. 

Activity Support Scale (Davison & Jago 2009))3. In practice, total support for physical activity 

by provider of support is the most common measure used (Laird et al. 2016). 

 

 

Whereas most studies are cross-sectional and based on very small samples, larger cross-

sectional studies and longitudinal investigations have emerged in recent years. Three 

literature reviews have attempted to quantify the overall associations between social support 

                                                           
 

3 Given the expectation that the relationships between social support and physical activity might 
depend on the type of physical activity, some authors have further suggested the use of questionnaires 
with more specific references to diverse physical activities (Beets et al. 2010). 
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and physical activity in young people using meta-analyses (Laird et al. 2016, Pugliese & Tinsley 

2007, Yao & Rhodes 2015), in spite of the heterogeneity of exposure and outcome measures 

(including in the person who is reporting social support). Overall, findings indicate consistent 

yet moderate associations between physical activity and social support from parents (Beets et 

al. 2010, Edwardson & Gorely 2010, Laird et al. 2016, Pugliese & Tinsley 2007, Yao & Rhodes 

2015), family (Laird et al. 2016, Mendonça et al. 2014) and friends (Laird et al. 2016, Maturo 

& Cunningham 2013, Mendonça et al. 2014). In what follows, the evidence is presented 

separately for social support from parents and family, and for social support from friends.  

Family and parental support have been widely studied. Whereas many studies include family 

as a general source of support and include parents and siblings, other have investigated the 

specific influences of parents, or even father/mother. Results are similar for parental and 

family sources of supports (Laird et al. 2016, Mendonça et al. 2014) and are presented 

together in this section.  

Total parental and family social support were shown to be associated with various physical 

activity measures in children and adolescents (Beets et al. 2010, Laird et al. 2016). The 

associations only explain a small amount of the variance in physical activity behaviour (Laird 

et al. 2016, Yao & Rhodes 2015). There is some indication that the associations might be of a 

smaller magnitude when physical activity is objectively measured (Maturo & Cunningham 

2013, Yao & Rhodes 2015). No gender differences are observed (Yao & Rhodes 2015).  

Amongst the various types of social support investigated, analyses indicate that family and 

parental encouragements are the most consistent correlates of physical activity (Beets et al. 

2010, Yao & Rhodes 2015). Transportation is shown to be an important factor too because 

access to places (e.g. parks, playgrounds, sport facilities) is a major barrier to participation to 

sport/exercise in young people (Beets et al. 2010, Mendonça et al. 2014). For example, Jago 

et al. (2011) showed that parental logistic support was positively associated with objectively-

measured total physical activity in 10-11 years olds in the UK.  

Associations have been shown to hold as children grow up (Laird et al. 2016). Evidence 

indicates that as children reach their teenage years, they may still benefit from family and 

parental resources that help them to be physically active. Most relevant types of support 

during adolescence include transportation, encouragement and role modelling (Edwardson & 

Gorely 2010, Laird et al. 2016, Yao & Rhodes 2015). For example, Dowda et al. (2007) found 

that an increase in self-reported physical activity was predicted by an increase in family 

support in girls between age 13 and 17. Zook et al. (2014) reported similar results using 
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objectively measured physical activity. In a small longitudinal study, Davison and Jago (2009) 

showed that parental support and peer support had a role in helping girls to maintain 

recommended level of physical activity between ages 9 and 15. As girls grew up, however, 

peer social support and parental logistic support appeared to become more important 

whereas parental modelling support started losing its influence. Using a large Canadian 

longitudinal study over a 3-year period, Lau et al. (2016) confirmed these trends. They found 

that adolescents perceived receiving less parental encouragement and instrumental support 

as they grew up. Their longitudinal model nevertheless indicates that an increase in 

encouragement and parental instrumental support is associated with an increase in moderate-

to-vigorous physical activity. These results suggest that parental support might still be 

important during adolescence, although its prominence might gradually decrease over time.  

Results relating to different forms and intensities of physical activity and social support are 

difficult to interpret given the diversity of physical activity and social support measures used. 

There is some indication that parental social support matters in particular for leisure-time and 

organised physical activity (Edwardson & Gorely 2010, Mendonça et al. 2014). Panter et al. 

(2010) found that parental encouragement was associated with active commuting in 9-10 

years old in south-east England. Deforche (2010) also indicated that modelling support from 

family and social support from family and friends were positively associated with active 

transportation in Belgium. 

Overall measures of support indicate consistent positive associations between social support 

from friends and physical activity (Laird et al. 2016, Mendonça et al. 2014). A meta-analysis 

has estimated that effect sizes were similar in magnitude for parental and friendship sources 

of total social support in adolescent girls. This result was a surprise given that adolescents 

gradually spend more time with friends as they grow up. However, parents and friends are 

shown to provide different resources. In particular, encouragement and co-participation in 

activities appear to be the most salient aspects of support from friends (Maturo & Cunningham 

2013).  

In the aforementioned study by Davison and Jago (2009), results indicate a growing influence 

of peer social support on physical activity as adolescents grow up. Other longitudinal studies 

have confirmed the relevance of social support from friends. Lau et al. (2016) indicated that 

the number of physically active friends was a longitudinal predictor of physical activity in 

Canadian adolescents. Zook et al. (2014) also indicate a longitudinal association between 

physical activity and friends’ overall support for physical activity in adolescent girls.  
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Beyond total physical activity, associations were observed for leisure-time and commuting 

physical activity and social support provided by friends (Mendonça et al. 2014). As for parental 

social support, too few studies were conducted in order to draw conclusions on the 

associations between aspects of peer social support and forms or types of physical activity. 

 

 

Overall, there are consistent associations between social support and physical activity in young 

people. Both parents/family and friends appear to provide important resources for physical 

activity, as illustrated by consistent associations observed with total social support. Yet, the 

types of resources provided by parents/family and friends appear to differ, and the 

importance of social support from friends seems to gradually increase over time. Most of the 

literature has been cross-sectional to date, which provides little evidence on the extent to 

which change in social support can impact physical activity. Again, the majority of the 

literature comes from the US, although results appear to be consistent across high-income 

countries (Laird et al. 2016, Mendonça et al. 2014, Yao & Rhodes 2015). Whether these results 

hold in deprived and ethnic minority populations remains to be explored. More studies 

exploring the impact of social support on different types or forms of physical activity are 

needed. 

 
 

This review of the literature has outlined a wealth of interesting research on the associations 

between features of the neighbourhood and home environments and physical activity. The 

focus of this thesis is on perceptions of the neighbourhood environment, ethnic density, social 

capital and social support and these have all been shown to be associated with forms of 

physical activity. However, the majority of the studies reviewed were cross-sectional, which 

reduces the ability to make causal inference about the associations observed, and limits 

understanding of how physical activity could vary over-time as a response to changes in 

exposure. 

Another important limitation of the current literature is that the vast majority of studies were 

conducted on adults. It therefore remains essential to gain a better understanding of the 

determinants of physical activity in young people who are at higher risk of physical inactivity. 

Adolescence appears to be an important period of the life course on which to focus because 

it marks a transition during which life-long health behaviours, including physical activity, start 

forming (Papas et al. 2007). It is also a period during which adolescents gradually gain more 
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independent mobility. As a result, adolescents’ perceptions of their neighbourhood might 

become more important determinants of physical activity than those of their parents’ and the 

role of parental social support might gradually become less prominent than that of friends. 

While some evidence exists on the associations between physical activity and social support, 

the three aspects of the local environment reviewed – perceptions of the neighbourhood, 

ethnic density and social capital – have been rarely studied in relation to physical activity in 

adolescents. Gaining a better understanding on how these factors affect physical activity 

might be valuable knowledge for designing health promotion interventions.  

This review has also indicated that ethnic minorities and deprived populations are at risk of 

physical inactivity. These populations tend to be more exposed to unsupportive environments 

and the features of the neighbourhood and home environments might affect them more 

strongly. As for young people, the evidence base to date regarding deprived and ethnically 

diverse populations is even more limited. Even the better documented associations, such as 

those between social support and physical activity, give no indication as to whether the 

current findings equally apply to disadvantaged populations.  

Despite the growing recognition that different features of the environment affect different 

domains or forms of physical activity (Sallis et al. 2006), few empirical studies have 

systematically investigated the associations between features of the neighbourhood and 

home environments and domains or forms of physical activity such as walking to school, 

walking for leisure and leisure sport activities. As a result, the current literature still lacks 

robust understanding of what specific aspects of physical activity are influenced by what 

aspects of the environment. Such information would be very valuable for health promotion 

policies.  

Finally, the current literature on the neighbourhood and home environments and physical 

activity is mostly dominated by North American and Australian investigations. More research 

is needed in the UK in order to corroborate results obtained in other settings.  

From a methodological point of view, the field of the determinants of physical activity seems 

to lag behind in terms of the adoption and understanding of advanced statistical methods. In 

particular, potential problems related to missing data have been overlooked in the literature. 

The common practice is still to drop cases with missing data without acknowledging the 

potential for bias caused by missing data and the decrease in precision of the model estimates 

that it implies. This contrasts with the growing statistical literature on methods to handle 

missing data and the recognition in the medical and epidemiological literature that missing 

data can no longer be ignored (Sterne et al. 2009). 
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This thesis will address these gaps. The overall aim of this thesis is to explore how features of 

the neighbourhood and home environments explain physical activity behaviours in a multi-

ethnic and deprived adolescent population. Rather than relying on cross-sectional data this 

study will use longitudinal data from a cohort study conducted on adolescents in East London, 

known as the Olympic Regeneration in East London (ORiEL) study. Where possible, different 

hypotheses will be tested on the nature of the longitudinal associations between exposure 

and outcome variables. This thesis will account for missing data using multilevel multiple 

imputation and apply relevant statistical methods for longitudinal data. The dataset used will 

allow for differentiation between four forms of physical activity – walking to school, walking 

for leisure, outdoor physical activity and pay and play physical activity – and enable the 

exploration of associations between features of the environment and each form of physical 

activity. Where possible, the associations between the exposure and the outcome will be 

investigated by gender.  

Specifically, the four aims of this thesis are as follows:  

1. Investigate longitudinal associations between perceptions of the neighbourhood 

environment and three physical activity outcomes; 

2. Explore the associations between ethnic density and three physical activity outcomes; 

3. Investigate longitudinal associations between neighbourhood trust and four physical 

activity outcomes; 

4. Investigate longitudinal associations between social support and four physical activity 

outcomes. 

Before addressing these research aims and their associated research questions that are spelt 

out in each results chapter (chapters 5-8), it is necessary to describe the data and methods 

used in this thesis. 
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In the previous chapter, I have reviewed the literature on the determinants of physical activity 

and have focused on four aspects of the neighbourhood and home environments – 

perceptions of the neighbourhood, ethnic density, social capital and social cohesion – which 

will be investigated in this thesis. This data chapter gives an overview of the Olympic 

Regeneration in East London (ORiEL) study, the data source for the analyses conducted in this 

thesis. A methods chapter (chapter 4) complements this data chapter and will present and 

justify the analytical methods used throughout this thesis to handle missing data and answer 

the research questions. In this chapter, I briefly describe the scope and design of ORiEL, define 

the four analytical samples used in this thesis, and give a brief overview of the extent of missing 

data in ORiEL. I also define the primary physical activity outcomes for the presented analyses, 

exposure variables, and define and justify the hypothesised confounders and moderators.  

 
 

The ORiEL study is a prospective cohort study that aimed to assess the health impact of large-

scale urban regeneration associated with the London 2012 Olympic and Paralympic Games on 

a cohort of young people and their families (Cummins et al. 2017, Smith et al. 2012). Data were 

collected from 3,106 adolescents at baseline across 25 schools in the boroughs of Newham 

(n=6), Tower Hamlets (n=7), Hackney (n=6) and Barking & Dagenham (n=6). The boroughs have 

highly ethnically diverse populations and higher levels of social, economic and environmental 

deprivation than the English and the London averages (McLennan et al. 2011, Office for 

National Statistics 2013a). Schools were selected using simple randomisation within each 

borough. The sample frame did not include special needs-schools and pupil referral units. 

Refusals were replaced by eligible schools within the same borough until a minimum of six 

schools per borough were recruited. Participants completed paper-based surveys in school 

settings at three time points. Baseline data were collected in 2012 (January to July) when the 

students were in Year 7 of secondary school (aged 11-12). Follow-up data were collected 
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approximately 12 months (2013) and 24 months (2014) later4. Questionnaire items relevant 

to this thesis are provided in Appendix A. 

Survey data entry was performed by an external agency with extensive experience in 

generating data files for longitudinal cohort studies. Variable names and coding structures 

were devised by the ORiEL research team and were implemented by the data entry contractor. 

Questionnaire data were double-punched and cleaned using range, consistency and logic 

checks. In a limited number of cases the data were manually cleaned by ORiEL research staff 

where it was unclear to the third party what the correct coding should be. 

Participants were allocated a unique identifier to allow tracking cohort members across waves 

without directly identifying individuals. Adolescent and parent/carer names and addresses 

were stored separately from each other on encrypted USB drives. These were accessible by a 

single data custodian and were linked only temporarily by a unique identification number in 

order to produce lists of participants who were eligible for follow-up. 

 
 

To account for differences in the research questions, methodological concerns, and availability 

of the variables, I defined a separate analytical sample for each set of analyses. A flowchart 

defining the analytical samples is presented in Figure 3.1.  

In total, 9,423 adolescent interviews were conducted across three waves (W1 n=3,106; W2 

n=3,228; W3 n=3,089). Of these 81 refused to co-operate during the interview or were 

reported to have ‘cheated or chatted’ (i.e. when fieldworkers identified instances of copying 

and/or talking about answers while administering questionnaires) resulting in the exclusion of 

these (semi-)completed questionnaires (W1 n=18 (0.6%); W2 n=15 (0.5%); W3 n=48 (1.6%)). 

The available sample is made of 3,088 adolescents at wave 1, 3,213 at wave 2 and 3,041 at 

wave 3.  

Not all baseline participants participated in each of the three survey waves. Table 3.1 indicates 

that amongst the 3,088 adolescents present at baseline, 7% dropped out after wave 1, 14.4% 

                                                           
 

4 The field work was fairly well distributed over 6 month periods, with 6 months of break between the 
waves. The average time lapse between repeated measurements on the same individual was about 1 
year, but varied from person to person. The presence of extreme values for the time lapse indicates 
that the same adolescents were interviewed at different seasons at follow-up. At wave 2, 80% of 
adolescents were interviewed between 309 and 403 days after baseline (approximately 10-14 months). 
The same interval measured at wave 3 was slightly higher (315-462 days). 
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after wave 2, and 5.4% had intermittent missingness. The 3-wave balanced panel is therefore 

composed of 2,260 participants. Adolescents also joined the study at wave 2 (n=507) and at 

wave 3 (n=231), allowing to define a wave 2-3 panel. The analysis of the wave 2-3 panel (Table 

3.2) shows that amongst the 2,767 adolescents present at wave 2, 4.5% did not take part to 

wave 3.  

Table 3.1 Types of participation in the 3-wave ORiEL panel 

Participation Freq.  Percent  

Wave 1 only 216 7.0 

Wave 1, wave 2 only 446 14.4 

Wave 1, wave 2, wave 3 (balanced panel)  2,260 73.2 

Wave 1, wave 3 only 166 5.4 

Total  3,088 100.0 

 

Table 3.2 Types of participation in the wave 2-3 ORiEL panel 

Participation  Freq.  Percent  

Wave 2 only 123 4.5 

Wave 2, wave 3 (balanced panel)  2,644 95.6 

Total  2,767 100.0 

 

In line with the first aim of this thesis to investigate longitudinal associations between 

perceptions of the neighbourhood environment and physical activity, I conducted preliminary 

baseline analyses of the 3-wave balanced panel (chapter 5), followed by longitudinal work 

(chapter 6). Therefore, chapter 5 uses the same balanced panel as in chapter 6, but restricts 

data analysed to wave 1 only. Chapter 6 investigates longitudinal associations for the whole 

ORiEL sample, using measures of exposure and outcome available at all three waves. Chapter 

6 uses the 3-wave balanced panel (n=2,260).  

The second aim is to explore the associations between ethnic density and physical activity 

outcomes. Information about ethnic density are obtained from secondary data external to the 

ORiEL study, which does not restrict the analytical sample of the analyses compared to the 

first aim (chapter 7). However, due to the interest in ethnic-specific associations between the 

exposure and outcome variables, analyses had to be restricted to the main ethnic groups, 

resulting in a balanced panel of 1,160 adolescents.  
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The third and fourth aims are addressed in chapter 8 which examines the extent of longitudinal 

associations between physical activity and both neighbourhood trust and social support. 

Neither neighbourhood trust, nor social support are available at baseline. Chapter 8 is 

therefore restricted to the waves 2-3 balanced panel (n=2,644). Results of chapter 8 are also 

reproduced using the 3-wave balanced panel (n=2,260) restricted to wave 2 and wave 3, to 

ensure that the change in the sample definition did not alter the results.  

Figure 3.1 shows the definition of the samples used in this thesis. The potential impact of 

attrition on the validity of the analyses is discussed in section 4.2.2. of chapter 45. The next 

section provides an overview of the extent of item missingness in the ORiEL study. 

 

Figure 3.1 Flowchart of the definition of the analytical sample for each chapter of the thesis, based on the ORiEL 
study.  

 
 

In addition to attrition, item non-response (or item missingness) was present across the 

completed questionnaires. Full questionnaire completion at wave 1 was 50%, rising to 60% at 

wave 2, increasing further to 80% at wave 3. Reasons for non-completion include: 

unexpectedly short or interrupted questionnaire sessions; inclusion of lower ability groups; 

                                                           
 

5 As explained more extensively in the methods chapter (section 4.2.2), the extent of bias due to 
attrition is not clear in the context of this thesis. ORiEL is an area-based study and the data do not allow 
for the determination of whether adolescents with attrition had left the study area, in which case, they 
might differ from the target population. Accounting for attrition in those adolescents might then 
generate bias, which is why unit-non response is not handled in this thesis and inference is restricted to 
adolescents who lived within the study area over the study period. 
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higher levels of special educational needs; and lower than anticipated levels of literacy or 

English language skills (Cummins et al. 2017). 

Item non-response rates increased gradually over the questionnaire at each wave. The 

decrease was pronounced and continuous after the physical activity instrument (which was 

situated in the middle of the questionnaire), especially at wave 1 and wave 2. Questions on 

exposures were situated after the physical activity instrument, and were therefore more 

prone to item non-response. The main potential confounders were placed towards the 

beginning of the questionnaire.  

For each specific longitudinal analysis conducted in this thesis the extent of item non-response 

is described in relevant results chapters (chapters 6-8). The potential impact of missingness on 

bias is also assessed and a general strategy to handle missing data is fully described in the 

methods chapter (section 4.2.3.). 

Having provided a general introduction to the ORiEL study and the way it will be used in this 

thesis, I now turn to the description of the specific variables employed.  

 
 

In this section, I describe the variables used in the main analyses of the thesis and how they 

were operationalised. I provide basic cross-sectional and longitudinal descriptive statistics, 

using complete cases from the baseline data and from the 3-wave balanced panel (see section 

3.3.). Descriptive analyses were conducted using Stata versions 14 and 15 (StataCorp 2015, 

2017). 

Longitudinal descriptions include repeated cross-sectional information as well as statistics that 

depict within individual changes over time. For the main discrete variables I used the ‘xttab’ 

Stata command, which decomposes the descriptive statistics into ‘overall’, ‘between’ and 

‘within’ categories (Rabe-Hesketh & Skrondal 2012). The overall category describes the data 

in terms of the total number of observations in the data, regardless of clustering at individual 

level. The ‘between’ category describes how different individuals vary from one another, 

whilst the ‘within’ category describes how individuals change over time. Table 3.3 offers a 

detailed interpretation of the descriptive statistics displayed by the ‘xttab’ Stata command. 
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Table 3.3 Interpretation of longitudinal descriptive statistics of discrete variables provided by the ‘xttab’ Stata 
command 

  
variable 

Overall ‘Between’ individuals ‘Within’ individual over 
time 

 Freq.  Percent  Freq.  Percent  Percent  

0 

Total 

number with 

response ‘0’ 

Proportion 

of N 

response 

‘0’ 

Number of 

individuals 

who ever 

responded 

‘0’ 

Proportion 

of 

individuals 

who ever 

responded 

‘0’ 

Conditional on an 

individual ever responding 

‘0’, proportion of his/her 

other obs. that are also ‘0’ 

1 

Total 

number with 

response ‘1’ 

Proportion 

of N 

response 

‘1’ 

Number of 

individuals 

who ever 

responded 

‘1’ 

Proportion 

of 

individuals 

who ever 

responded 

‘1’ 

Conditional on an 

individual ever responding 

‘0’, proportion of his/her 

other obs. that are also ‘0’ 

Total  

Total 

number of 

observations 

(N) 

100 

≥ n 

(number of 

individuals) 

≥ 100 

Normalized between-

weighted average of the 

‘within percents’ 

(summarises the stability 

of the variable) 

 

 
 

Physical activity was measured using the self-administered Youth Physical Activity 

Questionnaire (Y-PAQ), an instrument developed and validated by the MRC Epidemiology Unit 

in Cambridge (Corder et al. 2009). The questionnaire assesses the accumulated time spent 

both physically active and in sedentary behaviours over the previous seven days, using 

detailed questions on the type of activity. The questionnaire was designed to compute the 

total time (in minutes) spent on activities over the past week. Whereas objective measures 

using accelerometers and GPS are more precise and avoid recall bias, they are difficult to 

implement in large studies and they do not (yet) support the classification of particular 

activities, which is one of the strengths of the Y-PAQ. Unfortunately, a limitation of the Y-PAQ 

is that it uses ordinal response categories (i.e. didn’t do/ once / 2-3 times / 4 or more times) 

which prohibits computing the number of days a participant took part in an activity.  

Six measures of physical activity were constructed to assess the associations with the various 

aspects of the neighbourhood and home environments studied in this thesis. In addition to 

general measures of total and daily recommended physical activity, I took advantage of the 
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detail of the Y-PAQ questionnaire to calculate indicators of four forms of physical activity, 

which are expected to be differentially associated with the exposure variables. These are 

walking to school, walking for leisure, outdoor physical activity, and ‘pay and play’ physical 

activity. The latter two indicators are composite measures that respectively capture activities 

usually performed outdoor in the neighbourhood, and more structured activities usually 

conducted in dedicated sport or leisure centres often incurring an access fee. Owing to their 

non-normal distributions and to the fact that no adequate transformation could be found, the 

four variables measuring forms of physical activity were used as binary outcomes throughout 

the thesis (e.g. activity reported at least once vs. not). 

Other discrete physical activity variables were also considered but could not be studied on 

their own, owing to their low prevalence (especially at follow-up). For example, given the 

availability of neighbourhood perceptions related to cycling, I originally envisaged using cycling 

as an outcome. Unfortunately, only 8.6% reported cycling to school at baseline, and 4.3% at 

wave 3, while girls almost never reported cycling to school. Conventional estimation methods 

such as logistic regression models suffer from bias with rare events (King & Zeng 2001). In this 

case, the general rule of thumb that 10 events are needed per variable in logistic regression 

models for valid inference would not be achieved in fully adjusted models (Vittinghoff & 

McCulloch 2007)6. The six measures of physical activity used in the thesis are described in turn. 

 

 

Following the Y-PAQ guidelines (Corder et al. 2009), the total time spent in physical activity 

during the week preceding the interview was calculated. The variable ‘total physical activity’ 

includes the time spent physically active in recreational games and sports outside of school as 

well as travel to school i.e. walking, cycling or travel by car/bus7.  

At each wave, the total physical activity variable has a non-normal distribution. This would 

likely cause a violation of the normality assumption of the error terms if conventional models 

for continuous variables were used. To overcome potential problems, a log-transformation 

(natural log) of the variable is used for the analyses. A small scaling value is added to all 

observations to avoid missing values for the log of 0 minutes of physical activity. The 

distribution of the variable is approximately log-normal (i.e. approximately normal on the log 

                                                           
 

6 Note that cycling for leisure was not included in the Y-PAQ questionnaire. 
7 The questionnaire does not differentiate travel by car from bus and both travel times are considered 
as physical activity in the Y-PAQ guidelines. 
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scale) although it has a kurtosis value above 3 (kurtosis=4.9 at baseline) and a normal 

probability plot slightly deviant in small and large values (Figure 3.2). Linear models on the log 

scale give geometric means as opposed to arithmetic means, which slightly changes the 

interpretation of the parameters. When the variable is log-normal, the geometric mean equals 

the median, which eases interpretation.  

Note that the log-transformation reduces the impact of participants who reported unrealistic 

physical activity time (i.e. those reporting more than 75 hours of activity (including sedentary 

activities)). The transformation therefore allows outlying participants to be retained, while 

effectively considering them as simply having a high level of physical activity.  

At baseline, the median total physical activity was 15.8 hours. It decreased to 13.9 hours at 

wave 2 and 11.5 hours at wave 3. Figure 3.3 shows the general decrease in log of total physical 

activity over time (thick dashed line), and further indicates an overall shift in the distribution 

towards lower values. There are nevertheless substantial individual variations around those 

means, as illustrated by twelve randomly selected trajectories (thin solid lines): some 

adolescents’ total physical activity values remained constant, some decreased, other 

increased and other were more volatile. Some individuals also remain systematically higher 

than others despite the diversity of patterns evident.  

At baseline, reported total physical activity was higher in boys (median=17.1 in boys and 13.6 

in girls); higher amongst the Indian, White Mixed, and Black African groups compared to other 

ethnic groups (median=18.8, 17.5 and 17.4 respectively); and higher in more affluent 

adolescents (median=11.6, 15.0 and 18.9 respectively for low, moderate and high family 

affluence). School-level correlation implied by the study design is low: intra-class correlation 

is estimated to be 0.091 at wave 1; 0.016 at wave 2; and 0.011 at wave 38.  

 

 

An alternative measure to the log of total physical activity was also created. Time spent 

physically active was categorised as either ‘active’ or ‘inactive’ based on whether adolescents 

met the current recommendation of 60 minutes physical activity per day (Chief Medical Office 

2011, World Health Organization 2010).   

                                                           
 

8 Intra class-correlation estimated using a random effect linear model.  
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Figure 3.2 Distribution of the log of total physical activity at baseline (left) and standardised normal probability 
plot of the variable (right) 

 

Figure 3.3 Scatterplot of the log of total physical activity versus occasions ; individual trajectories for 12 
randomly chosen adolescents (thin solid lines) and mean trajectory (thick dashed line). 

Adolescents reporting less than 7 hours of physical activity weekly (outside of school) were 

recoded as ’did not meet recommendations’, andthose reporting 7 hours or more were 

recoded as ’met recommendations’. As with the use of logarithms, this recoding also retains 

adolescents with unrealistically high values of physical activity, treating them as ‘met 

recommendations’.  

Over one-fifth (20.1%) of the sample reported not meeting physical activity recommendations 

at baseline and this increased at each subsequent wave (wave 2=24.5%; wave 3=31.0%). 
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Patterns of associations with socio-demographic variables are similar to those of total physical 

activity. 

 

 

Walking to school was reported in the Y-PAQ, and the total walking time to school was 

computed. Owing to its peculiar distribution (Figure 3.4), the continuous form of the variable 

could not be used for modelling purposes. I therefore created a binary variable, distinguishing 

those who reported at least some walking to school from those who did not. The use of the 

intrinsic dichotomy ‘participation vs. not’ was preferred over the use of arbitrary cut-off(s). 

The binary variable has a clear interpretation in terms of how the neighbourhood and home 

environments might affect the decision to participate in a form of physical activity.  

In addition, I created a measure of within individual change in the binary walking to school 

variable between wave 2 and wave 3 (chapter 8). This results in ordinal variables with 3 

responses categories (0= stopped reporting walking to school at wave 3; 1= no change; 2= 

started reporting walking to school at wave 3). 

22.1% of the sample did not report walking to school at least once at baseline and this slightly 

increased at each subsequent wave (wave 2=23.2%; wave 3=23.7%). At baseline, no gender 

differences were observed. The Indian and Bangladeshi groups reported the highest 

prevalence of walking, and the Black Caribbean participants the lowest. Detailed description 

of associations between socio-demographic variables and walking to school are presented in 

section 6.4.2.1. of chapter 6 and section 8.4.2.1. of chapter 8.  

Table 3.4 describes the longitudinal distribution of the binary walking to school variable across 

the dataset, using the complete cases in the 3-wave balanced panel. Overall, walking to school 

was reported in 77.0% of measurement occasions. 89.4% of adolescents reported walking to 

school at least once during their participation in the survey. The ‘within’ column describes the 

fraction of time an individual has reported walking to school or not. Conditional on an 

individual having reported walking to school at least once, 85.3% of their other responses in 

other waves were also likely to be similar. 

 

 

The information provided by the Y-PAQ on walking for leisure combines walking for exercise 

and/or walking the dog. As with walking to school, I used a binary outcome variable (walked 

at least once vs. not) due to the distribution of variable (not presented).   
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Table 3.4 Longitudinal descriptive analysis of walking to school (n=2,260)  

Walking to school   Overall Between Within 

 Freq.  Percent  Freq.  Percent  Percent  

never  1483 23.0 873 38.6 61.4 

1+ 4963 77.0 2021 89.4 85.3 

Total  6446 100.0 2894 128.0 78.1 

 

 

Figure 3.4 Distribution of total walking time to school at baseline (in minutes) 

I also created a measure of within individual change in walking for leisure between wave 2 and 

wave 3 (cf. chapter 8). This results in ordinal variables with three responses categories 

(0=stopped reporting walking for leisure at wave 3; 1=no change; 2=started reporting walking 

for leisure at wave 3). 

59.1% of the sample did not report walking for leisure at least once at baseline and this 

increased by five percentage points at each subsequent wave (wave 2=65.2%; wave 3=70.0%). 

At baseline, girls were more likely to report walking for leisure than boys (respectively 47.1% 

and 36.1%); and, the prevalence of walking for leisure was highest in the White UK and White 

mixed groups (respectively 52.7% and 50.7%) compared to other ethnic groups. Associations 

with other socio-demographic variables are presented in section 6.4.2.2. of chapter 6 and 

section 8.4.2.2. of chapter 8.  

Table 3.5 describes the longitudinal distribution of the binary walking for leisure variable 

across the dataset, using the complete cases of the 3-wave balanced panel. Overall, walking 

for leisure was reported in 35.0% of measurement occasions. 57.6% of adolescents reported 

walking for leisure at least once during their participation in the survey. The ‘within’ column 
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describes the fraction of time an individual has reported walking for leisure or not. Conditional 

on an individual having reported walking for leisure at least once, 59.5% of their other 

responses in other waves were also likely to be similar. 

Table 3.5 Longitudinal descriptive analysis of walking for leisure (n=2,252)  

Walking for leisure   Overall Between Within 

 Freq.  Percent  Freq.  Percent  Percent  

never  3967 65.0 1950 86.6 75.9 

1+ 2135 35.0 1297 57.6 59.5 

Total  6102 100.0 3247 144.2 69.4 

 

 

 

Because it was not possible to study each activity separately (in part due to low prevalence), I 

created two summary scores to reflect forms of physical activity that are hypothesised to be 

affected by exposure to the neighbourhood and home environments. The first of the 

composite variables is outdoor physical activity. The variable aims to group physical activities 

that are mainly performed in open recreation areas such as parks, sport fields and other open 

spaces, which are usually located in the residential neighbourhood of the adolescents 

(D’Haese et al. 2015, Esteban-Cornejo et al. 2016). Outdoor physical activity combines 

basketball/volleyball (with the expectation that basketball is mainly reported in an outdoor 

court), blading, cricket, football, rounders, rugby and roller skating (7 variables). Running was 

not included due to its over-reporting which reflects that the activity was likely to be 

understood as ‘running around’ by adolescents and could therefore be part of any sport 

activity.  

I created two variables for outdoor physical activity: i) the total time spent in outdoor physical 

activity; and ii) a binary outdoor physical activity variable, similar to the one used for walking 

outcomes (i.e. participation in at least one of the seven activities vs. none). Again, the 

continuous variable has a non-normal distribution which could not be transformed to a known 

distribution. This arose from the fact that many adolescents reported none of the activities, 

which resulted in a peak in the distribution at 0 hours (not presented). The logarithmic 

transformation of the variable (to which a small scaling value is added to avoid missing values 

at log 0) did not lead to a normal distribution, as indicated by Figure 3.5. To account for this 

boundary at zero, econometric models such as hurdle models were considered (Wooldridge 

2010). However, the distributional restrictions imposed for the handling of missing data (see 



  

65 

section 4.3.3.2. of chapter 4) restrict the usefulness of such models in the longitudinal analyses 

of the thesis. Analyses reported are therefore limited to the binary outdoor physical activity 

variable.   

In addition, I created a measure of within individual change in the binary outdoor physical 

activity variable between wave 2 and wave 3 (cf. chapter 8). This results in ordinal variables 

with 3 response categories (0= stopped reporting outdoor physical activity at wave 3; 1= no 

change; 2= started reporting outdoor physical activity at wave 3). 

 

Figure 3.5 Distribution of the log of total outdoor physical activity at baseline 

80.1% of the sample reported participating in outdoor physical activity at least once at 

baseline, but this decreased by five percentage points at each subsequent wave (wave 

2=75.8%; wave 3=69.7%). At baseline, boys were much more likely to report outdoor physical 

activity than girls (respectively 88.6% and 69.0%); and the prevalence of outdoor physical 

activity was lowest in the Black Caribbean, White UK and Bangladeshi groups (respectively 

72.9%, 76.8% and 77.5%). Associations with other socio-demographic variables are presented 

in section 6.4.2.3. of chapter 6 and section 8.4.2.3. of chapter 8.  

Table 3.6 Longitudinal descriptive analysis of outdoor physical activity  (n=2,240)  

Outdoor physical 
activity   

Overall Between Within 

 Freq.  Percent  Freq.  Percent  Percent  

never  1453 25.1 903 40.3 61.0 

1+ 4345 74.9 2009 89.7 84.1 

Total  5798 100.0 2912 130.0 76.9 
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Table 3.6 describes the longitudinal distribution of outdoor physical activity binary variable 

across the dataset, using the complete cases of the 3-wave balanced panel. Overall, outdoor 

physical activity was reported in 75.9% of measurement occasions. 89.7% of adolescents 

reported outdoor physical activity at least once during their participation in the survey. The 

‘within’ column describes the fraction of time an individual has reported outdoor physical 

activity or not. Conditional on an individual having reported outdoor physical activity at least 

once, 84.1% of their other responses in other waves were also likely to be similar. 

 

 

The other composite measure used was labelled ‘pay and play physical activity’. This variable 

attempts to capture scheduled formal physical activity, usually performed in sport or leisure 

centres and for which adolescents might need to pay in order to participate. Pay and play 

physical activity combines aerobics, climbing, swimming, gymnastics, hockey, martial arts, 

netball, and tennis. A binary variable was created to measure whether adolescents reported 

participating in at least one activity vs. not at all. As with outdoor physical activity, the 

continuous variable capturing the total time spent on pay and play activities could not be used, 

owing to its non-normal distribution and to the fact that no adequate transformation could be 

found (not presented). I also created a measure of change in pay and play physical activity 

between wave 2 and wave 3 (cf. chapter 8). This results in ordinal variables with 3 response 

categories (0= stopped reporting pay and play physical activity at wave 3; 1= no change; 2= 

started reporting pay and play physical activity at wave 3). 

73.2% of the sample reported participating in pay and play physical activity at least once at 

baseline and this decreased by approximately ten percentage points at each subsequent wave 

(wave 2=64.2%; wave 3=51.2%). At baseline, boys and girls reported pay and play physical 

activity equally (respectively 72.7% and 73.8%); while the prevalence of pay and play physical 

activity was lower in the Bangladeshi and White UK groups (respectively 65.0% and 71.1%) 

compared to other ethnic groups. Associations with other socio-demographic variables are 

presented in section 8.4.2.4. of chapter 8.  

Table 3.7 describes the longitudinal distribution of the pay and play binary variable across the 

dataset, using the complete cases of the 3-wave balanced panel. Overall, pay and play physical 

activity was reported in 62.4% of measurement occasions. 85.0% of adolescents reported pay 

and play physical activity at least once during their participation in the survey. The ‘within’ 

column describes the fraction of time an individual has reported pay and play physical activity 
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or not. Conditional on an individual having reported pay and play physical activity at least once, 

73.8% of their other responses in other waves were also likely to be similar. 

Table 3.7 Longitudinal descriptive analysis of pay and play physical activity  (n=2,243)  

Pay and play 
physical activity   

Overall Between Within 

 Freq.  Percent  Freq.  Percent  Percent  

never  2231 37.6 1376 61.4 60.7 

1+ 3695 62.4 1907 85.0 73.8 

Total  5926 100.0 3283 146.4 68.3 

 

 
 

To answer the research questions, I used four sets of exposure variables, each capturing 

different aspects of the neighbourhood and home environments. These are perceptions of the 

neighbourhood environment (chapters 5 and 6), own-group ethnic density (chapter 7), 

neighbourhood trust (chapter 8), and social support (chapter 8). The items on perceptions of 

the neighbourhood environment are presented in more detail because there is no established 

procedure for selecting relevant survey items and combining them into meaningful measures. 

 

 

Adolescents were asked questions related to perceptions of their local environment on 

selected domains, using an adapted, age-appropriate version of the ALPHA (Assessing Levels 

of Physical Activity and Fitness) questionnaire (Spittaels et al. 2010). The ALPHA questionnaire 

has been used in multiple European countries and its validity and reliability assessed in 

European adult populations (Adams et al. 2013, Bucksch & Spittaels 2011, Eichinger et al. 2015, 

Spittaels et al. 2010). The adult version of the questionnaire was adapted by the ORiEL 

research team to make it relevant to adolescents (i.e. the item regarding pubs and bars was 

removed). As a result of piloting, the wording of some of the questions was changed to 

improve adolescent comprehension (i.e. the word “pleasant” was replaced by “nice”). A 

comparable locally adapted adolescent-specific version of the ALPHA questionnaire was 

shown to have good reliability elsewhere (Garcia-Cervantes et al. 2014). The dimensions of 

perceptions of the neighbourhood environment captured by the ALPHA questions used in the 

ORiEL study (including proximity, crime-related safety, traffic-related safety, and aesthetics) 

are in line with those used in other instruments measuring perceptions of the neighbourhood 
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environment in young people, such as the adolescent version of the NEWS questionnaire 

(Rosenberg et al. 2009). The local environment was defined as an area within a 15 minute walk 

from his/her house and most of the questions were specifically targeting walking and cycling 

behaviours. I used statements about perceptions of traffic safety, aesthetics and street 

connectivity that were rated by adolescents on a four-point scale (strongly agree; slightly 

agree; slightly disagree; strongly disagree). I also used variables on reported distance from 

eight types of facilities and services, and three questions on crime-related safety, which 

originate from the Multi-Ethnic Study of Atherosclerosis (MESA) study (Mujahid et al. 2007). 

The MESA questions were preferred over the ALPHA questions on crime-related safety 

because the MESA instrument was shown to be associated with some physical activity and 

BMI outcomes (Evenson et al. 2012, Powell-Wiley et al. 2017). The MESA instrument also 

includes an item which is the best proxy available for fear of crime, which is expected to be 

associated with physical activity (Foster et al. 2014a). The items are described in Table 3.8 and 

their baseline distribution is provided in Table 3.9. 

I created summary scores to capture separate aspects of neighbourhood perceptions, namely 

proximity, traffic safety, street connectivity, aesthetics and crime-related safety. I summed 

numeric values (i.e. ‘strongly disagree’=1; ‘slightly disagree’=2; etc.) taken by items belonging 

to the same underlying construct and divided by the number of items9. To test the reliability 

of the scores (i.e. whether the summary scores comprise items capturing the same underlying 

construct), I fitted confirmatory factor analysis models using the pooled 3-waves balanced 

data. Results summarised in Appendix B indicate that the selected items of Table 3.8 

appropriately capture dimensions of proximity, traffic safety, street connectivity, aesthetics 

and crime-related safety. Some items of the original questionnaire (not presented in Table 3.8) 

had to be excluded because they captured different latent dimensions (i.e. the items on ‘hilly 

roads’ and ‘badly maintained buildings’ captured aspects of perceptions not related to the 

above dimensions). Results from the confirmatory factor analysis also indicate that the crime-

related safety items of the MESA and ALPHA questionnaires capture different dimensions, 

which justifies the choice to use one of the instruments (MESA items) and not to combine 

them.  

                                                           
 

9 From a statistical perspective, a more appropriate approach would have been to formulate 
measurement models assuming that observed items are the combination of underlying latent 
constructs and some measurement error (Bollen 1989). This approach was not deemed possible given 
the restriction on the number of variables imposed by the approach used to handle missing data (cf. 
section 4.3.3.2 of chapter 4). The use of summary scores has the disadvantage of ignoring measurement 
error, and therefore it underestimates the strength of associations. 
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Table 3.8 Selected perceptions of the neighbourhood environment from the ORiEL study  

Attribute Survey item Response scale  

Proximity to destinations 
(perceived access to nearest) 
  

Local shop 5-point scale (1-5 / 6-10 / 
11-20 / 21-30/ 30+ mins)  

Supermarket same as above 

 Local services such as bank, post office or 
library 

same as above 

  Fast food restaurant or takeaway same as above 

 
 

Bus stop same as above 

Tram, tube or train station same as above 

Sport and leisure facility. e.g. swimming pool, 
fitness centre, gym 

same as above 

 Open recreation area. e.g. park, sports field or 
other open space 

same as above 

Perceived traffic safety There are not enough safe places to cross busy 
streets in my neighbourhood 

4-point Likert scale 
(strongly disagree/ slightly 
disagree/ slightly agree/ 
strongly agree) 

  Walking is unsafe because of the traffic in my 
neighbourhood 

same as above 

  Cycling is unsafe because of the traffic in my 
neighbourhood 

same as above 

Perceived street connectivity  
  

There are many shortcuts for walking in my 
neighbourhood 

same as above 

 Cycling is quicker than driving in my 
neighbourhood during the day 

same as above 

  There are many road junctions in my 
neighbourhood 

same as above 

  There are so many different routes that I don’t 
have to go the same way every time 

same as above 

Perceived aesthetics My local neighbourhood is a nice environment 
for walking or cycling 

same as above 

  My neighbourhood is generally free from litter 
or graffiti 

same as above 

  There are trees along streets in my 
neighbourhood 

same as above 

Perceived crime-related safety 
(MESA) 

I feel safe walking in my neighbourhood, day 
or night 

5-point Likert scale 
(strongly disagree/ slightly 
disagree/ neither agree 
nor disagree/ slightly 
agree/ strongly agree) 

  My neighbourhood is safe from crime same as above 

 Violence is not a problem in my 

neighbourhood 

same as above 

 



 

7
0 

Table 3.9 Baseline distribution of selected measures of neighbourhood perceptions from the ORiEL questionnaire 

Perceived proximity to  1-5min 6-10 min 11-20 min 21-30 min >30 min n 

local shop 78.2 15.9 4.0 0.8 1.2 2,517 

supermarket 23.8 37.4 24.6 8.7 5.5 2,466 

local services 24.6 36.9 25.6 9.1 3.8 2,442 

restaurant 36.5 29.4 19.6 8.8 5.7 2,461 

bus stop 75.4 17.8 4.6 1.4 0.8 2,450 

other public transport 22.9 31.9 26.7 11.1 7.4 2,395 

sport and leisure facility 12.1 22.4 30.9 19.8 14.7 2,404 

open recreation area 51.9 26.7 13.0 4.2 4.2 2,431 

Perceived traffic safety strongly disagree slightly disagree slightly agree strongly agree     

not enough safe places to cross busy streets 42.7 29.0 18.5 9.7   2,364 

walking is unsafe because of traffic 56.2 24.5 12.7 6.5   2,360 

cycling is unsafe because of traffic 51.5 27.3 14.2 7.1   2,351 

Perceived street connectivity strongly disagree slightly disagree slightly agree strongly agree     

many shortcuts for walking  10.1 13.9 37.7 38.2   2,259 

cycling is quicker than driving during the day 26.3 30.5 24.9 18.2   2,204 

many road junctions 24.7 31.6 30.1 13.6   2,146 

Perceived aesthetics strongly disagree slightly disagree slightly agree strongly agree     

enjoyment of the neighbourhood for walking and cycling 9.4 15.6 33.9 41.2   2,330 

generally free from litter or graffiti 20.1 29.2 29.3 21.4   2,308 

trees along the streets 12.9 11.4 26.67 49.1   2,300 

many different routes 16.2 22.7 34.6 26.4   2,178 

Perceived crime-related safety (MESA) strongly disagree slightly disagree neither agree nor disagree slightly agree strongly agree   

feel safe walking 11.3 16.8 22.9 23.6 25.4 2,189 

violence is not a problem 18.1 22.4 19.9 18.4 21.2 2,169 

safe from crime 16.0 24.8 19.2 18.3 21.6 2,171 



  

71 

Following Adams et al (2013), I used the summary scores as ordinal variables differentiating 

three types of perceptions: low support, medium support and high support of the 

environment. Apart from ‘proximity’, the same cut-off values are used across the summary 

scores and roughly correspond to the baseline tertiles (see Table 3.10 for cut-off definitions).  

Complete case analysis of the 3-wave balanced panel indicates little cross-sectional change in 

perceptions of the neighbourhood over time. Perceived proximity was the only variable to 

display clear signs of change over time: high perception of proximity of destinations gradually 

increased over time (the prevalence of high proximity was 45.9%, 54.0% and 58.9% at waves 

1, 2 and 3 respectively), whereas low perceived proximity gradually decreased. Conversely, 

there was a slight decrease in the perception of high aesthetics (wave 1=41.0%; wave 2=36.0%; 

wave 3=35.6%).  

Table 3.10 Cut-off values for neighbourhood perceptions scores 

Dimension  Range of  
mean score 

Low support Medium support High support 

Proximity 1-5 [3;5] 
(i.e. mean 
score ≥ 11-20 
mins ) 

[2;3[ 
(i.e. 11-20 mins > 
mean score ≥ 6-10 
mins) 

[1;2[ 
(i.e. mean 
score< 6-10 
mins) 

Traffic safety  1-4 
 

[1;2] 
 

]2;3] ]3;4] 

Street 
connectivity 

1-4 [1;2] 
 

]2;3] ]3;4] 

Aesthetics 1-4 [1;2] 
 

]2;3] ]3;4] 

Crime-related 
safety (MESA) 

1-5 [1;2.33]  [2.34;3.66] [3.67;5] 

 

The distributions of traffic-related safety, street connectivity, and crime-related safety were 

virtually constant over time. Despite the stability in the overall distributions, important within 

individual changes were observed. Longitudinal descriptive statistics for traffic-related safety 

(Table 3.11) and street connectivity (Table 3.12) are described to illustrate the extent of within 

individual changes. Longitudinal descriptive statistics of proximity, aesthetics and crime-

related safety are similar and therefore only presented in Appendix B (Table B.2, Table B.3 and 

Table B.4).  
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Table 3.11 Longitudinal descriptive analysis of perceived traffic-related safety  (n=2,244)  

Perceived traffic-
related safety 

Overall Between Within 

 Freq.  Percent  Freq.  Percent  Percent  

Low 599 10.2 493 22.0 46.4 

Medium 1970 33.6 1358 60.5 56.2 

High 3300 56.2 1772 79.0 70.6 

Total  5869 100.0 3623 161.5 61.9 

 

Table 3.11 describes the distribution of perceived traffic-related safety across the sample. 

10.2% of the total 5,869 responses over the three waves had low perception of traffic-related 

safety, and 56.2% had high perception. 22.0% of the respondents in the study reported low 

perception of traffic-related safety in at least one wave. Low perception of traffic-related 

safety was the least stable category: for those who reported low perception at least once, only 

46.4% of their other responses were also low perception. Conversely, high perception of 

traffic-related safety was reported by 79.0% of the participants in at least one wave. High 

perception of traffic-related safety was the most stable category: 70.6% of those who reported 

high perception at least once, also reported so in other waves. Medium perception of traffic-

related safety had intermediate values of both frequency of reporting and stability (60.5% and 

56.2% respectively).  

As shown in Table 3.12, 20.4% of participants reported low perceived street connectivity, over 

the three waves. Low perceived street connectivity was reported by 37.5% of the respondents 

in at least one wave of the survey. For this group, 54.2% of responses were also classified in 

the same low perception category. Patterns for the high perception category of street 

connectivity were almost identical (overall, between, and within values are respectively 21.8%, 

38.8% and 55.7%). Medium perceived street connectivity was reported 57.9% of the time and 

reported at least once by 82.6% of participants. It was also the most stable category: for those 

who reported medium perceived street connectivity at least once, 70.3% of their other 

responses were also medium.  
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Table 3.12 Longitudinal descriptive analysis of perceived street connectivity (n=2,224)  

Perceived street 
connectivity   

Overall Between Within 

 Freq.  Percent  Freq.  Percent  Percent  

Low 1121 20.4 835 37.5 54.2 

Medium 3186 57.9 1836 82.6 70.3 

High 1198 21.8 863 38.8 55.7 

Total  5505 100.0 3534 158.9 62.9 

 

At baseline, few gender differences were observed across neighbourhood perceptions 

variables. Girls had a slightly lower chance of reporting low aesthetics and street connectivity 

than boys (respectively 13.6% vs. 16.7% and 19.0% vs. 24.3%) and a slightly higher chance of 

reporting low perception of traffic-related and crime-related safety (respectively 11.5% vs. 

9.7% and 31.4% vs. 29.2%). There were also few ethnic differences. The most noticeable 

difference was that the Black African and Pakistani groups reported worse perceptions of 

proximity to destinations than other groups.    

Most of the analyses of chapters 5 and 6 use the ordinal scores to capture perceptions of the 

neighbourhood. Some of the individual items, in particular bus stop proximity, enjoyment of 

the neighbourhood for walking/cycling and personal safety (‘I feel safe’) are also used because 

they are expected to better capture the associations with some of the physical activity 

outcomes.  

In addition, longitudinal-specific exposure variables were created to answer questions about 

the nature of the relationships between perceptions of the environment and physical activity. 

Exposure variables were derived to capture cumulative perceptions of the neighbourhood and 

trajectory of perceptions of the neighbourhood.   

Cumulative exposure scores are created using the numeric values to which each response 

category is coded in the ordinal scores (e.g. ‘strongly disagree’=1, ‘slightly disagree’=2 , …, 

‘strongly agree’=5). For each adolescent a total score is calculated as the sum of the values 

across the three waves. Given that the ordinal scores are coded as numeric, the derived 

cumulative scores assume equivalent qualitative differences between any two successive 

categories (e.g. a difference between strongly disagree and disagree receives equal weight as 

a difference between agree and strongly agree). The cumulative scores also assume that the 

weight of exposure is equivalent at each wave. Variables were all initially recoded so that high 
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scores reflect an overall good perception of the neighbourhood environment during the study 

period. 

The same numeric values of the ordinal scores are used to compute the difference between 

wave 3 values and baseline. The trajectory scores measure changes since baseline on a 

continuous scale so that a value of 1 (or 2, 3, etc.) represents improvement of perception by 1 

category (or 2, 3 etc. categories) between the baseline and wave 3. Negative values represent 

decreases in perceptions. Trajectory scores also assume equivalence of change between 

response categories.  

 

 

Own-group ethnic density measures were used as the key exposure variables of interest in the 

analyses presented in chapter 6. Own-group ethnic density (referred to as ethnic density in 

what follows) is defined as the percentage of individuals in a certain geographical or social 

context who are of the same ethnic group as the participant. Two distinct measures were 

computed: ethnic density at school and ethnic density in the neighbourhood.   

To compute ethnic density at school-level, I combined ORiEL self-reported ethnicity 

information (see section 3.5.3.2.) with ethnicity statistics from the Department for Education. 

School-level data on the number of pupils by ethnic group are publicly available and annually 

published online. Data were downloaded for the 3 years during which the survey took place 

(Department for Education 2012, 2013, 2014) and recoded to match the 8-category ethnicity 

variable of the ORiEL study, i.e. White UK, White Mixed, Indian, Pakistani, Bangladeshi, Black 

African, Black Caribbean and Other. For each of the participating schools, I calculated the 

prevalence of each ethnic group in 2012, 2013 and 2014.  

The school-level distribution of ethnicity only marginally changed over the 3-year period. 

Mean changes were below 1 percent (with SD below 2.5 points) for all ethnic group except the 

White UK and White Mixed groups, for which average changes of 2.9 points and -1.4 points 

were observed between 2012 and 2014, respectively (SD were 3.7 and 1.7 and highest 

absolute changes were 12.6 and 3.7, respectively). Given the few changes observed in the 

distributions over time, I averaged the ethnicity prevalence values over the three years of 

measurements in each school. I then created the measure of school-level ethnic density by 

assigning to each participant the mean prevalence of his/her own ethnic group in his/her 
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school. As a sensitivity analysis, I also calculated ethnic density in 2012 and 2014. The variables 

were highly correlated (Pearson r=0.981), the mean change over time was -0.3 and few 

adolescents had changes in ethnic density values greater than 5 percent (5th percentile=7.90; 

95th percentile=6.40). I therefore restricted the analysis to the average ethnic density during 

2012-2014. Five adolescents for the study sample changed school to another school of the 

study during the study period. These were assigned their baseline school ethnic density value, 

so that the school-level ethnic density variable would remain time-invariant10. The variable 

was treated as a continuous variable in the analyses, in the absence of established cut-off 

values in the literature (Shaw et al. 2012)11. 

Due to sample size limitations, the study of ethnic density was restricted to the White UK, 

White Mixed, Bangladeshi, and Black African groups (cf. section 3.3. on analytical samples). 

Figure 3.6 shows the distribution of ethnic density in each of the four ethnic groups. 

 

Figure 3.6 Distribution of school-level ethnic density for the four main ethnic groups (n=1,160)  

 

                                                           
 

10 This approximation proved useful when dealing with missing data by means of reduction of the 
number of variables in the multiple imputation model of chapter 6 (section 6.4.1.2).  
11 Treating the variable as continuous further eased the modelling by reducing the number of 
parameters involved.  
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On average, ethnic density is higher for the Bangladeshi adolescents (median=63.3%), 

intermediate for the White UK and Black African adolescents (22.7% and 19.3% respectively), 

and lower for the White Mixed adolescents (14.2%). Large variations within the Bangladeshi 

group are observed (with values ranging from 2.8% to 80.6%), and to a lesser extent within 

the White UK group (ranging from 1.8% to 57.6%). Variations are smallest for the White Mixed 

and Black African groups (ranging from 1.6% to 24.0% and 6.1% to 36.6% respectively) and 

these distributions have a slightly more Gaussian appearance. 

To compute neighbourhood-level ethnic density, I combined ORiEL ethnicity data with 

neighbourhood data on ethnic composition from the 2011 UK Census of Population. Census 

data on number of residents by ethnic groups at the lower layer super output area (LSOA) 

were downloaded from the Infuse website (Office for National Statistics 2011). The LSOA was 

previously suggested to be the best administrative area with available data to characterise 

ethnic density effects (Stafford et al. 2009). LSOA data were merged with the home-address 

of the ORiEL participants for each of the wave, recoded to match the ethnicity variable of the 

ORiEL study and the prevalence of each ethnic group was calculated in each LSOA. I then 

created a measure of neighbourhood-level ethnic density by assigning to each participant the 

prevalence of his/her own ethnic group in his/her LSOA.  

Although the ethnicity information at LSOA was obtained in 2011 (and is therefore cross-

sectional), the ethnic density variable was allowed to change over time to reflect residential 

changes of the ORiEL participants. Amongst adolescents belonging to one of the four main 

ethnic groups who reported a home address, 5.2% change LSOA at wave 2, and another 5.9% 

changed LSOA wave 3. The neighbourhood-level ethnic density variable is therefore time-

varying. Changes only reflect residential mobility; change in neighbourhood ethnic 

composition is not captured. In the analyses, the variable was used on its continuous scale. 

Home-addresses, and therefore LSOA and derived ethnic density, were missing for 279 

measurement points amongst the four main ethnic groups of interest. 

The baseline distribution of ethnic densities at neighbourhood-level (Figure 3.7) reflects, for 

the most part, what is described at school-level. However, the two variables do not capture 

the exact same dimension (Pearson r = 0.54). The White Mixed and Black African groups 

display low average neighbourhood-level ethnic densities (median=12.7% and 13.6% 

respectively) and limited variability (ethnic densities ranging from 3.6% to 31.4%, and 1.5% to 

35.1% respectively). Median neighbourhood-level ethnic densities are 40.5% for the White UK 

group and 22.3% for the Bangladeshi group. At neighbourhood-level, ethnic density of the 
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White UK adolescents is much higher than at school-level, while it is lower for the Bangladeshi 

adolescents. These two groups still display notable within group variability in neighbourhood-

level ethnic density (values ranging from 5.0% to 90.8%, and 0.2% to 65.2% respectively). All 

distributions have a more Gaussian appearance than at the school-level. Amongst those who 

changed LSOA, change in ethnic density before and after the move was 10.2% on average 

(median 7.2%).  

 

Figure 3.7 Distribution of neighbourhood-level ethnic density for the four main ethnic groups at baseline 
(n=1,160)  

   

 

Neighbourhood trust is one of the key exposure variables of interest in the analyses presented 

in chapter 8. The neighbourhood trust variable is part of a broader set of questions on trust in 

different groups of people, which were asked at waves 2 and 3. The specific item captures to 

what extent the participants ‘trust people in your neighbourhood’ and uses a four-level Likert 

scale (i.e. 1=’not at all’, 2=’a little’, 3=’some’, 4=’a lot’). Analyses use the variable on its original 

scale in addition to a score measuring individual change in the variable over time. That variable 

was computed as the difference between wave 3 and wave 2 numeric values to which each 

response category is coded. Positive scores indicate improvement in the exposure variables 

over time. Such a variable assumes equivalence in the meaning of change between any two 
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adjacent response categories (e.g. change from ’some’ to ‘a lot’ and from ‘a little’ to ‘some’ 

are both coded as 1). At wave 2, 21.9% reported a lot of trust, 42.1% some trust, 27.3% a little 

of trust, and 8.7% reported no trust at all. A slight decrease in trust is observed over time, with 

more adolescents reporting no trust at all at wave 3 (12.2%) and fewer reporting a lot of trust 

(17.3%).  

Table 3.13 describes the longitudinal changes in the neighbourhood trust variable across 

waves 2 and 3. The four response categories of the variable appear to have similar stability 

levels, despite their different prevalence: for each response category, between 67% (not at all) 

and 72.3% (some) of the participant responses did not change across the two waves.  

Table 3.13  Longitudinal descriptive analysis of neighbourhood trust  (n=2,197)  

Neighbourhood trust   Overall Between Within 

 Freq.  Percent  Freq.  Percent  Percent  

Not at all 411 10.5 350 15.9 67.0 

A little 1068 27.2 893 40.7 67.7 

Some 1677 42.8 1282 58.3 72.3 

A lot 766 19.5 611 27.8 70.5 

Total  3922 100.0 3136 142.7 70.1 

 

Overall, boys tend to have much higher neighbourhood trust than girls. They are about twice 

as likely to report a lot of trust (24.5% vs. 13.4%), and less likely to report a little trust (23.9% 

vs. 31.4%) and no trust at all (9.1% vs. 12.2%). Neighbourhood trust appears to be highest in 

the Bangladeshi adolescents and lowest in the Black Caribbean adolescents (respectively, 

24.6% and 14.0% reported a lot of trust). 

 

 

In addition to neighbourhood trust, chapter 8 uses perceptions of social support, which are 

also measured at waves 2 and 3. The social support measures are derived from the 

Multidimensional Scale of Perceived Social Support (Zimet et al. 1990). The scale was designed 

to measure general social support and does not capture specific aspects of social support 

relevant to physical activity (e.g. encouragement, co-participation, transportation). The 12-

item instrument assesses perceptions about support from family, friends and significant 

others. Each item contains a single statement (e.g. ‘my family is willing to help me make 

decisions’, ‘I can talk about my problems with my friends’, and ‘there is a special person in my 

life who cares about my feelings’) and is rated on a seven point Likert scale ranging from ‘agree 
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very strongly’ to ‘disagree very strongly’. The scale was shown to have a high construct and 

discriminant validity and high test-retest reliability (Zimet et al. 1990). Summed scores for each 

source of social support have good internal consistency in the ORiEL sample used (Cronbach 

α>0.9 for each source of support). Owing to positively skewed distributions, scores were split 

into tertiles (1=’low’, 2=’medium’, 3=’high’). As with neighbourhood trust, a score measuring 

individual change in the three tertile scores was computed as the difference between wave 3 

and wave 2 numeric values to which each response category is coded. 

At wave 2, 36.7% reported low social support from friends, 28.9% medium social support, and 

the remaining 34.4% reported high perceived social support. A slight decrease is observed at 

wave 3, with more adolescents reporting low and medium social support (39.9% and 31.5% 

respectively) and less reporting high social support from friends (29.2%). At wave 2, 28.1% 

reported low social support from family, 26.7% reported medium social support, and 45.1% 

reported high social support. A more marked decline is observed for the family source: more 

adolescents reported low and medium social support from family (32.7% and 29.9% 

respectively) and less reported high social support (37.4%). Social support from significant 

others has a very similar distribution to that of family social support at wave 2 (38.4%, 26.6% 

and 35.0% for low, medium and high social support respectively). The distribution appeared 

to be more stable over time, with only a small increase in low social support (40.9%) and a 

small decrease in high social support (32.2%). 

Social support from family was similar in boys and girls across the two waves of data, while 

high social support from friends and significant others was more frequently reported by girls 

than boys (respectively 40.7% and 41.2% for girls and 27.0% and 29.5% for boys). Ethnic 

differences are also observed: social support was generally highest in the White UK and Indian 

groups, and lowest in the Pakistani adolescents.  

As shown in Table 3.14, 50.2% of the adolescents reported low social support from friends at 

least once. 77.0% of those responses were also classified in the same low perception category 

at the other wave. Medium and high perception categories were used by slightly less 

respondents (43.6% and 41.8% respectively), and were also slightly less stable over time 

(70.0% and 73.7% respectively).  

Longitudinal descriptive statistics for family social support give a slightly different picture. 

Table 3.15 indicates that high social support was used at least once by most participants 

(51.1%), followed by medium (40.2%) and low categories (39.8%). However, the low and high 

categories were equally stable: 78.5% and 78.3% of those who reported any of those values, 
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reported the same value in other waves. Stability was slightly lower for the medium response 

category (71.6%). 

Longitudinal descriptive statistics for the significant others sources are very similar to social 

support from friends, and therefore presented in Appendix B (Table B.5).  

Table 3.14  Longitudinal descriptive analysis of social support from friends  (n=2,123)  

Social support:  
friends   

Overall Between Within 

 Freq.  Percent  Freq.  Percent  Percent  

Low 1381 38.1 1066 50.2 77.0 

Medium 1097 30.3 926 43.6 70.0 

High 1144 31.6 887 41.8 73.7 

Total  3622 100.0 2879 135.6 73.7 

 

Table 3.15 Longitudinal descriptive analysis of social support from family  (n=2,123)  

Social support:  
family   

Overall Between Within 

 Freq.  Percent  Freq.  Percent  Percent  

Low 1112 30.6 844 39.8 78.5 

Medium 1033 28.4 853 40.2 71.6 

High 1488 41.0 1085 51.1 78.3 

Total  3633 100.0 2782 131.0 76.3 

 

 
 

The following variables were conceptualised as factors that may confound the associations 

between the neighbourhood and home environments and physical activity. A confounding 

factor is associated with both exposure and outcome and yet is not on the hypothesised causal 

pathway (Kirkwood & Sterne 2003). Failure to adequately control for the effects of such 

variables can result in bias. A core set of potential confounders were defined and used 

throughout the thesis. In addition to these core confounders, further confounders were 

identified for use in specific sets of analyses (see Table 3.16). In this section, I describe the 

main confounding factors and their (repeated) cross-sectional distribution.  
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Table 3.16 Use of potential confounders across the different chapters of the thesis 

Potential confounder Chapter 5 
 

Baseline 
neighbourhood 

perceptions 

Chapter 6 
 

Neighbourhood 
perceptions 

Chapter 7 
 

Ethnic 
density 

Chapter 8 
 

Trust + Social 
support 

Gender ✔ ✔ ✔ ✔ 

Ethnicity ✔ ✔  ✔ 

Family affluence ✔ ✔ ✔ ✔ 

Free school meals ✔ ✔ ✔  ✔* 

Health condition ✔ ✔ ✔ ✔ 

Household 
composition 

  ✔ ✔ 

Time lived in the 
neighbourhood 

  ✔ ✔ 

Parental employment ✔    

Country of birth ✔    

Season of interview ✔    

Borough ✔    

Distance to school   (✔)  

*time-varying indicator used as opposed to baseline indicator because the analysis does not include 

the baseline data.  

 

 

Previous research has identified associations between gender and physical activity (Health and 

Social Care Information Centre 2017) and also between gender and i) perceptions of the 

neighbourhood environment (Foster & Giles-Corti 2008), and ii) social support (Zimet et al. 

1990). Gender differences in ethnic density were also observed in the sample. Thus, gender is 

a likely potential confounder. Gender is time-invariant during the study period, and the sample 

includes 56.4% of boys and 43.6% of girls.  

 

 

Ethnicity is an important potential confounder. Ethnic differences in physical activity are well 

documented in the UK (Fischbacher et al. 2004, Griffiths et al. 2013, Owen et al. 2009). In 

addition, ethnic differences in perceptions of the neighbourhood (Koshoedo et al. 2015, Lovasi 

et al. 2009, Rawlins et al. 2013), ethnic density (Pickett & Wilkinson 2008) and social support 

(Klineberg et al. 2006) are documented in the literature. ORiEL participants were asked to 

report their race or ethnic background using a question based on the 2011 Census (Office for 

National Statistics 2013b). Twenty-four ethnicity options were provided in the questionnaire 

as well as an opportunity to self-define one’s ethnicity. These were collapsed down to the 

eight largest group in the study, namely: White UK, White Mixed (‘White UK and any other 
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background’), Indian, Pakistani, Bangladeshi, Black Caribbean, and Black African. All other 

ethnic minority groups were collapsed to the Other category. A time-invariant variable was 

constructed based on the answer at wave 3, which was assessed to be more reliable by the 

ORiEL research team. If missing, information from previous waves was used to impute the 

data. 16.9% reported being White UK, 14.9% being Bangladeshi, 11.1% being Black African, 

and 8.4% having a White Mixed background. Remaining ethnic groups (Indian, Pakistani, and 

Black Caribbean) have a prevalence lower than 5% (3.8%, 3.8% and 4.9% respectively) and the 

Other category accounts for 36.2% of the sample.  

 

 

Socioeconomic circumstances are also expected to confound the associations between 

physical activity and aspects of the neighbourhood and home environments studied in this 

thesis (Bécares et al. 2012b, Giles-Corti & Donovan 2002, Laird et al. 2016). I used the revised 

Family Affluence Scale II (FAS) and the receipt of free school meal as my main measures of 

socio-economic circumstances. The revised FAS is a four-item instrument which has been 

validated in studies of adolescents cross-nationally (Boyce et al. 2006) and is predictive of 

physical activity (Currie et al. 2008). The FAS is a material deprivation index of socioeconomic 

status and includes items asking how often the family has taken a holiday in the past year, if 

the family has access to a car/van/truck, if the adolescent shares his/her bedroom and the 

number of computers in the household. Total scores on the FAS range from 0 to 9 and cut-off 

values were defined to result in a 3-category ordinal scale (Boyce et al. 2006): low family 

affluence (score=0,1,2), medium family affluence (scores=3,4,5) or high family affluence 

(scores= 6,7,8,9). At baseline, 53.4% were classified with moderate affluence, 36.1% with high 

affluence, and 10.6% with low affluence. The proportion with low affluence dropped to 5.0% 

and the proportion with high influence increased to 43.9% at wave 3.  

Despite evidence that FAS has good external validity (Boudreau & Poulin 2009), the scale has 

a poor reliability in the ORiEL study (Cronbach’s alpha ≤0.4 at each wave) and in other settings 

(Boudreau & Poulin 2009, Molcho et al. 2007). In addition, the item on car-ownership appears 

to be over-reported compared to official figures available in London (Roads Task Force 2013). 

Nonetheless, given the difficulty of capturing socioeconomic circumstances in adolescents, 

FAS was used in the main analyses, as it appears to be associated with physical activity in the 

expected direction. FAS was however always used in combination with another measure of 

socio-economic circumstances, as recommended in the literature (Molcho et al. 2007).   
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Adolescents were asked whether they receive of free school meal (FSM). At baseline, 37.7% 

of adolescents reported receiving FSM, a figure that decreased to 36.6% at wave 2 and 32.2% 

at wave 3. Investigation of official statistics on FSM in the ORiEL schools revealed that the 

sharp decrease in self-reported receipt of FSM observed between wave 3 and wave 2 could 

not be fully explained by changes in either eligibility or in the actual receipt of FSM (Hatton 

2014, Iniesta-Martinez & Evans 2012). Previous work on FSM reporting (Hobbs & Vignoles 

2007) also revealed a tendency among adolescents to not claim free school meal at older ages 

even if they are entitled to them. This suggests that, at age 12, compared to age 13 or 14, self-

reported receipt of FSM is likely to be a better predictor of FSM eligibility and therefore a 

better proxy for socio-economic status. I therefore treated the variable as time invariant, using 

the baseline values. This use of the baseline variable assumes no change in the affluence level 

over the 3 years of the study. 

 

 

The health status of participants was captured with a series of question on health problems 

that have troubled the participant over a period of time or are likely to affect the participant 

over a period of time (The Health Survey for England 2011). Possible conditions relevant to 

physical activity include mobility problems, longstanding illness, anaemia, asthma, diabetes, 

Chronic Fatigue Syndrome, hay fever, hearing and eyesight problems. A summary variable was 

created and categorised into those reporting no condition; one condition; and, two or more 

conditions. At baseline, 57.5% reported no health condition, 27.7% reported one condition, 

and 14.8% reported two or more conditions. The proportion of those reporting two conditions 

or more slightly decreased at wave 2 (9.6%) and the proportion reporting one condition 

increased (31.3%), probably due to a modification of the response scale between the two 

waves.  

 

 

Household composition was expected to be a potential confounding factor for associations 

between ethnic density, social support and physical activity. Family composition is known to 

be associated with poverty (McLanahan & Percheski 2008). I therefore hypothesised that 

single families are more likely to live in poorer neighbourhoods, which are themselves more 

likely to have greater ethnic densities (Karlsen et al. 2002). Social support was also expected 
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to be higher amongst adolescents living with both parents, which is another indicator of socio-

economic circumstances (Laird et al. 2016). The questionnaire asked adolescents whom they 

lived with most of the time. The variable was recoded into those living with both parents and 

those with other living circumstances, due to small prevalence of other forms of household 

composition. The proportion living with both parents was constant over time and was 

estimated to be 67.7% at wave 1, 69% at wave 2, and 67.5% at wave 3.  

 

 

The time lived in the neighbourhood was expected to be a potential confounder, in particular 

for the associations with ethnic density and neighbourhood trust. Time lived in the 

neighbourhood is a measure of social circumstances which is expected to be related to the 

overall residential mobility process which results in some ethnic minorities living in more or 

less segregated areas. It is also expected to be related to neighbourhood trust in such a way 

that the longer the time spent in the neighbourhood, the higher the level of trust. The ORiEL 

questionnaire included a question asking how long adolescents have lived in their current 

neighbourhood. The question was recoded into 5 years or less vs. 6 years or more. 38.9% 

reported having lived 5 years or less in their current neighbourhood at baseline. That figure 

slightly decreased over time to reach 34.4% at wave 3. 

 

 

The baseline analysis presented in chapter 5 explores the possibility of including parental 

employment as a measure of socio-economic circumstances. The variable has six response 

categories: both parents unemployed (9.4% at baseline); one parent employed (34.7%); both 

parents employed (40.8%); lone parent employed (7.9%); lone parent unemployed (6.3%); 

don’t live with parents (1%).  

 

 

The analysis of the baseline data (chapter 5) hypothesises that country of birth might 

moderate the association between perceptions of the neighbourhood environment and 

physical activity. In the baseline questionnaire, adolescents were asked to report their country 

of birth. The variable was recoded as UK vs not UK. 79.8% reported being born in the UK. The 

variable was however not associated with any of the outcome variables, and was therefore 

not considered for subsequent analyses.   
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The season of interview was expected to be related to perceptions of the neighbourhood 

environment and physical activity, and therefore to be a potential confounder. Using the 

interview date, I create a binary variable that differentiates between interviews taking place 

in winter (57.4% of the interviews) and those taking place in spring (42.6%).  

 

 

It was hypothesised that the borough in which adolescents go to school might be a potential 

confounder for the association between perceptions of the neighbourhood environment and 

physical activity. However, no association was found between the physical activity outcomes 

and borough. The variable was therefore not considered beyond the baseline analysis.  

 

 

Finally, distance between the home address and school, was expected to confound the 

association between ethnic density and walking to school (chapter 7). Such a variable was 

made available by the ORiEL research team who calculated a road network distance between 

participant residential address and school address (Cummins et al. 2017). 

 
 

Gender and ethnicity are the two moderators used in this thesis. Due to sample size limitations 

and restrictions imposed by the strategy used to handle missing data (section 4.3.), only one 

moderator could be used for each analysis. Gender was used as a moderator for the analysis 

of perceptions of the neighbourhood (chapter 6), social support and neighbourhood trust 

(chapter 8), as the literature has suggested that it would be an important moderator to 

investigate (Laird et al. 2016, Owen et al. 2004, Stafford et al. 2007). With respect to the 

analysis of ethnic density (chapter 7), the main expectation is that the ethnic density effect 

differs by ethnic group (Das-Munshi et al. 2010). Ethnicity is therefore the moderator used in 

chapter 7. Due to sample size limitations, those analyses are limited to the four main ethnic 

groups, i.e. White UK, White Mixed, Bangladeshi and Black African. 
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This chapter has set out the key physical activity outcomes and exposures used in the thesis. 

As different types of physical activity are expected to have different determinants, I created 

variables measuring four forms of physical activity12: walking to school, walking for leisure, 

outdoor physical activity, and pay and play physical activity. To explain differences in physical 

activity in adolescents, I operationalised variables of four aspects of the neighbourhood and 

home environments: perceptions of the neighbourhood environment, own-group ethnic 

densities, neighbourhood trust, and social support.  

The descriptive analysis presented in this chapter confirms that many adolescents do not meet 

minimum recommendations for physical activity. At baseline, 20.1% reported not meeting 

physical activity recommendations, a figure that increased to 31.0% two years later. Although 

physical activity appears to be largely over-reported in the ORiEL study, in light of available 

evidence (Scholes 2016), it nevertheless confirms that reported level of physical activity 

decreases as adolescents age. A decrease in all forms of physical activity, except walking to 

school, is observed during the study period. Each of the exposure variables displayed sufficient 

cross-sectional and/or longitudinal variability to justify further investigation of their 

association with the forms of physical activity. 

The next chapter describes the general analytical approach used throughout the thesis in order 

to explore these associations, and outlines a framework for handling missing data using 

multiple imputation.

                                                           
 

12 In addition, two general measures of physical activity were defined: (log of) total physical activity and 
daily recommended physical activity.  
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This chapter sets out a general approach to the methods and analyses employed in the thesis. 

In the data chapter (chapter 3), I presented the ORiEL study and the variables as 

operationalised in this thesis. In this methods chapter, I describe how missing data are handled 

in the thesis, strategies for imputing missing data where relevant, and the statistical methods 

used to analyse the data including both cross-sectional and longitudinal models. Whereas this 

chapter justifies the broader analytical choices and provides a non-technical introduction to 

the statistical methods employed, the subsequent results chapters will lay out the specific 

models employed for each analysis. 

Three important aspects of the ORiEL data guide the overall analytical strategy of this thesis: 

i) the presence of missing data, ii) the complex structure of the data, and iii) the types of 

outcome variable. First, missing values are observed on many variables in the ORiEL study 

(section 3.4). These are a likely source of bias and can decrease precision of the estimates if 

they are not properly handled. Second, the ORiEL study has a complex data structure (section 

3.2.): participating adolescents were surveyed on three occasions (repeated measurements) 

based on their belonging to a school that had been randomly drawn at baseline from eligible 

schools in the ORiEL study context (Smith et al. 2012). Repeated measurements on individuals 

are likely to be more alike than between individuals, likewise adolescents belonging to the 

same school are also likely to be more similar than adolescents in different schools (Rabe-

Hesketh & Skrondal 2012). The two sources of correlation that arise due to the ORiEL study 

design (clustering within individuals, and within schools) must be accounted for because they 

violate the crucial assumption of independence, the foundation of many standard statistical 

techniques (Fitzmaurice et al. 2011). Third, I am interested in a set of physical activity 

outcomes that are predominantly operationalised as binary variables (cf. section 3.5.1.), and 

therefore models for hierarchical discrete data have to be used.  

The analytical strategy of this thesis comprises to main components: missing data handling 

and the selection of a general approach for the main analysis models (also known as the 

models of interest in the missing data literature). With respect to missing data handling, a 

major methodological aspect of this thesis is to provide suitable solution for dealing with 

missing values given: i) the complex data structure of ORiEL; ii) the types of variables (discrete 



  

88 
 

and continuous); and, iii) the interest in interaction terms (e.g. between gender and exposure 

variables). While, this setting might seem quite typical in quantitative epidemiology, only 

recently have software tools been developed that allow for all three circumstances, and some 

gaps remain. Part of this chapter therefore describes how missing data are handled using 

multilevel multiple imputation, and provides sufficient elaboration of the methods used as to 

allow the reader to grasp the statistical complexity of the solution. 

The second component is the choice of a general approach for the main analyses. This decision 

is driven by: i) the types of outcome variables; ii) the complex data structure of ORiEL; iii) the 

interpretability of the parameters; iv) the compatibility with multiple imputation. Models for 

discrete data will be used to handle binary and ordinal outcomes. When clustering is fully 

taken into account, generalised linear models cannot be used however. Alternative models for 

hierarchical discrete data are more complicated and substantially differ from those used for 

Gaussian data. When selecting an approach amongst those available, an important 

consideration is the interpretability of the parameters. In this thesis, the main objective of the 

research questions is to draw inferences about the population-average, as opposed to subject-

specific inference, so that marginal models are preferred. Finally, only models that are 

compatible with multiple imputation are considered, which restricts the choice of the models 

for ordinal outcomes, as indicated in this chapter. 

This chapter presents the two main analytical approaches used in this thesis. It starts with a 

description of the problem of missing data. It then describes how I propose to handle item-

missingness using multilevel multiple imputation. The section includes a general introduction 

to multiple imputation and to the specific approach to imputation used in this thesis. Finally, 

the chapter presents and justifies the analytical approach employed in order to answer the 

epidemiological research questions of this thesis, using generalised estimating equations.  

 
 

This section provides an overview of the consequences that missing data might have on the 

validity of the analyses conducted in this thesis. I first introduce the different types of missing 

data mechanism, then present the potential implications of missing data for this thesis, and 

finally, outline how the two types of missingness (item non-response and unit non-response) 

will be handled in the proposed analyses.  

Missing data are a common problem in investigations involving human participants. Missing 

data are observations we intended to make but did not. Participants may refuse to take part 
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to a study or may choose not to answer survey questions. In longitudinal studies, participants 

may drop out over time or be unable to take part to all waves of data collection. 

Depending on the process by which missing data are generated, known as ‘missing data 

mechanisms’, a standard analysis of the complete cases – participants with no missing data in 

any of the variables required for that analysis – might not lead to valid statistical inference 

about the population targeted. In particular, estimators might be inconsistent (leading to 

biased estimates), confidence intervals might be incorrect, and p-values might be erroneous 

under the null hypothesis (Carpenter & Kenward 2012, Enders 2010). Missing data also 

decrease the statistical power of the analysis by decreasing the effective sample size, and may 

further complicate comparisons across models that differ in the strategy of analysis and in the 

number of observations included. For all these reasons, it is important to explore, interpret 

and reduce the influence of missing data in analyses.  

 
 

In a seminal paper, Rubin (1976) proposed a general framework for the analysis of data with 

missing information and defined three types of missing data mechanism: missing completely 

at random (MCAR), missing at random (MAR), and missing not at random (MNAR). The process 

generating the data is crucial as the validity of the analyses conducted depends on it. A formal 

definition of the three missing data mechanisms is provided in Appendix C (section C.1). 

Broadly speaking, a mechanism is missing completely at random – MCAR – when missingness 

is independent of both observed and unobserved data. This means that missing values are not 

systematically different from the observed values. For example, a respondent might have 

missing values in some questions because a page was missing in his/her questionnaire. 

Missing at random – MAR – means that missingness depends on the observed data, but not 

on the unobserved data. In other words, differences between the observed values and the 

missing values can be explained by differences in the observed data. For example, males might 

be more likely to answer sensitive questions about depression than females, such that once 

gender is taken into account, there are no more differences in the probability in answering the 

questions.  

Missing not at random – MNAR – means that missingness depends on unobserved data, so 

that after the observed data were taken into account, systematic differences remain between 

the missing values and the observed values. For example, adults with very low or very high 

BMI may be more likely to have missing values in a study because they refuse to be weighed. 
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The missing data mechanism might have serious implications for the validity of the analyses 

conducted. In particular, an analysis of complete cases is only valid, in general, if the data are 

MCAR. In practice, however, the missingness mechanism is usually unknown and the MCAR 

conditions are very rarely satisfied. More generally, the statistical literature indicates that the 

bias caused by missing data depends on various factors, which include: the missing data 

mechanism; the role of variable with missing values in the analysis model (i.e. outcome or 

covariate); the estimation method used (e.g. likelihood-based method, moment-based 

method); the statistical method used (e.g. logistic regression); and the role of the variable in 

the analysis model (i.e. outcome or covariate) on which missingness in another variable 

depends (Bartlett et al. 2015a, Carpenter & Kenward 2012, Fitzmaurice et al. 2011, 

Molenberghs & Verbeke 2005). For example, a well-documented scenario in which 

missingness does not generate bias (even if the data are MAR or MNAR) occurs when 

missingness in the covariates does not depend on the outcome (Carpenter & Kenward 2012).  

A detailed investigation of missing data is therefore very important to establishing the 

mechanism at play and the consequent risk of bias. In this thesis, analyses of missing data are 

presented in the appendix of each longitudinal results chapter (Appendix E, Appendix F and 

Appendix G). Although it is not possible to distinguish between MAR and MNAR using observed 

data only, it is possible to rule out the MCAR assumption. In practice, and when the hypothesis 

is coherent with the data, researchers will often assume the data to be MAR, an assumption 

also made in this thesis. The statistical literature also strongly advises that sensitivity analyses 

are conducted, and that different assumptions are made about the missing data mechanism 

(in particular MNAR) to investigate if these affect the conclusions (Carpenter & Kenward 2012). 

This proves difficult however in complex settings and is therefore beyond the scope of this 

thesis. Therefore, a generally accepted practice is to conduct analyses under MAR, if shown to 

be plausible, while bearing in mind that the gold standard would be to perform additional 

sensitivity analyses.  

 

 

In longitudinal studies, researchers are faced with two types of missing data: unit non-

response and item non-response (Fitzmaurice et al. 2011). Unit non-response, or ‘attrition’, 

indicates the loss of participant over time and includes situations where participants return to 
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the study after missing measurement occasions (Goldstein 2009). Patterns of participation in 

a study are described either as ‘monotone’ if a participant drops out, or ‘non-monotone’ when 

participation is intermittent. In addition to the risk of attrition, missingness can also occur if 

an individual participates in a data collection occasion but then fails to provide information on 

one or more variables. This is called item non-response or item missingness. Both sources of 

missingness, unit non-response and item non-response, are likely to lead to bias in the 

analyses if the process is not MCAR.  

In the presence of item-missingness on many variables, multiple imputation is the most 

popular approach to handling missing data when the missing data mechanism is hypothesised 

to be MAR (Carpenter & Kenward 2012, Enders 2010). In particular, multiple imputation allows 

the use of additional variables – known as auxiliary variables – to strengthen the likelihood of 

meeting the MAR assumption (Fitzmaurice et al. 2011). In this thesis, I apply multiple 

imputation to handle item missingness, the general strategy that I employ for multiple 

imputation is discussed in the next section. Prior to the implementation of multiple 

imputation, I establish, for each results chapter, that the complete case analysis is likely to 

lead to invalid inference, and that the MAR mechanism is plausible. The validity of the 

complete case analysis is assessed by analysing whether the probability of being a complete 

case is independent of the outcome, conditional on the covariates in the analysis models 

(Carpenter & Kenward 2012); and the plausibility of the MAR assumption is explored for the 

variables with the highest proportions of missing values, using logistic regression models to 

identify variables predicting missingness (cf. Appendix E section E.1, Appendix F section F.1 

and Appendix G section G.1).  

Accounting for unit non-response is a more difficult task in the context of this thesis. In the 

statistical literature on missing data in longitudinal analysis, unit non-response, and dropouts 

in particular, have often been discussed as a separate topic from item non-response. The use 

of inverse probability weighting, is for example presented as a valid way of accounting for 

dropouts (Fitzmaurice et al. 2011). When unit non-response is not monotone, however, 

and/or when item-missingness is also present, propensity weighting can become very 

cumbersome in practice (Molenberghs & Verbeke 2005). As an alternative, Goldstein (2009) 

proposed a framework for dealing with attrition and item missingness simultaneously, using 

multiple imputation. This approach treats unit non-response as a special case of item non-

response, such that the variables that are missing at a given missing measurement point are 

imputed, even if no observation was made on any of the variables at that time.  
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Implementing this approach within ORiEL is problematic. In fact, the ORiEL study is an area-

based cohort study, which targets adolescents living in East London between 2012 and 2014. 

Attrition is frequent in ORiEL, and there are various reasons for which adolescents may have 

been missed at follow-up. Adolescents may have been absent on the survey day (e.g. due to 

sickness); they may have changed class within their school; they may have transferred to a 

different school within the study area that did not participate in the study; or they may have 

moved out of East London altogether. The later possibility is particularly problematic, as 

inference from the ORiEL study should not include participants who are no longer part of the 

study area. This is the case because of the so-called ‘selection mechanism’ in neighbourhood 

effects research (Oakes 2004). The socio-economic processes that sort individuals into or out 

of particular places suggests that it is very likely that adolescents who have moved, are 

dissimilar to those who have remained (Sampson 2012). In this sense, adolescents who move 

out of the study areas may not be representative of the targeted study population, and 

imputing attrition for those adolescents might generate bias with respect to the inference on 

residents living in the area over the study period. Whereas imputation would be 

recommended for attrition of adolescents who have stayed in East London, it was not deemed 

possible to distinguish reasons for unit non-response. As a result, any difference in the 

observed survey responses between individuals with or without attrition would not provide 

meaningful information about bias. I therefore decided not to impute unit non-response in 

this thesis and to restrict the analysis to the balanced panels as described in section 3.3. As a 

result, inference is restricted to adolescents who attended schools in the ORiEL study area 

over the study period. It is noteworthy that even if I had wished to impute unit non-responses, 

this would have proved computationally challenging and very time consuming due to the much 

increased frequency of missing data and the sophisticated imputation strategy implemented 

in the thesis. The next section presents the approach used to handle item non-response with 

multiple imputation. 

 
 

Making an informed decision on how to best approach multiple imputation, given the 

specificity of the ORiEL data, has been an important undertaking of this thesis. Advanced 

multiple imputation methods are implemented to account for the 3-level hierarchical 

structure of the data (repeated measurements, individuals, schools), to allow for mixed 

response types (continuous and discrete) and to allow for interaction terms between exposure 

variables and hypothesised moderators (gender and ethnicity). Given the relative novelty of 
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the approach and the level of computational and statistical sophistication of the methods 

used, the following section provides an extensive description of the imputation approach used 

in this thesis. I first introduce the general principles of multiple imputation. Then I present how 

the imputation model was chosen in light of three important considerations: the multilevel 

structure of the data, the presence of mixed response types; and, the inclusion of interaction 

terms. On this basis, I present the general multiple imputation framework used: multilevel 

joint models with underlying latent normal distributions for discrete variables. I conclude this 

section with a description of variable selection, diagnostics, and a brief presentation of the 

statistical package used to impute the data (‘jomo’ package in R).  

 
 

Multiple imputation (MI) is a general approach used to handle missing data, which is 

particularly suitable when missingness is present on multiple variables. MI works by replacing 

each missing value not with a single missing value estimate, but with a set of plausible values 

(creating M plausible sets). These imputed values are sampled from their predictive 

distribution based on observed data, which incorporates uncertainty about the true value of 

the missing data into the imputation model. Each M imputed data set is then analysed in turn, 

using standard statistical methods. Individual estimates for each of the imputed datasets will 

differ because of the uncertainty introduced around the imputed values. Combined estimates 

for all M datasets are made by taking the average of the M results, standard errors are 

calculated using Rubin’s rules (1987) which combine the M standard errors and account for 

the variability in the results between the imputed datasets (Figure 4.1). Throughout this thesis, 

the MI analyses will be assumed data to be MAR; the plausibility of the assumption is explored 

in each separate results chapter (cf. Appendix E section E.1, Appendix F section F.1 and 

Appendix G section G.1).  

Under the MAR assumption, the MI procedure models the distribution of each variable with 

missing values, based on the observed data. An advantage of MI is that there is no need for 

the analysis model to exactly match the imputation model. The main requirement is that the 

imputation model should be at least as complex as the model used to analyse the data. Having 

a richer imputation model can be an advantage by allowing the inclusion of some variables 

that might provide further information about the missing data mechanism. In practice, under 

the MAR assumption, such auxiliary variables should be included in the imputation model if 

they are either predictive of missing values; or predictive of missing values and predictive of 

the chance of the data being missing. In the first scenario, efficiency will be improved (i.e. 
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standard errors will be smaller), whereas in the second scenario both an improvement of 

efficiency and a reduction in bias will result (Carpenter & Kenward 2012, Fitzmaurice et al. 

2011). In this thesis, such auxiliary variables are identified for each results chapter separately, 

using generalised linear models (cf. Appendix E section E.1, Appendix F section F.1 and 

Appendix G section G.1). Finally, it should be stressed that all variables included in the analysis 

model have to be included in the imputation model. To not include all variables might cause 

bias and does not guarantee that Rubin’s rules hold (Carpenter & Kenward 2012). More details 

on the imputation procedure are presented in Appendix C (section C.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Beyond the general MI procedure, there are two main approaches to conducting multiple 

imputation: joint modelling and full conditional specification13. Joint modelling imposes a 

multivariate normal distribution of continuous variables with missing values, while discrete 

variables are treated using a latent normal distribution approach (Goldstein et al. 2009). Full 

conditional specification allows the specification of different imputation models for different 

variables with missing values, and better handles a mixture of continuous and discrete 

                                                           
 

13 Note that MI models are also implemented within a fully Bayesian approach to inference (and not 
just at the imputation stage). Those models are beyond the scope of this thesis, which takes a 
frequentist approach to inference.  

If 𝜃 is a parameter of interest, let the multiple imputation estimate of 𝜃 

be 𝜃𝑀𝐼. Then,  

𝜃𝑀𝐼 =
1

𝑀
∑ 𝜃𝑚

𝑀

𝑚=1

 

Where 𝑚 is an imputed dataset in the set of 𝑀 imputed datasets. 

Further define the within imputation (𝜎̂𝑤
2 ) and between imputation (𝜎̂𝑏

2) 

components of variance by  

𝜎̂𝑤
2 =

1

𝑀
∑ 𝜎̂𝑚

2 ,

𝑀

𝑚=1

     and        𝜎̂𝑏
2 =

1

𝑀 − 1
∑(𝜃𝑚 − 𝜃𝑀𝐼)

2,

𝑀

𝑚=1

 

        then                             𝜎̂𝑀𝐼
2 = (1 +

1

𝑀
) 𝜎̂𝑏

2 + 𝜎̂𝑤
2 , 

Where 𝜎̂𝑀𝐼
2  is the multiple imputation estimate of the variance of 𝜃. 

 

So the estimated standard error of 𝜃𝑀𝐼 is 𝜎̂𝑀𝐼. 

 

Figure 4.1 Rubin’s rules to combine multiple imputation estimates 
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variables. Joint modelling is more well-grounded theoretically than full conditional 

specification (also known as imputation by chained equations), but results are comparable in 

simple multivariate normal settings (Goldstein et al. 2009). Whereas full conditional 

specification is appealing in simple settings with mixed variable types, the choice of the 

imputation framework requires further consideration in more complicated situations, such as 

the one tackled in this thesis. 

In this thesis, the choice of imputation framework was guided by the nature of the data. Key 

elements considered are the data structure (3-level structure: repeated measurements, 

individuals, schools), the variable types (continuous and discrete variables), and the presence 

of interaction terms (gender*exposure interactions and ethnicity*exposure interactions). 

Following an examination of the literature, I decided to impute the data using a multilevel 

approach within the joint modelling framework. The justification for this approach is described 

in the following three sections. 

 

 

The ORiEL data have a three-level hierarchical structure: adolescents are nested within schools 

and repeated measurements are made on the adolescents. In these contexts, observations 

cannot be assumed to be independent, they are nested within a group or cluster and therefore 

correlated (Fitzmaurice et al. 2011). The imputation method used needs to account for such 

correlations, otherwise bias in both point estimates and standard errors are likely to occur 

(Carpenter et al. 2011). Multilevel models offer the most flexible approach to handling missing 

data with a complex structure.  

Despite widespread use of multilevel models in general, multilevel solutions for MI that allow 

for a mixture of variable types have only been recently proposed in the literature, and they 

are still not widely implemented in statistical packages (Bartlett 2011, Carpenter et al. 2011, 

Enders et al. 2016, Goldstein et al. 2009, Grund et al. 2016, Kalaycioglu et al. 2016, Lüdtke et 

al. 2017, Quartagno et al. 2018).  

Whereas full condition specification and joint modelling are often equivalent with single-level 

data, the methods tend to be quite different in a multilevel context, even if the data are 

normally distributed (Enders et al. 2016). Joint modelling has the advantage of more naturally 

extending from a single level structure to a multilevel one, using the multivariate normal 

distribution (Goldstein et al. 2009). Conversely, random effects implementations of the full 

conditional specification do not allow for the specification of a separate model for each type 

of variable, which is the most appealing feature of the fully conditional specification approach. 
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Attempts to combine generalised linear mixed models with chained equation imputation have 

been unsuccessful and cast doubt on the viability of the overall strategy (Enders et al. 2016). 

As a result, current multilevel full conditional specification approaches are only well suited for 

normally distributed variables, which makes the approach unusable in the context of this 

thesis. Joint modelling, on the other hand, can handle discrete data in its multilevel extension 

by relying on the latent normal distribution. This is the approach followed in this thesis. 

However, the current implementation of joint modelling is restricted to 2-level models in the 

presence of discrete variables (Goldstein & Carpenter 2015). 

It should be noted that alternatives to multilevel multiple imputation exist. ‘Fixed effects’ 

models have been suggested as an alternative analytical strategy which is able to benefit from 

the flexibility of the full conditional specification while accounting for the hierarchical 

structure of the data (Enders et al. 2016). Fixed effects models are particularly relevant for 

repeated measurements. Such models incorporate values of the measures at previous and 

subsequent time points as fixed effects in the imputation model (Kalaycioglu et al. 2016) and 

correlation between repeated measurements is accounted for by using an auto-regressive 

correlation structure. Fixed effects estimations have several drawbacks, however: they are 

computationally demanding, they often require many parameters in the imputation model, 

and they are subject to model convergence problems (Enders et al. 2016, Kalaycioglu et al. 

2016). An alternative solution that accounts for the correlation across repeated 

measurements is to structure the data in the wide format (so that each measurement occasion 

is treated as a separate variable, and each row is a single participant) in combination with a 

single-level joint modelling or full conditional specification. This approach is also known as the 

multivariable approach (Verbeke & Molenberghs 2009). It proves to be viable when the 

number of repeated measurements is limited and observations are made at fixed time points. 

This approach is also explored in this thesis, in combination with a multilevel joint model in 

order to be able to fully account for the 3-level structure of the data.  

 

 

The joint modelling framework is particularly suitable for handling Gaussian variables. 

However, as shown in the data chapter (section 3.5.), the variables used in this thesis include 

a mixture of continuous Gaussian, continuous non-Gaussian, ordinal, nominal, and binary 

variables. To handle these, I am following the recommendations from Goldstein et al. (2009) 

within the joint modelling framework. 
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Goldstein et al. (2009) advise that continuous non-Gaussian variables are transformed to make 

them look approximately normally distributed. If no suitable transformation is available, they 

suggest categorising the distribution and treating it as an ordinal variable. Transforming key 

variables, that are included in the analysis models, might have serious consequences however. 

For example, a recent simulation study (von Hippel 2013) indicates that transforming skewed 

variables to make them look Gaussian might distort the relationship between the variables on 

their original scales and therefore might introduce more bias than the bias caused by the 

violation of the normality assumption. In this thesis, the continuous, approximately Gaussian 

variables (e.g. ethnic density variables) are used as such. Skewed variables (e.g. social support 

variables) are categorised in the imputation model and in the analysis models. Some auxiliary 

variables, not used in the analysis models, are transformed to the Gaussian distribution (e.g. 

log of total physical activity and squared WEMWBS mental health score).  

For discrete imputation, Goldstein et al. (2009) propose making the assumption that a normal 

distribution underlies each discrete variable. This ‘latent variable’ formulation is very 

convenient because it does not entail any substantial modification of the imputation strategy 

used for Gaussian variables. The fitted multivariate normal response model simply allows for 

the generation of numerically continuous imputed values for the latent normal variables, as 

with the continuous Gaussian variables. The imputed values on the latent normal variable then 

need to be converted into the appropriate observable discrete scores.  

Binary variables are handled using a probit link function. For ordinal variables, a probit 

analogue of the proportional odds model for ordinal data is used. The joint model predicts 

mean value of the latent variable distribution, while the variance of the latent variable is set 

to one to ensure identification. The latent variable distribution is divided into segments, using 

threshold cut-offs (one fewer than the number of modalities). These allow for the attribution 

of a discrete score corresponding to each value of the latent distribution. 

Finally, unordered discrete variables are handled using the maximum indicant model 

(Carpenter & Kenward 2012). The model specifies a latent Gaussian variable for all but one 

category of the variable, which forms a multivariate Gaussian distribution. Restrictions are 

included on the covariance of the latent variables.  

The latent normal distribution approach requires a slight modification of the Markov Chain 

Monte Carlo (MCMC) estimate used to estimate the imputation model (cf. Appendix C section 

C.2). Given that latent scores are never observed, the procedure for sampling plausible latent 

variable scores and imputing missing values are the same. There is a slight difference in the 

procedure however: if a value was observed, the sampling procedure restricts latent variable 
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scores to the range of latent values corresponding to the observed value (this is known as the 

rejection sampling procedure). If a value was missing, the sampling of values does not make 

such a restriction, allowing imputed values to be obtained. Note also that the Metropolis-

Hastings algorithm (Gelman et al. 2003) is needed to update the covariance matrix (due to a 

constraint set on the variance of the latent variables), as opposed to the Gibbs sampler used 

in the multivariate normal case. For ordinal variables, the Gibbs sampler also necessitates an 

additional step to generate the thresholds parameters (Carpenter & Kenward 2012).  

Most of the variables used in this thesis are discrete, meaning that the imputation approach 

relies heavily on the latent normal distribution. Using separate models as in single-level full 

conditional specification would have been the preferred approach, but I have explained 

(section 4.3.2.1) that this was not possible in the multilevel context. It should also be noted 

that the recommended approach to dealing with ordinal variables is not implemented in the 

software package used for imputation, so the approach for unordered variables is used 

instead. 

 

 

So far, I have discussed how I account for the multilevel structure of the data using multilevel 

joint modelling and how I handle a mixture of variable types with the underlying latent normal 

variable approach. A third important characteristic to take into account when specifying an 

approach to multiple imputation is the presence of interactions or linearities. The inclusion of 

interaction terms or non-linear relationships in the analysis model (i.e. model of interest) has 

non-trivial implications for the specification of the imputation model. In this thesis, I am 

interested in the interactions between a number of exposure variables (with missing values) 

and gender (fully observed), and between exposure variables (with missing values) and 

ethnicity (fully observed). This sections presents an overview of the issue and specifies the 

solution used in this thesis. 

When MI is used, it is important to ensure that all the parameters of the analysis model are 

included in the imputation model. In other words, the analysis model should be at least as rich 

as the imputation model (Bartlett et al. 2015b). An important practical consequence is that 

interaction terms and non-linear effects in the analysis model should be included in the 
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imputation model. Ignoring them would most likely attenuate estimates of the corresponding 

parameters (Carpenter & Kenward 2012)14.  

Unfortunately, handling interactions/non-linearities is not straightforward. Methods used to 

properly handle interaction/non-linearities go beyond simply adding an interaction/quadratic 

variable into the imputation model. This approach known as ‘just another variable’ has been 

shown to perform poorly under MAR (Carpenter & Kenward 2012). Overall, the ability and 

ease of handling interactions/non-linearities depends on the type of variable, whether missing 

values are involved, and the imputation framework used. Additional complications might also 

arise when the hierarchical structure of the data needs to be accounted for in the imputation 

model. Fitting appropriate imputation models with interactions within the joint modelling 

framework or within the fully conditional specification can then become very complicated 

(Bartlett et al. 2015b).  

However, if the interaction involves a discrete variable that is fully observed, it is possible to 

impute the data separately for each stratum of the variable and then to combine the imputed 

datasets at the end of the imputation phase (Carpenter & Kenward 2012). Doing so allows for 

the preservation of interaction terms between the stratification variable and other variables 

included in the imputation model. This simple solution is used in this thesis, meaning that 

imputations will be stratified and imputed either by gender, or by ethnic group, depending on 

the research question. 

 
 

In the preceding section, I have provided a general justification as to why I am using a joint 

modelling framework to impute the data. In this section I provide a more detailed presentation 

of the framework. I first present joint modelling in a single-level setting, and then specify how 

the approach can be extended to a multilevel setting.  

 

 

Joint modelling became a very popular and pragmatic solution to missing data problems in the 

2000s, particularly following Schafer’s work (1997). The joint modelling approach is 

                                                           
 

14 Note that even if interaction and non-linear effects are not of direct interest, it has been suggested 
that they be included if they improve the model fit of the imputation model and therefore increase the 
likelihood that the MAR assumption is satisfied (Carpenter & Kenward 2012). 
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theoretically well justified and computationally efficient, at least when the data follow a 

multivariate normal distribution (Goldstein & Carpenter 2015). Essentially, variables with 

missing data (represented by the vector Y) are assumed to form a joint model that follows a 

multivariate normal distribution:  

 𝒀~𝑵(𝜷,𝜴) 

 

(1) 

where Ω is the unstructured covariance matrix, and β a vector representing the mean value of 

each variable.  

Using joint models as an imputation framework is appealing because these models preserve 

important features of the joint distributions of the data in the imputed data sets (such as 

means, variances and correlations). They also preserve the joint distribution of the variables 

in Y and, therefore, automatically preserve linear relationships between any of these variables.  

The Gibbs sampler is the MCMC algorithm commonly used both to estimate the parameters 

of the multivariate normal joint model of equation (1) and to impute the missing data 

(Carpenter & Kenward 2012) (cf. Appendix C section C.2 for more detail on the imputation 

procedure). The Gibbs sampler is first initialised by choosing starting values for the parameters 

of the model, including the missing values, which are treated as parameters in the Bayesian 

sense (i.e. distributions, cf. Appendix C section C.2). In practice, the expectation-maximisation 

(EM) algorithm (Molenberghs & Verbeke 2005) is often used to obtain initial values, which is 

convenient because convergence is usually quicker, and the non-convergence of the EM 

algorithm can indicate data problems early on (Carpenter & Kenward 2012). The Gibbs 

sampler then draws new values for each parameter in turn, including the missing data. Given 

that each observation might have a different missingness pattern, the draw of missing values 

is done for each observation in turn. The sampler runs a number of times which results in 

different draws every time, as the distribution of the parameters is updated at each cycle. 

Once the Gibbs sampler has converged to its distribution, the current draws of missing values 

together with observed values, are used to form the first imputed dataset. The sampler is then 

updated another n times until an approximately independent draw is obtained. A second 

imputed dataset can then be retained. This is repeated until the desired number (M) of 

imputed datasets is reached. M is set to 20 in this thesis.  

 

 

Goldstein et al. (2009) generalised Schafer’s joint model (1997) to account for a multilevel 

structure. In addition, Goldstein et al.’s approach is able to handle non-Gaussian variables that 
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might be partially missing at different hierarchical levels (section 4.3.2.2.). Multilevel models 

with multivariate mixed response types are the types of models used to impute the data in 

this thesis. This section describes these models in more detail, using Goldstein and Carpenter’s 

terminology (2015). 

Consider a two-level analysis model:  

 𝑌𝑖𝑗 = 𝑋𝑖𝑗
(1)𝛼1 + 𝑋𝑗

(2)𝛼2 + 𝑍𝑖𝑗𝑢𝑗 + 𝜖𝑖𝑗  

𝑢𝑗~𝑁(0, Ω𝑢
2), 

𝜖𝑖𝑗~𝑁(0, 𝜎𝜖
2). 

 

 

 

(2) 

Where j=1,…,J indexes level 2 units and i=1,…,n indexes level 1 units, as conventionally done 

in the multilevel literature. 𝑌𝑖𝑗  refers to the outcome measured at level 1, 𝑋𝑖𝑗  to level 1 

covariates, 𝑋𝑗 to level 2 covariates, 𝑍𝑖𝑗  to covariates with random coefficients 𝑢𝑗 at level 2. The 

random coefficients 𝑢𝑗 are assumed to follow a multivariate normal distribution, independent 

of the level 1 residuals 𝜖𝑖𝑗.  

Any of the variables of the multilevel analysis model of equation (2) might have missing 

observations. For now, I assume that these variables are jointly multivariate normal, but this 

can be extended using the latent multivariate normal approach (section 4.3.2.2.). A multilevel 

imputation model can be formed using the response and the covariates and treating them as 

joint outcome variables of a so-called joint multilevel multivariate normal model. The model 

can be written as:  

 𝑌𝑖𝑗
(1) = 𝛽(1) + 𝑢𝑗

(1) + 𝜖1𝑖𝑗 

𝑌𝑗
(2) = 𝛽(2) + 𝑢𝑗

(2) 

𝜖1𝑖𝑗~𝑀𝑉𝑁(0, Ω1), 

𝑢𝑗 = (𝑢𝑗
(1)𝑇 , 𝑢𝑗

(2)𝑇)
𝑇

, 

𝑢𝑗~𝑀𝑉𝑁(0, Ω2). 

 

 

 

 

 

(3) 

There are as many level 1 outcomes as there are level 1 variables in the analysis model 

(outcome and covariates) and there are as many level 2 outcomes as there are level 2 

covariates. Note that the superscripts (1) and (2) in the analysis model presented in equation 

(2) indicate the equation which the covariates end up in the imputation model of equation (3). 

Each outcome is represented by a 𝛽 parameter, which corresponds to the mean value of the 

variable, and some variation (residuals 𝜖1𝑖𝑗 and random effect 𝑢𝑗
(1)

for level 1 variables 𝑌𝑖𝑗
(1)
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and random effect 𝑢𝑗
(2)

for level 2 variables 𝑌𝑗
(2)

). Both 𝜖1𝑖𝑗 and 𝑢𝑗 are assumed to follow a 

multivariate normal distribution. The individual and cluster level residuals are treated as 

independent and unstructured covariance matrices are assumed.   

The attractiveness of such a model (3) is that it can be used to impute missing values in both 

level 1 and level 2 variables. The model is (at least) as complex as the analysis model, as 

required to ensure the validity of Rubin’s rules and consistency of parameter estimates 

(Carpenter & Kenward 2012). Auxiliary variables can be included in the imputation model if 

they provide information about the missingness mechanism. These should be included as 

outcomes if they include missing data. If fully observed, they could be included as covariates, 

although including them as outcomes might have advantages, such as allowing easily to verify 

if the imputation model is compatible with the analysis model (Quartagno & Carpenter 2016). 

Details on how the imputation model is fitted are given in Carpenter and Kenward (2012) and 

in Goldstein et al. (2009). The overall MCMC algorithm described in section 4.3.3.1. is also used 

(see also Appendix C section C.2 for an overview of the imputation procedure). In practice, the 

Gibbs MCMC sampler is updated a number of times (typically at least 1,000) so that the model 

converges to the posterior distribution (known as the ‘burn-in’ period). Datasets can then be 

drawn from the posterior distribution (including both imputed and observed data). The 

sampler then needs to be updated a number of times (typically at least 100 times) between 

two retained imputed datasets in order to ensure that datasets are stochastically independent 

given the observed data (known as the ‘n-between’). The analysis model can then be applied 

to each imputed dataset and the results combined for inference using Rubin’s rules.  

 
 

Having chosen and detailed the general approach used to impute the data in this thesis, this 

section specifies two more practical aspects of multiple imputation. I briefly describe the 

variable selection process in an imputation model and specify how convergence of the model 

should be assessed before using a model to impute the data.   

 

 

To ensure the validity of the inference made, the imputation model should be at least as rich 

as the analysis model that uses the imputed data. This means that the imputation model 

should include all the variables included in the analysis model, it should account for the 

hierarchical structure of the data (at least to the same extent as in the model if interest), and 
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it should handle non-linearities and interactions. In addition, auxiliary variables could be 

included in the imputation model if they are expected to provide additional information about 

the missingness mechanism. Under the MAR assumption, auxiliary variables can potentially 

reduce bias compared to an analysis conducted as a complete case analysis and can increase 

efficiency, i.e. lead to more precise estimations (Carpenter & Kenward 2012). 

To identify auxiliary variables, preliminary analyses are conducted using the complete cases 

(restricted to almost fully observed variables), in order to identify which variables are 

predictive of the chance of missing values, and which variables are predictive of the variables 

with missing values. Such analyses are presented in appendix of each longitudinal results 

chapter (Appendix E section E.1, Appendix F section F.1 and Appendix G section G.1). It was 

shown (Carpenter & Kenward 2012) that an auxiliary variable should be included in the 

imputation model in two different scenarios under MAR. If the auxiliary variable predicts the 

variable with missing values, then including it can improve efficiency of the inference made 

(i.e. reduce the standard errors). In addition, if the auxiliary variable predicts both the variable 

with missing values and the probability of being missing, it should also be included because it 

is likely to reduce bias and improve efficiency. An auxiliary variable should however be 

excluded if it only predicts the probability of being missing. Including it would not add 

anything, and would most likely slow the imputation process down. It is also important to bear 

in mind that, in the joint modelling framework, the same imputation model is used for all 

variables, so that any auxiliary variable is going to be used to predict the missing values of all 

variables with missingness.  

Once a set of auxiliary variables has been selected and an imputation model specified, the next 

step is to ensure that the model parameters converge to a posterior distribution. Once 

convergence has been confirmed, the model can be used to impute the data.    

 

 

The purpose of diagnostic analysis is to ensure that the results of the MCMC procedure can be 

used to impute missing data. One needs to decide on two parameters before registering 

imputations: the number of burn-in iterations and the between-imputation iterations (n-

between). A burn-in period is used in order to allow the MCMC sampler to reach convergence, 

implying that the distribution is stationary. The burn-in period should be sufficiently long so 

that, after a series of iterations, the distribution of data points does not change as the chain 

progresses (relatively constant mean and variance). Convergence should be checked for all 

parameters using time-series plots (or trace plots) of the MCMC chains of the parameters. The 
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same time-series plots, together with autocorrelation plots are also useful to determine the 

between-iteration length. Ideally, the number of iterations between imputation registrations 

should be longer than the systematic cycles observed in the time-series plots. A general rule 

of thumb is that the n-between should be selected so that the autocorrelation function (ACF) 

lies between -0.05 and 0.05 from the corresponding lag value. 

Because of the constraint of the latent variable model, the covariance matrices are not 

estimated with the Gibbs sampler but with a Metropolis-Hastings step (Carpenter & Kenward 

2012). Consequently, time-series plots of elements of covariance matrices related to discrete 

variables look quite different because the parameters are not updated at each iteration. It is 

generally considered that a sampler is satisfactory when it is updated for at least 10 percent 

of the iterations and possibly 25 percent (Roberts et al. 1997). A good mixing of the MCMC 

chain is still expected in the long run. Note that with the Metropolis-Hastings step, the 

autocorrelation plots become very difficult to interpret and are therefore not presented. 

Given the complexity of the multilevel imputation models used, it is not possible to analyse 

the convergence of all the parameters in the models. Focus therefore fell on the analysis on 

the 𝛽 parameters (including level 2 𝛽’s), the level 1 and level 2 variances, and the level 1 and 

level 2 covariances involving the outcomes of the analysis models (e.g. walking to school, 

walking for leisure and outdoor physical activity). In this thesis, level 1 and level 2 𝛽 coefficient 

matrices are referred to as ‘Beta’ and ‘Beta2’ respectively and level 1 and level 2 covariance 

matrices are referred to as ‘Omega’ and ‘Cov u’ (or ‘Covariance u’) respectively. Relevant 

diagnostic graphs are presented in the longitudinal results chapters (chapters 6-8).  

 

 

If the diagnostic analysis indicates poor evidence of convergence, the imputation model can 

be re-specified such that convergence is achieved. This process may involve a reduction in the 

number of categories of some of the non-continuous variables or the exclusion of problematic 

auxiliary variables. The overall structure of the imputation model could also be changed. In 

particular, the ORiEL data has a 3-level structure and available packages only allow for multi-

level models with a 2-level structure (with discrete variables). There are therefore different 

ways of specifying the imputation model (cf. section 6.4.1.2. for an illustration). Including fully 

observed variables as outcomes instead of covariates is also another modification that might 

solve convergence issues (Quartagno & Carpenter 2016).   
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This final section on multiple imputation describes the statistical package used to implement 

the analytical approach proposed. Considerable detail is provided in this section given the 

relative novelty of the package and the imputation approach used.  

Multilevel joint models are available in a number of major statistical packages such as SAS, 

Stata, Mplus, MLwiN and R (‘pan’ and ‘jomo’ packages). However, few packages allow for the 

use of non-Gaussian variables. Mplus implements an algorithm that deals with ordinal and 

binary variables, but offers no solution for un-ordered discrete variables, which is a major 

drawback given that such variable types are very frequent (see Enders (2016) for an overview). 

The multilevel imputation model proposed by Goldstein et al. (2009) was implemented in 

REALCOM-IMPUTE (Bartlett 2011, Carpenter et al. 2011) and more recently in the ‘jomo’ R 

package (Quartagno et al. 2018). These two implementations use the latent normal 

distribution approach described in section 4.3.2.2. Current implementations only allow for 2-

level models in the presence of discrete variables (Goldstein & Carpenter 2015). 

For this thesis, the ‘jomo’ package used only implements the solutions for unordered and 

binary variables, whereas REALCOM-IMPUTE also accommodates the proportional probit 

model for ordinal variables. Despite this limitation, Quartagno (2016) showed in a simulation 

study that the algorithm for unordered discrete variables works relatively well with ordinal 

data. More generally, the ‘jomo’ package is preferred over REALCOM-IMPUTE because it is 

more computationally efficient, which means that requires much less time to run the 

imputation models (Quartagno 2016). In fact, it was designed to overcome the computational 

inefficiency of REALCOM-IMPUTE, which was perceived as a major drawback. Consequently, 

the ‘jomo’ package allows for the implementation of much more comprehensive imputation 

models than REALCOM-IMPUTE. Previous work using the ORiEL data in REALCOM-IMPUTE 

required restrictions on the number of discrete variables used and the re-categorisation of 

many of the included variables (Fahy et al. 2016). Given that I wanted to avoid such a limitation 

in my thesis, and to explore whether it was possible to handle missing data without having to 

restrain the main analyses, I opted for the ‘jomo’ R package. 

 

 

To run imputation models with ‘jomo’, one first needs to load and ‘attach’ the data in R (R 

Foundation for Statistical Computing 2017) and to define ‘data.frames’ for each type of 

variables: level 1 outcomes Y, level 2 outcomes Y2, level 1 fully observed covariates X1, and 
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level 2 fully observed covariates X2. At least a Y data.frame should be specified. The following 

example uses the dataset ‘mypanel’ to define 4 data.frames:  

data(“mypanel”) # load the dataset 

attach(mypanel) # attach it 

 

# define the data.frame with the level 1 outcomes 

Y <- data.frame(lntotpa, walk, health)  

 

# define the data.frame with the level 2 outcomes  

Y2 <- data.frame(fsm)  

 

# define the data.frame with the level 1 covariates 

X <- data.frame(rep(1,nrow(Y)),gender)  

 

# define the data.frame with the level 2 covariates 

X2 <- data.frame(rep(1,nrow(Y)),gender)  

 

R automatically distinguishes continuous from discrete variables. Discrete covariates in the 

imputation model with more than two categories should be manually included using n-1 

dummy variables. In order to add an intercept to the imputation model, a column of ones must 

be included in the X and X2 data.frames. If the data have a hierarchical structure that needs 

to be accounted for, a data.frame should also specify a cluster identifier. In this example, with 

repeated measurements on the same units, the respondent ‘id’ is specified as the cluster 

data.frame:  

clus <- data.frame(id)  

The jomo package contains two core functions: the imputation function and an MCMC 

diagnostic function. 

jomo: is the primary function of the package. It is used to define and run the imputation model. 

One simply has to specify the role of the data.frames in the imputation model. The following 

command runs the multilevel model with level 1 and level 2 outcomes and covariates above 

defined:  

imp <- jomo(Y=Y, Y2=Y2, X=X, X2=X2, clus=clus)  

The desired numbers of burn-in (nburn), n-between (nbetween) and imputed datasets (nimp) 

can be specified, as well as the values of the parameters of the model at which the sampler 

starts. The latter option is useful if a series of burn-in iterations was previously run and the last 

values of the parameters was saved at the end of the process. The output of the jomo function 

is a data.frame which includes the original and the imputed datasets.  
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jomo.MCMCchain: this function is used to check whether the sampler has reached a 

stationary distribution by running a certain number of iterations, nburn. To assess whether 

the model in this example has converged after 5,000 iterations, the following function is used:  

imp <- jomo.MCMCchain (Y=Y, Y2=Y2, X=X, X2=X2, clus=clus, 

nburn=5000)  

The function collects the value of all parameters of the imputation model at each of the 5,000 

iterations. Values can be used to draw a trace plot (i.e. time-series plot) and autocorrelation 

plots for convergence assessment of parameters from the four matrices of the model: Beta 

(level 1 𝛽 coefficients), Beta2 (level 2 𝛽 coefficients), Omega (level 1 covariances of residuals) 

and Cov u (level 2 covariances of random effects). Jomo.MCMCchain is also used for each 

imputation model with a burn-in 𝑛burn=2 to make sure that the intended model was correctly 

specified. This is equivalent to the ‘dryrun’ command in Stata.  

Because of the complexity of some of the imputation models tested, R faced memory issues 

when trying to store parameters values over many iterations. Running long MCMC chains and 

saving the results is possible by breaking the long chain into smaller chains. This is possible 

using jomo.MCMCchain and saving the final values of the parameters at the end of a block of 

iterations and subsequently using those values as starting values of the next block. This 

strategy allows the user to run as many burn-in iterations as necessary for convergence 

assessment.  

A real-life example is provided in Appendix C (section C.3). The example corresponds to the 

final imputation model of chapter 6 (section 6.4.1.2.). The model equation is provided, 

followed by the R codes used to fit the model. As the appendix shows, using ‘jomo’ allowed 

me to fit a very comprehensive model that includes all the variables I wanted to include in my 

analysis model, it accounts for the hierarchical structure of the data and it further includes a 

series of auxiliary variables which are used to improve efficiency and reduce potential bias. To 

my knowledge, no such comprehensive multilevel imputation models that includes so many 

discrete variables has been fitted to date.  

In the next section, I describe the analytical approach used to answer the epidemiological 

research question of this thesis. The analytical approach will have to be able to handle the 

imputed datasets produced in a first instance. 
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This section sets out the general analytical approach used to answer the research questions 

posed in this thesis (section 2.5.). The focus here is on the analytical strategy for the main 

results chapters (chapters 6-8) in which I use the longitudinal data and handle missing data as 

detailed in section 4.3. The research questions of those chapters (sections 6.2., 7.2., and 8.2.) 

involve the use of the longitudinal data, for which a 3-level structure is observed (repeated 

measurements, individual, school). Secondary research questions in chapters 5 and 7 do not 

require longitudinal modelling (e.g. after the creation of cumulative exposure variables over 

time, or the calculation of change scores between two waves) but still involve a 2-level 

structure (adolescents clustered in schools) that needs to be accounted for. These models are 

referred to as cross-sectional models in this thesis15.  

As described in section 4.1., the choice of the analytical approach in this thesis is driven by: i) 

the use of binary and ordinal outcomes; ii) the hierarchical structure of ORiEL data; iii) the 

interpretability of the parameters in terms of population average; iv) the compatibility with 

multiple imputation. 

In this section I briefly explain why marginal models estimated with the generalised estimating 

equations (GEE) method are the preferred approach and then further present the GEE 

method, and its application for logistic and proportional odds models in combination with 

multiple imputation described above. Detail on the choice of GEE as opposed to alternative 

modelling approaches (including generalised linear models with cluster-robust standard 

errors, fixed effects models and random effects models) is provided in Appendix C (section 

C.4). 

 

 

Marginal models for hierarchical discrete data are used throughout this thesis. This analytical 

approach is convenient because it can be used to answer research questions involving 

repeated measurements on the same adolescents and research questions involving cross-

sectional data with clustering at school-level. 

                                                           
 

15 Note that the exploratory cross-sectional results from chapter 5 use the complete cases of the 
baseline data and do not use the GEE methodology. 
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Marginal models, and GEE in particular, are preferred over alternative approaches owning to 

the interpretation of their parameters. In the context of hierarchical discrete data, marginal 

models and conditional models (e.g. generalised linear mixed models) provide parameters 

with different interpretations (Molenberghs & Verbeke 2005). The choice between the two 

approaches has to be made in the context of the research questions asked. Marginal models 

describe population-average effects whereas conditional models describe conditional subject-

specific effects. In public health and epidemiological research, the population-averaged effect 

of a treatment or an intervention is often of interest, as opposed to the specific effect 

observed on individuals (Agresti 2002, Fitzmaurice et al. 2011, Hubbard et al. 2010, Lovasi & 

Goldsmith 2014). In this thesis, the interest lies in how changes in neighbourhood and home 

environments affect, on average, physical activity in the ORiEL population. For this reason, 

marginal models are preferred over conditional models.  

Marginal models are estimated with the GEE method in this thesis. This method provides a 

convenient and flexible alternative to likelihood methods, which can be cumbersome to 

specify and/or fit when the responses are discrete (Agresti 2002, Fitzmaurice et al. 2011, 

Molenberghs & Verbeke 2005). In this thesis, the GEE approach is used to fit logistic regression 

models (binary outcomes) and proportional odds models (ordinal outcomes). The GEE 

approach for binary responses is computationally straightforward and has been implemented 

in standard statistical software (such as Stata, R and SAS). The GEE approach used for 

proportional odds models is only available in the SAS software (SAS Institute 2013). Current 

software implementations of GEE are also restricted to two-level structures in the data, which 

leads to the compromise that clustering at school-level is ignored in the longitudinal models.  

Current software implementations for binary outcomes are compatible with multiple 

imputation, which is one of the criteria guiding the choice of my analytical approach. Standard 

statistical software provide a combined inference based on the results estimated with GEE in 

each imputed dataset. There are still some restrictions with the models for ordinal outcomes 

however, as the SAS software current does not currently provide a combined test for the 

proportional odds assumption (Donneau et al. 2015).  

In the rest of this section, I describe the general principles of GEE. I then indicate how GEE is 

used in this thesis to estimate longitudinal and cross-sectional logistic and proportional odds 

models. 

 



  

110 
 

 
 

Given the difficulties of specifying a joint multivariate distribution for the outcome variable in 

marginal models when the responses are discrete (Molenberghs & Verbeke 2005), one 

requires an alternative to maximum likelihood estimation. Generalised estimation equations 

– or GEE – offers that alternative. Essentially, GEE makes use of the three-part specification of 

marginal models to obtain a valid estimation of the mean structure, which contains the 

population-average parameters of interest. The three components of marginal models are the 

following (Fitzmaurice et al. 2011): 

1. the mean structure or marginal expectation of the response variable, as a function 

of the covariates (this is generally the component of interest);  

2. the variance of each outcome variable (which depends on the mean), given the 

covariates;  

3.  the conditional within cluster association among the vector of clustered response, 

given the covariates. 

GEE avoids the task of specifying a multivariate distribution for the marginal model. Instead, 

it uses an algorithm that obtains consistent16 and asymptotically normal estimates of the mean 

structure. The focus of the estimation process is on the mean structure, and the associations 

between clustered observations are treated as a nuisance to be accounted for. An appealing 

property of GEE is that the consistency of the estimator of the mean structure only depends 

on the mean response to be correctly specified, even if the within cluster associations among 

the clustered measures are incorrect (Molenberghs & Verbeke 2005). Technical details on the 

GEE methodology are presented in Molenberghs and Verbeke (2005), Agresti (2002) and 

Fitzmaurice et al. (2011). 

To initiate the GEE algorithm, one needs to specify the form of the correlation structure among 

the observed responses, known as the working correlation structure. Common working 

correlation structures are:  

  

                                                           
 

16 An estimator is consistent if it converges in probability to the true value of the parameter as n tends 
to infinity. 
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 independence: absence of correlation 

 

 exchangeable or compound symmetry: same correlation for all within cluster pairs of 

observations  

 autoregressive lag-1 or AR(1): correlation declines exponentially with the time-lag 

(for longitudinal data only) 

 unstructured: a different correlation for each within cluster pair of observations 

The choice of a working correlation structure has a direct impact on the efficiency of the 

estimators. More efficient estimates (i.e. with smaller standard errors) are obtained if the 

specified correlation structure resembles the true dependence structure (Fitzmaurice et al. 

2011). It is generally recommended that you check the sensitivity to the selection of the 

working correlation by comparing results from different specifications (Agresti 2002). 

However, the standard errors (called ‘naïve’ or ‘model-based’ standard errors) obtained under 

the misspecified model for the within cluster association are usually not valid. Valid standard 

errors can be obtained using the ‘sandwich’ estimator of the standard errors, also known as 

cluster-robust standard errors (see Appendix C section C.4)17. In general the ‘sandwich’ 

estimator of the standard errors is best suited to balanced designs where the number of 

clusters is relatively large and the number of observations per cluster is relatively small 

(Fitzmaurice et al. 2011). When the number of clusters is small, variances tend to be 

underestimated. In this thesis, the longitudinal analyses respect these conditions (many 

observations and few waves). There are however fewer schools (n=25) in the models 

accounting for clustering at school-level, which could lead to underestimation of standard 

errors. However, this bias is likely to be inconsequential given the limited clustering expected 

at school-level (Smith et al. 2015a)18.  

Overall, the GEE approach is appealing for discrete data because of its computational 

simplicity compared to maximum likelihood (Fitzmaurice et al. 2011). However, it has 

                                                           
 

17 Note that using GEE with an independent working correlation and robust standard error gives similar 
results as using cluster-robust standard error combined with a generalised linear model (GLM). 
However, specifying a working correlation that allows for correlations between units would generally 
improve the efficiency of the estimator. In general, GEE is preferred over cluster-robust standard error 
because it properly accounts for clustering in the estimation process, as opposed to simply correcting 
the standard errors (cf. Appendix C section C.4).  
18 Using GEE for cross-sectional analyses is still preferred over the alternative methods because i) GLM 
combined with cluster-robust standard errors suffers from the same drawbacks without having the 
advantages of GEE; ii) fixed effects are not desirable for school-level clustering as indicated in Appendix 
C section C.4; iii) random effects models would impose an undesirable school-specific interpretation. 
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limitations. Because it does not completely specify the joint distribution, it does not have a 

likelihood function. As a result, likelihood-based methods are not available for testing fit, 

comparing models, and conducting inference about parameters. Inference is based on Wald 

statistics instead (Agresti 2002). Another drawback of the GEE approach is that it does not 

explicitly model random effects and therefore does not allow these effects to be estimated 

(Fitzmaurice et al. 2011). Another disadvantage is the difficulty of estimating marginal models 

with a three-level structure, and the absence of statistical software that implements existing 

solutions. As a result, the longitudinal analyses of this thesis do not implement clustering at 

school-level. Including school as a fixed effects was not considered as an option given that it 

would restrict inference to a specific set of school sampled (Rabe-Hesketh & Skrondal 2012) 

(cf. Appendix C section C.4). A final limitation of GEE, is that the method is only valid when 

missing data follow MCAR mechanisms. When missing data are observed on many variables, 

it is therefore recommended that GEE be combined with multiple imputation, as implemented 

in this thesis.  

 
 

Having provided a general introduction to the GEE methodology, I now turn to how GEE is 

used in this thesis. GEE is used to capture four types of longitudinal associations between the 

time-varying exposure and outcome variables. These are: i) pooled longitudinal association 

across all measurements; ii) association between accumulation of exposure and later stage 

outcome; iii) association between trajectory of exposure and changes in outcome; iv) 

association between change in exposure and change in outcome. These four types of 

associations are modelled using logistic regression models for i), ii) and iii), and proportional 

odds models for iv), and estimated with the GEE method. For each type of longitudinal 

association of interest, I describe the type of model fitted and present the software used. 

 

 

In chapters 6 to 8, I assess the presence of pooled longitudinal association between the 

exposure variables and the binary physical activity outcomes. This way of exploring the 

associations is common in longitudinal studies of neighbourhood effects and informs on 

whether differences in exposure, coming either from two different individuals or the same 

individual at different measurement points, lead to differences in physical activity. In pooled 

longitudinal models, variables are all measured at the individual level 𝑖, and most variables 
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vary across repeated measurements 𝑗19. The outcomes are all binary so that general form of 

the model for the mean response is a logistic regression model, expressed as follows:  

 

 𝑙𝑜𝑔𝑖𝑡{Pr(𝑌𝑖𝑗 = 1|𝒙𝒊𝒋)} = 𝒙𝒊𝒋
′ 𝜷    

 

(4) 

 

Where: 

𝑖 = individual 

𝑗 = repeated measurements 

𝑌𝑖𝑗  = physical activity outcome for individual i at occasion j  

𝒙𝒊𝒋 = a matrix representing the variables included in the model for all individuals 𝑖’s at each 

occasion j 

𝜷 = a vector representing the coefficients of the model, including a constant.  

 

The logistic regression models of equation (4) are estimated with GEE using the unstructured 

working correlation structure to account for the association between repeated 

measurements20. Such a working correlation structure allows for greater flexibility in the 

correlation structure and is expected to better reflect the true underlying correlation. The 

‘sandwich’ estimator is used to calculate standard errors. Sensitivity analyses are conducted 

using the exchangeable working correlation structure, which is usually preferred when they 

are many repeated measurements (Agresti 2002). Clustering at school-level could not be 

accounted for in these models, but it is generally expected to be small in the ORiEL study as 

shown for total physical activity (section 3.5.1.1.) and for mental health outcomes (Smith et 

al. 2015a). 

Models are estimated in Stata versions 14 and 15 (StataCorp 2015, 2017) using the ‘xtgee’ 

command. The ‘xtgee’ command is compatible with the ‘mi estimate’ command which allows 

to estimate logistic regression models with GEE for each imputed dataset and to combine 

results into a final inference.  

                                                           
 

19 Note that I used the standard subscript convention for longitudinal analyses where i indexes 
individuals (level 2) and j indexes repeated measurements (level 1). In the multilevel imputation models 
however, I used the convention for multilevel models where i indexes individuals (level 1) and j indexes 
schools (level 2). 
20 The third component of the marginal model, namely the variance function (i.e. the scaling parameter), 
is simply defined as a function of the mean response (Fitzmaurice et al. 2011). 
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Given that exposure variables are time-varying, the association between exposures and 

outcomes is either interpreted as cross-sectional (i.e. a change from one person to another 

person with a different level of exposure is related to difference in the outcome at a given 

time) or longitudinal with an immediate effect of the exposure on the outcome (i.e. within 

person change in the exposure is associated with within person change in the outcome). For 

example, an OR of 1.5 for an exposure variable is interpreted as: ‘on average, the odds of the 

outcome are 1.5 times higher among those who are exposed compared to those who are not 

exposed (the difference in exposure might correspond to within individual change between two 

repeated measurements or differences between two persons with different levels of exposure)’. 

 

 

In chapter 6, I test different types of associations between the time-varying exposures and the 

outcomes. One hypothesised form of association is that the accumulation of positive or 

negative exposure over time can lead to differences in physical activity at a later stage. I expect 

that the longer the exposure, the greater the effect on physical activity. This hypothesis 

assumes that the effect of an exposure is cumulative and long-lasting. For example, those who 

have maintained a positive view of the supportiveness of their neighbourhood are expected 

to do more physical activity compared to those who have recently improved their perception. 

Conversely, those with long-lasting negative perceptions will be the least likely to be physically 

active in the neighbourhood.  

This type of longitudinal association is estimated using cross-sectional models, where the 

physical activity outcome is binary and measured at the end of the study period, and the 

exposure is a cumulative score of exposure across all measurement points (cf. section 3.5.). 

These cross-sectional models do no need to account for clustering at individual-level given 

that all variables are considered to be time invariant. School-level clustering can then be 

accounted for. 

The general form of the model for the mean response is a logistic regression model, expressed 

as follows21:  

 𝑙𝑜𝑔𝑖𝑡{Pr(𝑌𝑖𝑗 = 1|𝒙𝒊𝒋)} = 𝒙𝒊𝒋
′ 𝜷    

 

(5) 

                                                           
 

21 Given that this model is multilevel, I used the subscript convention used in the literature on 
multilevel models. 
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Where: 

𝑖 = individual 

𝑗 = school 

𝑌𝑖𝑗  = physical activity outcome for individual i in school j  

𝒙𝒊𝒋 = a matrix representing the variables included in the model for all individuals 𝑖's in each 

school j  

𝜷 = a vector representing the coefficients of the model, including a constant.  

 

The cross-sectional logistic regression models of equation (5) are estimated in Stata (‘xtgee’ 

combined with ‘mi estimate’) using exchangeable working correlation structures to account 

for the correlations between individuals within schools. The ‘sandwich’ estimator is used to 

calculate standard errors. Sensitivity analyses are conducted using the independence working 

correlation structure, assuming no correlation between individuals in the same cluster.  

These models are technically cross-sectional and therefore their parameters have a standard 

interpretation. 

 

 

In chapter 6, I also test whether the overall trajectory of exposure might be associated with 

the trajectory of change in the physical activity outcome for a given person. Unlike the pooled 

longitudinal model, this type of model does not conceptualise the effect of changes as 

immediate, but attempts to capture how the trends in exposures and outcomes covary.  

Trajectories of exposure are modelled using longitudinal models where the physical activity 

outcome is time-varying and binary, and the exposure is a trajectory score of exposure 

considered to be time-invariant (cf. section 3.5.). Variables are all measured at the individual 

level 𝑖, and most variables, unlike the exposures, vary across repeated measurements 𝑗. The 

general form of the model for the mean response is a logistic regression model, expressed as 

in equation (4). The difference is that the exposures do not vary across measurements and 

that the main parameter of interest is an interaction term between time and each trajectory 

score. The resulting coefficient is an odds ratio indicating the extent to which individual 

trajectories of exposure and outcome covary. These models are also estimated in Stata using 

‘xtgee’ combined with ‘mi estimate’ commands.  
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A fourth approach to modelling longitudinal associations is used in chapter 8, where exposure 

variables are available for only two waves of data. Models are specified to capture the 

associations between the change between wave 2 and wave 3 in the exposures and changes 

in the outcomes (cf. section 3.5.). I estimate these associations using cross-sectional 

proportional odds models using the GEE method to account for clustering at school level 

(Agresti 2002). Variables are measured on individuals 𝑖′s and all considered as time-invariant, 

because they are either baseline confounders or measures of change between wave 2 and 

wave 3. The general form of the model for the mean response is a proportional odds model, 

expressed as follows22:  

 𝑙𝑜𝑔𝑖𝑡{Pr(𝑌𝑖𝑗
∗ ≤ 𝑘|𝒙𝒊𝒋)} = 𝛼𝑘 + 𝒙𝒊𝒋

′ 𝜷,                   𝑘 = 1,2. 

 

(6) 

Where: 

𝑖 = individual 

𝑗 = school 

𝑌𝑖𝑗
∗  = ordinal variable with three categories, indicating whether the physical activity outcome 

decreased, remained constant or increased for individual 𝑖 in school j. 

𝑘 = values taken by the ordinal outcome variables. In this analysis, the model is fully described 

using 𝑘 = 1 and 2 because the outcome can take three distinct values. 

𝒙𝒊𝒋 = a matrix representing the variables included in the model for all individuals 𝑖's in each 

school j  

𝜷 = a vector representing the coefficients of the model associated with the covariates. The 

model has the same effects 𝜷 for all cumulative logits. 

𝛼𝑘= a separate constant defined for each cumulative logit.  

 

Models of equation (6) are estimated in SAS software version 9.4 (SAS Institute 2013) using 

the ‘PROC GENMOD’ procedure with a ‘REPEATED’ statement to account for clustering at 

school level (Fitzmaurice et al. 2011, Molenberghs & Verbeke 2005). SAS is the principal 

general statistical package in which the proportional odds model can be estimated with GEE 

and combined with multiple imputation using the ‘PROC MIANALYZE’ procedure. A limitation 

of the SAS implementation of the GEE method for the cumulative multinomial distribution 

                                                           
 

22 Given that this model is multilevel, I used the subscript convention used in the literature on 
multilevel models. 
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used is that only the independence working correlation structure can be specified. This means 

that sensitivity to the working correlation structure cannot be assessed for these models. As 

indicated in section 4.4.2., choosing a ‘wrong’ working correlation structure only affects the 

efficiency of the estimator, and not their consistency (Molenberghs & Verbeke 2005). The 

‘sandwich’ estimator is used to calculate standard errors. As a sensitivity analysis, I also report 

results from proportional odds models, ignoring clustering at school-level. 

The proportional odds assumption could not be formally tested in models estimated with GEE 

and/or in combination with multiple imputation as, to my knowledge, the test is not currently 

available in any general statistical software (Donneau et al. 2015). I achieved an informal 

evaluation of the assumption by fitting proportional odds models without accounting for 

clustering,23 separately for each imputed dataset. Using the procedure ‘PROC LOGISTIC’ in SAS 

9.4, I tested the proportional odds assumption for each imputed dataset. I ensured that the 

assumption was satisfied for the exposure variables. I then used partial proportional odds 

models (Agresti 2002) to allow for non-proportionality for some of the confounding factors, 

while maintaining the proportional odds assumptions for covariates which did not indicate a 

violation of the hypothesis in any of the imputed datasets (p>0.05).  

Parameters of the models are interpreted as associations between within individual changes 

in exposure and outcomes.  

 
 

In this chapter, I have presented the two-fold analytical approach for the analysis of the ORiEL 

data. First I offered a solution to handle item non-response. Finding such a solution has been 

a major methodological aspect of this chapter. The approach proposed uses multilevel 

multiple imputation and allows to deal with the 3-level structure of the ORiEL data (repeated 

measurements on adolescents, themselves clustered in schools), a mixture of discrete and 

continuous variables and some interaction terms in the analysis models (between 

gender/ethnicity and exposure variables). While the setting of this thesis might seem quite 

typical in epidemiology, only the recent R package ‘jomo’ allows for all three circumstances 

without severely constraining the number of variables included in the imputation model (and 

therefore in the analysis models).  

                                                           
 

23 Although it should be noted that accounting for clustering might reduce the risk of violating the 
proportional odds assumption (Agresti 2002). 
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Having specified an approach for missing data handling in ORiEL, I then selected the analytical 

approach for the main analyses. I estimate logistic regression models and proportional odds 

models using generalised estimating equations or GEE. GEE allows the estimation of marginal 

models, which have a desirable interpretation of the parameters in terms of population-

average. Parameters of the estimated models therefore indicate how (changes in) 

neighbourhood and home environments affect, on average, physical activity in the ORiEL 

population. Estimating proportional odds models with GEE in combination with multiple 

imputation is another uniqueness of this thesis. Such an approach can only be implemented 

in SAS and is still experimental to some extent, given that no test for the proportional odds 

assumption is available yet.  

The analytical approaches presented in this chapter are employed in the following chapters. A 

notable exception is the exploratory baseline chapter (chapter 5) which is based on a complete 

case analysis and uses GLM with cluster-robust estimators of the standard errors. Chapter 5 is 

indeed conceived as a guide to the variable selection for the subsequent longitudinal analyses 

and the building of the imputation models (especially chapter 6). Results using cluster-robust 

standard errors are expected to be very similar to those that would have been obtained with 

GEE. Chapters 6 and 7 use separate imputed datasets (to allow interaction terms with gender 

and ethnicity, respectively) and estimate longitudinal logistic regression models with GEE. 

Chapter 6 also estimates cross-sectional logistic regression models with GEE. Chapter 8 uses 

imputed datasets based on waves 2 and 3, and estimates longitudinal logistic regression 

models and cross-sectional proportional odds models with GEE. For all models estimated with 

GEE, longitudinal models account for clustering at individual level, whereas cross-sectional 

models account for clustering at school-level.
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In this chapter, I present an analysis of the baseline associations between six outcomes of 

physical activity and a range of perceptions of the neighbourhood environment. This chapter 

serves as a guide and preliminary analysis for the longitudinal analysis of the associations 

between perceptions of the neighbourhood and physical activity presented in chapter 6.   

The evidence base on the relationship between the neighbourhood environment and physical 

activity has grown over the last decades (De Vet et al. 2011, Ding & Gebel 2012, Gebel et al. 

2007). It has been acknowledged that measures of neighbourhood perceptions – for example 

safety, aesthetic quality, disorder – should be conceptually distinguished from objective 

measures, as each are hypothesised to independently influence health behaviours (Lakerveld 

et al. 2012). There is also a growing recognition that neighbourhood attributes should be 

understood beyond their associations with total physical activity because different attributes 

have been shown (and are expected) to be associated with different domains of physical 

activity (Owen et al. 2004).  

Previous results on the relationships between perceptions of the neighbourhood and domains 

of physical activity have been mixed and there are still many research gaps (Van Holle et al. 

2012). Most research has been conducted in the US and Australia and has received little 

attention elsewhere. This is a problem because North American and Australian cities may 

sometimes differ structurally from most European cities. Furthermore, few studies have 

investigated deprived populations, which are expected to be more affected by some features 

of their neighbourhood built and social environments, such as crime and disorder (Bauman & 

Bull 2007, Lovasi et al. 2009). The evidence on the extent to which adolescents’ own 

perceptions of their neighbourhood features are associated with physical activity is still limited 

(Davison & Lawson 2006, Ding et al. 2011). Indeed, the gradual grain in independence mobility 

during adolescence (Mackett et al. 2007) might suggest that adolescents’ own perceptions, as 

opposed to their parents’, might become more prominent predictors of physicals activity 

behaviours during adolescence. 
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In this chapter, I use baseline data from the 3-wave balanced panel of the ORiEL study to test 

how adolescents’ perceptions of the neighbourhood environment are associated with six 

forms of physical activity: total physical activity, daily recommended physical activity, walking 

to school, walking for leisure, outdoor physical activity and pay and play physical activity. 

Analyses are used to develop a preliminary indication of which variables of perceptions of the 

neighbourhood environment might be associated with physical activity outcomes, and results 

will be used to help select the variables used in the longitudinal analysis presented in chapter 

6. I explore a broad range of physical activity outcomes expected to be associated with the 

neighbourhood perceptions data captured by the ORiEL questionnaire. Total physical activity 

and daily recommended physical activity were included to explore the presence or absence of 

overall associations with perceptions, although I anticipate some of those might be difficult to 

interpret if opposite associations are observed with more detailed forms of activity. Ten 

different measures of neighbourhood perceptions are investigated, with the objective of 

guiding the selection of exposure variables for longitudinal analyses. 

 
 

The following research questions are explored in this chapter. 

Question 1: Are perceptions of the neighbourhood associated with physical activity in 

adolescents at baseline of the ORiEL study? 

Specifically:  

1.1. Are perceived proximity to destinations, traffic safety, street connectivity, 

aesthetics and crime-related safety associated with total physical activity? 

1.2. Are perceived proximity to destinations, traffic safety, street connectivity, 

aesthetics and crime-related safety associated with meeting daily recommended 

physical activity?  

1.3. Are perceived proximity to destinations, proximity to nearest bus stop, traffic 

safety, street connectivity, aesthetics, enjoyment of the neighbourhood for 

walking/cycling, crime-related safety and personal safety associated with walking to 

school? 

1.4. Are perceived proximity to destinations, proximity to nearest recreation area, traffic 

safety, street connectivity, aesthetics, enjoyment of the neighbourhood for 
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walking/cycling, crime-related safety and personal safety associated with walking for 

leisure? 

1.5. Are perceived proximity to destinations, proximity to nearest bus stop, proximity to 

nearest recreation area, traffic safety, street connectivity, aesthetics, enjoyment of the 

neighbourhood for walking/cycling, crime-related safety and personal safety associated 

with outdoor physical activity? 

1.6. Is perceived proximity to nearest sport and leisure centre associated with pay and 

play physical activity?  

 
 

 
 

To be consistent with the longitudinal analyses of chapter 6, the sample used for the baseline 

analysis was constructed by excluding ORiEL respondents that did not participate in all three 

waves and keeping wave 1 data from those participants (cf. section 3.3.). The final sample size 

includes 2,260 participants, each with various degrees of item response. The analyses 

conducted are on complete cases for specified outcomes, exposures and confounders. The 

analytical samples therefore differ for each analysis, depending on the extent of missingness 

on the outcome, exposure variables and potential confounders.  

 
 

The variables used in this chapter were outlined in chapter 3 (section 3.5). These include six 

physical activity outcome variables, ten measures of neighbourhood perceptions and a set of 

potential confounders (Table 5.1). These are described below. 

 

 

In this chapter, I explore a range of routine physical activities that could be associated with 

measures of neighbourhood perceptions in the ORiEL: total physical activity (in hours/week), 

daily recommended physical activity (i.e. ≥ 7hours of physical activity/week), walking to 

school, walking for leisure (dog/exercise), outdoor physical activity and pay and play physical 

activity. The walking to school and walking for leisure outcomes capture whether adolescents 

reported having participated in the activity at least once over the past week. The outdoor 
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physical activity outcome combines participation at least once in any of the following 

activities: combines basketball/volleyball, blading, cricket, football, rounders, rugby and roller 

skating. The pay and play physical activity outcome combines aerobics, climbing, swimming, 

gymnastics, hockey, martial arts, netball, and tennis. Note that cycling participation could not 

be examined with the ORiEL data: cycling for leisure was not included in the questionnaire, 

and the prevalence of cycling to school was very low, especially at follow-up.  

 

 

Ten measures of neighbourhood perceptions hypothesised to be related to the outcomes 

were selected (Table 5.1). The measures are derived from the ALPHA questionnaire, which 

focuses primarily on walking and cycling (Spittaels et al. 2010), and from the MESA study for 

the crime-related safety (Mujahid et al. 2007) as described in section 3.5.2.1. Following results 

from a confirmatory factor analysis (Appendix B) five summary measures were used as 3-level 

ordinal scores (low/medium/high) to capture separate dimensions of neighbourhood 

perceptions: proximity to destinations, traffic safety, street connectivity, aesthetics, and 

crime-related safety. In addition, five separate items were used on their own because they 

capture exposure to aspects of perceptions in more detail, and therefore can better inform 

how specific perceptions relate to each form of physical activity. These were: proximity to bus 

stop, proximity to recreation area, proximity to sport and leisure centre, enjoyment of the 

neighbourhood for walking/cycling, and personal safety (i.e. feeling safe). Perceived proximity 

to a bus stop was recoded into a binary variable (1-5 minutes vs. further away) due to low 

reporting of more than 1-5 minutes. The other items were used on their original scale.  

 

 

The following variables were considered as potential confounders: gender, ethnicity (8 

categories), family affluence (3 categories), health condition (3 categories), free school meal 

status, parental employment (6 categories), country of birth (UK vs. not), borough, and season 

of questionnaire completion. 
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Table 5.1 Variable definitions and item missingness at baseline of the 3-wave balanced panel  (n = 2,260)   

Variable Variable type and use in the analysis % missing 
 

Outcomes   

Total physical activity  Continuous, approximately log Normal 2.8           

Daily recommended physical activity Binary (≥7 hours vs. less) 2.8           

Walking to school Ordinal (almost count), 4 categories, non-
Normal; binary version used 

8.4 

Walking for leisure Ordinal (almost count), 4 categories, non-
Normal; binary version used 

18.0 

Outdoor physical activity Count (0-7), non-Normal; binary version used 23.1 

Pay and play physical activity  Count (0-8), non- Normal; binary version used 19.3 

Exposures   

Perceived proximity to destinations Continuous score based on 8 items ; 
categorised in 3 groups 

28.7 

Perceived traffic safety 
Continuous score based on 3 items ; 
categorised in 3 groups 

25.5 

Perceived street connectivity 
Continuous score based on 4 items ; 
categorised in 3 groups 

32.3 

Perceived aesthetics 
Continuous score based on 4 items ; 
categorised in 3 groups 

26.1 

Crime-related safety 
Continuous score based on 3 items ; 
categorised in 3 groups 

30.3 

Perceived bus stop proximity Ordinal, 5 categories, skewed; binary version 
used 

19.8 

Perceived proximity to recreation area Ordinal, 5 categories 20.4 

Perceived proximity to sport and 
leisure centre 

Ordinal, 5 categories  21.2 

Enjoyment of the neighbourhood for 
walking/cycling 

Ordinal, 4 categories 24.3 

Feeling safe (personal safety) Ordinal, 5 categories 29.0 

Potential confounders   

Gender Binary  Fully observed 

Ethnicity 
Nominal variable with 8 categories Fully observed 

Health condition 
Count score of 9 binary items* (0-9), skewed; 
categorised in 3 groups (0/1/2+) 

3.4 

Family Affluence 
Count score of 3 items (0-9), approximately 
Normal; categorised in 3 groups 

4.6 

Free school meal Binary: Yes/No 2.0 

Parental employment Nominal variable with 6 categories 12.1 

Country of birth Binary (UK/non-UK) 2.0 

Borough Nominal variable with 4 categories Fully observed 

Season of interview Binary variable (winter vs. spring) Fully observed 

Cluster variable   

School Nominal variable with 25 categories Fully observed 

*requirement that at least five items should be completed to get a score because the interest is in whether any 

condition is reported. 
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Given the exploratory nature of this chapter, I did not handle missing data and ‘missing 

completely at random’ or MCAR is assumed. Missing data on the variables retained for the 

longitudinal analyses is examined in chapter 6 (Appendix E section E.1). Results indicate the 

MCAR assumption is likely not to hold and that the results are likely to be biased. Analyses are 

nonetheless used to develop a preliminary indication of which variables of perceptions of the 

neighbourhood environment might be associated with physical activity outcomes, in order to 

inform the selection of variables in the longitudinal analyses of chapter 6. 

I used generalised linear models (GLM) to investigate the associations between exposure and 

outcome variables. For each outcome, separate GLM models were fitted to test which aspects 

of neighbourhood perceptions are associated with physical activity outcomes (model 

equations are presented in Appendix D section D.1). I used linear models for the log-

transformed total physical activity outcome and logistic regression models for all other 

outcomes. I used cluster-robust standard errors to account for clustering at school-level, 

although the school-level correlation is expected to be small (cf. section 3.5.1.1.). Unadjusted 

and adjusted associations were calculated using analytical samples specific to each 

combination of exposure, confounders and outcome of interest. Separate unadjusted models 

included in turn an exposure variable and a physical activity outcome. For the linear model 

using the log-transformed total physical activity, the adjusted model included all five exposure 

variables and all potential confounders. In the multivariate logistic regression models, I 

adopted a more selective approach to the inclusion of covariates in the models because I 

explored associations with a broader range of exposure variables. Given the conceptual 

overlap and collinearity between some of the exposure variables (e.g. crime-related safety and 

personal safety), I fitted adjusted models for each exposure variable separately. In addition, I 

included fewer potential confounders in the adjusted models to avoid non-collapsibility of the 

odds ratios (Greenland et al. 1999). For each binary outcome and each exposure variable, I 

investigated associations with potential confounders. I then included in turn potential 

confounders in the models and investigated their impact on the change to the odds ratios. For 

convenience, however, and given that none of the covariates were strong confounders, I 

simplified the procedure in the final models presented here and adjusted for all potential 

confounders that were associated with at least one outcome. Unadjusted and adjusted 

association did not differ substantially, which gives an indication that the results presented 

are not affected by the non-collapsibility issue. 
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In this section, I present the associations between perceptions of the neighbourhood and each 

physical activity outcome in turn.  

 
 

The baseline associations between the five summary measures of neighbourhood perceptions 

and physical activity are presented Table 5.2. Results are presented in the form of predicted 

geometric mean of hours of physical activity for each category of exposure, which is equivalent 

to the median given that the variable is approximately log-normal (cf. section 3.5.1.1.). 

Unadjusted and adjusted results provide no indication that total physical activity is associated 

with proximity of destinations, including grocery stores, local services, public transport, and 

leisure facilities (p-values=0.770 and 0.712 respectively). Estimated adjusted geometric mean 

of total physical activity is highest for those with low proximity (16.42; 95% CI: 13.48-20.02) 

and lowest for those with high proximity (15.02; 95% CI: 13.66-16.52), yet confidence intervals 

are wide and overlap considerably. Results are very similar for perceived traffic safety: neither 

the unadjusted nor the adjusted models indicate any evidence of differences in physical 

activity (p-values=0.394 and 0.618 respectively) and the estimated geometric means are 

slightly higher in the lowest perception group (16.10; 95% CI: 12.71-20.40), compared to the 

highest group (14.87; 95% CI: 13.69-16.15). Perceived street connectivity, however, indicates 

a significant positive association with total physical activity (unadjusted p-value=0.006; 

adjusted p-value=0.003): the adjusted geometric mean is lowest in the low perception group 

(13.21; 95% CI: 11.58-15.08), intermediate in the medium group (14.83; 95% CI: 13.37-16.45) 

and highest in the high perception group (18.53; 95% CI: 16.54-20.76). A significant association 

is also observed in unadjusted and adjusted models for aesthetics (p-values=0.002 and 0.007 

respectively). The association here is U-shaped, the geometric mean of total physical activity 

is lowest in those who perceive aesthetics as medium (13.53; 95% CI: 12.18-15.02) and higher 

in those with high and low perceptions (respectively 16.52; 95% CI: 15.08-18.11 and 17.10; 

95% CI: 14.63-19.97). Finally, no evidence of an association is observed between total physical 

activity and crime-related safety (unadjusted p-value=0.333; adjusted p-value=0.663). The 

estimated geometric means are around 15 hours in each of the three categories of perceptions 

(adjusted values are 15.77 (95% CI: 14.28-17.41), 14.80 (95% CI: 13.33-16.43) and 15.18 (95% 

CI: 13.27-17.37) for the low, medium and high groups respectively).  
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Table 5.2  Geometric mean of hours of physical activity by perception of the neighbourhood environment , adjusting for potential confounders (wave 1 of the ORiEL study, n= 1,054)  

Exposure  

Unadjusted 

geometric 

mean 

Adjusted 

geometric 

mean ¹ 

95%CI 
P-value 

parameter 

P-value   

unadjusted 

P-value 

adjusted¹ 

Perceived proximity to  Low 16.35 16.42 [13.48,20.02]  0.770 0.712 

    destinations Medium 14.92 15.21 [13.85,16.70] 0.480   

 High 15.29 15.02 [13.66,16.52] 0.415   

Perceived traffic safety Low 17.20 16.10 [12.71,20.40]  0.394 0.618 
 Medium 15.13 15.62 [14.09,17.32] 0.812   
 High 14.95 14.87 [13.69,16.15] 0.506   

Perceived street connectivity Low 13.63 13.21 [11.58,15.08]  0.006 0.003 
 Medium 14.60 14.83 [13.37,16.45] 0.173   
 High 18.76 18.53 [16.54,20.76] 0.001   

Perceived aesthetics Low 17.38 17.10 [14.63,19.97]  0.002 0.007 
 Medium 13.47 13.53 [12.18,15.02] 0.006   
 High 16.51 16.52 [15.08,18.11] 0.681   

Perceived crime-related safety Low 15.93 15.77 [14.28,17.41]  0.333 0.663 
 Medium 14.32 14.80 [13.33,16.43] 0.370   
 High 15.62 15.18 [13.27,17.37] 0.667   

Results are from linear regression using log of total physical activity as dependent variable and with cluster-robust standard errors.¹ Adjusted for gender, ethnicity, health 

condition, family affluence, free school meal status, parental employment, country of birth, borough, season and the other perception variables of the table.  
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Table 5.3 presents the associations between the same five neighbourhood perception 

indicators and daily recommended physical activity, which is defined as reporting 7 hours of 

more of physical activity over the past week. For these analyses, adjusted models control for 

the four variables associated with daily recommended physical activity (gender, ethnicity 

family affluence and seasonality). As expected, results are similar to those observed for total 

physical activity (Table 5.2). There is no evidence of any association with proximity to 

destinations or perceived traffic safety (adjusted p-values=0.760 and 0.608 respectively): 

compared to the reference group (low category of perceptions), adjusted ORs are close to 1.00 

and confidence intervals are wide. For proximity to destinations, unadjusted ORs were slightly 

higher (1.07 and 1.20 for medium and high categories of perceptions respectively), but there 

was no evidence of a significant difference (p-value=0.562). Similar to total physical activity, 

there is strong evidence of a positive association with perceived street connectivity 

(unadjusted p-value=0.031; adjusted p-value=0.010): compared to the low perception groups, 

the adjusted odds of daily recommended physical activity are 1.37 (95% CI: 0.99-1.90) times 

higher in the medium group and 1.76 (95% CI: 1.22-2.55) times higher in the high perception 

group. There is also similar evidence for a U-shaped association with aesthetics (unadjusted p-

value=0.001; adjusted p-value=0.003): the adjusted odds of daily recommended physical 

activity are lowest in the medium perception category (0.79; 95% CI: 0.25-1.18) and highest in 

the high perception category (1.30; 95% CI: 0.85-1.98). Finally, there is very limited evidence 

that the odds of daily recommended physical activity depends on perception of crime-related 

safety (unadjusted and adjusted p-values=0.187 and 0.181 respectively). The adjusted odds of 

daily recommended physical activity are nevertheless estimated to be slightly lower in the 

medium perception group compared to the low perception group (0.75; 95% CI: 0.54-1.04; p-

value=0.086).  
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Table 5.3 Odds ratios (OR) of daily recommended physical activity* vs. not by perception of the neighbourhood environment , adjusting for potential confounders (wave 1 of the ORiEL study)  

Exposure  
Analytical 

sample (n) 

Unadjusted 

OR 
Adjusted OR¹  95%CI 

P-value 

parameter 

P-value  

unadjusted 

P-value 

adjusted¹ 

Perceived proximity to  Low 1545 1.00 1.00   0.562 0.760 

    destinations Medium  1.07 1.01 [0.65,1.58] 0.966   

 High  1.20 1.11 [0.71,1.72] 0.656   

Perceived traffic safety Low 1614 1.00 1.00   0.724 0.608 
 Medium  1.12 1.12 [0.78,1.60] 0.542   
 High  1.05 1.01 [0.67,1.50] 0.980   

Perceived street connectivity Low 1476 1.00 1.00   0.031 0.010 
 Medium  1.27 1.37 [0.99,1.90] 0.060   
 High  1.62 1.76 [1.22,2.55] 0.002   

Perceived aesthetics Low 1605 1.00 1.00   0.001 0.003 
 Medium  0.75 0.79 [0.52,1.18] 0.246   
 High  1.25 1.30 [0.85,1.98] 0.228   

Perceived crime-related safety Low 1514 1.00 1.00   0.187 0.181 
 Medium  0.77 0.75 [0.54,1.04] 0.086   
 High  0.97 0.91 [0.59,1.42] 0.690   

Results are from logistic regression with cluster-robust standard errors.¹ Adjusted for gender, ethnicity, family affluence and season.*Defined as reporting 7 hours or more of 

physical activity over the past week.
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Results from the associations between perceptions of the neighbourhood environment and 

walking to school are presented in Table 5.4 and Table 5.5. Table 5.4 includes the five 

neighbourhood perception indicators already studied in the previous sections, and Table 5.5 

investigates separate survey items that were expected to be more consistently related to 

walking to school, i.e. proximity to bus stop, enjoyment of the neighbourhood for 

walking/cycling, and personal safety. Adjusted models control for the three potential 

confounders that are associated with walking to school: ethnicity, family affluence and 

seasonality. 

Table 5.4 indicates no evidence that perceived proximity to destinations, traffic safety, street 

connectivity and aesthetics are associated with walking to school (all unadjusted and adjusted 

p-values>0.35). Unadjusted and adjusted coefficients are of similar magnitude, close to 1.00 

(between 0.84 and 1.33) and have wide confidence intervals. The direction of the associations 

is negative for perceived proximity to destinations, bell-shaped for traffic safety (i.e. higher 

estimation in the medium group), positive for connectivity, and almost null for aesthetics. 

None of these associations are significant. Conversely, parameters associated with perceived 

crime-related safety provide evidence of an association with walking to school (unadjusted p-

value=0.018, adjusted p-value=0.022). In particular, those reporting a medium perception of 

safety have 1.32 (95% CI: 1.03-1.68) times higher adjusted odds of walking to school compared 

to the other two groups (bell-shaped relationship). 

Table 5.5 provides some weak evidence that a greater distance to a bus stop increases the 

odds of walking to school by a factor of 1.22 (adjusted 95% CI: 0.98-1.52; p-value=0.069). 

Perceiving the neighbourhood as pleasant for walking or cycling is not related to the outcome 

(unadjusted p-value=0.492, adjusted p-value=0.521). Finally, there is some weak evidence that 

personal safety (i.e. feeling safe) is associated with walking to school (unadjusted p-

value=0.089, adjusted p-value=0.068). The odds of walking to school appear to be lower in 

general for those who feel very unsafe in the neighbourhood (all estimated ORs>1.00). The 

higher estimated probability of walking to school was observed for adolescents with no firm 

opinion about safety (‘neither agree nor disagree’). For those adolescents, compared to those 

feeling very unsafe, the odds of walking to school were 2.05 times higher (95% CI: 1.25-3.36). 

This result is consistent with what I observed for crime-related safety. 
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Table 5.4 Odds ratios (OR) of walking to school vs. not by perception of the neighbourhood environment , adjusting for potential confounders (wave 1 of the ORiEL study)  

Exposure  
Analytical 

sample  

(n) 

Unadjusted   

OR 

Adjusted   

OR ¹  
95%CI 

P-value 

parameter 

P-value  

unadjusted 

P-value 

adjusted¹ 

Perceived proximity to  Low 1392 1.00 1.00   0.816 0.812 

    destinations Medium  0.85 0.84 [0.50,1.42] 0.525   

 High  0.88 0.88 [0.55,1.42] 0.607   

         

Perceived traffic safety Low 1440 1.00 1.00   0.384 0.367 
 Medium  1.33 1.31 [0.69,2.49] 0.402   
 High  1.06 1.05 [0.63,1.75] 0.864   

         

Perceived street connectivity Low 1319 1.00 1.00   0.646 0.614 
 Medium  1.13 1.15 [0.78,1.70] 0.472   
 High  1.23 1.25 [0.80,1.95] 0.332   

         

Perceived aesthetics Low 1425 1.00 1.00   0.922 0.896 
 Medium  1.06 1.01 [0.72,1.42] 0.934   
 High  1.10 1.08 [0.71,1.64] 0.714   

         

Perceived crime-related safety Low 1354 1.00 1.00   0.018 0.022 
 Medium  1.33 1.32 [1.03,1.68] 0.028   
 High  0.99 1.00 [0.68,1.45] 0.991   

Results are from logistic regression with cluster-robust standard errors¹ Adjusted for gender, ethnicity, family affluence and season 
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Table 5.5 Odds ratios (OR) of walking to school vs. not by perception of the neighbourhood environment using individual survey items , adjusting for potential confounders (wave 1 of the 
ORiEL study)  

Exposure  
Analytical 

sample (n) 

Unadjusted 

OR 

Adjusted       

OR ¹  
95%CI 

P-value 

parameter 

P-value  

unadjusted 

P-value 

adjusted¹ 

Perceived bus stop proximity 1-5 minutes 1541 1.00 1.00   0.068 0.069 

     Further away  1.24 1.22 [0.98,1.52] 0.069   

         

Enjoyment of neighbourhood Strongly disagree 1453 1.00 1.00   0.492 0.521 

   for walking/cycling Slightly disagree  1.05 1.08 [0.63,1.88] 0.771   

 Slightly agree  1.05 1.07 [0.64,1.77] 0.805   

 Strongly agree  0.86 0.87 [0.54,1.41] 0.580   

         

Feeling safe Strongly disagree 1372 1.00 1.00   0.089 0.068 

   (personal safety) Slightly disagree  1.35 1.38 [0.89,2.15] 0.148   

 Neither agree nor disagree  1.98 2.05 [1.25,3.36] 0.004   

 Slightly agree  1.44 1.48 [0.92,2.38] 0.110   

 Strongly agree  1.38 1.40 [0.89,2.21] 0.150   

Results are from logistic regression with cluster-robust standard errors.¹ Adjusted for ethnicity, family affluence and season.
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Results for associations between perceptions of the neighbourhood and walking for leisure 

are presented in Table 5.6 and Table 5.7. Like walking to school, Table 5.6 includes the five 

neighbourhood perception indicators studied across all outcomes. Table 5.7 investigates 

separate survey items that are expected to be more consistently related to walking for leisure, 

i.e. proximity to recreational areas, enjoyment of the neighbourhood for walking/cycling, and 

personal safety. Adjusted models control for the three potential confounders that are 

associated with walking for leisure: gender, ethnicity and parental employment.  

Table 5.6 gives no evidence that any of the five neighbourhood perception indicators are 

associated with walking for leisure (all unadjusted and adjusted p-values>0.27). Nonetheless, 

unadjusted and adjusted models for proximity to destinations, traffic safety, street 

connectivity and aesthetics all seem to indicate that the expected associations might be 

positive: the better the perception of the neighbourhood, the higher the estimated odds of 

walking for leisure. For example, compared to the low perception of aesthetics, the adjusted 

odds of walking for leisure are 1.08 (95% CI: 0.81-1.45) times higher for medium perception 

group and 1.29 times higher for high perception group (95% CI: 0.90-1.85). However, 

estimated ORs for all variables of Table 5.6 are between 1.02 and 1.30 and confidence intervals 

are wide, which means that there is no evidence of association. Parameters associated with 

crime-related safety are even closer to 1.00, and do not provide any indication of association.  

Table 5.7 provides no evidence that proximity to a recreation area is related to walking for 

leisure (unadjusted p-value=0.793, adjusted p-value=0.870). There is some weak evidence that 

perceiving the neighbourhood as pleasant for walking or cycling increases the odds of walking 

for leisure (unadjusted p-value=0.064, adjusted p-value=0.097). Compared to those with a 

very low perception (‘strongly disagree’), all other adolescents have higher odds of walking for 

leisure (adjusted ORs are 1.82 (95% CI: 1.09-3.04), 1.52 (95% CI: 1.05-2.21) and 1.70 (95% CI: 

1.09-2.68) for the ‘slightly disagree’, slightly agree’ and ‘strongly agree’ groups, respectively). 

There is finally some evidence that personal safety (i.e. feeling safe) is associated with walking 

for leisure (unadjusted p-value=0.103, adjusted p-value=0.020). The odds of walking for leisure 

appear to be lower for those who feel very unsafe in the neighbourhood (reference category) 

and for those who have no firm opinion about personal safety (‘neither agree nor disagree’) 

(adjusted OR=0.87; 95% CI: 0.54-1.41).  
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Table 5.6 Odds ratios (OR) of walking for leisure vs. not by perception of the neighbourhood environment , adjusting for potential confounders (wave 1 of the ORiEL study)  

Exposure  
Analytical 

sample (n) 
Unadjusted 

OR 

Adjusted       

OR ¹  
95%CI 

P-value 

parameter 

P-value  

unadjusted 

P-value 

adjusted¹ 

Perceived proximity to  Low 1303 1.00 1.00   0.702 0.473 

    destinations Medium  1.12 1.19 [0.88,1.61] 0.247   

 High  1.13 1.15 [0.86,1.52] 0.347   

         

Perceived traffic safety Low 1356 1.00 1.00   0.831 0.734 
 Medium  1.08 1.12 [0.75,1.68] 0.588   
 High  1.12 1.18 [0.77,1.81] 0.454   

         

Perceived street connectivity Low 1227 1.00 1.00   0.790 0.525 
 Medium  1.08 1.02 [0.70,1.49] 0.919   
 High  1.17 1.24 [0.77,1.99] 0.371   

         

Perceived aesthetics Low 1340 1.00 1.00   0.575 0.277 
 Medium  1.07 1.08 [0.81,1.45] 0.590   
 High  1.19 1.29 [0.90,1.85] 0.168   

         

Perceived crime-related safety Low 1258 1.00 1.00   0.824 0.603 
 Medium  0.94 1.00 [0.80,1.24] 0.990   
 High  1.01 1.13 [0.87,1.49] 0.356   

Results are from logistic regression with cluster-robust standard errors.¹ Adjusted for gender, ethnicity and parental employment. 

  



  

 
 

1
34

 

Table 5.7 Odds ratios (OR) of walking for leisure vs. not by perception of the neighbourhood environment using individual survey items , adjusting for potential confounders (wave 1 of the 
ORiEL study)  

Exposure  
Analytical 

sample (n) 

Unadjusted 

OR 

Adjusted      

OR ¹  
95%CI 

P-value 

parameter 

P-value  

unadjusted 

P-value 

adjusted¹ 

Perceived proximity to  1-5 minutes 1422 1.00 1.00   0.793 0.870 

    recreation area 6-10 minutes  1.00 1.00 [0.78,1.28] 0.987   

 11-20 minutes  0.99 1.02 [0.70,1.47] 0.932   

 21-30 minutes  1.22 1.25 [0.80,1.94] 0.326   

 More than 30 minutes  0.80 0.90 [0.54,1.51] 0.695   

         

Enjoyment of neighbourhood Strongly disagree 1364 1.00 1.00   0.064 0.097 

   for walking/cycling Slightly disagree  1.89 1.82 [1.09,3.04] 0.021   

 Slightly agree  1.53 1.52 [1.05,2.21] 0.027   

 Strongly agree  1.62 1.70 [1.09,2.68] 0.021   

         

Feeling safe Strongly disagree 1272 1.00 1.00   0.103 0.020 

   (personal safety) Slightly disagree  1.35 1.25 [0.75,2.07] 0.389   

 Neither agree nor disagree  0.92 0.87 [0.54,1.41] 0.580   

 Slightly agree  1.28 1.27 [0.82,1.97] 0.281   

 Strongly agree  1.16 1.20 [0.74,1.96] 0.452   

Results are from logistic regression with cluster-robust standard errors. ¹ Adjusted for gender, ethnicity and parental employment. 
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Table 5.8 and Table 5.9 present the associations between perceptions of the neighbourhood 

environment and outdoor physical activity. The binary outdoor physical activity outcome 

captures the extent to which adolescents reported having participated at least once in the past 

week in an activity usually performed outdoors in the neighbourhood, including basketball (or 

volleyball), rollerblading, cricket, football, rounders, rugby and roller skating. Table 5.8 

presents the results for the five neighbourhood perception indicators studied across all 

outcomes. Table 5.9 investigates separate survey items that are expected to be more 

consistently related to outdoor physical activity, i.e. proximity to bus stop, proximity to 

recreational areas, enjoyment of the neighbourhood for walking/cycling, and personal safety. 

Adjusted models control for gender, ethnicity, family affluence and free school meal status, 

which were all associated with the outcome.  

As for the other outcomes, results set out in Table 5.8 indicate no evidence of association 

between outdoor physical activity and proximity to destinations (unadjusted p-value=0.475, 

adjusted p-value=0.704). Similarly, there is no evidence of an association with crime-related 

safety (unadjusted p-value=0.387, adjusted p-value=0.520). The other three indicators show 

moderate to strong evidence of an association with the outcome. There is moderate evidence 

that traffic safety is associated with outdoor physical activity (unadjusted p-value=0.053, 

adjusted p-value=0.048). Unadjusted and adjusted coefficients are similar and indicate that 

the odds of outdoor physical activity are highest in the group reporting moderate perception 

(compared to low perception: adjusted OR=1.60; 95% CI: 0.99-2.60), and intermediate in the 

high perception group (adjusted OR=1.19; 95%CI: 0.73-1.94). There is also strong evidence of 

a dose-response relationship with perceived street connectivity (unadjusted p-value=0.007, 

adjusted p-value=0.001): compared to the low perception category, the adjusted odds of 

outdoor physical activity are 1.48 (95% CI: 1.01-2.17) times higher in the medium category and 

2.49 (95% CI: 1.52-4.07) times higher in the high perception category. Aesthetics are also 

positively associated with outdoor physical activity (p-value <0.001). In particular, the odds of 

outdoor physical activity are 1.63 (95% CI: 1.03-2.56) times higher for those with the best 

perception compared to those with the worse perception.  

Table 5.9 confirms that none of the proximity variables are associated with outdoor physical 

activity (adjusted p-values are 0.691 and 0.901 for bus stop proximity and proximity to 

recreation area, respectively). 
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Table 5.8 Odds ratios (OR) of reporting at least one outdoor physical activity* vs. not by perception of the neighbourhood environment , adjusting for potential confounders (wave 1 of the 
ORiEL Study)  

Exposure  
Analytical 

sample 

(n) 

Unadjusted        

OR 

Adjusted     

OR ¹  
95%CI 

P-value 

parameter 

P-value  

unadjusted 

P-value 

adjusted¹ 

Perceived proximity to  Low 1296 1.00 1.00   0.475 0.704 

    destinations Medium  1.38 1.22 [0.64,2.36] 0.544   

 High  1.43 1.27 [0.69,2.35] 0.439   

         

Perceived traffic safety Low 1346 1.00 1.00   0.053 0.048 
 Medium  1.56 1.60 [0.99,2.60] 0.056   
 High  1.22 1.19 [0.73,1.94] 0.488   

         

Perceived street connectivity Low 1229 1.00 1.00   0.007 0.001 
 Medium  1.29 1.48 [1.01,2.17] 0.044   
 High  2.19 2.49 [1.52,4.07] <0.001   

         

Perceived aesthetics Low 1334 1.00 1.00   <0.001 <0.001 
 Medium  0.91 0.95 [0.62,1.44] 0.792   
 High  1.50 1.63 [1.03,2.56] 0.036   

         

Perceived crime-related safety Low 1253 1.00 1.00   0.387 0.520 
 Medium  0.84 0.82 [0.57,1.19] 0.306   
 High  1.09 0.98 [0.67,1.42] 0.901   

Results are from logistic regression with cluster-robust standard errors.¹ Adjusted for gender, ethnicity, family affluence and free school meal status.* Outdoor physical 

activities include: basketball (or volleyball), blading, cricket, football, rounders, rugby and roller skating. 
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Table 5.9 Odds ratios (OR) of reporting at least one outdoor physical activity* by perception of the neighbourhood environment using individual survey items , adjusting for potential 
confounders (wave 1 of the ORiEL Study)  

Exposure  

Analytical 

sample 

(n) 

Unadjusted       

OR 

Adjusted     

OR ¹  
95%CI 

P-value 

parameter 

P-value  

unadjusted 

P-value 

adjusted¹ 

Perceived bus stop proximity 1-5 minutes 1432 1.00 1.00   0.659 0.691 

 Further away  0.93 0.94 [0.68,1.29] 0.691   

Perceived proximity to  1-5 minutes 1418 1.00 1.00   0.770 0.901 

    recreation area 6-10 minutes  0.98 1.06 [0.69,1.62] 0.796   

 11-20 minutes  0.78 0.85 [0.52,1.40] 0.526   

 21-30 minutes  0.96 1.08 [0.50,2.34] 0.841   

 More than 30 minutes  1.27 1.24 [0.47,3.31] 0.664   

Enjoyment of neighbourhood Strongly disagree 1360 1.00 1.00   0.272 0.230 

   for walking/cycling Slightly disagree  0.93 0.99 [0.51,1.93] 0.972   

Slightly agree  0.92 1.01 [0.54,1.91] 0.971   

 Strongly agree  1.19 1.33 [0.73,2.42] 0.352   

Feeling safe Strongly disagree 1267 1.00 1.00   0.076 0.253 

   (personal safety) Slightly disagree  0.62 0.69 [0.35,1.39] 0.303   

Neither agree nor disagree  0.54 0.58 [0.33,1.03] 0.063   

 Slightly agree  0.61 0.66 [0.36,1.21] 0.177   

 Strongly agree  0.87 0.81 [0.48,1.37] 0.429   

 Results are from logistic regression with cluster-robust standard errors.¹ Adjusted for gender, ethnicity, family affluence and free school meal status.* Outdoor physical 

activities include: basketball (or volleyball), blading, cricket, football, rounders, rugby and roller skating.  
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Unlike for the overall aesthetics indicator, there is less evidence of an association for 

perceiving the neighbourhood as pleasant for walking or cycling (unadjusted p-value=0.272, 

adjusted p-value=0.230), although those who have a good perception again indicate higher 

estimated odds of outdoor physical activity (compared to ‘strongly disagree’: adjusted 

OR=1.33; 95%CI: 0.73-2.42; p-value=0.352). Finally, there is very little evidence of an 

association with personal safety in the adjusted model (p-value=0.253), despite some 

indication of a negative association in the unadjusted model (p-value=0.076). In unadjusted 

and adjusted models, the estimated odds of outdoor physical activity are lower in adolescents 

reporting better perception of safety, but confidence intervals are wide and include 1.00.  

 
 

I finally tested whether pay and play physical activity was associated with the proximity to a 

sport and leisure centre. The binary pay and play physical activity outcome indicates the extent 

to which adolescents reported having participated at least once in the past week in more 

structured forms of activity for which one usually has to pay, including aerobics, climbing, 

swimming, gymnastics, hockey, martial arts, netball, and tennis. Although it was hypothesised 

that greater perceived proximity would mean higher odds of pay and play physical activity, I 

have found no evidence of an association between the two variables. Unadjusted p-

value=0.829 and estimated ORs are all close to 1.00 and have wide confidence intervals 

(results not presented). Given this lack of association, I did not further investigate the 

association between the two variables in adjusted models.  

 
 

In this chapter, I have explored the cross-sectional associations between various perceptions 

of the neighbourhood and six physical activity outcomes. To do so, I conducted a complete 

case analysis of the baseline ORiEL data. I performed unadjusted and adjusted analyses on the 

same analytical samples and accounted for clustering at school-level using cluster-robust 

standard errors. This section summarises the main results by dimension of neighbourhood 

perception and offers some lessons learned and their implications for further analyses.  

Overall perceived proximity to destinations was not related to any of the physical activity 

outcomes. Similarly, I have found no association with perceived proximity to recreation area 

and proximity to sport and leisure centre. 
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The absence of association might partly be explained by the question wording which focused 

on proximity to the closest destination, without information on the quality or density of 

destinations. However, I have found some indication that proximity to bus stop might decrease 

the odds of walking to school. 

Perceived traffic safety was not associated with total physical activity, daily recommended 

physical activity or walking to school and for leisure. It nevertheless displayed a bell-shaped 

association with outdoor physical activity, which is difficult to interpret.  

Perceived street connectivity was positively associated with all five outcomes for which an 

association was investigated. The associations were only significant for total physical activity, 

daily recommended physical activity and outdoor physical activity. The associations were 

particularly strong for total physical activity and outdoor physical activity.  

Aesthetics was not consistently associated with all outcomes. No associations were found for 

walking to school or for leisure. Aesthetics were significantly associated with total physical 

activity and daily recommended physical activity (U-shaped relationships). Significant 

associations were also observed for outdoor physical activity, such that those with best level 

of perception had higher odds of outdoor physical activity, but no differences were observed 

between the other categories. The shape of the observed associations is compatible with two 

competing explanations. On the one hand, better aesthetics could favour outdoor physical 

activity; while on the other hand, reporting more physical activity might imply a better 

awareness of the neighbourhood, which might lead to a more objective, and therefore less 

favourable perception of its aesthetics. In addition to the summary aesthetics score, I have 

also investigated the association between the enjoyment of the neighbourhood for 

walking/cycling and three forms of physical activity. Whereas no association was found with 

walking to school and with outdoor physical activity, walking for leisure appeared to be 

positively associated with that specific item. The association was such that those with very 

negative and those with no firm perception had lower odds of walking for leisure compared 

to others.  

Finally, crime-related safety was not associated with most of the physical activity outcomes. 

The only significant association found was with walking to school, such that those with a 

medium level perception reported greater probability of walking. Using the more specific item 

capturing personal safety (i.e. ‘I feel safe’), I found some evidence that those reporting feeling 

very unsafe were less likely to report walking to school and walking for leisure. These results 

are more in line with the qualitative evidence on safety and physical activity (cf. section 
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2.4.1.4.). There is however some very small indication that the association might be in the 

opposite direction for outdoor physical activity, which was not anticipated. 

This baseline analysis of the complete cases helped better understand the ORiEL data and 

serves as a guide to subsequent analyses. The first lesson learned is that the measures of 

proximity, except for proximity to bus stop, are not associated with any of the physical activity 

outcomes. Second, aesthetics and crime-related safety, which do not capture the relevant 

exposures as well as the two specific items used (enjoyment of the neighbourhood for 

walking/cycling and personal safety), have weaker associations with the physical activity 

outcomes, which are also more difficult to interpret. For these domains of perceptions, it 

therefore seems more relevant to keep the specific items as opposed to the overall scores in 

further analyses. Third, there seems to be no major difference in the results between total 

physical activity and daily recommended physical activity. This might suggest that results from 

the other binary outcomes (walking to school, walking for leisure, outdoor physical activity, 

pay and play physical activity) could also reflect what would have been observed using their 

original scales (which could not be used owing to their distributions as shown in section 3.5.1.). 

Fourth, adjusting for potential confounders only marginally altered the coefficients and not all 

expected confounding factors proved relevant. Borough and country of birth were not 

associated with any of the physical activity outcomes. Seasonality was associated with some 

of the outcomes, but in the opposite direction (such that more physical activity is reported in 

winter compared to spring). Including season in the model did not change the coefficient 

estimates. Parental employment has many response categories with small number of 

observations, which might cause estimation problems in more complex models. I would 

therefore recommend not using these variables as potential confounders in subsequent 

analyses. 

Overall, these results suggest that some perceptions of the neighbourhood are associated with 

some forms of physical activity. Yet, these results are cross-sectional and are likely to be biased 

due to missing data. In the next chapter, I will use the three waves of the ORiEL data together 

with a method for handling missing data to further investigate the associations between 

perceptions of the neighbourhood and physical activity. Given that important changes have 

occurred in the neighbourhood environment during the study period, I expect to observe 

positive changes in perceptions which would allow testing as to whether these are 

accompanied by changes in physical activity. In the next chapters, I will move from a general 

examination of physical activity as a global measure to a set of disaggregated measures of 

physical activity. Therefore, the two global physical activity outcomes explored in the 
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preliminary analyses presented in this chapter (total physical activity and meeting daily 

recommended physical activity) will not be investigated in subsequent chapters. In the next 

chapters, I will examine four forms of physical activity, namely walking to school, walking for 

leisure, outdoor physical activity, and pay and play physical activity.
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In this chapter, I present an analysis of the longitudinal associations between five measures of 

neighbourhood perceptions and three physical activity outcomes. In chapter 5, I presented an 

exploratory analysis of the associations between perceptions of the neighbourhood and 

physical activity, using baseline data from the ORiEL study. The results have allowed selecting 

relevant exposures (perceived bus stop proximity, traffic-related safety, street connectivity, 

enjoyment of the neighbourhood for walking/cycling and personal safety) and physical activity 

outcomes (walking to school, walking for leisure and outdoor physical activity) to be used in 

the longitudinal analyses and presented in this chapter.  

To date, the vast majority of the literature on the associations between perceptions of the 

neighbourhood environment and physical activity comes from cross-sectional data (cf. section 

2.4.1.). These cross-sectional analyses provide little insight into causality and do not allow 

assessing the temporality between change in exposure and change in outcome. Over the last 

years, some longitudinal studies have emerged in the field (An et al. 2017, Crawford et al. 

2010, Knuiman et al. 2014, Remmers et al. 2014, Wong et al. 2014). Despite this progress, it 

appears that the current empirical literature still overlooks discussions on the temporal 

dimensions of neighbourhood effects (Boone-Heinonen & Gordon-Larsen 2012, Hedman et al. 

2015, Sharkey & Faber 2014). Hypotheses regarding the accumulation of exposure, time-lags 

or the trajectories of changes in the exposure are usually absent from conceptual discussions 

and empirical applications in the field (Boone-Heinonen & Gordon-Larsen 2012, Galster 2012). 

As a result, there is currently little understanding on how physical activity evolves in response 

to changes in perceptions of the neighbourhood environment. 

A longitudinal study design adds to the modelling challenge when data are missing. Multiple 

imputation (MI) is the favoured approach to handle missing data on many variables when the 

missing data mechanism is hypothesised to be missing at random or MAR (cf. section 4.3.). 

The recent consensus in the statistical literature is that it is important to use MI models that 

account for the hierarchical structure of the data (Carpenter & Kenward 2012, Enders et al. 

2016, Grund et al. 2016). However, only very recently have software implementations of MI 
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become general and flexible enough to allow for integration with typical epidemiological 

analysis problems that involve hierarchical data and a mix of continuous and discrete variables 

with many response categories (Quartagno 2016).  

Gender is hypothesised to be the main moderator of the associations between measures of 

neighbourhood perceptions and physical activity, although it has received limited attention in 

the empirical literature (Papas et al. 2007). Patterns of physical activity and perceptions of the 

neighbourhood are known to differ by gender as the construction of gender identity at 

adolescence leads to different lifestyles for boys and girls (Allender et al. 2006). It is therefore 

expected that boys and girls might not be affected by environmental factors and their 

perceptions in the same way. In particular, more restricted independent mobility in girls 

(Carver et al. 2008) might condition how perceived safety could influence physical activity in 

the neighbourhood.  

In this chapter, I use the 3-wave balanced panel of the ORiEL study (cf. section 3.3.) to test 

alternative hypotheses on how measures of neighbourhood perceptions might influence three 

common forms of physical activity: walking to school, walking for leisure, and a composite 

measure of outdoor physical activity. These three forms of physical activity were chosen 

because they are most likely to be influenced by measures of neighbourhood perceptions used 

in the ORiEL study (Esteban-Cornejo et al. 2016, Evenson et al. 2012, Foster et al. 2014a, 

Spittaels et al. 2010). I further investigate the moderating role of gender in the associations. 

From a methodological perspective, this chapter informs on the feasibility of multilevel MI in 

the case of a typical epidemiological analysis problem that involves the use of data with a 3-

level hierarchical structure, mix of response types and interaction terms.  

 
 

The following research questions are explored in this chapter. 

Question 1: Are perceptions of the neighbourhood environment longitudinally associated with 

physical activity in adolescents in the ORiEL study? 

Specifically, I formulated three questions about the form of the longitudinal associations 

between the exposures and the outcomes, and one question on the role of gender as a 

moderator:  

1.1. Are perceptions of the neighbourhood (perceived proximity to nearest bus stop, 

traffic safety, street connectivity, enjoyment of the neighbourhood for walking/cycling 
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and personal safety) associated with physical activity (walking to school; walking for 

leisure; outdoor physical activity) across all measurements (i.e. general associations)? 

1.2. Do these perceptions of the neighbourhood (perceived proximity to nearest bus 

stop, traffic safety, street connectivity, enjoyment of the neighbourhood for 

walking/cycling and personal safety) have a cumulative influence on walking to school, 

walking for leisure and outdoor physical activity? 

1.3. Do trajectories of these perceptions of the neighbourhood (perceived proximity to 

nearest bus stop, traffic safety, street connectivity, enjoyment of the neighbourhood 

for walking/cycling and personal safety) relate to changes in walking to school, walking 

for leisure and outdoor physical activity? 

1.4. Do the above associations between perceptions of the neighbourhood and physical 

activity differ for boys and girls?  

 
 

To explore the longitudinal associations between perceptions of the neighbourhood 

environment and physical activity, I estimated longitudinal and cross-sectional models with 

generalised estimating equation (GEE) methods using imputed datasets. The data and 

methods used are outlined below. 

 
 

The final sample used for these longitudinal analyses was constructed by excluding ORiEL 

respondents that did not participate in all three waves. The final sample size includes 2,260 

participants and 6,780 observations and is referred to as the 3-wave balanced panel (cf. 

section 3.3.). 

 
 

The variables used are summarised in Table 6.1 and were outlined in section 3.5. These include 

three binary physical activity outcomes, five measures of neighbourhood perceptions, a set of 

potential confounders, and a cluster variable. These are described below. 
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Table 6.1 Variable definitions and item missingness at each wave for the 3-wave balanced panel (n = 2,260; 
6,780 measurements)   

Variable Variable type and use in the analysis % missing 
W1       W2         W3  

Outcomes   

Walking to school Ordinal (almost count), 4 categories, 
non-Normal; binary version used 

8.4        3.3        3.0 

Walking for leisure Ordinal (almost count), 4 categories, 
non-Normal; binary version used 

18.1      6.7        5.3 

Outdoor physical activity Count (0-7), non-Normal; binary version 
used 

23.1      11.6      8.8 

Exposures   

Perceived bus stop proximity Ordinal, 5 categories, skewed; binary 
version used 

19.8      6.7        4.6 

Perceived traffic safety 
Continuous score based on 3 items ; 
categorised in 3 groups 

25.5      9.3        5.5 

Perceived street connectivity 
Continuous score based on 4 items, 
approximately Normal ; categorised in 3 
groups 

32.3      14.1      10.0 

Enjoyment of the neighbourhood for 
walking/cycling 

Ordinal 4 categories, skewed; 
categorised in 3 groups in the final 
model 

24.3      8.4        5.2 

Feeling safe (personal safety) Ordinal 5 categories, non-Normal 29.3      10.1      6.1 

Potential confounders   

Gender Binary  Fully observed 

Ethnicity 
Nominal variable with 8 categories Fully observed 

Health condition 
Count score of 9 binary items* (0-9), 
skewed; categorised in 3 groups (0/1/2+) 
and in 2 groups (0/1+) in the final model 

3.4        14.7      14.6 

Family affluence 
Count score of 3 items (0-9), 
approximately N; categorised in 3 groups 

4.6         3.7        3.4 

Baseline free school meal status Binary: Yes/No 2.0           

Cluster variable   

School Assumed to be time invariant (W1 value 
used for those changing school) 

Fully observed 

Missing values predictors   

Total physical activity  Continuous, approximately log Normal 2.8         0.7        0.5 

Country of birth Binary (UK/non-UK) 2.0       

Mental health (WEMWBS) Continuous, approximately square 
Normal 

2.9          2.1       2.0 

BMI (BMI z score) Continuous, Normal 8.5          8.2       6.9 

Crime safety during day (ALPHA) Ordinal variable with 4 categories; 
categorised in 3 groups in the final 
model 

23.6        7.8       5.8 

Self-rated health  Ordinal variable with 3 categories 1.6          0.9        1.0 

*requirement that at least five items are completed to get a score because the interest is in whether any 

condition is reported. 
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Three measures of routine physical activity hypothesised to be associated with measures of 

neighbourhood perceptions in the ORiEL study are examined: walking to school, walking for 

leisure (dog/exercise) and outdoor physical activity. As detailed in the data chapter (section 

3.5.1.), each binary physical activity outcome captures whether adolescents reported having 

participated in the activity over the past week. The outdoor physical activity outcome 

combines participation in any of the following activities: basketball/volleyball, blading, cricket, 

football, rounders, rugby and roller skating.   

 

 

Following exploratory analysis of the baseline data presented in chapter 5, I selected five 

measures of neighbourhood perceptions hypothesised to be related to the outcomes (Table 

6.1). The measures are derived from the ALPHA questionnaire which specifically targets 

walking and cycling (Spittaels et al. 2010), and the personal safety item comes from the MESA 

study (Mujahid et al. 2007). Perceived proximity to a bus stop was recoded into a binary 

variable owing to sparseness (1-5 minutes vs. further away); the ALPHA traffic safety and street 

connectivity scores were used as 3-level ordinal scores (low/medium/high); enjoyment of the 

neighbourhood for walking/cycling was used as a 3-level ordinal score ((strongly)disagree/ 

agree/ strongly agree); and the MESA personal safety item was kept to its original five-level 

Likert scale (cf. section 3.5.2.1.).  

These measures of neighbourhood perceptions were used to answer question 1.1. about the 

general associations between the exposure and outcome variables. In addition, longitudinal-

specific exposure variables were created to answer questions 1.2. and 1.3. about the nature 

of the relationships between perceptions of the environment and physical activity. For each 

aspect of neighbourhood perception, exposure variables were derived to capture cumulative 

exposure (question 1.2.) and trajectory of exposure (question 1.3.), as detailed in the data 

chapter (section 3.5.2.1.). Briefly, the cumulative score summed the values of the above 

ordinal scores across all three waves; and the trajectory of exposure measured change in 

perceptions of the neighbourhood between the baseline and wave 3, so that a positive value 

represents an improvement of perception.  

  



  

147 
 

 

 

The following potential confounders were included in all models: gender, ethnicity (8 

categories), family affluence (3 categories derived from the family affluence scale), health 

condition (no condition vs. 1+ condition(s)), and free school meal status. Gender, ethnicity and 

free school meal status were considered as time-invariant. Baseline free school meal status 

was used following preliminary analysis of the reliability of the item (cf. section 3.5.3.4.). The 

other variables were treated as time-varying, except in the models testing the cumulative 

hypothesis, where only wave 3 values of the time-varying confounders were used. Note that 

distance to school was not included as a potential confounder because the variable was not 

available at the time of analysis. Including it retrospectively would have required re-

imputation of the data. It was judged to be an unnecessary undertaking given that the results 

of this chapter indicate no evidence of associations between the exposures and walking to 

school.  

 

 

School was considered as time-invariant for ease of modelling (see below). During the study 

period, n=6 adolescents moved within the surveyed school sample. In the models accounting 

for school-level clustering, baseline-school were used for these six adolescents. This 

simplification is highly unlikely to have any impact on the interpretation of the results.  

 
 

As detailed in the methods chapter (chapter 4), the analytical strategy for the longitudinal 

analyses is twofold: it involves the handling of missing data with multilevel multiple imputation 

and the specification of models used to answer the research questions, known as analysis 

models (or models of interest). The specific models used in this chapter are presented in this 

section. 

 

 

This first longitudinal results chapter explored the feasibility of multilevel MI to handle missing 

data for the typical epidemiological analysis problems tackled in this thesis, and which involves 

missing values in a dataset with a 3-level hierarchical structure (measurements, individuals 

and schools), mix of discrete and continuous variables, and interaction terms.  
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I first described the extent of missingness in each variable of interest and explored the 

plausibility of different missing data mechanisms. 

I have shown in the data chapter that many variables have missing values in the ORiEL study 

(section 3.4.). I conducted preliminary analyses in order to explore the validity of a complete 

case analysis. Analyses reported in Appendix E (section E.1) indicate that such an analysis is 

likely to be invalid and to generate bias. Clark et al. (2017) have previously shown that the 

‘missing at random’ (MAR) assumption was plausible for many variables of the ORiEL study, 

which I corroborated for the main variables used in this chapter (Appendix E section E.1). As 

explained in the methods chapter (section 4.2.3.), MI was used to handle item non-response 

on all the variables of interest concurrently. To increase the plausibility of the MAR 

assumption, reduce bias and improve efficiency (Carpenter & Kenward 2012), I included the 

following auxiliary variables in the imputation models: log total physical activity (centred), 

country of birth, squared WEMWBS score for positive mental wellbeing (centred), BMI z-score 

(centred), crime safety during the day (from the ALPHA questionnaire) and self-rated health. 

The selection process of these auxiliary variables is reported in Appendix E (section E.1). 

Multilevel MI solutions were explored in order to account for the correlations implied by the 

3-level hierarchical structure of the data (repeated measurements, individuals, schools). The 

models of analysis include continuous variables, discrete variables with many categories and 

interaction terms between the exposure variables and gender. Potential interactions were 

handled by imputing the data separately for boys and girls. As explained in the methods 

chapter (section 4.3.), I used a joint modelling approach (Goldstein et al. 2009) in order to 

handle both continuous and discrete variables, the latter with the latent normal distribution 

assumption. The imputation models were fitted using the R package ‘jomo’ (Quartagno et al. 

2018), which is the best package available to run complex multilevel MI models with numerous 

continuous and unordered discrete variables. ‘Jomo’ currently allows for 2-level models with 

missing values at each level (Quartagno et al. 2018). 

Given the exploratory nature of this undertaking, the imputation strategies investigated in this 

chapter are reported in greater detail compared to chapters 7 and 8, where I applied the 

general approach developed in the present chapter. Results of this chapter include the process 

of fitting and evaluating various imputation models. I first specified an imputation model 

comparable to the imputation models used in the ORiEL project (Clark et al. 2017, Cummins 

et al. 2017). The viability of the model was assessed in terms of convergence of the parameters 

of the coefficient matrices (Beta, Beta2, Omega and Cov u) and computational requirements, 

which are memory need and computational speed (cf. section 4.3.4.). Alternative models were 
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then considered until I obtained an imputation model that was satisfactory in terms of 

conceptual comprehensiveness, computational time and convergence. An arbitrary limit of 20 

days was set for the production of the imputed datasets with the final imputation model. A 

random seed was set to initiate the MCMC sampler for all analyses to allow reproducibility of 

the results24.  

 

 

To answer the research questions of this chapter, I estimated logistic regression models 

(‘xtgee’) using GEE in Stata 14 as detailed in the methods chapter (section 4.4.3.). Marginal 

models estimated with GEE have a desirable population-average interpretation of the 

parameters (Fitzmaurice et al. 2011), although current software implementations only allow 

for models with 2-level structures. 

Three types of models were fitted to answer the research questions about the nature of the 

longitudinal associations. The general form of these models is detailed in the methods chapter 

(section 4.4.3.). Models for questions 1.1. (general association obtained with pooled 

longitudinal models) and 1.3. (longitudinal models for trajectory of exposure) accounted for 

clustering due to repeated measurements on the same individuals (using unstructured 

working correlation structures), whereas models for research question 1.2. (cross-sectional 

models for cumulative exposure) treated the data as cross-sectional and therefore could 

account for clustering at school-level (using exchangeable working correlation structures). I 

first fitted unadjusted models including each of the five exposure variables in turn and a 

physical activity outcome. Fully adjusted models were then specified, adjusting for all five 

exposure variables together and the potential confounders. Finally, I explored whether gender 

was moderator (question 1.4.) by running a series of fully adjusted models that further 

included an interaction term between each exposure of interest and gender, with one 

gender*exposure interaction at a time (i.e. one per model). Stratum-specific results are 

reported for p-values for the interactions <0.1. The general form of the model equations are 

given in Appendix E (section E.2). The choice of the working correlation structure for each 

model was guided by a preliminary comparison between model-based and robust standard 

errors under different specification of the working correlation structure, using the complete 

cases Appendix E (section E.3). 

                                                           
 

24 Models were run on a PC with an Intel i5 2.90 GHz CPU and 8GB of RAM in Windows 7, using R version 
3.3.2 (64 bit).  
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Analyses were conducted on the imputed datasets and final inferences obtained using the ‘mi 

estimate’ command in Stata. For sensitivity purposes, analyses were replicated using different 

specifications of the working correlation structure in the GEE estimation process and standard 

errors compared (Appendix E section E.4). Finally, results from analyses of the complete cases 

are reported (Appendix E section E.5).  

 
 

This section presents the results of the analyses conducted to answer the research questions 

on the relationships between perceptions of the neighbourhood environment and physical 

activity. The first part presents how item non-response is handled using a multilevel multiple 

imputation model specific to the analyses presented in this chapter. Results on the selection 

of a final imputation model are extensively discussed in this first longitudinal results chapter, 

as one of the methodological aim is to assess the feasibility of the imputation approach, given 

the data and the research questions addressed in this thesis. The second part presents the 

results of the analysis models fitted to answer the research questions. 

 
 

 

 

All variables, except gender, ethnicity and school, have some non-response at each wave 

(Table 6.1). As described in the data chapter (section 3.4.) the closer the question was to the 

end of the questionnaire, the higher the chance of missingness. Item missingness is also more 

likely at baseline when participants are younger and less familiar with the interview process. 

Missingness is highest for the perceptions of the neighbourhood variables, in which the 

proportion of missing values roughly lies between 20% and 32% at wave 1, between 7% and 

15% at wave 2 and between 5% and 10% at wave 3. Missingness is slightly lower for the 

physical activity variables: missingness is lowest for walking to school (8% at wave 1 and 3% 

subsequently), higher for walking for leisure (18% at wave 1, 7% at wave 2 and 5% at wave 3), 

and highest for outdoor physical activity (23% at wave 1, 12% at wave 2 and 9% at wave 3). 

Outdoor physical activity has more missing values because it combines multiple items with 

missing values each. Potential confounders were either fully observed (gender, ethnicity, and 

school) or had less than 5% of missing values. An exception is health condition, whose non-

response was close to 3% at baseline and then increased to 15% at later waves, due to a small 

change in the response scale.  



  

151 
 

 

 

The ORiEL data has a 3-level structure. Adolescents were surveyed on 3 occasions with school-

level sampling selection (cf. section 3.2.). As a result, the 1st level is the measurement, the 2nd 

level is adolescent, and the 3rd level is school. Given the inability to model 3-level structures in 

jomo, alternative operationalisations had to be found. The first option, which was followed by 

researchers of the ORiEL project using the software REALCOM-Impute (Clark et al. 2017, 

Cummins et al. 2017), was to account for the hierarchical structure between level 1 and level 

2 variables and to include school as a fixed effect. Such a model was formulated (Model 1) and 

refined (Models 2 and 3) in order to improve convergence and computational time. However, 

even Models 2 and 3 had both theoretical and practical limitations, and therefore, a separate 

option was investigated: I transformed the dataset in the wide format (so that each participant 

is represented by a single row and repeated measurements as separate columns) and I 

formulated an imputation model in which each measurement point of each variable is an 

outcome of the joint model. This fixed effects or multivariable approach to within adolescent 

correlations allowed for the use of school as a level 2 variable (Model 4). The four models 

considered are summarised in Table 6.2 and discussed below with their advantages and 

disadvantages. Given the interest in gender*exposure interactions the imputation models are 

run separately for boys and girls and the suitability of the final model (Model 4) was assessed 

for the two groups.   

 

Model 1 treated all variables with missing values as outcomes: baseline free school meal status 

and country of birth were treated as level 2 outcomes (Y2 data.frame in jomo) and the 

other variables as level 1, i.e. time-varying outcomes (Y data.frame). Fully observed 

variables - ethnicity and school - were treated as time-invariant covariates, with an influence 

on both level 1 and level 2 outcomes. They were represented by n-1 dummy variables in the 

data.frames X and X2 (cf. section 4.3.5.1. for an introduction to the jomo syntax). 

Initial analysis revealed that Model 1 is very demanding computationally (Table 6.2). I 

estimated that in the best-case scenario, assuming quick convergence of the parameters, 

Model 1 for boys would need about 20 days to run (=20,000x 86 sec). An additional week 

would be needed in the first place to be able to assess the convergence without any guarantee 

that evidence of convergence would be obtained. Instead of waiting a week to obtain a first 

assessment of the model, I immediately moved on to a simplified version. The poor 
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performance of simplified specifications explored subsequently (Models 2-3) confirmed that 

Model 1 most likely has very poor convergence and mixing and it is not usable to impute 

missing data.  

 

To simplify the initial model (Model 1), I treated completely observed variables – ethnicity and 

school – as outcomes instead of as covariates (Model 2). Quartagno and Carpenter (2018) 

showed that this was a viable alternative specification that sometimes improved convergence. 

Consequently, completely observed variables are assumed to follow latent normal 

distributions, whereas no such assumption is made when treated as covariate. Model 2 was 

specified for each gender, adding ethnicity and schools to the list of level 2 outcomes. 

This specification of the model dramatically improved the computational time (decreasing 

from 86 to 11 sec for the 1st iteration of the model in boys) which is attributed to the reduction 

in the number of level 1 and level 2 𝛽 coefficients estimated in Beta and Beta2 matrices, 

respectively. Model 2 still had a very complex level 1 residual Omega matrix (and many 

parameters in general) which means that a lot of memory space is required to store the 

parameters of successive iterations (about 530 MB for 1,000 iterations).  

An initial run of 2,000 iterations indicated slow convergence and high autocorrelation, which 

prevented the identification of burn-in and n-between values for imputation purposes. Results 

were subsequently obtained for 20,000 iterations for girls and 16,000 for boys. Parameters in 

both gender indicated poor evidence of convergence with some important parameters 

producing high autocorrelation values. For example, the level 1 𝛽 parameter associated with 

walking to school (𝛽4) exhibited very high autocorrelation (Figure 6.1B) and indicated variation 

on the MCMC chain between 10,000th and 15,000th iterations (Figure 6.1A). This suggests that 

the distribution may not be stable until the 15,000th iteration, and worse, that a very large 

(unknown) n-between value is needed. Similarly high autocorrelation was observed for 

outdoor physical activity in boys (not presented).   

In addition, level 2 covariances u associated with the WEMWBS score for positive mental 

wellbeing were very high and poorly estimated (not presented). The WEMWBS score in Model 

2 had been squared (and centred) in order to approximate a normal distribution, however this 

was inadequate on its own, and these results indicate that the variable should be additionally 

rescaled to have a variance more similar to the other continuous variables. 



  

153 
 

Overall, Model 2 did not show sufficient evidence that it could be used with confidence to 

impute the missing data. Necessary improvements would include the recoding of some 

variables and a reduction in the number of parameters.  

 

 

 

Figure 6.1 Example of time series plot (A) and autocorrelation plot (B) of a 𝜷 parameter with poor convergence 
in Model 2. The 𝜷 parameter of this example corresponds to walking to school (𝜷𝟒) for girls. The autocorrelation 
plot (B) starts at iteration 10,000 ACF – Autocorrelation Function  

 

 

Model 3 is based on Model 2 and adopts a series of simplifications. Slow convergence of Model 

2 is partly attributed to the estimation of many parameters. In particular, school – represented 

by 24 latent normal variables – requires estimating many parameters.  

Removing school from the imputation model and rescaling the mental health score (by 

dividing the previously squared and centred WEMWBS score for positive mental wellbeing by 

1,000) produced a simpler model.   

A 

B 



 

1
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Table 6.2 Summary of imputation models of chapter 6 

Model  Data 
format 

Cluster 
variable 

Variables recoding Coefficients 
matrices* 

Computational 
time for 1 
iteration* 

Memory 
needed to 
store 1,000 
iterations* 

MCMC convergence 

Model 1: Ethnicity 
and School as 
covariates 

long  id normal transformation and 
centring of continuous 
variables 

Beta [33x 27]  
Beta2 [33x2]    
Cov u [29x29]   
Omega [27 x 27] 

86 sec NA NA 

Model 2: Ethnicity 
and school as 
outcomes 

long  id  same as Model 1 Beta [1x 27]  
Beta2 [1 x 32]   
Cov u [59x59]  
Omega [27 x 27] 

11 sec 530 MB slow convergence, high 
auto-correlation; 
problematic parameters 

Model 3: Ethnicity 
as outcome and 
school excluded 

long  id  same as Model 1 +  
Mental-Health score 
rescaled; recoding of: 
crime safety during day 
(ALPHA), health and 
enjoyment of the 
neighbourhood for 
walking/cycling recoded 
 

Beta [1x 24]  
Beta2 [1 x 9]     
Cov u [33x33]  
Omega [24 x 24] 

3 sec 309 MB slow convergence and 
some high auto-
correlations; problematic 
parameters 

Model 4: Fixed 
effects approach 
with school as a 
cluster 

wide school same as Model 3 Beta [1x 81]                                 
Cov u [81x81]  
Omega [81 x 81] 

42 sec 78 MB quicker convergence, low 
auto-correlation; 
recommended burn-in of 

𝑛burn = 200 and n-between 
of 𝑛between =500 

* Results specific for boys. Note that there are 3 girls-only and 1 boys-only schools and therefore models are slightly different. 
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However, despite these changes, three variables still appeared to have slow converging 

parameters for both boys and girls. Analysis of convergence suggested that reducing the 

number of response categories for some variables might improve the model without 

restricting too drastically its complexity. Additional three variables were thus recoded in 

Model 3:  

Enjoyment of the neighbourhood for walking/cycling: the original variable, which is an 

exposure in the analysis model, had four categories and few observations in the poor 

aesthetics category. The estimation of the 𝛽 parameter for that category was poor in the 

improved Model 2. The diagnosis graphs for those parameters in the improved Model 2 are 

given as an illustration in Figure 6.2. To improve convergence, I regrouped the two negative 

perception categories into a single one. 

 

Figure 6.2 Example of time series plot (A) and autocorrelation plot (B) with high autocorrelation in a 𝜷 parameter 
for a response category with few observations in an improved version of Model 2. The 𝜷 parameter of this 
example corresponds to the low response category of enjoyment of the neighbourhood for walking/cycling in 
boys (𝜷𝟏𝟐). Results are from the multilevel imputation Model 2 (without school, with ethnicity included as an 
outcome and a rescaled WEMWBS score for positive mental wellbeing). The autocorrelation plot starts at 
iteration 20,000. ACF – Autocorrelation Function 
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Health condition: the variable is a potential confounder with 3 response categories. Few 

reported two or more conditions (3rd category) and MCMC chains for associated 𝛽 parameter 

had high autocorrelation. The variable was then dichotomised into none vs. 1+ health 

condition(s).  

Crime safety during day (ALPHA): This auxiliary variable had 4 response categories. The 

‘strongly agree’ and ‘slightly agree’ categories were grouped together because of the small 

number of observation in each of those and poor convergence of the associated 𝛽 parameters. 

A new variable with 3 response categories was created.  

Model 3 has improved computational efficiency (3 sec for 1 iterations in boys) and data storage 

needs (309 MB for 1,000 iterations) compared to Model 2 (Table 6.2). Large burn-in values 

were used in order to be able to fully examine the MCMC chain on which the imputation would 

be conducted, resulting in 54,000 iterations for boys and 66,000 for girls. 

Overall, final results were not as good as expected. Convergence seemed to be achieved for 

most level 1 and level 2 𝛽 parameters after 15,000 iterations, although not always with a clear 

distribution. Yet, some 𝛽 values did not fall within the 0.025 autocorrelation threshold even 

with a lag of 10,000 iterations (Figure 6.3). Without even having to mention issues related to 

the Omega and the Covariance u parameters (not presented), these results overall indicate 

that Model 3 is not a viable imputation model.  

One solution to the challenges experienced would be to further compromise on the number 

of parameters in the imputation model, either by regrouping some of the response categories 

or by reducing the number of variables. However, given that the objective of this analysis was 

to explore the viability of multilevel multiple imputation within a realistically complex 

epidemiological setting, an alternative formulation of the model was prioritised over an 

additional restriction of the complexity of the imputation model. Excluding school in Model 3 

already drastically simplifies the initial model, and challenges the veracity of any subsequent 

analytical models in light of a research sample design that employs schools as clusters. 

Additionally, in spite of apparent computational efficiency, the failure of the model to 

converge might indicate problems with the specification of the model itself. In fact, Models 1-

3 use many clusters of three observations to estimate parameters at each cluster-level. This is 

likely to cause estimation problems in the covariance matrices, and therefore it could explain 

why Model 3 did not converge well.   
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Figure 6.3 Examples of time series plots (A and C) and autocorrelation plots (B and D) with high autocorrelation 
in some of the 𝜷 parameters of Model 3. A and B correspond to walking to school (𝜷𝟒) and C and D correspond 
to traffic safety (𝜷𝟖) in boys. The autocorrelation plots start at iteration 15,000. ACF – Autocorrelation Function  

 

A 

C 

B 
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To overcome difficulties of previous model specifications, Model 4 uses the longitudinal data 

in wide format (as opposed to long format). Each time-varying variable is represented by three 

variables, one variable for each measurement occasion. Time-invariant variables only need to 

be represented with one variable. The imputation model specifies all variables as level 1 

outcomes. This is known as a fixed effects (Kalaycioglu et al. 2016) or multivariable (Verbeke 

& Molenberghs 2009) specification. The advantage of Model 4 is that information from other 

waves can be used to impute the data without the need of a multilevel structure, allowing for 

the use of school as the cluster variable and therefore accounting for both sources of 

correlation. By using school as the cluster instead of respondent, the model no longer has the 

drawback of having only 3 observations per cluster. Model 4 also uses the recoded variables 

as given in Model 3 (The model equation and the associated R codes to fit it in jomo are given 

in Appendix C section C.3). 

Model 4 includes 81 outcomes and therefore 81 𝛽 parameters: 9 continuous variables, 

representing each continuous measure at each time point (log total physical activity (centred), 

squared Mental-Health score (rescaled and centred), and BMI (centred)), 15 latent variables 

representing the five binary measures at each time point (walking to school, walking for 

leisure, outdoor physical activity, bus stop proximity, and health condition), 48 latent variables 

for the time-varying ordinal measures at each time point (traffic safety (6), street connectivity 

(6), enjoyment of the neighbourhood for walking/cycling (6), personal safety (8+6), self-rated 

health (8), and family affluence (8)), and 9 latent variables for the time-invariant confounders 

(1 for free school meal status and country of birth each, and 7 for ethnicity). 

Model 4 is conceptually simpler than Models 1-3 because it does not have a Beta2 matrix 

(Table 6.2). The advantage of not having level 2 𝛽 parameters associated with latent variable 

outcomes is that the level 2 covariance matrix is estimated with the Gibbs sampler and does 

not require a Metropolis-Hastings step. Experience with Models 1-3 indicated that the 

Metropolis-Hastings samplers had more difficulty converging, and generally lead to higher 

levels of auto-correlation between successive draws. The disadvantage of Model 4 lies in the 

large number of parameters to estimate the Beta (81) and covariance matrices (81x81 

parameters each), which results in increased computational time (42 sec for 1 iteration for the 

boys model). The memory size required to store the parameters for the MCMC chains is lower 

than for the other models due to the smaller number of clusters. Under acceptable 
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convergence, the estimated time required for the imputation using Model 4 is about 10 days 

(=20,000x 42 sec) for boys, which falls within my arbitrary limit of 20 days.  

 

The parameters of 4,000 iterations were saved for the models for girls and boys to assess 

convergence. Model 4 indicated quick convergence of the 𝛽 parameters and lower 

autocorrelations between successive iterations than in the previous models. Figure 6.4 gives, 

for one of the outcome variables, an example of good parameter convergence for girls. A  

parameter associated with ethnicity (𝛽79) had the poorest convergence, although still 

acceptable (Figure 6.5 for girls). Note that for some parameters, like 𝛽79 , there was still 

evidence of autocorrelation after 500 iterations due to poor mixing. The use of the Metropolis-

Hastings step to update the Omega parameters had some effect on the 𝛽′𝑠 Betas, since 𝛽′𝑠 

are drawn from a distribution conditional on Omega.  

 

Figure 6.4 Example of time series plot (A) and autocorrelation plot (B) of a 𝜷 parameter with good convergence 
in Model 4. The 𝜷 parameter of this example corresponds to walking for leisure (𝜷𝟏𝟒) at wave 2 in the model for 
girls. Results are from the multilevel imputation Model 4 (fixed effects approach with school as a cluster). The 
autocorrelation plot starts at iteration 3,000. ACF – Autocorrelation Function  
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Figure 6.5 Example of time series plot (A) and autocorrelation plot (B) of a 𝜷 parameter with non-optimal 
convergence in Model 4. The parameter of this example corresponds to the Black Caribbean ethnic group in the 
model for girls (𝜷𝟕𝟗). Results are from the multilevel imputation Model 4 (fixed effects approach with school as 
a cluster). The autocorrelation plot starts at iteration 3,000. ACF – Autocorrelation Function 

 

As a rule of thumb, the autocorrelation plots should cross the 0.05 benchmark line at least 

once for each parameter, for a given n-between. This appears to be the case for all parameters 

where n-between 𝑛between= 500.  

Parameters of the level 2 covariance matrix (Covariance u) converged quickly to the 

distribution and stayed well within the [-0.05; 0.05] bounds for autocorrelation. In general, the 

main covariances of interest are the variances and the covariances involving the outcomes of 

the analysis models (walking to school, walking for leisure and outdoor physical activity at each 

wave). All those parameters had very good convergence as exemplified by the covariance of 

outdoor physical activity in boys at wave 1 (Figure 6.6)  

A 
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Figure 6.6 Example of time series plot (A) and autocorrelation plot (B) of a level 2 Covariance u parameter with 
excellent convergence in Model 4. The parameter of this example corresponds to the level 2 variance of outdoor 
physical activity at wave 1 in the model for boys (Covariance u 16 16). Results are from the multilevel imputation 
Model 4 (fixed effects approach with school as a cluster). The autocorrelation plot starts at iteration 3,000. ACF 
– Autocorrelation Function  

 

Graphs for the level 1 covariances indicate, especially for boys, that presumably no optimal 

acceptance ratio was found because once a stationary distribution is reached, there is limited 

variation around it (see Figure 6.7 for an example and Figure 6.8 for a better converging 

parameter). These results are not optimal. However, given that the purpose of this analysis is 

not to conduct a fully Bayesian analysis, the impact of this on the quality of the imputed values 

is likely to be negligible. In general, convergence diagnoses indicate that Model 4 could be 

used to impute the data with sufficient confidence.  

 

A 
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Figure 6.7 Example of time series plot with little variation around the average of a level 1 covariance parameter 
Omega updated with a Metropolis-Hastings step. Results are from the multilevel imputation Model 4 (fixed 
effects approach with school as a cluster).   

 

 

 

Figure 6.8 Example of time series plots with good mixing of level 1 covariance Omega parameter updated with a 
Metropolis-Hastings step. Results are from the multilevel imputation Model 4 for girls (fixed effects approach 
with school as a cluster).   

 

 

 

Model 4 is employed as the final imputation model in order to produce 20 imputed datasets 

each for boys and girls. A burn-in of 𝑛burn =3,050 was used for boys and 𝑛burn =4,050 for girls, 

and an n-between of 𝑛between =500 was used for both models. The random seed 1,523 was 

used for replication purposes. The models took c.7 days each to complete the burn-in and 

impute the data. The boy and girl sets of 20 imputed datasets were merged and transformed 

back into long format for analysis. The analysis models were run on each imputed dataset and 

results were combined for final inference using Rubin’s rules (Carpenter & Kenward 2012).  
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In this section, I analyse the 20 imputed datasets to answer the research questions (section 

6.2.). These are, first, are the five measures of neighbourhood perceptions (perceived 

proximity to nearest bus stop, traffic safety, street connectivity, enjoyment of the 

neighbourhood for walking/cycling and personal safety) longitudinally associated with three 

common forms of physical activity (walking to school, walking for leisure, and outdoor physical 

activity) across all measurements? Second, do these perceptions of the neighbourhood have 

a cumulative influence on physical activity? Third, do trajectories of these perceptions of the 

neighbourhood relate to changes in physical activity? For each research question, I also 

explored whether the associations differ for boys and girls.  

Analyses were conducted using logistic regression models estimated with GEE to account for 

clustering at individual-level (longitudinal analyses; questions 1.1. and 1.3.) and to account for 

clustering at school-level (cross-sectional analyses for accumulation of exposure; question 

1.2.). Parameters of the pooled longitudinal models (question 1.1.) are interpreted either as 

cross-sectional or in terms of within individual change over time (cf. section 4.4.3.1.). 

Associations from other models (questions 1.2. and 1.3.) are comparisons between 

respondents with different forms of exposure. Results are presented for each physical activity 

outcome in turn, starting with a description of the associations between the confounders and 

the outcomes.  

 

 

Before exploring the longitudinal associations between the exposure variables and walking to 

school, Table 6.3 presents unadjusted and adjusted associations between socio-demographic 

variables and walking to school. After adjustment for all socio-demographic variables, there is 

no indication that walking to school differs by gender (adjusted OR = 1.10 (95% CI: 0.94-1.29); 

p-value = 0.235). There is however strong evidence that it varies by ethnic group (adjusted p-

value < 0.001). Compared to adolescents identifying as White UK, the odds of walking to school 

are much lower among the White Mixed, Black African and Black Caribbean groups (adjusted 

ORs are 0.60 (95% CI: 0.43-0.84), 0.60 (95% CI: 0.45-0.80) and 0.42 (95% CI: 0.29-0.60) 

respectively) and highest among the Bangladeshi and Indian adolescents (adjusted ORs are 

1.34 (95% CI: 0.98-1.83) and 1.16 (95% CI: 0.72-1.87), respectively). 
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Table 6.3 Odds ratios (OR) of walking to school vs. not by potential socio-demographic and health confounders (3-wave balanced panel of the ORiEL study, n=2,260)  

Potential confounder  
Unadjusted 

OR 
Adjusted OR¹ 95%CI 

P-value 

parameter 

P-value  

unadjusted 

P-value 

adjusted¹  

Gender Male 1.00 1.00   0.523 0.235 
 Female 1.05 1.10 [0.94,1.29] 0.235   

Ethnicity White: UK 1.00 1.00   <0.001 <0.001 
 White: Mixed 0.62 0.60 [0.43,0.84] 0.002   
 Asian: Indian 1.13 1.16 [0.72,1.87] 0.550   
 Asian: Pakistani 0.87 0.89 [0.56,1.42] 0.621   
 Asian: Bangladeshi 1.32 1.34 [0.98,1.83] 0.069   
 Black: Caribbean 0.43 0.42 [0.29,0.60] <0.001   
 Black: African 0.59 0.60 [0.45,0.80] <0.001   
 Other 0.71 0.71 [0.57,0.90] 0.005   

Health no condition 1.00 1.00   0.076 0.077 
 1+ condition(s) 1.13 1.13 [0.99,1.30] 0.077   

Family affluence Low 1.00 1.00   0.198 0.230 
 Moderate 0.82 0.84 [0.66,1.07] 0.157   
 High 0.87 0.91 [0.70,1.17] 0.447   

Take free school No 1.00 1.00   0.306 0.235 

     meals at W1 Yes 1.09 1.10 [0.94,1.30] 0.235   

Time  0.96 0.96 [0.91,1.02] 0.168 0.137 0.168 

Results are from logistic regression models estimated with Generalised Estimating Equations to account for the dependency across repeated measurements (unstructured 

working correlation matrix).¹ Adjusted for all other variables of the table. 
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Family affluence and free school meal status indicate that lower socio-economic background 

might be associated with higher odds of walking to school, but none of the associations 

reached statistical significance (adjusted p-values=0.230 and 0.235). There is weak evidence 

that those reporting a health condition are more likely to walk to school (adjusted OR 1.13 

(95% CI: 0.99-1.30); p-value=0.077). As shown in the data chapter (section 3.5.1.3.), the 

modelled time coefficient reveals no support for a decline in walking to school over the study 

period (adjusted OR 0.96 (95% CI: 0.91-1.02); p-value=0.168). 

Results for the general associations between perceptions of the neighbourhood and walking 

to school estimated with pooled longitudinal models are presented in Table 6.4 (question 1.1.). 

The results give no evidence of an association between any of the five measures of perceptions 

and walking to school. Adjusted and unadjusted OR are of the same magnitude and 

parameters are in the expected direction; yet none of them reaches statistical significance (all 

adjusted p-values>=0.177). Those reporting living close to bus stops have a slightly lower 

chance of walking to school (adjusted OR = 0.90 (95% CI: 0.78-1.05); p-value=0.177). 

Adolescents with positive perceptions of traffic safety (medium and high) have 1.13 (95% CI: 

0.94-1.36; p-value=0.201) and 1.14 (95% CI: 0.94-1.38; p-value=0.177) times higher odds of 

walking to school compared to those with worse perception (i.e. low traffic safety). Those 

perceiving their neighbourhood as highly connected have 1.16 (95% CI: 0.97-1.40; p-

value=0.102) times higher odds of walking to school compared to those with a bad perception. 

Those perceiving their neighbourhood as enjoyable for walking/cycling have slightly lower 

odds of walking to school, compared to others (adjusted OR=0.89 (95% CI: 0.75-1.05); p-

value=0.156). Adolescents feeling very or somewhat unsafe/safe have higher chance of 

walking to school compared to those who feel very unsafe (adjusted ORs are 1.14 (95% CI: 

0.91-1.42; p-value=0.260) for slightly disagree; 1.02 (95% CI: 0.83-1.27; p-value=0.833) for 

neither agree nor disagree; 1.07 (95% CI: 0.85-1.34; p-value=0.560) for slightly agree; and 1.11 

(95% CI: 0.89-1.40; p-value=0.355) for strongly agree). 

The inclusion of interaction terms between gender and each measure of perception indicates 

no evidence that gender moderates the associations between perceptions of the environment 

and walking to school (all p-values>=0.456).  

Overall, the results provide no indication of concurrent association between the fives 

measures of neighbourhood perceptions and walking to school. This concurrent association 

could have come either from two different adolescents with different exposure at one 

measurement point, or the same individual across different measurement points.  
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Table 6.4 Odds ratios (OR) of walking to school vs. not by perception of the neighbourhood environment , adjusting for potential confounders (3-wave balanced panel of the ORiEL study, 
n=2,260)   

Exposure  
Unadjusted 

OR 

Adjusted 

OR¹ 
95%CI 

P-value 

parameter 

P-value  

unadjusted 

P-value 

adjusted¹  

Gender interaction  

(p-value) ² 

 

Perceived bus stop proximity Further away 1.00 1.00   0.140 0.177 0.890 
 1-5 minutes 0.89 0.90 [0.78,1.05] 0.177    

Perceived traffic safety Low 1.00 1.00   0.505 0.369 0.501 
 Medium 1.11 1.13 [0.94,1.36] 0.201    
 High 1.10 1.14 [0.94,1.38] 0.177    

Perceived street connectivity Low 1.00 1.00   0.303 0.245 0.863 
 Medium 1.10 1.10 [0.95,1.28] 0.184    
 High 1.14 1.16 [0.97,1.40] 0.102    

Enjoyment of neighbourhood Strongly/slightly disagree 1.00 1.00   0.446 0.189 0.456 

   for walking/cycling Slightly agree 1.02 1.00 [0.86,1.17] 0.968    
 Strongly agree 0.94 0.89 [0.75,1.05] 0.156    

Feeling safe Strongly disagree 1.00 1.00   0.770 0.700 0.841 

   (personal safety) Slightly disagree 1.14 1.14 [0.91,1.42] 0.260    
 Neither agree nor disagree 1.04 1.02 [0.83,1.27] 0.833    
 Slightly agree 1.06 1.07 [0.85,1.34] 0.560    
 Strongly agree 1.08 1.11 [0.89,1.40] 0.355    

Results are from logistic regression models estimated with Generalised Estimating Equations to account for the dependency across repeated measurements (unstructured 

working correlation matrix).¹ Adjusted for gender, ethnicity, health condition, family affluence, baseline free school meal status, time and the other perception variables of the 

table.² The adjusted model was replicated for each outcome with an additional interaction term between gender and exposure. 
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Results for the association between cumulative perceptions of the neighbourhood and walking 

to school at wave 3 are presented in Table 6.5 (question 1.2.). Both adjusted and unadjusted 

association indicate that cumulative perceptions are not associated with walking to school at 

the end of the study period. Cumulative perceived bus stop proximity indicates that a higher 

cumulative score decreased the odds of walking to school by 1.10(=1/0.91; 95%CI: 0.96-1.25) 

for every unit increase, but the association does not reach statistical significance (adjusted p-

value = 0.169). There is even less evidence that cumulative perceived traffic safety, favourable 

street connectivity, enjoyment of the neighbourhood for walking/cycling and personal safety 

are associated with walking to school at wave 3 (adjusted ORs are 1.04 (95% CI: 0.97-1.13; p-

value=0.278), 1.04 (95% CI: 0.96-1.13; p-value=0.315), 0.96 (95% CI: 0.88-1.04; p-value=0.295) 

and 0.99 (95% CI: 0.95-1.03; p-value=0.699), respectively).  

The inclusion of interaction terms between gender and each measure of cumulative 

perception of the neighbourhood indicates no evidence that gender moderates the 

associations between cumulative perceptions of the neighbourhood and walking to school at 

wave 3 (all p-values >= 0.647). 

Table 6.5 Odds ratios (OR) of walking to school vs. not at wave 3 by cumulative perceptions of the 
neighbourhood environment over the 3 waves , adjusting for potential confounders (3-wave balanced panel of 
the ORiEL study, n=2,260) 

 Exposure 
Unadjusted 

OR 

Adjusted 

OR¹ 
95%CI 

P-value  

unadjusted 

P-value 

adjusted¹ 

Gender 

interaction 

(p-value) ² 

Cumulative 
    bus stop proximity 

0.92 0.91 [0.80,1.04] 0.171 0.169 0.857 

Cumulative  
    traffic safety 

1.01 1.04 [0.97,1.13] 0.772 0.278 0.938 

Cumulative favourable 
    street connectivity 

1.03 1.04 [0.96,1.13] 0.514 0.315 0.647 

Cumulative enjoyment  
    of neighbourhood 
    for walking/cycling 

0.97 0.96 [0.88,1.04] 0.359 0.295 0.849 

Cumulative  
    personal safety 

0.98 0.99 [0.95,1.03] 0.324 0.699 0.867 

Results are from logistic regression models estimated with Generalised Estimating Equations to account 

for the clustering of individuals within schools (exchangeable working correlation matrix). The 

cumulative exposure are continuous variables constructed as the sum of scores of each exposure over 

the 3 waves. A higher score indicates a perception of supportive environment for the specific exposure. 

¹ Adjusted for gender, ethnicity, health condition (at wave 3), family affluence (at wave 3), baseline free 

school meal status and the other perception variables of the table. ² The adjusted model was replicated 

for each outcome with an additional interaction term between gender and exposure. 
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The analyses that investigate the association between trajectories of perceptions measured 

as changes between wave 3 and wave 1 and trajectory of walking to school are summarised in 

Table 6.6 (question 1.3.). The main parameters of interests are the time*trajectory in 

perception interaction terms because they indicate whether an improvement/decrease in 

perception between wave 1 and wave 3 is associated with changes in the probability of walking 

to school during the study period. Overall, unadjusted and adjusted ORs are of similar 

magnitude for all measured perceptions and indicate an absence of evidence of 

time*trajectory interactions. The estimates for change in bus stop proximity indicate that a 

positive change in perception is associated with an increased probability of walking to school 

over time (adjusted OR=1.07; 95% CI: 0.94-1.23), yet these results are not statistically 

significant (p-value=0.319). The time*trajectory interactions indicate ORs close to one for 

traffic safety (adjusted OR = 0.97 (95% CI: 0.89-1.06); p-value = 0.496), favourable street 

connectivity (adjusted OR = 1.02 (95% CI: 0.99-1.11); p-value = 0.716), and personal safety 

(adjusted OR = 1.00 (95% CI: 0.95-1.04); p-value = 0.890). An improvement in the perception 

of the neighbourhood as enjoyable for cycling/walking is estimated to decrease the probability 

of walking to school, without being statistically significant (adjusted OR = 0.96 (95% CI: 0.89-

1.03); p-value = 0.240).  

In order to assess whether gender moderates the time*trajectory interactions, two- and 

three-ways interaction terms were included in each model. These additional models indicate 

no evidence that the three-ways interaction terms were significant (all p-values > 0.365). In 

other words, it is unlikely that gender moderates the association between trajectories of 

perceptions and trajectories of walking to school. 
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Table 6.6 Odds ratios (OR) of walking to school vs. not by trajectory of perception of the neighbourhood environment , adjusting for potential confounders (3-wave balanced panel of the 
ORiEL study, n=2,260) 

 Exposure Unadjusted 

OR 

Adjusted 

OR¹ 

 95%  CI  P-value  

unadjusted 

P-value 

adjusted 

Gender interaction 

(p-value) ² 

 
Trajectory: Bus stop proximity 0.87 0.85 [ 0.61 , 1.19 ] 0.419 0.353 0.905 

Trajectory: Traffic safety 1.10 1.09 [ 0.88 , 1.35 ] 0.344 0.436 0.917 

Trajectory: Favourable street connectivity 0.96 0.96 [ 0.78 , 1.19 ] 0.703 0.714 0.873 

Trajectory: Enjoyment of neighbourhood for 
    walking/cycling 

1.10 1.12 [ 0.92 , 1.37 ] 0.290 0.257 0.514 

Trajectory: Personal safety 
 
 

0.99 0.97 [ 0.86 , 1.09 ] 0.822 0.600 0.911 

           

Time*trajectory interaction: Bus stop proximity 1.06 1.07 [ 0.94 , 1.23 ] 0.367 0.319 0.956 

Time*trajectory interaction: Traffic safety 0.96 0.97 [ 0.89 , 1.06 ] 0.323 0.496 0.365 

Time*trajectory interaction: Favourable street 
    connectivity 

1.01 1.02 [ 0.93 , 1.11 ] 0.828 0.716 0.862 

Time*trajectory interaction: Enjoyment of 
     neighbourhood for walking/cycling  

0.96 0.96 [ 0.89 , 1.03 ] 0.196 0.240 0.605 

Time*trajectory interaction: Personal safety 0.99 1.00 [ 0.95 , 1.04 ] 0.606 0.890 0.944 

Results are from logistic regression models estimated with Generalised Estimating Equations to account for the dependency across repeated measurements (unstructured 

working correlation matrix). Each exposure variable measures change since baseline on a continuous scale. Each unit represents an average change in exposure by one category 

between the baseline and the end of the study (+1 = improvement of the neighbourhood by one category on average). The time*trajectory interaction assesses whether exposure 

trajectory is associated with different trajectory of change in the outcome. ¹ Adjusted for time, gender, ethnicity, health condition, family affluence and baseline free school meal 

status. ² The adjusted models were replicated with the addition of two- and three- ways interactions between gender, change and time. 
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Before exploring the longitudinal associations between the exposure variables and walking for 

leisure, Table 6.7 presents unadjusted and adjusted associations between socio-demographic 

variables and walking for leisure. Walking for leisure is more frequent amongst girls than boys 

(adjusted OR=1.60 (95% CI: 1.40-1.83); p-value <0.001). As with walking to school, there is 

strong evidence of ethnic differences in walking for leisure: the odds are much lower in all 

groups compared to the White UK group, with particularly lower odds in the Bangladeshi 

adolescents (adjusted OR= 0.36; 95% CI: 0.29-0.45; p-value <0.001). There is no evidence that 

health, family affluence or free school meal status are significantly associated with walking for 

leisure (adjusted p-values=0.441, 0.126 and 0.150 respectively). Whereas the unadjusted 

estimates for the socio-economic conditions indicate no clear direction of associations, 

adjusted estimates suggest that family affluence might increase the odds of walking for leisure 

(adjusted OR for high vs. low=1.19 (95% CI: 0.94-1.51); p-value=0.141), and not taking free 

school meal decrease the odds of walking for leisure (adjusted OR of taking free school 

meal=1.10 (95% CI: 0.96-1.26); p-value=0.150). As shown in the data chapter of the thesis 

(section 3.5.1.4.), the modelled time coefficient confirms that the odds of walking for leisure 

decrease every year by a factor of 0.79 (95% CI: 0.74-0.84); p-value<0.001). 

Results for the general associations between perceptions of the neighbourhood and walking 

for leisure estimated with pooled longitudinal models are presented in Table 6.8 (question 

1.1.). Unadjusted and adjusted estimates are similar and there is some indication of general 

association between some exposure variables and walking for leisure. Similar to walking to 

school, perception of bus stop proximity is associated with more walking for leisure (adjusted 

OR=1/0.89=1.12; 95% CI: 0.98-1.28), yet evidence for the significance of the association is 

weak (unadjusted p-value=0.050, adjusted p-value=0.086). Despite the absence of significant 

evidence, the direction of the associations suggests that improved perceived traffic safety 

might lead to less walking for leisure (adjusted OR of high vs. low traffic safety=0.86 (95% CI: 

0.71-1.04); p-value=0.123) and better perceived street connectivity might lead to more 

walking for leisure (adjusted OR of high vs. low street connectivity=1.09 (95% CI: 0.91-1.31); 

p-value=0.360).  

However, the tests for the overall associations of these variables did not reach statistical 

significance (adjusted p-values=0.298 and 0.267 respectively).
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Table 6.7 Odds ratios (OR) of walking for leisure vs. not by potential socio-demographic and health confounders  (3-wave balanced panel of the ORiEL study, n=2,260)   

Potential confounder  
Unadjusted 

OR 
Adjusted OR¹ 95%CI 

P-value 

parameter 

P-value  

unadjusted 

P-value 

adjusted¹  

Gender Male 1.00 1.00   <0.001 <0.001 
 Female 1.60 1.60 [1.40,1.83] <0.001   

Ethnicity White: UK 1.00 1.00   <0.001 <0.001 
 White: Mixed 0.70 0.67 [0.51,0.88] 0.003   
 Asian: Indian 0.53 0.53 [0.37,0.76] 0.001   
 Asian: Pakistani 0.49 0.51 [0.36,0.72] <0.001   
 Asian: Bangladeshi 0.35 0.36 [0.29,0.45] <0.001   
 Black: Caribbean 0.45 0.42 [0.30,0.59] <0.001   
 Black: African 0.42 0.43 [0.33,0.55] <0.001   
 Other 0.58 0.57 [0.47,0.69] <0.001   

Health no condition 1.00 1.00   0.214 0.441 
 1+ conditions(s) 1.08 1.05 [0.93,1.18] 0.441   

Family affluence Low 1.00 1.00   0.173 0.126 
 Moderate 0.96 1.07 [0.86,1.33] 0.553   
 High 1.07 1.19 [0.94,1.51] 0.141   

Take free school  No 1.00 1.00   0.875 0.150 

   meal at W1 Yes 1.01 1.10 [0.96,1.26] 0.150   

Time  0.80 0.79 [0.74,0.84] <0.001 <0.001 <0.001 

Results are from logistic regression models estimated with Generalised Estimating Equations to account for the dependency across repeated measurements (unstructured 

working correlation matrix).¹ Adjusted for all other variables of the table. 
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Table 6.8 Odds ratios (OR) of walking for leisure vs. not by perception of the neighbourhood environment , adjusting for potential confounders (3-wave balanced panel of the ORiEL study, 
n=2,260)   

Exposure  
Unadjusted 

OR 

Adjusted 

OR¹ 
95%CI 

P-value 

parameter 

P-value  

unadjusted 

P-value 

adjusted¹  

Gender interaction 

(p-value) ² 

 

Perceived bus stop proximity Further away 1.00 1.00   0.050 0.086 0.760 
 1-5 minutes 0.88 0.89 [0.78,1.02] 0.086    

Perceived traffic safety Low 1.00 1.00   0.372 0.298 0.709 
 Medium 0.90 0.90 [0.75,1.09] 0.292    
 High 0.88 0.86 [0.71,1.04] 0.123    

Perceived street connectivity Low 1.00 1.00   0.149 0.267 0.964 
 Medium 1.15 1.13 [0.97,1.32] 0.117    
 High 1.10 1.09 [0.91,1.31] 0.360    

Enjoyment of neighbourhood Strongly/slightly disagree 1.00 1.00   0.360 0.534 0.353 

   for walking/cycling Slightly agree 1.02 1.02 [0.88,1.18] 0.796    
 Strongly agree 1.10 1.09 [0.92,1.29] 0.335    

Feeling safe Strongly disagree 1.00 1.00   0.068 0.034 0.881 

   (personal safety) Slightly disagree 1.28 1.28 [1.02,1.62] 0.033    
 Neither agree nor disagree 1.09 1.09 [0.87,1.36] 0.460    
 Slightly agree 1.24 1.31 [1.04,1.65] 0.020    
 Strongly agree 1.11 1.18 [0.93,1.49] 0.180    

Results are from logistic regression models estimated with Generalised Estimating Equations to account for the dependency across repeated measurements (unstructured working 

correlation matrix).¹ Adjusted for gender, ethnicity, health condition, family affluence, baseline free school meal status, time and the other perception variables of the table.² The 

adjusted model was replicated for each outcome with an additional interaction term between gender and exposure. 
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There is no evidence of association between perception of the neighbourhood as enjoyable 

for walking/cycling and walking for leisure (all adjusted ORs are close to 1.00 and overall p-

value=0.534). Finally, both adjusted and unadjusted models indicate some evidence that 

increased personal safety is associated with more walking for leisure (unadjusted p-value = 

0.068, adjusted p-value=0.034). In particular, adolescents who feel very unsafe (i.e. strongly 

disagree) had lower odds of walking for leisure compared to the other groups. The adjusted 

OR of slightly disagree vs. strongly disagree is 1.28 (95% CI: 1.02-1.62; p-value=0.033) and the 

OR of slightly agree vs. strongly disagree is 1.31 (95% CI: 1.04-1.65; p-value=0.020).  

The inclusion of interaction terms between gender and each measure of perception indicates 

no evidence that gender moderates the associations between perceptions of the environment 

and walking for leisure (all p-values >= 0.353).  

Results for the association between cumulative perceptions of the neighbourhood and walking 

for leisure at wave 3 are presented in Table 6.9 (question 1.2.). Both unadjusted and adjusted 

models indicate that cumulative perceptions are not associated with walking for leisure at 

wave 3. Unadjusted and adjusted ORs all have estimates close to 1 and all the p-values >0.3. 

Cumulative favourable street connectivity has the strongest association with an adjusted OR 

of 1.05 (95% CI: 0.95-1.15; p-value=0.379). If statistically significant, this association would 

mean that those with a greater cumulative perception favourable street connectivity in the 

neighbourhood have slightly higher odds of walking for leisure at wave 3.  

The inclusion of interaction terms between gender and each measure of cumulative 

perception of the neighbourhood indicates no evidence that gender moderates the 

associations between cumulative perception of the neighbourhood and walking for leisure at 

wave 3 (all p-values >= 0.471).  
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Table 6.9 Odds ratios (OR) of walking for leisure vs. not at wave 3 by cumulative perception of the 
neighbourhood environment over the 3 waves , adjusting for potential confounders (3-wave balanced panel of 
the ORiEL study, n=2,260)   

Exposure 
Unadjusted 

OR 

Adjusted 

OR¹ 
95%CI 

P-value  

unadjusted 

P-value 

adjusted¹ 

Gender 

interaction 

(p-value)² 

Cumulative 
    bus stop proximity 

1.00 0.98 [0.86,1.12] 0.939 0.798 0.844 

Cumulative 
    traffic safety 

1.02 1.04 [0.95,1.13] 0.596 0.384 0.761 

Cumulative 
    favourable street 
    connectivity 

1.04 1.05 [0.95,1.15] 0.379 0.354 0.471 

Cumulative enjoyment 
    of neighbourhood  
    for walking/cycling 

0.99 1.00 [0.92,1.08] 0.721 0.943 0.829 

Cumulative 
    personal safety 

0.98 1.00 [0.96,1.04] 0.319 0.827 0.918 

Results are from logistic regression models estimated with Generalised Estimating Equations to account 

for the clustering of individuals within schools (exchangeable working correlation matrix). The 

cumulative exposure are continuous variables constructed as the sum of scores of each exposure over 

the 3 waves. A higher score indicates a perception of supportive environment for the specific exposure. 

¹ Adjusted for gender, ethnicity, health condition (at wave 3), family affluence (at wave 3) and baseline 

free school meal status.² The adjusted model was replicated for each outcome with an additional 

interaction term between gender and exposure. 

 

The analyses that investigate the association between trajectories of perceptions measured 

as changes between wave 3 and wave 1 and trajectory of walking for leisure are summarised 

in  Table 6.10 (question 1.3.). Unadjusted and adjusted results indicate some evidence that an 

increase in the perception of bus stop proximity is associated with a decrease in walking for 

leisure, as indicated by the time*trajectory interaction term for bus stop proximity (adjusted 

OR=0.86 (95% CI: 0.74-1.00); p-value = 0.049). This result is in line with what was observed in 

Table 6.8, although the level of evidence seems to have increased in the model using 

time*trajectory interaction terms. The time*trajectory interaction terms have estimates close 

to one for the remaining measures of perceptions, i.e. traffic safety (adjusted OR=0.98 (95% 

CI: 0.90-1.08); p-value=0.707), favourable street connectivity (adjusted OR=1.00 (95% CI: 0.99-

1.10); p-value=0.971), enjoyment of the neighbourhood for cycling/walking (adjusted OR=1.02 

(95% CI: 0.95-1.11); p-value=0.583), and personal safety (adjusted OR=1.00 (95% CI: 0.95-

1.05); p-value=0.942).   

There is no evidence that gender moderated the associations between trajectories of 

perceptions of the neighbourhood and trajectory in walking for leisure (all p-values>0.240).  
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Table 6.10 Odds ratios (OR) of walking for leisure vs. not by change in perception of the neighbourhood environment since the baseline , adjusting for potential confounders (3-wave balanced 
panel of the ORiEL study, n=2,260) 

 Exposure Unadjusted 

OR 

Adjusted 

OR¹ 

 95%  CI  P-value  

unadjusted 

P-value 

adjusted 

Gender interaction 

(p-value) ² 

 
Trajectory: Bus stop proximity 1.13 1.17 [ 0.85 , 1.61 ] 0.428 0.349 0.583 

Trajectory: Traffic safety 0.99 1.00 [ 0.81 , 1.22 ] 0.921 0.963 0.271 

Trajectory: Favourable street connectivity 1.01 1.01 [ 0.82 , 1.24 ] 0.941 0.947 0.627 

Trajectory: Enjoyment of neighbourhood for 
    walking/cycling  

0.95 0.95 [ 0.80 , 1.14 ] 0.575 0.581 0.239 

Trajectory: Personal safety 1.00 1.02 [ 0.91 , 1.14 ] 0.986 0.717 0.440 

           

Time*trajectory interaction: Bus stop proximity 0.87 0.86 [ 0.74 , 1.00 ] 0.053 0.049 0.932 

Time*trajectory interaction: Traffic safety 0.98 0.98 [ 0.90 , 1.08 ] 0.725 0.707 0.334 

Time*trajectory interaction: Favourable street 
    connectivity 

1.00 1.00 [ 0.91 , 1.10 ] 0.962 0.971 0.240 

Time*trajectory interaction: Enjoyment of 
    neighbourhood for walking/cycling  

1.02 1.02 [ 0.95 , 1.11 ] 0.665 0.583 0.260 

Time*trajectory interaction: Personal safety 1.00 1.00 [ 0.95 , 1.05 ] 0.994 0.942 0.992 

Results are from logistic regression models estimated with Generalised Estimating Equations to account for the dependency across repeated measurements (unstructured 

working correlation matrix). Each exposure variable measures change since baseline on a continuous scale. Each unit represents an average change in exposure by one category 

between the baseline and the end of the study (+1 = improvement of the neighbourhood by one category on average). The time*trajectory interaction assesses whether exposure 

change is associated with different trajectory of change in the outcome. ¹ Adjusted for time, gender, ethnicity, health condition, family affluence and baseline free school meal 

status. ² The adjusted models were replicated with the addition of two- and three- ways interactions between gender, change and time. 

 



  

176 
 

 

 

Before exploring the longitudinal associations between the exposure variables and walking for 

leisure, Table 6.11 presents unadjusted and adjusted associations between socio-

demographic variables and outdoor physical activity. Unadjusted and adjusted models 

indicate that outdoor physical activity was associated with most of the socio-demographic 

variables considered. Whereas walking for leisure was shown to be more prevalent in girls, 

other outdoor physical activities are more often reported by boys (adjusted OR=0.23 (95% CI: 

0.19-0.27); p-value <0.001). Ethnic disparities are observed (adjusted p-values <0.001): 

outdoor physical activity is less prevalent in the White UK, Black Caribbean and Bangladeshi 

groups as compared to all other ethnic groups (adjusted OR are respectively 1.00 (reference 

category), 1.05 (95% CI: 0.73-1.52) and 1.10 (95% CI: 0.84-1.43)). The odds of outdoor physical 

activity are 1.58 (95% CI: 1.18-2.12) times higher amongst the Black African and 1.91 (95% CI: 

1.21-3.01) times higher amongst the Pakistani adolescents compared to the White UK 

adolescents. There is also evidence that family affluence is positively associated with outdoor 

physical activity (adjusted p-value=0.004). Adolescents from the most affluent families are 

1.46 (95% CI: 1.11-1.91) times more likely to report outdoor physical activity compared to the 

least affluent. Free school meals seems to indicate an opposite relationship, both in the 

adjusted and unadjusted models, but does not reach statistical significance (adjusted p-value 

= 0.159). Health status is not associated with outdoor physical activity (adjusted OR=0.95 (95% 

CI: 0.82-1.09); p-value=0.444). The modelled time coefficient reveals a decline in outdoor 

physical activity over the study period (adjusted OR=0.75 (95% CI: 0.70-0.80)). 

Results for the general associations between perceptions of the neighbourhood and outdoor 

physical activity estimated with pooled longitudinal models are presented in Table 6.12 

(question 1.1.). Perceived bus stop proximity is not associated at all with outdoor physical 

activity (adjusted OR = 0.99 (95% CI: 0.83-1.19); p-value=0.946). Adolescents with higher 

perception of traffic safety are estimated to have slightly lower odds of outdoor physical 

activity (adjusted OR=0.90 (95% CI: 0.71-1.14)), yet neither the specific parameter test (p-

value=0.366) nor the overall test of association (p-value=0.182) provide evidence that this 

estimation can be generalised beyond the sample. In the adjusted model, unlike the 

unadjusted model, there is weak evidence that better perception of street connectivity 

increases the odds of outdoor physical activity (adjusted p-value=0.077). The odds of outdoor 

physical activity for those with high perception of street connectivity are 1.27 (95% CI: 1.03-

1.57; p-value=0.024) times higher compared to those with low perception.  
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Table 6.11 Odds ratios (OR) of reporting at least one outdoor physical activity* vs. not by potential socio-demographic and health confounders  (3-wave balanced panel of the ORiEL study, 
n=2,260)   

Potential confounder  
Unadjusted 

OR 
Adjusted OR¹ 95%CI 

P-value 

parameter 

P-value   

unadjusted 

P-value 

adjusted¹  

Gender Male 1.00 1.00   <0.001 <0.001 
 Female 0.23 0.23 [0.19,0.27] <0.001   

Ethnicity White: UK 1.00 1.00   0.002 0.012 
 White: Mixed 1.16 1.31 [0.96,1.80] 0.092   
 Asian: Indian 1.42 1.45 [0.95,2.23] 0.087   
 Asian: Pakistani 2.04 1.91 [1.21,3.01] 0.005   
 Asian: Bangladeshi 1.18 1.10 [0.84,1.43] 0.482   
 Black: Caribbean 0.86 1.05 [0.73,1.52] 0.789   
 Black: African 1.59 1.58 [1.18,2.12] 0.002   
 Other 1.26 1.30 [1.04,1.63] 0.020   

Health no condition 1.00 1.00   0.179 0.444 
 1+ conditions(s) 0.91 0.95 [0.82,1.09] 0.444   

Family affluence Low 1.00 1.00   0.008 0.004 
 Moderate 1.12 1.21 [0.94,1.56] 0.142   
 High 1.33 1.46 [1.11,1.91] 0.006   

Take free school No 1.00 1.00   0.111 0.159 

   meal at W1 Yes 1.13 1.12 [0.96,1.32] 0.159   

Time  0.78 0.75 [0.70,0.80] <0.001 <0.001 <0.001 

Results are from logistic regression models estimated with Generalised Estimating Equations to account for the dependency across repeated measurements (unstructured 

working correlation matrix). ¹ Adjusted for all other variables of the table. * Outdoor physical activities include: basketball (or volleyball), blading, cricket, football, rounders, 

rugby and roller skating. 
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Table 6.12 Odds ratios (OR) of reporting at least one outdoor physical activity* vs. not by perception of the neighbourhood environment , adjusting for potential confounders (3-wave 
balanced panel of the ORiEL study, n=2,260)   

Exposure  
Unadjusted 

OR 

Adjusted 

OR¹ 
95%CI 

P-value 

parameter 

P-value  

unadjusted 

P-value 

adjusted¹  

Gender interaction 

(p-value) ² 

 

Perceived bus stop proximity Further away 1.00 1.00   0.639 0.946 0.674 

    1-5 minutes 0.96 0.99 [0.83,1.19] 0.946    

Perceived traffic safety Low 1.00 1.00   0.490 0.182 0.012 
 Medium 0.99 1.02 [0.82,1.29] 0.840    
 High 0.92 0.90 [0.71,1.14] 0.366    

Perceived street connectivity  Low 1.00 1.00   0.222 0.077 0.719 

    Medium 1.05 1.15 [0.97,1.36] 0.116    
 High 1.18 1.27 [1.03,1.57] 0.024    

Enjoyment of neighbourhood Strongly/slightly disagree 1.00 1.00   0.042 0.270 0.809 

   for walking/cycling Slightly agree 0.93 0.95 [0.81,1.11] 0.509    
 Strongly agree 1.10 1.07 [0.89,1.29] 0.466    

Feeling safe Strongly disagree 1.00 1.00   0.324 0.507 0.697 

   (personal safety) Slightly disagree 1.06 1.12 [0.86,1.46] 0.399    
 Neither agree nor disagree 0.95 0.96 [0.75,1.23] 0.747    
 Slightly agree 1.06 1.09 [0.84,1.41] 0.506    
 Strongly agree 1.13 1.09 [0.85,1.39] 0.508    

Results are from logistic regression models estimated with Generalised Estimating Equations to account for the dependency across repeated measurements (unstructured 

working correlation matrix). ¹ Adjusted for gender, ethnicity, health condition, family affluence, baseline free school meal status, time and the other perception variables of the 

table. ² The adjusted model was replicated for each outcome with an additional interaction term between gender and exposure. * Outdoor physical activities include: basketball 

(or volleyball), blading, cricket, football, rounders, rugby and roller skating. 
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Perceiving the neighbourhood as enjoyable for walking/cycling is not associated with outdoor 

physical activity in the adjusted model, despite some indication of association in the 

unadjusted model (unadjusted p-value=0.042 ; adjusted p-value=0.270). Point estimates for 

that variable indicated no clear pattern of associations (i.e. adjusted OR for slightly agree vs. 

disagree=0.95 and OR for strongly agree vs. disagree = 1.07). Finally, personal safety indicated 

similar patterns of associations as for walking for leisure, yet the estimated OR are all close to 

zero and the overall association did not reach statistical significance (adjusted p-value=0.507). 

The inclusion of interaction terms between gender and each measure of perception of the 

neighbourhood indicates strong evidence that gender moderates the associations between 

perceptions of traffic safety and outdoor physical activity (p-value=0.012). There is no 

evidence that gender moderates any other association (all remaining p-values >0.674).  

Gender-specific results presented in Table 6.13 indicate that boys with medium or high 

perception of traffic safety have higher odds of outdoor physical activity compared to those 

with low perception of traffic safety (ORs=1.53 (95% CI: 1.10-2.11) and 1.21 (95% CI: 0.89 -

1.64) respectively). In girls, the association takes the opposite direction: the odds of outdoor 

physical activity are lower if the perception of street connectivity is medium (OR=0.79 (95% 

CI: 0.56-2. 1.03)) or high (OR=0.74 (95% CI: 0.52-0.96)) compared to low perception.  

Table 6.13 Gender-specific odds ratios (OR) of reporting at least one outdoor physical activity* vs. not by 
perceived traffic safety , adjusting for potential confounders (3-wave balanced panel of the ORiEL study, n=2,260)   

Perceived traffic safety Adjusted OR¹ 
 

95% 
 

CI 
 

P-value adjusted¹ 

Boys        

Low 1.00       

Medium 1.53 [ 1.10 , 2.11 ] 0.011 

High 1.21 [ 0.89 , 1.64 ] 0.232 

Girls        

Low 1.00       

Medium 0.79 [ 0.56 , 1.03 ] <0.001 

High 0.74 [ 0.52 , 0.96 ] <0.001 

Results are from logistic regression models estimated with Generalised Estimating Equations to 

account for the dependency across repeated measurements (unstructured working correlation 

matrix). ¹ Adjusted for bus stop proximity, perceived street connectivity, enjoyment of the 

neighbourhood for walking/cycling, personal safety, ethnicity, self-rated health, family affluence and 

baseline free school meal status.  * Outdoor physical activities include: basketball (or volleyball), 

blading, cricket, football, rounders, rugby and roller skating. 
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Results for the association between cumulative perceptions of the neighbourhood and 

outdoor physical activity at wave 3 are presented in Table 6.14 (question 1.2.). Overall, results 

are comparable to those of other physical activity outcomes: there is no evidence of 

association with any of the cumulative perception scores. Cumulative perceived bus stop 

proximity indicates that an increase in cumulative perception by one unit leads to a reduction 

in the odds of outdoor physical activity by 0.94 (95% CI: 0.83-1.07); yet, the association does 

not reach statistical significance (adjusted p-value=0.331). There is even less evidence that 

cumulative perceived traffic safety, favourable street connectivity, enjoyment of the 

neighbourhood for walking/cycling, and personal safety are associated with outdoor physical 

activity at wave 3, given that all adjusted ORs are close to 1.00. Adjusted ORs are 1.00 for 

traffic safety (95% CI: 0.93-1.08; p-value=0.988), 1.03 for favourable street connectivity (95% 

CI: 0.96-1.11; p-value=0.398), 1.01 for enjoyment of the neighbourhood for walking/cycling 

(95% CI: 0.95-1.08; p-value=0.730) and 1.02 for personal safety (95% CI: 0.98-1.07; p-

value=0.278). 

Table 6.14 Odds ratios (OR) of reporting at least one outdoor physical activity* vs. not at wave 3 by cumulative 
perception of the neighbourhood environment over the 3 waves , adjusting for potential confounders (3-wave 
balanced panel of the ORiEL study, n=2,260)   

Exposure 
Unadjusted 

OR 

Adjusted 

OR¹ 
95%CI 

P-value  

unadjusted 

P-value 

adjusted¹ 

Gender 

interaction 

(p-value)² 

Cumulative 
    bus stop proximity 

0.95 0.94 [0.83,1.07] 0.377 0.331 0.900 

Cumulative 
    traffic safety 

1.03 1.00 [0.93,1.08] 0.332 0.988 0.535 

Cumulative 
    favourable street 
    connectivity 

0.99 1.03 [0.96,1.11] 0.873 0.398 0.816 

Cumulative enjoyment 
    of neighbourhood  
    for walking/cycling 

1.03 1.01 [0.95,1.08] 0.165 0.730 0.510 

Cumulative 
    personal safety 

1.05 1.02 [0.98,1.07] 0.006 0.278 0.825 

Results are from logistic regression models estimated with Generalised Estimating Equations to account 

for the clustering of individuals within schools (exchangeable working correlation matrix). 

The cumulative exposure are continuous variables constructed as the sum of scores of each exposure 

over the 3 waves. A higher score indicates a perception of supportive environment for the specific 

exposure.  ¹ Adjusted for gender, ethnicity, health condition (at wave 3), family affluence (at wave 3) 

and baseline free school meal status. ² The adjusted model was replicated for each outcome with an 

additional interaction term between gender and exposure. * Outdoor physical activities include: 

basketball (or volleyball), blading, cricket, football, rounders, rugby and roller skating. 
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It could be noted that unadjusted results for personal safety indicate that an increase of the 

cumulative score by one unit increases the odds of outdoor physical activity by 1.05 (p-value 

= 0.006), but the association appears to be confounded, as indicated by the attenuation of the 

adjusted estimate to 1.02. 

The inclusion of interaction terms between gender and each measure of cumulative 

perception of the neighbourhood indicates no evidence that gender moderates the 

associations with outdoor physical activity at wave 3 (all p-values >= 0.510).  

The analyses that investigate the association between trajectories of perceptions measured 

as changes between wave 3 and wave 1 and trajectory of outdoor physical activity are 

summarised in Table 6.15 (question 1.3.). As for other outcomes, the focus of this analysis is 

on the time*trajectory interaction terms for each measure of perception and outdoor physical 

activity. Unadjusted and adjusted ORs are of similar magnitude for all measures and indicate 

an absence of evidence of time*trajectory interaction. The estimate for change in perceived 

bus stop proximity indicates that a positive change in perception is associated with an 

increased probability of outdoor physical activity over time (adjusted OR=1.11; 95% CI: 0.93-

1.32), yet the confidence interval is wide and the results are not statistically significant (p-

value=0.248). Although not statistically significant, an improvement in the perception of the 

traffic safety is estimated to decrease the probability outdoor physical activity (adjusted OR = 

0.94 (95% CI: 0.84-1.04); p-value = 0.222). Conversely, an improvement in the perception of 

street connectivity is estimated to increase that probability, but again without being 

statistically significant (adjusted OR = 1.07 (95% CI: 0.97-1.19); p-value = 0.172). The 

time*trajectory interactions indicate ORs close to one for enjoyment of the neighbourhood 

for walking/cycling (adjusted OR = 1.05 (95% CI: 0.93-1.11); p-value = 0.737) and personal 

safety (adjusted OR = 1.01 (95% CI: 0.96-1.07); p-value = 0.734). 

Additional analyses that assessed whether gender moderates these associations indicate very 

weak evidence that perceived bus stop proximity and street connectivity trajectories were 

differently associated with changes in outdoor physical activity for boys and for girls (p-values 

= 0.095 and 0.091, respectively). The stratum specific results were not presented because they 

did not indicate any significant results within stratum. Other gender interaction terms did not 

reach statistical significance (other three-ways interaction p-values were 0.828, 0.527 and 

0.956). 
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Table 6.15 Odds ratios (OR) of reporting at least one outdoor physical activity* vs. not by change in perception of the neighbourhood environment since the baseline , adjusting for potential 
confounders (3-wave balanced panel of the ORiEL study, n=2,260)   

Exposure Unadjusted 

OR 

Adjusted 

OR¹ 

 95%  CI  P-value  

unadjusted 

P-value 

adjusted 

Gender interaction 

(p-value) ² 

 
Trajectory: Bus stop proximity 0.86 0.82 [ 0.53 , 1.26 ] 0.457 0.366 0.045 

Trajectory: Traffic safety 1.11 1.11 [ 0.85 , 1.45 ] 0.383 0.448 0.601 

Trajectory: Favourable street connectivity 0.79 0.78 [ 0.61 , 1.01 ] 0.043 0.055 0.427 

Trajectory: Enjoyment of neighbourhood for 
    walking/cycling  

0.99 1.00 [ 0.82 , 1.23 ] 0.955 0.977 0.837 

Trajectory: Personal safety 1.01 1.02 [ 0.89 , 1.16 ] 0.802 0.816 0.759 

           

Time*trajectory interaction: Bus stop proximity 1.11 1.11 [ 0.93 , 1.32 ] 0.192 0.248 0.095 

Time*trajectory interaction: Traffic safety 0.94 0.94 [ 0.84 , 1.04 ] 0.230 0.222 0.828 

Time*trajectory interaction: Favourable street 
    connectivity 

1.08 1.07 [ 0.97 , 1.19 ] 0.112 0.172 0.091 

Time*trajectory interaction: Enjoyment of 
    neighbourhood for walking/cycling  

1.02 1.02 [ 0.93 , 1.11 ] 0.622 0.737 0.527 

Time*trajectory interaction: Personal safety 1.01 1.01 [ 0.96 , 1.07 ] 0.640 0.734 0.956 

Results are from logistic regression models estimated with Generalised Estimating Equations to account for the dependency across repeated measurements (unstructured 

working correlation matrix). Each exposure variable measures change since baseline on a continuous scale. Each unit represents an average change in exposure by one category 

between the baseline and the end of the study (+1 = improvement of the neighbourhood by one category on average). The time*trajectory interaction assesses whether exposure 

change is associated with different trajectory of change in the outcome. ¹ Adjusted for time, gender, ethnicity, health condition, family affluence and baseline free school meal 

status. ² The adjusted models were replicated with the addition of two- and three- ways interactions between gender, change and time. * Outdoor physical activities include: 

basketball (or volleyball), blading, cricket, football, rounders, rugby and roller skating. 
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A series of sensitivity analyses were conducted. Analyses were replicated using different 

specifications of the working correlation structure in the GEE estimation process (Appendix E 

section E.4). Results from these additional analyses were only marginally different from the 

main results presented in the text and all interpretations and conclusions are unaffected.  

Finally, I compared the results obtained from the imputed datasets with those from a ‘naive’ 

complete case analysis (Appendix E section E.5). Results indicate that point estimates tend to 

be slightly over-estimated in the complete case analysis. The analysis of the complete cases 

confirms the results from the analysis of missingness, which suggested that coefficients from 

the complete case analysis would be slightly biased (Appendix E section E.1). Despite the bias 

and the loss of efficiency, however, the general conclusions about the directions of the main 

associations are not seriously affected in the complete case analysis. 

 
 

In this chapter, I have investigated the longitudinal associations between five measures of 

perceptions of the neighbourhood environment (perceived bus stop proximity, traffic-related 

safety, street connectivity, enjoyment of the neighbourhood for walking/cycling and personal 

safety) and three physical activity outcomes (walking to school, walking for leisure and 

outdoor physical activity). I explored whether each of the variables was associated with the 

outcomes using pooled longitudinal models to obtain general measures of association 

(question 1.1.); models for associations between the accumulation of exposure and the 

outcome at a later stage (question 1.2.); and models for the associations between individual 

trajectories of exposures and outcomes (question 1.3.). I also tested whether the observed 

associations differed for boys and girls (question 1.4.).  

To do so, I used the ORiEL 3-wave balanced panel. I first explored the extent of missingness in 

order to better understand whether the use of the complete cases, which is common in the 

field, might lead to bias. I used newly available tools for multilevel multiple imputation in order 

to handle missing data, based on a MAR assumption. These analyses have evidenced that 

these tools were appropriate and suitable for imputation purposes in the ORiEL study which 

features a mix of continuous and discrete variables, a 3-level structure (repeated 

measurements, individuals, schools), and interaction terms. Yet, the difficulty of finding an 

adequate imputation model suggests that multilevel multiple imputation may become even 
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more challenging with larger multilevel datasets or with datasets having more waves of data 

collection. 

Using 20 imputed datasets, I have shown that there is little evidence of general association 

(i.e. across all measurement occasions) between the five measures of neighbourhood 

perceptions and the three physical activity outcomes (question 1.1.). There is some evidence 

that, either when comparing different adolescents or the same adolescent over time, feeling 

very unsafe and perceiving a bus stop as proximal lead to less walking for leisure. There is also 

some indication that a high perceived street connectivity leads to more outdoor physical 

activity.  

Models for the cumulative influence of perceptions on physical activity at a later stage 

indicated no support for such associations in any of the adjusted models (question 1.2.). The 

examination of the associations between trajectories of perceptions and physical activity 

outcomes over time also indicated that adolescents’ perceptions poorly predict physical 

activity (question 1.3.). A similar association between perceived bus stop proximity and 

walking for leisure was observed. Adolescents who changed their perception of proximity over 

time and reported that their closest bus stop became closer, were less likely to report walking 

for leisure at follow-ups.  

Despite evidence that physical activity outcomes and perceptions differ by gender, there was 

very little evidence that the associations between perceptions of the neighbourhood and 

physical activity differed by gender (question 1.4.). This result is not surprising given the 

limited overall evidence of association between the exposures and the outcomes. 

Overall, the longitudinal analyses of this chapter have shown that the five measures of 

perceptions of the environment studied in this chapter are poorly associated with physical 

activity despite evidence that physical activity is strongly patterned by socio-demographic 

variables, in particular gender and ethnicity. These robust associations suggest that the 

neighbourhood socio-cultural environment might nevertheless have a role in explaining 

physical activity patterns. Accordingly, in the next chapter, I will investigate the role of ethnic 

density in predicting physical activity behaviours. In chapter 8, I will finally explore whether 

other aspects of the social environment not captured so far – namely social capital and social 

support – might contribute to explaining differences in physical activity. 
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In this chapter, I present an analysis of the associations between own-group ethnic density 

and three physical activity outcomes. Results from chapter 6 indicate that the likelihood of 

being physically active differs by ethnic group (cf. also section 3.5.1.). In the ORiEL study, 

walking to school is more prevalent amongst the White UK and Bangladeshi adolescents; 

walking for leisure amongst the White UK adolescents; and outdoor physical activity is 

predominantly prevalent in the Black African and Pakistani adolescents. Ethnic differences in 

physical activity have been previously documented in the UK (Fischbacher et al. 2004, Griffiths 

et al. 2013, Owen et al. 2012). However, the use of broader ethnic categories such as ‘South 

Asians’, veiled some of the ethnic differences described in this thesis. To explain ethnic 

differences in health, several theoretical perspectives were proposed in the literature (Nazroo 

1998). One strand of research has focused on the broader socio-economic context and the 

neighbourhood environment because ethnic minorities tend to concentrate in places which 

are often more deprived than the average (Karlsen et al. 2002). In spite of a disadvantage in 

terms of neighbourhood deprivation, it has been suggested that individuals living in areas with 

a high concentration of people from the same ethnic group as themselves or ‘ethnic density’ 

may confer a protective benefit on health (Pickett & Wilkinson 2008), and by extension health 

behaviours (Bécares et al. 2011). 

As indicated in the background chapter (section 2.4.2.), the evidence supporting the ethnic 

density hypothesis for mental and physical health has been mixed in the UK (Bécares et al. 

2012b, Shaw et al. 2012). Most studies reported that ethnic density was protective for at least 

some ethnic minorities, but the associations were not consistent across ethnic groups. With 

respect to health behaviours, a protective effect on alcohol consumption was found for all 

ethnic minorities (Bécares et al. 2011), while the probability of smoking was shown to decline 

as ethnic density increased for minorities where smoking was not the norm (Mathur et al. 

2017, Uphoff et al. 2016). As described in section 2.4.2., these results offer insight into the 

relevance of cultural identity and social norms as moderators of the associations between 

ethnic density and health behaviours.  
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In spite of these promising results, research on the ethnic density hypothesis is still in its 

infancy and knowledge gaps remain. To my knowledge, no study has investigated the 

association between ethnic density and physical activity in the UK, and there are few 

investigations in adolescents. Exploring the ethnic density hypothesis in adolescents may help 

shed light on the relative importance of ethnic density in the residential and school settings 

(Astell-Burt et al. 2012). Teasing out the independent contributions of neighbourhood 

deprivation and ethnic density also remains an issue, given the correlation between the 

processes of ethnic and economic segregations (Karlsen & Nazroo 2002). Focusing on 

homogeneously deprived but ethnically diverse areas might help better capture the ethnic 

density ‘effect’ itself (Uphoff et al. 2016).  

From a statistical point of view, most studies of ethnic density have ignored bias and loss of 

information due to missing data. The few studies that have attempted to account for the 

missing data mechanism ignore the multilevel nature of the data in the imputation models 

used (e.g. Astell-Burt et al. (2012)), which is likely to cause bias (Carpenter & Kenward 2012).  

In this chapter, I use the 3-wave balanced panel from the ORiEL study to test whether own-

group ethnic densities measured at school and neighbourhood levels predict three common 

forms of physical activity: walking to school, walking for leisure and a composite measure of 

outdoor physical activity. These three dimensions were chosen to be consistent with results 

reported in chapter 6 and because they are most likely to be influenced by the neighbourhood 

environment (Evenson et al. 2012, Kerr et al. 2015). Similar to chapter 6, I handle item non-

response using multilevel multiple imputation, and specify a distinct imputation model for the 

data used and research questions posed in this chapter. Analyses are restricted to the four 

main ethnic groups of the ORiEL study. 

 
 

Question 1: Is own-group ethnic density associated with physical activity in the ORiEL study 

and does this vary by ethnicity?   

More specifically:  

1.1. Is school-level own-group ethnic density associated with forms of physical activity 

(walking to school; walking for leisure; outdoor physical activity) and does this vary by 

ethnicity? 
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1.2. Is neighbourhood-level own-group ethnic density associated with forms of physical 

activity (walking to school; walking for leisure; outdoor physical activity) and does this 

vary by ethnicity? 

1.3. Which of school-level or neighbourhood level own-group ethnic density best 

predicts forms of physical activity (walking to school; walking for leisure; outdoor 

physical activity)? 

 
 

To explore the association between physical activity and ethnic density, I estimated pooled 

longitudinal analyses with GEE using imputed datasets. The data and methods used are 

outlined below. 

 
 

The final sample used for these analyses was constructed as described in section 3.3., by 

excluding ORiEL respondents that did not participate in all three waves (3-wave balanced 

panel). In this chapter, analyses are further restricted to the four most prevalent ethnic groups 

– White UK, White Mixed, Bangladeshi and Black African – to ensure sufficient power to detect 

ethnic-specific effects and to guarantee reliable estimations of the analysis models and of the 

imputation models25. This analytical sample was defined as the ‘main ethnic groups 3-wave 

balanced panel’ in section 3.3. It includes 1,160 participants and 3,480 observations.   

  

                                                           
 

25 A conservative rule of thumb (Peduzzi et al. 1996) requires 10 events per parameter in a logistic 
regression model. This corresponds to 366 individuals in a logistic regression with 11 parameters and 
an outcome with 30% prevalence (i.e. the prevalence of walking for leisure). A less conservative rule 
requires 10 observations per parameter, which corresponds to 110 observations for a similar logistic 
regression model. Given that I use three waves of data with individual-level clustering, I expect to gain 
further information from repeated measurements. I assume that estimates from the Black Caribbean 
group (111 individuals) carry a too high risk of being unreliable after exploratory analyses indicated a 
lack of power to detect significant differences in that group. The White Mixed group (190 individuals) 
would allow reliable estimates if repeated observations provide at least 1.5 times the equivalent of 
information available in one wave, which seems reasonable to assume. The other groups retained had 
382, 337 and 251 individuals and were judged unproblematic. 
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The variables summarised in Table 7.1 and outlined in the data chapter and were used for the 

analyses presented in this chapter. These include three binary physical activity outcomes, two 

measures of own-group ethnic density, a measure of ethnicity, a set of potential confounders, 

and cluster variable. These are described below.   

 

Table 7.1 Variable definitions and item missingness at each wave for the main ethnic groups 3-wave balanced 
panel (n = 1,160; 3,480 measurements)   

Variable Variable type and use in the analysis % missing 
W1      W2      W3  

Outcomes   

Walking to school Ordinal (almost count), 4 categories, non-Normal; 
binary version used 

8.4      2.5      2.4 

Walking for leisure Ordinal (almost count), 4 categories, non-Normal; 
binary version used 

17.0    6.0      5.5 

Outdoor physical activity Count (0-7), non-Normal; binary version used 22.2    10.3    8.6 

Exposures   

School-level ethnic density Continuous, non-Normal  Fully observed 

Neighbourhood-level ethnic 
density 

Continuous, approximately Normal 7.6      7.9      9.7 

Potential confounders   

Gender Binary  Fully observed 

Ethnicity Nominal variable with 4 categories Fully observed 

Health condition 
Count score of 9 binary items* (0-9), skewed; 
binary version used (0/1+) 

2.9      14.2 14.0 

Family affluence 
Count score of 3 items (0-9), approximately 
Normal; categorised in 3 groups 

4.6      3.2      3.3 

Baseline free school meal 
status 

Binary: Yes/No 1.7           

Household composition 

Nominal, 4 categories, binary version used (both 
parents vs. not) 

1.5      0.4      0.8 

Time lived in neighbourhood  Ordinal, 5 categories, binary version used 15.1    5.1     4.1 

Distance to school Continuous, approximately log Normal 7.7      8.1      9.8 

Cluster variable   

School Assumed to be time invariant (W1 value used for 
those changing school) 

Fully observed 

Auxiliary variables   

Total physical activity  Continuous, approximately log Normal 3.0      0.5       0.6 

Country of birth Binary (UK/non-UK) 1.9      

Language spoken at home Binary (English/Other) 0.7 

Mental health (WEMWBS) Continuous, approximately square Normal 3.1      1.7       2.4 

BMI (BMI z score) Continuous, Normal 8.7      8.1       6.9 

Self-rated health  Ordinal variable with 3 categories 1.5      0.9       0.9 

*requirement that at least five items are completed to get a score because the interest is in whether any 

condition is reported.  
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Three common forms of physical activity hypothesised to be associated with measures of 

ethnic density in the ORiEL study are examined: walking to school, walking for leisure 

(dog/exercise) and outdoor physical activity. As described in the data chapter (section 3.5.), 

each binary physical activity outcome captures whether adolescents reported having 

participated in the activity over the past week. The outdoor physical activity outcome 

combines participation in any of the following activities: basketball/volleyball, blading, cricket, 

football, rounders, rugby and roller skating.  

 

 

The two exposure variables are neighbourhood-level own-group ethnic density (referred to as 

neighbourhood-level ethnic density) and school-level own-group ethnic density (referred to 

as school-level ethnic density). Ethnic densities were calculated as the percentage of 

adolescents, either in the relevant school or neighbourhood, defined as the lower layer super 

output area (LSOA) of their home-address, who were of the same ethnic group. School-level 

ethnic density was treated as time-invariant, owning to only marginal changes observed over 

the study period in the annual school ethnic composition reported by the Department for 

Education (Department for Education 2012, 2013, 2014). Neighbourhood-level ethnic density 

was based on 2011 UK Census of population data and hence treated as time-invariant, except 

for those who reported change in the home-address. Both ethnic density variables were 

treated as continuous. Results were presented as change per 10 percentage points. 

Construction of the ethnic density variables is further described in section 3.5.2.2.  

Ethnicity was treated as a moderator throughout this chapter. Analyses were presented 

separately for the White UK, White Mixed, Bangladeshi and Black African groups.  

 

 

The following potential confounders were included in adjusted models: gender, family 

affluence (3 categories derived from the family affluence scale), health condition (no condition 

vs. 1+ condition(s)), free school meal status, household composition (living with both parents 

vs. not), and time resident in the neighbourhood (less than 5 years vs. more). Gender and free 

school meal status were considered to be time-invariant. Baseline free school meal status was 

used following preliminary analysis of the reliability of the item (cf. section 3.5.3.4.). The other 
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variables were treated as time-varying. Network distance to school was also included as a 

confounder in the models with walking to school as an outcome.  

Measures of acculturation, such as country of birth and language spoken at home, were not 

included as confounders because they were not associated with any of the physical activity 

outcomes in the three ethnic minority groups studied (p>0.2), and therefore did not qualify as 

potential confounders.  

 

 

School was considered to be time-invariant for ease of modelling (see below). During the study 

period, n=4 adolescents of the relevant ethnic groups moved within the surveyed school 

sample. Baseline-school was used for these adolescents in the imputation model and for the 

creation of school-level ethnic density measures. This simplification is highly unlikely to have 

any impact on the interpretation of the results.  

 
 

As detailed in the methods chapter (chapter 4), the analytical strategy for the longitudinal 

analyses is twofold; it involves the handling of missing data with multilevel multiple imputation 

and the specification of models used to answer the research questions, known as analysis 

models (or models of interest). The specific models used in this chapter are presented in this 

section. 

 

 

I handled missing data using multilevel multiple imputation (MI) models. I first described the 

extent of missingness in each variable of interest and explored the plausibility of different 

missing data mechanisms. As in chapter 6, preliminary analyses of the variables of interest 

revealed that a complete case analysis was likely to be invalid and to generate bias (Appendix 

F section F.1). 

MI was therefore used to handle item non-response under the missing at random assumption 

(MAR). To increase the plausibility of the MAR assumption, reduce bias and improve efficiency 

(Carpenter & Kenward 2012), I included the following auxiliary variables in the imputation 

models: log of total physical activity (centred), country of birth, language spoken at home, 

squared WEMWBS score for positive mental wellbeing (centred), BMI z-score (centred) and 



  

191 
 

self-rated health. The selection process of these auxiliary variables is reported in Appendix F 

(section F.1). 

Building on the results of chapter 6, I explored Multilevel MI solutions within the joint 

modelling framework in order to account for the correlations implied by the 3-level 

hierarchical structure of the data (repeated measurements, individuals, schools). The analysis 

models include continuous variables, discrete variables and interaction terms between the 

exposure variables and ethnicity. Potential interactions were handled by imputing the data 

separately by ethnic group. Following recommendations from the literature (Rodwell et al. 

2014), limited-range continuous variable (i.e. neighbourhood-level ethnic density) was 

imputed on the raw scale with no restrictions to the range26, and with no post-imputation 

rounding. The imputation models were implemented using the R package ‘jomo’ (Quartagno 

et al. 2018), which is the latest package available to run complex multilevel MI models with 

unordered discrete variables. For comparison purposes, results of the complete case analysis 

are provided in Appendix F (section F.6). 

 

 

To answer the research questions of this chapter, I estimated logistic regression models using 

generalised estimating equations (GEE) in Stata 15 (‘xtgee’) as detailed in the methods chapter 

(section 4.4.3.). Marginal models estimated with GEE have a convenient population-average 

interpretation of the parameters (Fitzmaurice et al. 2011), although current software 

implementations only allow for models with 2-level structures. In this chapter, I used GEE 

methods to account for the hierarchical structure of the data at individual level 

(measurements nested within individuals). Clustering at school-level could not be accounted 

for, but was expected to be limited as indicated previously (section 3.5.1.1.). Following results 

given in Appendix E (section E.3), unstructured working correlation structures were used to 

initiate the GEE estimation process. The models were replicated using an alternative 

specification of the working correlation to ensure that results were not sensitive to its 

specification (cf. Appendix F section F.3).  

For each outcome, separate logistic models estimated with GEE were specified to test school-

level and neighbourhood-level ethnic density effects by ethnic group using imputed datasets. 

To gain efficiency, I used general models that included interaction terms between ethnicity 

                                                           
 

26 This implies that imputed percentages could take values <0 or >100.  
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and ethnic density as opposed to stratifying the results by ethnic group. Ethnic-specific 

inferences were obtained using an ‘mi estimate’ command equivalent of the ‘lincom’ 

command with imputed datasets in Stata. For each exposure variable, I fitted unadjusted 

models including time, exposure, ethnicity and ethnicity*exposure interaction terms. Partially 

adjusted models further included potential confounders. Finally, the fully adjusted models 

included time, ethnicity, confounders, the two exposures and their interaction with ethnicity. 

The model equations are given in Appendix F section F.2. For sensitivity analysis purposes, I 

also stratified the analyses by ethnic group and adjusted for confounders (Appendix F section 

F.4). Stratified results were also computed using ethnic density tertiles as opposed to 

continuous scores, which allowed deviation from linearity to be assessed (Appendix F section 

F.5).  

Lowess smoothers were used in exploratory analyses to identify the functional shape of the 

association between the logit of physical activity and the measures of ethnic density. Lowess, 

which stands for ‘locally weighted scatterplot smoothing’, is a non-parametric regression 

method that creates smooth line through a scatter plot to help identify relationships between 

variables.(Cleveland 1979).  

 
 

This section presents the results of the analyses conducted to answer the research questions 

on the relationships between physical activity and ethnic density. The first part presents how 

item non-response is handled using a multilevel multiple imputation model, which is specific 

to the analyses presented in this chapter. The second part presents the results of the analysis 

models fitted to answer the research questions. 

 
 

 

 

Patterns of missingness for the four selected ethnic groups are very similar to those of the 3-

wave balanced panel, and most of the variables used in this chapter were already described in 

chapter 6 (section 6.4.1.1.). Missingness is less frequent overall for the present analyses, 

compared to previous chapters as neighbourhood perceptions variables, which had high levels 

of missingness, are not included in the present analysis.  
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Table 7.1 indicates the proportion of missing data by wave for the variables of interest and 

potential auxiliary variables. All variables, except school, school-level ethnic density, gender 

and ethnicity are subject to some degree of non-response. Most variables have highest 

missingness at wave 1 and lowest at wave 3, except for the health condition questions, 

distance to school, and neighbourhood-level ethnic density. Missingness in the latter two 

variables rises over time due to an increase in refusal to report home-address (8% missing at 

waves 1-2 and 10% at wave 3). Missingness is highest for outdoor physical activity and walking 

for leisure, in which the proportion of missing values lies between 17% and 22% at wave 1, 

between 6% and 10% at wave 2 and between 5% and 9% at wave 3. It is slightly lower for 

walking to school (8% at wave 1, and 2% at waves 2-3). Outdoor physical activity has more 

missing data because it combines multiple items, with each item having missing values. 

Missingness for time-lived in the neighbourhood was 15% at wave 1, 5% at wave 2 and 4% at 

wave 3, and lies around 7-8% for the auxiliary variables BMI. Other variables had missingness 

below 5%.  

 

 

I used the experience gained in chapter 6 (section 6.4.1.2.) to inform my imputation strategy 

in this chapter. I first split the data by ethnic group to allow for interaction terms between 

ethnicity and ethnic density measures. I transformed the data to wide format, used a fixed 

effects approach to account for clustering at individual level and included baseline school as a 

random effect.  

Following the analysis of missingness (Appendix F section F.1), the initial imputation model of 

each ethnic group included the variables of the analysis models and the auxiliary variables of 

Table 7.1 (with the exception of the stratification variable, ethnicity). Normally distributed 

continuous variables were treated as outcomes and rescaled if necessary. School-level ethnic 

density was not normally distributed but could be included as a covariate given that it was 

fully observed (cf. section 3.5.2.2.). All discrete variables were treated as outcomes using the 

latent normal distribution approach described in section 4.3.2.2.  

The initial ‘full model’, named Model 1 in Table 7.2 is quick to run but has very slow 

convergence. Therefore, an initial 30,000 iterations were obtained and analysed for each of 

the four subsets of the data. Overall, results indicate slow convergence, non-optimal mixing 

and relatively high auto-correlation. Over a long chain of iterations however, convergence 

seems acceptable, suggesting that a large burn-in 𝑛burn ≈ 10,000 and a large n-between 

𝑛between ≈ 5,000 could be suitable.  



  

 
 

1
94

 

Table 7.2 Summary of imputation models of chapter 7 

Model  Data 
format 

Cluster 
variable 

Variables Coefficients 
matrices 

Computational 
time for 10 
iterations 

MCMC convergence 

Model 1: final model 
for the White Mixed, 
Bangladeshi, and Black 
African groups 

wide school normal transformation and 
centring of continuous 
variables 
 
school-level ethnic density as a 
covariate 

Beta [2x 49]                                 
Cov u [49x49] 
Omega [49 x 49] 

28 sec* slow convergence, rather high 
auto-correlation; 
poor mixing for the Beta 
parameters associated with 
country of birth for White UK 
group. 
 
recommended burn-in of 𝑛burn ≥ 

10,000 and n-between of 
𝑛between = 5,000 
 

Model 2: final model 
for the White UK group 

wide school same as above 
 
country of birth excluded 

Beta [2x 48]                                 
Cov u [48x48] 
Omega [48 x 48] 

26 sec slow convergence, rather high 
auto-correlation 
 
not optimal but acceptable 
mixing for the Beta parameters 
associated with language spoken 
at home 
 
recommended burn-in of 𝑛burn ≥ 

10,000 and n-between of 
𝑛between = 5,000 

* Computational time for the White UK group in the initial model. 
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Figure 7.1 Example of time series plot (A) and autocorrelation plot (B) of a 𝜷 parameter with good convergence 
in Model 1. The 𝜷 parameter of this example corresponds to walking for leisure at wave 2 (𝜷𝟏,𝟐𝟏) for the Black 

African model. Results are from the multilevel imputation Model 1 (fixed effects approach with school as a 
cluster). The autocorrelation plot starts at iteration 10,000. ACF – Autocorrelation Function 

Such a requirement is feasible because of the fast computational speed of the model. The total 

computational time for 20 imputations with such high burn-in and n-between values is 

estimated to be about 3 days for each model.  

Most of the 𝛽 coefficients of Model 1 have satisfactory convergence. Figure 7.1 gives an 

example of good convergence for one of the physical activity outcomes (𝛽1,21) in Black African 

adolescents. Other parameters (like 𝛽1,23 in the White Mixed adolescents; not presented) had 

some autocorrelation with a lag above 5,000, indicating poor mixing. Parameters with such 

patterns are not a major concern however given that the usual rule of thumb was respected, 

i.e. the autocorrelation plots cross at least once the 0.05 benchmark for lags of 5,000.  

Although results for the 𝛽 coefficients are comparable and satisfactory across ethnic groups, 

Model 1 displays a convergence issue in the White UK subset. Indeed, the parameters 

associated with country of birth (𝛽1,48 and 𝛽2,48) have poor mixing and very high-

autocorrelation, even for lags of 10,000 (Figure 7.2).  

B 

A 
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Figure 7.2 Time series plot (A) and autocorrelation plot (B) with of a 𝜷 parameter with poor convergence in Model 
1. The 𝜷 parameter of this example corresponds to country of birth (𝜷𝟏,𝟒𝟖) for the White UK model. Results are 

from the multilevel imputation Model 1 (fixed effects approach with school as a cluster). The autocorrelation plot 
starts at iteration 10,000. ACF – Autocorrelation Function 

The lack of variability in the country of birth for the White UK group is likely to be the problem. 

In a subsequent model (Model 2), the variable was excluded from the White UK model. 

Country of birth was retained for the other ethnic groups because of its potential to reduce 

bias and increase precision (Appendix F section F.1). In Model 2, 𝛽 coefficients have good 

mixing overall. The parameters associated with language spoken at home (𝛽1,48 and 𝛽2,48) still 

display some autocorrelation for large lag values.  

In Model 1 and Model 2, parameters of the level 2 covariance matrix (Covariance u) generally 

have good convergence and usually stay well within the [-0.05; 0.05] bounds for 

autocorrelation. Most of the variances and the covariances involving the outcomes of the 

analysis models (walking to school, walking of leisure and outdoor physical activity at each 

wave) have good convergence. Some non-ideal convergences indicate remaining 

autocorrelation with large lags (see Figure 7.3 for an illustration). These would not be a 

problem using an n-between of 𝑛between ≥ 5,000.  

B 

A 
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Figure 7.3 Example of time series plot (A) and autocorrelation plot (B) of a level 2 covariance parameter with 
small persistent autocorrelation in Model 1. The parameter of this example corresponds to the level 2 covariance 
associated with walking to school at wave 2 (Covariance u 17 17) for the White Mixed model. Results are from 
the multilevel imputation Model 1 (fixed effects approach with school as a cluster). The autocorrelation plot 
starts at iteration 5,000. ACF – Autocorrelation Function 

Diagnosis outputs for the level 1 covariances indicate acceptable mixing when the Metropolis-

Hastings algorithm is used (see Figure 7.4 for an example). Compared to chapter 6 (section 

6.4.1.2.), convergence results of the level 1 covariances are generally better. Even so, the 

relatively low quality of mixing should not affect the results of the imputation if not followed 

by a full Bayesian analysis.  

To summarise, the convergence analysis indicates that Model 1 is suitable to impute the data 

for the White Mixed, Bangladeshi and Black African samples with a large burn-in of 𝑛burn ≥ 

10,000 and an n-between of 𝑛between ≥ 5,000. Model 2 seems appropriate for the White UK 

sample, with similar burn-in and n-between values. It should be stressed that the use of two 

imputation models for subsamples should not cause compatibility problems as the country of 

birth variable is not included in any of the analysis models (Carpenter & Kenward 2012). 

Model 2 for White UK and Model 1 for other ethnic groups are employed as the final 

imputation models to produce 20 imputed datasets for each ethnic group. A burn-in of 𝑛burn = 

B 

A 
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30,050 and an n-between of 𝑛between = 5,000 were used. The random seed 1,523 was used for 

replication purposes. The models took c.5 days each to complete the burn-in and impute the 

data. The ethnic-specific 20 imputed datasets were merged and transformed back into long 

format for analysis. The analysis models were run on each imputed dataset and results were 

combined for final inference using Rubin’s rules (Carpenter & Kenward 2012). 

 

Figure 7.4 Example of time series plot with acceptable mixing of a level 1 covariance Omega parameter updated 
with a Metropolis-Hastings step in Model 1. Results are from the multilevel imputation Model 1 for the 
Bangladeshi group (fixed effects approach with school as a cluster).  

 

 

 

In this section, I analyse the 20 imputed datasets to answer the established research questions 

(section 7.2.). Briefly, first, is school-level ethnic density associated with common forms of 

physical activity (walking to school; walking for leisure; outdoor physical activity) and does this 

vary by ethnicity? Second, is neighbourhood-level ethnic density associated with these forms 

of physical activity and does this vary by ethnicity? Third, which of school-level or 

neighbourhood-level own-group ethnic density best predicts these forms of physical activity? 

Analyses were conducted using logistic regression models estimated with GEE. Unadjusted 

and partially adjusted models were fitted separately for school-level and neighbourhood-level 

ethnic densities (questions 1.1. and 1.2.). Fully adjusted models then included both measures 

of exposure and their interactions with ethnicity (question 1.3.). School-level ethnic density 

parameters are interpreted as in cross-sectional analysis because the exposure variable is 

time-invariant. Neighbourhood-level ethnic density varied for adolescents who changed LSOA 

during the study (amongst those who reported an address, 5.2% change LSOA at wave 2 and 
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another 5.9% changed LSOA wave 3). Parameter estimates are therefore interpreted both as 

cross-sectional (comparing two individuals with different ethnic density values) and in terms 

of within individual change over time in ethnic density due to neighbourhood change. Results 

are presented for each physical activity outcome at a time, starting with some descriptive 

statistics and an analysis of the functional form of the relationship between the exposure and 

outcome variables. 

 

 

Table 7.3 shows that walking to school at least once over the past week is most prevalent in 

the Bangladeshi group (84.5%) followed by the White UK (80.8%), White Mixed (72.4%) and 

Black African groups (71.4%). Compared to the White UK group, the odds of walking to school 

are statistically different and lower for the White Mixed and Black African groups, (OR are 0.62 

(95% CI: 0.45-0.68) and 0.59 (95% CI: 0.44-0.79), respectively). Ethnic density measures also 

vary across ethnic groups (Table 7.3). At school-level, median ethnic density is 63.3% for the 

Bangladeshi adolescents, lies close to 20% for the White UK and Black African adolescents 

(22.7% and 19.3% respectively), and is 14.2% for the White Mixed adolescents. Large 

variations within the Bangladeshi group are observed, whereas variations were smallest for 

the White Mixed and Black African groups. At neighbourhood-level, patterns are very similar 

for the White Mixed and Black African groups, displaying low median values and limited 

variability (medians are 12.7% and 13.6%, respectively). For the White UK and Bangladeshi 

groups, neighbourhood-level densities are attenuated, yet still higher than in the other groups 

(medians are 40.5% and 22.3%, respectively), and notable within group variability is observed.  

To inform modelling decisions, I used the lowess smoother to explore the function form of the 

associations between each ethnic density measure and the outcome (Figure 7.5). I concentrate 

my interpretation to the areas of the ethnic density variables with most observations, focusing 

on the observations lying between the 10th and the 90th percentiles (Table 7.3). Figure 7.5 

indicates that associations between the two ethnic density measures and walking to school 

are approximately linear on the logit scale. Results also indicate the need for caution with 

school-level exposure in the White UK group (Figure 7.5A), whose pattern of association with 

walking to school might not be well captured by a linear trend. As a result, sensitivity analyses 

using exposure definitions based on tertiles (Appendix F section F.5) will also be presented in 

this chapter. Any difference in results between ethnic density tertiles and continuous ethnic 

density variables will be emphasised.  
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Table 7.3 Descriptive statistics of the exposure and outcome variables by ethnic group (3 waves of the ORiEL Study, n=1,160)  

 White: UK White: Mixed Asian: Bangladeshi Black: African 

N per wave 382 190 337 251 

% walking to school   80.8 72.4 84.5 71.4 

OR [95% CI] of walking to school¹ 1.00* 
0.62  

[0.45,0.86] 

1.29 
[0.95,1.76] 

 

0.59 
[0.44,0.79] 

 
 

% walking for leisure 48.3 39.8 24.4 28.5 

OR [95% CI] of walking for leisure¹ 1.00* 
0.71 

 [0.55,0.92] 
0.35 

[0.28,0.43] 
0.43 

[0.33,0.55] 

% reporting outdoor physical activity 71.4 75.1 74.8 80.1 

OR [95% CI] of outdoor physical activity¹ 1.00* 
1.23 

[0.91,1.66] 
1.21 

[0.93,1.57] 
1.64 

[1.22,2.20] 

Median [10th- 90th percentiles]  
school-level ethnic density 

22.7 
[13.2-57.6] 

 

14.2 
[4.4-21.7] 

63.3 
[7.5-80.6] 

19.3 
[9.5-24.8] 

Median [10th- 90th percentiles] neighbourhood-
level ethnic density 

40.5 
[19.7-63.1] 

12.7 
[6.3-22.2] 

22.3 
[4.5-53.2] 

13.6 
[4.0-23.5] 

¹ Results are from logistic regression models estimated with Generalised Estimating Equations to account for the dependency across repeated measurements (unstructured 

working correlation matrix). *reference group. 
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Figure 7.5 Exploration of the functional form of the association between the logit of walking to school and ethnic 
density measures using lowess smoother.  School-level ethnic density is represented in A and neighbourhood-
level ethnic density in B. All waves of the data are used and imputed density measures lower than 1.9 percent 
are excluded. Bandwidth of 0.8 is used. 
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Table 7.4 shows that school-level ethnic density is associated with walking to school, after 

adjustment for potential confounders (p-value of the test for an ‘overall’ association in the 

partially adjusted model <0.001). A positive association is observed for the Bangladeshi group, 

indicating that an increase in school-level ethnic density by 10% increases the odds of walking 

to school by 1.20 (95% CI: 1.09-1.31). Negative significant associations are observed for the 

White Mixed and Black African groups (partially adjusted OR are 0.51 (95% CI: 0.35-0.76) and 

0.58 (95% CI: 0.45-0.75), respectively), and a positive non-significant association is observed 

for the White UK group (partially adjusted OR = 1.08 (95% CI: 0.96-1.21)). The model using 

exposure tertiles (Appendix F Table F.10), indicates a U-shaped relationship for the White UK 

group (as expected from Figure 7.5A). The lowest odds of walking to school are observed for 

the 2nd tertile of ethnic density (partially adjusted OR of 2nd tertile vs. 1st = 0.52 (95% CI: 0.32-

0.83)) and there is no significant difference between the 1st and the 3rd tertiles (partially 

adjusted p-value=0.890).  

Table 7.4 also indicates significant associations between walking to school and 

neighbourhood-level ethnic density (overall test p-value in the partially adjusted model 

=0.003). Compared to school-level measures, coefficients have the same signs but are lower 

in magnitude. The only significant result is a strong positive association in the Bangladeshi 

group: an increase in neighbourhood-level ethnic density by 10% (interpreted either as a 

difference between two adolescents of the same ethnic group, or within the same adolescent 

over time) increases the odds of walking to school by 1.31 (95% CI: 1.14-1.51). Partially 

adjusted p-values for the other ethnic groups vary between 0.123 and 0.852.  

The fully adjusted model (Table 7.4) finally shows that, in the presence of the two ethnic 

density exposures and potential confounders, only school-level ethnic density remains 

statistically significant overall (overall test p-value is <0.001 for school-level ethnic density and 

0.523 for neighbourhood-level ethnic density). Results indicate that an increase in school-level 

ethnic density by 10% would decrease the odds of walking to school by a factor of 2.27 

(=1/0.44) for the White Mixed group and by 1.67 (=1/0.60) for the Black African group (95% 

CI: 1.43-3.57 and 1.27-2.22, respectively). In the White UK group, results from the tertiles 

analysis (Appendix F Table F.10) also show significantly lower odds of walking to school for the 

2nd tertile of school-level ethnic density (fully adjusted OR compared to the 1st tertile = 0.49 

(95% CI: 0.30-0.80)).   
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Table 7.4 Ethnic group specific odds ratios (OR) of walking to school vs. not by own-group ethnic density*  (3 waves of the ORiEL Study, n=1,160)  

Results are from logistic regression models estimated with Generalised Estimating Equations to account for the dependency across repeated measurements (unstructured 

working correlation matrix). Interaction terms between the own-group ethnic density variable and ethnicity were used and ethnic group specific ORs were obtained. *Own-

group density assessed as change per 10 percentage points. ¹ Adjusted for time, gender, health condition, family affluence, baseline free school meal status, household 

composition, time lived in the neighbourhood and distance to school. ² Adjusted for time, gender, health condition, family affluence, baseline free school meal status, household 

composition, time lived in the neighbourhood, distance to school, the other ethnic density variable and its interaction with ethnicity. 

Exposure 
Unadjusted 

OR 

Partially 

Adjusted OR¹ 

 
95% 

 
CI 

 
P-value Fully 

Adjusted OR² 

 
95% 

 
CI 

 P-value 

School-level ethnic density        <0.001       <0.001 

White: UK 1.08 1.08 [ 0.96 , 1.21 ] 0.195 1.10 [ 0.94 , 1.30 ] 0.230 

White: Mixed 0.53 0.51 [ 0.35 , 0.76 ] 0.001 0.44 [ 0.28 , 0.70 ] 0.001 

Asian: Bangladeshi 1.19 1.20 [ 1.09 , 1.31 ] <0.001 1.13 [ 0.96 , 1.32 ] 0.140 

Black: African 0.58 0.58 [ 0.45 , 0.75 ] <0.001 0.60 [ 0.45 , 0.79 ] <0.001 

                

Neighbourhood-level ethnic density          0.003       0.523 

White: UK 1.01 1.01 [ 0.88 , 1.16 ] 0.852 0.97 [ 0.81 , 1.15 ] 0.699 

White: Mixed 0.95 0.94 [ 0.62 , 1.43 ] 0.772 1.33 [ 0.81 , 2.18 ] 0.262 

Asian: Bangladeshi 1.32 1.31 [ 1.14 , 1.51 ] <0.001 1.15 [ 0.91 , 1.46 ] 0.234 

Black: African 0.80 0.80 [ 0.60 , 1.06 ] 0.123 0.91 [ 0.67 , 1.25 ] 0.576 
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In the Bangladeshi group, coefficients of school-level and neighbourhood-level ethnic 

densities are attenuated in the fully adjusted model (ORs=1.13 and 1.15, respectively) and are 

no longer significant (p-values are 0.140 and 0.234, respectively). This is likely to reflect an 

overlap between the two ethnic density measures for that group and the incapacity of the 

model to differentiate school from neighbourhood-level associations in this context. 

 

 

Table 7.3 shows that walking for leisure at least once over the past week is most prevalent in 

the White UK group (48.3%) followed by the White Mixed (39.8%), Black African (28.5%) and 

Bangladeshi groups (24.4%) Compared to the White UK group, the odds are significantly 

different and lower for the White Mixed, Bangladeshi and Black African groups, (OR are 0.71 

(95% CI: 0.55-0.92), 0.35 (95% CI: 0.28-0.43), and 0.43 (95% CI: 0.33-0.55) respectively).  

Figure 7.6 indicates that associations between the two ethnic density measures and walking 

for leisure are approximately linear on the logit scale in the parts of the distribution that 

contain the most observations. For example, in the Bangladeshi group, the increase in the logit 

only occurs for a small number of observations with very small school-level exposure values. 

Nonetheless, there is a particular need for caution with school-level exposure in the Black 

African group (Figure 7.6A), whose pattern of association with walking for leisure might not 

be well captured by a linear trend. The additional analyses using exposure tertiles, and 

presented in Appendix F (section F.5), will also be interpreted and reported if they diverge 

from the main results presented here.  

Table 7.5 shows that school-level ethnic density is not associated with walking for leisure for 

any ethnic group, after adjustment for potential confounders (overall test p-value in the 

partially adjusted model = 0.454). The estimated associations are close to null for the White 

UK group (partially adjusted OR=0.99; p-value=0.835), slightly negative for the White Mixed 

and Bangladeshi groups (respectively, partially adjusted ORs are 0.88 and 0.95; p-values 0.476 

and 0.125), and slightly positive for the Black African group (partially adjusted OR= 1.14; p-

value=0.375).  
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Figure 7.6 Exploration of the functional form of the association between the logit of walking for leisure and ethnic 
density measures using lowess smoother.  School-level ethnic density is represented in A and neighbourhood-
level ethnic density in B. All waves of the data are used and imputed density measures lower than 1.9 percent 
are excluded. Bandwidth of 0.8 is used.  
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Table 7.5 Ethnic group specific odds ratios (OR) of walking for leisure vs. not by own-group ethnic density*  (3 waves of the ORiEL Study, n=1,160)  

Results are from logistic regression models estimated with Generalised Estimating Equations to account for the dependency across repeated measurements (unstructured 

working correlation matrix). Interaction terms between the own-group ethnic density variable and ethnicity were used and ethnic group specific ORs were obtained. *Own-

group density assessed as change per 10 percentage points. ¹ Adjusted for time, gender, health condition, family affluence, baseline free school meal status, household 

composition and time lived in the neighbourhood. ² Adjusted for time, gender, health condition, family affluence, baseline free school meal status, household composition, time 

lived in the neighbourhood, the other ethnic density variable and its interaction with ethnicity. 

  

Exposure 
Unadjusted 

OR 

Partially 

Adjusted OR¹ 

 
95% 

 
CI 

 
P-value Fully Adjusted 

OR² 

 
95% 

 
CI 

 P-value 

School-level ethnic density        0.454       0.899 

White: UK 0.99 0.99 [ 0.89 , 1.10 ] 0.835 0.96 [ 0.86 , 1.08 ] 0.531 

White: Mixed 0.92 0.88 [ 0.62 , 1.25 ] 0.476 0.96 [ 0.65 , 1.40 ] 0.814 

Asian: Bangladeshi 0.94 0.95 [ 0.90 , 1.01 ] 0.125 0.97 [ 0.89 , 1.06 ] 0.488 

Black: African 1.11 1.14 [ 0.86 , 1.51 ] 0.375 1.07 [ 0.78 , 1.47 ] 0.688 

                

Neighbourhood-level ethnic density          0.318       0.622 

White: UK 1.03 1.02 [ 0.94 , 1.12 ] 0.620 1.04 [ 0.94 , 1.15 ] 0.417 

White: Mixed 0.83 0.82 [ 0.57 , 1.18 ] 0.286 0.84 [ 0.56 , 1.25 ] 0.385 

Asian: Bangladeshi 0.92 0.93 [ 0.85 , 1.03 ] 0.182 0.97 [ 0.84 , 1.11 ] 0.626 

Black: African 1.17 1.18 [ 0.91 , 1.54 ] 0.218 1.16 [ 0.86 , 1.55 ] 0.328 
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Results by tertile (Appendix F Table F.12) confirm the lack of association with school-level 

ethnic density, with the exception of the Bangladeshi group. Results indicate a possible dose-

response relationship: as school-level ethnic density increases, the odds of walking for leisure 

decreases (overall p-value for the two parameters equals 0.085). In particular, the odds of 

walking for leisure in the 3rd tertile (i.e. high ethnic density) are 0.60 (95% CI: 0.37-0.96) time 

those of the 1st tertile (i.e. low ethnic density).  

Table 7.5 also shows no association between neighbourhood-level ethnic density and walking 

for leisure (overall test p-value in the partially adjusted model =0.318). Compared to school-

level measures, coefficients have the same signs and are slightly stronger in magnitude, but 

remain non-significant. The associations are close to null for the White UK group (partially 

adjusted OR=1.02; p-value=0.620), slightly negative for the White Mixed and Bangladeshi 

groups (respectively, partially adjusted ORs are 0.82 and 0.93; p-values 0.286 and 0.182), and 

slightly positive for the Black African group (partially adjusted OR= 1.18; p-value=0.218).  

Results by tertile (Appendix F Table F.13) are comparable to those observed for school-level 

exposure and confirm the lack of association with neighbourhood-level ethnic density. For the 

Bangladeshi group, there is some indication of a potentially decreasing dose-response 

relationship: as school-level ethnic density increases, the odds of walking for leisure decreases. 

The evidence on differences between tertiles is weak though (overall p-value for the two 

parameters equals 0.241). Nevertheless, the odds of walking for leisure in the 3rd tertile (i.e. 

high ethnic density) are 0.70 (95% CI: 0.47-1.06) times those of the 1st tertile (i.e. low ethnic 

density).  

The fully adjusted model (Table 7.5) finally confirms that, in the presence of the two exposures 

and potential confounders, none of the exposures are significant overall (overall test p-value 

in the fully adjusted model is 0.899 for school-level ethnic density and 0.622 for 

neighbourhood-level ethnic density). Point estimates are even closer to 1.00 for school-level 

ethnic density. For neighbourhood-level ethnic density, results are also not statistically 

significant, point estimates do not change dramatically, and p-values lie between 0.3 and 0.7.  

In the models by tertile (Appendix F Table F.12), the Bangladeshi group indicates some weak 

evidence of difference in walking for leisure between the 1st and the 3rd tertile of school-level 

ethnic density (OR=0.65 (95% CI: 0.38-1.09); p-value=0.103). No significant association is 

observed in the fully adjusted models by tertile for neighbourhood-level ethnic density 

(Appendix F Table F.13). 



  

208 
 

 

 

Table 7.3 shows that having undertaken at least one bout of outdoor physical activity over the 

past week is most common in the Black African group (80.1%) followed by the White Mixed 

(75.1%), Bangladeshi (74.8%) and White UK groups (71.4%). The odds were significantly 

different and higher for the Black African group compared to the White UK group (OR =1.64 

(95% CI: 1.22-2.20)).  

Figure 7.7 indicates that, for most of the ethnic groups, associations between the two ethnic 

density measures and outdoor physical activity are approximately linear on the logit scale in 

the parts of the distribution that contain the most observations. Caution is needed regarding 

linear interpretation in the White Mixed and Black African groups at school-level (Figure 7.7A) 

and neighbourhood-level of exposure (Figure 7.7B). The additional analyses using exposure 

tertiles, and presented in Appendix F section F.5, will also be interpreted and reported if they 

diverge from the main results presented here.  

Table 7.6 shows that there is weak evidence that school-level ethnic density is associated with 

outdoor physical activity, after adjustment for potential confounders (overall test p-value in 

the partially adjusted model =0.065). A negative significant association is observed for the 

White UK group, indicating that an increase in school-level ethnic density by 10% decreases 

the odds of outdoor physical activity by 1.16 (=1/0.86; 95% CI: 1.03-1.30). A negative 

association is also observed for the Black African group (OR=0.77 (95% CI: 0.58-1.04)) although 

the level of evidence is weak (p-value=0.087). The estimated associations are close to 1.00 for 

the White Mixed and Bangladeshi groups (partially adjusted OR are 1.05 (95% CI: 0.68-1.62), 

and 1.02 (95% CI: 0.95-1.10), respectively).  

The model using exposure tertiles presented in Appendix F Table F.14, is consistent with the 

results, except for the Black African group. The non-linear association suggested in Figure 7.7A 

is confirmed: estimated odds of outdoor physical activity are highest in the 2nd tertile of school-

level ethnic density, and lowest in the 3rd tertile (overall p-value for the two parameters 

associated with the variable equals 0.023). Compared to the 1st tertile the odds are 1.29 (95% 

CI: 0.71-2.35) times higher in the 2nd tertile and 1.72 (=1/0.58; (95% CI: 1.01-2.94)) times lower 

in the 3rd tertile.  
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Figure 7.7 Exploration of the functional form of the association between the logit of outdoor physical activity and 
ethnic density measures using lowess smoother. School-level ethnic density is represented in A and 
neighbourhood-level ethnic density in B. All waves of the data are used and imputed density measures lower 
than 1.9 percent are excluded. Bandwidth of 0.8 is used.

0
.5

1
1
.5

2
0

.5
1

1
.5

2

0 2 4 6 8 0 2 4 6 8

White: UK White: Mixed

Asian: Bangladeshi Black: African

lo
g

it
 o

f 
o

u
td

o
o

r 
P

A

School-level own-ethnic density (per 10 percentage points)

0
1

2
3

0
1

2
3

0 5 10 0 5 10

White: UK White: Mixed

Asian: Bangladeshi Black: African

lo
g

it
 o

f 
o

u
td

o
o

r 
P

A

Neighbourhood-level own-ethnic density (per 10 percentage points)

B 

A 



  

 
 

2
10

 

Table 7.6 Ethnic group specific odds ratios (OR) of outdoor physical activity vs. not by own-group ethnic density*  (3 waves of the ORiEL Study, n=1,160)  

Results are from logistic regression models estimated with Generalised Estimating Equations to account for the dependency across repeated measurements (unstructured 

working correlation matrix). Interaction terms between the own-group ethnic density variable and ethnicity were used and ethnic group specific ORs were obtained.  

*Own-group density assessed as change per 10 percentage points. ¹ Adjusted for time, gender, health condition, family affluence, baseline free school meal status, household 

composition and time lived in the neighbourhood. ² Adjusted for time, gender, health condition, family affluence, baseline free school meal status, household composition, time 

lived in the neighbourhood, the other ethnic density variable and its interaction with ethnicity. 

 

Exposure 
Unadjusted 

OR 

Partially 

Adjusted OR¹ 

 
95% 

 
CI 

 
P-value Fully Adjusted 

OR² 

 
95% 

 
CI 

 P-value 

School-level ethnic density        0.065       0.507 

White: UK 0.86 0.86 [ 0.77 , 0.97 ] 0.016 0.94 [ 0.82 , 1.08 ] 0.390 

White: Mixed 0.97 1.05 [ 0.68 , 1.62 ] 0.813 1.04 [ 0.65 , 1.67 ] 0.874 

Asian: Bangladeshi 1.05 1.02 [ 0.95 , 1.10 ] 0.546 1.04 [ 0.94 , 1.14 ] 0.479 

Black: African 0.78 0.77 [ 0.58 , 1.04 ] 0.087 0.78 [ 0.56 , 1.09 ] 0.142 

                

Neighbourhood-level ethnic density          0.034       0.279 

White: UK 0.84 0.85 [ 0.76 , 0.94 ] 0.001 0.87 [ 0.77 , 0.98 ] 0.021 

White: Mixed 1.07 1.05 [ 0.70 , 1.57 ] 0.817 1.03 [ 0.66 , 1.61 ] 0.890 

Asian: Bangladeshi 1.03 1.01 [ 0.91 , 1.12 ] 0.871 0.97 [ 0.84 , 1.12 ] 0.707 

Black: African 0.91 0.89 [ 0.67 , 1.18 ] 0.414 0.97 [ 0.71 , 1.32 ] 0.849 
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Table 7.6 reports significant associations between outdoor physical activity and 

neighbourhood-level ethnic density (overall test p-value in the partially adjusted model 

=0.034). Compared to school-level measures, coefficients take the same signs and are very 

similar in terms of magnitude. The only significant result is a negative association in the White 

UK group: an increase in neighbourhood-level ethnic density by 10% decreases the outdoor 

physical activity by 1.17 (=1/0.85; 95% CI: 1.06-1.32). The estimated association for the Black 

African group is closer to 1.00 and non-significant (partially adjusted OR=0.89; p-value=0.414) 

and associations are close to 1.00 for the White Mixed and Bangladeshi groups (partially 

adjusted OR are 1.05 (95% CI: 0.70-1.57), and 1.01 (95% CI: 0.91-1.12), respectively). Results 

from the tertiles analysis confirm the linear association with neighbourhood-level ethnic 

density in the White UK group (Appendix F section F.5).  

The fully adjusted model (Table 7.6) shows that, in the presence of the two exposures and 

potential confounders, none of the exposures is significant overall (overall test p-value in the 

fully adjusted model is 0.507 for school-level ethnic density and 0.279 for neighbourhood-level 

ethnic density). In the White UK group, point estimates are closer to the null for the exposure 

variables, remain statistically significant at neighbourhood-level, but not at school-level (fully 

adjusted OR are 0.87 (95% CI: 0.77-0.98), and 0.94 (95% CI: 0.82-1.08), respectively). The 

estimate for school-level ethnic density in the Black African group is unchanged but 95% CI 

increase (OR=0.78 (95% CI: 0.56-1.09)).  

That association is however expected to be non-linear, as indicated by model using exposure 

tertile (Appendix F Table F.14). In the fully adjusted model using tertiles, coefficients remain 

unchanged, indicating strong evidence of a non-linear association between school-level ethnic 

density and outdoor physical activity in the Black African group (overall p-value for the 2 

parameters associated with the variable equals 0.019). Amongst the Black African adolescents, 

compared to the 1st tertile, the odds are 1.33 (95% CI: 0.72-2.43) times higher in the 2nd tertile 

and 1.75 (=1/0.57; (95% CI: 1.02-3.03)) times lower in the 3rd tertile. For the White Mixed and 

Bangladeshi groups, all odds ratios of the fully adjusted model (Table 7.6) are close to the null 

(between 0.97 and 1.04) and are not statistically significant (p-values between 0.4 and 0.9).  

 

 

A series of sensitivity analyses were conducted. Analyses were replicated using different 

specifications of the working correlation structure in the GEE estimation process (Appendix F 
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section F.3). These indicated no differences in the interpretation of the results. In addition, I 

fitted the models for each ethnic group separately, as opposed to including interaction terms 

between ethnic density and ethnicity (Appendix F section F.4), and results also appeared to be 

very similar. As discussed in the results, I also stratified the analyses using ethnic density 

tertiles as opposed to continuous scores, which allowed deviation from linearity to be assessed 

(Appendix F sectionF.5). The use of tertiles allowed to obtain more correct estimates in the 

presence of non-linear relationships (e.g. between school-level ethnic density and outdoor 

physical activity in the Black African group), as already reported in the main body of this 

chapter.  

Finally, I compared the results obtained from the imputed datasets with those from a ‘naive’ 

complete case analysis (Appendix F sectionF.6). Results indicate that point estimates were 

slightly over-estimated for walking to school and slightly underestimated for outdoor physical 

activity in the complete case analysis. The strength of evidence for some of the parameters 

decreased in the complete case analysis due to larger standard errors. This analysis of the 

complete cases confirms the results from the analysis of missingness, which suggested that 

coefficients from the complete case analysis would be slightly biased (Appendix F sectionF.1). 

Despite the bias and the loss of efficiency, however, the general conclusions about the 

directions of the main associations are not seriously affected in the complete case analysis. 

 
 

In this chapter, I have investigated the associations between own-group ethnic density at 

school and neighbourhood-levels and three physical activity outcomes (walking to school, 

walking for leisure and outdoor physical activity). The analyses were restricted to the four main 

ethnic groups of the ORiEL study (White UK, White Mixed, Bangladeshi and Black African). I 

first explored whether each of the two measures of ethnic density was associated with the 

outcomes using pooled longitudinal models (questions 1.1. and 1.2.). Then, I compared the 

independent contributions of school-level and neighbourhood-level ethnic densities to explain 

patterns of physical activity using fully adjusted models (question 1.3.). To do so, I first handled 

item missingness based on a MAR assumption. I applied the multilevel multiple imputation 

strategy developed in chapter 6, which accounts for the hierarchical structure of the data.  

Using 20 imputed datasets, I have shown that there is evidence that ethnic density at school-

level is associated with each of the outcomes for at least one ethnic group (question 1.1.) 

There is consistent evidence that school-level ethnic density is associated with walking to 
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school. The direction of the associations is such that a higher ethnic density amplifies ethnic-

specific propensity to walk to school. A model based on tertiles indicated weak evidence that 

higher school-level ethnic density in Bangladeshi adolescents might decrease the odds of 

walking for leisure, a form of physical activity not popular in that ethnic group. There is 

evidence of a linear association between school-level ethnic density and outdoor physical 

activity in the White UK group. The association was in the expected direction: a higher ethnic 

density decreases the odds of outdoor physical activity, which is a form of physical activity less 

popular in that ethnic group compared to others. Finally, a non-linear association was found 

for the Black African group at school-level. The shape of the association seems to indicate an 

increase in the odds of outdoor physical activity with medium levels of school-level ethnic 

density, followed by an important decrease with highest levels of ethnic density. This type of 

association had not been anticipated.  

Associations between neighbourhood-level ethnic density and the three physical activity 

outcomes were more mixed and only found for some ethnic groups (question 1.2.). When 

detected, associations were in the expected direction, so that neighbourhood-level ethnic 

density amplified ethnic-specific propensity to take part to a particular form of physical 

activity. There was little evidence that neighbourhood-level ethnic density was associated with 

walking to school, except for the Bangladeshi adolescents. No associations were found with 

walking for leisure. There was finally evidence of a negative association between 

neighbourhood-level ethnic density and outdoor physical activity in the White UK group.  

The fully adjusted models, which included both measures of ethnic density, indicated that 

school-level ethnic density was a stronger predictor of walking to school and walking for 

leisure, and neighbourhood-level ethnic density a stronger predictor of outdoor physical 

activity (question 1.3.). With respect to walking to school, associations with school-level ethnic 

density remained significant in the White Mixed and Black African groups, but not in the 

Bangladeshi group, which displayed no significant association with neighbourhood-level 

ethnic density. The fact that the fully adjusted model could not differentiate the independent 

contributions of school and neighbourhood-levels in the Bangladeshi group is most likely due 

to a high correlation between the two measures in that specific ethnic group (r=0.69). 

Similarly, the fully adjusted model based on tertiles no longer indicated any evidence of 

association between school-level ethnic density and walking for leisure in that ethnic group. 

The associations between neighbourhood-level ethnic density and outdoor physical activity 

remained significant in the fully adjusted model in the White UK group, as did the non-linear 
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association in the Black African group found in the model based on tertiles for school-level 

ethnic density.  

These results suggest that some aspects of the local socio-cultural environment captured by 

ethnic density measures play a role in explaining patterns of physical activity. In the next 

chapter, I will investigate the contribution of other aspects of the social environment, namely 

social cohesion and social support. 
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In this chapter, I present an analysis of the longitudinal associations between perceived 

neighbourhood trust and social support and four physical activity outcomes. In chapter 6, I 

have shown that five measures of adolescents’ perceptions of their neighbourhood 

environment (perceived bus stop proximity, traffic-related safety, street connectivity, 

enjoyment for walking/cycling and personal safety) were mostly unrelated to common forms 

of physical activity. In chapter 7, I have indicated that neighbourhood ethnic density 

contributes to explaining differences in walking to school. In this chapter, I investigate other 

aspects of the social environment – perceived neighbourhood trust and social support – for 

which a growing body of evidence seems to indicate associations with physical activity. 

Amongst the dimensions of the social environment (cf. section 2.4), social capital and social 

support have received particular scrutiny for their potential contribution to explaining 

differences in health and in physical activity (Berkman et al. 2014). Social capital designates 

the resources that are accessed by individuals through their membership to a group or a 

network, including trust, norms of reciprocity and ability to undertake collective action 

(Kawachi & Berkman 2014, Putnam 1993). Social contagion, collective efficacy and informal 

social control are the three main mechanisms by which social capital can affect physical activity 

(Kawachi & Berkman 2014). Aspects of social capital – including social cohesion and 

neighbourhood trust – were shown to be associated with a range of health-related behaviours 

such as alcohol consumption, drug abuse, juvenile delinquency, and physical activity 

(Lindström 2008, McNeill et al. 2006). Yet, the evidence on associations with physical activity, 

although consistent, is still scarce in particular in young people and in Europe. 

Social support describes resources provided from interpersonal relationships that can 

influence behaviour such as physical activity (cf. section 2.4.4.). These resources are diverse 

and include: psychological/emotional support (e.g. encouragement, praise), instrumental 

support (e.g. equipment, transport to a physical activity facility), co-participation (e.g. 

performing an activity with an adolescent), informational support (e.g. providing advice or 

instructions about an activity), and support as a role model (Langford et al. 1997). Parents, 
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family members and friends constitute the main sources of social support for physical activity 

in adolescents (Mendonça et al. 2014). There is a growing literature on the benefits of social 

support for health behaviours which has identified social support as one of the most consistent 

correlates of physical activity in young people (Sallis et al. 2000, 2016). Yet, gaps remain.  

The current literature on associations between social capital and social support and physical 

activity has some limitations. First, most of the literature, especially on social capital, captures 

total physical activity or leisure-based physical activity and does not explore how a specific 

aspect of social context could differently affect a range of forms of physical activity, such as 

outside play, more structured activities or walking to school. Second, there are few 

investigations on how social capital and social support co-vary over time with physical activity, 

most of the literature being cross-sectional. Third, there is little evidence as to whether the 

positive associations observed for the general population are consistent among deprived 

subpopulations. Fourth, most of the literature has ignored missing data, instead conducting 

analyses of complete cases, which might lead to bias. Fifth, more longitudinal analyses using 

large samples are needed in order to confirm cross-sectional and longitudinal associations 

obtained in smaller studies. Little is known as to whether changes in social capital or social 

support over a short period of time can lead to immediate change in physical activity. 

In this chapter, I use waves 2 and 3 from the ORiEL study to test how neighbourhood trust and 

social support from family, friends and significant others are longitudinally associated with 

four common forms of physical activity in adolescents from a deprived population: walking to 

school, walking for leisure, outdoor physical activity and a composite measure of pay and play 

physical activity, previously described in the data chapter (chapter 3). These four forms of 

physical activity were chosen to be consistent with results reported in chapters 6 and 7. Also 

they are expected to be associated with the measures of neighbourhood trust and social 

support used in the ORiEL questionnaire. I further investigate the moderating role of gender 

in the associations, knowing that the types and sources of social support received might differ 

for boys and girls (Beets et al. 2010). Similar to chapters 6 and 7, I handle item non-response 

using multilevel multiple imputation and specify a distinct imputation model for the data used 

and research questions posed in this chapter.   

 
 

Question 1: Is perception of neighbourhood trust longitudinally associated with physical 

activity in adolescents in the ORiEL study?  
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Specifically:  

1.1. Is perception of neighbourhood trust associated with different forms of physical 

activity (walking to school; walking for leisure; outdoor physical activity; pay and play 

physical activity) across all measurements (i.e. general associations)? 

1.2. Does change in perception of neighbourhood trust relate to changes in these four 

forms of physical activity? 

1.3. Do the above associations between perception of neighbourhood trust and physical 

activity outcomes differ for boys and girls?  

Question 2: Are perceptions of social support longitudinally associated with physical activity 

in adolescents in the ORiEL study?  

Specifically:  

2.1. Are perceptions of social support from friends, family or significant others 

associated with different forms of physical activity (walking to school; walking for 

leisure; outdoor physical activity; pay and play physical activity) across all 

measurements (i.e. general association)? 

2.2. Do changes in perceptions of social support relate to changes in these four forms 

of physical activity? 

2.3. Do the above associations between perceptions of social support and physical 

activity outcomes differ for boys and girls?  

 
 

To explore the longitudinal associations between perceived neighbourhood trust and social 

support and physical activity outcomes, I estimated longitudinal and cross-sectional analyses 

with generalised estimating equation (GEE) using imputed datasets. The data and methods 

used are outlined below. 

 
 

The analytical sample was constructed from ORiEL respondents who participated to wave 2 

and wave 3, defined as the waves 2-3 balanced panel in section 3.3. Wave 1 information was 

not included because the exposure variables were not available at baseline. To increase 

sample size, analyses were extended to participants present at wave 2 and 3 but absent at 
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baseline. The final sample size includes 2,644 participants and 5,288 observations. For 

sensitivity and comparability, analyses were also undertaken using the cohort definition of 

chapter 6, i.e. the 2,260 participants to the 3-wave balanced panel (cf. section 3.3.).  

 
 

The variables summarised in Table 8.1 and outlined in the data chapter were used for the 

analyses presented in this chapter. These include four binary physical activity outcomes, four 

measures of exposure (one measure of neighbourhood trust and three of social support), a set 

of potential confounders and a cluster variable. These are described below. 

 

 

Four measures of physical activity hypothesised to be associated with measures of 

neighbourhood trust and social support in the ORiEL study are examined: walking to school, 

walking for leisure (dog/exercise), outdoor physical activity and pay and play physical activity. 

The first three outcomes were examined in chapters 4, 5 and 6 because they were 

hypothesised to be associated with the measures of the neighbourhood environment 

measured in the ORiEL study. In addition, I investigate in this chapter a measure of pay and 

play physical activity, which captures more structured forms of physical activity and which is 

expected to be influenced by the aspects of the social environment considered in this chapter. 

As detailed in the data chapter (section 3.5.1.), each binary physical activity outcome captures 

whether adolescents reported having participated in the activity over the past week. The 

outdoor physical activity outcome combines participation in any of the following activities: 

basketball/volleyball, blading, cricket, football, rounders, rugby and roller skating. The pay and 

play physical activity outcome combines aerobics, climbing, swimming, gymnastics, hockey, 

martial arts, netball and tennis. 

In addition, measures of change in each outcome were created to capture within individual 

change in the outcomes over time (cf. section 3.5.1.). Change variables are constructed as 

differences in the binary physical activity status between wave 3 and wave 2. This results in 

ordinal variables with 3 responses categories (0= stopped reporting the physical activity 

outcome at wave 3; 1= no change; 2= started reporting the physical activity outcome at wave 

3). 
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Table 8.1 Variable definitions and item missingness at each wave for the waves 2-3 balanced panel  (n = 2,644; 
5,288 measurements) 

 Variable Variable type and use in the analysis % missing 
W2          W3  

Outcomes   

Walking to school Ordinal (almost count), 4 categories, non-Normal; 
binary version used 

3.8        3.2 

Walking for leisure Ordinal (almost count), 4 categories, non-Normal; 
binary version used 

6.9        5.3 

Outdoor physical activity Count (0-7), non-Normal; binary version used 12.0     8.8       

Pay and play physical activity Count (0-8), non-Normal; binary version used 11.1     7.5       

Exposures   

Neighbourhood trust Ordinal, 4 categories 16.0     11.8 

Social support – Family  Continuous, non-normal; categorised in 3 groups 27.2     13.6 

Social support – Friends  Continuous, non-normal; categorised in 3 groups 27.6     13.8 

Social support – Significant others Continuous, non-normal; categorised in 3 groups 27.6     14.3 

Potential confounders   

Gender Binary  Fully observed 

Ethnicity Nominal variable with 8 categories 0.1 

Health condition 
Count score of 9 binary items* (0-9), skewed; binary 
version used (0/1+) 

14.4      14.3 

Family affluence 
Count score of 3 items (0-9), approximately Normal; 
categorised in 3 groups 

3.8        3.4   

Free school meal status Binary: Yes/No 1.9       1.6 

Household composition 

Nominal, 4 categories, binary version used (both 
parents vs. not) 

0.9       0.7 

Time lived in neighbourhood Ordinal, 5 categories, binary version used 5.6       4.2 

Cluster variable   

School Assumed to be time invariant (W1 value used if 
time-varying) 

Fully observed 

Auxiliary variables   

Total physical activity  Continuous, approximately log Normal 0.9       0.6 

Country of birth Binary (UK/non-UK) 16.2       

Language spoken at home Binary (English/Other) 15.1 

Mental health (WEMWBS) Continuous, approximately square Normal 2.5       2.0 

BMI (BMI z score) Continuous, Normal 8.4       7.3 

Self-rated health  Ordinal variable with 3 categories 1.0       1.1 

Parental involvement 3 ordinal variables, binary summary variable used 21.3     9.7 

Neighbourhood satisfaction 5 ordinal variables, summary score with 3 
categories used 

19.2     9.4 

*requirement that at least five items are completed to get a score because the interest is in whether any 

condition is reported. 

 

 

The four exposure variables capture respondent perceptions; one measure of neighbourhood 

trust, and measures of social support from three sources: friends, family and significant others. 

Neighbourhood trust was obtained from a broader set of questions on trust in different groups 

of people. The question asks whether the respondents ‘trust people in [their] neighbourhood’. 
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The variable response is on a four category Likert scale, such that 1=’not at all’, 2=’a little’, 

3=’some’, 4=’a lot’ (cf. section 3.5.2.3.). The social support measures are derived from the 12-

item Multidimensional Scale of Perceived Social Support (MSPSS) (Zimet et al. 1990). It is a 

composite measure of social support which is non-specific to physical activity and captures 

more emotional than instrumental forms of support (cf. section 2.4.4.). Summed scores for 

each source of support were split into tertiles (1=’low’, 2=’medium’, 3=’high’), owing to a 

skewed positive distribution of the summed scores (cf. section 3.5.2.4.). Ordinal exposure 

variables used in this chapter are treated as either discrete or continuous when there is 

indication of a dose-response relationship. 

In addition, change scores in each exposure variable were calculated as the difference 

between wave 3 and wave 2 in the numeric values to which time-varying exposure variable is 

coded. Positive scores indicate improvement in the exposure variables over time. These 

variables assume equivalence of change between response categories (cf. sections 3.5.2.3. and 

3.5.2.4.).  

 

 

The following potential confounders were included in adjusted models: gender, ethnicity (8 

categories), family affluence (3 categories derived from the family affluence scale), health 

condition (no condition vs. 1+ condition(s)), free school meal status, household composition 

(living with both parents vs. not), and time resident in the neighbourhood (less than 5 years 

vs. more). Gender and ethnicity were considered to be time-invariant. The other variables 

were treated as time-varying. Unlike previous analyses, free school meal status was used as 

time-varying because no measurement is available for adolescents who did not take part to 

wave 1 (n=384). 

 

 

School was considered to be time-invariant for ease of modelling (see below). Between wave 

2 and wave 3, n=3 adolescents moved within the surveyed school sample. School attained at 

wave 2 was used for these adolescents in the imputation model. This simplification is highly 

unlikely to have any impact on the interpretation of the results.  
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As detailed in the methods chapter (chapter 4), the analytical strategy for the longitudinal 

analyses is twofold: it involves the handling of missing data with multilevel multiple imputation 

and the specification of models used to answer the research questions, known as analysis 

models (or models of interest). The specific models used in this chapter are presented in this 

section. 

 

 

I handled missing data using multilevel multiple imputation (MI) models. I first described the 

extent of missingness in each variable of interest and explored the plausibility of different 

missing data mechanisms. As in chapters 6 and 7, preliminary analyses of the variables of 

interest revealed that a complete case analysis was likely to be invalid and could generate bias 

(Appendix G section G.1). MI was therefore used to handle item non-response under the 

missing at random assumption (MAR). To increase the plausibility of the MAR assumption, 

reduce bias and improve efficiency (Carpenter & Kenward 2012), I included the following 

auxiliary variables in the imputation models: log of total physical activity (centred), country of 

birth, language spoken at home, squared WEMWBS score for positive mental wellbeing 

(centred), BMI z-score (centred), self-rated health, parental involvement and neighbourhood 

satisfaction. The selection process of these auxiliary variables is reported in Appendix G 

(section G.1). 

Building on the results of chapters 6 and 7, I explored multilevel MI solutions within the joint 

modelling framework in order to account for the correlations implied by the 3-level 

hierarchical structure of the data (repeated measurements, individuals, schools). The analysis 

models include continuous variables, discrete variables and interaction terms between the 

exposure variables and gender. Potential interactions were handled by imputing the data 

separately by gender. The imputation models were implemented using the R package ‘jomo’ 

(Quartagno et al. 2018), which is the latest package available to run complex multilevel MI 

models with unordered discrete variables. For comparison purposes, results of the complete 

case analysis are provided in Appendix G (section G.7).  

 

 

To answer the research questions of this chapter, I estimated logistic regression models and 

proportional odds models using GEE as detailed in the methods chapter (section 4.4.3.). These 
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marginal models estimated with GEE have a convenient population-average interpretation of 

the parameters (Fitzmaurice et al. 2011), although current software implementations only 

allow for models with 2-level structures. Two types of models are fitted to allow answering 

different research questions about the nature of the longitudinal associations between the 

exposure and outcome variables, as detailed below.  

To test the presence of general longitudinal associations between each binary physical activity 

outcome and the four exposure variables (questions 1.1. and 2.1.), I estimated logistic 

regression models with GEE in Stata 15 (‘xtgee’) to account for clustering at individual-level 

(occasions nested within individuals). Final inference across the imputed datasets is obtained 

with the ‘mi estimate’ command. In those models, clustering at school-level was ignored, as it 

was expected to be limited as indicated previously (section 3.5.1.1.). Following results given in 

Appendix E (section E.3), an unstructured working correlation structure was specified to 

initiate the GEE estimation process. The final models were replicated using an alternative 

working correlation structure to ensure that results were not sensitive to its specification 

(Appendix G section G.4). 

For each binary outcome, separate logistic models were estimated with GEE to test the 

associations with neighbourhood trust and each of the three sources of social support (friends, 

family, and significant other). I first fitted unadjusted models including each of the four 

exposure variables in turn and a physical activity outcome. I then specified adjusted models 

for each exposure and outcome, by including time and all confounders as covariates. The 

models did not adjust for all exposure variables together, given multicollinearity between the 

sources of social support (friends, family, and significant others). In the logistic regression 

models, ordinal exposure variables were included successively as discrete variables and as 

continuous variables when there was some indication of a dose-response relationship. 

Improvement in model fit could not be formally tested in the absence of likelihood-ratio tests 

available for models estimated with GEE (cf. section 4.4.3.4.). I explored whether gender was 

a moderator by running a series of adjusted models that further included an interaction term 

between each exposure variable of interest and gender. Gender-specific results are reported 

when there was some evidence of differences in the associations by gender (p-value of the 

interaction term <0.1) and when the gender-specific ORs of exposure were statistically 

significant (p<0.05). The model equations are given in Appendix G section G.2. 
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The hypotheses about within individual changes over time (questions 1.2. and 2.2.) were 

tested using proportion odds models estimated with GEE in SAS 9.4 (‘PROC GENMOD’ with 

‘REPEATED’ statement) to account for clustering at school-level, although it was expected to 

be of small magnitude (section 3.5.1.1.). Final inference across the imputed datasets is 

obtained using the ‘PROC MIANALYZE’ procedure.  

Each ordinal measure of within individual change in a physical activity outcome was modelled 

in function of within individual change scores in neighbourhood trust and in sources of social 

support by fitting separate proportional odds models with GEE. Exposure change scores were 

modelled as continuous variables. I first fitted unadjusted models including each of the four 

exposure variables in turn and a physical activity outcome. I then specified adjusted models 

for each exposure and outcome, by including all confounders measured at wave 2. The models 

did not adjust for all exposure variables together, given multicollinearity between the three 

sources of social support. Gender-specific results are reported when there was some evidence 

of difference in the associations by gender (p-value of the interaction term <0.1) and when the 

gender-specific ORs of exposure were statistically significant (p<0.05). The model equations 

are given in Appendix G section G.2. 

A current restriction of the ‘PROC GENMOD’ SAS procedure is that the use of the cumulative 

multinomial distribution to estimate proportional odds models with GEE only allows for 

‘independent’ working correlation structures. This should have limited implications however 

because the GEE method is such that the parameter estimates and robust standard errors are 

valid regardless of the working assumption chosen (cf. section 4.4.2.). The main consequence 

is that sensitivity of the results to the specification of the working correlation structure could 

not be tested in this chapter.  

Another limitation is that the proportional odds assumption could not be formally tested in 

models estimated with GEE and/or in combination with multiple imputation because the test 

is currently unavailable in general statistical software (Donneau et al. 2015). I achieved an 

informal evaluation of the assumption by fitting proportional odds models without accounting 

for clustering27. Using the ‘PROC LOGISTIC’ procedure in SAS, I tested the proportional odds 

assumption for each imputed dataset. The hypothesis was plausible for the exposure 

variables, but appeared to be violated for a few confounders. I then used partial proportional 

                                                           
 

27 Although it should be noted that accounting for clustering might reduce the risk of violating the 
proportional odds assumption (Agresti 2002). 
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odds models to allow for nonproportionality for the problematic confounders. Those models 

maintained the proportional odds assumptions for covariates that did not indicate a violation 

of the hypothesis in any of the imputed dataset (p>0.05). Results of proportional and partial 

proportional odds models estimated with maximum likelihood methods, and therefore not 

accounting for clustering at school-level, are reproduced in Appendix G section G.5. These 

alternative estimates of the exposure parameters did not differ substantially.  

Additional sensitivity analyses applying to both logistic and proportional odds models were 

conducted by re-running the main models with the following alternative specifications. First, I 

included BMI as a covariate in adjusted models where walking for leisure and pay and play 

physical activity were the outcomes (Appendix G section G.6). Some of the literature has 

suggested that BMI might confound the association between social support and physical 

activity (Davison & Jago 2009). The analysis was limited to walking for leisure and pay and play 

physical activity which were the only two outcomes associated with BMI, a necessary condition 

for it being a confounder. Second, I reproduced the analyses using the 3-wave ORIEL balanced 

panel used chapter 6 to ensure that the change in the sample definition did not bring about a 

selection bias (Appendix G section G.3)28. Results did not differ from the main analyses.  

 
 

This section presents the results of the analyses conducted to answer the research questions 

on the relationships between physical activity and neighbourhood trust and social support. 

The first part presents how item non-response is handled using a multilevel multiple 

imputation model specific to the analyses presented in this chapter. The second part presents 

the results of the analysis models fitted to answer the research questions.  

  

                                                           
 

28 Note that because of the imputation procedure, I could no longer identify ORiEL members of the 3-
wave balanced panel. I used missingness on language spoken at home and country of birth, two almost 
fully observed variables for those present at baseline, but missing in the waves 2-3 balanced panel, and 
included as auxiliary variables in the imputation model. I selected adolescents who had at least 
answered one of those two variables, allowing me to identify back 2,257 out of the 2,260 adolescents 
of the 3-wave balanced panel.  
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Patterns of missingness for the sample analysed in this chapter are similar to those of the 3-

wave balanced panel, and many of the variables used in this chapter were already described 

in chapter 6 (section 6.4.1.1.). Missingness is less frequent in the present analyses because I 

excluded the baseline data for which a higher level of missingness is observed (cf. section 3.4.). 

Table 8.1 indicates the proportion of missing data by wave for the variables of interest and 

potential auxiliary variables. All variables, except school and gender are subject to some 

degree of non-response. Unlike the previous results chapters (chapters 5, 6 and 7), ethnicity 

is not fully observed (0.11% missing). All variables have higher missingness at wave 2 

compared to wave 3. The largest drop in missingness is observed for the social support 

variables (from 27-28% at wave 2 to 13-14% at wave 3), which are also the variables with the 

highest proportion of missing values. Missingness is also substantial for other questions 

related to the social environment, including neighbourhood trust (16% at wave 2, 12% at wave 

3), parental involvement (21% at wave 2, 10% at wave 3), and neighbourhood satisfaction 

(19% at wave 2, 9% at wave 3). Amongst the physical activity outcomes, missingness was 

highest in outdoor physical activity and pay and play physical activity (respectively 12% and 

11% at wave 2, 9% and 8% at wave 3), and lower in walking to school and walking for leisure 

(respectively 4% and 7% at wave 2, 3% and 5% at wave 3). Outdoor physical activity and pay 

and play physical activity variables have more missing data because they combine multiple 

items, with each item having missing values. Missingness is above 10% for health condition 

(14% on both waves), country of birth (16%), and language spoken at home (15%). The latter 

two auxiliary variables were measured at baseline and are therefore missing for all adolescents 

who did not take part at that wave. Non-response is lower than 10% for the auxiliary variables 

BMI (9% at wave 2, 7% at wave 3) and below 5% for all other variables.  

 

 

My imputation strategy was informed by procedures conducted in chapter 6 (section 6.4.1.2.). 

I imputed the data separately for boys and girls to allow for interaction terms between gender 

and exposure variables. I used the data in wide format with a fixed effects approach to account 

for clustering at individual-level, while including school as a random effect. Unlike chapter 6, 
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the current analysis includes only wave 2 and wave 3, but a few more cases per wave. The 

present imputation analysis was therefore expected to be less computationally demanding.  

Following an analysis of missingness (Appendix G section G.1), the imputation models included 

the variables of the analysis models and the auxiliary variables of Table 8.1 (with the exception 

of the stratification variable, gender). All continuous variables were normally distributed, 

treated as outcomes, and rescaled when necessary. All discrete variables were treated as 

outcomes using the latent normal distribution approach (cf. section 4.3.2.2.).  

The initial ‘full model’ behaved similarly to the final imputation model of chapter 6: it was slow 

to run but had relatively quick convergence (Table 8.2). An initial 4,000 iterations were 

obtained and analysed for boys and girls separately.  

Results indicate that most of the 𝛽 coefficients had good convergence as illustrated by a 

physical activity outcome (𝛽13) in the model for boys (Figure 8.1). 

 

Figure 8.1 Example of time series plot (A) and autocorrelation plot (B) of a 𝜷 parameter with good convergence. 
The 𝜷 parameter of this example corresponds to pay and play physical activity at wave at wave 2 (𝜷𝟏𝟑) for boys. 

Results are from a multilevel imputation model (fixed effects approach with school as a cluster). The 

autocorrelation plot starts at iteration 2,000. ACF – Autocorrelation Function  

A 

B 
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Table 8.2 Summary of imputation model of chapter 8 

Data 
format 

Cluster 
variable 

Variables Coefficients 
matrices 

Computational time 
for 10 iterations* 

MCMC convergence 

wide school normal transformation and centring 
of continuous variables 
 

Beta [1x 63]                                 
Cov u [63x63] 
Omega [63 x 63] 

173 sec quick convergence and some 
parameters with remaining auto-
correlation 
 
recommended burn-in 𝑛burn ≥2,000 
and n-between 𝑛between ≈ 1,000 
 
 

* Computational time for girls. 
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Other 𝛽 parameters (Figure 8.2), indicate some autocorrelation between iterations that are 

far apart, up to almost 1,500. All autocorrelation plots of the 𝛽 coefficients crossed at least 

once the 0.05 benchmark for lags of 1,000.  

Parameters of the level 2 covariance matrix (Covariance u) converged quickly to the 

distribution and stayed well within the [-0.05; 0.05] bounds for autocorrelation. Most of the 

(co)variances involving the outcomes of the analysis models (walking to school, walking for 

leisure, outdoor physical activity and pay and play physical activity at each wave) had very 

good convergence as exemplified by the level 2 variance of walking for leisure at wave 3 for 

girls (Figure 8.3). Some persistent very low autocorrelations were observed, but disappeared 

with lags ≥ 1,000 (not presented). 

 

Figure 8.2 Example of time series plot (A) and autocorrelation plot (B) of a 𝜷 parameter with non-optimal 
convergence. The 𝜷 parameter of this example corresponds to Black African at wave 2 (𝜷𝟑𝟖) for girls. Results are 

from a multilevel imputation model (fixed effects approach with school as a cluster). The autocorrelation plot 

starts at iteration 2,000. ACF – Autocorrelation Function  

  

B 

A 
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Figure 8.3 Example of time series plot (A) and autocorrelation plot (B) of a level 2 covariance parameter with 
excellent convergence. The covariance parameter of this example corresponds to the level 2 variance of walking 
for leisure at wave 3 (Covariance u 10 10) for girls. Results are from a multilevel imputation model (fixed effects 
approach with school as a cluster). The autocorrelation plot starts at iteration 2,000. ACF – Autocorrelation 
Function 

As in chapter 6 (section 6.4.1.2.), graphs for the level 1 covariances indicate, acceptable to 

poor mixing when the Metropolis-Hastings algorithm is used (see Figure 8.4 and Figure 8.5 for 

examples). As discussed in chapters 6 and 7, however, the convergence of level 1 covariances 

should not affect the results of the imputation given that I will not conduct a full Bayesian 

analysis to answer the research questions in this thesis. 

Overall, results are very similar for boys and girls and indicate quick convergence, but some 

autocorrelation remains, with lags above 500. I estimated the model to be a suitable 

imputation model for boys and girls with burn-in of 𝑛burn ≥2,000 and an n-between of 

𝑛between ≈ 1,000. Such a model was projected to require 5 days for producing 20 imputations 

for each gender. 

I fitted the model for both gender with a burn-in of 𝑛burn =4,050 and an n-between of 

𝑛between = 1,000 to produce 20 imputed datasets. The random seed 1,523 was used for 

replication purposes. The models took c.6 days each to complete the burn-in and impute the 

B 

A 
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data. The gender-specific 20 imputed datasets were merged and transformed back into long 

format for analysis. The analysis models were run on each imputed dataset and results were 

combined for final inference using Rubin’s rules (Carpenter & Kenward 2012).  

 

Figure 8.4 Example of time series plot with little variation around the average of a level 1 covariance Omega 
parameter updated with a Metropolis-Hastings step. Results are from a multilevel imputation model for boys 
(fixed effects approach with school as a cluster).   

 

 

Figure 8.5 Example of time series plot with good mixing of a level 1 covariance Omega parameter updated with 
a Metropolis-Hastings step.  Results are from the multilevel imputation model for boys (fixed effects approach 
with school as a cluster).   
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In this section, I analyse the 20 imputed datasets to answer the research questions (section 

8.2.). These are, first, is neighbourhood trust longitudinally associated with the four forms of 

physical activity (walking to school, walking for leisure, outdoor physical activity and pay and 

play physical activity)? Second, are sources of social support (friends, family, and significant 

other) longitudinally associated with the four forms of physical activity? For each research 

question, I explore whether the exposures and outcomes are generally associated; whether 

short-term change in the exposure are associated with change in the outcome; and whether 

the associations differ for boys and girls.  

Analyses were conducted using logistic and proportional odds regression models estimated 

with GEE to account for clustering at individual-level (pooled longitudinal models) and school-

level (cross-sectional models for change scores in exposures and outcomes), respectively. For 

the pooled longitudinal logistic regression models, parameters are interpreted either as cross-

sectional or in terms of change over time (cf. section 4.4.3.1.). For the cross-sectional 

proportional odds models, results are interpreted as associations between increase in the 

exposure and change in the outcome status of a same person. In the proportional odds 

models, the same ORs serve to describe two comparisons of physical activity status: i) no 

change over time vs. stop reporting physical activity (i.e. no change vs. negative change); and 

ii) start reporting physical activity vs. no change (i.e. positive change vs. no change). Results 

are presented for each physical activity outcome in turn, starting with a description of the 

associations between the confounders and the outcomes for this specific analytical sample29. 

 

 

Table 8.3 presents unadjusted and adjusted associations between socio-demographic 

variables and walking to school. After adjustment for all socio-demographic variables, there is 

some indication that walking to school is more prevalent in girls compared to boys (adjusted 

OR=1.14 (95% CI: 0.98-1.34); p-value=0.094). Such a difference was not observed using a 

different analytical sample (cf. section 6.4.2.1.). The previously established ethnic differences 

in walking to school are however confirmed (unadjusted and adjusted p-value<0.001). 

                                                           
 

29 Discrepancies in the covariates-outcomes associations between this analytical sample and the one 
used in chapter 6 (cf. section 3.3.) are highlighted.   
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Compared to the White UK adolescents, the odds of walking to school are lower amongst the 

Black Caribbean and the Black African groups (adjusted ORs are 0.48 (95% CI: 0.33-0.69), 0.65 

(95% CI: 0.48-0.87) respectively) and highest amongst the Bangladeshi adolescents (adjusted 

ORs are 1.32 (95% CI: 0.97-1.79)). Reporting health condition increases the odds of walking to 

school by 1.21 (adjusted 95% CI: 1.03-1.41; p-value=0.018). Family affluence is not associated 

with walking to school (unadjusted and adjusted p-values are 0.815 and 0.754 respectively). 

Living with both parents is associated only in the unadjusted model (unadjusted and adjusted 

p-values are 0.066 and 0.383 respectively), and taking free school meal increases the odds of 

walking to school in the adjusted model only (adjusted OR=1.15 (95% CI: 0.98-1.35); p-

value=0.097). Having lived more than 6 years in the neighbourhood also increases the odds of 

walking to school (adjusted p-value = 1/0.65=1.54 (95% CI: 1.33-1.82); p-value<0.001). The 

modelled time coefficient confirms the absence of support for a decline in walking to school 

between wave 2 and wave 3 (adjusted OR 0.95 (95% CI: 0.86-1.05); p-value=0.284). 

Results for neighbourhood trust and social support are presented Table 8.4 (pooled 

longitudinal models) and Table 8.5 (models for change scores). Analyses indicate that there is 

no evidence for an association between neighbourhood trust and walking to school (adjusted 

p-value=0.482), or between the change in exposure and change in outcome scores (adjusted 

p-value=0.591). In unadjusted and adjusted models, ORs are close to 1.00 and confidence 

intervals are wide. The inclusion of interaction terms between gender and neighbourhood 

trust (Table 8.4), or change in trust (Table 8.5) indicates no evidence that associations differ 

by gender (p-values are 0.528 and 0.148 respectively).  

Table 8.4 also indicates an absence of association between the three sources of social support 

(friends, family or significant other) and walking to school (p-values are all >0.170). Unadjusted 

and adjusted ORs are all close to 1.00. There is some indication that associations with social 

support from family may differ by gender (p-value=0.062). However, stratum-specific results 

(not reported) indicate no significant associations with walking to school (p-value>0.1). Results 

from the models for change scores (Table 8.5) also display unadjusted and adjusted ORs close 

to 1.00 (p-values >0.5). However, there was some evidence of a gender interaction with social 

support from significant others (p-value=0.065). Stratum-specific results reported in Table 8.5 

show that, in girls, the odds of improving the walking to school status over time are 1.15 (95% 

CI: 1.00-1.32) higher for those who have increased social support from significant others. For 

boys, the association is in the opposite direction and not statistically significant (p-

value=0.408).   
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Table 8.3 Odds ratios (OR) of walking to school vs. not by potential socio-demographic and health confounders (waves 2-3 balanced panel of the ORiEL Study, n=2,644)

 Potential confounder  Unadjusted 

OR 
Adjusted OR¹ 95%CI P-value 

parameter 

P-value  

unadjusted 

P-value 

adjusted¹ 

Gender Male 1.00 1.00   0.249 0.094 
 Female 1.10 1.14 [0.98,1.34] 0.094   

Ethnicity White: UK 1.00 1.00   <0.001 <0.001 
 White: Mixed 0.73 0.77 [0.55,1.08] 0.134   
 Asian: Indian 0.83 0.93 [0.59,1.47] 0.750   
 Asian: Pakistani 0.92 0.97 [0.62,1.52] 0.907   
 Asian: Bangladeshi 1.27 1.32 [0.97,1.79] 0.077   
 Black: Caribbean 0.47 0.48 [0.33,0.69] <0.001   
 Black: African 0.57 0.65 [0.48,0.87] 0.004   
 Other 0.70 0.77 [0.61,0.98] 0.032   

Health No condition 1.00 1.00   0.008 0.018 
 1+ conditions(s) 1.23 1.21 [1.03,1.41] 0.018   

Family affluence Low 1.00 1.00   0.815 0.754 
 Moderate 0.91 0.89 [0.66,1.21] 0.463   
 High 0.92 0.91 [0.66,1.25] 0.545   

Take free school meal  No 1.00 1.00   0.227 0.097 
 Yes 1.10 1.15 [0.98,1.35] 0.097   

Time lived in neighbourhood >6 years 1.00 1.00   <0.001 <0.001 

 <= 5 years 0.63 0.65 [0.55,0.75] <0.001   

Household composition Both Parents 1.00 1.00   0.066 0.383 

 Other 0.87 0.93 [0.79,1.09] 0.383   

Time  0.95 0.95 [0.86,1.05] 0.284 0.324 0.284 

Results are from logistic regression models estimated with Generalised Estimating Equations to account for the dependency across repeated measurements (unstructured 

working correlation matrix).¹ Adjusted for all other variables of the table.  
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Table 8.4 Odds ratios (OR) of walking to school vs. not by neighbourhood trust and social support , adjusting for potential confounders (waves 2 and 3 of the ORiEL Study, n=2,644)  

Exposure  
Unadjusted 

OR 

Adjusted 

OR¹ 
95%CI 

P-value 

parameter 

P-value  

unadjusted 

P-value 

adjusted¹  

Gender interaction 

(p-value) ² 

 

Neighbourhood trust Not at all 1.00 1.00   0.296 0.482 0.528 

 A little 1.02 0.99 [0.77,1.26] 0.904    

 Some 1.17 1.10 [0.88,1.39] 0.400    

 A lot 1.06 0.98 [0.75,1.28] 0.898    

         

Social support – friends Low 1.00 1.00   0.253 0.170 0.258 

 Medium 1.10 1.07 [0.91,1.27] 0.423    

 High 0.95 0.90 [0.76,1.07] 0.247    

         

Social support – family  Low 1.00 1.00   0.753 0.680 0.062^ 

 Medium 0.95 0.95 [0.79,1.15] 0.606    

 High 0.94 0.93 [0.78,1.10] 0.386    

         

Social support – significant others    Low 1.00 1.00   0.916 0.934 0.265 

 Medium 0.97 0.97 [0.81,1.16] 0.727    

 High 1.00 0.98 [0.83,1.16] 0.832    

Results are from logistic regression models estimated with Generalised Estimating Equations to account for the dependency across repeated (unstructured working correlation 

matrix). ¹ Adjusted for gender, ethnicity, health condition, free school meal status, family affluence, time lived in the neighbourhood, household composition and time. ² The 

adjusted model was replicated for each outcome with an additional interaction term between gender and exposure. ^ None of the gender-specific associations was significant 

(p-values>0.1).  
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Table 8.5 Odds ratios (OR) of change in walking to school predicted by change in neighbourhood trust and social support , adjusting for potential confounders at wave 2 (n=2,644)  

Exposure Unadjusted OR Adjusted OR¹ 

 

95% 

 

CI 

 

P-value unadjusted P-value adjusted¹ 
Gender interaction 

(p-value) ² 
 

Neighbourhood trust 1.02 1.03 [ 0.93 , 1.14 ] 0.684 0.591 0.148 

Social support – friends 0.97 0.97 [ 0.87 , 1.08 ] 0.594 0.580 0.140 

Social support –  family 1.01 1.00 [ 0.90 , 1.12 ] 0.819 0.952 0.479 

Social support – significant others   1.03 1.02 [ 0.92 , 1.14 ] 0.612 0.693 0.065 

Social support – sig. others - Boys 0.94 0.93 [ 0.78  1.10 ] 0.453 0.408  

Social support – sig. others - Girls 1.15 1.15 [ 1.00  1.32 ] 0.050 0.056  

Results are from proportional odds models estimated with Generalised Estimating Equations to account for the clustering of individuals within schools (independent working 

correlation matrix). Results are displayed as ORs of improvement in walking to school status (constant vs. decrease or increase vs. constant) per unit increase in the original scale 

of neighbourhood trust or tertile change in social support. ORs > 1 indicate a positive change in the outcome as a response to an improvement in the exposure. ¹ Adjusted for 

gender, ethnicity, health condition, free school meal status, family affluence, time lived in the neighbourhood and household composition at wave 2. ² The adjusted model was 

replicated for each outcome with an additional interaction term between gender and exposure.  
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Table 8.6 indicates that associations between walking for leisure and socio-demographics are 

similar to those described in chapter 6 (section 6.4.2.2.). In the present analyses, walking for 

leisure is estimated to be even more frequent amongst girls than boys (adjusted OR=1.67 (95% 

CI: 1.46-1.92); p-value <0.001). As with walking to school, there is strong evidence for ethnic 

differences in walking for leisure: the odds of walking for leisure are lower in all groups 

compared to the White UK, particularly in the Bangladeshi group (adjusted OR= 0.38; 95% CI: 

0.30-0.48; p-value <0.001). There is no evidence that pre-existing health condition, free school 

meal status and time resident in the neighbourhood are significantly associated with walking 

for leisure (adjusted p-values=0.208, 0.654 and 0.375 respectively). Both unadjusted and 

adjusted models indicate associations between family affluence and walking for leisure 

(adjusted p-value=0.043). There is evidence that those not living with both parents are more 

likely to walk for leisure (adjusted OR=1.16 (95% CI: 1.01-1.35); p-value=0.04). The modelled 

time coefficient confirms that the odds of walking for leisure decreased by a factor of 0.79 

(adjusted 95% CI: 0.71-0.87; p-value<0.001) between wave 2 and wave 3.  

Table 8.7 indicates no evidence of association between neighbourhood trust and walking for 

leisure (adjusted p-values=0.314). As expected, estimated ORs are higher for all categories 

compared to the lowest level of trust. However, there is no evidence of an overall significant 

difference between the response categories. Modelling the exposure as a dose-response 

indicates unadjusted and adjusted ORs of 1.03 and 1.04 respectively, but neither reaches 

statistical significance (p-values=0.414 and 0.250 respectively). In the models specifically 

investigating within individual change scores (Table 8.8), there is some weak evidence, in 

unadjusted and adjusted models, that an increase in neighbourhood trust increases the odds 

of positive change in the walking status by 1.07 (adjusted 95% CI: 0.99-1.15; p-value=0.098). 

The inclusion of interaction terms between gender and neighbourhood trust (Table 8.7) or its 

change over time (Table 8.8) provide no evidence that the associations differ by gender (p-

values>0.8).  

Unlike neighbourhood trust, there is strong evidence of associations between sources of social 

support and walking for leisure (Table 8.7). Estimated values for social support from friends 

indicate an increase in the odds of walking as social support increases, although the gradient 

in less clear in the adjusted model compared to the unadjusted model. When social support 

from friends is modelled as a continuous variable (i.e. dose-response relationship), the 



  

237 
 

unadjusted model indicates a strong positive association (OR=1.15; p-value=0.001), however 

after adjustment for confounders there is some attenuation of the coefficient (adjusted OR= 

1.08; 95% CI: 1.00-1.18; p-value=0.050). The family and significant others sources of social 

support also display consistent associations with walking for leisure. There is evidence of a 

dose-response relationship: an increase in the tertile in family and significant others sources 

increases the odds of walking for leisure by 1.15 (adjusted 95% CI: 1.06-1.25; p-value=0.001) 

and 1.10 (adjusted 95% CI: 1.02-1.20; p-value=0.019) respectively. These associations are also 

attenuated in the adjusted models. 

The models investigating within individual changes scores (Table 8.8) give a slightly different 

picture. There is strong evidence of positive association between change in social support from 

friends and change in walking for leisure status (adjusted OR=1.11; 95% CI: 1.01-1.21; p-

value=0.022). Results mean that moving up to a higher tertile of social support over time 

increases the odds of reporting a positive change walking status by 1.11 (interpreted as either 

to start walking vs. no change, or no change vs. to stop walking).  

There is however no evidence of association with change in social support from family and 

significant others (p-values=0.180 and 0.321 respectively) despite coefficients being in the 

expected directions (adjusted ORs=1.07 and 1.04 respectively).  

The inclusion of interaction terms between gender and each source of social support (Table 

8.7) or their change over time (Table 8.8) indicates no evidence that the above associations 

differ by gender (all p-values >0.150). 
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Table 8.6 Odds ratios (OR) of walking for leisure vs. not by potential socio-demographic and health (waves 2 and 3 of the ORiEL Study, n=2,644)

 Potential confounder  Unadjusted 

OR 
Adjusted OR¹ 95%CI P-value 

parameter 

P-value  

unadjusted 

P-value 

adjusted¹  

Gender Male 1.00 1.00   <0.001 <0.001 
 Female 1.67 1.67 [1.46,1.92] <0.001   

Ethnicity White: UK 1.00 1.00   <0.001 <0.001 
 White: Mixed 0.65 0.63 [0.48,0.84] 0.001   
 Asian: Indian 0.51 0.54 [0.37,0.79] 0.002   
 Asian: Pakistani 0.54 0.59 [0.41,0.85] 0.005   
 Asian: Bangladeshi 0.34 0.38 [0.30,0.48] <0.001   
 Black: Caribbean 0.40 0.37 [0.25,0.53] <0.001   
 Black: African 0.39 0.41 [0.31,0.54] <0.001   
 Other 0.56 0.57 [0.47,0.69] <0.001   

Health No condition 1.00 1.00   0.076 0.208 
 1+ conditions(s) 1.13 1.09 [0.95,1.25] 0.208   

Family affluence Low 1.00 1.00   0.034 0.043 
 Moderate 1.00 1.04 [0.80,1.35] 0.774   
 High 1.17 1.22 [0.93,1.61] 0.149   

Take free school meal  No 1.00 1.00   0.922 0.654 
 Yes 0.99 1.03 [0.89,1.19] 0.654   

Time lived in neighbourhood >6 years 1.00 1.00   0.119 0.375 

 <= 5 years 0.90 0.94 [0.82,1.08] 0.375   

Household composition Both Parents 1.00 1.00   0.009 0.040 

 Other 1.20 1.16 [1.01,1.35] 0.040   

Time  0.80 0.79 [0.71,0.87] <0.001 <0.001 <0.001 

Results are from logistic regression models estimated with Generalised Estimating Equations to account for the dependency across repeated (unstructured working correlation 

matrix). ¹ Adjusted for all other variables of the table. 
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Table 8.7 Odds ratios (OR) of walking for leisure vs. not by neighbourhood trust and social support , adjusting for potential confounders (waves 2 and 3 of the ORiEL Study, n=2,644)  

Exposure  Unadjusted 
OR 

Adjusted 
OR¹ 

95%CI 
P-value 

parameter 
P-value  

unadjusted 
P-value 

adjusted¹  

Gender interaction 
(p-value) ² 

 

Neighbourhood trust Not at all 1.00 1.00   0.193 0.314 0.919 

 A little 1.28 1.24 [0.98,1.57] 0.077    

 Some 1.25 1.24 [0.99,1.55] 0.065    

 A lot 1.20 1.22 [0.95,1.57] 0.112    

 Trend* 1.03 1.04 [0.97,1.12] 0.250 0.414 0.250 0.822 

Social support – friends Low 1.00 1.00   0.001 0.079 0.464 

 Medium 1.24 1.17 [1.00,1.37] 0.050    

 High 1.31 1.17 [0.99,1.38] 0.058    

 Trend* 1.15 1.08 [1.00,1.18] 0.050 0.001 0.050 0.205 

Social support – family  Low 1.00 1.00   <0.001 0.004 0.641 

 Medium 1.20 1.19 [1.00,1.42] 0.055    

 High 1.38 1.32 [1.12,1.56] 0.001    

 Trend* 1.17 1.15 [1.06,1.25] 0.001 <0.001 0.001 0.352 

Social support – significant others    Low 1.00 1.00   0.001 0.055 0.474 

 Medium 1.18 1.11 [0.95,1.30] 0.200    

 High 1.34 1.21 [1.03,1.43] 0.020    

 Trend* 1.16 1.10 [1.02,1.20] 0.019 <0.001 0.019 0.373 

Results are from logistic regression models estimated with Generalised Estimating Equations to account for the dependency across repeated (unstructured working correlation 

matrix). ¹ Adjusted for gender, ethnicity, health condition, free school meal status, family affluence, time lived in the neighbourhood, household composition and time. ² The 

adjusted model was replicated for each outcome with an additional interaction term between gender and exposure. 
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Table 8.8 Odds ratios (OR) of change in walking for leisure predicted by change in neighbourhood trust and social support , adjusting for potential confounders at baseline (n=2,644)  

Exposure Unadjusted OR Adjusted OR¹ 

 

95% 

 

CI 

 

P-value unadjusted P-value adjusted¹ 
Gender interaction 

(p-value) ² 
 

Neighbourhood trust 1.07 1.07 [ 0.99 , 1.15 ] 0.071 0.098 0.862 

Social support – friends 1.11 1.11 [ 1.01 , 1.21 ] 0.016 0.022 0.392 

Social support – family 1.07 1.07 [ 0.97 , 1.19 ] 0.172 0.180 0.505 

Social support – significant others   1.05 1.04 [ 0.96 , 1.14 ] 0.301 0.321 0.162 

Results are from proportional odds models estimated with Generalised Estimating Equations to account for the clustering of individuals within schools (independent working 

correlation matrix). Results are displayed as ORs of improvement in walking for leisure status (constant vs. decrease or increase vs. constant) per unit increase in the original 

scale of neighbourhood trust or tertile change in social support. ORs > 1 indicate a positive change in the outcome as a response to an improvement in the exposure. ¹ Adjusted 

for gender, ethnicity, health condition, free school meal status, family affluence, time lived in the neighbourhood and household composition at wave 2.  ² The adjusted model 

was replicated for each outcome with an additional interaction term between gender and exposure.  
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Outdoor physical activity is associated with many of the considered socio-demographic 

variables (Table 8.9). Outdoor physical activity is higher in boys (adjusted OR=1/0.21=4.76 

(95% CI: 4.00-5.55); p-value<0.001). Ethnic differences are observed (adjusted p-

values<0.001): with outdoor physical activity being more prevalent in the Pakistani (adjusted 

OR=1.84 (95% CI: 1.15-2.94)) and Black African groups (adjusted OR=1.43 (95% CI: 1.05-1.96)) 

compared to the White UK group. There is also strong evidence that greater family affluence 

is associated with more outdoor physical activity (adjusted p-value=0.004). Adolescents from 

the most affluent families have 1.45 (95% CI: 1.07-1.97) times greater odds of reporting 

outdoor physical activity compared to the least affluent. Free school meal status seems to 

indicate an opposite relationship, both in the adjusted and unadjusted models, but the level 

of evidence is weak in the adjusted model (p-value = 0.092). Health status, time lived in the 

neighbourhood and household composition are not associated with outdoor physical activity 

(adjusted p-value=0.984, 0.168 and 0.921 respectively). The modelled time coefficient 

confirms that the odds of outdoor physical activity decreased by a factor of 0.75 (adjusted 95% 

CI: 0.66-0.84; p-value<0.001) between wave 2 and wave 3. 

Results from Table 8.10 indicate evidence of positive association between neighbourhood 

trust and outdoor physical activity. ORs take the form of a gradient, and therefore the 

association is better captured using a trend. Unadjusted model indicates that the increase in 

one trust response category increases the odds of outdoor physical activity by 1.17 (p-

value<0.001). The association is attenuated to 1.10 in the adjusted model (adjusted 95% CI: 

1.01-1.19), but remains statistically significant (p-value=0.029). The model without trend, 

however, only indicates weak evidence of association in the adjusted model (p-value=0.099). 

Results from the models for within individual change scores (Table 8.12) indicate no evidence 

of association. Unadjusted and adjusted ORs are very close to 1.00 (adjusted p-values=0.805). 

The inclusion of interaction terms between gender and neighbourhood trust (Table 8.10) or 

its change over time (Table 8.12) indicate no evidence that the above associations differ by 

gender (p-values are 0.680 and 0.567 respectively).  
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In contrast to neighbourhood trust, Table 8.10 indicates an absence of association between 

any source of social support (friend, family or significant other) and outdoor physical activity 

(adjusted p-values are all >0.7). Unadjusted and adjusted ORs indicate opposite directions of 

associations. However, there is strong indication that the association with social support from 

friends might differ by gender (p-value=0.027). There is also some very weak indication that 

the association might differ for family social support as well (p-value=0.179). Gender-specific 

results are therefore presented for the three sources of social support in Table 8.11. Stratum-

specific results confirm an absence of association between outdoor physical activity and any 

of the sources of social support in girls (adjusted p-values=0.509, 0.733 and 0.836 

respectively). In boys however, there is strong evidence of a positive dose-response 

relationship with social support from friends (adjusted p-value=0.014) and a weak positive 

association with social support from family (adjusted p-value=0.060). The associations show 

that an increase in social support (i.e. change of tertile) increases the odds of outdoor physical 

activity by 1.21 (adjusted 95% CI: 1.04-1.42) for social support from friends and by 1.15 

(adjusted 95% CI: 0.99-1.32) from family. There are also some signs of a positive dose-response 

relationship with social support from significant others in boys, but the association does not 

reach statistical significance (adjusted p-value=0.106).  

Investigation of the within individual change scores, indicates no evidence of associations 

between social support and outdoor physical activity (Table 8.12). Estimated ORs are close to 

1.00 and adjusted p-values>0.4. The models also give no evidence of a gender interaction (all 

p-values >0.3). 
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Table 8.9 Odds ratios (OR) of outdoor physical activity* vs. not by potential socio-demographic and health confounders (waves 2 and 3 of the ORiEL Study, n=2,644)

 Potential confounder  Unadjusted 

OR 
Adjusted OR¹ 95%CI P-value 

parameter 

P-value  

unadjusted 

P-value 

adjusted¹  

Gender Male 1.00 1.00   <0.001 <0.001 
 Female 0.21 0.21 [0.18,0.25] <0.001   

Ethnicity White: UK 1.00 1.00   0.005 0.074 
 White: Mixed 1.18 1.26 [0.90,1.76] 0.181   
 Asian: Indian 1.30 1.25 [0.81,1.94] 0.310   
 Asian: Pakistani 2.10 1.84 [1.15,2.94] 0.011   
 Asian: Bangladeshi 1.23 1.14 [0.86,1.49] 0.362   
 Black: Caribbean 0.79 0.87 [0.59,1.30] 0.509   
 Black: African 1.46 1.43 [1.05,1.96] 0.025   
 Other 1.13 1.16 [0.92,1.45] 0.216   

Health No condition 1.00 1.00   0.483 0.984 
 1+ conditions(s) 0.95 1.00 [0.85,1.18] 0.984   

Family affluence Low 1.00 1.00   <0.001 0.004 
 Moderate 1.09 1.17 [0.88,1.56] 0.291   
 High 1.41 1.45 [1.07,1.97] 0.016   

Take free school meal  No 1.00 1.00   0.018 0.092 
 Yes 1.20 1.15 [0.98,1.35] 0.092   

Time lived in neighbourhood >6 years 1.00 1.00   0.188 0.168 

 <= 5 years 1.10 1.12 [0.95,1.30] 0.168   

Household composition Both Parents 1.00 1.00   0.388 0.921 

 Other 0.94 1.01 [0.86,1.19] 0.921   

Time  0.77 0.75 [0.66,0.84] <0.001 <0.001 <0.001 

Results are from logistic regression models estimated with Generalised Estimating Equations to account for the dependency across repeated (unstructured working correlation 

matrix). * Outdoor physical activities include: basketball (or volleyball), blading, cricket, football, rounders, rugby and roller skating. ¹ Adjusted for all other variables of the table.  
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Table 8.10 Odds ratios (OR) of outdoor physical activity* vs. not by neighbourhood trust and social support , adjusting for potential confounders (waves 2 and 3 of the ORiEL Study, n=2,644)  

Exposure  Unadjusted 
OR 

Adjusted 
OR¹ 

95%CI 
P-value 

parameter 
P-value  

unadjusted 
P-value 
adjusted¹  

Gender interaction 
(p-value) ² 

 

Neighbourhood trust Not at all 1.00 1.00   <0.001 0.099 0.680 

 A little 1.03 0.97 [0.76,1.24] 0.832    

 Some 1.16 1.08 [0.86,1.36] 0.510    

 A lot 1.60 1.29 [0.97,1.70] 0.077    

 Trend† 1.17 1.10 [1.01,1.19] 0.029 <0.001 0.029 0.390 

         

Social support – friends Low 1.00 1.00   0.164 0.748 0.027 

 Medium 0.91 1.06 [0.89,1.27] 0.513    

 High 0.86 1.06 [0.89,1.26] 0.517    

         

Social support – family  Low 1.00 1.00   0.844 0.815 0.179 

 Medium 1.01 1.05 [0.88,1.26] 0.577    

 High 1.04 1.05 [0.88,1.25] 0.575    

         

Social support – significant others    Low 1.00 1.00   0.273 0.881 0.354 

 Medium 0.90 1.03 [0.86,1.23] 0.765    

 High 0.89 1.04 [0.89,1.23] 0.604    

Results are from logistic regression models estimated with Generalised Estimating Equations to account for the dependency across repeated (unstructured working correlation 

matrix). * Outdoor physical activities include: basketball (or volleyball), blading, cricket, football, rounders, rugby and roller skating. ¹ Adjusted for gender, ethnicity, health 

condition, free school meal status, family affluence, time lived in the neighbourhood, household composition and time.  ² The adjusted model was replicated for each outcome 

with an additional interaction term between gender the exposure. †Exposure modelled as a continuous variable when evidence of improved fit compared to the discrete option.  
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Table 8.11 Odds ratios (OR) of outdoor physical activity* vs. not by social support stratified by gender , adjusting for potential confounders (waves 2 and 3 of the ORiEL Study, n=2,644)  

Exposure  
Unadjusted 

OR 

Adjusted 

OR¹ 
95%CI 

P-value  

unadjusted 

P-value 

adjusted¹  

Unadjusted 

OR 

Adjusted 

OR¹ 
95%CI 

P-value  

unadjusted 

P-value 

adjusted¹  

   Boys     Girls    

Social support  – friends Low 1.00 1.00  0.037 0.039 1.00 1.00  0.607 0.509 

 Medium 1.22 1.22 [0.92,1.61]   0.92 0.93 [0.75,1.17]   

 High 1.47 1.47 [1.07,2.02]   0.90 0.88 [0.70,1.10]   

 Trend† 1.21 1.21 [1.04,1.42] 0.014 0.014      

            

Social support – family  Low 1.00 1.00  0.135 0.166 1.00 1.00  0.951 0.733 

 Medium 1.17 1.18 [0.87,1.60]   0.98 0.98 [0.77,1.24]   

 High 1.33 1.31 [0.99,1.74]   0.97 0.92 [0.74,1.15]   

 Trend† 1.15 1.15 [0.99,1.32] 0.045 0.060      

            

Social support – significant 
erother 

Low 1.00 1.00  0.313 0.266 1.00 1.00  0.938 0.836 

       others Medium 1.14 1.16 [0.87,1.53]   0.96 0.94 [0.74,1.19]   

 High 1.23 1.24 [0.95,1.63]   0.98 0.94 [0.75,1.17]   

 Trend† 1.11 1.12 [0.98,1.28] 0.128 0.106      

Results are from logistic regression models estimated with Generalised Estimating Equations to account for the dependency across repeated (unstructured working correlation 

matrix). * Outdoor physical activities include: basketball (or volleyball), blading, cricket, football, rounders, rugby and roller skating. ¹ Adjusted for gender, ethnicity, health 

condition, free school meal status, family affluence, time lived in the neighbourhood, household composition and time.  ² The adjusted model was replicated for each outcome 

with an additional interaction term between gender and exposure. †Exposure modelled as a continuous variable when evidence of improved fit compared to the discrete option.  
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Table 8.12 Odds ratios (OR) of change in outdoor physical activity* predicted by change in neighbourhood trust and social support , adjusting for potential confounders at baseline (n=2,644)  

Exposure Unadjusted OR Adjusted OR¹ 

 

95% 

 

CI 

 

P-value unadjusted P-value adjusted¹ 
Gender interaction 

(p-value) ² 
 

Neighbourhood trust 0.99 0.99 [ 0.91 , 1.08 ] 0.822 0.805 0.567 

Social support – friends 1.01 1.01 [ 0.92 , 1.11 ] 0.879 0.850 0.305 

Social support – family 0.97 0.97 [ 0.88 , 1.06 ] 0.538 0.493 0.527 

Social support – significant others   1.01 1.00 [ 0.90 , 1.11 ] 0.874 0.946 0.791 

Results are from proportional odds models estimated with Generalised Estimating Equations to account for the clustering of individuals within schools (independent working 

correlation matrix). Results are displayed as ORs of improvement in outdoor physical activity status (constant vs. decrease or increase vs. constant) per unit increase in the 

original scale of neighbourhood trust or tertile change in social support. ORs > 1 indicate a positive change in the outcome as a response to an improvement in the exposure. 

* Outdoor physical activities include: basketball (or volleyball), blading, cricket, football, rounders, rugby and roller skating. ¹ Adjusted for gender, ethnicity, health condition, 

free school meal status, family affluence, time lived in the neighbourhood and household composition at wave 2.  ² The adjusted model was replicated for each outcome with 

an additional interaction term between gender and exposure.  
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Pay and play physical activity appears to be associated with many of the socio-demographic 

variables considered (Table 8.13). Unlike outdoor physical activity, there is no gender 

difference in reporting pay and play physical activity (adjusted p-value=0.871). Ethnic 

disparities are observed (adjusted p-values=0.015): pay and play physical activity is more 

prevalent in the Indian group (adjusted OR 1.40 (95% CI: 0.96-2.04)) and less prevalent in the 

Bangladeshi group (adjusted OR=0.80 (95% CI: 0.63-1.00)) compared to the White UK group. 

Similar to walking to school, reporting a health condition increases the odds of pay and play 

physical activity (adjusted OR=1.14 (95% CI: 1.00-1.30); p-value=0.046). There is strong 

evidence that higher family affluence is associated with more outdoor physical activity 

(adjusted p-value<0.001). Adolescents from the most affluent families are 2.06 (95% CI: 1.59-

2.67) times more likely to report pay and play physical activity compared to the least affluent. 

Free school meal status seems to indicate an opposite relationship, both in the adjusted and 

unadjusted models, but the level of evidence is weak (adjusted p-value=0.110). There is weak 

evidence that those not living with both parents or residing in the neighbourhood for more 

than 6 years report less pay and play physical activity (adjusted p-value=0.091 and 0.088 

respectively). The modelled time coefficient indicates that the odds of pay and play physical 

activity sharply decreased by a factor of 0.58 (adjusted 95% CI: 0.53-0.65; p-value<0.001) 

between wave 2 and wave 3. 

Results from Table 8.14 indicate that there is evidence of a positive association between 

neighbourhood trust and pay and play physical activity. ORs take the form of a gradient and 

therefore associations are better captured using a trend, especially in the unadjusted model. 

Unadjusted model indicates that the increase in one trust response category increases the 

odds of pay and play physical activity by 1.12 (p-value=0.001). The association is attenuated 

to 1.09 in the adjusted model (adjusted 95% CI: 1.02-1.17) and remains statistically significant 

(p-value=0.013). The model without trend also indicates evidence of association in the 

adjusted model (p-value=0.025). In particular, reporting a lot of neighbourhood trust 

compared to not at all, increases the odds of pay and play physical activity by 1.27 (adjusted 

95% CI: 0.99-1.63; p-value=0.058). The inclusion of an interaction term between gender and 

neighbourhood trust indicates no evidence that the above associations differ by gender (p-

values=0.695). 
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Results from the models for within individual change scores (Table 8.15) indicate no evidence 

of association (adjusted p-value=2.50), despite the fact that the coefficients are in the 

expected direction (unadjusted and adjusted ORs=1.06). There is some indication that the 

association with change in neighbourhood trust differs by gender (p-value=0.075). Gender-

specific results indeed indicate some evidence of a positive association in boys (adjusted p-

value=0.059), and an absence of association in girls (adjusted p-value=0.726). In boys, an 

increase over time in neighbourhood trust increases the odds of positive change in pay and 

play physical activity status by 1.13 (adjusted 95% CI: 1.00-1.29).  

Table 8.14 indicates an absence of association between any source of social support (friends, 

family or significant other) and pay and play physical activity (adjusted p-values are all>0.6). 

Unadjusted and adjusted ORs are all close to 1.00. Results from the models for change scores 

(Table 8.15) also display unadjusted and adjusted ORs close to 1.00, and an absence of 

evidence of association (p-values>0.6). The inclusion of interaction terms between gender and 

each source of social support (Table 8.14) or their change over time (Table 8.15) indicates no 

evidence that the associations might differ by gender (all p-values>0.25). 

 

 

A series of sensitivity analyses were conducted. The main analyses presented in this chapter 

were first reproduced using only individuals that belong to the 3-wave balanced ORiEL panel 

to ensure that the panel definition did not alter the results (Appendix G G.3). Second, 

longitudinal logistic regression models were reproduced using an alternative specification of 

the working correlation structure in the GEE estimation process, using exchangeable as 

opposed to unstructured working correlations (Appendix G section G.4). Third, the models for 

change scores were reproduced without accounting for any form of clustering using 

proportional odds models and partial proportional odds model with likelihood estimation 

methods, ensuring that the proportional odds assumption was met in that context (Appendix 

G section G.5). Fourth, results for walking for leisure and pay and play physical activity were 

replicated with additional adjustment for BMI, which was associated with both the exposure 

and these outcomes, and was hypothesised to be a confounder in some of the literature 

(Appendix G G.6). Results from all these sensitivity analyses were only marginally different 

from the main results presented in the text and the main interpretations and conclusions were 

unaffected.  
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Table 8.13 Odds ratios (OR) of pay and play physical activity* vs. not by potential socio-demographic and health confounders  (waves 2 and 3 of the ORiEL Study, n=2,644)

 Potential confoundesr  Unadjusted 

OR 
Adjusted OR¹ 95%CI P-value 

parameter 

P-value  

unadjusted 

P-value 

adjusted¹  

Gender Male 1.00 1.00   0.536 0.871 
 Female 0.96 0.99 [0.87,1.13] 0.871   

Ethnicity White: UK 1.00 1.00   0.003 0.015 
 White: Mixed 1.07 1.10 [0.84,1.44] 0.484   
 Asian: Indian 1.42 1.40 [0.96,2.04] 0.079   
 Asian: Pakistani 1.09 1.08 [0.76,1.53] 0.683   
 Asian: Bangladeshi 0.77 0.80 [0.63,1.00] 0.054   
 Black: Caribbean 0.81 0.84 [0.60,1.17] 0.306   
 Black: African 0.93 0.96 [0.75,1.23] 0.720   
 Other 1.12 1.12 [0.93,1.36] 0.234   

Health No condition 1.00 1.00   0.084 0.046 
 1+ conditions(s) 1.12 1.14 [1.00,1.30] 0.046   

Family affluence Low 1.00 1.00   <0.001 <0.001 
 Moderate 1.28 1.38 [1.08,1.77] 0.012   
 High 1.93 2.06 [1.59,2.67] <0.001   

Take free school meal  No 1.00 1.00   0.502 0.110 
 Yes 1.04 1.12 [0.98,1.28] 0.110   

Time lived in neighbourhood >6 years 1.00 1.00   0.105 0.088 

 <= 5 years 1.11 1.12 [0.98,1.28] 0.088   

Household composition Both Parents 1.00 1.00   0.059 0.091 

 Other 0.88 0.89 [0.77,1.02] 0.091   

Time  0.59 0.58 [0.53,0.65] <0.001 <0.001 <0.001 

Results are from logistic regression models estimated with Generalised Estimating Equations to account for the dependency across repeated (unstructured working correlation 

matrix). *Pay and play physical activities include: aerobics, climbing, swimming, gymnastics, hockey, martial arts, netball, and tennis.¹ Adjusted for all other variables of the table.  
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Table 8.14 Odds ratios (OR) of pay and play physical activity* vs. not by neighbourhood trust and social support , adjusting for potential confounders (waves 2 and 3 of the ORiEL Study, 
n=2,644)  

Exposure  
Unadjusted 

OR 

Adjusted 

OR¹ 
95%CI 

P-value 

parameter 

P-value  

unadjusted 

P-value 

adjusted¹  

Gender interaction 

(p-value) ² 

 
Neighbourhood trust Not at all 1.00 1.00   0.005 0.025 0.695 

 A little 1.03 0.95 [0.75,1.20] 0.661    

 Some 1.10 1.03 [0.82,1.27] 0.820    

 A lot 1.40 1.27 [0.99,1.63] 0.058    

 Trend† 1.12 1.09 [1.02,1.17] 0.013 0.001 0.013 0.850 

         

Social support – friends Low 1.00 1.00   0.975 0.891 0.528 

 Medium 1.00 1.00 [0.86,1.17] 0.982    

 High 1.01 0.97 [0.83,1.13] 0.678    

         

Social support – family  Low 1.00 1.00   0.624 0.968 0.470 

 Medium 1.00 0.98 [0.84,1.15] 0.843    

 High 1.07 0.98 [0.83,1.16] 0.817    

         

Social support – significant others    Low 1.00 1.00   0.761 0.867 0.847 

 Medium 0.99 0.96 [0.82,1.13] 0.621    

 High 1.05 1.00 [0.85,1.17] 0.965    

Results are from logistic regression models estimated with Generalised Estimating Equations to account for the dependency across repeated (unstructured working correlation 

matrix). ¹ Adjusted for gender, ethnicity, health condition, free school meal status, family affluence, time lived in the neighbourhood, household composition and time.  ² The 

adjusted model was replicated for each outcome with an additional interaction term between gender and exposure. †Exposure modelled as a continuous variable (dose-

response relationship) when evidence of improved fit compared to the discrete option (using Generalised Linear Mixed Models).  ^ None of the gender-specific associations 

was significant. *Pay and play physical activities include: aerobics, climbing, swimming, gymnastics, hockey, martial arts, netball, and tennis.  
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Table 8.15 Odds ratios (OR) of pay and play physical activity* predicted by change in neighbourhood trust and social support , adjusting for potential confounders at baseline (n=2,644)

 Exposure Unadjusted OR Adjusted OR¹ 

 

95% 

 

CI 

 

P-value unadjusted P-value adjusted¹ 
Gender interaction 

(p-value) ² 
 

Neighbourhood trust 1.06 1.06 [ 0.96 , 1.17 ] 0.223 0.250 0.075 

Neighbourhood trust - Boys 1.14 1.13 [ 1.00  1.29 ] 0.045 0.059  

Neighbourhood trust - Girls 0.97 0.98 [ 0.85  1.12 ] 0.680 0.726  

Social support – friends 0.99 0.99 [ 0.92 , 1.07 ] 0.870 0.815 0.702 

Social support – family 0.98 0.98 [ 0.89 , 1.08 ] 0.723 0.673 0.287 

Social support – significant others 0.98 0.98 [ 0.89 , 1.08 ] 0.665 0.669 0.264 

Results are from proportional odds models estimated with Generalised Estimating Equations to account for the clustering of individuals within schools (independent working 

correlation matrix). Results are displayed as ORs of improvement in pay and play physical activity status (constant vs. decrease or increase vs. constant) per unit increase in the 

original scale of neighbourhood trust or tertile change in social support. ORs > 1 indicate a positive change in the outcome as a response to an improvement in the exposure. 

¹ Adjusted for gender, ethnicity, health condition, free school meal status, family affluence, time lived in the neighbourhood and household composition at wave 2.  ² The adjusted 

model was replicated for each outcome with an additional interaction term between gender and exposure.  *Pay and play physical activities include: aerobics, climbing, 

swimming, gymnastics, hockey, martial arts, netball, and tennis.  
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Finally, I also produced results from a complete case analysis (Appendix G section G.7). 

Combined results from the imputed datasets attenuate the estimates of the parameters for 

which significant associations are observed. In some of the models (e.g. walking to school and 

outdoor physical activity), conclusions about differences in the associations by gender differ 

substantially. This confirms the results from the analysis of missingness, which suggested that 

coefficients from the complete case analysis would be slightly biased (Appendix G section G.1). 

Despite the bias, however, the general conclusions about the directions of the main 

associations are not seriously affected in the complete case analysis. 

 
 

In this chapter, I have explored associations between two aspects of the social environment, 

namely neighbourhood trust and social support and four physical activity outcomes. I explored 

whether each of the exposure variables was associated with the outcomes using pooled 

longitudinal models and models for within individual change scores in the exposure and in the 

outcome. I also tested whether the observed associations differed for boys and girls.  

To do so, I first handled item missingness based on a MAR assumption. I applied the multilevel 

multiple imputation strategy developed in chapter 6, which accounts for the hierarchical 

structure of the data and imputed the data separately by gender.  

Using 20 imputed datasets, I have shown that neighbourhood trust is positively associated 

with outdoor physical activity and with pay and play physical activity (question 1). I have found 

very limited evidence that it is associated with walking for leisure and I have found no evidence 

of association with walking to school. Most of the evidence regarding the association between 

neighbourhood trust and physical activity outcomes comes from the pooled longitudinal 

model (question 1.1.). In the models for within individual change scores, I found only limited 

evidence of association with any of the physical activity outcomes (question 1.2.). I have finally 

found evidence of gender interaction for the within individual change model for pay and play 

physical activity. Results show that there is some evidence of positive association between 

change in trust and change in pay and play physical activity status in boys, but not in girls. 

Overall, however, the associations between neighbourhood trust and physical activity 

outcomes do not seem to differ by gender (question 1.3.).  

Different associations were found between the three sources of social support (friends, family, 

significant others) and the physical activity outcomes (question 2). I have found consistent 

associations between walking for leisure and social support. The pooled longitudinal analysis 
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indicates the presence of a positive dose-response association with all three sources, although 

social support from family seems to have the strongest association (question 2.1.). The models 

for within individual change scores confirmed that social support, in particular from friends, 

could have a rather immediate effect on walking for leisure (question 2.2.). No consistent 

association was found between social support and walking to school, outdoor physical activity, 

or pay and play physical activity. I have nevertheless found some evidence of gender 

interactions for walking to school and for outdoor physical activity (question 2.3.). There is 

weak evidence that, in girls, within individual increase in social support from significant others 

is associated with higher chances of positive change in walking to school. In boys, there is 

strong evidence that higher social support, especially from friends, and potentially from family, 

increases the odds of outdoor physical activity, which is a form of physical activity prevalent 

amongst boys. The latter results were not confirmed however by the within individual change 

models.  

Taken together, these results confirm the relevance of neighbourhood trust and social support 

in explaining differences in some forms of physical activity. The two types of exposure indicate 

associations with some form of physical activity in the expected directions, however, results 

were not as consistent as initially hypothesised.
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This chapter concludes the thesis by discussing how and to what extent the research aims 

outlined at the end of the literature review have been addressed by the methods, data analysis 

and interpretation of findings presented here. As stated in section 2.5., this thesis is an 

investigation of the associations between features of the neighbourhood and home 

environments and physical activity in adolescents. The aims of this thesis were to: 

1. Investigate longitudinal associations between perceptions of the neighbourhood 

environment and three physical activity outcomes; 

2. Explore the associations between ethnic density and three physical activity outcomes; 

3. Investigate longitudinal associations between neighbourhood trust and four physical 

activity outcomes; 

4. Investigate longitudinal associations between social support and four physical activity 

outcomes. 

These aims were investigated using the three waves of data collection from the ORiEL study, 

a representative dataset of adolescents living in East London before and after the London 2012 

Olympic and Paralympic Games. Across the analyses, I have applied generalised estimating 

equations (GEE) methods to account for clustering of the data and handled item non-response 

using multilevel multiple imputation.  

This thesis has advanced the field methodologically and empirically by applying novel 

analytical approaches to important research questions in the field. In this chapter, I first 

discuss the analytical innovations applied to this area of study, focusing on how they advance 

understanding in this field. I then discuss the findings generated from the application of these 

analytical approaches to a series of original research questions. Bringing these findings 

together, I discuss the general contributions of this thesis to the research area. I finally discuss 

the strengths and limitations of this study, possible avenues for future research, policy 

implications, and provide a general conclusion.   
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In this thesis, I have contributed to the literature on the determinants of physical activity by 

applying innovative quantitative methods. In particular, I have carefully selected and applied 

an appropriate analytical strategy to model longitudinal data when the exposures and 

outcomes change over time and I have implemented a sophisticated method to account for 

item non-response in clustered data. 

 

 

Longitudinal data on the relationships between micro-environments (e.g. neighbourhood, 

home, school) and physical activity are becoming more common, even if the majority of the 

literature remains cross-sectional (Sallis et al. 2016). Longitudinal study designs are welcome 

improvements as they can provide better evidence for the existence of hypothesised causal 

relationships (Fitzmaurice et al. 2011). Various modelling options for discrete data, including 

marginal models, random effects models and fixed effects models have been applied in the 

field in recent years (Datar et al. 2013, Kerr et al. 2015, Knuiman et al. 2014, Ranchod et al. 

2014). Although marginal models have been praised in the field for the interpretability of their 

coefficients (Hubbard et al. 2010, Lovasi & Goldsmith 2014), they are far from being the most 

popular methods in practice. A current limitation in the growing body of longitudinal studies 

is that the strengths and limitations of each modelling approach are not always well 

acknowledged (Lovasi & Goldsmith 2014).  

In this thesis, I provide a clear rationale for the analytical approach used to model longitudinal 

data for discrete responses, and explain why marginal models estimated with GEE are the 

preferred option. I argue that fixed effects models are likely to be ill suited when the follow-

up period is short, when there are few waves of study and when the exposure does not change 

quickly over time. Fixed effects models have been supported in the literature for being able to 

handle unmeasured confounding associated with self-selection of individuals within 

neighbourhoods (Knuiman et al. 2014). A major drawback however is that the method is very 

inefficient, which means that it leads to wide standard errors, which is why the statistical 

literature recommends against using them without assessing their relevance to the specific 

context of the current research (Fitzmaurice et al. 2011, Wooldridge 2010). Using fixed effects 
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models in inappropriate circumstances might, in some contexts, lead to misleading 

conclusions with respect to the association between physical activity and their correlates, as I 

suspect to be the case in some empirical studies (Kerr et al. 2015). 

In addition to providing a strong rationale and promoting more caution about the method 

used, I also explored an analytical strategy rarely used in the field, namely estimating 

proportional odds models with GEE. This approach is appealing because it handles ordinal 

outcomes while providing a marginal interpretation of the parameters. These models might 

be more relevant to the field because ordinal outcomes are likely to be increasingly common 

when measuring physical activity or change in physical activity (Lovasi & Goldsmith 2014). An 

illustration of how to fit marginal models for ordinal outcomes is therefore another 

contribution of this thesis30.  

 

 

I have also contributed to the field by applying a recently developed analytical strategy to 

handle item non-response for clustered data with multilevel multiple imputation. This is 

important because item missingness is widespread in clustered data commonly used in 

neighbourhood effects studies. The growing availability of longitudinal data in the field adds a 

third level of hierarchy in the data that needs to be accounted for in the analytical strategy 

used to handle missing data. Using the recently developed ‘jomo’ R package (Quartagno et al. 

2018), I have shown that it is possible to effectively use multilevel imputation models for 

answering typical epidemiological questions involving many discrete variables, a 3-level 

hierarchical structure (repeated measurements, individuals, areas/schools) and interaction 

terms. 

The empirical literature on neighbourhood effects reviewed in this thesis largely ignored 

potential bias and loss of information due to missing data. Most studies tend to drop cases 

with missing data (Crawford et al. 2010, Kerr et al. 2015, Remmers et al. 2014, Stafford et al. 

2009), while some used single imputation strategies (Hirsch et al. 2014, Powell-Wiley et al. 

2017). In contrast, very few studies handled missing data using multiple imputation; and those 

                                                           
 

30 The use of this analytical strategy in the thesis also shows some of the limitations of the current statistical 
literature. Indeed, to my knowledge, no general statistical software allows the user to test the proportional odds 
assumptions when models are estimated with GEE and/or combined with multiple imputation (Donneau et al. 
2015). 



  

257 
 

that did so, did not account for the hierarchical structure of the data in the imputation model 

(Astell-Burt et al. 2012).  

In this thesis, I proposed a general strategy for handling missing data in neighbourhood effect 

studies with a 3-level hierarchical structure. I showed that it is important to describe the extent 

of missing data and to assess the potential impact of missingness on bias in order to verify the 

validity of a complete case analysis. Having shown that a complete case analysis was likely to 

be biased, I proposed an imputation strategy based on the missing at random (MAR) 

assumption that can account for datasets with a 3-level structure, as long as there are not too 

many repeated measurements on the same individuals. The imputation strategy was a 

development of the approach used by the ORiEL research team (Clark et al. 2017, Cummins et 

al. 2017, Fahy et al. 2016, Smith et al. 2015a) with two major improvements. First, I proposed 

imputing the data in the wide format to allow for a full account of the 3-level data structure 

(i.e. by implementing clustering at school-level as opposed to accounting for repeated 

measurements and including school as fixed effect, as done by the ORiEL team). Second, I used 

the computationally efficient ‘jomo’ R package (Quartagno et al. 2018) which allowed for the 

inclusion of more discrete variables in the imputation model and imputed the data much faster 

than the REALCOM Impute software (Carpenter et al. 2011). Results from the imputed data 

were mostly similar to the complete case analysis in terms of the direction of the associations 

but the strength of the associations was mostly reduced once the data was imputed and 

results combined into a final inference. This means that interpretation of a complete case 

analysis would have led to the wrongful conclusion that the associations between the 

neighbourhood and home environments and physical activity were of greater magnitude than 

they appear to be.  

In sum, the methodological contribution of this thesis was to illustrate how multilevel multiple 

imputation can be used to account for 3-levels structures of a dataset that includes many 

discrete variables with missing values. The same analytical strategy could easily be applied to 

studies with similar data structures (e.g. a few repeated measurements themselves clustered 

at school, home or neighbourhood levels), which are expected to become more common in 

the field. 

 
 

In this thesis, I have applied these innovative analytical approaches to answer important 

research questions on the role of the neighbourhood and home environments in explaining 

physical activity behaviours in adolescents. I have shown in chapter 2 that the evidence base 
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for most of the questions tackled in this thesis is sparse in adolescents, specifically in deprived 

and ethnically diverse populations. I have contributed to the field by providing robust cross-

sectional and longitudinal evidence on the significance of perceptions of the neighbourhood 

environment (chapters 5 and 6), ethnic density (chapter 7), neighbourhood trust (chapter 8) 

and social support (chapter 8) to explain common forms of physical activity in adolescents. 

The following sections summarise these results and interpret them in light of the literature 

and current UK context. 

 

 

In this section, I discuss the results reported in chapters 5 and 6 on whether perceptions of the 

neighbourhood were associated with physical activity. Following a preliminary analysis of the 

complete cases at baseline (chapter 5), I examined whether five measures of perceptions of 

the neighbourhood – bus stop proximity, traffic safety, street connectivity, enjoyment of the 

neighbourhood for walking/cycling, and personal safety – were associated with three common 

forms of physical activity, after controlling for individual socio-demographic characteristics. 

The physical activity outcomes analysed were walking to school, walking for leisure and 

outdoor physical activity.  

Longitudinal analyses indicate little evidence that perceptions of the neighbourhood and their 

change over time are important predictors of adolescents’ physical activity and their change 

over time in the ORiEL study. Specifically, walking to school and its change were not associated 

with any of the five measures of perceptions, or changes in these perceptions over time. There 

was some evidence that greater perceived proximity to bus stops is associated with a small 

decrease in the probability of walking for leisure. The degree of evidence was somewhat 

stronger when the exposure was operationalised as a trajectory of change within the same 

adolescents. This means that a within individual increase in bus stop proximity is associated 

with a higher probability of ceasing walking for leisure over time. Results also indicate that 

poorer perception of personal safety increases the probability of walking for leisure. There 

was some indication that better perception of street connectivity is associated with more 

outdoor physical activity. Finally, despite evidence that physical activity outcomes and some 

perceptions differ by gender (cf. section 3.5.1.), I found very little evidence that the 

associations between perceptions of the neighbourhood and physical activity differed by 

gender.   
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Despite the limited number of investigations on associations between perceptions of the 

neighbourhood and physical activity in adolescents, these results provide more evidence to 

support the argument that perceptions of the neighbourhood are not an important factor in 

explaining physical activity in adolescents and its change over time (Davison & Lawson 2006, 

Ding et al. 2011, Sterdt et al. 2014). Although few studies have been previously conducted in 

deprived adolescent populations (Bauman & Bull 2007), these results might be surprising in 

light of some literature that suggests that deprived populations are expected to be more 

affected by some aspects of their neighbourhood such as disorder and crime neighbourhood 

(Lovasi et al. 2009).   

An important element of this thesis has been the exploration of different ways of 

conceptualising the exposure-outcome association – as a general association with the 

outcome, an association with exposure accumulation, and an overall association between 

trajectories. Measuring the general prediction of exposure had the greatest power to detect 

associations as they use both longitudinal and cross-sectional sources of information (Agresti 

2002, Fitzmaurice et al. 2011), whereas the latter two approaches restricted the analyses to 

within individual change. The findings reported here suggest that there is no evidence to 

support the hypothesis that the accumulation of past perceptions of the environment has an 

impact on current physical activity, and very limited evidence to support the hypothesis that 

the overall trend in perception of the environment is associated with the trend in physical 

activity. This might reflect the fact that the perceptions of the neighbourhood environment 

measured were not consistent and fluctuated over time (cf. section 3.5.2.1.). These modelling 

strategies could nevertheless be relevant for future analyses in different contexts.  

A few of the associations explored deserve a detailed discussion. In the literature, recent 

convincing cross-sectional and longitudinal evidence has been documented on the association 

between access to recreational facilities and various forms of physical activities (Davison & 

Lawson 2006, Ding et al. 2011, Wong et al. 2014). These associations could not be 

appropriately explored with the data at hand, given that the question on perceived proximity 

to destinations in the ALPHA questionnaire refers to the nearest facility in general (Spittaels 

et al. 2010). Unfortunately, this measure seems to poorly capture accessibility to the broader 

range of sport and recreational facilities available in the neighbourhood (Scott et al. 2007). 

Not surprisingly, none of the baseline associations related to recreational facilities indicated 

any evidence of association with the physical activity outcome, and the association was 

therefore omitted in the longitudinal analyses.  
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Amongst the items measuring proximity to destinations in the ALPHA questionnaire, bus stop 

proximity appeared to be relevant for some forms of physical activity. It was expected that 

perception of closer proximity to a bus stop would decrease the odds of walking to school, 

given that adolescents younger than 16 year old can travel by bus free in London (Transport 

for London 2018). A negative association was observed, but it did not reach significance. 

However, a significant negative association was found between within individual change in 

perception of bus stop proximity and change in walking for leisure. This association could 

indicate shift in behaviour during adolescence toward greater independent mobility and 

associated increased awareness of the local environment. Previous studies in London have 

indeed indicated that the introduction of free buses in London has been associated with a 

reduction in the number of trips by walking, but has at the same time allowed adolescents to 

reach other destinations (Green et al. 2014). It might therefore be that an increase in bus use 

as adolescents get older and become more independent might be associated with the 

replacement of walking for leisure by other forms of activities.  

Findings on the associations between crime-related safety and physical activity found in this 

thesis deserve to be discussed in light of the literature (An et al. 2017, Carver et al. 2008, 

Davison & Lawson 2006, Panter et al. 2008). Compared to general neighbourhood safety, it is 

hypothesised that fear of crime, stranger danger and personal safety – all three involving 

emotions and anxiety – are expected to be stronger predictors of physical activity by bringing 

about self or parental constraint on outdoor physical activities, including walking (Foster & 

Giles-Corti 2008). These associations have been confirmed in qualitative studies (Lorenc et al. 

2013) and are expected to be particularly relevant in deprived populations, which are more at 

risk of crime-related safety problems (Lovasi et al. 2009). Despite these theoretical 

expectations, I only found some evidence of association between the MESA item on personal 

safety (‘I feel safe walking in my neighbourhood, day or night’) and walking for leisure. This 

corroborates the inconsistent results observed in previous, mostly cross-sectional, 

quantitative investigations (Alton et al. 2007, Davison et al. 2008, De Meester et al. 2013, 

Esteban-Cornejo et al. 2016, Gómez et al. 2004, Molnar et al. 2004, Panter et al. 2008, Prins et 

al. 2009). Differences in the outcome measurement, exposure measurement (parents’ 

perceptions vs. adolescents’), study design (longitudinal vs. cross-sectional) or study setting 

do not appear to explain inconsistencies found in the current quantitative literature. 

Two general factors might explain why few associations were observed between perceptions 

of the neighbourhood and physical activity in this thesis. First, the measures of physical activity 

used are not specific to a context location (e.g. park, neighbourhood), which can lead to an 



  

261 
 

underestimation of the associations with perceptions of the neighbourhood (Ding et al. 2011, 

Sallis et al. 2006). Although the study of different forms of physical activity (i.e. walking to 

school, walking for leisure and outdoor physical activity) is already a conceptual improvement 

compared to most studies in the field (Ding et al. 2011), the use of location-specific measures 

of physical activities is likely to increase the consistency of the results, as illustrated by some 

recent cross-sectional studies (D’Haese et al. 2015, Esteban-Cornejo et al. 2016). Second, 

adolescents’ perceptions of the neighbourhood might simply not matter for physical activity. 

In this study, within adolescent perceptions of the neighbourhood substantially varied over 

time (cf. section 3.5.2.1.). This could indicate that adolescents aged 12-14 years old do not 

have well-formed perceptions of their environment, and that their behaviours might still 

depend more on their parents and their parents’ perceptions of the neighbourhood. Esteban-

Cornejo et al. (2016) showed that US adolescents of a similar age tended to have different 

traffic-related and crime-related safety perceptions than their parents. The authors indicated 

that most parents’ perceptions were associated with some forms of physical activity, whereas 

adolescents’ perceptions were unrelated.  

 
 

Associations between own-group ethnic density and physical activity were examined in 

chapter 7. In that chapter, I explored whether own-group ethnic densities were associated 

with physical activity in a deprived adolescent population, after controlling for individual socio-

demographic characteristics. Sub-group analyses for each ethnic group for walking to school, 

walking for leisure and outdoor physical activity for both school-level and neighbourhood-level 

own-group ethnic densities were conducted.  

Ethnic densities at school- and neighbourhood-levels are associated with some physical 

activity outcomes. There was consistent evidence that school-level ethnic density is associated 

with walking to school. The direction of the association indicates that a higher ethnic density 

amplifies ethnic-specific propensity to walk to school. Indeed, a higher ethnic density seems 

to additionally increase the propensity to walk to school in the Bangladeshi adolescents; 

conversely, it seems to decrease it in the White Mixed and Black African groups, which are 

groups with lower prevalence of walking to school. No prior study has examined the 

association between ethnic density and physical activity in the UK (Bécares et al. 2012b), but 

some studies on smoking have reported comparable results. In particular, a large study 

conducted using electronic health records of adults from the boroughs of Hackney, Lambeth, 

Newham and Tower Hamlets showed that the negative association between smoking and 
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ethnic density was greater in ethnic minority groups where smoking was the least socially 

accepted (Mathur et al. 2017). Another study conducted in a deprived population (Uphoff et 

al. 2016) also indicated that a higher South Asian density was associated with a lower 

probability of smoking during pregnancy in the Pakistani women, a group in which smoking is 

uncommon, whereas no protective effect was found amongst the White British women.  

As discussed in section 2.4.2.1., there are three main theoretical pathways by which ethnic 

density might influence health and health-related behaviours (Bécares & Nazroo 2013, 

Bécares et al. 2009, Das-Munshi et al. 2010, Halpern & Nazroo 2000, Karlsen et al. 2012, Pickett 

& Wilkinson 2008). Own-group ethnic density might: i) increase civic engagement; ii) increase 

social capital and social support; and iii) reduce exposure to racism and discrimination. With 

respect to walking to school, the latter two processes are likely to be more salient. An increase 

in neighbourhood social capital and social support might in addition provide resources to cope 

better with experiences of racism and discrimination. As a result, experience of racism might 

not translate into a change in health behaviours. The three hypothesised pathways imply that 

higher ethnic density might provide greater opportunities to conduct ethnic-specific preferred 

health behaviours, which can lead to an amplification of ethnic differences if these cultural 

norms differ by ethnic group.  

Explaining observed associations in terms of amplification of ethnic-specific cultural norms 

seems plausible in this context. Previous studies have shown differences of knowledge, norms 

and expectations about health behaviours across ethnic minority groups (Koshoedo et al. 

2015, Rawlins et al. 2013). In addition, studies have shown that ‘homophily’ or the tendency 

for friendships to form between those who are alike, is more frequent amongst ethnic minority 

groups, and that adolescents tend to adopt health behaviours that are similar to their friends’ 

behaviours (Lorant et al. 2016). These behaviours have been recognised as being both 

potentially positive and negative for health. Alternative explanations have been offered in the 

literature to explain ethnic differences (Nazroo 2014), but these seem less consistent with the 

amplification phenomenon observed. One of those alternative explanations is that observed 

associations might reflect the degree of acculturation, or the fact that ethnic minorities shift 

their behaviour over time and become more westernised so that health-related cultural 

differences between minority groups and the majority diminish (Bécares et al. 2011, Pickett et 

al. 2009). Acculturation might indeed confound the amplification phenomenon. In the ORiEL 

study, however, I have found no evidence of association between the physical activity 

outcomes and either country of birth or language spoken at home in the ethnic group studied. 

Although acculturation might not be fully captured by the two variables (Bécares et al. 2011), 
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these should at least have displayed some indication of an association if acculturation was 

playing a major role. Another alternative explanation for the results observed might come 

from differences in racism and discrimination across ethnic groups. Racism is considered as 

having a central role in the development of ethnic inequalities in health, and might affect 

perceived safety, fear of crime and health behaviours (Foster et al. 2014a,b; Karlsen et al. 

2012, Lorenc et al. 2013, Rawlins et al. 2013). However, the experience of racism alone would 

not be enough to explain why the association with ethnic density is positive for some ethnic 

groups and negative for others. Therefore, it is plausible to explain these results in terms of 

amplification of ethnic-specific cultural norms, which might themselves, but not necessarily, 

have been the result of broader contextual and structural socio-economic inequalities (Karlsen 

& Nazroo 2002, Nazroo 1998).  

The associations observed for walking to school should be interpreted cautiously for the 

following reasons. First, despite being in the expected direction, associations are modest and 

not statistically significant in all ethnic groups. The strength of the association indicates that a 

10 percent increase in ethnic density is estimated to increase the odds of walking to school by 

0.44 to 1.10. Second, no clear associations were found with the other physical activity 

outcomes. The only other consistent evidence of an association was for the White UK group, 

for whom a higher ethnic density decreases the odds of outdoor physical activity, which is less 

popular in that ethnic group compared to others. The reasons for inconsistent results relating 

to walking to school and outdoor physical activity are not clear. A possible explanation for 

outdoor physical activity might be the composite nature of the measure, which pools a series 

of activities with different levels of popularity across ethnic groups, and therefore dampens 

differences. 

In chapter 6, I also compared the relative importance of school-level and neighbourhood-level 

ethnic density in explaining differences in physical activity. As expected, school-level density 

appears to matter more for walking to school, and neighbourhood-level ethnic density for 

outdoor physical activity. Where associations were observed, they were usually for both 

measures in partially adjusted models. However, in models adjusted for both ethnic density 

measures, only one of the measures would usually remain significant. A notable exception are 

Bangladeshi adolescents, for whom stronger associations between neighbourhood-level 

ethnic density and walking to school were observed, but no significant associations were found 

in the fully adjusted model. These results can be explained by the overlap between school-

level and neighbourhood-level density measures in that group (r=0.69), and the fact that the 

ethnic density of Bangladeshi adolescents was very high in some schools (up to 80%), reaching 
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a potential threshold above which an increase in ethnic density might not have any further 

effect. Astell-Burt et al. (2012) have also investigated the relative influences of neighbourhood 

and school-level densities in adolescents in London and reported negative associations with 

perception of racism, but the authors did not compare the relative influence of the two 

measures.    

 
 

In chapter 8, I explored associations between neighbourhood trust and four physical activity 

outcomes. I hypothesised that a positive perception of neighbourhood trust was likely to 

favour time spent outdoor in the neighbourhood and related physical activities, as well as 

participation in structured forms of physical activity by adolescents, after controlling for 

individual socio-demographic characteristics.  

This investigation is based on the premise that increased trust in others is an indication of 

increased cognitive social capital, which is likely to translate into an increase in social 

contagion, collective efficacy, and informal social control mechanisms (Kawachi & Berkman 

2014, Kawachi et al. 1999, Sampson 2012). These three processes have been hypothesised to 

have potential benefits for health in general but also for health-related behaviours such as 

physical activity (Kawachi & Berkman 2014). 

Perceived neighbourhood trust was positively associated with outdoor physical activity and 

with pay and play physical activity. However, there was very limited evidence for an 

association with walking for leisure and no evidence of an association with walking to school. 

Few studies have investigated the associations between trust (or social capital more broadly) 

and physical activity in adolescents. Although based on different measures, those studies 

found positive associations with physical activity. Carroll-Scott et al. (2013) showed that 

adolescents of a similar age to ORiEL participants were likely to report more days of exercise 

if they also reported greater presence of social ties with friends and neighbours. In Chicago, 

Cradock et al. (2009) also indicated that adolescents from diverse neighbourhoods were more 

likely to participate in sports activity and to report physical activity at follow-up if they were 

living in a neighbourhood that had higher baseline level of social cohesion. In cities in the US, 

Franzini et al. (2009) found that parent-reported collective efficacy, collective socialisation of 

children, exchange and social ties among neighbours were positively correlated with self-

reported physical activity. Kimbro et. (2011) also reported a small but positive association 

between collective efficacy and physical activity in young children, as reported by their 

mothers. Finally, a recent cross-national study indicated that in high-income nations collective 
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efficacy was associated with objectively-measured total physical activity in 9-11 year old 

children (Sullivan et al. 2017).  

Another result of these analyses is that I found very little evidence that gender moderates the 

associations between neighbourhood trust and physical activity. The few studies that 

investigate such associations did not report significant gender differences either (Lindström 

2011). 

The findings reported here are the first to investigate associations between trust and different 

forms of physical activity in the UK. Despite the fact that associations with walking for leisure 

were not very consistent, trust is positively associated with all investigated forms of leisure-

time physical activity, i.e. walking for leisure, outdoor physical activity, and pay and play 

physical activity. This suggests that the same underlying mechanisms might be at play, which 

is consistent with the fact that studies using total (recreational) physical activity as an outcome 

found similar positive associations. In contrast, I found no evidence of an association with 

utilitarian walking, measured as walking to school. This is also consistent with a recently 

reported study conducted in adults living in European cities that reported a negative 

association between neighbourhood-level social cohesion and transport-related physical 

activity (Mackenbach et al. 2016).  

In the analyses conducted in this thesis, most of the evidence for an association between 

neighbourhood trust and physical activity comes from pooled longitudinal models, in which 

the association comes either from cross-sectional information or from within individual 

changes over time. I also conducted some analyses to relate within individual changes in the 

exposure to within individual changes in each of the outcomes. These models showed very 

limited evidence of associations. Interestingly, however, a model for boys indicated that an 

increase in neighbourhood trust over time was associated with an improvement in pay and 

play physical activity. This result suggests that, despite the very short period of time in which 

change is observed, improvement in neighbourhood trust or social capital more broadly, might 

have positive consequences for physical activity. These analyses should be replicated in 

different contexts using longer follow-ups in order to identify whether observed within 

individual associations apply to all forms of recreational physical activity. Unfortunately, there 

are currently very few longitudinal investigations of the relationship between any aspect of 

social capital and physical activity in the literature. 

Overall, the results described in this thesis are consistent with the literature and indicate an 

association between recreational physical activity and neighbourhood trust. The magnitude of 
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the association is small however, which suggests that neighbourhood trust only marginally 

contributes to explaining differences in physical activity.  

 
 

In chapter 8, I investigated the association between three sources of social support and four 

physical activity outcomes. I tested whether support provided by family, friends and significant 

others was associated with physical activity, after controlling for individual socio-demographic 

characteristics. Exploration of the associations with social support were conducted with 

walking to school, walking for leisure, outdoor physical activity, and pay and play physical 

activity.  

I found consistent associations between social support and walking for leisure. Pooled 

longitudinal analysis indicates the presence of a positive dose-response relationship with all 

three sources of support, although social support from family has the strongest association. 

No consistent associations were found between social support and walking to school, outdoor 

physical activity, or pay and play physical activity. Some significant interactions with gender 

were reported. 

These results contrast somewhat with the literature on social support and physical activity in 

young people in which consistent positive associations have been reported (Beets et al. 2010, 

Laird et al. 2016, Mendonça et al. 2014, Yao & Rhodes 2015). There are several possible 

reasons for this. First, the present study did not include a measure of total physical activity, 

for which positive association might be observed. In this thesis, I found positive associations 

for walking for leisure and suggestions of associations for outdoor physical activity (the other 

two measures displaying ORs close to 1.00). There might, therefore, be positive overall 

associations between the sources of social support studied and total physical activity. Second, 

the absence of reference to physical activity in the social support instrument used in this 

thesis, namely the Multidimensional Scale of Perceived Social Support (MSPSS), might also be 

a factor. In contrast to the MSPSS, social support tools used in the physical activity literature, 

such as the Activity Support Scale (Davison & Jago 2009), make explicit reference to physical 

activity. It has even been suggested that social support measurements should be specific to 

the activities under investigation because each domain of physical activity might require 

different forms of support (Beets et al. 2010). As a result, having an overall measure of social 

support might under-estimate associations between social support and the forms of physical 

activity studied in this thesis. Third, the MSPSS is general and does not make any reference to 

the type of support received (Zimet et al. 1990). The MSPSS is particularly relevant to 
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predicting mental health outcomes (Dahlem et al. 1991) and seems to better capture 

emotional aspects of social support. Questionnaire items include, for example, ‘my family is 

willing to help me make decisions’, ‘I can talk about my problems with my friends’, or ‘there is 

a special person in my life who cares about my feelings’. Instrumental support, co-participation 

and modelling, which were all shown to be relevant aspects of social support for physical 

activity (Beets et al. 2010, Laird et al. 2016, Mendonça et al. 2014), are not explicitly mentioned 

in the MSPSS instrument. Therefore, if adolescents were receiving non-emotional forms of 

support, they might not have reported it in the MSPSS. In particular, more structured activities 

captured by pay and play physical activity typically require instrumental support from the 

parents, such as paying participation fees, buying equipment, and providing transportation 

(Edwardson & Gorely 2010). The absence of association reported in this thesis might then 

reflect the fact that such aspects of social support are poorly captured by MSPSS. 

In this thesis, consistent positive associations were found between social support and walking 

for leisure. Few studies have investigated these associations, however, some associations 

were documented for leisure-time physical activity in general (Beets et al. 2010). Using adult 

samples from Portugal and Belgium, De Bourdeaudhuij et al. (2005) indicated that social 

support from friends and from family were associated with various forms of physical activity, 

including walking for leisure. Using a larger sample of Australian women, Ball et al. (2007) also 

indicated positive associations between social support from family and recreational walking in 

adults. Despite the presence of these associations in adults, associations between types of 

social support might be quite different in children and adolescents. The reasons for only 

finding significant positive association with walking for leisure in the ORiEL study are not clear. 

A possible explanation is that walking for leisure is the outcome measure that is most affected 

by overall positive emotional support.  

Results related to walking for leisure also indicate that within individual change in social 

support was associated with change in walking for leisure. Significant associations were found 

for social support from family and friends, with stronger evidence for the role of friends. These 

results are consistent with the few studies that investigated changes in social support and 

changes in physical activity (Davison & Jago 2009, Dowda et al. 2007, Lau et al. 2016, Zook et 

al. 2014). These generally showed that increasing or maintaining general social support and 

encouragement from parents and friends during adolescence matters for physical activity. In 

this thesis, I was able to show that changes in social support over a very short period were 

associated with changes in walking for leisure. This indicates that interventions targeting social 

support might have benefits for that form of physical activity.  
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When exploring whether results might differ for boys and girls, I found some evidence that 

gender moderated the associations for walking to school and for outdoor physical activity. In 

boys, I found strong evidence that higher social support from friends, and possibly from family, 

increases the odds of outdoor physical activity. The presence of an association is consistent 

with the literature. Previous studies on social support from friends have indicated that 

emotional support, such as encouragement and co-participation were consistently associated 

with leisure-time physical activity (Mendonça et al. 2014). Emotional support from parents has 

also been shown to be related to leisure-time physical activity (Mendonça et al. 2014). 

However, the fact that the association was only observed for boys was not expected. An 

explanation might be that boys were sometimes shown to receive more social support for 

physical activity than girls (Beets et al. 2010). Whereas boys and girls receive similar amount 

of social support in the ORiEL study according to the MSPSS, the type of support received might 

differ for boys and girls and be more relevant to physical activity for boys (e.g. transportation, 

co-participation, encouragement). Another caveat of these results is that they were not 

observed in the within individual change models. This means that there is not enough evidence 

that within individual change in social support between the wave 2 and the wave 3 of the study 

lead to an increase outdoor physical activity in boys, unlike the evidence reported for walking 

for leisure.  

Finally, there is weak evidence that within individual increase in social support from significant 

others in girls is associated with change in walking to school. This finding is hard to interpret 

because no similar association is observed in the pooled longitudinal analysis.  

 

 

The wider applicability of findings presented in this thesis should be considered in light of 

urban regeneration and social changes affecting the study area around the time of the London 

2012 Olympic and Paralympic Games. The bid to host The London 2012 Games was centred 

on creating the first ‘Legacy Games’ and was grounded on leaving a lasting legacy for the 

residents of East London, with a particular focus on young people. This was to be achieved 

through improvements to infrastructure and housing, stimulating economic development and 

aiming to ‘inspire a generation’ to be more physically active. The majority of urban and social 

changes linked to the Olympics and Paralympics Games occurred in the London Borough of 

Newham, site of the main Games venues, visitor spaces and athletes village.  
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Adolescent participants in the ORiEL cohort would have been exposed to varying degrees of 

change in their local environments as a result of construction and regeneration activities 

brought about by the London 2012 Olympic and Paralympic Games. Regeneration relevant to 

the ORiEL cohort primarily consisted of the construction of services, infrastructure and 

facilities supporting the Olympic Park and Stratford City developments. Regeneration 

components comprise transport networks (walking/cycling paths and public transport); new 

and refurbished civic space, parks and green areas; improvements in accessibility to services 

and facilities of communities on the periphery of the regeneration sites and development of 

retail, business and community facilities (Cummins et al. 2017). Access to most new facilities 

and services, and improved public realm was not possible until after the Games, with the 

Olympic Park itself first opening in July, 2013. Olympic regeneration projects have acted to 

accelerate the ongoing urban regeneration that has been taking place in East London for the 

last two decades. Although the Olympic regeneration generally contributed to improving the 

urban infrastructures in East London, by the same token, it has also been suggested to have 

negatively affected pre-existing local communities by accelerating the gentrification and 

displacement of lower-income households (Watt 2013). 

In addition to urban regeneration, a series of Olympic-related activities might have affected 

the local communities, before, during and after the Games. These short-term events mainly 

aimed to engage the local residents with the Games, and were coordinated around a series of 

arts, sporting and social programmes such as the 2012 Cultural Olympiads, the London 

Prepares Series, the London 2012 Inspire programme, as well as other activities (e.g. the 

opportunity to volunteer during the Games; the availability of local authorities budgets for the 

improvement of neighbourhood aesthetics). The local areas that hosted the Games were 

finally particularly affected during the ‘Games-time’, which resulted in a massive influx of 

visitors, an increased presence of police in and around the Olympic Park (which was associated 

with a temporary increase in perception of safety), and an improvement of transport access 

(Thompson et al. 2015). 

These physical, economic and social transformations of East London occurring around the time 

of the 2012 Games contributed to accelerate change processes that were already in operation 

in East London since the Docklands redevelopment in 1980s. It is likely that aspects of the 

neighbourhood and home environments examined in this thesis have been affected by these 

accelerated transformations of East London.  In particular, I identified substantial within-

individual changes in perceptions of the neighbourhood environment (perceived proximity to 

nearest bus stop, traffic safety, street connectivity, enjoyment of the neighbourhood for 
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walking/cycling and personal safety), neighbourhood trust and social support. It is therefore 

possible that the extent of change in these exposure variables is specific to the context of this 

study and that fewer changes in the neighbourhood and home environments would naturally 

occur in other 3-year follow-up studies conducted in less dynamic urban settings.   

 
 

This study is one of the first large-scale UK investigations of multiple socio-environmental 

predictors of physical activity in adolescents using a longitudinal design. It therefore fills 

several gaps in the science. First, most of the evidence regarding the associations between 

adolescent physical activity and perceptions of the neighbourhood (An et al. 2017, Ding et al. 

2011), social support (Laird et al. 2016, Mendonça et al. 2014, Yao & Rhodes 2015), and social 

capital/cohesion (Lindström 2008) comes from North America and Australia. Although these 

are high-income countries, the structure of the cities in these countries substantially differs 

from the European and British contexts. Such differences are likely to affect the 

neighbourhood environments and context in which physical activity is conducted. 

Consequently, the underlying mechanisms by which various aspects of the neighbourhood and 

home environments affect physical activity might differ (Van Dyck et al. 2010). Despite this, 

the results of this thesis on the associations between social support and neighbourhood trust 

and physical activity are consistent with the evidence gathered in both high and low-income 

countries (Sallis et al. 2016). This suggests a form of universality in the results.  

Second, deprived and ethnic minority adolescent populations have been understudied in the 

field (Bauman & Bull 2007). Deprived populations are expected to be more affected by some 

aspects of the neighbourhood, such as crime and disorder than affluent populations (Lovasi et 

al. 2009). The ORiEL population is also known to be at higher risk of physical inactivity (Sport 

London 2017, Stansfeld 2003). Results from the analyses presented in this thesis indicate 

modest associations, which are in line with the strength of evidence found in less deprived 

adolescent populations. I have therefore found no evidence that associations between aspects 

of the neighbourhood and home environments and physical activity might be stronger in a 

deprived context, compared to the general population.  

Third, this study followed adolescents over-time and provides evidence that changes in some 

features of the neighbourhood and home environments were associated with changes in 

reported physical activity. Such a large-scale investigation has rarely been conducted to date. 

This study therefore provides evidence that could be used to design interventions (Bauman et 
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al. 2012). In particular, I have shown that changes in social support and neighbourhood trust 

within a short time-frame have the potential to affect different physical activity outcomes in 

adolescents.  

Fourth, this study confirms the hypothesis that the determinants of physical activity depend 

on the domain or type of physical activity (Bauman et al. 2012, Giles-Corti et al. 2005, Sallis et 

al. 2006). Few empirical studies have systematically investigated the associations between 

potential determinants and measures of different types of physical activity (see D’Haese et al. 

(2015) and Esteban-Cornejo et al. (2016) for examples of recent small-scale studies). This 

thesis confirms that the predictors of physical activity differ by form of activity. I have shown 

that walking to school was best predicted by ethnic density; walking for leisure by perceived 

social support; and outdoor and pay and play physical activities by neighbourhood trust. As a 

result, interventions to increase physical activity are likely to require targeting different 

determinants, each having a different impact on different types of activity.  

Fifth, this thesis has explored several levels of influence on physical activity behaviours 

depicted in socio-ecological models (Kremers et al. 2006, Sallis et al. 2006). Amongst the 

environmental, inter-individual, and intra-individual factors studied, the results of this thesis 

generally indicate that parents might have an important role in shaping adolescents’ physical 

activity. Adolescence has been described as a critical period in the life course marked by rapid 

growth and development, and is typically characterised by an increasing need for autonomy 

and a desire to make lifestyle choices that conform to peers (Papas et al. 2007). As children 

grow up, they spend progressively less time with parents and family and more time with their 

friends (Larson et al. 1996) and gradually gain more independent mobility from their parents 

(Mackett et al. 2007). As adolescents begin to explore the environment around them 

independent of parental influences, the way the neighbourhood is designed – in terms of 

proximity to destination, street connectivity, traffic safety – was expected to influence 

adolescents’ physical activity (Giles-Corti et al. 2009, Papas et al. 2007). However, in this study, 

I found little evidence that adolescents’ perceptions of the neighbourhood were related to 

physical activity. This might therefore suggest that despite their greater mobility, adolescents 

still rely on their parents’ perceptions to guide their activity patterns, or that the built 

environment influences them without being aware of it. The suggestion that parents still 

strongly influence adolescents’ physical activity is reinforced by two other findings of this 

thesis. First, neighbourhood trust was positively associated with leisure-time physical activity; 

and second, ethnic density amplifies differences in walking to school. These associations 

suggest that informal social control and social cohesion within the local and ethnic community 
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influence adolescents’ physical activity. Informal social control (i.e. ‘eye-on-the-street’) has 

been presented in the literature as one of the factors allowing adolescents to benefit from 

independent mobility (Giles-Corti et al. 2009). That is, when informal social control is present 

in the neighbourhood or in the ethnic group, parents are more likely to allow adolescents more 

independent mobility, which might translate into walking to school, or leisure type of physical 

activity. The role of parents has finally also been indicated in the results on social support. 

Whereas emotional support from friends seems to matter to some extent, perceived social 

support from parents was prominent for walking for leisure. Taken together, these results 

appear to indicate that parents have a key role in the processes by which the neighbourhood 

and home environments influence physical activity behaviours. 

Overall, the results found in this study indicate that the studied aspects of the neighbourhood 

and home environments only have a marginal role in explaining differences in physical activity. 

Most of the associations explored did not reach statistical significance and the magnitude of 

the associations indicates that only a fraction of the variation in physical activity could be 

explained by perceptions of the neighbourhood environment, ethnic density, social 

cohesion/capital and social support in adolescents living in East London. The small magnitude 

of associations could be partially explained by the use of binary outcomes (Lovasi et al. 2012), 

imperfect measurements of exposure and outcome variables, and the correction of a bias 

caused by missing data using multiple imputation. However, previous evidence on the 

neighbourhood and home environments and physical activity tend to indicate associations of 

similar size (Mendonça et al. 2014, Yao & Rhodes 2015). It therefore appears that other factors 

might matter more in explaining why some adolescents are active, and remain active over 

time, while others are not.  

 
 

 
 

The strengths of this thesis have been emphasised throughout this chapter. A major strength 

has been the rigorous application of analytical innovations to the area of research (cf. section 

9.2.). In particular, I have proposed a clear rationale for using generalised estimating equations 

(GEE) methods for binary and ordinal outcomes, tested various hypotheses on the nature of 

longitudinal associations and used multilevel multiple imputation to take into account item 

non-response.  
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Additional strengths are inherent to the ORiEL study. ORiEL is a large-scale cohort study that 

contains state of the art and validated survey instruments on physical activity (Y-PAQ), 

perceptions of the neighbourhood environment (from ALPHA and MESA questionnaires) and 

general social support (MSPSS). As a result, this thesis is one of the first large-scale studies to 

examine the longitudinal associations between features of the neighbourhood and home 

environments and physical activity in an adolescent population. The Y-PAQ questionnaire, 

further allowed for the study of four common types of physical activity, and thus explored how 

different aspects of physical activity were associated with different exposures. The ORiEL study 

is a representative sample of the ethnic diversity of East London, providing evidence from 

populations less studied in the physical activity research. The ORiEL study had a high response 

rate (87% at baseline) and retention rate (73.2% for the 3-wave balanced panel), which is 

consistent with best practice in other school-based cohorts (Booker et al. 2011).  

 
 
This research also has limitations. It is bound by the measurements available in the ORiEL study 

(Appendix A), which had been designed to answer different research questions (Cummins et 

al. 2017). First, the available social support and neighbourhood trust measures are general and 

do not specifically target physical activity, which could have affected the strength of 

associations found. Second, physical activity measured by the Y-PAQ is self-reported and might 

therefore be subject to recall and social desirability biases (Prince et al. 2008). However, the 

use of objective physical activity measure was not practically possible given the size of the 

study. Third, the Y-PAQ questionnaire does not have situational reference (Giles-Corti et al. 

2005) and did not capture where the reported activity was taking place (e.g. garden, 

neighbourhood, parks). It is expected that a situational reference would have increased the 

consistency of the associations found with neighbourhood exposure variables (D’Haese et al. 

2015, Esteban-Cornejo et al. 2016). Fourth, the physical activity outcomes used had to be 

dichotomised, which decreases the power to detect associations (Lovasi et al. 2012). Despite 

these limitations, a strength of the work presented in this thesis has been to improve the 

understanding of how specific activities relate to different exposures by exploring four forms 

of physical activity – walking to school, walking for leisure, outdoor physical activity and pay 

and play physical activity.  

Large-scale studies of ethnic minorities are rare in the field, especially in the UK. The ethnic 

diversity of the ORiEL study is therefore a major strength. From a statistical standpoint, 

however, the super-diversity of the ORiEL sample was a limiting factor in this thesis. Over 200 

ethnic categories were self-reported for minor groups, which resulted in a large and highly 
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heterogeneous ‘Other’ ethnic group category for which results are difficult to interpret (Smith 

et al. 2015b). The super-diversity of the sample restricted my ability to explore whether the 

associations between the neighbourhood and home environments and physical activity 

differed by ethnic group. Nonetheless, I explored ethnic differences in the ethnic density 

analyses for the main ethnic groups (chapter 7) and some promising results were found, 

despite low statistical power.  

The ORiEL study is one of the few large longitudinal studies to investigate the association 

between the neighbourhood and home environments and physical activity. Unfortunately, its 

short period of follow-up (3 waves; 2 years) restricted the ability to test some of the 

hypotheses in this thesis. In chapter 6, the hypothesis of the existence of an enduring 

cumulative and long-term influence of perceptions of the neighbourhood on physical activity 

only had three data points available. In chapter 7, the influence of time-change in ethnic-

density on physical activity could not be tested, given the slow pace at which school-level 

ethnic density changed over time. In chapter 8, only two data points were available for the 

exposure variables, which also hampered the possibility of observing associations in terms of 

within individual changes.  

Despite the methodological innovation and rigour of the analyses of this thesis, some caveats 

to the statistical methods employed should be mentioned. First, I did not test the sensitivity 

of the missing at random assumption. The use of multilevel multiple imputation under missing 

at random is already an improvement compared to analyses of the complete cases under 

missing completely at random, which are unfortunately still the norm in the field. In the 

presented analyses, there remains a risk that the results might be biased because the data 

might be missing not at random. Conducting sensitivity analysis to the missing at random 

assumption is still an area of development in the statistical literature (Carpenter & Kenward 

2012) and was therefore beyond the scope of this thesis. Using the ORiEL data, Clark et al. 

(2017) explored departure from missing at random through tipping-point sensitivity analysis 

in which data were imputed under missing not at random with increasing departure from the 

assumption. They concluded that the missing at random assumption was plausible. As many 

of the variables used in this thesis are common to Clark et al.’s study, bias in the analyses of 

this thesis – if any – is expected to be small. 

A second methodological limitation relates to the use of GEE methods to estimate logistic 

regression models. GEE methods do not allow to account for the three-level structure of the 

data (repeated measurements, individuals, schools). Alternative estimation methods such as 

alternating logistic regression would allow a 3-level structure (Molenberghs & Verbeke 2005). 



  

275 
 

Nonetheless, the potential benefit of those alternative methods is likely to be marginal 

because clustering at school-level is expected to be very small. Another limitation has been 

the use of GEE to account for clustering in cross-sectional models, whereas the data were 

unbalanced and there were few clusters(n=25). In this context, using the ‘sandwich’ estimator 

of the standard errors following the GEE estimation is likely to slightly underestimate the 

standard errors (Fitzmaurice et al. 2011), which could explain why slightly smaller standard 

errors were found for the models that accounted for clustering as opposed to the single-level 

logistic regression models reported in appendices. The extent of bias appears however to be 

negligible in the analyses of this thesis. 

A final methodological limitation is that I was unable to assess causal relationships. The 

methods used have indicated that changes in the neighbourhood and home environments 

were associated with changes in physical activity. Although the theory generally suggests that 

the local environment and its perceptions influence physical activity, the temporal sequencing 

of the associations could not be assessed. In addition, the methods used did not allow me to 

take into account the time-varying associations between different states of the covariates and 

the outcomes over time, which might bias the associations reported (Fitzmaurice et al. 2011, 

Robins & Hernán 2009).  

 

 
 

Throughout the discussion of study findings, several recommendations for future research 

have arisen to improve our understanding of the determinants of physical activity. These 

include:  

 

1. Developing situation-specific measures of neighbourhood and home environments 

and physical activity to better capture the hypothesised processes, which are expected 

to depend on the type of physical activity under study.  

 

2. Replicating the analysis on ethnic density using a larger and/or less ethnically diverse 

dataset. These analyses would serve to test whether the amplification of ethnic 

differences is also observed in different populations and/or applies to other health 

behaviours that are expected to be associated with ethnicity.  
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3. Examining the appropriate geographical scale for capturing ethnic density, beyond 

administrative geographical areas. This includes exploring measures of ethnic density 

specific to the activity space of adolescents/adults, and testing whether the most 

appropriate scale might vary depending on contextual elements, such as the degree of 

urbanisation and the ethnic composition of the area.  

 

4. Further exploring the relative roles of the built environment, parental and 

adolescents’ perceptions in explaining differences in types of physical activity. 

 

5. Replicating the analyses conducted in this thesis using longer time-series to better 

assess the associations between time-varying exposure and physical activity outcomes. 

Alternatively, a well-designed evaluation of an intervention targeting aspects of the 

environment might also contribute to understanding of the causal nature of the 

associations investigated.  

 

6. Applying multilevel imputation methods in longitudinal studies that investigate the 

determinants of physical activity. As the number of longitudinal investigations is 

expected to increase in the near future, studies with a data structure similar to the one 

described in this thesis (i.e. few repeated measurements on individuals clustered in 

schools or neighbourhoods) will become more common. The analytical strategy 

proposed in this thesis to handle item non-response could be easily implemented in 

those studies as well. 

 

 
 

This thesis presents evidence that different types of physical activity have differing patterns of 

prevalence in an adolescent population, and in turn, different types of physical activity are 

associated with different features of the neighbourhood and home environments. 

Adolescents’ perceptions of their neighbourhood environment (including proximity, 

aesthetics, street connectivity, traffic safety and personal safety) and changes in those 

perceptions over time did not consistently predict physical activity. School-level ethnic density 

increased the chance of walking to school for members of some ethnic groups and decreased 

it for others. Adolescents with greater trust in their neighbours had higher chances of 

reporting outdoor physical activity, and pay and play physical activity. Finally, social support 
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from family, friends and significant others was shown to predict walking for leisure and its 

change over time.  

This evidence suggests that there may be no ‘one-size fits all’ strategy to increase adolescent 

physical activity and rather that specific policy initiatives should be developed to target specific 

types of physical activity. Policy initiatives should therefore tailor interventions to modify key 

neighbourhood and home environment predictors of specific physical activity types. Three 

specific examples for the design of potential future interventions are outlined below.   

First, the results of this thesis show that improving social cohesion (as measured by 

neighbourhood trust) could increase participation in leisure-time physical activity in 

adolescents. This aspect of the social environment is potentially modifiable and could 

therefore be the target of community interventions. Previous research has shown that social 

cohesion and social capital have benefits beyond physical activity, including mental health and 

personal safety, and could benefit the broader local community (Kawachi & Berkman 2014). 

Interventions targeting social capital and social cohesion have focused on the engagement of 

residents in the construction of more attractive urban places (Semenza et al. 2007), or have 

involved multiple-component community engagement programmes (e.g. ‘Well London’ 

programme (Frostick et al. 2017)). Whereas some interventions have successfully increased 

social cohesion and social capital, it remains unclear whether such interventions might bring 

about changes in the outcome of interest, which is leisure-time physical activity in this context.  

Second, I have identified that social support is longitudinally associated with walking for 

leisure. Social support is another modifiable aspect of the social environment and could 

therefore be the target of policy interventions at family or community levels. Although the 

evidence found in this thesis is limited, the evidence that social support positively influences 

physical activity is well established (Sallis et al. 2016). The current evidence suggests that 

interventions should prioritise parental encouragement and instrumental support for physical 

activity (e.g. equipment, transport to a physical activity facility). The role of peers should also 

be considered, in particular co-participation and encouragement. To date, there is limited 

evidence on the effectiveness of either family-based or peer-based interventions targeting 

social support for physical activity (Van Lippevelde et al. 2012). Suggested forms of 

interventions include parental training, family counselling and preventive messages on the 

benefits of physical activity for children, or the use of social media to promote physical activity 

participation within networks of friends (Lau et al. 2016). Future interventions targeting social 

support are likely to benefit some aspects of physical activity, given that social support is the 

most consistent predictor of physical activity.   
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Third, the results of this thesis indicate that interventions targeting the determinants of 

physical activity should be tailored to the population of interest. For example, this thesis has 

shown that own-group ethnic density increased walking to school in some ethnic groups and 

decreased it in others. This suggests that there may be underlying ethnic- or cultural- specific 

norms towards physical activity that may moderate the impact of interventions in ethnically 

diverse populations. This means, for example, that intervention programmes trying to improve 

walking to school might be more or less effective depending on the ethnic composition of the 

community at stake and ethnic- or cultural- specific norms regarding walking to school within 

that community. In the context of East London, results suggest that such interventions might 

be more successful amongst Bangladeshi adolescents who attend predominantly Bangladeshi 

schools and less successful amongst Black African adolescents who attend schools with a high 

proportion of co-ethnics. Evidence produced from this thesis therefore suggests that policy 

interventions are more likely to be successful if they are tailored to the specificities of the 

social and cultural norms of the population of interest. 

 
 

Whereas the health benefits of regular physical activity are well established (Strong et al. 

2005), 26% of adults and 87% of adolescents do not achieve the recommended level of 

physical activity in England (Health and Social Care Information Centre 2017, Scholes 2016). It 

also appears that ethnic minorities and deprived populations are particularly at risk of physical 

inactivity (Griffiths et al. 2013, Owen et al. 2009, Sport London 2017). Adolescence, being a 

transition period during which life-long health behaviours form, appears to be a crucial period 

during which physical activity can be addressed (Papas et al. 2007). In this thesis, I tried to 

answer why some young people in deprived and ethnically diverse populations are and remain 

physically active during adolescence, while others remain or become inactive. Specifically, I 

investigated whether four features of the neighbourhood and home environments – namely 

perceptions of the neighbourhood environment, ethnic density, neighbourhood trust and 

social support – predicted common forms of physical activity. 

The analyses reported here showed that adolescents’ perceptions of their neighbourhood 

environment (including proximity, aesthetics, street connectivity, traffic safety and personal 

safety) and their changes over time did not consistently predict the forms of physical activity 

investigated, i.e. walking to school, walking for leisure and outdoor physical activity. School-

level ethnic density increased the chance of walking to school in some ethnic groups and 

decreased it in others; whereas walking for leisure and outdoor physical activity were not 
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consistently associated with ethnic density. Adolescents with higher perceived trust in their 

neighbours had higher chances to report leisure-time physical activity (i.e. outdoor physical 

activity, and pay and play physical activity). Finally, general social support from family, friends 

and significant others were shown to predict walking for leisure and its change over time. In 

boys only, social support from friends was shown to predict outdoor physical activity.  

Results from this thesis contribute to our understanding of the individual, family, peer, 

community and neighbourhood influences on physical activity in adolescents. The predictors 

of physical activity identified in this thesis are mostly amenable to change and therefore could 

be the target of promotion programmes and interventions aiming to improve physical activity. 
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Table B.1 Summary of confirmatory factor analyses on perceptions of the neighbourhood environment 

   Pearson correlation   Polychoric correlation 

  Model summary from pooled 3-wave panel data (n=4,443) Satorra-Bentler GOF INDICATIVE GOF 
    RMSEA CFI  TLI RMSEA CFI TLI 

Model 1 all items; 5 Latent Variables: proximity, safety (traffic + crime from ALPHA), aesthetics, connectivity, crime 
safety (MESA) 

0.053 0.861 0.843 0.074 0.834 0.813 

Model 2 drop 'hilly roads'; 5 Latent Variables: proximity, safety (traffic + crime from ALPHA), aesthetics, connectivity, 
crime safety (MESA) 

0.052 0.873 0.856 0.073 0.850 0.831 

Model 3 drop 'hilly road', ‘badly maintained buildings’; 5 Latent Variables: proximity, safety (traffic + crime from 
ALPHA), Aesthetics, connectivity, crime safety (MESA) 

0.051 0.887 0.871 0.072 0.863 0.844 

Model 4 drop 'hilly road', ‘badly maintained buildings’; 5 Latent Variables: proximity, traffic safety, aesthetics, 
connectivity, crime safety (ALPHA + MESA) 

0.057 0.856 0.836 0.078 0.839 0.817 

Model 4 b drop 'hilly road', ‘badly maintained buildings’, 'lock bike'; 5 Latent Variables: proximity, traffic safety, 
aesthetics, connectivity, crime safety (ALPHA + MESA) 

0.055 0.872 0.853 0.077 0.852 0.830 

Model 5 drop 'hilly road', ‘badly maintained buildings’; 5 Latent Variables: proximity, traffic safety, aesthetics, 
connectivity, crime safety (ALPHA + MESA); Measurement error correlation  

0.047 0.908 0.890 0.067 0.886 0.864 

Model 5 b drop 'hilly road', ‘badly maintained buildings’, 'lock bike'; 5 Latent Variables: proximity, traffic safety, 
aesthetics, connectivity, crime safety (ALPHA + MESA); Measurement error correlation 

0.048 0.905 0.887 0.070 0.883 0.860 

Model 6 drop 'hilly road', ‘badly maintained buildings’; 5 Latent Variables: proximity, traffic safety, aesthetics, 
connectivity, crime safety (ALPHA + MESA); Measurement error correlation;  cross-loading allowed 

0.043 0.918 0.905 0.063 0.896 0.880 

Model 7 drop 'hilly road', ‘badly maintained buildings’; 5 Latent Variables: proximity, traffic safety, aesthetics, 
connectivity, crime safety (ALPHA + MESA+ ‘graffiti’); cross-loading allowed 

0.043 0.921 0.908 0.063 0.899 0.883 

Model 8  drop 'hilly road', ‘badly maintained buildings’; 6 Latent Variables: proximity, traffic safety, aesthetics, 
connectivity, crime safety (ALPHA), crime-related safety(MESA) 

0.038 0.939 0.929 0.055 0.923 0.911 
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Table B.2  Longitudinal descriptive analysis of proximity (n=2,214) 

proximity Overall Between Within 

 Freq.  Percent  Freq.  Percent  Percent  

Low 332 5.99 274 12.38 50.79 

Medium 2248 40.58 1408 63.60 64.17 

High 2960 53.43 1600 72.27 73.21 

Total  5540 100.00 3282 148.24 67.46 

 

Table B.3  Longitudinal descriptive analysis of aesthetics (n=2,233) 

aesthetics Overall Between Within 

 Freq.  Percent  Freq.  Percent  Percent  

Low 941 16.15 713 31.93 51.75 

Medium 2712 46.56 1655 74.12 62.77 

High 2172 37.29 1328 59.47 62.14 

Total  5825 100.00 3696 165.52 60.42 

 

Table B.4 Longitudinal descriptive analysis of crime-related safety (n=2,226) 

crime-related safety   Overall Between Within 

 Freq.  Percent  Freq.  Percent  Percent  

Low 1720 30.27 1121 50.36 59.84 

Medium 2193 38.60 1458 65.50 58.84 

High 1769 31.13 1114 50.04 62.60 

Total  5682 100.00 3693 165.90 60.28 

 

Table B.5  Longitudinal descriptive analysis of social support from significant others (n=2,124) 

Social support:  
significant others 

Overall Between Within 

 Freq.  Percent  Freq.  Percent  Percent  

Low 1418 39.26 1078 50.75 78.71 

Medium 985 27.27 844 39.74 68.84 

High 1209 33.47 931 43.83 74.6.0 

Total  3612 100.00 2853 134.32 74.45 
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The data which one intends to collect on a certain number of variables (let say p) is usually 

denoted by a vector Y = (Y1, Y2, Y3, … , Yp)
T. Y includes outcomes and covariates. For each 

individual from whom one intends to obtain data, one can partition Y into the data that were 

observed 𝐘o and the data that are missing 𝐘m , such that 𝐘 = {𝐘o, 𝐘m}.  

For each variable of Y and each individual one intends to collect information from, one defines 

a missing value indicator R such that: 

R = {
   1 if Y is observed
0 if Y is missing

 

All the value measured by R can be combined in a vector R as done for Y.  

Having define R and Y, I can now define the missing data mechanism in a broad sense: it is the 

probably that some values are missing given the values taken by the observed, and 

unobserved observations. Formally: P(𝐑|𝐘o, 𝐘m). 

Depending on the extent to which that probably depends on the unobserved missing values, 

the observed values or none, a different type of missing data mechanism is defined and implies 

different consequences for statistical analysis.  

 
Data are Missing Completely at Random (MCAR) when the probability of missingness does 

depend neither on the observed nor on the unobserved values. Algebraically,  

P(𝐑|𝐘o, 𝐘m) =  P(𝐑). 

 Under an MCAR mechanism, the chance of the data being missing is unrelated to their values; 

therefore, the observed data are representative of the population for which one intended to 

collect data. An example of MCAR is to randomly assign two different versions of a 

questionnaires to a large number of participants. The process generating missing values is 

known and is due to the randomisation. Knowledge of the observed and unobserved values 

would not help to predict whether a value is missing or not. In such an instance, the 
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characteristics of participants receiving different versions of the questionnaire would be 

similar, given large enough sample sizes. 

 
Data are Missing At Random (MAR) if, given the observed data, the missingness mechanism 

does not depend on the unseen data. That is: 

P(𝐑|𝐘o, 𝐘m) =  P(𝐑|𝐘𝐨).  

Therefore, the probability of missingness is allowed to depend on the value of the data. Yet, 

once this is taken into account, it will not depend on anything else. Under that condition, any 

systematic differences between the missing values and the observed values can be explained 

by differences in the observed data. For example, males might be more likely to answer 

sensitive questions about depression than females, such that once gender is taken into 

account, there are no more differences in the probability in answering the questions. 

 
If neither MAR nor MCAR hold, one is left with a Missing Not at Random (MNAR) mechanism. 

Under MNAR, even if one accounts for the available observed information, the probability of 

missingness depends on the missing values themselves or unobserved variables, such that 

systematic difference remain between the missing and the unobserved values. Formally the 

mechanism is defined as:   

P(𝐑|𝐘o, 𝐘m) ≠  P(𝐑|𝐘𝐨).  

MNAR can happen when the missing value itself determines the probability of missingness or 

if some unmeasured quantity influences both the value of the missing variable and the 

probability of missingness. For example, individual with very high income or very low income 

may refuse to provide income-related information, after controlling for other socio-economic 

variables. 
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Despite its popularity for handling missing data in frequentist inference, it should be stressed 

that MI is fundamentally a Bayesian methodology (Enders 2010) and was initially developed 

by Rubin (1987) within a Bayesian framework. This section describes in more detail how the 

imputation procedure works. It serves as important background knowledge for assessing the 

convergence of imputation models and for selecting appropriate parameters in the imputation 

phase.  

The imputation procedure is iterative, each iteration is generally referred to as a ‘cycle’. There 

are essentially two steps in each cycle: the imputation step (I-step), which imputes the missing 

data, and the posterior step (P-step) which updates the parameters of the imputation model 

(Enders 2010). 

The I-step is straightforward and similar to the use of regression to predict missing values using 

the observed data of each specific individual with partially missing information. In order not 

to have imputed values that exactly equal the predicted values, a random element is added.  

A P-step follows. The vector of means and covariance matrix that form the building blocks of 

imputation models are recalculated using the fully imputed data set from the preceding I-step. 

A posterior distribution of the means vector and the covariance matrix are calculated. In 

Bayesian methodology, a parameter is a random variable with a distribution of values, as 

distinct from a frequentist approach where a parameter is a single value that is estimated. To 

obtain a posterior distribution, one needs a prior distribution and a likelihood function. Most 

MI procedures use non-informative prior distributions so that the shape of the posterior 

distribution depends solely on the likelihood function (Enders 2010). The imputed data of the 

preceding I-step is therefore used to calculate the posterior distribution, from which specific 

values of the parameters are randomly drawn. 

In practice, these estimates are simulated using Markov Chain Monte Carlo (MCMC) 

techniques (Gelman et al. 2003). The Gibbs sampler (Gelman et al. 2003) is commonly used in 

the joint modelling approach (Carpenter & Kenward 2012), which is the approach used in this 

thesis. The imputed values obtained from the I-step can then be used for the next P-step and 

the whole procedure is repeated many times. The procedure eventually allows for the 

generation of multiple instances of the data containing unique estimates of the missing values.  

A series of initial iterations of the process, known as the ‘burn-in’, should be ignored until the 

MCMC sampler has converged to its stationary distribution (Carpenter & Kenward 2012). Once 



  

322 
 

the sampler has converged, a first imputed dataset can be retained. There should be a 

sufficient number of cycles between successive retained datasets to ensure that they are 

approximately independently drawn. Indeed, the MCMC process is such that imputed values 

from successive cycles are likely to be correlated. The imputed values in each of the M datasets 

should be carefully selected such that each set of imputed values is stochastically independent 

of the previously retained imputation. 

Despite being a Bayesian methodology (Enders 2010), MI is often used within a frequentist 

inferential framework. The handling of missing data with multiple imputation often precedes 

the use of frequentist models of statistical analysis, meaning that MI does not require a fully 

Bayesian approach to analysis. This idea is well expressed by Zaslavsky (1994): 

‘Because it may be so difficult to specify fully a Bayesian analysis, in many problems the 

best strategy can be to use a model-based Bayesian inference for the part that requires 

it, in particular the imputation of missing data, and to use frequentist methods, relying 

on estimates of means and variances and on approximate normality, for the rest of the 

inference. Multiple imputation is a device for such a combined approach’ 

 

 

  



  

323 
 

 

This appendix provides the full equation and the R codes used to fit one of the imputation 

models of this thesis. This model corresponds to the final imputation model of chapter 6. The 

model was fitted separately for boys and for girls. The joint model is as follows:  

{
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

                  
 𝑌𝑤1,1,𝑖,𝑗 = 𝛽0,𝑤1,1 + 𝑢𝑤1,1,𝑗 + 𝜖𝑤1,1,𝑖,𝑗    

…
 𝑌𝑤1,3,𝑖,𝑗 = 𝛽0,𝑤1,3 + 𝑢𝑤1,3,𝑗 + 𝜖𝑤1,3,𝑖,𝑗

…
 𝑌𝑤𝑝,1,𝑖,𝑗 = 𝛽0,𝑤𝑝,1 + 𝑢𝑤𝑝,1,𝑗 + 𝜖𝑤𝑝,1,𝑖,𝑗

…
 𝑌𝑤𝑝,3,𝑖,𝑗 = 𝛽0,𝑤𝑝,3 + 𝑢𝑤𝑝,3,𝑗 + 𝜖𝑤𝑝,3,𝑖,𝑗

 𝑍𝑥1,1,1,𝑖,𝑗 = 𝛽0,𝑥1,1,1 + 𝑢𝑥1,1,1,𝑗 + 𝜖𝑥1,1,1,𝑖,𝑗 
…

𝑍𝑥1,1,𝑘−1,𝑖,𝑗 = 𝛽0,𝑥1,1,𝑘−1 + 𝑢𝑥1,1,𝑘−1,𝑗 + 𝜖𝑥1,1,𝑘−1,𝑖,𝑗
…

 𝑍𝑥1,3,1,𝑖,𝑗 = 𝛽0,𝑥1,3,1 + 𝑢𝑥1,3,1,𝑗 + 𝜖𝑥1,3,1,𝑖,𝑗
…

𝑍𝑥1,3,𝑘−1,𝑖,𝑗 = 𝛽0,𝑥1,3,𝑘−1 + 𝑢𝑥1,3,𝑘−1,𝑗 + 𝜖𝑥1,3,𝑘−1,𝑖,𝑗 
…

 𝑍𝑥𝑚,1,1,𝑖,𝑗 = 𝛽0,𝑥𝑚,1,1 + 𝑢𝑥𝑚,1,1,𝑗 + 𝜖𝑥𝑚,1,1,𝑖,𝑗
…

  𝑍𝑥𝑚,1,𝑘−1,𝑖,𝑗 = 𝛽0,𝑥𝑚,1,𝑘−1 + 𝑢𝑥𝑚,1,𝑘−1,𝑗 + 𝜖𝑥𝑚,1,𝑘−1,𝑖,𝑗
…

 𝑍𝑥𝑚,3,1,𝑖,𝑗 = 𝛽0,𝑥𝑚,3,1 + 𝑢𝑥𝑚,3,1,𝑗 + 𝜖𝑥𝑚,3,1,𝑖,𝑗
…

𝑍𝑥𝑚,3,𝑘−1,𝑖,𝑗 = 𝛽0,𝑥𝑚,3,𝑘−1 + 𝑢𝑥𝑚,3,𝑘−1,𝑗 + 𝜖𝑥𝑚,3,𝑘−1,𝑖,𝑗 

 𝑍𝐹𝑆𝑀,𝑖,𝑗 = 𝛽0,𝐹𝑆𝑀 + 𝑢𝐹𝑆𝑀,𝑗 + 𝜖𝐹𝑆𝑀,𝑖,𝑗 

 𝑍𝐵𝐼𝑅𝑇𝐻,𝑖,𝑗 = 𝛽0,𝐵𝐼𝑅𝑇𝐻 + 𝑢𝐵𝐼𝑅𝑇𝐻,𝑗 + 𝜖𝐵𝐼𝑅𝑇𝐻,𝑖,𝑗
 𝑍𝐸𝑇𝐻,1,𝑖,𝑗 = 𝛽0,𝐸𝑇𝐻,1 + 𝑢𝐸𝑇𝐻,1,𝑗 + 𝜖𝐸𝑇𝐻,1,𝑖,𝑗

…
 𝑍𝐸𝑇𝐻,7,𝑖,𝑗 = 𝛽0,𝐸𝑇𝐻,7 + 𝑢𝐸𝑇𝐻,7,𝑗 + 𝜖𝐸𝑇𝐻,7,𝑖,𝑗
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𝝐𝒊,𝒋 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝜖𝑤1,1,𝑖,𝑗
…

𝜖𝑤1,3,𝑖,𝑗
…

𝜖𝑤𝑝,1,𝑖,𝑗
…

𝜖𝑤𝑝,3,𝑖,𝑗
𝜖𝑥1,1,1,𝑖,𝑗
…

𝜖𝑥1,1,𝑘−1,𝑖,𝑗
…

𝜖𝑥1,3,1,𝑖,𝑗
…

𝜖𝑥1,3,𝑘−1,𝑖,𝑗
…

𝜖𝑥𝑚,1,1,𝑖,𝑗
…

𝜖𝑥𝑚,1,𝑘−1,𝑖,𝑗
…

𝜖𝑥𝑚,3,1,𝑖,𝑗
…

𝜖𝑥𝑚,3,𝑘−1,𝑖,𝑗
𝜖𝐹𝑆𝑀,𝑖,𝑗
𝜖𝐵𝐼𝑅𝑇𝐻,𝑖,𝑗
𝜖𝐸𝑇𝐻,1,𝑖,𝑗
…

𝜖𝐸𝑇𝐻,7,𝑖,𝑗 )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

~𝑁(𝟎,𝛀𝒆)   𝒖𝒋 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑢𝑤1,1,𝑗
…

𝑢𝑤1,3,𝑗
…

𝑢𝑤𝑝,1,𝑗
…

𝑢𝑤𝑝,3,𝑗
𝑢𝑥1,1,1,𝑗
…

𝑢𝑥1,1,𝑘−1,𝑗
…

𝑢𝑥1,3,1,𝑗
…

𝑢𝑥1,3,𝑘−1,𝑗
…

𝑢𝑥𝑚,1,1,𝑗
…

𝑢𝑥𝑚,1,𝑘−1,𝑗
…

𝑢𝑥𝑚,3,1,𝑗
…

𝑢𝑥𝑚,3,𝑘−1,𝑗
𝑢𝐹𝑆𝑀,𝑗
𝑢𝐵𝐼𝑅𝑇𝐻,𝑗
𝑢𝐸𝑇𝐻,1,𝑗
…

𝑢𝐸𝑇𝐻,7,𝑗 )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

~𝑁(𝟎,𝛀𝒖) 

 

Adolescents 𝑖 nest within schools 𝑗. This joint model treats all variables as outcomes 𝑌 

including, ethnicity which is fully observed. The 𝑝 continuous variables are indexed 

as 𝑤1,… ,𝑤𝑝. Each measurement occasion (wave) is represented by a different variable, 

indexed as 1,..,3. For example, 𝑌𝑤2,3 represents the second continuous variable (i.e. Mental 

Health Score; squared centred and scaled WEMWBS score) measured at wave 3. I used an 

underlying multivariate normal approach to model categorical variables using latent normal 

variables 𝑍. The 𝑘 categories of each categorical variable are represented by 𝑘 − 1 latent 

variables. The indexes 𝑥1,… , 𝑥𝑚 represent the 𝑚 categorical variables of the model. For 

example, for the first categorical variable 𝑌𝑥1 I used the latent variables 𝑍𝑥1,1, 𝑍𝑥1,2, … , 𝑍𝑥1,𝑘−1. 

These variables are further indexed 1,..,3 to indicate the wave at which they were measured. 

𝑍𝑥1,3,2 represents the 2nd latent variable of the variable 𝑌𝑥1, measured at wave 3. Free school 

meal status (FSM), country of birth (BIRTH) and ethnicity (ETH) are time-invariant and 

therefore not indexed with 1,…3. FSM and BIRTH are binary variables and only represented by 

one latent variable each, i.e.  𝑍𝐹𝑆𝑀 and  𝑍𝐵𝐼𝑅𝑇𝐻). Individual-specific residuals and school-

specific random effects are gathered in the vectors 𝝐𝒊,𝒋 and 𝒖𝒋 respectively. Both are assumed 

to follow multivariate normal distributions with common covariance matrices 𝛀𝒆 and 𝛀𝒖. 
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The model was fitted in R using the ‘jomo’ package with the following codes (example for girls): 

 

#define the Y variables in the imputation model 

Y<-data.frame(lntotpa01, lntotpa02, lntotpa03,wemtot20_01,  

    wemtot20_02, wemtot20_03, bmi01, bmi02, bmi03,  

    walk1, walk2, walk3, dogwalk1, dogwalk2,  

    dogwalk3, paout71, paout72, paout73, ibus_rr1, 

    ibus_rr2, ibus_rr3, traffic1, traffic2, traffic3,  

    infra1, infra2, infra3, nice31, nice32, nice33,  

    n_safe2a1, n_safe2a2, n_safe2a3, daysafe31,  

    daysafe32, daysafe33, srh1, srh2, srh3, health21, 

    health22, health23, fas_cat1, fas_cat2, fas_cat3, 

    fsm_ref_r1, birth_ref1, d_eth_8cat1) 

 

clus<-data.frame(school_ref1) #define the cluster variable 

#define the burn-in, n-between and number of imputations 

nburn<-50 

nbetween<-500 

nimp<-20 

#load the dataset containing the parameters saved after 4000 

burn-in 

load("FE_with_school_Balanced_female4.RData") 

#save the last values of the paramters 

betafin<-matrix(imp$collectbeta[,,nburn],1,81) 

omegafin<-as.matrix(imp$collectomega[,,nburn]) 

ufin<-as.matrix(imp$collectu[,,nburn]) 

covufin<-as.matrix(imp$collectcovu[,,nburn]) 

imp<-NULL #clear the memory 

#Run the imputation model 

imp<-jomo(Y, beta.start = betafin,  

          l1cov.start = omegafin, u.start = ufin, 

          l2cov.start = covufin, clus=clus, 

          nburn=nburn, nbetween=nbetween, nimp=nimp) 

 

 

This appendix reviews modelling approaches to handle hierarchical data with binary outcomes 

and assesses their relevance in the context of this thesis. I argue that marginal models are 

preferred over the use of cluster-robust standard errors in combination with generalised linear 

models (GLM), fixed effects models, and random effects models in the context of this thesis. 

 

A first choice to make when dealing with clustered data is to decide between an approach that 

specifically accounts for the hierarchical nature of the data in the estimation process, or an 

approach that solely corrects the standard errors at the end of the estimation process to 

account for clustering.  
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The second approach typically uses a standard GLM together with a cluster-robust estimator 

of the standard errors. Cluster-robust estimators of standard errors consist of re-calculating 

standard errors to account for usually one level of clustering in the data (e.g. repeated 

measurements on individuals, or clustering of adolescents in schools). Cluster-adjustment 

assumes that observations within groups are correlated but that observations across clusters 

are independent. The cluster-robust approach is a variant the Huber-White 

heteroskedasticity-consistent estimator of the standard errors (Wooldridge 2015) that 

additionally accounts for any intra-cluster correlation31 (Primo et al. 2007). In settings where 

the number of clusters is large32, the approach provides consistent estimates of the 

coefficients and of the standard errors (Rabe-Hesketh & Skrondal 2012).   

In contrast, a hierarchical approach to accounting for clustering explicitly models the 

covariance components and adds some additional parameters to the model specification. The 

estimation of the fixed parameters therefore differs when compared to those obtained using 

GLM (Rabe-Hesketh & Skrondal 2012). This approach is generally preferred in applied 

longitudinal analysis, as the field has developed a wide range of models specifically designed 

to account for clustering due to repeated measurements (Fitzmaurice et al. 2011, 

Molenberghs & Verbeke 2005, Verbeke & Molenberghs 2009). Although robust-cluster 

standard errors might be valid in various settings, models for hierarchical data are preferred 

in this thesis owing to the flexibility and their applicability in a broader range of circumstances. 

Longitudinal models for instance allow for the use of a lagged response, and for specific 

investigation of the covariance structure if it is of interest (Rabe-Hesketh & Skrondal 2012).   

Whereas models for hierarchical data are used in the main analyses of this thesis, cluster-

robust estimations of the standard errors are nevertheless employed in the analysis of the 

baseline data as an ‘easy fix’ to inaccurate standard errors that might arise due clustering at 

school-level. Results still need to be interpreted with caution due to the small number of 

clusters which can cause downwards biased of the standard errors (Fitzmaurice et al. 2011) 

and due to bias caused by the violation of the MCAR assumption.  

                                                           
 

31 From a technical point of view, cluster-adjustment takes the Huber-White sandwich estimator of the 
standard errors one-step further by allowing off-diagonal elements from the same cluster to be 
nonzero. By doing this, one allows for any arbitrary correlation of the observations within clusters, any 
arbitrary heteroskedasticity in the error term, but no correlation across clusters (Primo et al. 2007). 
32 There is no clear-cut definition of large however. Depending on the extent of clustering and whether 
the data are balanced or not, many more clusters might be needed to avoid downward biased of the 
standard errors.  
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A second decision in terms of analytical strategy is to consider using a fixed effects approach 

to modelling. Amongst the many models for longitudinal data, a class of models known as fixed 

effects models, which has its origins in the econometrics literature, is increasingly used in the 

social sciences (Fitzmaurice et al. 2011). Fixed effects models attempt to account for the ‘unit 

heterogeneity problem’, which means that clusters (i.e. individuals with repeated 

measurements or schools composed of pupils) might differ from one another due to some 

unmeasured confounding variable(s). The approach is mainly used in the longitudinal context, 

although it can also be applied to cross-sectional data (Schempf & Kaufman 2012). With 

longitudinal data, the intent of fixed effects models is to control for all potential time-invariant 

confounding factors by restricting the analysis to within individual changes over time. This 

contrasts with random effects models and marginal models that use both sources of variation 

to estimate the regression parameters, and cannot guarantee the absence of residual 

confounding (Verbeke & Molenberghs 2009).  

For Gaussian outcomes, the benefits of fixed effects versus random effects models have been 

widely discussed (Fitzmaurice et al. 2011, Wooldridge 2015). The Hausman test33 has often 

been used as a criterion to decide whether a fixed effects model should be preferred 

(Wooldridge 2015). Recent methodological development however seem to have resolved the 

dilemma by offering models that capitalise on most of the appealing features of both the 

random and the fixed effects approaches (Allison 2009, Bell & Jones 2015, Fitzmaurice et al. 

2011). Unfortunately, such ‘hybrid’ models do not have an equivalent with equally appealing 

properties when the outcomes are binary or ordinal (Bell et al.), meaning that one still needs 

to make a choice. 

In this thesis, the fixed effects approach to longitudinal analysis is not followed for three main 

reasons. First, fixed effects models are consistent as the number of repeated measurements 

tends to infinity. Thus, having many clusters with few observations in each of them (i.e. 3 in 

the ORiEL context; one for each wave) is likely to lead to poor estimations of the parameters 

(Wooldridge 2010). In addition, fixed effects estimates are likely to be very inefficient with few 

measurement points (Wooldridge 2010). Efficiency depends on the extent of within-individual 

                                                           
 

33 A Hausman test informs on whether the exogeneity assumption (or orthogonality of the error terms 
and covariates) holds. Essentially it investigates whether the within-individual effects and the between-
individual effects are different  by comparing the fit of a fixed effects and a random effects model 
(Wooldridge 2010, 2015). 
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change. With only three measurement points, using fixed effects models would mean that 

changes in exposure and outcome have to be very frequent in order to be able to capture an 

effect. Fixed effects estimates are also particularly subject to bias if measurement errors are 

large compared to real change over-time (Rabe-Hesketh & Skrondal 2012). It should further 

be noted that fixed effects models for binary outcomes are based on conditional logits and 

therefore only make use of the information on individuals who changed response category 

over time, which makes the estimates even less efficient and reliable than in the Gaussian 

context (Allison 2009).  

Second, the fixed effects approach prevents the investigation of exposure variables that do 

not change over time (Wooldridge 2015). Consequently, that analytical approach would not 

allow studying the association between neighbourhood ethnic density and physical activity, as 

the available ethnic composition data for small areas in the UK is limited to the most recent 

Census.  

Third, compared to non-random sampling settings in which fixed effects models have proved 

very useful (e.g. pooled time-series of cross-sectional data of non-randomly selected hospitals 

or countries), unobserved residual confounding is expected to be much more restricted in the 

context of ORiEL. Indeed, in the ORiEL study, individuals are randomly selected (by the 

intermediate of school) from an underlying population (i.e. adolescents from East London 

schools), so that the personal characteristics of individuals should also be randomly distributed 

(Wooldridge 2010). Using a random effects or marginal approach would then allow for 

inference to that population.  

Although the main arguments for not using the fixed effects approach are specific to the 

longitudinal models, there are also arguments for not treating schools as fixed effects to 

account for clustering in cross-sectional analysis. Including school as a fixed effects would 

indeed restrict inference to a specific set of schools sampled, whereas the target of inference 

is the population of adolescents from all schools in East London (Rabe-Hesketh & Skrondal 

2012). In addition, this would imply adding 24 additional dummy variables in the model and 

prevent a proper examination of ethnicity interactions due to the segregation of ethnic groups 

by school (Schempf & Kaufman 2012).  

 

Having decided to use neither GLM with cluster-robust standard errors, nor fixed effects 

models, a third major choice in the analytical strategy is that between marginal and conditional 
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models, which are also known as subject-specific models (e.g. random effects, multilevel or 

mixed models). With Gaussian outcomes, there is a convenient one-to-one correspondence 

between mixed models that specify a fixed component and a random component, and 

marginal models that define a mean structure, a variance function and a 

correlation/covariance structure accounting for association across clustered observations34 

(Fitzmaurice et al. 2011). The fixed components of the model, or mean structure, has an easy 

interpretation in terms of population-average change in the outcome.  

With non-Gaussian outcomes, and binary outcomes in particular, there is no such direct 

correspondence between the marginal and the mixed models35 (Fitzmaurice et al. 2011, 

Molenberghs & Verbeke 2005). In other words, there is no general framework under which 

marginal and mixed models have a similar interpretation. Marginal models are usually 

estimated with generalised estimating equations (GEE), and the most common forms of mixed 

models in the GLM context are generalised linear mixed models (GLMM).  

The choice between mixed models and marginal models has to be made on subject-matter 

grounds. Marginal models describe population-average effects whereas mixed models 

describe conditional subject-specific effects. Because marginal models separately specify a 

model for the mean response component and a model for the within-subject association, the 

regression coefficients have an interpretation that does not depend on the assumptions made 

about the within-subject association (Fitzmaurice et al. 2011). Thus, the regression coefficients 

in marginal models describe the effects of covariates on the population mean response. 

Conversely, mixed models assume that some of the parameters are heterogeneous across 

individuals, according to some underlying distribution. Conditional on these random effects, it 

is assumed that measurements on the same cluster are independent. GLMM can be seen as a 

natural extension of linear mixed models with the use of random effects to capture the 

correlation within clusters. However, because non-linear link functions are usually used in 

GLM as opposed to the linear function used in linear models, regression parameters from a 

GLMM have a subject-specific interpretation, and not a population average interpretation 

(Agresti 2002, Fitzmaurice et al. 2011, Molenberghs & Verbeke 2005). Parameters indicate, for 

                                                           
 

34 Note that a mixed model implies a marginal model, but different mixed models might have the same 
marginal model (Molenberghs & Verbeke 2005). In practice, one fits a marginal model and interprets it 
in terms of a meaningful multilevel model. 
35 A key problem is the absence of a unique multivariate Bernoulli (or Poisson) distribution as is the case 
with the Multivariate Normal distribution (Molenberghs & Verbeke 2005). 
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each separate cluster, to what extent difference in mean response is related to difference in 

the covariates.  

In public health and epidemiological research, the population-averaged effect of a treatment 

or an intervention is often of interest, as opposed to the specific effect observed on individuals 

(Agresti 2002, Fitzmaurice et al. 2011). In this thesis, the interest lies in how changes in the 

neighbourhood and home environments affect, on average, physical activity in the study 

population. For this reason, marginal models are preferred over generalised linear mixed 

models. More specifically, I am using GEE to estimate marginal models for both longitudinal 

and cross-sectional data.  
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Two types of generalised linear models are used in chapter 5: linear regression models (for log 

of total physical activity) and logistic regression models (for daily recommended physical 

activity, walking to school, walking for leisure, outdoor physical activity and pay and play 

physical activity). In all models, cluster-robust standard errors are used to adjust the standard 

errors for clustering at school level.  

 

The equation of the adjusted linear model fitted in Table 5.2 is as follows: 

𝐿𝑜𝑔(𝑌𝑖) =  𝛽0 + 𝛽1𝑃𝑟𝑜𝑥1𝑖 + 𝛽2𝑃𝑟𝑜𝑥2𝑖 + 𝛽3𝑇𝑟𝑎𝑓_𝑠𝑎𝑓𝑒1𝑖 + 𝛽4𝑇𝑟𝑎𝑓_𝑠𝑎𝑓𝑒2𝑖 + 𝛽5𝐶𝑜𝑛𝑛𝑒𝑐𝑡1𝑖 +

𝛽6𝐶𝑜𝑛𝑛𝑒𝑐𝑡2𝑖 + 𝛽7𝐴𝑒𝑠𝑡1𝑖 + 𝛽8𝐴𝑒𝑠𝑡2𝑖 + 𝛽9𝑆𝑎𝑓𝑒1𝑖 + 𝛽10𝑆𝑎𝑓𝑒2𝑖 + 𝛽11𝑆𝑒𝑎𝑠𝑜𝑛𝑖 + 𝛽12𝐺𝑖𝑟𝑙𝑖 +

𝛽13𝐸𝑡𝐻1𝑖 + 𝛽14𝐸𝑡𝐻2𝑖 + 𝛽15𝐸𝑡𝐻3𝑖 + 𝛽16𝐸𝑡𝐻4𝑖 + 𝛽17𝐸𝑡𝐻5𝑖 + 𝛽18𝐸𝑡𝐻6𝑖 + 𝛽19𝐸𝑡𝐻7𝑖 + 𝛽20𝐹𝑆𝑀𝑖 +

𝛽21𝐻𝑒𝑎𝑙𝑡𝐻1𝑖 + 𝛽22𝐻𝑒𝑎𝑙𝑡𝐻2𝑖 + 𝛽23𝐹𝐴𝑆1𝑖 + 𝛽24𝐹𝐴𝑆2𝑖 + 𝛽25𝐵𝑜𝑟1𝑖 + 𝛽26𝐵𝑜𝑟2𝑖 + 𝛽27𝐵𝑜𝑟3𝑖 +

𝛽28𝐵𝑖𝑟𝑡𝐻𝑖 + 𝛽29𝑃𝑎𝑟_𝑒𝑚𝑝𝑙1𝑖 + 𝛽30𝑃𝑎𝑟_𝑒𝑚𝑝𝑙2𝑖 + 𝛽31𝑃𝑎𝑟_𝑒𝑚𝑝𝑙3𝑖 + 𝛽32𝑃𝑎𝑟_𝑒𝑚𝑝𝑙4𝑖 + 

𝛽33𝑃𝑎𝑟_𝑒𝑚𝑝𝑙5𝑖    

Where: 

i= individual 

𝑌𝑖  = total physical activity outcome 

𝑃𝑟𝑜𝑥1𝑖 , 𝑃𝑟𝑜𝑥2𝑖  = Perceived proximity to destination dummy variables (reference category: low) 

𝑇𝑟𝑎𝑓_𝑠𝑎𝑓𝑒1𝑖 , 𝑇𝑟𝑎𝑓_𝑠𝑎𝑓𝑒2𝑖  = Perceived traffic safety dummy variables (reference category: low) 

𝐶𝑜𝑛𝑛𝑒𝑐𝑡1𝑖 , 𝐶𝑜𝑛𝑛𝑒𝑐𝑡2𝑖  = Perceived street connectivity dummy variables (reference category: low) 

𝐴𝑒𝑠𝑡1𝑖  , 𝐴𝑒𝑠𝑡2𝑖  = Perceived aesthetics dummy variables (reference category: low) 

𝑆𝑎𝑓𝑒1𝑖𝑆𝑎𝑓𝑒2𝑖  = Perceived crime-related safety dummy variables (reference category: low) 

𝑆𝑒𝑎𝑠𝑜𝑛𝑖  = Season of interview dummy variable (reference category: winter) 

𝐺𝑖𝑟𝑙𝑖= dummy variable for girls 

𝐸𝑡𝐻1𝑖 ,…, 𝐸𝑡𝐻7𝑖= Ethnicity dummy variables (reference category: White UK) 

𝐹𝑆𝑀𝑖= Baseline free school meal status (reference category: no free school meal) 

𝐻𝑒𝑎𝑙𝑡𝐻1𝑖 , 𝐻𝑒𝑎𝑙𝑡𝐻2𝑖  = Health conditions dummy variables (reference category: no condition) 

𝐹𝐴𝑆1𝑖 , 𝐹𝐴𝑆2𝑖= Family affluence dummy variables (reference category: low) 

𝐵𝑜𝑟1𝑖 , … , 𝐵𝑜𝑟3𝑖  = Borough dummy variables (reference category: Newham) 
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𝐵𝑖𝑟𝑡𝐻𝑖  = Country of birth dummy variable (ref category: UK) 

𝑃𝑎𝑟_𝑒𝑚𝑝𝑙1𝑖 , … , 𝑃𝑎𝑟_𝑒𝑚𝑝𝑙5𝑖  = Parental employment dummy variables (reference category: both 

unemployed) 

 

 

The generic form of the logistic regression models used in Table 5.3-Table 5.9 is expressed as 

follows:  

𝑙𝑜𝑔𝑖𝑡{Pr(𝑌𝑖 = 1|𝒙𝒊)} = 𝒙𝒊
′𝜷    

Where: 

i= individual 

𝑌𝑖  = physical activity outcome: daily recommended physical activity, walking to school, walking for 

leisure, outdoor physical activity or pay and play physical activity 

𝒙𝒊 = a matrix representing the variables included in the model 

𝜷 = a vector representing the coefficients of the model, including a constant  

 

In the adjusted models, 𝒙𝒊
′𝜷 takes the following form: 

𝒙𝒊
′𝜷 = 𝛽0 + 𝛽1𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒_𝑐𝑎𝑡2𝑖 +⋯+ 𝛽4𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒_𝑐𝑎𝑡𝑚𝑖 + 𝛽5𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒_1𝑖 +⋯+

𝛽4+𝑝𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒_𝑝𝑖   

Where: 

𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒_𝑐𝑎𝑡2𝑖 , … , 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒_𝑐𝑎𝑡𝑚𝑖= dummy variables representing m-1 categories of the 

exposure variable of interest 

𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒_1𝑖 , … , 𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒_𝑝𝑖= dummy variables for all other variables included in the adjusted 

model 
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This appendix presents results from analyses of the missing data of the variables used in 

chapter 6. The analyses were conducted in order to inform: i) the validity of the complete case 

analysis; ii) the plausibility of the MAR assumption; and iii) the selection of the auxiliary 

variables of the imputation model. Note that these analyses are only informative and should 

be interpreted with caution as some assumptions might be violated in some of the models 

(e.g. clustering at individual level, normality in the error terms). 

 

In many instances, analyses of cohort studies are conducted on the complete cases, ignoring 

missing data and implicitly assuming the data to be MCAR. For the complete case analysis to 

be valid, the probability of being a complete case has to be independent of the outcome, 

conditional on the covariates in the models of interest (Carpenter & Kenward 2012). This is 

assessed in Table E.1 using logistic regression models (and therefore assuming that 

observations are independent, i.e. ignoring clustering).  

Results indicate that walking to school has significant bivariate associations with missingness 

of personal safety, and some evidence with missingness on the two socio-economic variables 

(family affluence and free school meals). The strength of evidence of associations weakens in 

the adjusted models. Adjusted models indicate that missingness on perceived connectivity 

might be related to walking to school.  

Walking for leisure is most likely not associated with missingness of the exposure variables 

(i.e. measures of neighbourhood perceptions), as indicated both in adjusted and unadjusted 

models. There is weak evidence of an association between missingness on FSM and walking 

for leisure. 

The odds of outdoor physical activity are associated with missingness on most of the exposure 

variables but not with missingness on potential confounders. Associations weaken and even 

sometimes change direction in fully adjusted models. There remains evidence that the 
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probability of having missing personal safety is more likely amongst those who reported 

outdoor physical activity (adjusted OR = 0.42, p-value=0.049).  

Overall, these results indicate that a complete case analysis might lead to some bias. Due to 

widespread item missingness, this analysis cannot be fully conclusive however. It is unclear 

whether weaker associations in the fully adjusted models are themselves biased (because of 

the change in the sample) or if they indicate that the complete case analysis is still valid once 

controlling for all relevant variables (i.e. once adjusted for covariates, missingness does not 

depend that much on the outcomes). Given that some significant associations remain in the 

adjusted models, the results overall indicate that a complete case analysis is very likely to be 

biased, which by the same token, rules out the MCAR assumption. 

Table E.1 Assessment of complete case analysis validity: unadjusted and adjusted ORs of item response for each 
covariate with missing values by outcome variable (adjusted and unadjusted results; n = 2,260; 6,780 
measurements) 

Covariate 
N 

missing 
% 

missing 
Outcome N OR P-value N* OR* P-value* 

Bus stop proximity 702 10.4 Walk to school 6446 1.05 0.652 4341 0.51 0.027 

   Walk for leisure 6102 0.87 0.179 4216 0.95 0.812 

Perceived traffic 
    safety 

911 13.4 Outdoor PA 5798 0.71 0.010 4055 1.13 0.654 

   Walk to school 6446 1.14 0.140 4341 0.87 0.588 

   Walk for leisure 6102 1.08 0.382 4217 1.19 0.457 

Perceived street 
    connectivity 

1275 18.8 Outdoor PA 5798 0.67 <0.001 4057 1.21 0.467 

   Walk to school 6446 1.05 0.554 4456 0.72 0.077 

   Walk for leisure 6102 0.93 0.341 4328 0.88 0.405 

Nice neighbourhood    Outdoor PA 5798 0.86 0.097 4156 1.14 0.436 

   for walking/cycling 855 12.6 Walk to school 6446 1.12 0.213 4105 0.60 0.221 

   Walk for leisure 6102 0.93 0.449 3992 0.54 0.062 

Feeling safe 1022 15.1 Outdoor PA 5798 0.69 0.001 3841 0.89 0.778 

   Walk to school 6446 1.19 0.038 4303 1.12 0.713 

   Walk for leisure 6102 0.96 0.655 4188 0.86 0.595 

   Outdoor PA 5798 0.67 <0.001 4032 0.42 0.049 

Health condition 741 10.9 Walk to school 6446 1.09 0.363 4707 0.91 0.454 

   Walk for leisure 6102 1.09 0.342 4576 0.99 0.898 

   Outdoor PA 5798 0.99 0.911 4390 1.31 0.032 

FAS Categories 264 3.9 Walk to school 6446 1.29 0.092 4347 1.22 0.386 

   Walk for leisure 6102 1.15 0.367 4221 1.17 0.500 

   Outdoor PA 5798 0.97 0.850 4064 0.99 0.968 

Take FSM at wave 1 138 2.0 Walk to school 6446 1.45 0.061 4120 1.00 0.988 

   Walk for leisure 6102 1.65 0.025 4009 1.74 0.089 

   Outdoor PA 5798 1.16 0.503 3860 1.12 0.732 

*Adjusted for all other covariates in the table, plus gender and ethnicity. Results from logistic regression models. . 

Response is coded 1 and missingness 0. PA – physical activity 
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As explained in the methods chapter (chapter 4), MAR is plausible if the probability of each 

variable being missing depends on the fully (or mostly fully) observed variables. To investigate 

this, I conducted missingness analyses on the variables with the highest proportions of missing 

values, i.e. the three outcomes (walking to school, walking for leisure and outdoor physical 

activity) and the five exposure variables (bus stop proximity, traffic safety, connectivity, nice 

neighbourhood and personal safety). I ran a series of logistic regressions to identify variables 

predictive of missing values (Table E.2). Variables used were (almost) fully observed variables 

from the model of interest (gender, ethnicity, family affluence, free school meals) and auxiliary 

variables a priori hypothesised to be associated with the probability of missingness and/or of 

the variables with missing values (Table E.1). Auxiliary variables retained are school, length of 

interview, country of birth, self-rated health, mental health (WEMWBS total score), total 

physical activity (log-transformed) and BMI (z-score). The latter BMI score has a slightly higher 

proportion of missing values and is therefore investigated separately to be able to identify 

whether adjusting for BMI (and therefore changing the analytical sample) might distort the 

other associations.  

Amongst the (almost) fully observed variables of the model of interest, gender, ethnicity, 

school and, to a lower extent, FSM are good predictors of missingness (Table E.2). There is less 

evidence that FAS categories predict missingness. The predictive ability of the auxiliary 

variables varies. There is good evidence that mental health predicts missingness on all 

perception variables but also on walking to school. Total PA is a good predictor of missingness 

on the physical activity variables, but less on the perception variables. There is some evidence 

that BMI predicts physical activity outcomes but also some perception variables. Results are 

more mixed for self-rated health and country of birth; in particular, country of birth does not 

seem to be associated with missingness of the variables considered. As for session progress, 

as expected, it is strongly associated with missingness on all variables. In general, the shorter 

the session, the higher the chance of having missing values on the variables.  

This analysis shows that at least some variables are predictive of missingness, which supports 

the plausibility of the MAR assumption. Variables with more missing values are also likely to 

predict missingness on the variables of the models of interest so that an imputation model 

with the wide range of variables considered will further strengthen the plausibility of the 

assumption. However, it is not possible to rule out MNAR, and it might be that even accounting 
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for all these variables, the missingness mechanism depends on unmeasured variables. There 

is however no theoretical or practical reason to believe that this could be the case.  

Table E.2 Assessment of the MAR assumption: (almost) fully observed predictors of item missingness for the 
variables with high levels of missing values.  

Missingness variable Predictor 
Adjusted 

 
p-value 

BMI 
Adjusted 

 
p-value 

Walking to school Gender 0.102 0.192 

 Ethnicity 0.008 0.006 

 School 0.084 0.061 

 FAS Categories 0.742 0.875 

 Take FSM at W1 0.608 0.762 

 Country of Birth 0.624 0.640 

 Self-rated health 0.247 0.268 

 Session progress 0.078 0.093 

 total PA(log) 0.008 0.001 

 WEMWBS score 0.003 0.003 

 BMI(z-score) . 0.117 

Walking for leisure Gender <0.001 <0.001 

 Ethnicity <0.001 <0.001 

 School 0.002 0.002 

 FAS Categories 0.069 0.032 

 Take FSM at W1 0.284 0.377 

 Country of Birth 0.817 0.751 

 Self-rated health 0.454 0.425 

 Session progress <0.001 <0.001 

 total PA(log) <0.001 <0.001 

 WEMWBS score 0.708 0.964 

 BMI(z-score) . 0.086 

Outdoor physical activity Gender 0.005 0.011 

 Ethnicity <0.001 <0.001 

 School <0.001 <0.001 

 FAS Categories 0.054 0.018 

 Take FSM at W1 0.080 0.077 

 Country of Birth 0.362 0.227 

 Self-rated health 0.681 0.522 

 Session progress <0.001 <0.001 

 total PA(log) 0.036 0.017 

 WEMWBS score 0.774 0.783 

 BMI(z-score) . 0.091 

Bus stop proximity Gender <0.001 <0.001 

 Ethnicity 0.004 0.005 

 School <0.001 <0.001 

 FAS Categories 0.171 0.142 

 Take FSM at W1 0.001 0.001 

 Country of Birth 0.132 0.058 

 Self-rated health 0.058 0.012 

 Session progress <0.001 <0.001 

 total PA(log) 0.699 0.377 

 WEMWBS score 0.003 <0.001 

 BMI(z-score) . 0.007 

Traffic safety Gender <0.001 <0.001 

 Ethnicity <0.001 <0.001 
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 School <0.001 <0.001 

 FAS Categories 0.554 0.700 

 Take FSM at W1 0.001 0.004 

 Country of Birth 0.414 0.377 

 Self-rated health 0.353 0.122 

 Session progress <0.001 <0.001 

 total PA(log) 0.582 0.334 

 WEMWBS score 0.002 <0.001 

 BMI(z-score) . 0.042 

Perceived street connectivity Gender 0.051 0.088 

 Ethnicity 0.001 0.005 

 School <0.001 <0.001 

 FAS Categories 0.270 0.501 

 Take FSM at W1 0.006 0.009 

 Country of Birth 0.549 0.532 

 Self-rated health 0.053 0.095 

 Session progress <0.001 <0.001 

 total PA(log) 0.452 0.465 

 WEMWBS score <0.001 <0.001 

 BMI(z-score) . 0.972 

Enjoyment of neighbourhood for Gender <0.001 <0.001 

   walking/cycling Ethnicity <0.001 <0.001 

 School <0.001 <0.001 

 FAS Categories 0.521 0.830 

 Take FSM at W1 0.002 0.002 

 Country of Birth 0.441 0.365 

 Self-rated health 0.286 0.415 

 Session progress <0.001 <0.001 

 total PA(log) 0.773 0.548 

 WEMWBS score 0.001 <0.001 

 BMI(z-score) . 0.389 

Feeling safe Gender <0.001 <0.001 

 Ethnicity 0.001 0.004 

 School <0.001 <0.001 

 FAS Categories 0.260 0.573 

 Take FSM at W1 <0.001 <0.001 

 Country of Birth 0.608 0.482 

 Self-rated health 0.081 0.224 

 Session progress <0.001 <0.001 

 total PA(log) 0.606 0.564 

 WEMWBS score 0.002 0.002 

 BMI(z-score) . 0.761 

Results from logistic regression models. 

 

The imputation model should include variables of the models of interest and relevant auxiliary 

variables. The later should be included only if they are likely to reduce bias and/or to increase 

efficiency (Carpenter & Kenward 2012). Variables predictive of the chance of missing values 

identified above should be included in the imputation model only if they also predict the 

underlying missing values, in which case, they are likely to reduce bias and improve efficiency. 
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Auxiliary variables should however be excluded if they do not predict the underlying values 

themselves. Variables associated with the underlying values - but not the chance of missing 

values - should be included because they will improve efficiency, although they are not going 

to reduce bias. 

Table E.3 reports (multinomial) logistic regression results of associations between auxiliary 

variables and the variables with most missing values (outcomes and exposures of the models 

of interest). Total physical activity is strongly associated with the physical activity outcomes. 

The mental health score is associated with almost all variables. Self-rated health and country 

or birth are strongly associated with some of the perception and the physical activity variables, 

which indicates that these auxiliary variables might increase efficiency rather than reduce bias 

(in view of the results from Table E.2). BMI is associated with walking for leisure, traffic safety 

and personal safety, but not with the other variables of Table E.3. Surprisingly, session 

progress turned out to be associated with traffic safety and nice neighbourhood, as well as 

bus distance. These associations are unexpected and might reflect systematic measurement 

error caused by the survey context. Including session progress in the imputation model might 

therefore exacerbate that bias, which is why I recommend not including session progress in 

the imputation model.  

Overall, the analysis shows that an imputation model with the auxiliary variables considered – 

country of birth, self-rated health, total physical activity, mental health and BMI – are very 

likely to potentially reduce bias and improve efficiency compared to a complete case analysis. 

In the imputation models, the three continuous auxiliary variables were zero-centred and 

transformed to make them resemble normal distributions.  

Finally, the variable measuring daytime perceived safety in the neighbourhood (from the 

ALPHA questionnaire) was also included in the imputation model. The variable was excluded 

from the main missing data analysis produced in this appendix because of its high level of 

missingness (which affected convergence of some of the multinomial logistic regressions). 

Additional analyses however (not presented) revealed that it was predictive of most of the 

perceptions variables and their missingness, which indicated a potential to reduce bias and 

increase efficiency.  
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Table E.3 Associations between variables with missing values and auxiliary variables, adjusted for auxiliary 
variables, gender, ethnicity, school, FSM and FAS. Results from (multinomial) logistic regression with and 
without BMI adjustment. 

Variable with missing value Predictor p-value BMI adjusted p-value 

Walking to school Country of Birth 0.594 0.942 

 Self-rated health 0.987 0.981 

 Session progress 0.422 0.426 

 total PA(log) <0.001 <0.001 

 WEMWBS score 0.308 0.157 

 BMI(z-score) . 0.858 

Walking for leisure Country of Birth 0.019 0.044 

 Self-rated health 0.001 0.001 

 Session progress 0.343 0.296 

 total PA(log) <0.001 <0.001 

 WEMWBS score 0.008 0.039 

 BMI(z-score) . 0.004 

Outdoor physical activity Country of Birth 0.002 0.006 

 Self-rated health 0.077 0.075 

 Session progress 0.612 0.713 

 total PA(log) <0.001 <0.001 

 WEMWBS score 0.020 0.012 

 BMI(z-score) . 0.524 

Bus stop proximity Country of Birth 0.403 0.147 

 Self-rated health 0.476 0.435 

 Session progress 0.030 0.036 

 total PA(log) 0.039 0.051 

 WEMWBS score 0.001 0.002 

 BMI(z-score) . 0.842 

Traffic safety Country of Birth 0.640 0.437 

 Self-rated health 0.008 0.013 

 Session progress 0.101 0.142 

 total PA(log) 0.003 0.004 

 WEMWBS score <0.001 <0.001 

 BMI(z-score) . 0.015 

Perceived street connectivity Country of Birth 0.082 0.070 

 Self-rated health <0.001 <0.001 

 Session progress 0.612 0.711 

 total PA(log) 0.005 0.001 

 WEMWBS score <0.001 <0.001 

 BMI(z-score) . 0.473 

Enjoyment of neighbourhood for Country of Birth 0.011 0.006 

   walking/cycling Self-rated health <0.001 <0.001 

 Session progress 0.019 0.042 

 total PA(log) 0.008 0.019 

 WEMWBS score <0.001 <0.001 

 BMI(z-score) . 0.327 

Feeling safe Country of Birth 0.004 0.002 

 Self-rated health <0.001 <0.001 

 Session progress 0.647 0.858 

 total PA(log) 0.191 0.298 

 WEMWBS score <0.001 <0.001 

 BMI(z-score) . 0.017 
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This appendix provides a general form of the types of models fitted in chapter 6. Three types 

of models are fitted: pooled longitudinal models, cross-sectional models for cumulative 

exposure and models for trajectories of exposure and outcome.  

 

The time-varying measures of perceptions are used. The adjusted models account for time-

invariant (gender, ethnicity, baseline FSM) and time-varying confounders (health status and 

family affluence) and include all five time-varying perceptions of the neighbourhood 

environment. A time trend is included to reflect the general decrease in physical activity during 

adolescence. The models are fitted with GEE to account for clustering at individual level i. The 

adjusted logistic model is expressed as follows:  

𝑙𝑜𝑔𝑖𝑡{Pr(𝑌𝑖𝑗 = 1|𝒙𝒊𝒋)} = 𝒙𝒊𝒋
′ 𝜷    

Where: 

i= individual 

j= repeated measures 

𝑌𝑖𝑗  = physical activity outcome (walking to school, walking for leisure or outdoor physical activity) for 

individual i at occasion j  

𝒙𝒊𝒋 = a matrix representing the variables included in the model for all individuals at each occasion 

𝜷 = a vector representing the coefficients of the model, including a constant  

In the adjusted model, 𝒙𝒊𝒋
′ 𝜷 takes the following form: 

𝒙𝒊𝒋
′ 𝜷 =  𝛽0 + 𝛽1𝐵𝑢𝑠_𝑝𝑟𝑜𝑥𝑖𝑗 + 𝛽2𝑇𝑟𝑎𝑓_𝑠𝑎𝑓𝑒1𝑖𝑗 + 𝛽3𝑇𝑟𝑎𝑓_𝑠𝑎𝑓𝑒2𝑖𝑗 + 𝛽4𝐶𝑜𝑛𝑛𝑒𝑐𝑡1𝑖𝑗 +

𝛽5𝐶𝑜𝑛𝑛𝑒𝑐𝑡2𝑖𝑗 + 𝛽6𝑁𝑖𝑐𝑒1𝑖𝑗 + 𝛽7𝑁𝑖𝑐𝑒2𝑖𝑗 + 𝛽8𝑆𝑎𝑓𝑒1𝑖𝑗 + 𝛽9𝑆𝑎𝑓𝑒2𝑖𝑗 + 𝛽10𝑆𝑎𝑓𝑒3𝑖𝑗 + 𝛽11𝑆𝑎𝑓𝑒4𝑖𝑗 +

𝛽12𝐺𝑖𝑟𝑙𝑖 + 𝛽13𝐸𝑡𝐻1𝑖 + 𝛽14𝐸𝑡𝐻2𝑖 + 𝛽15𝐸𝑡𝐻3𝑖 + 𝛽16𝐸𝑡𝐻4𝑖 + 𝛽17𝐸𝑡𝐻5𝑖 + 𝛽18𝐸𝑡𝐻6𝑖 + 𝛽19𝐸𝑡𝐻7𝑖 +

𝛽20𝐹𝑆𝑀𝑖1 + 𝛽21𝐻𝑒𝑎𝑙𝑡𝐻𝑖𝑗 + 𝛽22𝐹𝐴𝑆1𝑖𝑗 + 𝛽23𝐹𝐴𝑆2𝑖𝑗 + 𝛽24𝑡𝑖𝑚𝑒𝑗   

Where: 

𝐵𝑢𝑠_𝑝𝑟𝑜𝑥𝑖𝑗  = Perceived bus stop proximity dummy variable (reference category: far away) 

𝑇𝑟𝑎𝑓_𝑠𝑎𝑓𝑒1𝑖𝑗 , 𝑇𝑟𝑎𝑓_𝑠𝑎𝑓𝑒2𝑖𝑗  = Perceived traffic safety dummy variables (reference category: low) 

𝐶𝑜𝑛𝑛𝑒𝑐𝑡1𝑖𝑗 , 𝐶𝑜𝑛𝑛𝑒𝑐𝑡2𝑖𝑗  = Perceived street connectivity dummy variables (reference category: low) 

𝑁𝑖𝑐𝑒1𝑖𝑗  , 𝑁𝑖𝑐𝑒2𝑖𝑗  = Enjoyment of neighbourhood dummy variables (reference category: disagree) 

𝑆𝑎𝑓𝑒1𝑖𝑗 , … , 𝑆𝑎𝑓𝑒4𝑖𝑗  = Perceived personal safety dummy variables (reference category: strongly 

disagree) 

𝐺𝑖𝑟𝑙𝑖= dummy variable for girls (time invariant) 
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𝐸𝑡𝐻1𝑖 ,…, 𝐸𝑡𝐻7𝑖= Ethnicity dummy variables (reference category: White UK; time invariant) 

𝐹𝑆𝑀𝑖1= Baseline free school meal status (reference category: no free school meal) 

𝐻𝑒𝑎𝑙𝑡𝐻𝑖𝑗  = Health conditions dummy variable (reference category: no condition) 

𝐹𝐴𝑆1𝑖𝑗 , 𝐹𝐴𝑆2𝑖𝑗= Family affluence dummy variables (reference category: low) 

𝑡𝑖𝑚𝑒𝑗= continuous variable indicating the wave (1, 2 or 3) 

Five additional models are run with an interaction term each between gender and an aspect 

of perception of the neighbourhood environment. For instance, the adjusted model with an 

interaction term between gender and traffic safety is as follows: 

𝒙𝒊𝒋
′ 𝜷 =  𝛽0 + 𝛽1𝐵𝑢𝑠_𝑝𝑟𝑜𝑥𝑖𝑗 + 𝛽2𝑇𝑟𝑎𝑓_𝑠𝑎𝑓𝑒1𝑖𝑗 + 𝛽3𝑇𝑟𝑎𝑓_𝑠𝑎𝑓𝑒2𝑖𝑗 + 𝛽4𝐶𝑜𝑛𝑛𝑒𝑐𝑡1𝑖𝑗 +

𝛽5𝐶𝑜𝑛𝑛𝑒𝑐𝑡2𝑖𝑗 + 𝛽6𝑁𝑖𝑐𝑒1𝑖𝑗 + 𝛽7𝑁𝑖𝑐𝑒2𝑖𝑗 + 𝛽8𝑆𝑎𝑓𝑒1𝑖𝑗 + 𝛽9𝑆𝑎𝑓𝑒2𝑖𝑗 + 𝛽10𝑆𝑎𝑓𝑒3𝑖𝑗 + 𝛽11𝑆𝑎𝑓𝑒4𝑖𝑗 +

𝛽12𝐺𝑖𝑟𝑙𝑖 + 𝛽13𝐸𝑡𝐻1𝑖 + 𝛽14𝐸𝑡𝐻2𝑖 + 𝛽15𝐸𝑡𝐻3𝑖 + 𝛽16𝐸𝑡𝐻4𝑖 + 𝛽17𝐸𝑡𝐻5𝑖 + 𝛽18𝐸𝑡𝐻6𝑖 + 𝛽19𝐸𝑡𝐻7𝑖 +

𝛽20𝐹𝑆𝑀𝑖1 + 𝛽21𝐻𝑒𝑎𝑙𝑡𝐻𝑖𝑗 + 𝛽22𝐹𝐴𝑆1𝑖𝑗 + 𝛽23𝐹𝐴𝑆2𝑖𝑗 + 𝛽24𝑡𝑖𝑚𝑒𝑗 + 𝛽25𝑇𝑟𝑎𝑓_𝑠𝑎𝑓𝑒1𝑖𝑗 ∗ 𝐺𝑖𝑟𝑙𝑖  

+𝛽26𝑇𝑟𝑎𝑓_𝑠𝑎𝑓𝑒2𝑖𝑗 ∗ 𝐺𝑖𝑟𝑙𝑖  

 

Models are fitted to predict physical activity outcomes at wave 3 based on the cumulative 

exposure variables. Logistic regression models are estimated with GEE to account for 

clustering at school level (j in this model). The exposure variables are treated as continuous 

variables and the adjusted model adjusts for gender, ethnicity, baseline FSM, health status 

and family affluence reported at wave 3. The adjusted model is: 

𝑙𝑜𝑔𝑖𝑡{Pr(𝑌𝑖𝑗 = 1|𝒙𝒊𝒋)} = 𝒙𝒊𝒋
′ 𝜷 

Where: 

i = individual 

j = school 

𝒙𝒊𝒋
′ 𝜷 =  𝛽0 + 𝛽1𝐶𝑢𝑚_𝑝𝑟𝑜𝑥𝑖𝑗 + 𝛽2𝐶𝑢𝑚_𝑡𝑟𝑎𝑓_𝑠𝑎𝑓𝑒𝑖𝑗 + 𝛽3𝐶𝑢𝑚_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑗 + 𝛽4𝐶𝑢𝑚_𝑛𝑖𝑐𝑒𝑖𝑗 +

𝛽5𝐶𝑢𝑚_𝑠𝑎𝑓𝑒𝑖𝑗 + 𝛽6𝐺𝑖𝑟𝑙𝑖𝑗 + 𝛽7𝐸𝑡𝐻1𝑖𝑗 + 𝛽8𝐸𝑡𝐻2𝑖𝑗 + 𝛽9𝐸𝑡𝐻3𝑖𝑗 + 𝛽10𝐸𝑡𝐻4𝑖𝑗 + 𝛽11𝐸𝑡𝐻5𝑖𝑗 +

𝛽12𝐸𝑡𝐻6𝑖𝑗 + 𝛽13𝐸𝑡𝐻7𝑖𝑗 + 𝛽14𝐹𝑆𝑀𝑖𝑗 + 𝛽15𝐻𝑒𝑎𝑙𝑡𝐻𝑖𝑗 + 𝛽16𝐹𝐴𝑆1𝑖𝑗 + 𝛽17𝐹𝐴𝑆2𝑖𝑗   

𝐶𝑢𝑚_𝑝𝑟𝑜𝑥𝑖𝑗  = cumulative proximity score 

𝐶𝑢𝑚_𝑡𝑟𝑎𝑓_𝑠𝑎𝑓𝑒𝑖𝑗= cumulative traffic safety score 

𝐶𝑢𝑚_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑗  = cumulative street connectivity 

𝐶𝑢𝑚_𝑛𝑖𝑐𝑒𝑖𝑗= cumulative enjoyment of neighbourhood score 

𝐶𝑢𝑚_𝑠𝑎𝑓𝑒𝑖𝑗= cumulative personal safety score 

In addition, five models with interaction terms between cumulative perception score and 

gender were fitted. For example, the model with gender*cumulative personal safety 

interaction is:  
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𝒙𝒊𝒋
′ 𝜷 =  𝛽0 + 𝛽1𝐶𝑢𝑚_𝑝𝑟𝑜𝑥𝑖𝑗 + 𝛽2𝐶𝑢𝑚_𝑡𝑟𝑎𝑓_𝑠𝑎𝑓𝑒𝑖𝑗 + 𝛽3𝐶𝑢𝑚_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑗 + 𝛽4𝐶𝑢𝑚_𝑛𝑖𝑐𝑒𝑖𝑗

+ 𝛽5𝐶𝑢𝑚_𝑠𝑎𝑓𝑒𝑖𝑗 + 𝛽6𝐺𝑖𝑟𝑙𝑖𝑗 + 𝛽7𝐸𝑡𝐻1𝑖𝑗 + 𝛽8𝐸𝑡𝐻2𝑖𝑗 + 𝛽9𝐸𝑡𝐻3𝑖𝑗 + 𝛽10𝐸𝑡𝐻4𝑖𝑗
+ 𝛽11𝐸𝑡𝐻5𝑖𝑗 + 𝛽12𝐸𝑡𝐻6𝑖𝑗 + 𝛽13𝐸𝑡𝐻7𝑖𝑗 + 𝛽14𝐹𝑆𝑀𝑖𝑗 + 𝛽15𝐻𝑒𝑎𝑙𝑡𝐻𝑖𝑗 + 𝛽16𝐹𝐴𝑆1𝑖𝑗
+ 𝛽17𝐹𝐴𝑆2𝑖𝑗 + 𝛽18𝐶𝑢𝑚_𝑠𝑎𝑓𝑒𝑖𝑗 ∗ 𝐺𝑖𝑟𝑙𝑖𝑗  

 

To test the relationship between trajectories of perceptions (i.e. change between wave 3 and 

baseline) and change in physical activity, logistic regressions are estimated with GEE to 

account for the clustering at individual level i. Models adjust for time-invariant confounders 

(gender, ethnicity, baseline FSM), time-varying covariates (health status, family affluence), and 

a time trend. The exposure variables are continuous and time-invariant. Their role in the model 

is comparable to a baseline treatment. To assess the associations between trajectory of 

exposure and change in physical activity, an interaction term is added between time and the 

trajectory variable. The general form of the model is the same as for the pooled longitudinal 

analysis. The specific equation of the adjusted model is:  

𝒙𝒊𝒋
′ 𝜷 =  𝛽0 + 𝛽1𝐶𝐻𝑎𝑛𝑔𝑒_𝑝𝑟𝑜𝑥𝑖 + 𝛽2𝐶𝐻𝑎𝑛𝑔𝑒_𝑡𝑟𝑎𝑓_𝑠𝑎𝑓𝑒𝑖 + 𝛽3𝐶𝐻𝑎𝑛𝑔𝑒_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖 +

𝛽4𝐶𝐻𝑎𝑛𝑔𝑒_𝑛𝑖𝑐𝑒𝑖 + 𝛽5𝐶𝐻𝑎𝑛𝑔𝑒_𝑠𝑎𝑓𝑒𝑖+𝛽6𝐶𝐻𝑎𝑛𝑔𝑒_𝑝𝑟𝑜𝑥𝑖 ∗ 𝑡𝑖𝑚𝑒𝑗  + 𝛽7𝐶𝐻𝑎𝑛𝑔𝑒_𝑡𝑟𝑎𝑓_𝑠𝑎𝑓𝑒𝑖 ∗

𝑡𝑖𝑚𝑒𝑗 + 𝛽8𝐶𝐻𝑎𝑛𝑔𝑒_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖 ∗ 𝑡𝑖𝑚𝑒𝑗 + 𝛽9𝐶𝐻𝑎𝑛𝑔𝑒_𝑛𝑖𝑐𝑒𝑖 ∗ 𝑡𝑖𝑚𝑒𝑗 + 𝛽10𝐶𝐻𝑎𝑛𝑔𝑒_𝑠𝑎𝑓𝑒𝑖 ∗ 𝑡𝑖𝑚𝑒𝑗 +

𝛽11𝐺𝑖𝑟𝑙𝑖 + 𝛽12𝐸𝑡𝐻1𝑖 + 𝛽13𝐸𝑡𝐻2𝑖 + 𝛽14𝐸𝑡𝐻3𝑖 + 𝛽15𝐸𝑡𝐻4𝑖 + 𝛽16𝐸𝑡𝐻5𝑖 + 𝛽17𝐸𝑡𝐻6𝑖 + 𝛽18𝐸𝑡𝐻7𝑖 +

𝛽19𝐹𝑆𝑀𝑖1 + 𝛽20𝐻𝑒𝑎𝑙𝑡𝐻𝑖𝑗 + 𝛽21𝐹𝐴𝑆1𝑖𝑗 + 𝛽22𝐹𝐴𝑆2𝑖𝑗 + 𝛽23𝑡𝑖𝑚𝑒𝑗    

Where: 

𝐶𝐻𝑎𝑛𝑔𝑒_𝑝𝑟𝑜𝑥𝑖= trajectory of change in perceived bus stop proximity 

𝐶𝐻𝑎𝑛𝑔𝑒_𝑡𝑟𝑎𝑓_𝑠𝑎𝑓𝑒𝑖= trajectory of change in perceived traffic safety 

𝐶𝐻𝑎𝑛𝑔𝑒_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖= trajectory of change in perceived street connectivity 

𝐶𝐻𝑎𝑛𝑔𝑒_𝑛𝑖𝑐𝑒𝑖= trajectory of change in enjoyment of neighbourhood  

𝐶𝐻𝑎𝑛𝑔𝑒_𝑠𝑎𝑓𝑒𝑖= trajectory of change in perceived personal safety 

Five additional models included a tree-way interaction term to assess whether gender 

moderates the association between trajectory of perception and change in physical activity. 

For example, the equation for a gender interaction with street connectivity is:  

𝒙𝒊𝒋
′ 𝜷 =  𝛽0 + 𝛽1𝐶𝐻𝑎𝑛𝑔𝑒_𝑝𝑟𝑜𝑥𝑖 + 𝛽2𝐶𝐻𝑎𝑛𝑔𝑒_𝑡𝑟𝑎𝑓_𝑠𝑎𝑓𝑒𝑖 + 𝛽3𝐶𝐻𝑎𝑛𝑔𝑒_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖 +

𝛽4𝐶𝐻𝑎𝑛𝑔𝑒_𝑛𝑖𝑐𝑒𝑖 + 𝛽5𝐶𝐻𝑎𝑛𝑔𝑒_𝑠𝑎𝑓𝑒𝑖+𝛽6𝐶𝐻𝑎𝑛𝑔𝑒_𝑝𝑟𝑜𝑥𝑖 ∗ 𝑡𝑖𝑚𝑒𝑗  + 𝛽7𝐶𝐻𝑎𝑛𝑔𝑒_𝑡𝑟𝑎𝑓_𝑠𝑎𝑓𝑒𝑖 ∗

𝑡𝑖𝑚𝑒𝑗 + 𝛽8𝐶𝐻𝑎𝑛𝑔𝑒_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖 ∗ 𝑡𝑖𝑚𝑒𝑗 + 𝛽9𝐶𝐻𝑎𝑛𝑔𝑒_𝑛𝑖𝑐𝑒𝑖 ∗ 𝑡𝑖𝑚𝑒𝑗 + 𝛽10𝐶𝐻𝑎𝑛𝑔𝑒_𝑠𝑎𝑓𝑒𝑖 ∗ 𝑡𝑖𝑚𝑒𝑗 +

𝛽11𝐺𝑖𝑟𝑙𝑖 + 𝛽12𝐸𝑡𝐻1𝑖 + 𝛽13𝐸𝑡𝐻2𝑖 + 𝛽14𝐸𝑡𝐻3𝑖 + 𝛽15𝐸𝑡𝐻4𝑖 + 𝛽16𝐸𝑡𝐻5𝑖 + 𝛽17𝐸𝑡𝐻6𝑖 + 𝛽18𝐸𝑡𝐻7𝑖 +

𝛽19𝐹𝑆𝑀𝑖1 + 𝛽20𝐻𝑒𝑎𝑙𝑡𝐻𝑖𝑗 + 𝛽21𝐹𝐴𝑆1𝑖𝑗 + 𝛽22𝐹𝐴𝑆2𝑖𝑗 + 𝛽23𝑡𝑖𝑚𝑒𝑗+𝛽24𝐺𝑖𝑟𝑙𝑖 ∗ 𝑡𝑖𝑚𝑒𝑗 + 𝛽25𝐺𝑖𝑟𝑙𝑖 ∗

𝑡𝑖𝑚𝑒𝑗 ∗ 𝐶𝐻𝑎𝑛𝑔𝑒_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖   
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To decide on the working correlation to use, I compared model-based and robust standard 

errors (SEs) of the parameters of the models for different working correlations structures. The 

working correlation of choice should be the one with smallest difference between the two 

types of SEs. For each hypothesis tested (each type of model) and each outcome, several 

specifications of the working correlation were fitted. For the pooled longitudinal models and 

models for trajectory of change, I used unstructured (i.e. allowing for different correlations 

across waves), exchangeable/compound symmetry (i.e. same correlation across waves), and 

autoregressive of the First order or AR1 (i.e. a decreasing correlation over time). For the 

models estimated with GEE accounting for clustering at school level (cross-sectional model), 

exchangeable and independent working correlation were applied. Comparisons of the SEs for 

each model of interest are in Table E.4-Table E.12 and summarised as follows 

 

Results from Table E.4-Table E.6 indicate that exchangeable and unstructured working 

correlations give better results. Exchangeable working correlations seem more appropriate for 

the first two outcomes (Table E.4 and Table E.5) but unstructured working correlation is 

slightly better for outdoor physical activity (Table E.6). In all three Tables, AR1 correlations 

lead to the greater differences between model-based and robust SEs.  

 

Difference between exchangeable and independent working correlations are marginal (Table 

E.7-Table E.9). Exchangeable working correlations have smallest difference between robust 

and model-based SEs for walking to school and walking for leisure outcomes (Table E.7 and 

Table E.8). For the outcome outdoor physical activity, an independent working correlation 

structure leads to smaller differences in the SEs for the main parameters (Table E.9). This 

suggests that the clustering effect at school level is almost negligible.  

 

For the main parameters of interest, unstructured working correlation seems to be more 

appropriate (Table E.10-Table E.12). The differences between model-based and robust SEs are 
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very similar for both specifications of the correlation structures. AR1 correlations lead to 

greater standard error (SE) differences.  

 

Results indicate that the choice between unstructured and exchangeable working correlation 

does not seem to matter for the longitudinal models (pooled and trajectory). Results from the 

cross-sectional models for cumulative exposure indicate that clustering at school level does 

not have a great role; therefore independent correlation could also be used. Exchangeable 

working correlation is nevertheless used to stress on the correlation at school level. For all the 

longitudinal models, the more flexible – unstructured – working correlations are used.  
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Table E.4 Comparison of the parameters and standard errors of three different specifications of the working correlation matrix in the GEE estimation of the fully adjusted pooled longitudinal 
model for walking to school 

parameter b UN b AR1 b EXC 
SE UN 

Robust 

SE UN 

Model 

SE AR1 

Robust 

SE AR1 

Model 

SE EXC 

Robust 

SE EXC 

Model 

Diff SE 

UN 

Diff SE 

AR1 

Diff SE 

EXC 

time -0.036 -0.056 -0.034 0.037 0.038 0.044 0.050 0.037 0.038 -0.001 -0.006 -0.000 

2.ibus_rr -0.140 -0.251 -0.137 0.098 0.093 0.122 0.112 0.098 0.093 0.006 0.010 0.005 

2.traffic 0.218 0.227 0.209 0.115 0.118 0.136 0.136 0.116 0.119 -0.004 -0.000 -0.003 

3.traffic 0.180 0.130 0.178 0.114 0.118 0.135 0.136 0.116 0.119 -0.004 -0.001 -0.003 

2.infra 0.095 0.121 0.096 0.089 0.089 0.108 0.103 0.089 0.089 0.000 0.004 -0.001 

3.infra 0.189 0.188 0.181 0.110 0.111 0.132 0.127 0.110 0.111 -0.000 0.005 -0.001 

2.nice3 0.080 0.015 0.073 0.087 0.092 0.105 0.107 0.088 0.092 -0.005 -0.002 -0.005 

3.nice3 -0.086 -0.161 -0.099 0.099 0.102 0.121 0.120 0.099 0.103 -0.004 0.001 -0.004 

2.n_safe2a 0.112 0.054 0.119 0.142 0.138 0.174 0.160 0.142 0.139 0.004 0.014 0.004 

3.n_safe2a 0.037 -0.038 0.021 0.135 0.133 0.162 0.153 0.135 0.133 0.002 0.009 0.002 

4.n_safe2a 0.073 0.010 0.060 0.138 0.134 0.166 0.155 0.138 0.135 0.003 0.011 0.003 

5.n_safe2a 0.109 0.101 0.106 0.141 0.137 0.171 0.160 0.141 0.138 0.003 0.010 0.003 

2.gender_r 0.085 0.029 0.086 0.092 0.092 0.113 0.109 0.092 0.092 -0.000 0.004 -0.000 

2.d_eth_8cat -0.549 -0.455 -0.543 0.188 0.186 0.232 0.220 0.188 0.186 0.002 0.012 0.002 

3.d_eth_8cat 0.235 0.337 0.230 0.270 0.275 0.327 0.325 0.270 0.275 -0.005 0.001 -0.004 

4.d_eth_8cat -0.207 -0.204 -0.202 0.256 0.250 0.325 0.301 0.256 0.250 0.006 0.024 0.006 

5.d_eth_8cat 0.270 0.232 0.271 0.175 0.176 0.203 0.199 0.175 0.176 -0.000 0.005 -0.000 

6.d_eth_8cat -0.939 -0.981 -0.950 0.222 0.221 0.273 0.262 0.222 0.221 0.001 0.012 0.001 

7.d_eth_8cat -0.416 -0.420 -0.416 0.174 0.177 0.219 0.218 0.174 0.177 -0.004 0.001 -0.004 

8.d_eth_8cat -0.326 -0.356 -0.330 0.135 0.136 0.159 0.156 0.135 0.136 -0.001 0.003 -0.001 

2.health2 0.143 0.092 0.144 0.080 0.080 0.095 0.093 0.080 0.080 0.001 0.002 0.001 
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parameter b UN b AR1 b EXC 
SE UN 

Robust 

SE UN 

Model 

SE AR1 

Robust 

SE AR1 

Model 

SE EXC 

Robust 

SE EXC 

Model 

Diff SE 

UN 

Diff SE 

AR1 

Diff SE 

EXC 

2.fas_cat -0.273 -0.211 -0.256 0.158 0.151 0.189 0.175 0.157 0.151 0.007 0.014 0.006 

3.fas_cat -0.245 -0.163 -0.235 0.165 0.159 0.195 0.185 0.163 0.159 0.005 0.010 0.004 

2.fsm_ref_r 0.082 0.210 0.082 0.097 0.097 0.122 0.117 0.097 0.097 0.000 0.005 0.000 

_cons 1.386 1.621 1.385 0.256 0.257 0.313 0.305 0.255 0.257 -0.002 0.008 -0.002 

b - parameter of the logistic regression; SE - standard error of the parameter; EXC - exchangeable; UN - unstructured; AR1 - first-order auto-regressive ; Model – Model-based Standard Error 

produced by the GEE estimation; Robust – Cluster-Robust Standard Error; Diff – difference between Robust and Model-based Standard Errors  

 

Table E.5 Comparison of the parameters and standard errors of three different specifications of the working correlation matrix in the GEE estimation of the fully adjusted pooled longitudinal 
model for walking for leisure 

parameter b UN b AR1 b EXC 
SE UN 

Robust 

SE UN 

Model 

SE AR1 

Robust 

SE AR1 

Model 

SE EXC 

Robust 

SE EXC 

Model 

Diff SE 

UN 

Diff SE 

AR1 

Diff SE 

EXC 

time -0.230 -0.202 -0.231 0.040 0.040 0.048 0.048 0.040 0.038 0.000 -0.000 0.002 

2.ibus_rr -0.132 -0.142 -0.134 0.082 0.084 0.095 0.098 0.083 0.085 -0.002 -0.003 -0.002 

2.traffic -0.111 -0.172 -0.103 0.119 0.115 0.134 0.130 0.119 0.116 0.003 0.004 0.003 

3.traffic -0.176 -0.201 -0.170 0.118 0.115 0.133 0.130 0.118 0.116 0.003 0.003 0.003 

2.infra 0.100 0.142 0.103 0.088 0.088 0.100 0.101 0.088 0.089 -0.001 -0.001 -0.000 

3.infra 0.133 0.143 0.129 0.107 0.106 0.122 0.121 0.108 0.107 0.001 0.001 0.001 

2.nice3 -0.031 -0.077 -0.025 0.089 0.089 0.103 0.101 0.090 0.089 0.001 0.002 0.001 

3.nice3 0.071 0.078 0.073 0.098 0.098 0.113 0.112 0.099 0.098 0.000 0.001 0.001 

2.n_safe2a 0.286 0.234 0.279 0.136 0.135 0.154 0.154 0.137 0.136 0.001 -0.001 0.001 

3.n_safe2a 0.080 0.116 0.072 0.134 0.131 0.150 0.148 0.134 0.132 0.002 0.001 0.002 

4.n_safe2a 0.325 0.372 0.321 0.133 0.131 0.150 0.148 0.134 0.132 0.002 0.001 0.002 

5.n_safe2a 0.204 0.292 0.198 0.137 0.135 0.156 0.154 0.138 0.136 0.002 0.002 0.002 

2.gender_r 0.482 0.462 0.481 0.079 0.078 0.093 0.091 0.079 0.078 0.001 0.002 0.001 
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parameter b UN b AR1 b EXC 
SE UN 

Robust 

SE UN 

Model 

SE AR1 

Robust 

SE AR1 

Model 

SE EXC 

Robust 

SE EXC 

Model 

Diff SE 

UN 

Diff SE 

AR1 

Diff SE 

EXC 

2.d_eth_8cat -0.362 -0.430 -0.359 0.161 0.157 0.192 0.184 0.161 0.157 0.004 0.008 0.004 

3.d_eth_8cat -0.398 -0.327 -0.399 0.200 0.201 0.235 0.231 0.201 0.202 -0.001 0.005 -0.001 

4.d_eth_8cat -0.687 -0.746 -0.694 0.199 0.210 0.246 0.252 0.200 0.211 -0.011 -0.005 -0.011 

5.d_eth_8cat -0.954 -1.014 -0.954 0.132 0.136 0.149 0.152 0.133 0.136 -0.004 -0.003 -0.003 

6.d_eth_8cat -0.889 -0.862 -0.912 0.213 0.210 0.254 0.253 0.214 0.211 0.004 0.001 0.003 

7.d_eth_8cat -0.949 -1.039 -0.944 0.158 0.160 0.192 0.199 0.158 0.161 -0.003 -0.008 -0.003 

8.d_eth_8cat -0.460 -0.555 -0.465 0.109 0.107 0.125 0.122 0.109 0.107 0.002 0.002 0.002 

2.health2 0.004 0.050 0.006 0.073 0.073 0.085 0.083 0.074 0.073 0.001 0.002 0.001 

2.fas_cat 0.049 -0.057 0.050 0.134 0.133 0.152 0.151 0.135 0.134 0.000 0.001 0.002 

3.fas_cat 0.177 0.110 0.180 0.141 0.140 0.161 0.158 0.143 0.140 0.001 0.003 0.003 

2.fsm_ref_r 0.162 0.172 0.156 0.083 0.082 0.098 0.096 0.083 0.082 0.001 0.002 0.001 

_cons -0.086 -0.021 -0.087 0.234 0.233 0.269 0.267 0.235 0.232 0.002 0.002 0.003 

b - parameter of the logistic regression; SE - standard error of the parameter; EXC - exchangeable; UN - unstructured; AR1 - first-order auto-regressive ; Model – Model-based Standard Error 

produced by the GEE estimation; Robust – Cluster-Robust Standard Error; Diff – difference between Robust and Model-based Standard Errors  

 

Table E.6 Comparison of the parameters and standard errors of three different specifications of the working correlation matrix in the GEE estimation of the fully adjusted pooled longitudinal 
model for outdoor physical activity 

parameter b UN b AR1 b EXC 
SE UN 

Robust 

SE UN 

Model 

SE AR1 

Robust 

SE AR1 

Model 

SE EXC 

Robust 

SE EXC 

Model 

Diff SE 

UN 

Diff SE 

AR1 

Diff SE 

EXC 

time -0.347 -0.314 -0.347 0.047 0.045 0.053 0.056 0.046 0.044 0.002 -0.002 0.002 

2.ibus_rr -0.023 -0.045 -0.020 0.097 0.100 0.112 0.116 0.098 0.100 -0.002 -0.004 -0.002 

2.traffic 0.031 0.021 0.032 0.141 0.135 0.157 0.152 0.140 0.135 0.006 0.005 0.005 

3.traffic -0.088 -0.028 -0.084 0.144 0.135 0.162 0.152 0.144 0.135 0.010 0.010 0.010 

2.infra 0.217 0.189 0.229 0.103 0.100 0.115 0.113 0.103 0.100 0.003 0.002 0.003 



  

 
 

3
48

 

parameter b UN b AR1 b EXC 
SE UN 

Robust 

SE UN 

Model 

SE AR1 

Robust 

SE AR1 

Model 

SE EXC 

Robust 

SE EXC 

Model 

Diff SE 

UN 

Diff SE 

AR1 

Diff SE 

EXC 

3.infra 0.360 0.346 0.363 0.126 0.124 0.141 0.141 0.126 0.124 0.002 0.001 0.002 

2.nice3 -0.014 0.154 -0.020 0.104 0.100 0.116 0.114 0.104 0.101 0.003 0.002 0.004 

3.nice3 0.077 0.286 0.068 0.121 0.114 0.138 0.129 0.121 0.114 0.008 0.008 0.008 

2.n_safe2a 0.120 0.090 0.121 0.152 0.153 0.172 0.173 0.152 0.152 -0.000 -0.001 -0.001 

3.n_safe2a -0.041 -0.058 -0.021 0.148 0.146 0.167 0.164 0.148 0.146 0.003 0.002 0.002 

4.n_safe2a 0.059 0.002 0.065 0.144 0.147 0.160 0.166 0.144 0.147 -0.003 -0.005 -0.003 

5.n_safe2a 0.131 0.071 0.141 0.153 0.154 0.174 0.176 0.152 0.154 -0.001 -0.002 -0.002 

2.gender_r -1.590 -1.625 -1.588 0.098 0.098 0.117 0.114 0.098 0.098 -0.000 0.003 -0.000 

2.d_eth_8cat 0.320 0.239 0.322 0.190 0.192 0.229 0.224 0.190 0.192 -0.002 0.005 -0.002 

3.d_eth_8cat 0.198 0.025 0.196 0.243 0.248 0.289 0.283 0.244 0.249 -0.005 0.006 -0.005 

4.d_eth_8cat 0.928 0.848 0.921 0.295 0.298 0.359 0.372 0.295 0.298 -0.003 -0.014 -0.003 

5.d_eth_8cat 0.062 -0.087 0.064 0.154 0.157 0.178 0.175 0.154 0.157 -0.002 0.003 -0.003 

6.d_eth_8cat 0.086 -0.067 0.087 0.224 0.227 0.283 0.270 0.224 0.228 -0.003 0.013 -0.004 

7.d_eth_8cat 0.562 0.251 0.563 0.183 0.193 0.221 0.228 0.183 0.193 -0.010 -0.007 -0.011 

8.d_eth_8cat 0.271 0.071 0.272 0.133 0.130 0.155 0.148 0.133 0.130 0.003 0.008 0.003 

2.health2 -0.008 0.060 -0.009 0.086 0.085 0.099 0.097 0.086 0.085 0.001 0.002 0.001 

2.fas_cat 0.170 -0.047 0.173 0.156 0.149 0.177 0.175 0.156 0.149 0.007 0.002 0.007 

3.fas_cat 0.337 0.106 0.347 0.166 0.158 0.189 0.186 0.166 0.158 0.007 0.004 0.008 

2.fsm_ref_r 0.102 0.158 0.101 0.097 0.099 0.117 0.116 0.097 0.099 -0.002 0.002 -0.002 

_cons 2.015 2.093 1.994 0.288 0.272 0.325 0.319 0.288 0.271 0.016 0.006 0.017 

b - parameter of the logistic regression; SE - standard error of the parameter; EXC - exchangeable; UN - unstructured; AR1 - first-order auto-regressive ; Model – Model-based Standard Error 

produced by the GEE estimation; Robust – Cluster-Robust Standard Error; Diff – difference between Robust and Model-based Standard Errors  
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Table E.7 Comparison of the parameters and standard errors of three different specifications of the working correlation matrix in the GEE estimation of the fully adjusted cross-sectional 
model for cumulative exposure for walking to school 

parameter  b EXC b IND 
SE EXC 

Robust 

SE EXC 

Model 

SE IND 

Robust 

SE IND 

Model 

Diff SE 

EXC 

Diff SE 

IND 

ibus_rr_sum -0.063 -0.043 0.084 0.103 0.085 0.105 -0.019 -0.020 

traffic_sum 0.006 0.012 0.060 0.068 0.059 0.070 -0.009 -0.011 

infra_sum 0.068 0.070 0.072 0.064 0.071 0.065 0.008 0.006 

nice3_sum -0.109 -0.127 0.061 0.063 0.059 0.064 -0.002 -0.005 

n_safe2a_sum -0.018 -0.032 0.044 0.038 0.046 0.039 0.006 0.007 

2.gender_r 0.088 0.055 0.278 0.176 0.280 0.176 0.102 0.104 

2.d_eth_8cat -0.185 -0.322 0.287 0.342 0.285 0.348 -0.054 -0.063 

3.d_eth_8cat 0.604 0.723 0.539 0.487 0.624 0.518 0.052 0.106 

4.d_eth_8cat 0.324 0.261 0.498 0.482 0.613 0.491 0.016 0.122 

5.d_eth_8cat 0.591 0.656 0.284 0.305 0.261 0.314 -0.021 -0.053 

6.d_eth_8cat -0.761 -0.937 0.282 0.391 0.289 0.400 -0.108 -0.111 

7.d_eth_8cat -0.131 -0.338 0.350 0.338 0.353 0.341 0.012 0.013 

8.d_eth_8cat 0.071 -0.093 0.262 0.234 0.224 0.236 0.028 -0.012 

2.health2 -0.068 -0.115 0.170 0.170 0.175 0.174 -0.000 0.000 

2.fas_cat -0.705 -0.739 0.476 0.489 0.492 0.507 -0.013 -0.015 

3.fas_cat -0.522 -0.620 0.418 0.491 0.457 0.507 -0.073 -0.050 

2.fsm_ref_r 0.159 0.225 0.165 0.188 0.167 0.193 -0.024 -0.026 

_cons 2.606 2.796 1.065 0.950 1.059 0.954 0.115 0.105 

b- parameter of the logistic regression; SE - standard error of the parameter; EXC -  exchangeable; IND - independent; Model - Model-based Standard Error produced by the GEE estimation; 

Robust – Cluster-Robust Standard Error; Diff – difference between Robust and Model-based Standard Errors  
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Table E.8 Comparison of the parameters and standard errors of three different specifications of the working correlation matrix in the GEE estimation of the fully adjusted cross-sectional 
model for cumulative exposure for walking for leisure 

parameter  b EXC b IND 
SE EXC 

Robust 

SE EXC 

Model 

SE IND 

Robust 

SE IND 

Model 

Diff SE 

EXC 

Diff SE 

IND 

ibus_rr_sum 0.101 0.103 0.095 0.092 0.096 0.092 0.004 0.004 

traffic_sum 0.075 0.075 0.060 0.060 0.060 0.060 -0.000 -0.001 

infra_sum 0.046 0.051 0.079 0.059 0.079 0.059 0.020 0.020 

nice3_sum -0.062 -0.066 0.063 0.057 0.062 0.057 0.006 0.006 

n_safe2a_sum -0.014 -0.016 0.038 0.034 0.038 0.034 0.004 0.005 

2.gender_r 0.680 0.682 0.192 0.158 0.188 0.157 0.034 0.031 

2.d_eth_8cat -0.317 -0.297 0.407 0.323 0.407 0.322 0.084 0.084 

3.d_eth_8cat -0.384 -0.382 0.335 0.378 0.336 0.377 -0.043 -0.041 

4.d_eth_8cat -0.425 -0.420 0.360 0.403 0.350 0.402 -0.043 -0.053 

5.d_eth_8cat -1.119 -1.132 0.243 0.270 0.244 0.269 -0.026 -0.025 

6.d_eth_8cat -0.825 -0.814 0.389 0.410 0.392 0.409 -0.021 -0.018 

7.d_eth_8cat -1.234 -1.221 0.318 0.365 0.315 0.363 -0.047 -0.047 

8.d_eth_8cat -0.350 -0.349 0.173 0.202 0.177 0.201 -0.029 -0.024 

2.health2 -0.011 -0.021 0.181 0.156 0.181 0.156 0.025 0.026 

2.fas_cat -0.152 -0.128 0.312 0.383 0.308 0.384 -0.071 -0.075 

3.fas_cat -0.036 -0.018 0.292 0.383 0.287 0.384 -0.091 -0.096 

2.fsm_ref_r 0.160 0.157 0.154 0.169 0.151 0.169 -0.015 -0.017 

_cons -1.463 -1.476 0.924 0.802 0.925 0.802 0.123 0.123 

b- parameter of the logistic regression; SE - standard error of the parameter; EXC -  exchangeable; IND - independent; Model - Model-based Standard Error produced by the GEE estimation; 

Robust – Cluster-Robust Standard Error; Diff – difference between Robust and Model-based Standard Errors  
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Table E.9 Comparison of the parameters and standard errors of three different specifications of the working correlation matrix in the GEE estimation of the fully adjusted cross-sectional 
model for cumulative exposure for outdoor physical activity 

parameter  b EXC b IND 
SE EXC 

Robust 

SE EXC 

Model 

SE IND 

Robust 

SE IND 

Model 

Diff SE 

EXC 

Diff SE 

IND 

ibus_rr_sum 0.101 0.109 0.116 0.093 0.115 0.093 0.023 0.022 

traffic_sum 0.067 0.059 0.077 0.063 0.075 0.063 0.015 0.012 

infra_sum 0.053 0.045 0.053 0.063 0.051 0.063 -0.010 -0.012 

nice3_sum 0.061 0.056 0.051 0.060 0.050 0.060 -0.009 -0.010 

n_safe2a_sum 0.003 0.004 0.031 0.035 0.032 0.036 -0.004 -0.004 

2.gender_r -1.773 -1.772 0.163 0.175 0.169 0.172 -0.012 -0.003 

2.d_eth_8cat 0.110 0.126 0.291 0.345 0.304 0.347 -0.055 -0.043 

3.d_eth_8cat 0.177 0.313 0.331 0.408 0.361 0.413 -0.077 -0.053 

4.d_eth_8cat 1.119 1.199 0.454 0.532 0.509 0.542 -0.079 -0.033 

5.d_eth_8cat 0.087 0.071 0.235 0.268 0.228 0.266 -0.033 -0.038 

6.d_eth_8cat -0.114 -0.095 0.362 0.413 0.362 0.414 -0.051 -0.052 

7.d_eth_8cat 0.431 0.411 0.385 0.347 0.392 0.346 0.038 0.046 

8.d_eth_8cat 0.245 0.274 0.181 0.221 0.185 0.220 -0.041 -0.035 

2.health2 0.315 0.280 0.171 0.165 0.168 0.166 0.006 0.003 

2.fas_cat -0.442 -0.549 0.403 0.445 0.413 0.456 -0.043 -0.043 

3.fas_cat -0.562 -0.695 0.430 0.449 0.440 0.458 -0.018 -0.018 

2.fsm_ref_r 0.171 0.226 0.181 0.180 0.186 0.180 0.001 0.006 

_cons -0.018 0.162 0.862 0.847 0.877 0.855 0.015 0.022 

b- parameter of the logistic regression; SE - standard error of the parameter; EXC -  exchangeable; IND - independent; Model - Model-based Standard Error produced by the GEE estimation; 

Robust – Cluster-Robust Standard Error; Diff – difference between Robust and Model-based Standard Errors  
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Table E.10 Comparison of the parameters and standard errors of three different specifications of the working correlation matrix in the GEE estimation of the fully adjusted model trajectories 
of  walking to school 

parameter b UN b AR1 b EXC 
SE UN 

Robust 

SE UN 

Model 

SE AR1 

Robust 

SE AR1 

Model 

SE EXC 

Robust 

SE EXC 

Model 

Diff SE 

UN 

Diff SE 

AR1 

Diff SE 

EXC 

time 0.008 -0.026 0.006 0.045 0.047 0.048 0.058 0.045 0.046 -0.003 -0.010 -0.002 

ibus_rr_change 0.246 0.360 0.255 0.250 0.261 0.279 0.326 0.252 0.261 -0.011 -0.047 -0.009 

traffic_change 0.062 0.148 0.058 0.162 0.163 0.180 0.198 0.163 0.162 -0.000 -0.018 0.001 

infra_change 0.057 0.073 0.064 0.156 0.159 0.178 0.192 0.157 0.159 -0.003 -0.014 -0.002 

nice3_change 0.114 0.233 0.123 0.140 0.141 0.160 0.174 0.140 0.140 -0.001 -0.014 -0.000 

n_safe2a_change -0.084 -0.092 -0.087 0.083 0.082 0.090 0.099 0.084 0.082 0.001 -0.009 0.002 

c.ibus_rr_change#c.time -0.106 -0.159 -0.113 0.110 0.110 0.119 0.141 0.111 0.108 -0.000 -0.022 0.003 

c.traffic_change#c.time 0.008 -0.058 0.010 0.071 0.070 0.076 0.087 0.071 0.069 0.001 -0.011 0.003 

c.infra_change#c.time 0.005 -0.021 0.000 0.064 0.068 0.072 0.084 0.064 0.067 -0.004 -0.012 -0.003 

c.nice3_change#c.time -0.055 -0.076 -0.062 0.058 0.060 0.063 0.076 0.058 0.059 -0.002 -0.012 -0.001 

c.n_safe2a_change#c.time 0.000 0.010 0.002 0.035 0.035 0.037 0.043 0.036 0.034 0.000 -0.006 0.001 

2.gender_r 0.098 0.018 0.098 0.123 0.124 0.134 0.129 0.123 0.124 -0.001 0.005 -0.001 

2.d_eth_8cat -0.540 -0.610 -0.531 0.261 0.259 0.283 0.266 0.262 0.259 0.002 0.017 0.003 

3.d_eth_8cat 0.354 0.486 0.350 0.327 0.347 0.362 0.372 0.327 0.347 -0.020 -0.010 -0.020 

4.d_eth_8cat -0.163 -0.181 -0.160 0.357 0.336 0.389 0.349 0.357 0.336 0.021 0.040 0.021 

5.d_eth_8cat 0.180 0.166 0.178 0.220 0.218 0.236 0.224 0.219 0.218 0.002 0.012 0.001 

6.d_eth_8cat -0.730 -0.876 -0.742 0.310 0.306 0.320 0.305 0.309 0.306 0.004 0.014 0.003 

7.d_eth_8cat -0.415 -0.424 -0.417 0.244 0.250 0.279 0.266 0.243 0.251 -0.007 0.013 -0.007 

8.d_eth_8cat -0.269 -0.288 -0.271 0.175 0.175 0.187 0.179 0.174 0.175 -0.000 0.008 -0.000 

2.health2 0.115 0.051 0.119 0.104 0.104 0.111 0.109 0.104 0.104 0.000 0.002 0.001 
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parameter b UN b AR1 b EXC 
SE UN 

Robust 

SE UN 

Model 

SE AR1 

Robust 

SE AR1 

Model 

SE EXC 

Robust 

SE EXC 

Model 

Diff SE 

UN 

Diff SE 

AR1 

Diff SE 

EXC 

2.fas_cat -0.347 -0.274 -0.337 0.216 0.199 0.225 0.208 0.212 0.198 0.017 0.017 0.014 

3.fas_cat -0.309 -0.232 -0.310 0.223 0.212 0.231 0.221 0.219 0.211 0.012 0.010 0.008 

2.fsm_ref_r 0.216 0.324 0.217 0.137 0.137 0.151 0.144 0.137 0.137 0.000 0.007 0.000 

_cons 1.582 1.638 1.576 0.268 0.258 0.284 0.274 0.265 0.257 0.010 0.010 0.008 

b - parameter of the logistic regression; SE - standard error of the parameter; EXC - exchangeable; UN - unstructured; AR1 - first-order auto-regressive ; Model – Model-based Standard Error 

produced by the GEE estimation; Robust – Cluster-Robust Standard Error; Diff – difference between Robust and Model-based Standard Errors  

 

 

Table E.11 Comparison of the parameters and standard errors of three different specifications of the working correlation matrix in the GEE estimation of the fully adjusted model trajectories 
of walking for leisure 

parameter b UN b AR1 b EXC 
SE UN 

Robust 

SE UN 

Model 

SE AR1 

Robust 

SE AR1 

Model 

SE EXC 

Robust 

SE EXC 

Model 

Diff SE 

UN 

Diff SE 

AR1 

Diff SE 

EXC 

time -0.261 -0.256 -0.257 0.049 0.050 0.054 0.054 0.050 0.047 -0.000 -0.001 0.003 

ibus_rr_change 0.125 0.098 0.114 0.249 0.249 0.284 0.283 0.250 0.238 -0.000 0.000 0.013 

traffic_change -0.243 -0.334 -0.233 0.160 0.157 0.176 0.177 0.160 0.150 0.003 -0.001 0.010 

infra_change -0.060 -0.195 -0.047 0.157 0.155 0.173 0.171 0.157 0.148 0.002 0.002 0.009 

nice3_change 0.101 0.163 0.101 0.139 0.138 0.154 0.153 0.140 0.131 0.001 0.001 0.008 

n_safe2a_change -0.036 -0.046 -0.034 0.079 0.081 0.087 0.089 0.079 0.077 -0.002 -0.002 0.002 

c.ibus_rr_change#c.time -0.073 -0.072 -0.076 0.112 0.114 0.127 0.130 0.113 0.107 -0.001 -0.002 0.006 

c.traffic_change#c.time 0.076 0.124 0.070 0.075 0.072 0.082 0.081 0.076 0.068 0.003 0.001 0.007 

c.infra_change#c.time 0.017 0.041 0.013 0.072 0.071 0.080 0.078 0.072 0.067 0.001 0.001 0.006 

c.nice3_change#c.time -0.072 -0.078 -0.071 0.064 0.063 0.070 0.070 0.064 0.059 0.001 0.000 0.005 

c.n_safe2a_change#c.time 0.036 0.036 0.036 0.036 0.037 0.040 0.041 0.037 0.035 -0.000 -0.001 0.002 
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parameter b UN b AR1 b EXC 
SE UN 

Robust 

SE UN 

Model 

SE AR1 

Robust 

SE AR1 

Model 

SE EXC 

Robust 

SE EXC 

Model 

Diff SE 

UN 

Diff SE 

AR1 

Diff SE 

EXC 

2.gender_r 0.543 0.475 0.535 0.102 0.101 0.109 0.107 0.102 0.101 0.002 0.002 0.002 

2.d_eth_8cat -0.129 -0.111 -0.113 0.220 0.213 0.240 0.229 0.219 0.214 0.006 0.011 0.005 

3.d_eth_8cat -0.406 -0.342 -0.405 0.248 0.247 0.271 0.261 0.250 0.247 0.001 0.010 0.002 

4.d_eth_8cat -0.712 -0.586 -0.713 0.266 0.275 0.282 0.288 0.267 0.276 -0.010 -0.006 -0.009 

5.d_eth_8cat -0.908 -0.891 -0.909 0.163 0.167 0.172 0.175 0.164 0.168 -0.004 -0.002 -0.004 

6.d_eth_8cat -0.505 -0.639 -0.532 0.268 0.265 0.284 0.287 0.270 0.267 0.003 -0.002 0.003 

7.d_eth_8cat -0.962 -0.898 -0.954 0.217 0.223 0.235 0.244 0.218 0.224 -0.007 -0.009 -0.006 

8.d_eth_8cat -0.396 -0.438 -0.399 0.139 0.134 0.147 0.142 0.140 0.135 0.005 0.005 0.005 

2.health2 -0.039 -0.019 -0.043 0.095 0.092 0.100 0.097 0.095 0.092 0.003 0.004 0.003 

2.fas_cat -0.008 -0.005 -0.005 0.162 0.168 0.169 0.176 0.167 0.169 -0.006 -0.007 -0.002 

3.fas_cat 0.168 0.178 0.178 0.175 0.178 0.184 0.186 0.180 0.178 -0.002 -0.002 0.001 

2.fsm_ref_r 0.181 0.191 0.173 0.110 0.109 0.117 0.116 0.111 0.110 0.001 0.002 0.001 

_cons 0.009 0.036 0.003 0.215 0.214 0.225 0.225 0.218 0.212 0.001 -0.000 0.006 

b - parameter of the logistic regression; SE - standard error of the parameter; EXC - exchangeable; UN - unstructured; AR1 - first-order auto-regressive ; Model – Model-based Standard Error 

produced by the GEE estimation; Robust – Cluster-Robust Standard Error; Diff – difference between Robust and Model-based Standard Errors  

 

Table E.12 Comparison of the parameters and standard errors of three different specifications of the working correlation matrix in the GEE estimation of the fully adjusted model trajectories 
of  outdoor physical activity  

parameter b UN b AR1 b EXC 
SE UN 

Robust 

SE UN 

Model 

SE AR1 

Robust 

SE AR1 

Model 

SE EXC 

Robust 

SE EXC 

Model 

Diff SE 

UN 

Diff SE 

AR1 

Diff SE 

EXC 

time -0.364 -0.345 -0.363 0.052 0.053 0.057 0.063 0.052 0.052 -0.000 -0.005 0.001 

ibus_rr_change 0.007 0.220 0.008 0.280 0.300 0.324 0.365 0.280 0.297 -0.020 -0.041 -0.017 

traffic_change 0.104 0.064 0.095 0.185 0.185 0.219 0.221 0.185 0.183 0.000 -0.002 0.002 
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parameter b UN b AR1 b EXC 
SE UN 

Robust 

SE UN 

Model 

SE AR1 

Robust 

SE AR1 

Model 

SE EXC 

Robust 

SE EXC 

Model 

Diff SE 

UN 

Diff SE 

AR1 

Diff SE 

EXC 

infra_change -0.374 -0.473 -0.374 0.182 0.182 0.202 0.215 0.182 0.180 -0.001 -0.013 0.002 

nice3_change 0.009 -0.014 0.015 0.165 0.161 0.189 0.190 0.165 0.160 0.004 -0.000 0.005 

n_safe2a_change -0.052 -0.023 -0.056 0.101 0.095 0.111 0.111 0.101 0.094 0.006 0.000 0.007 

c.ibus_rr_change#c.time 0.034 -0.052 0.031 0.118 0.123 0.139 0.155 0.118 0.120 -0.004 -0.015 -0.002 

c.traffic_change#c.time -0.074 -0.059 -0.068 0.077 0.077 0.091 0.095 0.077 0.075 0.000 -0.003 0.001 

c.infra_change#c.time 0.107 0.151 0.109 0.075 0.075 0.082 0.091 0.075 0.074 -0.000 -0.009 0.001 

c.nice3_change#c.time -0.025 0.009 -0.027 0.070 0.066 0.080 0.080 0.070 0.065 0.004 -0.000 0.005 

c.n_safe2a_change#c.time 0.061 0.040 0.062 0.042 0.039 0.046 0.047 0.042 0.039 0.003 -0.001 0.004 

2.gender_r -1.518 -1.595 -1.520 0.128 0.126 0.140 0.133 0.128 0.126 0.002 0.007 0.002 

2.d_eth_8cat 0.023 0.047 0.021 0.257 0.257 0.282 0.273 0.257 0.257 -0.001 0.009 0.000 

3.d_eth_8cat 0.128 0.156 0.129 0.300 0.302 0.340 0.323 0.300 0.302 -0.002 0.017 -0.002 

4.d_eth_8cat 1.094 0.884 1.087 0.379 0.418 0.381 0.441 0.379 0.417 -0.039 -0.060 -0.038 

5.d_eth_8cat 0.032 -0.041 0.037 0.188 0.193 0.203 0.200 0.188 0.193 -0.005 0.003 -0.005 

6.d_eth_8cat 0.109 0.001 0.110 0.293 0.305 0.326 0.318 0.293 0.305 -0.012 0.008 -0.012 

7.d_eth_8cat 0.529 0.302 0.528 0.246 0.265 0.261 0.278 0.246 0.265 -0.019 -0.017 -0.019 

8.d_eth_8cat 0.204 0.114 0.207 0.171 0.163 0.184 0.171 0.171 0.163 0.008 0.013 0.008 

2.health2 0.092 0.130 0.088 0.108 0.106 0.117 0.113 0.108 0.106 0.002 0.004 0.002 

2.fas_cat 0.109 0.004 0.104 0.209 0.195 0.221 0.210 0.211 0.195 0.014 0.011 0.016 

3.fas_cat 0.221 0.111 0.219 0.222 0.208 0.234 0.222 0.224 0.208 0.015 0.011 0.016 

2.fsm_ref_r 0.281 0.322 0.278 0.131 0.134 0.143 0.140 0.131 0.133 -0.003 0.003 -0.003 

_cons 2.168 2.281 2.174 0.277 0.257 0.293 0.279 0.278 0.256 0.020 0.015 0.022 

b - parameter of the logistic regression; SE - standard error of the parameter; EXC - exchangeable; UN - unstructured; AR1 - first-order auto-regressive ; Model – Model-based Standard Error 

produced by the GEE estimation; Robust – Cluster-Robust Standard Error; Diff – difference between Robust and Model-based Standard Errors  
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Table E.13 Odds ratios (OR) of walking to school vs. not by perception of the neighbourhood environment, adjusting for potential confounders (3 waves of the ORiEL Study, n=2260) 

Exposure  Unadjusted 

OR 

Adjusted 

OR¹ 
95%CI P-value 

parameter 

P-value  

unadjusted 

P-value 

adjusted¹  

Gender interaction 

(p-value) ² 

 
Bus stop proximity Further away 1.00 1.00   0.173 0.223 0.857 
 1-5 minutes 0.90 0.91 [0.78,1.06] 0.223    

Perceived traffic safety Low 1.00 1.00   0.629 0.463 0.523 
 Medium 1.09 1.11 [0.92,1.34] 0.265    
 High 1.08 1.12 [0.93,1.36] 0.232    

Perceived connectivity Low 1.00 1.00   0.328 0.257 0.802 
 Medium 1.10 1.11 [0.95,1.28] 0.179    
 High 1.13 1.16 [0.97,1.40] 0.111    

Nhood nice for walk/cycle Strongly/slightly disagree 1.00 1.00   0.409 0.173 0.500 
 Slightly agree 1.02 1.00 [0.86,1.17] 0.975    
 Strongly agree 0.94 0.88 [0.75,1.04] 0.144    

Feel safe Strongly disagree 1.00 1.00   0.733 0.677 0.854 
 Slightly disagree 1.15 1.14 [0.91,1.42] 0.243    
 Neither agree nor disagree 1.03 1.02 [0.82,1.27] 0.855    
 Slightly agree 1.05 1.06 [0.85,1.33] 0.601    
 Strongly agree 1.08 1.11 [0.88,1.40] 0.370    

Gender Male 1.00 1.00   0.518 0.243 0.854 
 Female 1.05 1.10 [0.94,1.29] 0.243    
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Exposure  Unadjusted 

OR 

Adjusted 

OR¹ 
95%CI P-value 

parameter 

P-value  

unadjusted 

P-value 

adjusted¹  

Gender interaction 

(p-value) ² 

 
Ethnicity White: UK 1.00 1.00   <0.001 <0.001 0.487 
 White: Mixed 0.62 0.61 [0.44,0.84] 0.003    
 Asian: Indian 1.12 1.15 [0.71,1.85] 0.577    
 Asian: Pakistani 0.87 0.89 [0.56,1.43] 0.639    
 Asian: Bangladeshi 1.32 1.33 [0.98,1.82] 0.071    
 Black: Caribbean 0.43 0.42 [0.29,0.60] <0.001    
 Black: African 0.59 0.60 [0.45,0.80] <0.001    
 Other 0.71 0.71 [0.57,0.90] 0.004    

Health no condition 1.00 1.00   0.071 0.071 0.026 
 1+ conditions(s) 1.13 1.13 [0.99,1.30] 0.071    

FAS Categories Low 1.00 1.00   0.217 0.236 0.347 
 Moderate 0.82 0.84 [0.66,1.07] 0.166    
 High 0.86 0.91 [0.71,1.17] 0.467    

Take FSM at W1 No 1.00 1.00   0.326 0.281 0.217 
 Yes 1.08 1.09 [0.93,1.29] 0.281    

time  0.96 0.96 [0.90,1.01] 0.119 0.133 0.119 0.578 

Results are from Generalised Estimating Equations to account for the dependency across repeated measurements (exchangeable working correlation matrix). ¹ Adjusted for all 

variables of the table. ² The adjusted model was replicated for each outcome with an additional interaction term between gender and the exposure. 
 

Table E.14 Odds ratios (OR) of walking for leisure vs. not by perception of the neighbourhood environment, adjusting for potential confounders (3 waves of the ORiEL Study, n=2260) 

Exposure  Unadjusted 

OR 

Adjusted 

OR¹ 
95%CI P-value 

parameter 

P-value  

unadjusted 

P-value 

adjusted¹  

Gender interaction 

(p-value) ² 

 
Bus stop proximity Further away 1.00 1.00   0.039 0.078 0.780 
 1-5 minutes 0.87 0.89 [0.78,1.01] 0.078    
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Exposure  Unadjusted 

OR 

Adjusted 

OR¹ 
95%CI P-value 

parameter 

P-value  

unadjusted 

P-value 

adjusted¹  

Gender interaction 

(p-value) ² 

 
Perceived traffic safety Low 1.00 1.00   0.385 0.295 0.664 
 Medium 0.91 0.91 [0.75,1.10] 0.315    
 High 0.88 0.86 [0.71,1.04] 0.124    

Perceived connectivity Low 1.00 1.00   0.192 0.308 0.884 
 Medium 1.14 1.13 [0.96,1.32] 0.138    
 High 1.10 1.09 [0.90,1.31] 0.382    

Nhood nice for walk/cycle Strongly/slightly disagree 1.00 1.00   0.309 0.506 0.387 
 Slightly agree 1.01 1.02 [0.88,1.17] 0.817    
 Strongly agree 1.10 1.09 [0.92,1.29] 0.324    

Feel safe Strongly disagree 1.00 1.00   0.053 0.025 0.881 
 Slightly disagree 1.29 1.29 [1.03,1.63] 0.028    
 Neither agree nor disagree 1.08 1.09 [0.87,1.36] 0.472    
 Slightly agree 1.25 1.32 [1.05,1.66] 0.018    
 Strongly agree 1.11 1.17 [0.92,1.49] 0.192    

Gender Male 1.00 1.00   <0.001 <0.001 0.881 
 Female 1.60 1.58 [1.39,1.81] <0.001    

Ethnicity White: UK 1.00 1.00   <0.001 <0.001 0.136 
 White: Mixed 0.70 0.66 [0.50,0.86] 0.002    
 Asian: Indian 0.53 0.51 [0.36,0.74] <0.001    
 Asian: Pakistani 0.50 0.51 [0.37,0.72] <0.001    
 Asian: Bangladeshi 0.35 0.35 [0.28,0.44] <0.001    
 Black: Caribbean 0.44 0.41 [0.29,0.57] <0.001    
 Black: African 0.42 0.42 [0.32,0.54] <0.001    
 Other 0.58 0.56 [0.46,0.68] <0.001    
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Exposure  Unadjusted 

OR 

Adjusted 

OR¹ 
95%CI P-value 

parameter 

P-value  

unadjusted 

P-value 

adjusted¹  

Gender interaction 

(p-value) ² 

 
Health no condition 1.00 1.00   0.223 0.434 0.787 
 1+ conditions(s) 1.07 1.05 [0.93,1.18] 0.434    

FAS Categories Low 1.00 1.00   0.211 0.140 0.621 
 Moderate 0.94 1.06 [0.85,1.32] 0.618    
 High 1.04 1.18 [0.93,1.50] 0.166    

Take FSM at W1 No 1.00 1.00   0.884 0.147 0.558 
 Yes 1.01 1.11 [0.97,1.27] 0.147    

time  0.80 0.79 [0.74,0.84] <0.001 <0.001 <0.001 0.431 

Results are from Generalised Estimating Equations to account for the dependency across repeated measurements (exchangeable working correlation matrix). ¹ Adjusted for all 

variables of the table. ² The adjusted model was replicated for each outcome with an additional interaction term between gender and the exposure. 

 
Table E.15 Odds ratios (OR) of reporting at least one outdoor physical activity* vs. not by perception of the neighbourhood environment, adjusting for potential confounders (3 waves of the 
ORiEL Study, n=2260) 

Exposure  Unadjusted 

OR 

Adjusted 

OR¹ 
95%CI P-value 

parameter 

P-value  

unadjusted 

P-value 

adjusted¹  

Gender interaction 

(p-value) ² 

 
Bus stop proximity Further away 1.00 1.00   0.669 0.964 0.651 
 1-5 minutes 0.97 1.00 [0.83,1.19] 0.964    

Perceived traffic safety Low 1.00 1.00   0.510 0.176 0.011 
 Medium 0.99 1.02 [0.81,1.28] 0.854    
 High 0.92 0.89 [0.71,1.13] 0.352    

Perceived connectivity Low 1.00 1.00   0.266 0.079 0.647 
 Medium 1.06 1.15 [0.97,1.37] 0.098    
 High 1.17 1.27 [1.03,1.56] 0.025    

Nhood nice for walk/cycle Strongly/slightly disagree 1.00 1.00   0.037 0.272 0.694 
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Exposure  Unadjusted 

OR 

Adjusted 

OR¹ 
95%CI P-value 

parameter 

P-value  

unadjusted 

P-value 

adjusted¹  

Gender interaction 

(p-value) ² 

  Slightly agree 0.94 0.95 [0.81,1.12] 0.550    
 Strongly agree 1.12 1.08 [0.90,1.30] 0.432    

Feel safe Strongly disagree 1.00 1.00   0.324 0.531 0.738 
 Slightly disagree 1.08 1.13 [0.87,1.47] 0.367    
 Neither agree nor disagree 0.96 0.97 [0.76,1.25] 0.821    
 Slightly agree 1.07 1.10 [0.85,1.42] 0.488    
 Strongly agree 1.15 1.10 [0.86,1.41] 0.465    

Gender Male 1.00 1.00   <0.001 <0.001 0.738 
 Female 0.23 0.22 [0.19,0.26] <0.001    

Ethnicity White: UK 1.00 1.00   0.002 0.011 0.183 
 White: Mixed 1.16 1.30 [0.95,1.78] 0.107    
 Asian: Indian 1.42 1.43 [0.92,2.20] 0.109    
 Asian: Pakistani 2.05 1.95 [1.24,3.06] 0.004    
 Asian: Bangladeshi 1.19 1.08 [0.83,1.41] 0.551    
 Black: Caribbean 0.86 1.04 [0.72,1.50] 0.838    
 Black: African 1.59 1.56 [1.16,2.10] 0.003    
 Other 1.26 1.30 [1.04,1.62] 0.023    

Health no condition 1.00 1.00   0.145 0.436 0.099 
 1+ conditions(s) 0.91 0.95 [0.82,1.09] 0.436    

FAS Categories Low 1.00 1.00   0.008 0.004 0.813 
 Moderate 1.11 1.22 [0.94,1.58] 0.128    
 High 1.33 1.47 [1.12,1.93] 0.005    

Take FSM at W1 No 1.00 1.00   0.119 0.170 0.351 
 Yes 1.13 1.12 [0.95,1.31] 0.170    
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Exposure  Unadjusted 

OR 

Adjusted 

OR¹ 
95%CI P-value 

parameter 

P-value  

unadjusted 

P-value 

adjusted¹  

Gender interaction 

(p-value) ² 

 
time  0.78 0.75 [0.70,0.80] <0.001 <0.001 <0.001 0.007 

Results are from Generalised Estimating Equations to account for the dependency across repeated measurements (exchangeable working correlation matrix). ¹ Adjusted for all 

variables of the table. ² The adjusted model was replicated for each outcome with an additional interaction term between gender and the exposure. * Outdoor physical 

activities include: basketball (or volleyball), blading, cricket, football, rounders, rugby and skating.  

 
Table E.16 Odds ratios (OR) of walking to school vs. not at wave 3 by cumulated perception of the neighbourhood environment over the 3 waves, adjusting for potential confounders (n=2260)  

Exposure Unadjusted OR Adjusted OR¹ 95%CI 
P-value  

unadjusted 

P-value 

adjusted¹ 

Gender 

interaction (p-

value) ² 

Cumulative bus stop proximity 0.95 0.95 [0.85,1.07] 0.360 0.383 0.835 

Cumulative traffic safety 1.00 1.03 [0.95,1.12] 0.992 0.415 0.757 

Cumulative favourable infrastructure 1.03 1.05 [0.95,1.15] 0.479 0.336 0.703 

Cumulative nice neighbourhood 0.97 0.96 [0.88,1.04] 0.406 0.303 0.742 

Cumulative personal safety 0.98 0.99 [0.95,1.03] 0.328 0.615 0.847 

Results are from Generalised Estimating Equations to account for the clustering of individuals within schools (independent working correlation matrix). The cumulative exposure 

are continuous variables constructed as the sum of scores of each exposure over the 3 waves. A higher score indicates a perception of supportive environment for the specific 

exposure. ¹ Adjusted for gender, ethnicity, health conditions (at wave 3), family affluence (at wave 3), baseline FSM and the other perception variables.  ² The adjusted model 

was replicated for each outcome with an additional interaction term between gender and the exposure. 

 



  

 
 

3
62

 

Table E.17 Odds ratios (OR) of walking for leisure vs. not at wave 3 by cumulated perception of the neighbourhood environment over the 3 waves, adjusting for potential confounders 
(n=2260)  

Exposure Unadjusted OR Adjusted OR¹ 95%CI 
P-value  

unadjusted 

P-value 

adjusted¹ 

Gender 

interaction (p-

value) ² 

Cumulative bus stop proximity 1.00 0.98 [0.86,1.12] 0.964 0.759 0.844 

Cumulative traffic safety 1.02 1.04 [0.95,1.13] 0.602 0.371 0.792 

Cumulative favourable infrastructure 1.04 1.05 [0.95,1.15] 0.416 0.350 0.422 

Cumulative nice neighbourhood 0.98 0.99 [0.92,1.07] 0.566 0.844 0.802 

Cumulative personal safety 0.98 0.99 [0.95,1.03] 0.219 0.762 0.906 

Results are from Generalised Estimating Equations to account for the clustering of individuals within schools (independent working correlation matrix). The cumulative 

exposure are continuous variables constructed as the sum of scores of each exposure over the 3 waves. A higher score indicates a perception of supportive environment for 

the specific exposure. ¹ Adjusted for gender, ethnicity, health conditions (at wave 3), family affluence (at wave 3) and baseline FSM. ² The adjusted model was replicated for 

each outcome with an additional interaction term between gender and the exposure. 

 
Table E.18 Odds ratios (OR) of reporting at least one outdoor physical activity* vs. not at wave 3 by cumulated perception of the neighbourhood environment over the 3 waves, adjusting for 
potential confounders (n=2260)  

Exposure Unadjusted OR Adjusted OR¹ 95%CI 
P-value  

unadjusted 

P-value 

adjusted¹ 

Gender 

interaction (p-

value) ² 

Cumulative bus stop proximity 0.95 0.94 [0.83,1.07] 0.389 0.361 0.913 

Cumulative traffic safety 1.02 1.00 [0.93,1.07] 0.414 0.929 0.526 

Cumulative favourable infrastructure 0.99 1.03 [0.96,1.10] 0.790 0.413 0.778 

Cumulative nice neighbourhood 1.03 1.01 [0.94,1.08] 0.208 0.768 0.504 

Cumulative personal safety 1.05 1.03 [0.98,1.07] 0.004 0.244 0.885 

Results are from Generalised Estimating Equations to account for the clustering of individuals within schools (independent working correlation matrix). 
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The cumulative exposure are continuous variables constructed as the sum of scores of each exposure over the 3 waves. A higher score indicates a perception of supportive 

environment for the specific exposure. ¹ Adjusted for gender, ethnicity, health conditions (at wave 3), family affluence (at wave 3) and baseline FSM. ² The adjusted model was 

replicated for each outcome with an additional interaction term between gender and the exposure. * Outdoor physical activities include: basketball (or volleyball), blading, 

cricket, football, rounders, rugby and skating.  

 
Table E.19 Odds ratios (OR) of walking to school vs. not by change in perception of the neighbourhood environment since the baseline, adjusting for potential confounders (3 waves of the 
ORiEL Study n=2,260)  

Exposure Unadjusted 

OR 

Adjusted 

OR¹ 

 95%  CI  P-value  

unadjusted 

P-value 

adjusted 

Gender interaction 

(p-value) ² 

 
Change: Bus stop proximity 0.88 0.86 [ 0.62 , 1.20 ] 0.448 0.376 0.923 

Change: Traffic safety 1.10 1.09 [ 0.87 , 1.35 ] 0.363 0.455 0.973 

Change: Favourable infrastructure 0.96 0.96 [ 0.78 , 1.19 ] 0.709 0.715 0.869 

Change: Nice neighbourhood  1.10 1.12 [ 0.92 , 1.37 ] 0.284 0.250 0.488 

Change: Personal safety 0.99 0.97 [ 0.86 , 1.09 ] 0.809 0.589 0.971 

Time x change interaction: Bus stop proximity 1.06 1.07 [ 0.93 , 1.22 ] 0.408 0.353 0.929 

Time x change interaction: Traffic safety 0.96 0.97 [ 0.89 , 1.06 ] 0.353 0.527 0.436 

Time x change interaction: Favourable infrastructure 1.01 1.02 [ 0.93 , 1.11 ] 0.837 0.722 0.867 

Time x change interaction: Nice neighbourhood 0.95 0.95 [ 0.88 , 1.03 ] 0.189 0.229 0.563 

Time x change interaction: Personal safety 0.99 1.00 [ 0.95 , 1.04 ] 0.628 0.913 0.960 

Results are from Generalised Estimating Equations to account for the dependency across repeated measurements (exchangeable working correlation matrix). 
Each exposure variable measures change since baseline on a continuous scale. Each unit represent an average change in exposure by one category between the baseline and 

the end of the study (+1 = improvement of the neighbourhood by one category on average). The time x change interaction assesses whether exposure change is associated 

with different trajectory of change in the outcome. ¹ adjusted for time, gender, ethnicity, health conditions, family affluence and baseline FSM reporting. ² The adjusted model 

was replicated for each outcome with the addition of 2 way- and 3 way- interactions between gender, change and time. 
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Table E.20 Odds ratios (OR) of walking for leisure vs. not by change in perception of the neighbourhood environment since the baseline, adjusting for potential confounders (3 waves of the 
ORiEL Study; n=2,260)  

Exposure Unadjusted 

OR 

Adjusted 

OR¹ 

 95%  CI  P-value  

unadjusted 
P-value adjusted Gender interaction 

(p-value) ² 

 
Change: Bus stop proximity 1.13 1.16 [ 0.84 , 1.61 ] 0.429 0.355 0.576 

Change: Traffic safety 0.99 1.00 [ 0.81 , 1.22 ] 0.922 0.973 0.276 

Change: Favourable infrastructure 1.01 1.01 [ 0.82 , 1.24 ] 0.939 0.945 0.613 

Change: Nice neighbourhood  0.96 0.95 [ 0.80 , 1.14 ] 0.576 0.578 0.233 

Change: Personal safety 1.00 1.02 [ 0.91 , 1.14 ] 0.985 0.709 0.439 

Time x change interaction: Bus stop proximity 0.87 0.86 [ 0.74 , 1.00 ] 0.051 0.047 0.925 

Time x change interaction: Traffic safety 0.99 0.98 [ 0.90 , 1.08 ] 0.744 0.715 0.326 

Time x change interaction: Favourable infrastructure 1.00 1.00 [ 0.91 , 1.11 ] 0.954 0.965 0.255 

Time x change interaction: Nice neighbourhood 1.02 1.02 [ 0.95 , 1.11 ] 0.655 0.580 0.268 

Time x change interaction: Personal safety 1.00 1.00 [ 0.95 , 1.05 ] 0.985 0.951 0.996 

Results are from Generalised Estimating Equations to account for the dependency across repeated measurements (exchangeable working correlation matrix). Each exposure 
variable measures change since baseline on a continuous scale. Each unit represent an average change in exposure by one category between the baseline and the end of the 
study (+1 = improvement of the neighbourhood by one category on average). The time x change interaction assesses whether exposure change is associated with different 
trajectory of change in the outcome. ¹ adjusted for time, gender, ethnicity, health conditions, family affluence and baseline FSM reporting. ² The adjusted model was replicated 
for each outcome with the addition of 2 way- and 3 way- interactions between gender, change and time. 

Table E.21 Odds ratios (OR) of reporting at least one outdoor physical activity* vs. not by change in perception of the neighbourhood environment since the baseline, adjusting for potential 
confounders (3 waves of the ORiEL Study;  n=2,260)  

Exposure Unadjusted 

OR 

Adjusted 

OR¹ 

 95%  CI  P-value  

unadjusted 
P-value adjusted Gender interaction 

(p-value) ² 

 
Change: Bus stop proximity 0.87 0.82 [ 0.53 , 1.27 ] 0.473 0.370 0.044 

Change: Traffic safety 1.11 1.11 [ 0.85 , 1.45 ] 0.396 0.452 0.603 

Change: Favourable infrastructure 0.80 0.78 [ 0.61 , 1.01 ] 0.045 0.056 0.423 
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Change: Nice neighbourhood  0.99 1.00 [ 0.82 , 1.23 ] 0.943 0.985 0.818 

Change: Personal safety 1.02 1.02 [ 0.89 , 1.16 ] 0.790 0.808 0.758 

Time x change interaction: Bus stop proximity 1.10 1.10 [ 0.93 , 1.31 ] 0.210 0.259 0.093 

Time x change interaction: Traffic safety 0.94 0.94 [ 0.84 , 1.04 ] 0.245 0.228 0.835 

Time x change interaction: Favourable infrastructure 1.07 1.07 [ 0.97 , 1.19 ] 0.119 0.178 0.091 

Time x change interaction: Nice neighbourhood 1.02 1.02 [ 0.93 , 1.11 ] 0.605 0.723 0.501 

Time x change interaction: Personal safety 1.01 1.01 [ 0.96 , 1.07 ] 0.660 0.751 0.961 

Results are from Generalised Estimating Equations to account for the dependency across repeated measurements (exchangeable working correlation matrix).Each exposure 
variable measures change since baseline on a continuous scale. Each unit represent an average change in exposure by one category between the baseline and the end of the 
study (+1 = improvement of the neighbourhood by one category on average). The time x change interaction assesses whether exposure change is associated with different 
trajectory of change in the outcome. ¹ adjusted for time, gender, ethnicity, health conditions, family affluence and baseline FSM reporting. ² The adjusted model was replicated 
for each outcome with the addition of 2 way- and 3 way- interactions between gender, change and time. * Outdoor physical activities include: basketball (or volleyball), blading, 
cricket, football, rounders, rugby and skating.  
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Table E.22 Odds ratios (OR) of walking to school vs. not by perception of the neighbourhood environment, adjusting for potential confounders (3 waves of the ORiEL Study, n=4,246 from 2,028 
individuals) 

Exposure  

N cat 
Unadjusted 

OR 

Adjusted 

OR¹ 
95%CI 

P-value 

parameter 

P-value  

unadjusted 

P-value 

adjusted¹  

Gender 

interaction (p-

value) ² 

 
Bus stop proximity Further away 850 1.00 1.00   0.123 0.155 0.730 
 1-5 minutes 3396 0.86 0.87 [0.72,1.05] 0.155    

Perceived traffic safety Low 428 1.00 1.00   0.175 0.160 0.443 
 Medium 1421 1.23 1.24 [0.99,1.56] 0.057    
 High 2397 1.16 1.20 [0.96,1.50] 0.115    

Perceived connectivity Low 832 1.00 1.00   0.256 0.231 0.767 
 Medium 2483 1.11 1.10 [0.92,1.31] 0.288    
 High 931 1.19 1.21 [0.97,1.50] 0.087    

Nhood nice for walk/cycle Strongly/slightly disagree 1020 1.00 1.00   0.271 0.146 0.273 
 Slightly agree 1669 1.11 1.08 [0.91,1.28] 0.360    
 Strongly agree 1557 0.99 0.92 [0.76,1.11] 0.382    

Feel safe Strongly disagree 403 1.00 1.00   0.896 0.890 0.928 
 Slightly disagree 669 1.15 1.12 [0.85,1.48] 0.428    
 Neither agree nor disagree 996 1.09 1.04 [0.80,1.35] 0.787    
 Slightly agree 1112 1.10 1.08 [0.82,1.41] 0.595    

 

 

Strongly agree 1066 1.10 1.11 [0.85,1.47] 0.439    
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Exposure  

N cat 
Unadjusted 

OR 

Adjusted 

OR¹ 
95%CI 

P-value 

parameter 

P-value  

unadjusted 

P-value 

adjusted¹  

Gender 

interaction (p-

value) ² 

 
Gender Male 2288 1.00 1.00   0.716 0.358 - 
 Female 1958 1.03 1.09 [0.91,1.30] 0.358    

Ethnicity White: UK 779 1.00 1.00   <0.001 <0.001 0.660 
 White: Mixed 345 0.60 0.58 [0.40,0.83] 0.003    
 Asian: Indian 185 1.23 1.27 [0.75,2.15] 0.383    
 Asian: Pakistani 175 0.80 0.81 [0.49,1.34] 0.419    
 Asian: Bangladeshi 700 1.32 1.31 [0.93,1.85] 0.124    
 Black: Caribbean 180 0.41 0.39 [0.25,0.60] <0.001    
 Black: African 403 0.65 0.66 [0.47,0.93] 0.017    
 Other 1479 0.71 0.72 [0.55,0.94] 0.016    

Health no condition 2472 1.00 1.00   0.129 0.076 0.278 
 1+ conditions(s) 1774 1.13 1.15 [0.99,1.35] 0.076    

FAS Categories Low 319 1.00 1.00   0.126 0.225 0.630 
 Moderate 2182 0.74 0.76 [0.56,1.04] 0.084    
 High 1745 0.74 0.78 [0.57,1.08] 0.137    

Take FSM at W1 No 2738 1.00 1.00   0.340 0.395 0.375 
 Yes 1508 1.09 1.09 [0.90,1.31] 0.395    

time  . 0.96 0.96 [0.90,1.04] 0.331 0.262 0.331 0.599 

Results are from Generalised Estimating Equations to account for the dependency across repeated measurements (unstructured working correlation matrix). ¹ Adjusted for all 

variables of the table. ² The adjusted model was replicated for each outcome with an additional interaction term between gender and the exposure. 
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Table E.23 Odds ratios (OR) of walking for leisure vs. not by perception of the neighbourhood environment, adjusting for potential confounders (3 waves of the ORiEL Study, n= 4,128 from 
2,005) 

Exposure  

N cat 
Unadjusted 

OR 

Adjusted 

OR¹ 
95%CI 

P-value 

parameter 

P-value  

unadjusted 

P-value 

adjusted¹  

Gender 

interaction (p-

value) ² 

 

Bus stop proximity Further away 826 1.00 1.00   0.100 0.109 0.512 
 1-5 minutes 3302 0.88 0.88 [0.75,1.03] 0.109    

Perceived traffic safety Low 422 1.00 1.00   0.439 0.293 0.665 
 Medium 1382 0.90 0.89 [0.71,1.13] 0.348    
 High 2324 0.87 0.84 [0.67,1.06] 0.134    

Perceived connectivity Low 799 1.00 1.00   0.203 0.418 0.841 
 Medium 2416 1.15 1.10 [0.93,1.31] 0.257    
 High 913 1.18 1.14 [0.93,1.41] 0.214    

Nhood nice for walk/cycle Strongly/slightly disagree 988 1.00 1.00   0.276 0.460 0.871 
 Slightly agree 1625 0.96 0.97 [0.81,1.16] 0.733    
 Strongly agree 1515 1.08 1.07 [0.89,1.30] 0.470    

Feel safe Strongly disagree 396 1.00 1.00   0.064 0.024 0.904 
 Slightly disagree 635 1.29 1.33 [1.02,1.74] 0.036    
 Neither agree nor disagree 963 1.06 1.08 [0.83,1.41] 0.551    
 Slightly agree 1092 1.29 1.38 [1.07,1.80] 0.015    
 Strongly agree 1042 1.15 1.23 [0.94,1.60] 0.138    

Gender Male 2214 1.00 1.00   <0.001 <0.001 - 
 Female 1914 1.64 1.62 [1.39,1.89] <0.001    

Ethnicity White: UK 763 1.00 1.00   <0.001 <0.001 0.073 
 White: Mixed 327 0.75 0.70 [0.51,0.95] 0.025    
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Exposure  

N cat 
Unadjusted 

OR 

Adjusted 

OR¹ 
95%CI 

P-value 

parameter 

P-value  

unadjusted 

P-value 

adjusted¹  

Gender 

interaction (p-

value) ² 

 
 Asian: Indian 177 0.68 0.67 [0.45,0.99] 0.046    
 Asian: Pakistani 176 0.48 0.50 [0.34,0.74] 0.001    
 Asian: Bangladeshi 691 0.39 0.39 [0.30,0.50] <0.001    
 Black: Caribbean 178 0.45 0.41 [0.27,0.62] <0.001    
 Black: African 377 0.39 0.39 [0.28,0.53] <0.001    
 Other 1439 0.65 0.63 [0.51,0.78] <0.001    

Health no condition 2400 1.00 1.00   0.693 0.955 0.566 
 1+ conditions(s) 1728 1.03 1.00 [0.87,1.16] 0.955    

FAS Categories Low 311 1.00 1.00   0.196 0.166 0.443 
 Moderate 2123 0.93 1.05 [0.81,1.36] 0.714    
 High 1694 1.06 1.19 [0.91,1.57] 0.209    

Take FSM at W1 No 2657 1.00 1.00   0.574 0.050 0.642 
 Yes 1471 1.05 1.18 [1.00,1.38] 0.050    

time  . 0.81 0.79 [0.73,0.86] <0.001 <0.001 <0.001 0.893 

Results are from Generalised Estimating Equations to account for the dependency across repeated measurements (unstructured working correlation matrix). ¹ Adjusted for all 

variables of the table. ² The adjusted model was replicated for each outcome with an additional interaction term between gender and the exposure. 
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Table E.24 Odds ratios (OR) of reporting at least one outdoor physical activity* vs. not by perception of the neighbourhood environment, adjusting for potential confounders (3 waves of the 
ORiEL Study, n= 3,974 from 1,980 individuals) 

Exposure  

N cat 
Unadjusted 

OR 

Adjusted 

OR¹ 
95%CI 

P-value 

parameter 

P-value  

unadjusted 

P-value 

adjusted¹  

Gender 

interaction (p-

value) ² 

 

Bus stop proximity Further away 783 1.00 1.00   0.749 0.817 0.776 
 1-5 minutes 3191 0.97 0.98 [0.81,1.18] 0.817    

Perceived traffic safety Low 403 1.00 1.00   0.828 0.370 0.008 
 Medium 1338 1.00 1.03 [0.78,1.36] 0.825    
 High 2233 0.95 0.92 [0.69,1.22] 0.543    

Perceived connectivity Low 770 1.00 1.00   0.095 0.016 0.601 
 Medium 2332 1.09 1.24 [1.02,1.52] 0.035    
 High 872 1.27 1.43 [1.12,1.83] 0.004    

Nhood nice for walk/cycle Strongly/slightly disagree 953 1.00 1.00   0.128 0.638 0.945 
 Slightly agree 1566 0.97 0.99 [0.80,1.21] 0.889    
 Strongly agree 1455 1.14 1.08 [0.85,1.37] 0.524    

Feel safe Strongly disagree 382 1.00 1.00   0.261 0.551 0.785 
 Slightly disagree 614 1.06 1.13 [0.84,1.52] 0.430    
 Neither agree nor disagree 933 0.97 0.96 [0.72,1.28] 0.780    
 Slightly agree 1052 1.05 1.06 [0.80,1.41] 0.684    
 Strongly agree 993 1.22 1.14 [0.85,1.54] 0.391    

Gender Male 2153 1.00 1.00   <0.001 <0.001 - 
 Female 1821 0.21 0.20 [0.17,0.25] <0.001    

Ethnicity White: UK 735 1.00 1.00   0.001 0.007 0.109 
 White: Mixed 316 1.21 1.38 [0.95,2.00] 0.093    



  

 
 

3
71

 

Exposure  

N cat 
Unadjusted 

OR 

Adjusted 

OR¹ 
95%CI 

P-value 

parameter 

P-value  

unadjusted 

P-value 

adjusted¹  

Gender 

interaction (p-

value) ² 

 

 Asian: Indian 171 1.25 1.22 [0.76,1.96] 0.415    
 Asian: Pakistani 169 2.75 2.53 [1.42,4.51] 0.002    
 Asian: Bangladeshi 675 1.23 1.06 [0.79,1.44] 0.688    
 Black: Caribbean 171 0.85 1.09 [0.70,1.69] 0.702    
 Black: African 357 1.71 1.75 [1.23,2.51] 0.002    
 Other 1380 1.26 1.31 [1.01,1.70] 0.042    

Health no condition 2309 1.00 1.00   0.431 0.922 0.745 
 1+ conditions(s) 1665 0.94 0.99 [0.84,1.17] 0.922    

FAS Categories Low 302 1.00 1.00   0.103 0.053 0.462 
 Moderate 2042 1.07 1.18 [0.87,1.61] 0.277    
 High 1630 1.25 1.40 [1.01,1.94] 0.042    

Take FSM at W1 No 2562 1.00 1.00   0.143 0.295 0.616 
 Yes 1412 1.14 1.11 [0.92,1.34] 0.295    

time   0.74 0.71 [0.65,0.77] <0.001 <0.001 <0.001 0.056 

Results are from Generalised Estimating Equations to account for the dependency across repeated measurements (unstructured working correlation matrix). ¹ Adjusted for all 

variables of the table. ² The adjusted model was replicated for each outcome with an additional interaction term between gender and the exposure. * Outdoor physical activities 

include: basketball (or volleyball), blading, cricket, football, rounders, rugby and skating.  
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Table E.25 Odds ratios (OR) of walking to school vs. not at wave 3 by cumulated perception of the neighbourhood environment over the 3 waves, adjusting for potential confounders (n=865)  

Exposure Unadjusted OR Adjusted OR¹ 95%CI 
P-value  

unadjusted 

P-value 

adjusted¹ 

Gender interaction 

(p-value) ² 

Cumulative bus stop proximity 0.91 0.94 [0.80,1.11] 0.284 0.457 0.088  

Cumulative traffic safety 0.93 1.01 [0.90,1.13] 0.195 0.916 0.263  

Cumulative favourable infrastructure 1.06 1.07 [0.93,1.23] 0.419 0.345 0.390  

Cumulative nice neighbourhood 0.91 0.90 [0.79,1.01] 0.096 0.076 0.473  

Cumulative personal safety 0.95 0.98 [0.90,1.07] 0.233 0.682 0.485  

Results are from Generalised Estimating Equations to account for the clustering of individuals within schools (exchangeable working correlation matrix). The cumulative exposure 

are continuous variables constructed as the sum of scores of each exposure over the 3 waves. A higher score indicates a perception of supportive environment for the specific 

exposure. ¹ Adjusted for gender, ethnicity, health conditions (at wave 3), family affluence (at wave 3), baseline FSM and the other perception variables. ² The adjusted model 

was replicated for each outcome with an additional interaction term between gender and the exposure. 

 
Table E.26 Odds ratios (OR) of walking for leisure vs. not at wave 3 by cumulated perception of the neighbourhood environment over the 3 waves, adjusting for potential confounders (n=860)  

Exposure Unadjusted OR Adjusted OR¹ 95%CI 
P-value  

unadjusted 

P-value 

adjusted¹ 

Gender 

interaction (p-

value) ² 

Cumulative bus stop proximity 1.07 1.11 [0.92,1.33] 0.433 0.289 0.732 

Cumulative traffic safety 1.01 1.08 [0.96,1.21] 0.838 0.210 0.615 

Cumulative favourable infrastructure 1.02 1.05 [0.90,1.22] 0.756 0.565 0.459 

Cumulative nice neighbourhood 0.95 0.94 [0.83,1.06] 0.250 0.324 0.270 

Cumulative personal safety 0.96 0.99 [0.92,1.06] 0.211 0.717 0.815 

Results are from Generalised Estimating Equations to account for the clustering of individuals within schools (exchangeable working correlation matrix). The cumulative 

exposure are continuous variables constructed as the sum of scores of each exposure over the 3 waves. A higher score indicates a perception of supportive environment for 
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the specific exposure. ¹ Adjusted for gender, ethnicity, health conditions (at wave 3), family affluence (at wave 3) and baseline FSM. ² The adjusted model was replicated for 

each outcome with an additional interaction term between gender and the exposure. 

 

Table E.27 Odds ratios (OR) of reporting at least one outdoor physical activity* vs. not at wave 3 by cumulated perception of the neighbourhood environment over the 3 waves, adjusting for 
potential confounders (n= 839)  

Exposure Unadjusted OR Adjusted OR¹ 95%CI 
P-value  

unadjusted 

P-value 

adjusted¹ 

Gender 

interaction (p-

value) ² 

Cumulative bus stop proximity 1.13 1.11 [0.88,1.39] 0.222 0.385 0.015 

Cumulative traffic safety 1.09 1.07 [0.92,1.24] 0.224 0.388 0.235 

Cumulative favourable infrastructure 1.03 1.05 [0.95,1.17] 0.423 0.315 0.565 

Cumulative nice neighbourhood 1.05 1.06 [0.96,1.17] 0.139 0.234 0.171 

Cumulative personal safety 1.06 1.00 [0.94,1.07] 0.060 0.912 0.943 

Results are from Generalised Estimating Equations to account for the clustering of individuals within schools (exchangeable working correlation matrix). The cumulative 

exposure are continuous variables constructed as the sum of scores of each exposure over the 3 waves. A higher score indicates a perception of supportive environment for 

the specific exposure.  ¹ Adjusted for gender, ethnicity, health conditions (at wave 3), family affluence (at wave 3) and baseline FSM. ² The adjusted model was replicated for 

each outcome with an additional interaction term between gender and the exposure. * Outdoor physical activities include: basketball (or volleyball), blading, cricket, football, 

rounders, rugby and skating.  

 
Table E.28 Odds ratios (OR) of walking to school vs. not by change in perception of the neighbourhood environment since the baseline, adjusting for potential confounders (3 waves of the 
ORiEL Study n= 2,703 from 1,027 individuals)  

Exposure Unadjusted 

OR 

Adjusted 

OR¹ 

 95%  CI  P-value  

unadjusted 
P-value adjusted Gender interaction 

(p-value) ² 

 
Change: Bus stop proximity 1.08 1.28 [ 0.78 , 2.09 ] 0.682 0.325 0.130 

Change: Traffic safety 1.20 1.06 [ 0.77 , 1.46 ] 0.141 0.704 0.462 

Change: Favourable infrastructure 0.97 1.06 [ 0.78 , 1.44 ] 0.814 0.714 0.858 
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Change: Nice neighbourhood  1.10 1.12 [ 0.85 , 1.47 ] 0.348 0.415 0.703 

Change: Personal safety 0.99 0.92 [ 0.78 , 1.08 ] 0.862 0.312 0.109 

Time x change interaction: Bus stop proximity 0.97 0.90 [ 0.73 , 1.12 ] 0.663 0.338 0.063 

Time x change interaction: Traffic safety 0.94 1.01 [ 0.88 , 1.16 ] 0.224 0.909 0.095 

Time x change interaction: Favourable infrastructure 1.00 1.01 [ 0.89 , 1.14 ] 0.986 0.936 0.672 

Time x change interaction: Nice neighbourhood 0.94 0.95 [ 0.84 , 1.06 ] 0.125 0.339 0.996 

Time x change interaction: Personal safety 0.98 1.00 [ 0.93 , 1.07 ] 0.527 0.994 0.584 

Results are from Generalised Estimating Equations to account for the dependency across repeated measurements (unstructured working correlation matrix). Each exposure 

variable measures change since baseline on a continuous scale. Each unit represent an average change in exposure by one category between the baseline and the end of the 

study (+1 = improvement of the neighbourhood by one category on average). The time x change interaction assesses whether exposure change is associated with different 

trajectory of change in the outcome.  ¹ adjusted for time, gender, ethnicity, health conditions, family affluence and baseline FSM reporting. ² The adjusted model was replicated 

for each outcome with the addition of 2 way- and 3 way- interactions between gender, change and time. 
 

Table E.29 Odds ratios (OR) of walking for leisure vs. not by change in perception of the neighbourhood environment since the baseline, adjusting for potential confounders (3 waves of the 
ORiEL Study; n=2,622 from 1,023 individuals)  

Exposure Unadjusted 

OR 

Adjusted 

OR¹ 

 95%  CI  P-value  

unadjusted 
P-value adjusted Gender interaction 

(p-value) ² 

 
Change: Bus stop proximity 1.15 1.13 [ 0.70 , 1.84 ] 0.442 0.616 0.512 

Change: Traffic safety 0.94 0.78 [ 0.57 , 1.07 ] 0.598 0.129 0.175 

Change: Favourable infrastructure 1.01 0.94 [ 0.69 , 1.28 ] 0.957 0.703 0.983 

Change: Nice neighbourhood  0.98 1.11 [ 0.84 , 1.45 ] 0.866 0.468 0.338 

Change: Personal safety 0.98 0.96 [ 0.83 , 1.13 ] 0.787 0.648 0.373 

Time x change interaction: Bus stop proximity 0.87 0.93 [ 0.75 , 1.16 ] 0.075 0.518 0.998 

Time x change interaction: Traffic safety 1.00 1.08 [ 0.93 , 1.25 ] 0.936 0.313 0.237 

Time x change interaction: Favourable infrastructure 0.99 1.02 [ 0.88 , 1.17 ] 0.834 0.809 0.893 

Time x change interaction: Nice neighbourhood 1.00 0.93 [ 0.82 , 1.05 ] 0.946 0.257 0.298 



  

 
 

3
75

 

Time x change interaction: Personal safety 1.00 1.04 [ 0.96 , 1.11 ] 0.975 0.329 0.700 

Results are from Generalised Estimating Equations to account for the dependency across repeated measurements (unstructured working correlation matrix). Each exposure 
variable measures change since baseline on a continuous scale. Each unit represent an average change in exposure by one category between the baseline and the end of the 
study (+1 = improvement of the neighbourhood by one category on average). The time x change interaction assesses whether exposure change is associated with different 
trajectory of change in the outcome.  ¹ adjusted for time, gender, ethnicity, health conditions, family affluence and baseline FSM reporting. ² The adjusted model was replicated 
for each outcome with the addition of 2 way- and 3 way- interactions between gender, change and time. 

Table E.30 Odds ratios (OR) of reporting at least one outdoor physical activity* vs. not by change in perception of the neighbourhood environment since the baseline, adjusting for potential 
confounders (3 waves of the ORiEL Study;  n=2,534 from 1,021 individuals)  

Exposure Unadjusted 

OR 

Adjusted 

OR¹ 

 95%  CI  P-value  

unadjusted 

P-value 

adjusted 

Gender interaction 

(p-value) ² 

 
Change: Bus stop proximity 0.93 1.01 [ 0.58 , 1.74 ] 0.709 0.981 0.218 

Change: Traffic safety 1.13 1.11 [ 0.77 , 1.59 ] 0.346 0.572 0.002 

Change: Favourable infrastructure 0.70 0.69 [ 0.48 , 0.98 ] 0.010 0.039 0.908 

Change: Nice neighbourhood  0.92 1.01 [ 0.73 , 1.40 ] 0.434 0.955 0.530 

Change: Personal safety 1.07 0.95 [ 0.78 , 1.16 ] 0.336 0.606 0.242 

Time x change interaction: Bus stop proximity 1.10 1.03 [ 0.82 , 1.30 ] 0.245 0.774 0.305 

Time x change interaction: Traffic safety 0.94 0.93 [ 0.80 , 1.08 ] 0.258 0.334 0.008 

Time x change interaction: Favourable infrastructure 1.11 1.11 [ 0.96 , 1.29 ] 0.058 0.151 0.892 

Time x change interaction: Nice neighbourhood 1.06 0.98 [ 0.85 , 1.12 ] 0.203 0.723 0.415 

Time x change interaction: Personal safety 1.00 1.06 [ 0.98 , 1.15 ] 0.926 0.148 0.419 

Results are from Generalised Estimating Equations to account for the dependency across repeated measurements (unstructured working correlation matrix). Each exposure 
variable measures change since baseline on a continuous scale. Each unit represent an average change in exposure by one category between the baseline and the end of the 
study (+1 = improvement of the neighbourhood by one category on average). The time x change interaction assesses whether exposure change is associated with different 
trajectory of change in the outcome.  ¹ adjusted for time, gender, ethnicity, health conditions, family affluence and baseline FSM reporting. ² The adjusted model was replicated 
for each outcome with the addition of 2 way- and 3 way- interactions between gender, change and time. * Outdoor physical activities include: basketball (or volleyball), blading, 
cricket, football, rounders, rugby and skating.  
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This appendix presents results from analyses of the missing data for chapter 7. The analyses 

were conducted in order to inform: i) the validity of the complete case analysis; ii) the 

plausibility of the MAR assumption; and iii) the selection of the auxiliary variables of the 

imputation model. Analyses focus on variables not previously studied in chapter 6 (cf. E.1 

Analysis of missingness for chapter 6) and are restricted to the four more common ethnic 

groups: White UK, White Mixed, Bangladeshi, Black African. Note that these analyses are only 

informative and should be interpreted with caution as some assumptions might be violated in 

some of the models (e.g. clustering at individual level, normality in the error terms). 

 

Table F.1 indicate that walking to school has significant bivariate associations with missingness 

of neighbourhood-level (LSOA) ethnic density and distance to school, which are based on the 

reporting of individual address by respondents. The strength of evidence of associations 

weakens in the adjusted models for neighbourhood-level ethnic density. As in the preceding 

chapter, walking for leisure is most likely not associated with missingness of the covariates of 

the models, as indicated both in adjusted and unadjusted models. The odds of outdoor 

physical activity are associated with missingness on household composition in both adjusted 

and unadjusted models.   

Overall, these results indicate that a complete case analysis might lead to some bias. Due to 

widespread item missingness, this analysis cannot be fully conclusive however. It is unclear 

whether weaker associations in the fully adjusted models are themselves biased (because of 

the change in the sample) or if they indicate that the complete case analysis is still valid once 

controlling for all relevant variables (i.e. once adjusted for covariates, missingness does not 

depend that much on the outcomes). Given that some significant associations remain in the 

adjusted models, the results overall indicate that a complete case analysis is very likely to be 

biased, which rules out the MCAR assumption. 
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Table F.1 Assessment of complete case analysis validity: unadjusted and adjusted ORs of item response for each 
covariate with missing values by outcome variable (adjusted and unadjusted results; n = 1,160; 3,480 
measurements)  

Covariate N missing % missing Outcome N OR Pvalue N* OR* Pvalue* 

Ethnic density LSOA 292 8.4 Walk to school 3325 1.60 0.001 2846 1.35 0.076 

   Walk for leisure 3150 0.89 0.413 2704 0.81 0.207 

   Outdoor PA 3003 0.98 0.918 2589 1.15 0.469 

Household composition 32 0.9 Walk to school 3325 0.88 0.799 2863 0.98 0.975 

   Walk for leisure 3150 1.41 0.479 2717 1.07 0.915 

   Outdoor PA 3003 1.96 0.143 2602 2.47 0.152 

Time lived in neighbourhood 282 8.1 Walk to school 3325 1.17 0.345 2846 1.16 0.421 

   Walk for leisure 3150 0.88 0.418 2704 0.79 0.196 

   Outdoor PA 3003 0.53 0.005 2589 0.79 0.337 

Distance to school 297 8.5 Walk to school 3325 1.63 0.001 3325 1.63 0.001 

*Results from logistic regressions, adjusted for gender, ethnicity, health, family affluence, baseline FSM, school-

level ethnic density and household composition (except for the model with household composition missingness) 

Response is coded 1 and missingness 0.  

 

In addition to analyses of MAR mechanism performed in chapter 6 (E.1 Analysis of missingness 

for chapter 6), I investigated whether missingness on new variables with high missingness - 

neighbourhood-level ethnic density, distance to school and time lived in the neighbourhood - 

could be predicted using almost fully observed variables (Table F.2). Predictors used were 

(almost) fully observed variables from the model of interest (school-level ethnic density, 

gender, ethnicity, family affluence, free school meals, household composition) and auxiliary 

variables a priori hypothesised to be associated with the probability of missingness: school, 

country of birth, language spoken at home, self-rated health, mental health (WEMWBS total 

score).  

Amongst the (almost) fully observed variables of the model of interest, ethnicity, school, 

country of birth, language spoken at home and mental health were good predictors of 

missingness for at least two out of the three the variables examined (Table F.2). Gender and 

FSM were also a good predictor of missingness on time lived in the neighbourhood.  

This analysis indicates that at least some of the variables are predictive of missingness, which 

supports the plausibility of the MAR assumption. Variables with more missing values are also 

likely to predict missingness on the variables of the models of interest so that an imputation 

model with the wide range of variables considered will further strengthen the plausibility of 
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the assumption. However, it is never possible to rule out MNAR, and it might be that even 

accounting for all these variables, the missingness mechanism depends on unmeasured 

variables.  

Table F.2 Assessment of the MAR assumption: (almost) fully observed predictors of item missingness for the 
additional variables with high levels of missing values.  

Missingness variable Predictor p-value 

Ethnic density LSOA Gender 0.922 

 Ethnicity 0.001 

 school <0.001 

 FAS Categories 0.167 

 Take FSM at W1 0.377 

 Country of Birth 0.009 

 language at home 0.014 

 self-rated health 0.321 

 household composition 0.473 

 School-level ethnic density  0.637 

 Log of total PA 0.717 

 Mental Health (WEMWBS) 0.057 

Time lived in neighbourhood Gender 0.002 

 Ethnicity 0.065 

 school 0.010 

 FAS Categories 0.556 

 Take FSM at W1 0.004 

 Country of Birth 0.926 

 language at home 0.354 

 self-rated health 0.276 

 household composition 0.801 

 School-level ethnic density  0.540 

 Log of total PA 0.348 

 Mental Health (WEMWBS) 0.257 

Distance to school Gender 0.845 

 Ethnicity 0.002 

 school <0.001 

 FAS Categories 0.108 

 Take FSM at W1 0.180 

 Country of Birth 0.007 

 language at home 0.016 

 self-rated health 0.286 

 household composition 0.400 

 School-level ethnic density  0.432 

 Log of total PA 0.907 

 Mental Health (WEMWBS) 0.074 

Results from logistic regressions.  
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The imputation model should include variables of the models of interest and relevant auxiliary 

variables. The later should be included only if they are likely to reduce bias and/or to increase 

efficiency (Carpenter & Kenward 2012). Variables predictive of the chance of missing values 

identified above should be included in the imputation model only if they also predict the 

underlying missing values, in which case, they are likely to reduce bias and improve efficiency. 

Auxiliary variables should however be excluded if they do not predict the underlying values 

themselves. Variables associated with the underlying values - but not the chance of missing 

values - should be included because they will improve efficiency, although they are not going 

to reduce bias. 

Table F.3 reports linear and logistic regression results of associations between the three 

additional variables with missing values (neighbourhood-level ethnic density(continuous), 

time lived in the neighbourhood(binary), and log distance to school (continuous) ) and almost 

fully observed variables of the model of interest, as well as auxiliary variables. Neighbourhood-

level ethnic density is well predicted by ethnicity, school, FSM, country of birth, self-rated 

health, school-level ethnic density, and to a lower extent and mental health. Time lived in the 

neighbourhood is predicted by ethnicity, school, FSM, country of birth, household composition 

and total PA, and, to some extent, school-level ethnic density. Distance to school (log) is 

predicted by ethnicity, school, FSM, country of birth, school-level ethnic density and log of 

total PA.  

Additional analysis (not presented here) of a potential auxiliary variables with more missing 

values – same-ethnicity friends (measured at wave 3 and recoded as many vs. few) – further 

indicates that the variable could be included in the imputation model to increase precision. 

Same-ethnicity friends was a potential predictor of neighbourhood-level ethnic density 

(unadjusted p-value < 0.001, adjusted p-value = 0.104). It was however not a predictor of 

missing values on the ethnic density variable (unadjusted p-value = 0.737). It was therefore 

considered in the initial imputation model, but left out of the final imputation model for 

parsimony purposes.  

 

Overall, these analyses combined with those of the previous chapter (E.1 Analysis of 

missingness for chapter 6),  indicates that an imputation model with the auxiliary variables 

considered – country of birth, language spoken at home, self-rated health, total physical 
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activity, mental health – are very likely to reduce bias and improve efficiency compared to a 

complete case analysis. Covariates of the model of interest with more missing values are also 

expected to reduce bias and improve efficiency. 

Table F.3 Associations between variables with missing values and auxiliary variables, adjusted for all auxiliary 
variables and gender, ethnicity, school, FSM, household composition, and FAS category. 

Variable with missing values Predictor  p-value 

Ethnic density LSOA Gender 0.338 

 Ethnicity <0.001 

 school <0.001 

 FAS Categories 0.135 

 Take FSM at W1 0.017 

 Country of Birth <0.001 

 language at home 0.624 

 self-rated health 0.009 

 household composition 0.321 

 School-level ethnic density  <0.001 

 Log of total PA 0.045 

 Mental Health (WEMWBS) 0.070 

Time lived in neighbourhood Gender 0.150 

 Ethnicity 0.002 

 school <0.001 

 FAS Categories 0.007 

 Take FSM at W1 0.001 

 Country of Birth <0.001 

 language at home 0.794 

 self-rated health 0.885 

 household composition 0.019 

 School-level ethnic density  0.079 

 Log of total PA <0.001 

 Mental Health (WEMWBS) 0.409 

Distance to school (log) Gender 0.441 

 Ethnicity <0.001 

 school <0.001 

 FAS Categories 0.499 

 Take FSM at W1 0.010 

 Country of Birth 0.009 

 language at home 0.148 

 self-rated health 0.508 

 household composition 0.473 

 School-level ethnic density  0.036 

 Log of total PA <0.001 

 Mental Health (WEMWBS) 0.478 

Results from linear and logistic regression models. 
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The partially adjusted and fully adjusted model equations of chapter 7 are described in this 

appendix. The models account for time-invariant (gender, baseline FSM) and time-varying 

confounders (health condition, family affluence, household composition and time lived in the 

neighbourhood). A time trend was included to reflect the general decrease in physical activity 

during adolescence. The models for walking to school also account for the log distance to 

school. The logistic models estimated with GEE to account for clustering at individual level i 

are expressed as follows:  

𝑙𝑜𝑔𝑖𝑡{Pr(𝑌𝑖𝑗 = 1|𝒙𝒊𝒋)} = 𝒙𝒊𝒋
′ 𝜷    

Where: 

i= individual 

j= repeated measures 

𝑌𝑖𝑗  = physical activity outcome (walking to school, walking for leisure or outdoor physical activity) for 

individual i at occasion j  

𝒙𝒊𝒋 = a matrix representing the variables included in the model for all individuals at each occasion 

𝜷 = a vector representing the coefficients of the model, including a constant  

The following equations describe the form taken by 𝒙𝒊𝒋
′ 𝜷 in three types of models fitted.  

1. Partially adjusted model for school-level ethnic density 

𝒙𝒊𝒋
′ 𝜷 =  𝛽0 + 𝛽1𝑆𝑐𝐻𝑜𝑜𝑙_𝑒𝑡𝐻_𝑑𝑒𝑛𝑠𝑖 + 𝛽2𝐸𝑡𝐻2𝑖 + 𝛽3𝐸𝑡𝐻3𝑖 + 𝛽4𝐸𝑡𝐻4𝑖 + 𝛽5𝐸𝑡𝐻2𝑖 ∗

𝑆𝑐𝐻𝑜𝑜𝑙_𝑒𝑡𝐻_𝑑𝑒𝑛𝑠𝑖 + 𝛽6𝐸𝑡𝐻3𝑖 ∗ 𝑆𝑐𝐻𝑜𝑜𝑙_𝑒𝑡𝐻_𝑑𝑒𝑛𝑠𝑖 + 𝛽7𝐸𝑡ℎ4𝑖 ∗ 𝑆𝑐𝐻𝑜𝑜𝑙_𝑒𝑡𝐻_𝑑𝑒𝑛𝑠𝑖 + 𝛽8𝐺𝑖𝑟𝑙𝑖 +

𝛽9𝐹𝑆𝑀𝑖1 + 𝛽10𝐻𝑒𝑎𝑙𝑡𝐻𝑖𝑗 + 𝛽11𝐹𝐴𝑆1𝑖𝑗 + 𝛽12𝐹𝐴𝑆2𝑖𝑗 + 𝛽13𝐻𝐻_𝑐𝑜𝑚𝑝𝑖𝑗 + 𝛽14𝑁𝑏_𝑡𝑖𝑚𝑒𝑖𝑗 +

𝛽15𝑇𝑖𝑚𝑒𝑖𝑗  (+ 𝛽16𝑆𝑐𝐻𝑜𝑜𝑙_𝑑𝑖𝑠𝑡𝑖𝑗)  

2. Partially adjusted model for neighbourhood-level ethnic density 

𝒙𝒊𝒋
′ 𝜷 =  𝛽0 + 𝛽1𝑁𝑏_𝑒𝑡𝐻_𝑑𝑒𝑛𝑠𝑖𝑗 + 𝛽2𝐸𝑡𝐻2𝑖 + 𝛽3𝐸𝑡𝐻3𝑖 + 𝛽4𝐸𝑡𝐻4𝑖 + 𝛽5𝐸𝑡𝐻2𝑖 ∗ 𝑁𝑏_𝑒𝑡𝐻_𝑑𝑒𝑛𝑠𝑖𝑗 +

𝛽6𝐸𝑡𝐻3𝑖 ∗ 𝑁𝑏_𝑒𝑡𝐻_𝑑𝑒𝑛𝑠𝑖𝑗 + 𝛽7𝐸𝑡𝐻4𝑖 ∗ 𝑁𝑏_𝑒𝑡𝐻_𝑑𝑒𝑛𝑠𝑖𝑗 + 𝛽8𝐺𝑖𝑟𝑙𝑖 + 𝛽9𝐹𝑆𝑀𝑖1 + 𝛽10𝐻𝑒𝑎𝑙𝑡𝐻𝑖𝑗 +

𝛽11𝐹𝐴𝑆1𝑖𝑗 + 𝛽12𝐹𝐴𝑆2𝑖𝑗 + 𝛽13𝐻𝐻_𝑐𝑜𝑚𝑝𝑖𝑗 + 𝛽14𝑁𝑏_𝑡𝑖𝑚𝑒𝑖𝑗 + 𝛽15𝑇𝑖𝑚𝑒𝑖𝑗   (+ 𝛽16𝑆𝑐𝐻𝑜𝑜𝑙_𝑑𝑖𝑠𝑡𝑖𝑗) 

3. Fully adjusted model for school-level ethnic density and neighbourhood-level ethnic 

density 

𝒙𝒊𝒋
′ 𝜷 =  𝛽0 + 𝛽1𝑆𝑐𝐻𝑜𝑜𝑙_𝑒𝑡𝐻_𝑑𝑒𝑛𝑠𝑖 + 𝛽2𝑁𝑏_𝑒𝑡𝐻_𝑑𝑒𝑛𝑠𝑖𝑗 +  𝛽3𝐸𝑡𝐻2𝑖 + 𝛽4𝐸𝑡𝐻3𝑖 + 𝛽5𝐸𝑡𝐻4𝑖 +

𝛽6𝐸𝑡𝐻2𝑖 ∗ 𝑆𝑐𝐻𝑜𝑜𝑙_𝑒𝑡𝐻_𝑑𝑒𝑛𝑠𝑖 + 𝛽7𝐸𝑡𝐻3𝑖 ∗ 𝑆𝑐𝐻𝑜𝑜𝑙_𝑒𝑡𝐻_𝑑𝑒𝑛𝑠𝑖 + 𝛽8𝐸𝑡𝐻4𝑖 ∗ 𝑆𝑐𝐻𝑜𝑜𝑙_𝑒𝑡𝐻_𝑑𝑒𝑛𝑠𝑖 +

𝛽9𝐸𝑡𝐻2𝑖 ∗ 𝑁𝑏_𝑒𝑡𝐻_𝑑𝑒𝑛𝑠𝑖𝑗 + 𝛽10𝐸𝑡𝐻3𝑖 ∗ 𝑁𝑏_𝑒𝑡𝐻_𝑑𝑒𝑛𝑠𝑖𝑗 + 𝛽11𝐸𝑡𝐻4𝑖 ∗ 𝑁𝑏_𝑒𝑡𝐻_𝑑𝑒𝑛𝑠𝑖𝑗 + 𝛽12𝐺𝑖𝑟𝑙𝑖 +

𝛽13𝐹𝑆𝑀𝑖1 + 𝛽14𝐻𝑒𝑎𝑙𝑡𝐻𝑖𝑗 + 𝛽15𝐹𝐴𝑆1𝑖𝑗 + 𝛽16𝐹𝐴𝑆2𝑖𝑗 + 𝛽17𝐻𝐻_𝑐𝑜𝑚𝑝𝑖𝑗 + 𝛽18𝑁𝑏_𝑡𝑖𝑚𝑒𝑖𝑗 +

𝛽19𝑇𝑖𝑚𝑒𝑖𝑗  (+ 𝛽20𝑆𝑐𝐻𝑜𝑜𝑙_𝑑𝑖𝑠𝑡𝑖𝑗)  

Where: 

𝑆𝑐𝐻𝑜𝑜𝑙_𝑒𝑡𝐻_𝑑𝑒𝑛𝑠𝑖= School-level own ethnic density (time-invariant) 

𝑁𝑏_𝑒𝑡𝐻_𝑑𝑒𝑛𝑠𝑖𝑗= Neighbourhood-level (LSOA) own ethnic density (time-varying if changed residence) 
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𝐸𝑡𝐻2𝑖 ,…, 𝐸𝑡𝐻4𝑖= Ethnicity dummy variables (reference category: White UK; time invariant) 

𝐺𝑖𝑟𝑙𝑖= Dummy variable for girls (time invariant) 

𝐹𝑆𝑀𝑖1= Baseline free school meals (reference category: no free school meal) 

𝐻𝑒𝑎𝑙𝑡𝐻𝑖𝑗  = Health conditions dummy variable (reference category: no condition) 

𝐹𝐴𝑆2𝑖𝑗 , 𝐹𝐴𝑆3𝑖𝑗= Family affluence dummy variables (reference category: low) 

𝐻𝐻_𝑐𝑜𝑚𝑝𝑖𝑗= Household composition dummy variable (reference category: live with both parents) 

𝑁𝑏_𝑡𝑖𝑚𝑒𝑖𝑗= Time lived in the neighbourhood (reference category: more than 5 years) 

𝑇𝑖𝑚𝑒𝑖𝑗= Continuous variable indicating the wave (1, 2 or 3). Measurement time is considered 

equivalent across all individuals at each wave 

𝑆𝑐𝐻𝑜𝑜𝑙_𝑑𝑖𝑠𝑡𝑖𝑗= Log distance to school (time-varying if changed residence)
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Table F.4 Ethnic group specific odds ratios (OR) of walking to school vs. not by own-group ethnic density* (3 waves of the ORiEL Study, n= 1,160) 

Results are estimated with Generalised Estimating Equations models to account for the dependency across repeated measurements (exchangeable working correlation matrix). 

Interaction terms between the own-group ethnic density variable and ethnicity were used and ethnic group specific ORs were obtained. *Own-group density assessed as 

change per 10 percentage points. ¹ Adjusted for time, gender, health conditions, family affluence, baseline FSM, household composition, time lived in the neighbourhood 

and distance to school. ² Adjusted for time, gender, health conditions, family affluence, baseline FSM, household composition, time lived in the neighbourhood, distance to 

school, the other ethnic density variable and its interaction with ethnicity. 
 

  

Exposure Unadjusted OR 
Partially 

Adjusted OR¹ 

 
95% 

 
CI 

 
P-value Fully Adjusted 

OR² 

 
95% 

 
CI 

 p-value 

School-level ethnic density        <0.001       <0.001 

White: UK 1.08 1.08 [ 0.96 , 1.21 ] 0.183 1.11 [ 0.94 , 1.30 ] 0.206 

White: Mixed 0.52 0.51 [ 0.34 , 0.75 ] 0.001 0.44 [ 0.28 , 0.69 ] 0.001 

Asian: Bangladeshi 1.19 1.19 [ 1.09 , 1.31 ] <0.001 1.12 [ 0.96 , 1.32 ] 0.143 

Black: African 0.58 0.58 [ 0.45 , 0.75 ] <0.001 0.60 [ 0.45 , 0.79 ] <0.001 

                

Neighbourhood-level ethnic density          0.003       0.508 

White: UK 1.01 1.01 [ 0.88 , 1.16 ] 0.903 0.96 [ 0.81 , 1.14 ] 0.651 

White: Mixed 0.96 0.95 [ 0.62 , 1.44 ] 0.805 1.34 [ 0.82 , 2.21 ] 0.244 

Asian: Bangladeshi 1.31 1.31 [ 1.13 , 1.50 ] <0.001 1.15 [ 0.91 , 1.46 ] 0.235 

Black: African 0.81 0.80 [ 0.60 , 1.08 ] 0.142 0.92 [ 0.67 , 1.26 ] 0.615 
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Table F.5 Ethnic group specific odds ratios (OR) of walking for leisure vs. not by own-group ethnic density* (3 waves of the ORiEL Study, n= 1,160) 

Results are estimated with Generalised Estimating Equations to account for the dependency across repeated measurements (exchangeable working correlation matrix). 

Interaction terms between the own-group ethnic density variable and ethnicity were used and ethnic group specific ORs were obtained. *Own-group density assessed as change 

per 10 percentage points. ¹ Adjusted for time, gender, health conditions, family affluence, baseline FSM, household composition and time lived in the neighbourhood. ² Adjusted 

for time, gender, health conditions, family affluence, baseline FSM, household composition, time lived in the neighbourhood, the other ethnic density variable and its interaction 

with ethnicity.  

  

Exposure 
Unadjusted 

OR 

Partially 

Adjusted OR¹ 

 
95% 

 
CI 

 
P-value Fully Adjusted 

OR² 

 
95% 

 
CI 

 p-value 

School-level ethnic density        0.398       0.858 

White: UK 0.99 0.99 [ 0.89 , 1.10 ] 0.832 0.96 [ 0.86 , 1.08 ] 0.505 

White: Mixed 0.90 0.86 [ 0.61 , 1.22 ] 0.397 0.93 [ 0.64 , 1.36 ] 0.705 

Asian: Bangladeshi 0.94 0.95 [ 0.90 , 1.01 ] 0.112 0.97 [ 0.89 , 1.05 ] 0.443 

Black: African 1.12 1.14 [ 0.86 , 1.51 ] 0.371 1.07 [ 0.78 , 1.47 ] 0.684 

                

Neighbourhood-level ethnic density          0.308       0.622 

White: UK 1.03 1.02 [ 0.94 , 1.12 ] 0.584 1.04 [ 0.95 , 1.15 ] 0.378 

White: Mixed 0.82 0.82 [ 0.57 , 1.18 ] 0.279 0.85 [ 0.57 , 1.26 ] 0.411 

Asian: Bangladeshi 0.92 0.94 [ 0.85 , 1.03 ] 0.189 0.97 [ 0.84 , 1.12 ] 0.666 

Black: African 1.18 1.18 [ 0.91 , 1.54 ] 0.209 1.16 [ 0.87 , 1.55 ] 0.318 
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Table F.6 Ethnic group specific odds ratios (OR) of outdoor PA vs. not by own-group ethnic density* (3 waves of the ORiEL Study, n= 1,160) 

Results are estimated with Generalised Estimating Equations to account for the dependency across repeated measurements (exchangeable working correlation matrix). 

Interaction terms between the own-group ethnic density variable and ethnicity were used and ethnic group specific ORs were obtained.  *Own-group density assessed as change 

per 10 percentage points. ¹ Adjusted for time, gender, health conditions, family affluence, baseline FSM, household composition and time lived in the neighbourhood. ² Adjusted 

for time, gender, health conditions, family affluence, baseline FSM, household composition, time lived in the neighbourhood, the other ethnic density variable and its interaction 

with ethnicity.  

  

Exposure 
Unadjusted 

OR 

Partially 

Adjusted OR¹ 

 
95% 

 
CI 

 
P-value Fully Adjusted 

OR² 

 
95% 

 
CI 

 p-value 

School-level ethnic density        0.071       0.551 

White: UK 0.86 0.87 [ 0.77 , 0.97 ] 0.016 0.94 [ 0.82 , 1.08 ] 0.402 

White: Mixed 0.97 1.05 [ 0.68 , 1.61 ] 0.831 1.03 [ 0.64 , 1.65 ] 0.896 

Asian: Bangladeshi 1.05 1.02 [ 0.95 , 1.09 ] 0.561 1.03 [ 0.94 , 1.14 ] 0.511 

Black: African 0.79 0.78 [ 0.58 , 1.04 ] 0.092 0.79 [ 0.57 , 1.10 ] 0.160 

                

Neighbourhood-level ethnic density          0.032       0.271 

White: UK 0.84 0.85 [ 0.76 , 0.94 ] 0.001 0.87 [ 0.77 , 0.98 ] 0.020 

White: Mixed 1.07 1.05 [ 0.70 , 1.58 ] 0.813 1.04 [ 0.66 , 1.61 ] 0.876 

Asian: Bangladeshi 1.04 1.01 [ 0.91 , 1.12 ] 0.857 0.98 [ 0.85 , 1.13 ] 0.744 

Black: African 0.90 0.88 [ 0.67 , 1.17 ] 0.385 0.96 [ 0.70 , 1.31 ] 0.792 
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Table F.7 Ethnic group specific odds ratios (OR) of walking to school vs. not by own-group ethnic density* (3 waves of the ORiEL Study, n= 1,160) 

Results are estimated with Generalised Estimating Equations to account for the dependency across repeated measurements (unstructured working correlation matrix). *Own-

group density assessed as change per 10 percentage points. ¹ Adjusted for time, gender, health conditions, family affluence, baseline FSM, household composition, time lived in 

the neighbourhood and distance to school. ² Adjusted for time, gender, health conditions, family affluence, baseline FSM, household composition, time lived in the 

neighbourhood, distance to school, and the other ethnic density variable. 

  

Exposure Unadjusted OR 
Partially 

Adjusted OR¹ 

 
95% 

 
CI 

 
P-value Fully Adjusted 

OR² 

 
95% 

 
CI 

 p-value 

School-level ethnic density                

White: UK 1.08 1.09 [ 0.97 , 1.23 ] 0.128 1.11 [ 0.95 , 1.31 ] 0.185 

White: Mixed 0.54 0.49 [ 0.32 , 0.73 ] 0.001 0.42 [ 0.26 , 0.69 ] 0.001 

Asian: Bangladeshi 1.20 1.20 [ 1.09 , 1.33 ] <0.001 1.13 [ 0.97 , 1.33 ] 0.111 

Black: African 0.58 0.57 [ 0.44 , 0.75 ] <0.001 0.60 [ 0.44 , 0.80 ] 0.001 

                

Neighbourhood-level ethnic density                  

White: UK 1.01 1.02 [ 0.89 , 1.17 ] 0.755 0.97 [ 0.82 , 1.16 ] 0.746 

White: Mixed 0.94 0.93 [ 0.59 , 1.46 ] 0.746 1.32 [ 0.77 , 2.26 ] 0.310 

Asian: Bangladeshi 1.31 1.30 [ 1.13 , 1.51 ] <0.001 1.15 [ 0.91 , 1.44 ] 0.242 

Black: African 0.78 0.78 [ 0.58 , 1.05 ] 0.101 0.90 [ 0.65 , 1.24 ] 0.517 
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Table F.8 Ethnic group specific odds ratios (OR) of walking for leisure vs. not by own-group ethnic density* (3 waves of the ORiEL Study, n= 1,160) 

Results are estimated with Generalised Estimating Equations to account for the dependency across repeated measurements (unstructured working correlation matrix). *Own-

group density assessed as change per 10 percentage points. ¹ Adjusted for time, gender, health conditions, family affluence, baseline FSM, household composition and time lived 

in the neighbourhood. ² Adjusted for time, gender, health conditions, family affluence, baseline FSM, household composition, time lived in the neighbourhood, and the other 

ethnic density variable. 

  

Exposure 
Unadjusted 

OR 

Partially 

Adjusted OR¹ 

 
95% 

 
CI 

 
P-value Fully Adjusted 

OR² 

 
95% 

 
CI 

 p-value 

School-level ethnic density                

White: UK 0.99 0.99 [ 0.89 , 1.09 ] 0.829 0.96 [ 0.86 , 1.08 ] 0.491 

White: Mixed 0.91 0.87 [ 0.62 , 1.23 ] 0.439 0.96 [ 0.65 , 1.42 ] 0.847 

Asian: Bangladeshi 0.94 0.95 [ 0.89 , 1.01 ] 0.089 0.97 [ 0.89 , 1.06 ] 0.488 

Black: African 1.12 1.15 [ 0.86 , 1.53 ] 0.336 1.08 [ 0.78 , 1.50 ] 0.643 

                

Neighbourhood-level ethnic density                  

White: UK 1.03 1.03 [ 0.94 , 1.12 ] 0.540 1.05 [ 0.95 , 1.15 ] 0.352 

White: Mixed 0.83 0.79 [ 0.54 , 1.15 ] 0.215 0.80 [ 0.52 , 1.22 ] 0.304 

Asian: Bangladeshi 0.91 0.92 [ 0.83 , 1.02 ] 0.107 0.95 [ 0.82 , 1.10 ] 0.479 

Black: African 1.17 1.19 [ 0.91 , 1.55 ] 0.205 1.16 [ 0.86 , 1.56 ] 0.328 
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Table F.9 Ethnic group specific odds ratios (OR) of outdoor PA vs. not. by own-group ethnic density* (3 waves of the ORiEL Study, n= 1,160) 

Results are estimated with Generalised Estimating Equations to account for the dependency across repeated measurements (unstructured working correlation matrix). *Own-

group density assessed as change per 10 percentage points. ¹ Adjusted for time, gender, health conditions, family affluence, baseline FSM, household composition and time lived 

in the neighbourhood. ² Adjusted for time, gender, health conditions, family affluence, baseline FSM, household composition, time lived in the neighbourhood, and the other 

ethnic density variable.  

 

  

Exposure 
Unadjusted 

OR 

Partially 

Adjusted OR¹ 

 
95% 

 
CI 

 
P-value Fully Adjusted 

OR² 

 
95% 

 
CI 

 p-value 

School-level ethnic density                

White: UK 0.86 0.86 [ 0.76 , 0.96 ] 0.010 0.93 [ 0.82 , 1.07 ] 0.306 

White: Mixed 0.99 0.99 [ 0.65 , 1.50 ] 0.951 1.00 [ 0.63 , 1.57 ] 0.994 

Asian: Bangladeshi 1.05 1.02 [ 0.94 , 1.10 ] 0.658 1.03 [ 0.93 , 1.13 ] 0.627 

Black: African 0.79 0.76 [ 0.56 , 1.02 ] 0.068 0.76 [ 0.55 , 1.06 ] 0.106 

                

Neighbourhood-level ethnic density                  

White: UK 0.84 0.84 [ 0.76 , 0.93 ] 0.001 0.87 [ 0.78 , 0.97 ] 0.014 

White: Mixed 1.07 0.97 [ 0.63 , 1.48 ] 0.887 0.97 [ 0.61 , 1.55 ] 0.904 

Asian: Bangladeshi 1.04 1.01 [ 0.90 , 1.13 ] 0.895 0.98 [ 0.85 , 1.14 ] 0.815 

Black: African 0.92 0.89 [ 0.67 , 1.19 ] 0.437 0.98 [ 0.72 , 1.35 ] 0.919 
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Table F.10 Ethnicity-stratified odds ratios (OR) of walking to school vs. not by school-level own-group ethnic density tertile (3 waves of the ORiEL Study, n= 1,160) 

Results are from logistic regression models estimated with Generalised Estimating Equations to account for the dependency across repeated measurements (unstructured 

working correlation matrix).  *Own-group density assessed as change per 10 percentage points. ¹ Adjusted for time, gender, health conditions, family affluence, baseline FSM, 

household composition, time lived in the neighbourhood and distance to school. ² Adjusted for time, gender, health conditions, family affluence, baseline FSM, household 

composition, time lived in the neighbourhood, distance to school, and the other ethnic density variable. *ref. category 

 

  

School-level  

ethnic density 

 
Unadjusted 

OR 
Partially 

Adjusted OR¹ 

 

95% 

 

CI 

 
P-value 
param. 

p-value Fully 
Adjusted 

OR² 

 

95% 

 

CI 

 p-value 
param. 

p-value 

White: UK Low* 1.00 1.00       0.006        0.008 

 Medium 0.50 0.52 [ 0.32 , 0.83 ] 0.007  0.49 [ 0.30 , 0.80 ] 0.004  

 High  0.94 0.96 [ 0.57 , 1.62 ] 0.890  0.84 [ 0.46 , 1.54 ] 0.584  

White: Mixed Low* 1.00 1.00       <0.001        <0.001 

 Medium 0.26 0.23 [ 0.11 , 0.45 ] <0.001  0.19 [ 0.09 , 0.39 ] <0.001  

 High  0.36 0.30 [ 0.14 , 0.62 ] 0.001  0.22 [ 0.09 , 0.51 ] <0.001  

Asian: Bangladeshi Low* 1.00 1.00       <0.001        <0.001 

 Medium 6.43 6.43 [ 3.38 , 12.24 ] <0.001  7.18 [ 3.30 , 15.62 ] <0.001  

 High  2.40 2.39 [ 1.29 , 4.42 ] 0.006  2.57 [ 1.10 , 6.00 ] 0.029  

Black: African Low* 1.00 1.00       0.001        0.002 

 Medium 0.69 0.69 [ 0.40 , 1.17 ] 0.169  0.71 [ 0.40 , 1.27 ] 0.250  

 High  0.39 0.37 [ 0.22 , 0.64 ] <0.001  0.38 [ 0.22 , 0.67 ] 0.001  
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Table F.11 Ethnicity-stratified odds ratios (OR) of walking to school vs. not by neighbourhood-level own-group ethnic density tertile (3 waves of the ORiEL Study, n= 1,160) 

Results are from logistic regression models estimated with Generalised Estimating Equations to account for the dependency across repeated measurements (unstructured 

working correlation matrix).  *Own-group density assessed as change per 10 percentage points. ¹ Adjusted for time, gender, health conditions, family affluence, baseline FSM, 

household composition, time lived in the neighbourhood and distance to school. ² Adjusted for time, gender, health conditions, family affluence, baseline FSM, household 

composition, time lived in the neighbourhood, distance to school, and the other ethnic density variable. *ref. category 

 

  

Neighbourhood-

level ethnic density   

 
Unadjusted 

OR 
Partially 

Adjusted OR¹ 

 

95% 

 

CI 

 
P-value 
param. 

p-value Fully 
Adjusted 

OR² 

 

95% 

 

CI 

 p-value 
param. 

p-value 

White: UK Low* 1.00 1.00       0.577 1.00       0.603 

 Medium 1.09 1.14 [ 0.70 , 1.85 ] 0.605  1.24 [ 0.74 , 2.07 ] 0.417  

 High  1.23 1.31 [ 0.80 , 2.16 ] 0.287  1.33 [ 0.74 , 2.37 ] 0.337  

White: Mixed Low* 1.00 1.00       0.979 1.00       0.375 

 Medium 0.97 0.95 [ 0.46 , 1.95 ] 0.888  1.37 [ 0.65 , 2.90 ] 0.407  

 High  1.01 1.01 [ 0.49 , 2.11 ] 0.970  1.80 [ 0.80 , 4.02 ] 0.152  

Asian: Bangladeshi Low* 1.00 1.00       0.010 1.00       0.017 

 Medium 0.96 0.96 [ 0.57 , 1.62 ] 0.879  0.50 [ 0.25 , 1.00 ] 0.049  

 High  2.76 2.72 [ 1.35 , 5.45 ] 0.005  1.17 [ 0.46 , 3.01 ] 0.742  

Black: African Low* 1.00 1.00       0.574 1.00       0.871 

 Medium 0.90 0.87 [ 0.48 , 1.60 ] 0.656  0.87 [ 0.46 , 1.65 ] 0.669  

 High  0.73 0.73 [ 0.42 , 1.27 ] 0.268  0.86 [ 0.48 , 1.54 ] 0.606  
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Table F.12  Ethnicity-stratified odds ratios (OR) of walking for leisure vs. not by school-level own-group ethnic density tertile (3 waves of the ORiEL Study, n= 1,160) 

Results are from logistic regression models estimated with Generalised Estimating Equations to account for the dependency across repeated measurements (unstructured 

working correlation matrix). *Own-group density assessed as change per 10 percentage points. ¹ Adjusted for time, gender, health conditions, family affluence, baseline FSM, 

household composition, and time lived in the neighbourhood. ² Adjusted for time, gender, health conditions, family affluence, baseline FSM, household composition, time lived 

in the neighbourhood, and the other ethnic density variable. *ref. category 
 

  

School-level  

ethnic density 

  
Unadjusted 

OR 

Partially 
Adjusted 

OR¹ 

 

95% 

 

CI 

 
P-value 
param. 

p-value Fully 
Adjusted 

OR² 

 

95% 

 

CI 

 p-value 
param. 

p-value 

White: UK Low*  1.00 1.00       0.461 1.00       0.465 

 Medium  0.82 0.81 [ 0.56 , 1.17 ] 0.257  0.80 [ 0.55 , 1.16 ] 0.232  

 High   0.99 0.98 [ 0.67 , 1.43 ] 0.912  0.93 [ 0.62 , 1.40 ] 0.720  

White: Mixed Low*  1.00 1.00       0.359 1.00       0.396 

 Medium  1.26 1.20 [ 0.73 , 1.97 ] 0.468  1.34 [ 0.79 , 2.27 ] 0.273  

 High   0.86 0.79 [ 0.43 , 1.44 ] 0.438  0.95 [ 0.49 , 1.86 ] 0.886  

Asian: Bangladeshi Low*  1.00 1.00       0.085 1.00       0.261 

 Medium  0.77 0.76 [ 0.52 , 1.10 ] 0.150  0.82 [ 0.53 , 1.26 ] 0.364  

 High   0.54 0.60 [ 0.37 , 0.96 ] 0.032  0.65 [ 0.38 , 1.09 ] 0.103  

Black: African Low*  1.00 1.00       0.407 1.00       0.638 

 Medium  0.95 1.08 [ 0.65 , 1.79 ] 0.757  1.04 [ 0.62 , 1.73 ] 0.889  

 High   1.30 1.40 [ 0.85 , 2.33 ] 0.187  1.28 [ 0.75 , 2.21 ] 0.364  
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Table F.13 Ethnicity-stratified odds ratios (OR) of walking for leisure vs. not by neighbourhood-level own-group ethnic density tertile (3 waves of the ORiEL Study, n= 1,160) 

Results are from logistic regression models estimated with Generalised Estimating Equations to account for the dependency across repeated measurements (unstructured 

working correlation matrix). *Own-group density assessed as change per 10 percentage points. ¹ Adjusted for time, gender, health conditions, family affluence, baseline FSM, 

household composition, and time lived in the neighbourhood. ² Adjusted for time, gender, health conditions, family affluence, baseline FSM, household composition, time lived 

in the neighbourhood, and the other ethnic density variable. *ref. category 

  

Neighbourhood-

level ethnic density   

 
Unadjusted 

OR 
Partially 

Adjusted OR¹ 

 

95% 

 

CI 

 
P-value 
param. 

p-value Fully 
Adjusted 

OR² 

 

95% 

 

CI 

 p-value 
param. 

p-value 

White: UK Low* 1.00 1.00       0.818 1.00       0.831 

 Medium 0.96 0.97 [ 0.67 , 1.40 ] 0.861  1.00 [ 0.69 , 1.46 ] 0.998  

 High 1.10 1.09 [ 0.75 , 1.57 ] 0.660  1.11 [ 0.75 , 1.66 ] 0.597  

White: Mixed Low* 1.00 1.00       0.461 1.00       0.520 

 Medium 0.90 0.86 [ 0.49 , 1.51 ] 0.604  0.83 [ 0.46 , 1.47 ] 0.518  

 High 0.76 0.70 [ 0.40 , 1.22 ] 0.206  0.69 [ 0.37 , 1.28 ] 0.241  

Asian: Bangladeshi Low* 1.00 1.00       0.241 1.00       0.821 

 Medium 0.77 0.80 [ 0.52 , 1.23 ] 0.316  0.91 [ 0.58 , 1.45 ] 0.701  

 High 0.67 0.70 [ 0.47 , 1.06 ] 0.091  0.85 [ 0.53 , 1.39 ] 0.527  

Black: African Low* 1.00 1.00       0.335 1.00       0.491 

 Medium 0.94 0.96 [ 0.55 , 1.66 ] 0.873  0.96 [ 0.56 , 1.67 ] 0.896  

 High 1.32 1.37 [ 0.82 , 2.30 ] 0.233  1.31 [ 0.76 , 2.24 ] 0.331  
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Table F.14 Ethnicity-stratified odds ratios (OR) of outdoor PA vs. not by school-level own-group ethnic density tertile (3 waves of the ORiEL Study, n= 1,160) 

Results are from logistic regression models estimated with Generalised Estimating Equations to account for the dependency across repeated measurements (unstructured 

working correlation matrix). *Own-group density assessed as change per 10 percentage points. ¹ Adjusted for time, gender, health conditions, family affluence, baseline FSM, 

household composition, and time lived in the neighbourhood. ² Adjusted for time, gender, health conditions, family affluence, baseline FSM, household composition, time lived 

in the neighbourhood, and the other ethnic density variable. *ref. category 

  

School-level  

ethnic density 

 
Unadjusted 

OR 
Partially 

Adjusted OR¹ 

 

95% 

 

CI 

 
P-value 
param. 

p-value Fully 
Adjusted 

OR² 

 

95% 

 

CI 

 p-value 
param. 

p-value 

White: UK Low* 1.00 1.00       0.025 1.00       0.156 

 Medium 0.59 0.58 [ 0.38 , 0.91 ] 0.016  0.65 [ 0.41 , 1.01 ] 0.057  

 High  0.57 0.58 [ 0.37 , 0.92 ] 0.020  0.73 [ 0.44 , 1.20 ] 0.216  

White: Mixed Low* 1.00 1.00       0.979 1.00       0.983 

 Medium 0.93 0.95 [ 0.52 , 1.74 ] 0.879  0.99 [ 0.53 , 1.87 ] 0.981  

 High  0.92 0.93 [ 0.47 , 1.88 ] 0.850  0.94 [ 0.43 , 2.04 ] 0.873  

Asian: Bangladeshi Low* 1.00 1.00       0.676 1.00       0.678 

 Medium 0.92 0.98 [ 0.63 , 1.51 ] 0.923  1.02 [ 0.62 , 1.69 ] 0.937  

 High  1.86 1.24 [ 0.70 , 2.18 ] 0.461  1.27 [ 0.68 , 2.38 ] 0.448  

Black: African Low* 1.00 1.00       0.023 1.00       0.019 

 Medium 1.42 1.29 [ 0.71 , 2.35 ] 0.394  1.33 [ 0.72 , 2.43 ] 0.362  

 High  0.64 0.58 [ 0.34 , 0.99 ] 0.045  0.57 [ 0.33 , 0.98 ] 0.041  
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Table F.15 Ethnicity-stratified odds ratios (OR) of outdoor PA vs. not by neighbourhood-level own-group ethnic density tertile (3 waves of the ORiEL Study, n= 1,160) 

Results are from logistic regression models estimated with Generalised Estimating Equations to account for the dependency across repeated measurements (unstructured 

working correlation matrix). *Own-group density assessed as change per 10 percentage points. ¹ Adjusted for time, gender, health conditions, family affluence, baseline FSM, 

household composition, and time lived in the neighbourhood. ² Adjusted for time, gender, health conditions, family affluence, baseline FSM, household composition, time lived 

in the neighbourhood, and the other ethnic density variable. *ref. category 

  

Neighbourhood-

level ethnic density   

 
Unadjusted 

OR 
Partially 

Adjusted OR¹ 

 

95% 

 

CI 

 
P-value 
param. 

p-value Fully 
Adjusted 

OR² 

 

95% 

 

CI 

 p-value 
param. 

p-value 

White: UK Low* 1.00 1.00       0.018 1.00       0.097 

 Medium 0.68 0.66 [ 0.43 , 1.02 ] 0.061  0.72 [ 0.46 , 1.12 ] 0.145  

 High 0.51 0.53 [ 0.34 , 0.82 ] 0.004  0.59 [ 0.37 , 0.95 ] 0.029  

White: Mixed Low* 1.00 1.00       0.638 1.00       0.646 

 Medium 0.71 0.76 [ 0.41 , 1.40 ] 0.374  0.76 [ 0.41 , 1.43 ] 0.401  

 High 1.00 0.94 [ 0.49 , 1.78 ] 0.840  0.96 [ 0.47 , 1.97 ] 0.910  

Asian: Bangladeshi Low* 1.00 1.00       0.581 1.00       0.581 

 Medium 0.96 0.84 [ 0.52 , 1.33 ] 0.451  0.80 [ 0.49 , 1.33 ] 0.399  

 High 1.24 1.05 [ 0.64 , 1.74 ] 0.839  0.98 [ 0.55 , 1.78 ] 0.959  

Black: African Low* 1.00 1.00       0.889 1.00       0.756 

 Medium 0.93 0.90 [ 0.50 , 1.63 ] 0.727  0.81 [ 0.44 , 1.47 ] 0.483  

 High 0.96 0.88 [ 0.51 , 1.51 ] 0.637  0.97 [ 0.56 , 1.70 ] 0.926  
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Table F.16 Ethnic group specific odds ratios (OR) of walking to school vs. not by own-group ethnic density* (3 waves of the ORiEL Study, n= 2,489 observations from 1,051 individuals) 

Results are from logistic regression models estimated with Generalised Estimating Equations to account for the dependency across repeated measurements (unstructured 

working correlation matrix). Interaction terms between the own-group ethnic density variable and ethnicity were used and ethnic group specific ORs were obtained.  

*Own-group density assessed as change per 10 percentage points. ¹ Adjusted for time, gender, health conditions, family affluence, baseline FSM, household composition, time 

lived in the neighbourhood and distance to school. ² Adjusted for time, gender, health conditions, family affluence, baseline FSM, household composition, time lived in the 

neighbourhood, distance to school, the other ethnic density variable and its interaction with ethnicity. 

  

Exposure Unadjusted OR 
Partially 

Adjusted OR¹ 

 
95% 

 
CI 

 
P-value Fully Adjusted 

OR² 

 
95% 

 
CI 

 p-value 

School-level ethnic density        <0.001       <0.001 

White: UK 1.12 1.12 [ 0.99 , 1.27 ] 0.065 1.13 [ 0.96 , 1.33 ] 0.147 

White: Mixed 0.50 0.48 [ 0.31 , 0.76 ] 0.002 0.41 [ 0.24 , 0.69 ] 0.001 

Asian: Bangladeshi 1.18 1.18 [ 1.07 , 1.31 ] 0.001 1.15 [ 0.97 , 1.37 ] 0.117 

Black: African 0.46 0.46 [ 0.34 , 0.63 ] <0.001 0.46 [ 0.33 , 0.65 ] <0.001 

                

Neighbourhood-level ethnic density          0.003       0.824 

White: UK 1.01 1.06 [ 0.92 , 1.21 ] 0.434 0.99 [ 0.83 , 1.19 ] 0.933 

White: Mixed 0.96 0.88 [ 0.54 , 1.45 ] 0.622 1.41 [ 0.77 , 2.58 ] 0.259 

Asian: Bangladeshi 1.31 1.24 [ 1.07 , 1.43 ] 0.004 1.06 [ 0.83 , 1.37 ] 0.627 

Black: African 0.81 0.80 [ 0.58 , 1.10 ] 0.172 1.01 [ 0.71 , 1.45 ] 0.951 
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Table F.17 Ethnic group specific odds ratios (OR) of walking for leisure vs. not by own-group ethnic density* (3 waves of the ORiEL Study, n= 2,397 observations from 1,032 individuals) 

Results are from logistic regression models estimated with Generalised Estimating Equations to account for the dependency across repeated measurements (unstructured 

working correlation matrix). Interaction terms between the own-group ethnic density variable and ethnicity were used and ethnic group specific ORs were obtained. *Own-

group density assessed as change per 10 percentage points. ¹ Adjusted for time, gender, health conditions, family affluence, baseline FSM, household composition and time lived 

in the neighbourhood. ² Adjusted for time, gender, health conditions, family affluence, baseline FSM, household composition, time lived in the neighbourhood, the other ethnic 

density variable and its interaction with ethnicity. 

 

  

Exposure 
Unadjusted 

OR 

Partially 

Adjusted OR¹ 

 
95% 

 
CI 

 
P-value Fully Adjusted 

OR² 

 
95% 

 
CI 

 p-value 

School-level ethnic density        0.7616       0.990 

White: UK 1.00 1.00 [ 0.90 , 1.12 ] 0.948 0.98 [ 0.86 , 1.12 ] 0.764 

White: Mixed 0.90 0.83 [ 0.56 , 1.24 ] 0.365 0.92 [ 0.61 , 1.39 ] 0.704 

Asian: Bangladeshi 0.95 0.97 [ 0.91 , 1.04 ] 0.354 0.99 [ 0.90 , 1.09 ] 0.805 

Black: African 1.04 1.07 [ 0.77 , 1.49 ] 0.682 1.00 [ 0.70 , 1.44 ] 0.996 

                

Neighbourhood-level ethnic density          0.411       0.616 

White: UK 1.03 1.03 [ 0.93 , 1.13 ] 0.608 1.04 [ 0.93 , 1.16 ] 0.534 

White: Mixed 0.77 0.76 [ 0.49 , 1.16 ] 0.201 0.79 [ 0.50 , 1.23 ] 0.297 

Asian: Bangladeshi 0.93 0.95 [ 0.85 , 1.05 ] 0.305 0.96 [ 0.82 , 1.12 ] 0.587 

Black: African 1.19 1.18 [ 0.86 , 1.60 ] 0.303 1.18 [ 0.84 , 1.64 ] 0.339 
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Table F.18  Ethnic group specific odds ratios (OR) of outdoor PA vs. not by own-group ethnic density* (3 waves of the ORiEL Study, n= 2,300 observations from 1,021 individuals) 

Results are from logistic regression models estimated with Generalised Estimating Equations to account for the dependency across repeated measurements (unstructured 

working correlation matrix). Interaction terms between the own-group ethnic density variable and ethnicity were used and ethnic group specific ORs were obtained.  

*Own-group density assessed as change per 10 percentage points. ¹ Adjusted for time, gender, health conditions, family affluence, baseline FSM, household composition and 

time lived in the neighbourhood. ² Adjusted for time, gender, health conditions, family affluence, baseline FSM, household composition, time lived in the neighbourhood, the 

other ethnic density variable and its interaction with ethnicity.

Exposure 
Unadjusted 

OR 

Partially 

Adjusted OR¹ 

 
95% 

 
CI 

 
P-value Fully Adjusted 

OR² 

 
95% 

 
CI 

 p-value 

School-level ethnic density        0.406       0.899 

White: UK 0.91 0.92 [ 0.81 , 1.04 ] 0.191 0.98 [ 0.84 , 1.15 ] 0.831 

White: Mixed 0.80 0.89 [ 0.57 , 1.40 ] 0.623 0.95 [ 0.58 , 1.55 ] 0.839 

Asian: Bangladeshi 1.05 1.02 [ 0.94 , 1.10 ] 0.627 1.01 [ 0.91 , 1.12 ] 0.875 

Black: African 0.80 0.79 [ 0.56 , 1.12 ] 0.181 0.83 [ 0.57 , 1.21 ] 0.328 

                

Neighbourhood-level ethnic density          0.176       0.463 

White: UK 0.87 0.89 [ 0.79 , 1.00 ] 0.041 0.90 [ 0.79 , 1.02 ] 0.103 

White: Mixed 0.90 0.83 [ 0.54 , 1.27 ] 0.387 0.85 [ 0.53 , 1.36 ] 0.490 

Asian: Bangladeshi 1.08 1.04 [ 0.92 , 1.16 ] 0.562 1.03 [ 0.88 , 1.20 ] 0.746 

Black: African 0.82 0.84 [ 0.60 , 1.16 ] 0.290 0.90 [ 0.62 , 1.28 ] 0.548 
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This appendix presents results from a preliminary analysis of the missing data for analyses of 

social support and neighbourhood trust. The analyses were conducted in order to inform i) the 

validity of the complete case analysis, ii) the plausibility of the MAR assumption, and iii) the 

selection of the auxiliary variables of the imputation model. Analyses are restricted to waves 

2 and 3 and do not repeat missing data analysis of variables already studied in preceding 

chapters. Note that these analyses are only informative and should be interpreted with 

caution as some assumptions might be violated in some of the models (e.g. clustering at 

individual level, normality in the error terms). 

 

Table G.1 indicates that walking to school has significant bivariate associations with 

missingness of neighbourhood trust, and some association with the friend domain of social 

support. The strength of evidence and of the associations weakens in the adjusted model. 

Walking for leisure is most likely not associated with missingness of the covariates of the 

models, as indicated in adjusted and unadjusted models. The odds of outdoor physical activity 

are associated with missingness on all social support variables, and remains strongly 

associated with the family component of social support in the unadjusted model. Similar 

pattern of association are observed for pay and play phyisical activity, which is strongly 

associated with missingness on all three indicators of social support in both adjusted and 

unadjusted model. There is also some indication of association with missingness on the 

neighbourhood trust variable in the unadjusted model.  

These results indicate that a complete case analysis might lead to some bias. Due to 

widespread item missingness, this analysis cannot be fully conclusive however. It is unclear 

whether weaker associations in the fully adjusted models are themselves biased (because of 

the change in the analytical sample) or if they indicate that the complete case analysis is still 

valid once controlling for all relevant variables (i.e. once adjusted for covariates, missingness 

does not depend that much on the outcomes). Given that some significant associations remain 

in the adjusted models, the results overall indicate that a complete case analysis is very likely 

to be biased, which rules out the MCAR assumption. 
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Table G.1Assessment of complete case analysis validity: unadjusted and adjusted ORs of item response for each 
covariate with missing values by outcome variable (adjusted and unadjusted results; n = 2,260; 4,520 
measurements)  

Covariate N missing % missing Outcome N OR Pvalue N* OR* Pvalue* 

social support - family 887 19.6 Walk to school 4377 1.10 0.268 3590 1.05 0.648 

   Walk for leisure 4250 1.06 0.466 3506 1.07 0.500 

   Outdoor PA 4061 0.68 <0.001 3376 0.75 0.019 

   Pay and Play PA 4103 0.78 0.004 3397 0.76 0.005 

social support - sig. other 908 20.1 Walk to school 4377 1.18 0.062 3608 1.12 0.251 

   Walk for leisure 4250 1.07 0.409 3521 1.09 0.373 

   Outdoor PA 4061 0.75 0.003 3388 0.83 0.103 

   Pay and Play PA 4103 0.80 0.008 3410 0.79 0.013 

social support - friend 898 19.9 Walk to school 4377 1.16 0.102 3590 1.13 0.232 

   Walk for leisure 4250 1.05 0.598 3506 1.04 0.726 

   Outdoor PA 4061 0.74 0.002 3376 0.82 0.089 

   Pay and Play PA 4103 0.73 <0.001 3397 0.74 0.002 

Neighbourhood Trust 598 13.2 Walk to school 4377 1.27 0.019 3590 1.18 0.175 

   Walk for leisure 4250 1.04 0.672 3506 0.95 0.687 

   Outdoor PA 4061 0.85 0.145 3376 0.95 0.708 

   Pay and Play PA 4103 0.86 0.119 3397 0.87 0.221 

*Results from logistic regressions, adjusted for gender, ethnicity, health, family affluence, 

FSM, and household composition. Response is coded 1 and missingness 0. PA – physical 

activity. 

 

 

I investigated whether missingness on “new” variables with high missingness – social support, 

neighbourhood trust and pay and play physical activity - could be predicted using almost fully 

observed variables (Table G.2). Predictors used were (almost) fully observed variables from 

the model of interest (gender, ethnicity, family affluence, free school meals, household 

composition) and auxiliary variables a priori hypothesised to be associated with the probability 

of missingness: school, country of birth, language spoken at home, self-rated health, mental 

health.  

Amongst the (almost) fully observed variables of the model of interest, gender and mental 

health good predictors of missingness for the two variables examined (Table G.2). 
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Given that at least some of the variables are predictive of missingness, the plausibility of the 

MAR assumption is supported. Variables with more missing values are also likely to predict 

missingness on the variables of the models of interest. An imputation model with the wide 

range of variables considered will further strengthen the plausibility of the assumption. 

However, it is never possible to rule out MNAR, and it might be that even accounting for all 

these variables, the missingness mechanism depends on unmeasured variables.  

Table G.2 Assessment of the MAR assumption: (almost) fully observed predictors of item missingness for the 
additional variables with high levels of missing values.  

Missingness variable Predictor  p-value 

social support - family Gender <0.001 

 Ethnicity 0.002 

 school <0.001 

 FAS Categories 0.174 

 FSM 0.002 

 Country of Birth 0.077 

 language at home 0.742 

 self-rated health 0.960 

 household composition 0.871 

 Log of total PA 0.064 

 Mental Health (WEMWBS) 0.008 

social support – sig. other Gender <0.001 

 Ethnicity 0.004 

 school <0.001 

 FAS Categories 0.058 

 FSM <0.001 

 Country of Birth 0.156 

 language at home 0.836 

 self-rated health 0.874 

 household composition 0.442 

 Log of total PA 0.100 

 Mental Health (WEMWBS) 0.004 

social support - friend Gender <0.001 

 Ethnicity 0.007 

 school <0.001 

 FAS Categories 0.179 

 FSM <0.001 

 Country of Birth 0.176 

 language at home 0.892 

 self-rated health 0.976 

 household composition 0.819 

 Log of total PA 0.068 

 Mental Health (WEMWBS) 0.026 

Results from logistic regressions.  
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Table G.3 Assessment of the MAR assumption: (almost) fully observed predictors of item missingness for the 
additional variables with high levels of missing values (continued) 

Missingness variable Predictor  p-value 

Neighbourhood trust Gender <0.001 

 Ethnicity 0.048 

 school <0.001 

 FAS Categories 0.363 

 FSM 0.018 

 Country of Birth 0.907 

 language at home 0.217 

 self-rated health 0.629 

 household composition 0.530 

 Log of total PA 0.409 

 Mental Health (WEMWBS) 0.001 

Pay and play physical activity Gender <0.001 

 Ethnicity 0.022 

 school <0.001 

 FAS Categories 0.201 

 FSM 0.574 

 Country of Birth 0.872 

 language at home 0.236 

 self-rated health 0.392 

 household composition 0.069 

 Log of total PA 0.026 

 Mental Health (WEMWBS) 0.691 

Results from logistic regressions.  

 

The imputation model should include variables of the models of interest and relevant auxiliary 

variables. The later should be included only if they are likely to reduce bias and/or to increase 

efficiency (Carpenter & Kenward 2012). Variables predictive of the chance of missing values 

identified above should be included in the imputation model only if they also predict the 

underlying missing values, in which case, they are likely to reduce bias and improve efficiency. 

Auxiliary variables should however be excluded if they do not predict the underlying values 

themselves. Variables associated with the underlying values - but not the chance of missing 

values - should be included because they will improve efficiency, although they are not going 

to reduce bias. 

Table G.3 reports linear and multinomial logistic regression results of associations between 

the “new” variables with missing values (social support scales, neighbourhood trust and pay 

and play physical activity) and almost fully observed variables of the model of interest, as well 

as auxiliary variables. Social support scales are well predicted by gender, ethnicity, school, and 

mental health. FSM and family affluence also seem to predict family and significant other 
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scales of social support. Neighbourhood trust is predicted by gender, ethnicity, school self-

rated health, total physical activity as well as mental health. There is some indication that 

country of birth predicts neighbourhood trust as well. Finally, pay and play physical activity is 

predicted by gender, school, family affluence, household composition and total physical 

activity.  

Additional analyses (not presented here) of two potential auxiliary variables with more missing 

values – parental support and neighbourhood satisfaction – further indicate that these 

variables should be included in the imputation model. Parental support is shown to be a strong 

predictor of family social support in adjusted and unadjusted models (R-squared = 0.17). There 

is also indication that it predicts its missingness (p=0.021), but that level of evidence decrease 

in the fully adjusted model (p=0.152). Neighbourhood satisfaction (used as a summary score 

with three response categories) is a strong predictor of neighbourhood trust (R-squared in 

unadjusted model = 0.1053) and its missingness in both adjusted and unadjusted models 

(p<0.001).  

School-level ethnic density was finally additionally tested as a predictor of missingness and 

values of neighbourhood trust and social support but there was no indication that it would 

improve the imputation model, based on the fully adjusted models used.  

 

Overall, these analyses combined with those of the previous chapters show that an imputation 

model with the auxiliary variables considered – country of birth, language at home, self-rated 

health, total physical activity, mental health, parental support, neighbourhood satisfaction  

and BMI – are very likely to reduce bias and improve efficiency compared to a complete case 

analysis. Covariates of the model of interest with more missing values are also expected to 

reduce bias and improve efficiency.  
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Table G.4 Associations between variables with missing values and auxiliary variables, adjusted for all variables 
in the table 

Missingness variable Predictor  p-value 

social support - family Gender <0.001 

 Ethnicity 0.001 

 school 0.002 

 FAS Categories 0.076 

 FSM 0.078 

 Country of Birth 0.104 

 language at home 0.472 

 self-rated health 0.219 

 household composition 0.984 

 Log of total PA 0.641 

 Mental Health (WEMWBS) <0.001 

social support – sig. other Gender <0.001 

 Ethnicity 0.009 

 school <0.001 

 FAS Categories 0.107 

 FSM 0.049 

 Country of Birth 0.999 

 language at home 0.066 

 self-rated health 0.941 

 household composition 0.570 

 Log of total PA 0.752 

 Mental Health (WEMWBS) <0.001 

social support - friend Gender <0.001 
 Ethnicity <0.001 

 school <0.001 

 FAS Categories 0.738 

 FSM 0.583 

 Country of Birth 0.580 

 language at home 0.520 

 self-rated health 0.936 

 household composition 0.629 

 Log of total PA 0.375 

 Mental Health (WEMWBS) <0.001 

Results from linear models. 
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Table G.5 Associations between variables with missing values and auxiliary variables, adjusted for all variables 
in table (continued) 

Missingness variable Predictor  p-value 

Neighbourhood trust Gender <0.001 

 Ethnicity 0.001 

 school 0.004 

 FAS Categories 0.530 

 FSM 0.321 

 Country of Birth 0.082 

 language at home 0.575 

 self-rated health <0.001 

 household composition 0.478 

 Log of total PA <0.001 

 Mental Health (WEMWBS) <0.001 

Pay and play physical activity Gender <0.001 
 Ethnicity 0.389 

 school 0.002 

 FAS Categories <0.001 

 FSM 0.114 

 Country of Birth 0.133 

 language at home 0.939 

 self-rated health 0.859 

 household composition 0.022 

 Log of total PA <0.001 

 Mental Health (WEMWBS) 0.296 

Results from multinomial logistic regressions.  
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Separate models are fitted for each of the four binary physical activity outcomes. The models 

each include one of the exposure variables (neighbourhood trust, social support from family, 

friends or significant others) and account for time-invariant (gender, ethnicity) and time-

varying confounders (health condition, family affluence, FSM, household composition, and 

time lived in the neighbourhood). A time trend is included to reflect the general decrease in 

physical activity during adolescence. Logistic regression models are fitted with GEE using 

unstructured working correlation to account for clustering across repeated measurements. 

The adjusted logistic model is expressed as follows: 

𝑙𝑜𝑔𝑖𝑡{Pr(𝑌𝑖𝑗 = 1|𝒙𝒊𝒋)} = 𝒙𝒊𝒋
′ 𝜷 

Where: 

i= individual 

j= repeated measurements 

𝑌𝑖𝑗  = physical activity outcome (walking to school, walking for leisure, outdoor physical activity or pay 

and play physical activity) for individual i at occasion j  

𝒙𝒊𝒋 = a matrix representing the variables included in the model for all individuals at each occasion 

𝜷 = a vector representing the coefficients of the model, including a constant  

In the adjusted model, 𝒙𝒊𝒋
′ 𝜷 takes the following form:  

𝒙𝒊𝒋
′ 𝜷 =  𝛽0 + 𝛽1𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒_𝑐𝑎𝑡2𝑖𝑗 +⋯+ 𝛽3𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒_𝑐𝑎𝑡𝑚𝑖𝑗 + 𝛽4𝐺𝑖𝑟𝑙𝑖 + 𝛽5𝐸𝑡𝐻2𝑖 + 𝛽6𝐸𝑡𝐻3𝑖 +

𝛽7𝐸𝑡𝐻4𝑖 + 𝛽8𝐸𝑡𝐻5𝑖 + 𝛽9𝐸𝑡𝐻6𝑖 + 𝛽10𝐸𝑡𝐻7𝑖 + 𝛽11𝐸𝑡𝐻8𝑖 + 𝛽12𝐹𝑆𝑀𝑖𝑗 + 𝛽13𝐻𝑒𝑎𝑙𝑡𝐻𝑖𝑗 + 𝛽14𝐹𝐴𝑆2𝑖𝑗 +

𝛽15𝐹𝐴𝑆3𝑖𝑗 + 𝛽16𝐻𝐻𝑐𝑜𝑚𝑝𝑖𝑗 + 𝛽17𝑁𝑏_𝑡𝑖𝑚𝑒𝑖𝑗 + 𝛽18𝑡𝑖𝑚𝑒𝑗   

Where: 

𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒_𝑐𝑎𝑡2𝑖𝑗 ,…, 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒_𝑐𝑎𝑡𝑚𝑖𝑗  = dummy variables representing m-1 categories of the 

exposure variable of interest (3 dummy variables for neighbourhood trust and 2 dummy variables for 

the social support variables) 

𝐺𝑖𝑟𝑙𝑖= dummy variable for girls (time invariant) 

𝐸𝑡𝐻2𝑖 ,…, 𝐸𝑡𝐻8𝑖= Ethnicity dummy variables (reference category: White UK; time invariant) 

𝐹𝑆𝑀𝑖𝑗= Free school meal status (reference category: no free school meal) 

𝐻𝑒𝑎𝑙𝑡𝐻𝑖𝑗  = Health conditions dummy variable (reference category: no condition) 

𝐹𝐴𝑆2𝑖𝑗 , 𝐹𝐴𝑆3𝑖𝑗= Family affluence dummy variables (reference category: low) 

𝐻𝐻_𝑐𝑜𝑚𝑝𝑖𝑗= Household composition dummy variable (reference category: live with both parents) 

𝑁𝑏_𝑡𝑖𝑚𝑒𝑖𝑗= Time lived in the neighbourhood (reference category: more than 5 years) 
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𝑇𝑖𝑚𝑒𝑖𝑗= dummy variable for wave 3.  

In the models where the exposure variable is treated as a dose-response, the equation is:  

𝒙𝒊𝒋
′ 𝜷 =  𝛽0 + 𝛽1𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑖𝑗 + 𝛽2𝐺𝑖𝑟𝑙𝑖 + 𝛽3𝐸𝑡𝐻2𝑖 + 𝛽4𝐸𝑡𝐻3𝑖 + 𝛽5𝐸𝑡𝐻4𝑖 + 𝛽6𝐸𝑡𝐻5𝑖 + 𝛽7𝐸𝑡𝐻6𝑖 +

𝛽8𝐸𝑡𝐻7𝑖 + 𝛽9𝐸𝑡𝐻8𝑖 + 𝛽10𝐹𝑆𝑀𝑖𝑗 + 𝛽11𝐻𝑒𝑎𝑙𝑡𝐻𝑖𝑗 + 𝛽12𝐹𝐴𝑆2𝑖𝑗 + 𝛽13𝐹𝐴𝑆3𝑖𝑗 + 𝛽14𝐻𝐻𝑐𝑜𝑚𝑝𝑖𝑗 +

𝛽15𝑁𝑏_𝑡𝑖𝑚𝑒𝑖𝑗 + 𝛽16𝑡𝑖𝑚𝑒𝑗   

Where 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑖𝑗  is one of the exposure variables treated as continuous.  

In the models testing whether gender is a moderator, interactions terms between gender 

and each exposure were included. The two types of models fitted are: 

𝒙𝒊𝒋
′ 𝜷 =  𝛽0 + 𝛽1𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒_𝑐𝑎𝑡2𝑖𝑗 +⋯+ 𝛽3𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒_𝑐𝑎𝑡𝑚𝑖𝑗 + 𝛽4𝐺𝑖𝑟𝑙𝑖 + 𝛽5𝐸𝑡𝐻2𝑖 + 𝛽6𝐸𝑡𝐻3𝑖 +

𝛽7𝐸𝑡𝐻4𝑖 + 𝛽8𝐸𝑡𝐻5𝑖 + 𝛽9𝐸𝑡𝐻6𝑖 + 𝛽10𝐸𝑡𝐻7𝑖 + 𝛽11𝐸𝑡𝐻8𝑖 + 𝛽12𝐹𝑆𝑀𝑖𝑗 + 𝛽13𝐻𝑒𝑎𝑙𝑡𝐻𝑖𝑗 + 𝛽14𝐹𝐴𝑆2𝑖𝑗 +

𝛽15𝐹𝐴𝑆3𝑖𝑗 + 𝛽16𝐻𝐻𝑐𝑜𝑚𝑝𝑖𝑗 + 𝛽17𝑁𝑏_𝑡𝑖𝑚𝑒𝑖𝑗 + 𝛽18𝑡𝑖𝑚𝑒𝑗 + 𝛽19𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒_𝑐𝑎𝑡2𝑖𝑗 ∗ 𝐺𝑖𝑟𝑙𝑖 +⋯+

 𝛽21𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒_𝑐𝑎𝑡𝑚𝑖𝑗 ∗ 𝐺𝑖𝑟𝑙𝑖   

And 

𝒙𝒊𝒋
′ 𝜷 =  𝛽0 + 𝛽1𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑖𝑗 + 𝛽2𝐺𝑖𝑟𝑙𝑖 + 𝛽3𝐸𝑡ℎ2𝑖 + 𝛽4𝐸𝑡𝐻3𝑖 + 𝛽5𝐸𝑡𝐻4𝑖 + 𝛽6𝐸𝑡𝐻5𝑖 + 𝛽7𝐸𝑡𝐻6𝑖 +

𝛽8𝐸𝑡𝐻7𝑖 + 𝛽9𝐸𝑡𝐻8𝑖 + 𝛽10𝐹𝑆𝑀𝑖𝑗 + 𝛽11𝐻𝑒𝑎𝑙𝑡𝐻𝑖𝑗 + 𝛽12𝐹𝐴𝑆2𝑖𝑗 + 𝛽13𝐹𝐴𝑆3𝑖𝑗 + 𝛽14𝐻𝐻𝑐𝑜𝑚𝑝𝑖𝑗 +

𝛽15𝑁𝑏_𝑡𝑖𝑚𝑒𝑖𝑗 + 𝛽16𝑡𝑖𝑚𝑒𝑗+𝛽17𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑖𝑗 ∗ 𝐺𝑖𝑟𝑙𝑖    

 

 

Models are fitted to explore the association between changes in the outcomes and changes in 

the exposure variables. For each measure of change in the outcome (ordinal variable), 

separate models each include one of the measures of change in the exposure variables 

(change in neighbourhood trust, social support from family, friends and significant other) and 

account for confounders at wave 2 (gender, ethnicity, health condition, family affluence, FSM, 

household composition, and time lived in the neighbourhood). Proportional odds models are 

fitted with GEE using independence working correlation to account for clustering at school 

level. The adjusted proportional odds model is expressed as follows:  

𝑙𝑜𝑔𝑖𝑡{Pr(𝑌𝑖𝑗
∗ ≤ 𝑘|𝒙𝒊𝒋)} = 𝛼𝑘 + 𝒙𝒊𝒋

′ 𝜷    

Where: 

i= individual 

j=school 

𝑌𝑖𝑗
∗  = ordinal variable indicating whether the physical activity outcome (walking to school, walking for 

leisure, outdoor physical activity or pay and play physical activity) decreased, remained constant or 

decreased for individual i and school j 

k = values taken by the ordinal outcome variables. In this analysis, the model is fully described using k 

= 1 and 2 because the ordinal variables take 3 possible values. 
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𝒙𝒊𝒋 = a matrix representing the variables included in the model for all individuals i in each school j 

𝛼𝑘= a separate constant defined for each cumulative logit 

𝜷 = a vector representing the coefficients of the model  

In the adjusted model, 𝒙𝒊𝒋
′ 𝜷 takes the following form:  

𝒙𝒊𝒋
′ 𝜷 =  𝛽1𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒_𝑐𝐻𝑎𝑛𝑔𝑒𝑖𝑗 + 𝛽2𝐺𝑖𝑟𝑙𝑖𝑗 + 𝛽3𝐸𝑡𝐻2𝑖𝑗 + 𝛽4𝐸𝑡𝐻3𝑖𝑗 + 𝛽5𝐸𝑡𝐻4𝑖𝑗 + 𝛽6𝐸𝑡𝐻5𝑖𝑗 +

𝛽7𝐸𝑡𝐻6𝑖𝐽 + 𝛽8𝐸𝑡𝐻7𝑖𝑗 + 𝛽9𝐸𝑡𝐻8𝑖𝑗 + 𝛽10𝐹𝑆𝑀𝑖𝑗 + 𝛽11𝐻𝑒𝑎𝑙𝑡𝐻𝑖𝑗 + 𝛽12𝐹𝐴𝑆2𝑖𝑗 + 𝛽13𝐹𝐴𝑆3𝑖𝑗 +

𝛽14𝐻𝐻𝑐𝑜𝑚𝑝𝑖𝑗 + 𝛽15𝑁𝑏_𝑡𝑖𝑚𝑒𝑖𝑗   

Where: 

𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒_𝑐𝐻𝑎𝑛𝑔𝑒𝑖𝑗  = continuous variable indicating change in one of the exposure variables over 

time (neighbourhood trust, or any of the three social support measures) 

𝐹𝑆𝑀𝑖𝑗= Free school meal status at wave 2(reference category: no free school meal) 

𝐻𝑒𝑎𝑙𝑡𝐻𝑖𝑗  = Health conditions dummy variable at wave 2(reference category: no condition) 

𝐹𝐴𝑆2𝑖𝑗 , 𝐹𝐴𝑆3𝑖𝑗= Family affluence dummy variables at wave 2 (reference category: low) 

𝐻𝐻_𝑐𝑜𝑚𝑝𝑖𝑗= Household composition dummy variable at wave 2 (reference category: live with both 

parents) 

𝑁𝑏_𝑡𝑖𝑚𝑒𝑖𝑗= Time lived in the neighbourhood at wave 2(reference category: more than 5 years) 

 

Additional models are fitted to test whether gender is a moderator. These models simply add 

an interaction term between the exposure change variable and gender.  
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This appendix presents some results from sensitivity analyses. The main results were restricted to adolescents that were interviewed at the three ORiEL waves. 

Analysis could be conducted on 2,257 out of the 2,260 individuals of the 3-wave balanced panel (due to the absence of wave identified in the imputed datasets). 

Overall, results are similar to the main analyses. Differences in the effect sizes are observed for walking for leisure and outdoor physical activity. 

Table G.6 Odds ratios (OR) of walking to school vs. not by neighbourhood trust and social support, adjusting for potential confounders (waves 2 and 3 of the ORiEL Study, n=2,257) 

Exposure  
Unadjusted 

OR 

Adjusted 

OR¹ 
95%CI 

P-value 

parameter 

P-value  

unadjusted 

P-value 

adjusted¹  

Gender interaction 

(p-value) ² 

 

Neighbourhood Trust Not at all 1.00 1.00   0.324 0.410 0.305 

 A little 1.02 0.99 [0.76,1.29] 0.954    

 Some 1.15 1.09 [0.85,1.40] 0.508    

 A lot 0.99 0.92 [0.70,1.22] 0.581    

Social support - friend low 1.00 1.00   0.196 0.144 0.389 

 medium 1.12 1.10 [0.92,1.31] 0.301    

 high 0.96 0.91 [0.77,1.09] 0.307    

Social support – family  low 1.00 1.00   0.770 0.663 0.147 

 medium 0.96 0.95 [0.78,1.17] 0.652    

 high 0.93 0.92 [0.76,1.11] 0.364    

Social support - sig. other    low 1.00 1.00   0.943 0.961 0.263 

 medium 0.97 0.97 [0.80,1.19] 0.793    

 high 1.00 0.99 [0.83,1.17] 0.872    



  

 
 

4
09

 

Results are from Generalised Estimating Equations to account for the dependency across repeated measurements (unstructured working correlation matrix). ¹ Adjusted for 

gender, ethnicity, health condition, FSM, family affluence, time lived in the neighbourhood, household composition and time.  ² The adjusted model was replicated for each 

outcome with an additional interaction term between gender and the exposure. 

 
Table G.7 Odds ratios (OR) of change in walking to school predicted by change in neighbourhood trust and social support, adjusting for potential confounders at baseline (n=2,257) 

Exposure Unadjusted OR Adjusted OR¹ 
 

95% 
 

CI 
 

P-value adjusted¹ 
Gender interaction (p-

value) ² 
 

Neighbourhood Trust 0.99 1.00 [ 0.89 , 1.11 ] 0.943 0.169 

Social support - friend 0.98 0.98 [ 0.87 , 1.11 ] 0.772 0.398 

Social support – family 1.00 0.99 [ 0.88 , 1.13 ] 0.906 0.642 

Social support - sig. other   1.03 1.02 [ 0.91 , 1.14 ] 0.716 0.088 

Results are from proportional odds model estimated with Generalised Estimating Equations to account for the clustering of individuals within schools (independent working 

correlation matrix). The proportional odds assumptions were not violated for the parameters of interest.  Results are displayed as ORs of improvement in walking to school 

status (being either constant vs. decrease or increase vs. constant) per unit increase in the original scale of neighbourhood trust and tertile change in social support. OR > 1 

indicate an improvement in the outcome as a response to an improvement in the exposure.  ¹ Adjusted for gender, ethnicity, health condition, FSM, family affluence, time lived 

in the neighbourhood and household composition at wave 2.  ² The adjusted model was replicated for each outcome with an additional interaction term between gender and 

the exposure. 

 
Table G.8 Odds ratios (OR) of walking for leisure vs. not by neighbourhood trust and social support, adjusting for potential confounders (waves 2 and 3 of the ORiEL Study, n=2,257) 

Exposure  Unadjusted 
OR 

Adjusted 
OR¹ 

95%CI 
P-value 

parameter 
P-value  

unadjusted 
P-value 

adjusted¹  

Gender interaction 
(p-value) ² 

 

Neighbourhood Trust Not at all 1.00 1.00   0.079 0.175 0.944 

 A little 1.38 1.33 [1.03,1.71] 0.029    

 Some 1.30 1.29 [1.01,1.65] 0.044    
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Exposure  Unadjusted 
OR 

Adjusted 
OR¹ 

95%CI 
P-value 

parameter 
P-value  

unadjusted 
P-value 

adjusted¹  

Gender interaction 
(p-value) ² 

 

 A lot 1.21 1.24 [0.95,1.63] 0.120    

Social support - friend low 1.00 1.00   0.001 0.034 0.366 

 medium 1.29 1.23 [1.03,1.46] 0.020    

 high 1.34 1.20 [1.01,1.43] 0.034    

Social support – family  low 1.00 1.00   <0.001 0.001 0.614 

 medium 1.23 1.22 [1.01,1.47] 0.041    

 high 1.44 1.38 [1.16,1.64] 0.001    

Social support - sig. other    low 1.00 1.00   0.001 0.021 0.524 

 medium 1.22 1.14 [0.96,1.35] 0.124    

 high 1.40 1.27 [1.07,1.50] 0.006    

Results are from Generalised Estimating Equations to account for the dependency across repeated measurements (unstructured working correlation matrix). ¹ Adjusted for 

gender, ethnicity, health condition, FSM, family affluence, time lived in the neighbourhood, household composition and time. ² The adjusted model was replicated for each 

outcome with an additional interaction term between gender and the exposure. 

 

Table G.9 Odds ratios (OR) of change in walking for leisure predicted by change in neighbourhood trust and social support, adjusting for potential confounders at baseline (n=2,257) 

Exposure Unadjusted OR Adjusted OR¹ 
 

95% 
 

CI 
 

P-value adjusted¹ 
Gender interaction (p-

value) ² 
 

Neighbourhood Trust 1.06 1.06 [ 0.97 , 1.15 ] 0.184 0.554 

Social support - friend 1.12 1.12 [ 1.02 , 1.22 ] 0.016 0.421 

Social support – family 1.10 1.10 [ 0.99 , 1.21 ] 0.065 0.416 

Social support - sig. other   1.07 1.06 [ 0.97 , 1.17 ] 0.209 0.267 
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Results are from proportional odds model estimated with Generalised Estimating Equations to account for the clustering of individuals within schools (independent working 

correlation matrix). The proportional odds assumptions were not violated for the parameters of interest. Results are displayed as ORs of improvement in walking for leisure 

status (being either constant vs. decrease or increase vs. constant) per unit increase in the original scale of neighbourhood trust and tertile change in social support. OR > 1 

indicate an improvement in the outcome as a response to an improvement in the exposure.  ¹ Adjusted for gender, ethnicity, health condition, FSM, family affluence, time lived 

in the neighbourhood and household composition at wave 2.  ² The adjusted model was replicated for each outcome with an additional interaction term between gender and 

the exposure. 
 

Table G.10 Odds ratios (OR) of outdoor PA vs. not by neighbourhood trust and social support, adjusting for potential confounders (waves 2 and 3 of the ORiEL Study, n=2,257) 

Exposure  Unadjusted 
OR 

Adjusted 
OR¹ 

95%CI 
P-value 

parameter 
P-value  

unadjusted 
P-value 
adjusted¹  

Gender interaction 
(p-value) ² 

 

Neighbourhood Trust Not at all 1.00 1.00   <0.001 0.115 0.333 

 A little 1.02 0.96 [0.73,1.24] 0.734    

 Some 1.15 1.04 [0.81,1.34] 0.762    

 A lot 1.64 1.28 [0.94,1.75] 0.116    

Social support - friend low 1.00 1.00   0.375 0.473 0.025 

 medium 0.96 1.12 [0.92,1.37] 0.259    

 high 0.88 1.10 [0.90,1.33] 0.347    

Social support – family  low 1.00 1.00   0.619 0.540 0.081 

 medium 1.05 1.10 [0.90,1.35] 0.339    

 high 1.09 1.10 [0.91,1.33] 0.334    

Social support - sig. other    low 1.00 1.00   0.700 0.460 0.245 

 medium 0.96 1.11 [0.91,1.36] 0.285    

 high 0.93 1.11 [0.93,1.33] 0.256    

Results are from Generalised Estimating Equations to account for the dependency across repeated measurements (unstructured working correlation matrix). ¹ Adjusted for 

gender, ethnicity, health condition, FSM, family affluence, time lived in the neighbourhood, household composition and time. ² The adjusted model was replicated for each 

outcome with an additional interaction term between gender and the exposure. 
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Table G.11 Odds ratios (OR) of change in outdoor PA predicted by change in neighbourhood trust and social support, adjusting for potential confounders at baseline (n=2,257) 

Exposure Unadjusted OR Adjusted OR¹ 
 

95% 
 

CI 
 

P-value adjusted¹ 
Gender interaction (p-

value) ² 
 

Neighbourhood Trust 0.99 0.99 [ 0.91 , 1.07 ] 0.767 0.574 

Social support - friend 1.00 1.00 [ 0.90 , 1.12 ] 0.935 0.411 

Social support – family 0.95 0.94 [ 0.85 , 1.05 ] 0.254 0.275 

Social support - sig. other   1.01 1.00 [ 0.89 , 1.12 ] 0.990 0.723 

Results are from proportional odds model estimated with Generalised Estimating Equations to account for the clustering of individuals within schools (independent working correlation matrix). 

The proportional odds assumptions were not violated for the parameters of interest.  Results are displayed as ORs of improvement in outdoor PA status (being either constant vs. decrease or 

increase vs. constant) per unit increase in the original scale of neighbourhood trust and tertile change in social support. OR > 1 indicate an improvement in the outcome as a response to an 

improvement in the exposure.  ¹ Adjusted for gender, ethnicity, health condition, FSM, family affluence, time lived in the neighbourhood and household composition at wave 2.  ² The adjusted 

model was replicated for each outcome with an additional interaction term between gender and the exposure. 

 

Table G.12 Odds ratios (OR) of Pay and Play PA vs. not by neighbourhood trust and social support, adjusting for potential confounders (waves 2 and 3 of the ORiEL Study, n=2,257) 

Exposure  
Unadjusted 

OR 

Adjusted 

OR¹ 
95%CI 

P-value 

parameter 

P-value  

unadjusted 

P-value 

adjusted¹  

Gender interaction 

(p-value) ² 

 

Neighbourhood Trust Not at all 1.00 1.00   0.004 0.012 0.185 

 A little 0.98 0.89 [0.70,1.13] 0.327    

 Some 1.07 0.99 [0.78,1.25] 0.926    

 A lot 1.39 1.24 [0.96,1.62] 0.102    

Social support - friend low 1.00 1.00   0.979 0.789 0.490 

 medium 1.02 1.01 [0.86,1.19] 0.887    

 high 1.01 0.96 [0.81,1.13] 0.597    
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Exposure  
Unadjusted 

OR 

Adjusted 

OR¹ 
95%CI 

P-value 

parameter 

P-value  

unadjusted 

P-value 

adjusted¹  

Gender interaction 

(p-value) ² 

 

Social support – family  low 1.00 1.00   0.715 0.913 0.777 

 medium 1.01 0.99 [0.84,1.17] 0.911    

 high 1.06 0.97 [0.82,1.15] 0.698    

Social support - sig. other    low 1.00 1.00   0.760 0.950 0.797 

 medium 1.01 0.97 [0.82,1.15] 0.757    

 high 1.06 1.00 [0.84,1.18] 0.956    

Results are from Generalised Estimating Equations to account for the dependency across repeated measurements (unstructured working correlation matrix).¹ Adjusted for gender, ethnicity, 

health condition, FSM, family affluence, time lived in the neighbourhood, household composition and time. ² The adjusted model was replicated for each outcome with an additional interaction 

term between gender and the exposure. 

 
Table G.13  Odds ratios (OR) of change in Pay and Play PA predicted by change in neighbourhood trust and social support, adjusting for potential confounders at baseline (n=2,257) 

Exposure Unadjusted OR Adjusted OR¹ 
 

95% 
 

CI 
 

P-value adjusted¹ 
Gender interaction (p-

value) ² 
 

Neighbourhood Trust 1.06 1.05 [ 0.95 , 1.16 ] 0.316 0.186 

Social support - friend 0.97 0.97 [ 0.89 , 1.05 ] 0.440 0.689 

Social support – family 0.97 0.96 [ 0.87 , 1.06 ] 0.462 0.493 

Social support - sig. other   0.97 0.97 [ 0.88 , 1.07 ] 0.502 0.423 

Results are from proportional odds model estimated with Generalised Estimating Equations to account for the clustering of individuals within schools (independent working correlation matrix). 

The proportional odds assumptions were not violated for the parameters of interest. Results are displayed as ORs of improvement in Pay and Play PA status (being either constant vs. decrease or 

increase vs. constant) per unit increase in the original scale of neighbourhood trust and tertile change in social support. OR > 1 indicate an improvement in the outcome as a response to an 

improvement in the exposure. ¹ Adjusted for gender, ethnicity, health condition, FSM, family affluence, time lived in the neighbourhood and household composition at wave 2. ² The adjusted model 

was replicated for each outcome with an additional interaction term between gender and the exposure.  
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Table G.14  Odds ratios (OR) of walking to school vs. not by neighbourhood trust and social support, adjusting for potential confounders (waves 2 and 3 of the ORiEL Study, n=2,644) 

Exposure  
Unadjusted 

OR 

Adjusted 

OR¹ 
95%CI 

P-value 

parameter 

P-value  

unadjusted 

P-value 

adjusted¹  

Gender interaction 

(p-value) ² 

 

Neighbourhood Trust Not at all 1.00 1.00   0.296 0.507 0.521 

 A little 1.02 0.98 [0.77,1.25] 0.888    

 Some 1.17 1.10 [0.87,1.38] 0.424    

 A lot 1.06 0.98 [0.75,1.28] 0.888    

Social support - friend low 1.00 1.00   0.253 0.175 0.267 

 medium 1.10 1.07 [0.91,1.27] 0.415    

 high 0.95 0.91 [0.77,1.08] 0.260    

Social support – family  low 1.00 1.00   0.753 0.684 0.067 

 medium 0.95 0.95 [0.79,1.14] 0.588    

 high 0.94 0.93 [0.78,1.10] 0.391    

Social support - sig. other    low 1.00 1.00   0.916 0.932 0.278 

 medium 0.97 0.97 [0.81,1.16] 0.722    

 high 1.00 0.98 [0.83,1.16] 0.839    

Results are from Generalised Estimating Equations to account for the dependency across repeated measurements (exchangeable working correlation matrix).¹ Adjusted for 

gender, ethnicity, health condition, FSM, family affluence, time lived in the neighbourhood, household composition and time.  ² The adjusted model was replicated for each 

outcome with an additional interaction term between gender and the exposure. 
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Table G.15  Odds ratios (OR) of walking for leisure vs. not by neighbourhood trust and social support, adjusting for potential confounders (waves 2 and 3 of the ORiEL Study, n=2,644) 

Exposure  Unadjusted 
OR 

Adjusted 
OR¹ 

95%CI 
P-value 

parameter 
P-value  

unadjusted 
P-value 

adjusted¹  

Gender interaction 
(p-value) ² 

 

Neighbourhood Trust Not at all 1.00 1.00   0.193 0.265 0.909 

 A little 1.28 1.25 [0.99,1.58] 0.065    

 Some 1.25 1.26 [1.00,1.57] 0.048    

 A lot 1.20 1.23 [0.96,1.58] 0.102    

Social support - friend low 1.00 1.00   0.001 0.091 0.503 

 medium 1.24 1.17 [1.00,1.37] 0.055    

 high 1.31 1.16 [0.99,1.37] 0.069    

Social support – family  low 1.00 1.00   <0.001 0.004 0.577 

 medium 1.20 1.20 [1.00,1.43] 0.047    

 high 1.38 1.32 [1.12,1.56] 0.001    

Social support - sig. other    low 1.00 1.00   0.001 0.055 0.425 

 medium 1.18 1.11 [0.95,1.30] 0.191    

 high 1.34 1.21 [1.03,1.43] 0.020    

Results are from Generalised Estimating Equations to account for the dependency across repeated measurements (exchangeable working correlation matrix). ¹ Adjusted for 

gender, ethnicity, health condition, FSM, family affluence, time lived in the neighbourhood, household composition and time. ² The adjusted model was replicated for each 

outcome with an additional interaction term between gender and the exposure. 
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Table G.16 Odds ratios (OR) of outdoor PA vs. not by neighbourhood trust and social support, adjusting for potential confounders (waves 2 and 3 of the ORiEL Study, n=2,644) 

Exposure  Unadjusted 
OR 

Adjusted 
OR¹ 

95%CI 
P-value 

parameter 
P-value  

unadjusted 
P-value 
adjusted¹  

Gender interaction 
(p-value) ² 

 

Neighbourhood Trust Not at all 1.00 1.00   <0.001 0.099 0.679 

 A little 1.03 0.98 [0.77,1.24] 0.839    

 Some 1.16 1.08 [0.86,1.37] 0.502    

 A lot 1.60 1.29 [0.97,1.70] 0.077    

Social support - friend low 1.00 1.00   0.164 0.751 0.027 

 medium 0.91 1.06 [0.89,1.27] 0.515    

 high 0.86 1.06 [0.89,1.26] 0.522    

Social support – family  low 1.00 1.00   0.844 0.813 0.183 

 medium 1.01 1.05 [0.88,1.26] 0.571    

 high 1.04 1.05 [0.88,1.25] 0.575    

Social support - sig. other    low 1.00 1.00   0.273 0.880 0.358 

 medium 0.90 1.03 [0.86,1.24] 0.763    

 high 0.89 1.04 [0.89,1.23] 0.603    

Results are from Generalised Estimating Equations to account for the dependency across repeated measurements (exchangeable working correlation matrix). ¹ Adjusted for 

gender, ethnicity, health condition, FSM, family affluence, time lived in the neighbourhood, household composition and time.  ² The adjusted model was replicated for each 

outcome with an additional interaction term between gender and the exposure. 
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Table G.17 Odds ratios (OR) of pay and play physical activity  vs. not by neighbourhood trust and social support, adjusting for potential confounders (waves 2 and 3 of the ORiEL Study, 
n=2,644) 

Exposure  
Unadjusted 

OR 

Adjusted 

OR¹ 
95%CI 

P-value 

parameter 

P-value  

unadjusted 

P-value 

adjusted¹  

Gender interaction 

(p-value) ² 

 

Neighbourhood Trust Not at all 1.00 1.00   0.005 0.026 0.700 

 A little 1.03 0.95 [0.76,1.20] 0.690    

 Some 1.10 1.03 [0.83,1.28] 0.767    

 A lot 1.40 1.27 [0.99,1.63] 0.055    

Social support - friend low 1.00 1.00   0.975 0.873 0.537 

 medium 1.00 1.00 [0.86,1.17] 0.995    

 high 1.01 0.96 [0.83,1.13] 0.646    

Social support – family  low 1.00 1.00   0.624 0.966 0.467 

 medium 1.00 0.99 [0.84,1.16] 0.880    

 high 1.07 0.98 [0.83,1.16] 0.806    

Social support - sig. other    low 1.00 1.00   0.761 0.874 0.871 

 medium 0.99 0.96 [0.82,1.13] 0.626    

 high 1.05 1.00 [0.85,1.17] 0.951    

Results are from Generalised Estimating Equations to account for the dependency across repeated measurements (exchangeable working correlation matrix). ¹ Adjusted for 

gender, ethnicity, health condition, FSM, family affluence, time lived in the neighbourhood, household composition and time. ² The adjusted model was replicated for each 

outcome with an additional interaction term between gender and the exposure. 

  



  

 
 

4
18

 

 

Results of the within individual change models of chapter 8 were reproduced using (partial) proportional odds models without accounting for clustering at school-

level. Given that the proportional odds assumption was not met for some of the confounders, results were also reproduced using partial proportional odds 

models. Separate models were used for walking to school (allowing the parameters to vary across the outcome values for ethnicity and time lived in the 

neighbourhood) and the other outcomes (allowing the parameters to vary across the outcome values for gender, household composition, FSM and FAS score). 

For the coefficients of interests, results were similar across the two types of models fitted and very similar to the original GEE results.  

Table G.18 Odds ratios (OR) of change in walking to school predicted by change in neighbourhood trust and social support, adjusting for potential confounders at baseline (n=2,644) 

Exposure Unadjusted OR Adjusted OR 
 

95% 
 

CI 
 

P-value adjusted¹ 
Gender interaction (p-

value) ² 
 

Neighbourhood Trust 1.02 1.03 [ 0.92 , 1.15 ] 0.605 0.145 

Social support - friend 0.97 0.97 [ 0.87 , 1.08 ] 0.575 0.157 

Social support – family 1.01 1.00 [ 0.89 , 1.13 ] 0.956 0.529 

Social support - sig. other   1.03 1.02 [ 0.92 , 1.14 ] 0.694 0.071 

Results are from proportional odds. The proportional odds assumptions were not violated for the parameters of interest.  Results are displayed as ORs of improvement in walking to school status 

(being either constant vs. decrease or increase vs. constant) per unit increase in the original scale of neighbourhood trust and tertile change in social support. OR > 1 indicate an improvement in 

the outcome as a response to an improvement in the exposure.  ¹ Adjusted for gender, ethnicity, health condition, FSM, family affluence, time lived in the neighbourhood, and household composition 

at wave 2. ² The adjusted model was replicated for each outcome with an additional interaction term between gender and the exposure. 
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Table G.19 Odds ratios (OR) of change in walking to school predicted by change in neighbourhood trust and social support, adjusting for potential confounders at baseline (n=2,644) 

Exposure Adjusted OR 
 

95% 
 

CI 
 

P-value adjusted¹ Gender interaction (p-value) ² 
 

Neighbourhood Trust 1.03 [ 0.92 , 1.14 ] 0.613 0.148 

Social support - friend 0.97 [ 0.87 , 1.08 ] 0.564 0.156 

Social support – family 1.00 [ 0.89 , 1.13 ] 0.972 0.526 

Social support - sig. other   1.02 [ 0.92 , 1.14 ] 0.697 0.071 

Results are from partial proportional odds. The proportional odds assumptions were not violated for the parameters of interest, however, due to violation of the assumptions for some of the 

confounders, non-proportional odds were allowed for ethnicity and time lived in the neighbourhood. Results are displayed as ORs of improvement in walking to school status (being either constant 

vs. decrease or increase vs. constant) per unit increase in the original scale of neighbourhood trust and tertile change in social support. OR > 1 indicate an improvement in the outcome as a response 

to an improvement in the exposure. ¹ Adjusted for gender, ethnicity, health condition, FSM, family affluence, time lived in the neighbourhood, and household composition at wave 2. ² The adjusted 

model was replicated for each outcome with an additional interaction term between gender and the exposure. 

 
Table G.20 Odds ratios (OR) of change in walking for leisure predicted by change in neighbourhood trust and social support, adjusting for potential confounders at baseline (n=2,644) 

Exposure Unadjusted OR Adjusted OR 
 

95% 
 

CI 
 

P-value adjusted¹ 
Gender interaction (p-

value) ² 
 

Neighbourhood Trust 1.07 1.07 [ 0.98 , 1.17 ] 0.156 0.876 

Social support - friend 1.11 1.11 [ 1.01 , 1.22 ] 0.037 0.447 

Social support – family 1.07 1.07 [ 0.97 , 1.19 ] 0.189 0.489 

Social support - sig. other   1.05 1.04 [ 0.95 , 1.15 ] 0.364 0.167 

Results are from proportional odds. The proportional odds assumptions were not violated for the parameters of interest. Results are displayed as ORs of improvement in walking for leisure status 

(being either constant vs. decrease or increase vs. constant) per unit increase in the original scale of neighbourhood trust and tertile change in social support. OR > 1 indicate an improvement in 

the outcome as a response to an improvement in the exposure. ¹ Adjusted for gender, ethnicity, health condition, FSM, family affluence, time lived in the neighbourhood, and household composition 

at wave 2. ² The adjusted model was replicated for each outcome with an additional interaction term between gender and the exposure. 
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Table G.21 Odds ratios (OR) of change in walking for leisure predicted by change in neighbourhood trust and social support, adjusting for potential confounders at baseline (n=2,644) 

Exposure Adjusted OR 
 

95% 
 

CI 
 

P-value adjusted¹ Gender interaction (p-value) ² 
 

Neighbourhood Trust 1.07 [ 0.98 , 1.17 ] 0.149 0.812 

Social support - friend 1.11 [ 1.01 , 1.22 ] 0.036 0.367 

Social support – family 1.07 [ 0.97 , 1.19 ] 0.184 0.540 

Social support - sig. other   1.05 [ 0.95 , 1.15 ] 0.359 0.191 

Results are from partial proportional odds. The proportional odds assumptions were not violated for the parameters of interest, however, due to violation of the assumptions for some of the 

confounders, non-proportional odds were allowed for gender, FSM, family affluence and household composition. Results are displayed as ORs of improvement in walking for leisure status (being 

either constant vs. decrease or increase vs. constant) per unit increase in the original scale of neighbourhood trust and tertile change in social support. OR > 1 indicate an improvement in the 

outcome as a response to an improvement in the exposure.  ¹ Adjusted for gender, ethnicity, health condition, FSM, family affluence, time lived in the neighbourhood, and household composition 

at wave 2. ² The adjusted model was replicated for each outcome with an additional interaction term between gender and the exposure.  

 
Table G.22 Odds ratios (OR) of change in outdoor PA predicted by change in neighbourhood trust and social support, adjusting for potential confounders at baseline (n=2,644) 

Exposure Unadjusted OR Adjusted OR 
 

95% 
 

CI 
 

P-value adjusted¹ 
Gender interaction (p-

value) ² 
 

Neighbourhood Trust 0.99 0.99 [ 0.90 , 1.09 ] 0.834 0.641 

Social support - friend 1.01 1.01 [ 0.91 , 1.12 ] 0.867 0.315 

Social support – family 0.97 0.97 [ 0.87 , 1.08 ] 0.543 0.556 

Social support - sig. other   1.01 1.00 [ 0.90 , 1.12 ] 0.947 0.785 

Results are from proportional odds. The proportional odds assumptions were not violated for the parameters of interest. Results are displayed as ORs of improvement in outdoor PA status (being 

either constant vs. decrease or increase vs. constant) per unit increase in the original scale of neighbourhood trust and tertile change in social support. OR > 1 indicate an improvement in the 

outcome as a response to an improvement in the exposure. ¹ Adjusted for gender, ethnicity, health condition, FSM, family affluence, time lived in the neighbourhood, and household composition 

at wave 2. ² The adjusted model was replicated for each outcome with an additional interaction term between gender and the exposure. 
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Table G.23 Odds ratios (OR) of change in outdoor PA predicted by change in neighbourhood trust and social support, adjusting for potential confounders at baseline (n=2,644) 

Exposure Adjusted OR 
 

95% 
 

CI 
 

P-value adjusted¹ Gender interaction (p-value) ² 
 

Neighbourhood Trust 0.99 [ 0.89 , 1.09 ] 0.815 0.590 

Social support - friend 1.01 [ 0.91 , 1.13 ] 0.830 0.293 

Social support – family 0.97 [ 0.87 , 1.08 ] 0.546 0.690 

Social support - sig. other   1.00 [ 0.90 , 1.12 ] 0.950 0.762 

Results are from partial proportional odds. The proportional odds assumptions were not violated for the parameters of interest, however, due to violation of the assumptions 

for some of the confounders, non-proportional odds were allowed for gender, FSM, family affluence and household composition.  Results are displayed as ORs of improvement 

in outdoor PA status (being either constant vs. decrease or increase vs. constant) per unit increase in the original scale of neighbourhood trust and tertile change in social 

support. OR > 1 indicate an improvement in the outcome as a response to an improvement in the exposure.  ¹ Adjusted for gender, ethnicity, health condition, FSM, family 

affluence, time lived in the neighbourhood, and household composition at wave 2. ² The adjusted model was replicated for each outcome with an additional interaction term 

between gender and the exposure. 
 

Table G.24 Odds ratios (OR) of change in in Pay and Play PA predicted by change in neighbourhood trust and social support, adjusting for potential confounders at baseline (n=2,644) 

Exposure Unadjusted OR Adjusted OR 
 

95% 
 

CI 
 

P-value adjusted¹ 
Gender interaction (p-

value) ² 
 

Neighbourhood Trust 1.06 1.06 [ 0.97 , 1.16 ] 0.201 0.099 

Social support - friend 0.99 0.99 [ 0.91 , 1.08 ] 0.845 0.695 

Social support – family 0.98 0.98 [ 0.88 , 1.09 ] 0.691 0.275 

Social support - sig. other   0.98 0.98 [ 0.89 , 1.08 ] 0.672 0.340 

Results are from proportional odds. The proportional odds assumptions were not violated for the parameters of interest. Results are displayed as ORs of improvement in Pay and Play PA status 

(being either constant vs. decrease or increase vs. constant) per unit increase in the original scale of neighbourhood trust and tertile change in social support. OR > 1 indicate an improvement in 
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the outcome as a response to an improvement in the exposure.  ¹ Adjusted for gender, ethnicity, health condition, FSM, family affluence, time lived in the neighbourhood, and household composition 

at wave 2.  ² The adjusted model was replicated for each outcome with an additional interaction term between gender and the exposure. 

 
Table G.25 Odds ratios (OR) of change in Pay and Play PA predicted by change in neighbourhood trust and social support, adjusting for potential confounders at baseline (n=2,644) 

Exposure Adjusted OR 
 

95% 
 

CI 
 

P-value adjusted¹ Gender interaction (p-value) ² 
 

Neighbourhood Trust 1.06 [ 0.97 , 1.16 ] 0.201 0.095 

Social support - friend 0.99 [ 0.91 , 1.08 ] 0.837 0.689 

Social support – family 0.98 [ 0.88 , 1.09 ] 0.696 0.274 

Social support - sig. other   0.98 [ 0.89 , 1.08 ] 0.665 0.346 

Results are from partial proportional odds. The proportional odds assumptions were not violated for the parameters of interest, however, due to violation of the assumptions for some of the 

confounders, non-proportional odds were allowed for gender, FSM, family affluence and household composition. Results are displayed as ORs of improvement in Pay and Play PA status (being 

either constant vs. decrease or increase vs. constant) per unit increase in the original scale of neighbourhood trust and tertile change in social support. OR > 1 indicate an improvement in the 

outcome as a response to an improvement in the exposure.  ¹ Adjusted for gender, ethnicity, health condition, FSM, family affluence, time lived in the neighbourhood, and household composition 

at wave 2. ² The adjusted model was replicated for each outcome with an additional interaction term between gender and the exposure. 

 

 

In the literature on social support and physical activity, authors sometimes treat BMI as a confounder, under the assumption that BMI is both associated with 

social support and the physical activity outcomes. In the ORiEL study, there is some evidence that BMI is associated with walking for leisure and Pay and Play PA, 

as well as with family social support, in models that adjust for other potential confounders. In this appendix, I reproduce results of chapter 8 for the outcomes 

walking for leisure and pay and play physical activity and further adjust for BMI.  
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Table G.26 Odds ratios (OR) of walking for leisure vs. not by neighbourhood trust and social support, adjusting for potential confounders and BMI (waves 2 and 3 of the ORiEL Study, n=2,644) 

Exposure  Adjusted OR¹ 95%CI 
P-value 

parameter 
P-value  

unadjusted 
P-value 

adjusted¹  

Gender interaction (p-
value) ² 

 

Neighbourhood Trust Not at all 1.00   0.193 0.265 0.909 

 A little 1.25 [0.99,1.58] 0.065    

 Some 1.26 [1.00,1.57] 0.048    

 A lot 1.23 [0.96,1.58] 0.102    

Social support - friend low 1.00   0.001 0.091 0.503 

 medium 1.17 [1.00,1.37] 0.055    

 high 1.16 [0.99,1.37] 0.069    

Social support – family  low 1.00   <0.001 0.004 0.577 

 medium 1.20 [1.00,1.43] 0.047    

 high 1.32 [1.12,1.56] 0.001    

Social support - sig. other    low 1.00   0.001 0.055 0.425 

 medium 1.11 [0.95,1.30] 0.191    

 high 1.21 [1.03,1.43] 0.020    

Results are from Generalised Estimating Equations to account for the dependency across repeated measurements (unstructured working correlation matrix). 

¹ Adjusted for gender, ethnicity, health condition, FSM, family affluence, time lived in the neighbourhood, household composition, BMI and time.  

² The adjusted model was replicated for each outcome with an additional interaction term between gender and the exposure. 
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Table G.27 Odds ratios (OR) of change in walking for leisure predicted by change in neighbourhood trust and social support, adjusting for potential confounders at baseline (n=2,644) 

Exposure Adjusted OR 
 

95% 
 

CI 
 

P-value adjusted¹ Gender interaction (p-value) ² 
 

Neighbourhood Trust 1.07 [ 0.99 , 1.15 ] 0.112 0.865 

Social support - friend 1.11 [ 1.01 , 1.21 ] 0.024 0.415 

Social support – family 1.07 [ 0.97 , 1.19 ] 0.186 0.508 

Social support - sig. other   1.04 [ 0.96 , 1.13 ] 0.351 0.164 

Results are from proportional odds model estimated with Generalised Estimating Equations to account for the clustering of individuals within schools (independent working correlation matrix). 

The proportional odds assumptions were not violated for the parameters of interest. Results are displayed as ORs of improvement in walking for leisure status (being either constant vs. decrease 

or increase vs. constant) per unit increase in the original scale of neighbourhood trust and tertile change in social support. OR > 1 indicate an improvement in the outcome as a response to an 

improvement in the exposure. ¹ Adjusted for gender, ethnicity, health condition, FSM, family affluence, time lived in the neighbourhood household composition and BMI at wave 2. ² The adjusted 

model was replicated for each outcome with an additional interaction term between gender and the exposure. 

 

Table G.28  Odds ratios (OR) of Pay and Play PA vs. not by neighbourhood trust and social support, adjusting for potential confounders and BMI (waves 2 and 3 of the ORiEL Study, n=2,644) 

Exposure  Adjusted OR¹ 95%CI 
P-value 

parameter 
P-value  

unadjusted 
P-value 

adjusted¹  

Gender interaction (p-
value) ² 

 

Neighbourhood Trust Not at all 1.00   0.005 0.026 0.700 

 A little 0.95 [0.76,1.20] 0.690    

 Some 1.03 [0.83,1.28] 0.767    

 A lot 1.27 [0.99,1.63] 0.055    

Social support - friend low 1.00   0.975 0.873 0.537 

 medium 1.00 [0.86,1.17] 0.995    

 high 0.96 [0.83,1.13] 0.646    

Social support – family  low 1.00   0.624 0.966 0.467 
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Exposure  Adjusted OR¹ 95%CI 
P-value 

parameter 
P-value  

unadjusted 
P-value 

adjusted¹  

Gender interaction (p-
value) ² 

 

 medium 0.99 [0.84,1.16] 0.880    

 high 0.98 [0.83,1.16] 0.806    

Social support - sig. other    low 1.00   0.761 0.874 0.871 

 medium 0.96 [0.82,1.13] 0.626    

 high 1.00 [0.85,1.17] 0.951    

Results are from Generalised Estimating Equations to account for the dependency across repeated measurements (unstructured working correlation matrix). ¹ Adjusted for gender, ethnicity, 

health condition, FSM, family affluence, time lived in the neighbourhood, household composition, BMI and time. ² The adjusted model was replicated for each outcome with an additional 

interaction term between gender and the exposure. 

 

Table G.29  Odds ratios (OR) of change in Pay and Play PA predicted by change in neighbourhood trust and social support, adjusting for potential confounders at baseline (n=2,644) 

Exposure Adjusted OR¹ 
 

95% 
 

CI 
 

P-value adjusted¹ Gender interaction (p-value) ² 
 

Neighbourhood Trust 1.06 [ 0.96 , 1.18 ] 0.220 0.072 

Social support - friend 0.99 [ 0.92 , 1.07 ] 0.847 0.664 

Social support – family 0.98 [ 0.89 , 1.08 ] 0.696 0.286 

Social support - sig. other   0.98 [ 0.90 , 1.08 ] 0.744 0.280 

Results are from proportional odds model estimated with Generalised Estimating Equations to account for the clustering of individuals within schools (independent working correlation matrix). 

The proportional odds assumptions were not violated for the parameters of interest. Results are displayed as ORs of improvement in Pay and Play Pa status (being either constant vs. decrease or 

increase vs. constant) per unit increase in the original scale of neighbourhood trust and tertile change in social support. OR > 1 indicate an improvement in the outcome as a response to an 

improvement in the exposure.  ¹ Adjusted for gender, ethnicity, health condition, FSM, family affluence, time lived in the neighbourhood household composition and BMI at wave 2. ² The adjusted 

model was replicated for each outcome with an additional interaction term between gender and the exposure.  
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Table G.30 Odds ratios (OR) of walking to school vs. not by potential socio-demographic and health confounders (waves 2 and 3 of the ORiEL Study, n=3,075 from 2,058 individuals) 

Potential confounder  OR Adjusted OR¹ 95%CI P-value 

parameter 

P-value  

unadjusted 

P-value 

adjusted¹  

Gender Male 1.00 1.00   0.229 0.064 
 Female 1.12 1.20 [0.99,1.46] 0.064   

Ethnicity White: UK 1.00 1.00   <0.001 0.001 
 White: Mixed 0.79 0.86 [0.57,1.29] 0.458   
 Asian: Indian 1.03 1.19 [0.67,2.10] 0.558   
 Asian: Pakistani 0.86 0.93 [0.56,1.54] 0.783   
 Asian: Bangladeshi 1.42 1.43 [1.00,2.06] 0.051   
 Black: Caribbean 0.45 0.48 [0.30,0.76] 0.002   
 Black: African 0.60 0.71 [0.49,1.04] 0.076   
 Other 0.73 0.85 [0.64,1.13] 0.271   

Health no condition 1.00 1.00   0.309 0.377 
 1+ conditions(s) 1.09 1.08 [0.91,1.30] 0.377   

FAS Categories Low 1.00 1.00   0.397 0.322 
 Moderate 0.79 0.77 [0.53,1.11] 0.162   
 High 0.77 0.74 [0.50,1.10] 0.134   

Take FSM  No 1.00 1.00   0.088 0.031 
 Yes 1.18 1.25 [1.02,1.54] 0.031   

Time lived in neighbourhood >6 years 1.00 1.00   <0.001 <0.001 

 <= 5 years 0.51 0.52 [0.43,0.63] <0.001   

Household composition Both Parents 1.00 1.00   0.013 0.112 
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Potential confounder  OR Adjusted OR¹ 95%CI P-value 

parameter 

P-value  

unadjusted 

P-value 

adjusted¹  

 Other 0.79 0.85 [0.69,1.04] 0.112   

time  0.85 0.86 [0.75,0.98] 0.030 0.015 0.030 

Results are from Generalised Estimating Equations to account for the dependency across repeated measurements (unstructured working correlation matrix).¹ Adjusted for all 

other variables of the table 

 
Table G.31  Odds ratios (OR) of walking to school vs. not by neighbourhood trust and social support, adjusting for potential confounders (waves 2 and 3 of the ORiEL Study, n=3,075 from 
2,058 individuals) 

Exposure  
Unadjusted 

OR 

Adjusted 

OR¹ 
95%CI 

P-value 

parameter 

P-value  

unadjusted 

P-value 

adjusted¹  

Gender interaction 

(p-value) ² 

 

Neighbourhood Trust Not at all 1.00 1.00   0.115 0.383 0.559 

 A little 0.95 0.89 [0.67,1.19] 0.434    

 Some 1.19 1.06 [0.80,1.40] 0.696    

 A lot 1.08 0.95 [0.69,1.31] 0.753    

         

Social support - friend low 1.00 1.00   0.373 0.223 0.522 

 medium 1.12 1.09 [0.90,1.33] 0.372    

 high 0.98 0.91 [0.74,1.12] 0.386    

         

Social support – family  low 1.00 1.00   0.563 0.396 0.111 

 medium 0.94 0.92 [0.74,1.15] 0.477    

 high 0.89 0.86 [0.70,1.07] 0.174    

         

Social support - sig. other    low 1.00 1.00   0.868 0.802 0.030^ 
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Exposure  
Unadjusted 

OR 

Adjusted 

OR¹ 
95%CI 

P-value 

parameter 

P-value  

unadjusted 

P-value 

adjusted¹  

Gender interaction 

(p-value) ² 

 

 medium 0.99 1.02 [0.82,1.25] 0.884    

 high 0.95 0.95 [0.77,1.17] 0.637    

Results are from Generalised Estimating Equations to account for the dependency across repeated measurements (unstructured working correlation matrix).¹ Adjusted for 

gender, ethnicity, health condition, FSM, family affluence, time lived in the neighbourhood, household composition and time. ² The adjusted model was replicated for each 

outcome with an additional interaction term between gender and the exposure.^ None of the gender-specific associations was significant. In the absence of significant results, 

the exposures were not modelled in a dose-response fashion.  

 
Table G.32  Odds ratios (OR) of walking to school predicted by change in neighbourhood trust and social support, adjusting for potential confounders at baseline (n=1,161) 

Exposure Unadjusted OR Adjusted OR¹ 
 

95% 
 

CI 
 

P-value adjusted¹ Gender interaction (p-
value) ² 

Neighbourhood Trust 1.09 1.08 [ 0.94 , 1.25 ] 0.260 0.256 

Social support - friend 1.03 1.03 [ 0.86 , 1.23 ] 0.752 0.107 

Social support – family 1.07 1.05 [ 0.88 , 1.25 ] 0.563 0.630 

Social support - sig. other   1.04 1.04 [ 0.91 , 1.18 ] 0.587 0.182 

Results are from proportional odds model estimated with Generalised Estimating Equations to account for the clustering of individuals within schools (independent working 

correlation matrix). The proportional odds assumptions were not violated for the parameters of interest. Results are displayed as ORs of improvement in walking to school status 

(being either constant vs. decrease or increase vs. constant) per unit increase in the original scale of neighbourhood trust and tertile change in social support. OR > 1 indicate an 

improvement in the outcome as a response to an improvement in the exposure. ¹ Adjusted for gender, ethnicity, health condition, FSM, family affluence, time lived in the 

neighbourhood and household composition at wave 2. ² The adjusted model was replicated for each outcome with an additional interaction term between gender and the 

exposure. 
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Table G.33  Odds ratios (OR) of walking for leisure vs. not by potential socio-demographic and health (waves 2 and 3 of the ORiEL Study, n=3,043 from 2,043 individuals) 

Potential confounder  OR Adjusted OR¹ 95%CI P-value 

parameter 

P-value  

unadjusted 

P-value 

adjusted¹  

Gender Male 1.00 1.00   <0.001 <0.001 
 Female 1.73 1.73 [1.46,2.05] <0.001   

Ethnicity White: UK 1.00 1.00   <0.001 <0.001 
 White: Mixed 0.74 0.73 [0.52,1.04] 0.080   
 Asian: Indian 0.61 0.65 [0.41,1.03] 0.068   
 Asian: Pakistani 0.51 0.57 [0.37,0.88] 0.012   
 Asian: Bangladeshi 0.35 0.39 [0.29,0.52] <0.001   
 Black: Caribbean 0.42 0.39 [0.24,0.64] <0.001   
 Black: African 0.34 0.36 [0.26,0.51] <0.001   
 Other 0.62 0.64 [0.51,0.81] <0.001   

Health no condition 1.00 1.00   0.378 0.784 
 1+ conditions(s) 1.07 1.02 [0.87,1.21] 0.784   

FAS Categories Low 1.00 1.00   0.024 0.054 
 Moderate 1.00 1.03 [0.75,1.43] 0.845   
 High 1.23 1.26 [0.90,1.77] 0.185   

Take FSM  No 1.00 1.00   0.707 0.713 
 Yes 0.97 1.04 [0.86,1.25] 0.713   

Time lived in neighbourhood >6 years 1.00 1.00   0.278 0.590 

 <= 5 years 0.91 0.95 [0.80,1.13] 0.590   

Household composition Both Parents 1.00 1.00   0.025 0.105 

 Other 1.22 1.17 [0.97,1.40] 0.105   

time  0.80 0.78 [0.68,0.90] <0.001 0.001 <0.001 
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Results are from Generalised Estimating Equations to account for the dependency across repeated measurements (unstructured working correlation matrix).¹ Adjusted for all other variables of 

the table 

 
Table G.34 Odds ratios (OR) of walking for leisure vs. not by neighbourhood trust and social support, adjusting for potential confounders (waves 2 and 3 of the ORiEL Study, n=3,043 from 
2,043 individuals) 

Exposure  Unadjusted 
OR 

Adjusted 
OR¹ 

95%CI 
P-value 

parameter 
P-value  

unadjusted 
P-value 

adjusted¹  

Gender interaction 
(p-value) ² 

 

Neighbourhood Trust Not at all 1.00 1.00   0.364 0.676 0.957 

 A little 1.14 1.10 [0.83,1.45] 0.507    

 Some 1.15 1.14 [0.87,1.50] 0.343    

 A lot 0.98 1.03 [0.75,1.40] 0.862    

 Trend* 0.99 1.01 [0.92,1.10] 0.877 0.732 0.877 0.917 

         

Social support - friend low 1.00 1.00   0.364 0.676 0.957 

 medium 1.14 1.10 [0.83,1.45] 0.507    

 high 1.15 1.14 [0.87,1.50] 0.343    

 Trend* 1.16 1.08 [0.98,1.19] 0.102 0.001 0.102 0.413 

         

Social support – family  low 1.00 1.00   0.001 0.009 0.600 

 medium 1.32 1.30 [1.06,1.60] 0.012    

 high 1.40 1.33 [1.10,1.61] 0.003    

 Trend* 1.17 1.14 [1.04,1.26] 0.005 0.001 0.005 0.338 

         

Social support - sig. other    low 1.00 1.00   <0.001 0.017 0.578 

 medium 1.29 1.18 [0.98,1.43] 0.084    
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Exposure  Unadjusted 
OR 

Adjusted 
OR¹ 

95%CI 
P-value 

parameter 
P-value  

unadjusted 
P-value 

adjusted¹  

Gender interaction 
(p-value) ² 

 

 high 1.48 1.31 [1.09,1.58] 0.005    

 Trend* 1.22 1.14 [1.04,1.26] 0.005 <0.001 0.005 0.410 

Results are from Generalised Estimating Equations to account for the dependency across repeated measurements (unstructured working correlation matrix).¹ Adjusted for 

gender, ethnicity, health condition, FSM, family affluence, time lived in the neighbourhood, household composition and time. ² The adjusted model was replicated for each 

outcome with an additional interaction term between gender and the exposure. 

 

Table G.35  Odds ratios (OR) of walking for leisure predicted by change in neighbourhood trust and social support, adjusting for potential confounders at baseline (n=1,141) 

Exposure Unadjusted OR Adjusted OR¹ 
 

95% 
 

CI 
 

P-value adjusted¹ Gender interaction (p-
value) ² 

Neighbourhood Trust 1.00 1.00 [ 0.89 , 1.12 ] 0.965 0.288 

Social support - friend 1.13 1.12 [ 1.03 , 1.23 ] 0.009 0.563 

Social support – family 1.09 1.10 [ 0.98 , 1.24 ] 0.092 0.360 

Social support - sig. other   1.09 1.09 [ 0.98 , 1.21 ] 0.099 0.030 

Results are from proportional odds model estimated with Generalised Estimating Equations to account for the clustering of individuals within schools (independent working correlation matrix). 

The proportional odds assumptions were not violated for the parameters of interest. Results are displayed as ORs of improvement in walking for leisure status (being either constant vs. decrease 

or increase vs. constant) per unit increase in the original scale of neighbourhood trust and tertile change in social support. OR > 1 indicate an improvement in the outcome as a response to an 

improvement in the exposure. ¹ Adjusted for gender, ethnicity, health condition, FSM, family affluence, time lived in the neighbourhood and household composition at wave 2. ² The adjusted model 

was replicated for each outcome with an additional interaction term between gender and the exposure. 
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Table G.36  Odds ratios (OR) of outdoor PA vs. not by potential socio-demographic and health confounders (waves 2 and 3 of the ORiEL Study, n=2,948 from 2,000 individuals) 

Potential confounder  OR Adjusted OR¹ 95%CI P-value 

parameter 

P-value  

unadjusted 

P-value 

adjusted¹  

Gender Male 1.00 1.00   <0.001 <0.001 
 Female 0.20 0.21 [0.17,0.25] <0.001   

Ethnicity White: UK 1.00 1.00   0.022 0.258 
 White: Mixed 1.21 1.20 [0.81,1.79] 0.359   
 Asian: Indian 1.22 1.12 [0.67,1.89] 0.666   
 Asian: Pakistani 2.25 1.87 [1.09,3.23] 0.024   
 Asian: Bangladeshi 1.23 1.08 [0.78,1.48] 0.649   
 Black: Caribbean 0.67 0.74 [0.45,1.22] 0.234   
 Black: African 1.26 1.23 [0.84,1.80] 0.287   
 Other 1.14 1.11 [0.84,1.46] 0.475   

Health no condition 1.00 1.00   0.396 0.821 
 1+ conditions(s) 0.93 0.98 [0.81,1.18] 0.821   

FAS Categories Low 1.00 1.00   0.043 0.027 
 Moderate 1.03 1.19 [0.83,1.71] 0.349   
 High 1.28 1.50 [1.02,2.20] 0.041   

Take FSM  No 1.00 1.00   0.028 0.132 
 Yes 1.23 1.17 [0.95,1.44] 0.132   

Time lived in neighbourhood >6 years 1.00 1.00   0.173 0.101 

 <= 5 years 1.13 1.18 [0.97,1.43] 0.101   

Household composition Both Parents 1.00 1.00   0.689 0.681 

 Other 0.96 1.05 [0.84,1.30] 0.681   

time  0.79 0.76 [0.66,0.88] <0.001 0.001 <0.001 
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Results are from Generalised Estimating Equations to account for the dependency across repeated measurements (unstructured working correlation matrix).¹ Adjusted for all other variables of the 

table 

 
Table G.37 Odds ratios (OR) of outdoor PA vs. not by neighbourhood trust and social support, adjusting for potential confounders (waves 2 and 3 of the ORiEL Study, n=2,948 from 2,000 
individuals) 

Exposure  Unadjusted 
OR 

Adjusted 
OR¹ 

95%CI 
P-value 

parameter 
P-value  

unadjusted 
P-value 
adjusted¹  

Gender interaction 
(p-value) ² 

 

Neighbourhood Trust Not at all 1.00 1.00   <0.001 0.083 0.296 

 A little 1.04 1.00 [0.74,1.36] 0.982    

 Some 1.16 1.07 [0.80,1.45] 0.643    

 A lot 1.78 1.42 [1.00,2.01] 0.051    

 Trend* 1.20 1.12 [1.01,1.23] 0.027 <0.001 0.027 0.193 

         

Social support - friend low 1.00 1.00   0.225 0.124 0.024 

 medium 1.03 1.24 [1.01,1.54] 0.043    

 high 0.87 1.15 [0.93,1.41] 0.197    

         

Social support – family  low 1.00 1.00   0.697 0.453 0.229 

 medium 1.09 1.15 [0.92,1.43] 0.214    

 high 1.07 1.10 [0.89,1.35] 0.384    

         

Social support - sig. other    low 1.00 1.00   0.684 0.446 0.082 

 medium 0.93 1.09 [0.87,1.36] 0.471    

 high 0.92 1.15 [0.93,1.41] 0.204    
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Results are from Generalised Estimating Equations to account for the dependency across repeated measurements (unstructured working correlation matrix).¹ Adjusted for gender, ethnicity, health 

condition, FSM, family affluence, time lived in the neighbourhood, household composition and time. ² The adjusted model was replicated for each outcome with an additional interaction term 

between gender and the exposure.*Exposure modelled as a continuous variable when evidence of improved fit compared to the categorical option. 

 
Table G.38  Odds ratios (OR) of outdoor PA vs. not by neighbourhood trust and social support stratified by gender, adjusting for potential confounders (waves 2 and 3 of the ORiEL Study, 
n=2,948 from 2,000 individuals) 

Exposure  
Unadjusted 

OR 

Adjusted 

OR¹ 
95%CI 

P-value  

unadjusted 

P-value 

adjusted¹  

Unadjusted 

OR 

Adjusted 

OR¹ 
95%CI 

P-value  

unadjusted 

P-value 

adjusted¹  

   Boys     Girls    

Neighbourhood Trust Not at all 1.00 1.00  0.052 0.063 1.00 1.00  0.494 0.472 

 A little 1.37 1.37 [0.81,2.33]   0.93 0.87 [0.61,1.26]   

 Some 1.28 1.28 [0.78,2.11]   1.03 0.99 [0.69,1.41]   

 A lot 2.12 2.12 [1.17,3.81]   1.21 1.14 [0.74,1.76]   

 Trend* 1.21 1.21 [1.03,1.43] 0.016 0.021      

Social support - friend low 1.00 1.00  0.006 0.005 1.00 1.00  0.555 0.442 

 medium 1.45 1.47 [1.04,2.08]   1.08 1.09 [0.83,1.42]   

 high 1.76 1.80 [1.22,2.66]   0.94 0.92 [0.71,1.20]   

 Trend* 1.35 1.36 [1.13,1.65] 0.002 0.001      

Social support – family  low 1.00 1.00  0.111 0.116 1.00 1.00  0.912 0.777 

 medium 1.33 1.34 [0.92,1.96]   1.05 1.05 [0.80,1.37]   

 high 1.40 1.41 [1.00,2.00]   1.00 0.96 [0.74,1.24]   

 Trend* 1.18 1.19 [1.00,1.42] 0.053 0.055      

Social support - sig. other    low 1.00 1.00  0.042 0.023 1.00 1.00  0.957 0.918 

 medium 1.29 1.33 [0.91,1.93]   0.96 0.95 [0.72,1.26]   

 high 1.61 1.68 [1.15,2.45]   1.00 0.95 [0.73,1.23]   

 Trend* 1.27 1.30 [1.08,1.57] 0.012 0.006      
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Results are from Generalised Estimating Equations to account for the dependency across repeated measurements (unstructured working correlation matrix).¹ Adjusted for gender, ethnicity, health 

condition, FSM, family affluence, time lived in the neighbourhood, household composition and time. ² The adjusted model was replicated for each outcome with an additional interaction term 

between gender and the exposure.*Exposure modelled as a continuous variable when evidence of improved fit compared to the categorical option. 

 
Table G.39  Odds ratios (OR) of outdoor PA predicted by change in neighbourhood trust and social support, adjusting for potential confounders at baseline (n=1,083) 

Exposure Unadjusted OR Adjusted OR¹ 
 

95% 
 

CI 
 

P-value adjusted¹ Gender interaction (p-
value) ² 

Neighbourhood Trust 0.99 1.00 [ 0.88 , 1.13 ] 0.941 0.869 

Social support - friend 1.04 1.04 [ 0.94 , 1.15 ] 0.462 0.823 

Social support – family 0.99 0.99 [ 0.86 , 1.14 ] 0.865 0.366 

Social support - sig. other   1.04 1.03 [ 0.88 , 1.20 ] 0.741 0.749 

Results are from proportional odds model estimated with Generalised Estimating Equations to account for the clustering of individuals within schools (independent working correlation matrix). 

The proportional odds assumptions were not violated for the parameters of interest. Results are displayed as ORs of improvement in outdoor PA status (being either constant vs. decrease or 

increase vs. constant) per unit increase in the original scale of neighbourhood trust and tertile change in social support. OR > 1 indicate an improvement in the outcome as a response to an 

improvement in the exposure. ¹ Adjusted for gender, ethnicity, health condition, FSM, family affluence, time lived in the neighbourhood and household composition at wave 2.  

² The adjusted model was replicated for each outcome with an additional interaction term between gender and the exposure. 
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Table G.40  Odds ratios (OR) of Pay and Play PA vs. not by potential socio-demographic and health confounders (waves 2 and 3 of the ORiEL Study, n=2,963 from 2,002 individuals) 

Potential confounder  OR Adjusted OR¹ 95%CI P-value 

parameter 

P-value  

unadjusted 

P-value 

adjusted¹  

Gender Male 1.00 1.00   0.854 0.892 
 Female 0.99 0.99 [0.84,1.16] 0.892   

Ethnicity White: UK 1.00 1.00   0.105 0.153 
 White: Mixed 1.10 1.17 [0.84,1.65] 0.352   
 Asian: Indian 1.39 1.38 [0.87,2.19] 0.175   
 Asian: Pakistani 1.04 1.03 [0.69,1.55] 0.890   
 Asian: Bangladeshi 0.76 0.79 [0.60,1.04] 0.094   
 Black: Caribbean 0.99 1.05 [0.68,1.62] 0.830   
 Black: African 0.97 1.05 [0.76,1.46] 0.757   
 Other 1.08 1.11 [0.88,1.41] 0.366   

Health no condition 1.00 1.00   0.009 0.008 
 1+ conditions(s) 1.23 1.24 [1.06,1.45] 0.008   

FAS Categories Low 1.00 1.00   <0.001 <0.001 
 Moderate 1.42 1.50 [1.09,2.08] 0.014   
 High 2.07 2.15 [1.53,3.03] <0.001   

Take FSM  No 1.00 1.00   0.139 0.797 
 Yes 0.88 0.98 [0.82,1.16] 0.797   

Time lived in neighbourhood >6 years 1.00 1.00   0.907 0.660 

 <= 5 years 1.01 1.04 [0.88,1.22] 0.660   

Household composition Both Parents 1.00 1.00   0.028 0.068 

 Other 0.83 0.85 [0.71,1.01] 0.068   

time  0.60 0.57 [0.50,0.66] <0.001 <0.001 <0.001 
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Results are from Generalised Estimating Equations to account for the dependency across repeated measurements (unstructured working correlation matrix).¹ Adjusted for all other variables of 

the table 

 
Table G.41 Odds ratios (OR) of Pay and Play PA vs. not by neighbourhood trust and social support, adjusting for potential confounders (waves 2 and 3 of the ORiEL Study, n=3,007 from 2,022 
individuals) 

Exposure  
Unadjusted 

OR 

Adjusted 

OR¹ 
95%CI 

P-value 

parameter 

P-value  

unadjusted 

P-value 

adjusted¹  

Gender interaction 

(p-value) ² 

 

Neighbourhood Trust Not at all 1.00 1.00   0.007 0.026 0.773 

 A little 1.04 1.01 [0.77,1.32] 0.940    

 Some 1.22 1.18 [0.91,1.53] 0.221    

 A lot 1.48 1.39 [1.05,1.86] 0.024    

 Trend* 1.15 1.13 [1.04,1.23] 0.004 0.001 0.004 0.496 

Social support - friend low 1.00 1.00   0.881 0.561 0.113 

 medium 0.99 0.99 [0.82,1.19] 0.919    

 high 0.96 0.91 [0.76,1.10] 0.324    

Social support – family  low 1.00 1.00   0.841 0.822 0.901 

 medium 1.04 1.03 [0.84,1.25] 0.796    

 high 1.05 0.97 [0.81,1.16] 0.749    

Social support - sig. other    low 1.00 1.00   0.867 0.854 0.701 

 medium 0.99 0.95 [0.79,1.14] 0.576    

 high 1.04 0.97 [0.81,1.16] 0.763    

Results are from Generalised Estimating Equations to account for the dependency across repeated measurements (unstructured working correlation matrix). 

¹ Adjusted for gender, ethnicity, health condition, FSM, family affluence, household composition and time. ² The adjusted model was replicated for each outcome with an additional interaction 

term between gender and the exposure.*Exposure modelled as a continuous variable (dose-response relationship) when evidence of improved fit compared to the categorical option (using GLMM).  
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Table G.42 Odds ratios (OR) of Pay and Play PA predicted by change in neighbourhood trust and social support, adjusting for potential confounders at baseline (n=1,096) 

Exposure Unadjusted OR Adjusted OR¹ 
 

95% 
 

CI 
 

P-value adjusted¹ Gender interaction (p-
value) ² 

Neighbourhood Trust 1.02 1.01 [ 0.87 , 1.17 ] 0.932 0.087 

Social support - friend 1.03 1.02 [ 0.92 , 1.14 ] 0.690 0.363 

Social support – family 1.06 1.05 [ 0.91 , 1.22 ] 0.504 0.173 

Social support - sig. other   1.02 1.02 [ 0.91 , 1.14 ] 0.703 0.793 

Results are from proportional odds model estimated with Generalised Estimating Equations to account for the clustering of individuals within schools (independent working correlation matrix). 

The proportional odds assumptions were not violated for the parameters of interest. Results are displayed as ORs of improvement in Pay and Play PA status (being either constant vs. decrease or 

increase vs. constant) per unit increase in the original scale of neighbourhood trust and tertile change in social support. OR > 1 indicate an improvement in the outcome as a response to an 

improvement in the exposure. ¹ Adjusted for gender, ethnicity, health condition, FSM, family affluence, time lived in the neighbourhood and household composition at wave 2. ² The adjusted model 

was replicated for each outcome with an additional interaction term between gender and the exposure. 

 




