
RESEARCH Open Access

Environmental suitability for lymphatic
filariasis in Nigeria
Obiora A. Eneanya1*, Jorge Cano2, Ilaria Dorigatti1, Ifeoma Anagbogu3, Chukwu Okoronkwo3, Tini Garske1

and Christl A. Donnelly1,4

Abstract

Background: Lymphatic filariasis (LF) is a mosquito-borne parasitic disease and a major cause of disability
worldwide. It is one of the neglected tropical diseases identified by the World Health Organization for elimination
as a public health problem by 2020. Maps displaying disease distribution are helpful tools to identify high-risk areas
and target scarce control resources.

Methods: We used pre-intervention site-level occurrence data from 1192 survey sites collected during extensive
mapping surveys by the Nigeria Ministry of Health. Using an ensemble of machine learning modelling algorithms
(generalised boosted models and random forest), we mapped the ecological niche of LF at a spatial resolution of 1
km2. By overlaying gridded estimates of population density, we estimated the human population living in LF risk
areas on a 100 × 100 m scale.

Results: Our maps demonstrate that there is a heterogeneous distribution of LF risk areas across Nigeria, with large
portions of northern Nigeria having more environmentally suitable conditions for the occurrence of LF. Here we
estimated that approximately 110 million individuals live in areas at risk of LF transmission.

Conclusions: Machine learning and ensemble modelling are powerful tools to map disease risk and are known to
yield more accurate predictive models with less uncertainty than single models. The resulting map provides a
geographical framework to target control efforts and assess its potential impacts.

Keywords: Lymphatic filariasis, Ensemble modelling, Machine learning, Generalised boosted model (GBM), Random
forest (RF)

Background
Lymphatic filariasis (LF) is a mosquito-borne disease
endemic in tropical regions and caused by the parasitic
nematode Wuchereria bancrofti in Africa, and by Brugia
malayi and B. timori in Southeast Asia [1]. These para-
sites are transmitted by various species of mosquitoes,
with Anopheles spp. being major vectors in Africa [1, 2].
Other mosquito species of the genera Culex and Mansonia
also contribute to transmission to some extent, particularly
in urban and peri-urban settings [3, 4]. The majority of
infected individuals are asymptomatic, but infections can
lead to lymphedema, hydrocele and swellings of the breasts
in women [5]. An independent International Task Force for

Disease Eradication included LF as one of the nine diseases
targeted for elimination [6], and in 1997 the World Health
Assembly adopted Resolution WHA50.29 embarking on a
global campaign to eliminate LF. Elimination of LF as a
public health problem is deemed feasible for a number of
reasons: (i) mosquitoes are very inefficient transmitters of
filarial parasites [7]; (ii) the small number of animal reser-
voirs are restricted to particular foci for B. malayi, and
there are no animal reservoirs for W. bancrofti [8]; and (iii)
the availability of improved diagnostic tools and the
existence of practical interventions for interruption of
transmission [9–11].
An understanding of the geographical distribution of LF

is required to underpin national elimination programmes.
This enables more effective targeting of control efforts on
highly endemic areas. Early maps of disease distribution
have mostly relied on field surveys at national or
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sub-national levels [12–15], often with entire administra-
tive units classified based on disease prevalence with no
account for within-unit heterogeneity [16]. This might be
useful for roughly estimating disease burden [17, 18];
however, such estimates fail to accurately represent dis-
ease burden and highly endemic foci may be misclassified
[18]. To account for within-region heterogeneity, maps
have been created by applying geostatistical modelling on
point prevalence data, in combination with potential dis-
ease drivers (i.e. climatic, environmental and demographic
factors), due to their impacts on mosquito populations
and parasite biology [16, 19–24].
In 2003, the Nigerian Lymphatic Filariasis Elimination

Programme (NLFEP) commenced LF mapping on a na-
tional scale, and to date, 761 out of 774 Local Government
Areas (LGAs) have been mapped using immunochroma-
tographic card tests (ICT) [15]. Of these, 574 LGAs are
classed as endemic and targeted for mass drug administra-
tion (MDA), and 187 LGAs non-endemic for LF [15]. In
total, an estimated 128 million people in Nigeria are
thought to require preventive chemotherapy, and as of
2016, 54% of this population had been treated [25].
After more than five rounds of MDA in Plateau and
Nassarawa states, Transmission Assessment Survey 1
(TAS-1) showed evidence of interruption of LF trans-
mission in these areas [26]. However, for the vast areas
of the country in which LF is present, understanding
disease distribution on a finer scale is key for more
focussed targeting of control measures.
In this work we aim to (i) describe and map the

ecological niche of LF in Nigeria and (ii) estimate the
human population living in areas that are environmen-
tally suitable for disease transmission. Here we fitted
seven different model classes to the same selection of
training and evaluation data points, and projected the
final ecological niche map using an ensemble of the two
best performing models.

Methods
LF occurrence data
Data used for ecological niche modelling (ENM) were
pre-intervention site-level data collected during mapping
surveys conducted by the Nigeria Ministry of Health
from 2000–2013. The sampling geographical level for LF
mapping is the implementation unit (IU), which corre-
sponds to a Local Government Area (LGA), the second
level administrative unit in Nigeria. In total, we had
1192 data points covering all 36 states, and the Federal
Capital Territory in Nigeria. A uniform survey method-
ology was applied to all survey locations and study
participants were tested for the presence of filarial anti-
genemia using a point-care rapid test (immunochroma-
tographic card test), and following the mapping protocol
of the World Health Organization (WHO) Operational

Guidelines for Mapping of Bancroftian Filariasis in
Africa [27]. Briefly, within each IU (LGA), at least one
sample village is randomly selected for survey. Selected
villages must be located at least 50 km apart from each
other. In each selected village, 50–100 adults (seeking an
equal number of males and females when possible, and
> 15 years of age) are tested. If 20% or more of the first
50 individuals tested result positive, testing is stopped,
and the entire IU is recorded as positive for LF. Other-
wise, testing is continued until 100 adults have been
examined. In the end, IUs with at least one sampled
village yielding a prevalence equal to or more than 1%
are considered to be endemic for LF and subsequently
targeted with MDA.
For this analysis, occurrence (coded 1) was considered

when at least one LF case was recorded during mapping
surveys and absence (coded 0) when none of the individ-
uals tested resulted positive to the LF rapid test [28]. In
total we had 932 ‘presence’ and 260 ‘absence’ records for
this modelling exercise. Figure 1 shows the distribution
of survey points and presence-absence records used in
this work.

Climatic and environmental data
A suite of environmental variables was considered to
describe the ecological niche of LF. Continuous gridded
maps of climate, topography, vegetation and land use for
Africa were obtained from different sources (Table 1).
Climate variables related to precipitation and
temperature were downloaded from the WorldClim
database [29], which provides a set of global climate
layers obtained by interpolation of the data for the
period of 1950–2000 collected in weather stations
distributed across the world. From the Consortium of
Spatial Information (CGIAR-CSI) we obtained raster
datasets of potential evapo-transpiration (PET), elevation
and aridity index at 1 km2 resolution [30]. PET is a
measure of the ability of the atmosphere to remove
water through evapo-transpiration. Our elevation layer
resulted from processing and resampling the gridded
digital elevation models (DEM) derived from the
30-arcsecond DEM produced by the Shuttle Radar
Topography Mission (SRTM) [31]. The elevation layer
was used to generate two topography-related datasets:
slope of terrain and flow accumulation.
To produce the flow accumulation layer, we initially

created a flow direction layer in which the direction of
flow was determined by the direction of the steepest
descent from each cell in the elevation dataset. This was
calculated as follows: change in elevation value/distance
× 100. Flow accumulation was then calculated as the
accumulated weight of all cells flowing into each down-
slope cell in the flow direction layer.
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In addition, we calculated topographic wetness index
(TWI) by applying the following algorithm

TWI ¼ ln a=tanβð Þ;

where a is the upslope contributing area per unit con-
tour length [or specific catchment area (SCA)], which
can be approached by using the flow accumulation, and
β is the local slope gradient for reflecting the local
drainage potential [32].
We also produced continuous surfaces of straight-line

distance (Euclidean distance) in kilometres to the nearest
water body and permanent rivers. These data were de-
rived from the Global Database of Lakes, Reservoirs and
Wetlands [33] and Digital Global Chart [34], respect-
ively. Raster datasets of averaged enhanced vegetation
index (EVI) and land surface temperature (LST) for the
period 2000–2015 were obtained from the African Soil
Information System (AfSIS) project [35]. Here, EVI and
LST were generated from remotely sensed data collected
from the Moderate Resolution Imaging Spectoradiometer

(MODIS) platform. MODIS collects earth data from the
same place every 16 days at 250 m spatial resolution. Land
cover types (according to the United Nations land cover
classification system) were extracted from the GlobCover
project at the European Space Agency [36]. Here, maps
are derived by an automatic and regionally-tuned classifi-
cation of a 300 m medium resolution imaging spec-
trometer (MERIS) sensor on board the ENVISAT
satellite mission. Soil data (sand, silt and clay fractions,
and soil pH) were downloaded from the International
Soil Reference and Information Centre (ISRIC) project
[37] at a spatial resolution of 250 m.
Finally, night-light (NL) emissivity for 2006 captured

by the Operational Linescan System instrument on
board a satellite of the Defence Meteorological Satellite
Programme was used as a proxy measure of poverty
across Nigeria [38]. This instrument measures visible
and infrared radiation emitted at night-time, resulting in
remote imagery of lights on the ground. This informa-
tion has been correlated with gross domestic product in
developed countries [39, 40] and, although far from be-
ing precise, could provide an indirect measure of poverty

Fig. 1 Location of study sites in Nigeria. Red points show sites with at least one LF case and blue points show sites with no LF case
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in developing countries [41]. NL emissivity is provided
as gridded maps of 1 km2 resolution, and values that go
from 0 (undetectable NL emissivity) to 60 (maximum
NL emissivity). Alternatively, we estimated the Euclidean
distance to stable night-lights, considered as NL values > 0.
Input grids were resampled to a common spatial reso-

lution of 1 km2 using the nearest-neighbour approach
[42], clipped to match the geographical extent of a map
of mainland Nigeria, and aligned to it. Raster manipula-
tion and processing were undertaken using raster pack-
age in R (v.3.3.2) [43]. All environmental covariates
considered in our models are known to be biologically
plausible for LF occurrence [16, 23].

Model implementation
Selection of covariates
Covariate data were extracted corresponding to each of
the presence-absence data points. In this work we
explored the existence of multicollinearity using the
variance inflation factor (VIF). Multicollinearity often

arises in statistical models, and occurs when two or
more covariates are not statistically independent leading
to unstable estimates of variances of regression coeffi-
cients [44]. The VIF represents the amount of variability
of a covariate which is explained by other covariates. For
instance, the VIF for the ith covariate can be calculated
as: VIFi = 1/(1 – R2

i), where R2
i is the coefficient of de-

termination obtained by fitting a linear regression model
for the ith independent covariate. The VIF of the suite of
environmental covariates tested here was calculated and
correlated variables were excluded in a stepwise proced-
ure at a generally accepted threshold value of 10 [44]. Of
the 24 covariates initially tested for multicollinearity,
seven (average precipitation, mean temperature, average
maximum temperature, average minimum temperature,
aridity index, PET and sand soil type) were excluded
from further analysis. All remaining covariates were
considered to be independent and were included in the
analysis. The multicollinearity test was implemented
using the usdm package in R (v.3.3.2) [43].
The relative importance of the covariates to our

presence-absence dataset was identified using the boosted
regression trees (BRT) machine-learning algorithm. BRT
is a combination of two algorithms, regression trees and
boosting. This produces an additive regression model in
which simple trees are fitted in a forward, stepwise
fashion. This method has been widely used in disease
prediction and considered a powerful tool for ecological
studies [24, 45, 46]. Relative importance is defined as the
frequency of selection of covariates for splitting, weighted
by the squared improvements to the model, and averaged
over all trees [45]. Higher relative importance scores,
which are computed as percentages (and scaled to a max-
imum sum of 100%), indicate greater contribution to the
model. Variables that showed no substantial contribution
to the model (we set this at a threshold of 10%) [47] were
excluded in fitting the final ensemble of models. Variables
dropped at this stage were soil pH, night-light emissivity,
EVI, distance to the nearest water body, distance to rivers,
flow accumulation, mean temperature of the coldest
quarter, mean temperature of the warmest quarter, and
clay and silt soil fraction. The remaining predictors:
precipitation in the driest quarter, precipitation in the
wettest quarter, wetness index, land surface temperature,
elevation, distance to stable lights and terrain slope, were
included in the final analysis for ensemble modelling.

Building the ensemble model
We fitted our data using seven model algorithms, namely
generalised linear models (GLM), surface range envelopes
(SRE), multivariate additive regression splines (MARS),
artificial neural networks (ANN), BRT, also known as
GBM (generalised boosted regression modelling), random
forest (RF) and maximum entropy ecological niche

Table 1 Environmental variables used in the ENM and their
sources

Variables Source

Annual cumulative precipitation WorldClim [29]

Maximum temperature

Mean temperature

Minimum temperature

Mean temperature of the coldest
quarter

Mean temperature of the warmest
quarter

Precipitation of the driest quarter

Precipitation of the wettest quarter

Potential evapo-transpiration (PET) CGIAR-CSI [30]

Aridity index

Elevation SRTM [31]

Slope Derived from elevation

Flow accumulation Derived from slope

Distance to permanent rivers Digital Global Chart [34]

Distance to nearest water bodies Global Database of Lakes,
Reservoirs and Wetlands [33]

Land surface temperature (LST) AfSIS [35]

Enhanced vegetation index (EVI)

Sand, silt, clay fractions ISRIC [37]

Soil pH

Major land cover (forest, agriculture,
shrubland-grassland)

Arino et al [36]

Wetness index Derived from slope and flow
accumulation

Distance to stable lights 2006 Elvidge et al. [38]
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models (MaxEnt). These algorithms are included within
Biodiversity Modelling (BIOMOD) [48], a computational
framework intended for modelling species distribution.
BIOMOD was used to build the ecological niche model,
and implemented with the package biomod2 in R (v.3.3.2)
[43]. The MaxEnt algorithm is not in-built in BIOMOD;
however, there is provision to include this as an add-on.
The software was developed by S. Phillips and colleagues
and is freely available from https://biodiversityinformatic
s.amnh.org/open_source/maxent/ (v.3.4.1).
Ideally, model accuracy should be evaluated with data

that are independent of the training data. As we did not
have an independent dataset, the original data was
partitioned into two, with a random sample of 30% of the
original data retained for testing/evaluation and was
considered ‘quasi-independent’, while the remaining 70%
was used to train/calibrate the model. To evaluate the
validity of model performance and accuracy on the
quasi-independent data, BIOMOD offers an alternative
ability to perform internal cross-validation whereby a set
number of data splitting runs are computed. In each
model run, the model is fitted to one part of the dataset
and tested on the other part. This internal cross-validation
does not provide a measure of predictive performance per
se, but provides a measure of internal consistency of
models [49]. We performed an iteration of 100 model
runs for each of the seven algorithms, and the evaluation
values of each run was stored and then averaged, to make
the final result more robust. Model evaluation was
performed based on the area under the receiver operating
characteristic (ROC) curve and the Hanssen-Kuipers
discriminant (also known as true skill statistic, TSS). TSS
compares the number of correct predictions, minus
predictions attributable to random guessing [50], taking
into account both sensitivity and specificity. Its value
ranges from -1 to +1, where +1 indicates perfect score, 0
indicates random performance and values of 0.5 or higher
are generally considered to indicate acceptable model
performance [49, 50]. The TSS value is not affected by the
size of the validation dataset. Evaluation values for the
cross-validation runs were then compared to the values
from the runs from the quasi-independent data, checking
for consistency in predictive accuracy scores.
The two best-performing model algorithms, based on

ROC and TSS scores, were then selected for ensemble
projection. The evaluation summaries of ensemble pre-
dictions are presented as mean ROC and TSS, median
ROC and TSS, and lower and upper confidence bounds
of ROC and TSS. Sensitivity and specificity were calcu-
lated and a threshold value that maximizes their sum
(optimal threshold value for each condition) was consid-
ered to generate binary maps that display areas where
LF transmission is more likely to occur based on envir-
onmental suitability.

A gridded map of estimated population density for
Nigeria was obtained from the WorldPop Africa dataset
[51]. Population density data available for Nigeria from
this resource were for the years 2006, 2010, 2015 and
2020. As our data spanned from 2000–2013, we estimated
the population based on population density estimates for
the year 2010. We calculated population for each state by
summing estimated numbers of people per pixel falling
within predicted LF suitable areas and aggregating this to
represent population by state. This analysis was performed
using the Zonal Statistics function available within the
Spatial Analyst Tool in ArcGIS 10.3 [52].

Results
Analysis was performed using 1192 survey sites report-
ing presence-absence of LF covering all 36 states and the
Federal Capital Territory in Nigeria. Survey participants
were tested for the presence of filarial antigenemia using
ICT. In total, 142,881 individuals were surveyed and
11,479 tested positive for LF infection.
Figure 2 shows the performance of the seven model

algorithms implemented in the BIOMOD package. Here,
the RF and GBM models outperform the others with
area under the ROC and TSS values of > 0.95 and >
0.75, respectively. The two hundred models generated by
these two algorithms where therefore chosen for
constructing the final ensemble model.
Figures 3 and 4 show the relative contribution (RC, as

percentage) and marginal effect plots of each covariate
on the predicted suitability of occurrence for LF to the
final GBM and RF models, respectively. For both model
algorithms, precipitation of the driest quarter, precipita-
tion of the wettest quarter, and elevation, were the major
contributors to the ensemble of models. In total these
three covariates contributed 60.91 and 59.38% to the
fitted ensemble of GBM and RF models, respectively.
The probability of LF occurrence appeared to steadily
decrease with increasing precipitation of the driest quar-
ter. High suitability for LF was positively associated with
elevation up to 500 metres above sea level (masl), and
then appeared to flatten up to 1500 masl. Land surface
temperature and distance to stable lights also showed a
negative correlation with LF occurrence.
A continuous risk map of environmental suitability of

LF was projected on a geographical space based on the
pre-selected environmental predictors (those shown in
Figs. 3 and 4). The mean area under the ROC values on
the evaluation dataset (30% of the full dataset) for the
final ensemble model was 0.991 and the median was
0.993 (95% CI: 0.879–0.995). These areas under the
ROC values measure the performance of the final
ensemble model in fitting the presence-absence data and
predicting across unsampled locations.

Eneanya et al. Parasites & Vectors  (2018) 11:513 Page 5 of 13

https://biodiversityinformatics.amnh.org/open_source/maxent/
https://biodiversityinformatics.amnh.org/open_source/maxent/


Fig. 2 Model performance comparison by area under the receiver operating characteristic curve (ROC) and true skill statistic (TSS) values of all
model classes. The points represent the mean estimates and the solid lines represent the 95% confidence intervals. Abbreviations: ANN, artificial
neural networks; GBM, generalised boosted models; GLM, generalised linear models; MARS, multivariate additive regression splines; MAXENT,
maximum entropy ecological niche models; RF, random forest; SRE, surface range envelope

Fig. 3 Marginal effects curves for covariates included in 100 ensembles of generalised boosted models. Blue lines represent the mean marginal
effect and grey shading indicates the 95% bootstrap confidence intervals. The figures in parentheses indicate the relative contribution (RC) of
each covariate, which add up to 100%. The Y-axis is the response (probability of LF occurrence) and the X-axis is the full range of covariate values
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The map presented in Fig. 5 suggests that large pro-
portions of northern Nigeria are environmentally suit-
able and better able to drive LF transmission, although
low suitability was predicted in the north-central state of
Kogi. Low LF suitability was however predicted in most
southern states in Nigeria.
A suitability threshold of 0.711 with a sensitivity of 95%

and a specificity of 96.2% provided the best discrimination
between presence and absence values according to the
evaluation dataset, and therefore was used to reclassify the
continuous predictive maps into binary maps, delineating
land areas into either suitable or unsuitable for LF trans-
mission (Fig. 6).

Estimating population at risk
The total national population living in areas that are
environmentally suitable for LF was estimated to be 110
(95% CI: 106–124) million, which corresponds to about
67% of Nigeria’s population in 2010. The largest portion
of the population living in areas environmentally suited
to LF transmission were found in Kano, Kaduna, and
Katsina states with predicted populations of 9.6, 5.9 and

5.6 million, respectively (Table 2). All other states had
population in at-risk areas of less than 5 million.

Discussion
In this study, we have produced maps at a resolution of 1
km2 to inform ongoing interventions by delineating areas
of highest transmission risk which are prone to resur-
gence, thus to help in efficiently targeting control mea-
sures at the lowest administrative level. Our occurrence
map (Fig. 6) indicates that suitability to LF transmission is
widely distributed in Nigeria. However, parts of the
north-east state of Borno, southern states of Cross River,
Rivers, Akwa Ibom, Delta and Edo, and south-west states
of Lagos, Oyo, Ogun and Ondo, are not environmentally
suited to LF transmission. According to our estimates,
about 67% of the Nigerian population live in areas envir-
onmentally suitable for LF transmission.
The benefits of machine learning algorithms compared to

logistic regression models for niche and species distribution
modelling have been thoroughly reviewed [45, 53–58].
Machine learning algorithms allow to account for complex
non-linear associations between the response (e.g. disease

Fig. 4 Marginal effects curves for covariates included in 100 ensembles of random forest models. Blue lines represent the mean marginal effect
and grey shading indicates the 95% bootstrap confidence intervals. The figures in parentheses indicate the relative contribution (RC) of each
covariate, which add up to 100%. The Y-axis is the response (probability of LF occurrence) and the X-axis is the full range of covariate values
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occurrence) and explanatory variables, and control for
interactions among explanatory variables [19]. Furthermore,
combining predictions from more than one modelling algo-
rithm to form an ensemble has been found to produce
more precise estimates when used for ecological niche and
species distribution models [59]. In our work, we have
mapped the ecological niche of LF in Nigeria using an
ensemble of two algorithms (GBM and RF), which are
widely considered to produce accurate estimates of disease
distribution [46, 58]. GBM models combine fitting regres-
sion trees with boosting, by recursively partitioning data
into smaller binary splits, and splits repeatedly applied to
their own until the best split is chosen [46]. ‘Boosting’
allows fine tuning of the overall model and is performed in
a forward stepwise manner minimising residual variation in
the response [46]. The combination of regression trees and
boosting have been demonstrated to avoid over-fitting [45].
For RF models, a large number of trees are grown with the
root node of each new tree containing a different random
bootstrap prediction of the original data [58, 60]. For final
predictions, the average values of all bootstrapped predic-
tions are taken. It has been demonstrated that RF models

are efficient in tuning and improving the accuracy of
models [58].
Our work provides an insight into the regional distri-

bution of LF in Nigeria, and we find that the areas less
suitable for LF transmission correspond to mangrove
ecosystems and freshwater swamps in the southern parts
of the country, and also to short grass savanna in the
north-east [61]. We have identified environmental fac-
tors associated with the occurrence of LF in Nigeria,
with precipitation during the driest quarter contributing
the most in driving the probability of LF occurrence.
This finding shows that availability of temporal breeding
sites during the driest period is critical for the major LF
vectors, Anopheles spp. mosquitoes, to sustain the trans-
mission [1]. However, marginal effect plots also showed
that the probability of LF occurrence would decline
when precipitation exceeds 800 mm during the wettest
quarter of the year, which may suggest that although
rainfall is required for vector survival and breeding,
excessive rainfall may cause flooding and destruction of
breeding sites [16, 19]. Similarly, the probability of LF
occurrence started to decline at high land surface

Fig. 5 Median predicted environmental suitability of LF with the lower and upper bounds of the occurrence limits
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temperatures. This is consistent with experimental find-
ings on adult mosquito survival and larval development
[62–64], which suggest that both adults and larvae are
unable to thrive at high temperatures.
The probability of LF occurrence appeared to increase

with increasing elevation, and levels off at around 500
metres above sea level. This phenomenon has been
previously recorded [16, 19] and is thought to reflect the
negative effect of decreasing temperature with increasing
altitude on mosquito survival and the rate of parasite de-
velopment within the vector [65]. We found a negative
correlation between higher terrain slope and suitability
of environment to LF, perhaps because steeper inclina-
tions of terrain cause more rapid surface water runoff,
thus reducing the collection of water pockets which may
serve as breeding sites for mosquito vectors.
Finally, it seems that environmental suitability for LF

steadily declined with increasing distance from stable
lights. Stable light is considered for any pixels at a value
of > 0; however, values < 0 do not mean total pixel dark-
ness but rather that the intensity of light emitted does
not reach the threshold to be captured by the sensor.

Here we took stable lights as proxy for rural-urban divide
and economic activity, as urban areas are more likely to
emit night-light (and thus stable lights) than rural areas.
As the distance from stable night-light increased, the
probability for LF occurrence decreased. This drop may
be explained by the absence of stable lights in uninhabited
areas where the mosquito population is more likely to be
of low abundance, or in more rural settings where stable
lights are less likely to be present, as electricity is in short
supply in large parts of rural Nigeria. Although LF has
always been associated with more rural areas [66–68], a
recent study in Tanzania has highlighted the burden of LF
in urban settings [69], and corroborated in a study con-
ducted in an urban Nigerian setting [68]. Studies have also
illustrated that mosquitoes are more likely to aggregate
around human populations [70, 71]. Smith et al. [70]
reported that the distribution of the human population
influenced the aggregation of adult mosquitoes because
mosquitoes are more likely to gravitate towards the
human host. These authors demonstrated that mosquito
density was lowest in rural settings but higher in
peri-urban and urban settings.

Fig. 6 Median predicted binary map of environmental suitability for LF with the lower and upper bounds of the occurrence limits

Eneanya et al. Parasites & Vectors  (2018) 11:513 Page 9 of 13



In Nigeria, Anopheles spp. are the principal vectors for
LF [1, 72, 73], and our maps of environmental suitability
correspond well with known historical distribution
patterns of these mosquitoes in Nigeria [1]. This may be
due to the relatively stable nature of the peri-domestic
environmental factors driving the abundance and distri-
bution of Anopheles mosquitoes in the past 20 years
[16]. Previous studies have demonstrated that environ-
mental factors may affect mosquito species differently.
For instance, precipitation, which was a major driving
factor in our model, is thought to have a greater effect
on Anopheles spp. than it does on Culex spp. [16],
perhaps due to their different breeding habitats. Culex
mosquitoes are known to breed in areas with poor sanitary
and housing conditions [3], thus human factors may play a
more important role than precipitation. It will therefore be
interesting to test our model in geographical areas where
Culex spp. are the predominant vectors for LF. Further-
more, although LF transmission has been interrupted in the
north-central states of Plateau and Nasarawa [26], the mos-
quito vectors remain; thus there is a risk of recrudescence
due to within-country human migration [51] and a possible
re-introduction of the LF parasite.
Estimates of the human population living in areas

environmentally suited to LF transmission have steadily
increased over the years and varied significantly in previ-
ous studies [74–76]. This may be due to improved
diagnosis and surveillance as well as population growth.
In 1992, an estimated 113 million people lived in LF
at-risk areas in Africa [74] and by 2009, this figure was
estimated to be 212 million [76]. Nigeria was reported to
have the third highest national LF burden with an esti-
mated 114 million individuals living in at-risk areas in
2016 [15]. These estimates are usually calculated by
summing up the populations of each of district where
infection is detected, and may thus overestimate the ac-
tual LF burden since this approach does not account for
within-district spatial variations and is highly dependent
on the existence of field survey data in endemic areas. In
addition, field surveys are more likely to be carried out
where LF infection is suspected or in areas where
universities are located [77] and thus surveillance may in
some locations fail to capture the true infectious status
of vast areas of the country. Since 2000, Nigeria has seen
an increase in violence and militancy in the southern
Niger Delta regions [78], and terrorist activities in the
north-eastern parts of the country [78, 79]. These condi-
tions make it difficult to carry out field surveys and data
from these areas are patchy. In contrast, estimates of the
human population at risk derived by geostatistical and
machine learning-based models estimate the complete
distribution of infection and thus may produce more
accurate estimates of the true extent of infection and the
human populations at risk [19]. The additional prospect

Table 2 Estimated human population living in areas
environmentally suited to LF transmission by state in Nigeria in
2010
Zones
in Nigeria

Population in areas
environmentally suited
to LF transmission

Total
population

North-central
States

Benue 2,997,209 4,853,000

Kogi 1,299,057 3,838,000

Kwara 841,730 2,852,000

Nassarawa 2,007,317 2,151,000

Niger 4,342,252 4,538,000

Plateau 3,568,619 3,659,000

FCT 1,438,127 1,537,000

Subtotal 16,494,311 23,428,000

North-east States Adamawa 3,087,599 3,272,000

Bauchi 4,893,787 5,257,000

Borno 4,115,294 4,752,000

Gombe 2,755,106 2,773,000

Taraba 2,061,291 2,657,000

Yobe 2,228,136 2,652,000

Subtotal 19,141,213 21,363,000

North-west
States

Jigawa 4,701,572 5,054,000

Kaduna 5,903,960 6,927,000

Kano 9,625,825 10,765,000

Katsina 5,640,911 6,550,000

Kebbi 3,700,485 3,758,000

Sokoto 3,973,503 4,137,000

Zamfara 3,462,653 3,689,000

Subtotal 37,008,909 40,880,000

South-east
States

Abia 2,034,246 3,269,000

Anambra 4,314,081 4,819,000

Ebonyi 2,251,489 2,345,000

Enugu 2,778,413 3,717,000

Imo 4,190,754 4,402,000

Subtotal 15,568,983 18,552,000

South-south
States

Akwa
Ibom

1,073,592 4,461,000

Cross
River

2,351,796 3,472,000

Bayelsa 1,206,577 2,087,000

Rivers 1,630,531 5,759,000

Delta 2,025,928 4,747,000

Edo 2,910,697 3,804,000

Subtotal 11,199,121 24,330,000

South-west
States

Ekiti 2,357,067 2,516,000

Lagos 538,364 14,480,000

Ogun 1,281,100 3,953,000

Ondo 2,608,852 3,679,000

Osun 3,020,890 4,105,000

Oyo 1,496,952 6,532,000

Subtotal 11,303,129 35,265,000

Sum total 110,715,856 163,818,000
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of our model producing a threshold value that maxi-
mises the sum of specificity and sensitivity improves the
accuracy of our binary map (Fig. 6) [48, 80].
The human population living in areas classified as envir-

onmentally suitable for LF transmission in Nigeria using a
machine learning approach was previously estimated to be
143.97 million [19]. This figure was derived from modelling
only 27 presence-only data points from surveys conducted
between 1977 and 1990 and of varying diagnostic methods
and study designs, whereas our model was implemented
using 1192 presence-absence data points derived from stan-
dardised field surveys. Furthermore, niche models derived
by using presence-only data points are often spatially biased
as surveys are usually conducted in areas that are more
easily accessible, and are usually positive (presence) counts
[81]. This bias is usually remedied by selecting background
or pseudo-absence data points [82], that is assumed
absence data drawn at random for the region of interest, to
balance the presence-absence data point ratio. Since
presence points are usually concentrated in particular
geographical regions due to convenience of sampling, by
randomly selecting pseudo-absence data points analysis
may be biased as true presence points might be treated as
‘absence’, and thus leading to inaccurate model predictions
[81]. The geographical spread and the amount of presence-
absence data used in the present study, together with the
standardised methods for field surveys and data collection,
implies that our models provide accurate population
estimates of the number of individuals living in areas
environmentally suited to LF transmission.

Conclusions
The data used in this analysis represent a unique resource
and provide the most comprehensive database for LF distri-
bution in Nigeria. As the national LF control programme
moves towards elimination, the methods and results
presented in this study will inform surveillance activities
and help optimise resource allocation for disease control.
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