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SUMMARY 

 

Repeated cycles of infection-associated lower airway inflammation drive the pathogenesis of 

persistent wheezing disease in children. In this study, the occurrence of acute respiratory tract 

illnesses (ARIs) and the nasopharyngeal microbiome (NPM) were characterized in 244 infants 

through their first five years of life. Through this analysis, we demonstrate that >80% of 

infectious events involve viral pathogens, but are accompanied by a shift in the NPM towards 

dominance by a small range of pathogenic bacterial genera. Unexpectedly, this change in NPM 

frequently precedes the detection of viral pathogens and acute symptoms. Colonisation of 

illness-associated bacteria in conjunction with early allergic sensitization is associated with 

persistent wheeze in school-aged children, which is the hallmark of the asthma phenotype. In 

contrast, in non-sensitized children presence of these bacterial genera is associated with 

“transient wheeze” that resolves after age three. Thus, to complement early allergic 

sensitization, monitoring NPM composition may enable early detection and intervention in 

high-risk children.  
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INTRODUCTION 

 

Despite advances in modern medicine, acute respiratory tract illnesses (ARIs) continue to be a 

global health concern. They are a major cause of morbidity and mortality, especially in infants 

and young children whose immune systems have not yet matured (Ferkol and Schraufnagel, 

2014; Zar and Ferkol, 2014), and are the most common reason for antibiotic use in children 

(Australian Commission on Safety and Quality in Health Care, 2017). The upper airway is a 

reservoir for microbial communities including viruses, bacteria and fungi, and these have 

implications for respiratory health and disease. However, current research into the aetiology of 

ARIs focuses primarily on viruses, most notably respiratory syncytial virus (RSV) and human 

rhinoviruses (RV). The bacterial microbiome is increasingly recognised as playing an 

important role in the susceptibility and severity of ARIs, as well as non-communicable 

respiratory diseases such as asthma (de Steenhuijsen Piters et al., 2015; Durack et al., 2016; 

Man et al., 2017; Vissers et al., 2014). Infancy is a critical time when microbial colonization 

may influence an individual’s future respiratory health or disease; indeed, epidemiological data 

show that repeated ARIs during early childhood are a major risk factor for wheeze and asthma 

that persist into adulthood (Holt and Sly, 2012). 

 

In recent years, we and others have described the nasopharyngeal microbiome (NPM) in early 

life (from birth to one or two years of age) (Biesbroek et al., 2014; Bisgaard et al., 2007; 

Bogaert et al., 2011; Bosch et al., 2017; Teo et al., 2015; Tsai et al., 2015). These independent 

studies in different human populations have reported strikingly similar findings. Firstly, the 

NPM appears to be simple in structure, with distinct profiles dominated by a single bacterial 

operational taxonomic unit (OTU) or genus. A Staphylococcus-dominated profile can be 

observed in early infancy (from one week) but its prevalence decreases sharply over the first 

year, to be replaced by Corynebacterium, Alloiococcus (Dolosigranulum) or Moraxella-

dominated profiles, with transient incursions of Streptococcus or Haemophilus-dominated 

profiles during ARIs. Secondly, NPM composition influences both microbiota stability and 

ARI risk and severity. One study of 60 infants from Netherlands in the first two years of life 

reported a Moraxella-dominated or mixed Corynebacterium/Dolosigranulum profile at 1.5 

months of age was associated with high NPM stability and low frequency of parent reported 

ARIs in the subsequent period (Biesbroek et al., 2014). Our study of 234 infants from Australia 

in the first year of life also found that Moraxella-dominated and Alloiococcus-dominated 

profiles were more stable than others, but a Moraxella-dominated NPM at two months of age 

was associated with earlier onset of first ARI (Teo et al., 2015). There were also common 

environmental correlates of the NPM which differed slightly across studies but included mode 

of delivery, infant feeding, season, crowding or exposure to other children, recent antibiotic 

use, and prior infections. Many of these studies, however, were limited to samples collected 

either during illness or during periods of health, and none have yet elucidated the dynamics of 

the NPM over the entire pre-school period. 

 

Understanding patterns of airway microbial colonization and its association with ARIs and 

subsequent wheeze phenotypes is an important step towards the potential manipulation of the 

microbiome in treating or preventing acute or chronic respiratory disease. In this study, we 

performed a comprehensive characterization of the largest longitudinal collection of 

nasopharyngeal samples reported to date – over 3,000 samples from 244 children collected 

during periods of respiratory health and acute illness over the first five years of life, as part of 

the prospective Childhood Asthma Study (CAS) (Kusel et al., 2008; Kusel et al., 2006; Kusel 

et al., 2007; Kusel et al., 2012; Teo et al., 2015). We have previously reported an association 
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between viral-associated lower respiratory infections (LRIs) in infancy, especially those 

accompanied by fever, and the development of persistent wheeze and asthma in later childhood 

at five and ten years of age in this cohort, particularly for infants who developed allergic 

sensitization by age two (Kusel et al., 2007; Kusel et al., 2012). In addition, we recently 

reported patterns of bacterial colonization in samples collected during the first year of life, and 

found that specific NPM profiles were associated with ARI symptom severity, independent of 

the effect of common respiratory viruses (Teo et al., 2015). Here, we address several major 

research gaps: (i) we examine the relationships and longitudinal dynamics of NPM colonization 

within children, in health and during ARI episodes, across the first five years of life; (ii) we 

investigate changes in the association of ARI symptoms with specific NPM taxa over the 

preschool years; (iii) we address whether the appearance of viral pathogens in the NPM is a 

harbinger of change in local bacterial populations, or vice versa; and (iv) we investigate the 

relationship between NPM colonization, early allergic sensitization and future persistent 

wheeze at five years of age.  

 

 

 

RESULTS 

 

We characterized the bacterial microbiome of 3,014 nasopharyngeal samples from 244 infants 

in their first five years of life, using 16S rRNA V4 region amplicon sequencing (STAR 

Methods).  

 

Composition of upper airway microbiota in the first five years of life 

Across all samples, the dominant bacterial genera were Moraxella (40.1%), Streptococcus 

(13.3%), Corynebacterium (12.1%), Alloiococcus (11.1%), Haemophilus (8.6%), and 

Staphylococcus (4.2%). These made up 89% of all reads, consistent with previously reported 

results in this cohort for the first year of life (Teo et al., 2015) (Figure 1A, S1A). Each of the 

six major genera was comprised of multiple operational taxonomic units (OTUs), although the 

majority were extremely rare. OTU distributions within Moraxella, Alloiococcus and 

Corynebacterium were less diverse, with ≤5 OTUs making up ≥97% of all reads from each 

respective genus at any time period (Figure S1B). OTU distributions within Streptococcus, 

Haemophilus, and Staphylococcus were more diverse, although still dominated by one or two 

OTUs (Figure S1B). The phylogenetic relationships between OTUs are indicated by the tree 

in Figure 1A, and details of their distribution and predicted species associations are discussed 

in Supplementary Text, Figure S2 and Table S1. 

 

The distribution of the relative abundances of common OTUs across samples was highly 

structured (Figure 1A). We used hierarchical clustering to assign each sample to one of 15 

microbiome profile groups (MPGs) (Figure 1). Most MPGs were dominated by one OTU, 

which was used to label each MPG (Figure 1, Table S2). The exceptions were two ‘mixed’ 

MPGs. ‘Mixed1’ MPG contains samples (n=327) in which the common OTUs were all at low 

abundance, and the vast majority of mixed1 samples (97%) were not dominated by any OTU; 

the rest were mostly ARI samples dominated by genera that likely represent known respiratory 

pathogens (Mycoplasma, Bordatella, Neisseria, Pseudomonas, Prevotella). ‘Mixed2’ MPG 

(n=51) represents a heterogeneous cluster with no distinct profile. The distribution of MPGs 

across ages is shown in Figure 1B.  
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Within-sample (alpha) diversity of the NPM increased with age in both healthy and ARI 

samples, with a noticeable increase after two years of age (GEE linear regression of Shannon’s 

diversity index vs. age, adjusted for symptom status and gender: p = 1.1x10-12 after two years; 

Figure 2A). The increasing diversity after two years of age was due to both increasing number 

and increasing equitability (evenness) of the OTUs (Figure S3A-B), and this trend was 

observed within all MPGs (Figure S3C).  

 

Upper airway bacteria and respiratory infection 

Consistent with our previously reported observations from the first year of life (Teo et al., 

2015), ARI was positively associated with MPGs dominated by Haemophilus (OR 4.6, p = 

1.9x10-12), Streptococcus (OR 3.9, p = 1.7x10-17) or Moraxella (OR 1.3, p = 1.8x10-4) (Table 

S2). Within these MPGs, the relative abundance of the dominant OTU increased, and the alpha 

diversity decreased, with symptom severity (comparing healthy, to URI, to LRI; Figure 2B, 

Table S3). Thus overgrowth of these taxa accompanies spread of infection to the lower 

airways, although the direction of causation is not resolvable here.  

 

At the OTU level, the relative abundances of 236 OTUs (present in >10% of samples) were 

significantly different between ARI and healthy samples (absolute difference >1.5-fold and 

false-discovery rate (FDR) adjusted p-value <0.05). However, these associations were age-

dependent and appeared to shift following the increase in within-sample diversity observed 

from two years of age. Comparing the time periods before year two and on or after the second 

birthday, a total of 310 OTUs were found to be significantly associated with ARI in at least 

one interval (absolute difference >1.5-fold and FDR adjusted p-value <0.025; Figure S4A). 

The majority of Moraxella, Haemophilus and Streptococcus OTUs were consistently positively 

associated with ARI in both time periods. Staphylococcus, Corynebacterium and Alloiococcus 

OTUs were negatively associated with ARI in the first 2 years, but these associations waned 

after 2 years, particularly for Corynebacterium and Alloiococcus (Figure S4A). Adjusting for 

the most common ARI-associated OTU, Moraxella 4398454 (Figure S4B), resulted in little 

change to these associations, suggesting that Moraxella 4398454 and other OTUs contribute 

independently to ARI risk. Interestingly, we found two Streptococcus OTUs that were 

negatively associated with ARI (OTUs 4365744 and 509773, which show closest match to 

species gordonnii and thermophilus / salivarius / vestibularis, respectively; Table S1, Figure 

S2A). These were positively correlated with one other (sparCC correlation 0.09, p = 0.001), 

but negatively correlated with Streptococcus OTU 1059655 (sparCC correlation -0.09 and -0.1 

respectively, p =0.001), which has closest match to pneumoniae / pseudopneumoniae. The set 

of five MPGs dominated by ARI-associated Moraxella, Streptoccocus or Haemophilus OTUs 

are collectively termed here “illness-associated MPGs” (Table S2). Amongst the rare OTUs, 

eight including from genera Nitriliruptor and Bacilllus were consistently health-associated and 

often co-occurred together (at median relative abundance 9%) in samples belonging to the 

Staphylococcus MPG, whilst a further eight OTUs including from genera Porphyromonas, 

Candidatus Aquiluna, Clavibacter, Mycobacterium, Granulicatella and Fusobacterium were 

consistently ARI-associated but generally of low abundance across all MPGs (Figure S4C-D).  

 

To more precisely estimate how these associations change with age, we performed time varying 

analysis for eight characteristic OTUs using smoothing splines ANOVA (STAR Methods). 

The results showed that the strength of association of Corynebacterium, Alloiococus and 

Staphylococcus with healthy samples was greatest in the first 1-2 years; interestingly the 
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association waned towards the null by three years of age for Corynebacterium and four years 

of age for Staphylococcus, but Alloiococcus changed direction and was significantly associated 

with ARI in the interval 2.8–3.9 years (mean difference 1.8-fold, p = 0.01) (Figure 3A). 

Alloiococcus otitidis in the ear canal has been implicated in otitis media (OM) (Harimaya et 

al., 2006; Tano et al., 2008), along with S. pneumoniae and H. influenzae (Ngo et al., 2016). In 

this cohort, 11% of ARI episodes co-occurred with OM. Streptococcus OTU 1059655 

abundance in the NPM during ARI was positively associated with concurrent OM from 18 

months (mean difference 2.4-fold, p=0.01), but Alloiococcus and Haemophilus showed no 

significant associations with OM. The Alloiococcus–illness association is further addressed 

below.  

   

Co-occurrence of bacteria and viruses in the upper airways and their association with 

respiratory illness 

We calculated pairwise correlation networks between OTUs separately for samples collected 

before two years of age and on or after the second birthday; values for the eight most common 

OTUs are shown in Figure 4A. Illness-associated OTUs of Moraxella, Haemophilus, and 

Streptococcus formed a group that were all positively correlated with one another in both time 

periods, and negatively correlated with the health-associated Streptococcus OTU 509773 and 

Staphylococcus (Figure 4A). Corynebacterium and Alloiococcus were strongly correlated with 

one another in both periods (SparCC correlation=0.68, p = 0.001). Surprisingly, the 

relationship between these OTUs and those in the illness-associated group (Figure 4A) was 

complex and changed over time, becoming significantly more positively correlated with age 

(Figure 4B). Corynebacterium and Alloiococcus were positively correlated with Moraxella 

throughout, with correlation strength increasing significantly over time (Figure 4A; Fisher’s r 

to Z transformation comparing Moraxella–Corynebacterium and Moraxella–Alloiococcus 

correlations before and after 2 years: p = 9 x 10-14 and p = 7 x 10-16 respectively). 

Corynebacterium and Alloiococcus were negatively correlated with the illness-associated 

Haemophilus and Streptococcus OTUs in early years, but became positively correlated 

(Streptococcus) or uncorrelated (Haemophilus) in later samples (Figure 4A-B). We 

hypothesised the increasing co-occurrence with Moraxella might explain the increasing 

association of Alloiococcus with ARI symptoms in later years. Indeed, adjusting for the 

abundance of Moraxella OTU 4398454 resulted in attenuation of the positive association of 

Alloiococcus with ARI after two years, but not the negative association with ARI prior to two 

years; whereas adjusting for the abundance of Alloiococcus has no effect on the association of 

Moraxella with ARI (Figure 3B). We interpret this to suggest that the apparent negative 

association between simple Alloiococcus-dominated communities before age two is likely due 

to the absence of pathogen-dominated communities, rather than any actual protective effect of 

Alloiococcus. The negative association disappears in later years when bacterial diversity is 

greater and the presence of Alloiococcus is less likely to signal the absence of Moraxella, which 

itself is consistently positively associated with ARI. Staphylococcus was positively correlated 

with the health-associated Streptococcus 509773 (SparCC correlation=0.22, p = 0.001) but 

negatively correlated with the illness-associated group as well as Corynebacterium and 

Alloiococcus.  

 

We tested for common human respiratory viruses in all samples from the first three years of 

life; viruses were frequently detected in ARI samples (83% and 81% amongst URI and LRI, 

respectively). Interestingly, the same viruses were also detected amongst 34% of healthy 

samples, which had been collected after at least one month without ARI symptoms. The 

presence of virus was significantly associated with illness-associated MPGs (compared to 
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health-associated MPGs) irrespective of symptom status (OR 2.4, p = 1.1x10-6 in healthy 

samples; OR 1.9, p = 1.0x10-3 in ARI samples using Fisher’s exact test; Figure S5), suggesting 

either mutualism, or synergistic effects on symptomatology, between these specific bacterial 

communities and common respiratory viruses. However, Streptococcus, Moraxella and 

Haemophilus MPGs were also independently associated with ARI symptoms amongst samples 

in which no respiratory viruses were detected, or when adjusting for the presence of respiratory 

viruses or of the specific viruses, RSV or RV (Figure 5A-B). This suggests that either these 

bacteria contribute directly to illness, in the absence of known respiratory viral triggers, which 

is not unexpected given we predict they are dominated by known respiratory pathogens S. 

pneumoniae, M. catarrhalis and H. influenzae; or there is another unknown trigger (e.g. a novel 

virus) that promotes the overgrowth of these bacteria.  

 

Stability of the upper airway microbiota within individuals 

The NPM is a complex ecosystem that is inherently dynamic as it is continually being shaped 

by multiple factors, including responses to environmental perturbation and disease status of the 

host. We therefore examined the effects of external factors, including ARI and antibiotic 

exposure, on intra-individual NPM dynamics. 

 

We first considered consecutive healthy samples from each individual, excluding sample pairs 

collected more than one year apart. Overall, the probability of the next consecutive healthy 

sample sharing the same (non-mixed) MPG as the current sample (i.e. a stable transition) was 

greater than expected by chance (31% vs 18% for samples collected <6 months apart, binomial 

test p = 2.3 x 10-7; 23% versus 18% for samples collected 6-12 months apart, p = 0.011), 

indicating some degree of stability of the microbial communities within individuals over time. 

This stable transition probability was highest for the Moraxella (45%) and Alloiococcus-

Corynebacterium (32%) MPGs, which were the most common states for healthy NPM samples 

(Figure 4C). Where a sample was assigned to the mixed1 MPG, the probability of the next 

sample also being designated mixed1 was high (30%). However, the composition of such 

samples can vary widely, and Bray-Curtis distances between consecutive mixed1 MPG 

samples were close to the distances between distinct MPGs (Figure S6), indicating that the 

majority of consecutive pairs assigned to mixed1 MPG represent significant shifts in NPM 

composition rather than stable transitions. The probability of a stable transition to the next time 

point was significantly lower at 2 months of age than at 6, 12 18 or 24-month time points 

(Figure 4D; 20% vs 31%; Fisher’s exact test p = 0.03), consistent with the observation of a 

distinct NPM profile at 2 months (Figure 1B). Transition stability declined after 2 years, and 

an increasing proportion of transitions involved consecutive samples assigned to the mixed1 

MPG (Figure 4D), consistent with the observed increase in diversity after age 2 (Figure 2A). 

The frequency of persistence of the Staphylococcus MPG dropped after 6 months and increased 

again in the fourth year, consistent with prior observations that maternally-transferred S. aureus 

can be detected in infants, but stable colonisation is not established until the pre-school years 

(Brown et al., 2014; Jimenez-Truque et al., 2012; Schaumburg et al., 2014). Taken together, 

these results show the NPM is highly variable in early childhood. Stability of health-associated 

MPGs was significantly disrupted by the occurrence of LRI during the sampling interval (p = 

0.00042), however antibiotic use did not significantly alter the probability of stable transitions 

(p =0.72; Table S4). 

 

Association of upper airway microbiota with lower respiratory illness and subsequent 

wheeze 
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LRI was significantly positively associated with Moraxella, Streptococcus and Haemophilus 

MPGs, and negatively associated with Corynebacterium, Alloiococcus-Corynebacterium and 

Staphylococcus MPGs, especially amongst samples collected up to two years of age (Table 

S5). This is consistent with our previously reported findings from the first year of life (Teo et 

al., 2015); but here we had sufficient numbers of pre- and post-LRI asymptomatic samples to 

also investigate whether LRIs were associated with prior colonization by the illness-associated 

Moraxella, Streptococcus and Haemophilus MPGs, and how long these MPGs persisted after 

an incident LRI. Healthy samples collected 1-2 weeks prior to an LRI were not enriched for 

viruses (~30% frequency of virus detection, vs 34% across all healthy samples and ~80% 

during LRI), but were significantly enriched for the Moraxella MPG (GEE logistic regression 

of assignment to Moraxella MPG on time to LRI, 1-2 weeks compared to all other healthy 

samples and adjusted for time post-LRI, gender, age, season, recent antibiotics: OR 6.2 [95% 

CI, 1.4 – 28], p = 0.017; further adjusted for viruses: OR 5.9 [1.3 – 26], p = 0.019) (Figure 

5C), as well as Moraxella abundance (GEE linear regression of log Moraxella OTU 

abundance, p = 0.025; further adjusted for viruses: p = 0.04) (STAR Methods). There were no 

significant differences in proportions of Streptococcus or Haemophilus MPGs nor 

Streptococcus or Haemophilus abundance, however these MPGs were rare (~7%) in healthy 

samples. We were unable to assess short-term changes in the NPM following LRI, as our 

criteria for healthy sample collection required the absence of ARI symptoms for at least 4 

weeks; however, the Moraxella MPG exhibited declining frequency with increasing time post-

LRI, and remained enriched until six months post-LRI (Figure 5C). Interestingly, there was 

no evidence of a difference in MPG distribution before or after URI (Figure S7). 

 

We have previously shown in this cohort that the risk of chronic wheeze at five years of age is 

significantly associated with the number of LRIs in the first year of life. This was especially 

the case for the number of febrile LRIs among children with allergic sensitization by age two 

(Kusel et al., 2007; Kusel et al., 2012; Teo et al., 2015). Here, we investigated whether presence 

of the illness-associated Moraxella, Streptococcus and Haemophilus MPGs during the first 

four years of life was predictive of LRI intensity during the same period, and/or wheeze at age 

five. For each child, we calculated the combined frequency of these MPGs amongst healthy 

NPM samples over different time periods (STAR Methods). Among children with early 

allergic sensitization, frequent ARI-associated MPGs (≥50% of healthy NPM samples) during 

the first two years of life was significantly positively associated with the number of LRIs 

experienced in the same period (Table 1). Importantly, among these early sensitized children, 

the frequency of illness-associated MPGs in the first two years of life was independently 

associated with chronic wheeze at five years of age (Figure 5D), even after adjusting for LRI 

frequency and type (Table 2). Notably, among non-sensitized children, the frequency of 

illness-associated MPGs was not associated with chronic wheeze at five years but was 

significantly positively associated with the transient wheeze phenotype (defined as any wheeze 

in the first three years of life but no wheeze in the fifth year) (Figure 5D, Table 2). Also note 

that LRI frequency in years 3 to 4 was associated with wheeze at age five regardless of 

sensitization status, which we attribute to recent respiratory inflammation being more directly 

linked to current wheeze (Table 2). There were no significant associations between 

sensitization status and LRI severity, i.e. the raw frequency or relative proportion of severe 

(febrile or wheezy) LRIs (Kruskal test, p > 0.05 for all timepoints). 
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DISCUSSION 

 

This study presents a comprehensive, longitudinal characterization of the upper airway 

microbiome in a cohort followed from birth to five years of age, and its association with 

episodes of ARI, allergic sensitization and subsequent wheezing phenotypes. We found the 

NPM from birth to five years of age remains dominated by six common genera (Figure 1) and 

has yet to converge to an adult-like NPM, which is characterised by much greater alpha 

diversity, lack of Moraxella and Corynebacterium, and much lower biomass (Stearns et al., 

2015). This is in contrast to the oropharynx (Stearns et al., 2015), or the gut microbiome, which 

matures to an adult-like state by three years of age (Yatsunenko et al., 2012). The NPM is 

comprised of robust internally-homogeneous MPGs, consistent with existing literature 

pointing to discrete microbial compositions in the nasopharynx during early childhood 

(Biesbroek et al., 2014; Bisgaard et al., 2007; Bogaert et al., 2011; Bosch et al., 2017; Teo et 

al., 2015; Tsai et al., 2015). Consistent with previous observations (Biesbroek et al., 2014), we 

found a constant level of NPM diversity over the first two years of life, followed by a period 

of increasing diversity – in terms of both number and equitability of OTUs – for at least three 

years (Figures 2A, S3). This increasing diversity coincided with a change in the relationship 

between the NPM and respiratory disease, whereby negative associations between MPGs and 

ARI became attenuated (as in the case of Corynebacterium) or changed direction to become 

positively associated with ARI (Alloiococcus) (Figure 3A). In the latter case, this appears to 

be driven by an increasing alliance with Moraxella (Figures 3B, 4), which itself was ARI-

associated. Moraxella establishes biofilms that enhance the co-survival of pathogens such as 

Streptococcus pneumoniae and Haemophilus influenzae (Pearson et al., 2006; Perez et al., 

2014). It is not yet clear whether the negative associations of certain taxa with ARI denote 

active protective effects, or simply the lack of pathogenic drivers of symptoms; however there 

is some evidence from murine models that pre-exposure to Corynebacterium can provide some 

resistance against RSV infection (Kanmani et al., 2017).  

 

Our longitudinal data show the NPM can be highly dynamic within individuals. However there 

was some stability even between samples collected 6 or 12 months apart (Figure 4C-D), 

especially for the MPGs dominated by Moraxella or Alloiococcus and Corynebacterium, which 

appear to be stable colonizers of the nasopharynx of children. Notably, stability of the 

Alloiococcus–Corynebacterium MPG was significantly reduced by LRI episodes, which are 

typically associated with an influx and/or overgrowth of Moraxella, Streptococcus or 

Haemophilus that can presumably destabilise the bacterial community. This is consistent with 

a recent study that reported reduced stability of the NPM during infancy among children who 

experienced more than two ARIs in the first year of life (Bosch et al., 2017). Ultimately, more 

comprehensive description of natural NPM dynamics, including detailed assessment of 

resilience to exogenous agents, will require higher resolution sampling (weekly or daily) and 

would also benefit from larger cohorts.  

 

Throughout the first five years of life, NPM samples collected during ARIs showed a greater 

abundance of, and were more commonly dominated by, specific Streptococcus, Moraxella and 

Haemophilus OTUs (Figures 1, 3; Table S2), consistent with expectations regarding common 

respiratory pathogens S. pneumoniae, M. catarrhalis and H. influenzae to which these OTU 

sequences were most closely related (Table S1). The relative abundances of these OTUs were 

significantly correlated with one another (Figure 4A); we hypothesise this is related to the 

protection provided by the Moraxella biofilm (Tan et al., 2007), which can release outer 
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membrane surface proteins that protect other bacteria from complement-dependent killing. 

Other groups have previously reported reduced upper airway microbial diversity during or prior 

to ARIs (Frank et al., 2010; Santee et al., 2016; Yi et al., 2014); our data supports this, both in 

terms of enrichment of a small number of community profiles (MPGs) during ARI, and a higher 

abundance of ARI-associated OTUs and lower alpha diversity within these MPGs compared 

to that observed in the absence of ARI symptoms (Figures 2B, S3; Tables S2, S3). We 

therefore propose that overgrowth of these particular taxa may tip the balance towards 

respiratory symptomatology, either by direct action as invasive pathogens or via indirect 

dysregulation of the local immunological milieu. Such dysregulation may increase the 

likelihood of a primary viral infection of the nasopharyngeal mucosa, or subsequent spread of 

infection to the lower airways, as suggested in our earlier study on this cohort during infancy 

(Teo et al., 2015). This is further supported by the increased prevalence of Moraxella in 

asymptomatic samples collected 1-2 weeks before an LRI (Figure 5C). Most LRIs (>80%) had 

a known respiratory virus present, and this is likely the trigger for acute symptoms. However, 

the lack of enrichment for viruses, but enrichment for Moraxella, in the 1-2 weeks preceding 

LRI suggests that having the bacteria present when the virus is encountered increases the 

likelihood of severe respiratory illness. While our study had insufficient power to detect similar 

effects for Streptococcus and Haemophilus, due to low colonization frequency in our cohort, 

there is a large body of evidence accumulating around specific mechanisms of interaction 

between human respiratory viruses (mainly RV, RSV and influenza) and Streptococcus 

pneumoniae, Haemophilus influenzae and Moraxella catarrhalis; including both viral 

promotion of bacterial colonization and outgrowth (for which we see evidence in the form of 

increased abundance of pathogenic genera in ARIs), and bacterial promotion of viral receptor 

expression on host cells (Bosch et al., 2017; Brealey et al., 2015). While the present study 

cannot address specific mechanisms, it provides evidence for interactions in both directions, 

and demonstrates that bacterial colonization influences subsequent ARI throughout infancy 

and early childhood.  

Finally, we found a significant relationship between asymptomatic colonization of the upper 

airways by certain MPGs in the first two years of life and later wheezing phenotypes, 

conditional on early allergic sensitization (Figure 5D, Table 2). This builds on the results 

described in our previous study looking only at the first year of life, where we found that early-

life colonisation with Streptococcus was a risk factor for later childhood wheeze that is 

exacerbated by early allergic sensitization (Teo et al., 2015). In the present study, we identified 

that in early sensitized children, asymptomatic colonization of the upper airways by all illness-

associated MPGs (Streptococcus, Haemophilus and Moraxella) increased risk of chronic 

wheeze at five years of age; while in children who had not developed early allergic 

sensitization, it was associated only with transient early wheeze, which resolved by the fourth 

year of life. Furthermore, in early sensitized children, the frequency of asymptomatic 

colonization with illness-associated MPGs was also associated with recurrence of LRIs, 

particularly those accompanied by fever, throughout the first 4 years of life (Table 1). Notably 

however, whilst frequency of LRI is associated with five-year chronic wheeze (Kusel et al., 

2007; Teo et al., 2015), the effect of bacterial colonization on five-year wheeze remained after 

adjusting for LRI (Table 2). It has been suggested that the pathogenic bacterial species S. 

pneumoniae, H. influenzae and M. catarrhalis induce local immunoinflammatory responses in 

the upper airways of neonates, which in the case of M. catarrhalis and H. influenzae include 

upregulation of a mix of Th1/Th2/Th17 cytokines (Folsgaard et al., 2013). However, how these 

immune responses differ between sensitized and non-sensitized children is incompletely 

understood. We have suggested, based on previous studies in this and other asthma-risk cohorts 

(Holt and Sly, 2012), that the increased severity of these episodes in children with allergic 

sensitization is due in part to interactions between infection-associated Type 1 IFN-mediated 
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and allergy-associated Th2-mediated inflammatory pathways which compromise their capacity 

to efficiently clear respiratory pathogens, thus worsening ensuing airway inflammation and 

resultant immunopathology. Conversely, host immune defense mechanisms in those who are 

non-sensitized are not compromised by these interactions, and they accordingly experience 

only transient illnesses. This effect may not be confined to bacterial microbiota – others have 

described causal relationships and synergistic interaction between allergic sensitization and 

viral infection, particularly rhinovirus (Jackson et al., 2012; Rubner et al., 2017). 

 

In conclusion, this study suggests that the microbiota of the upper airways is an important 

determinant of the susceptibility, frequency and severity of ARI in early childhood. In 

conjunction with early allergic sensitization, the dominating presence of illness-associated 

MPGs (Streptococcus, Haemophilus, and Moraxella) in the upper airways is a significant risk 

factor for persistent wheeze in school-age children, which is the hallmark of the asthma 

phenotype. This observation is of potential importance in relation to early detection and 

prevention of asthma. In particular, sensitized children in this cohort already showed elevated 

levels of allergen-specific IgE production from six months of age (Holt et al., 2010), suggesting 

a high-risk group could be identified in infancy. Airway microbiome monitoring and 

potentially modification might be beneficial for this high-risk group, in reducing the risk of 

lower respiratory infection, the repeated occurrence of which is closely linked to asthma 

development.  
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FIGURES 

Figure 1: Definition and distribution of microbiome profile groups (MPGs) (See also 

Figures S1, S2 and Table S2). 

(A) Heatmap shows relative abundances of 21 common operational taxonomic units (OTUs); 

aggregated values for other OTUs from the common genera; and aggregated values for all other 

rare OTUs within each sample. Tree to the left shows phylogenetic relationships between the 

sequenced V4 region of the 21 common OTU sequences.  Dendrogram at the top indicates 

complete linkage clustering of Bray-Curtis distances between samples; coloured bars indicate 

assignment to MPGs based on this clustering. Barplot to the right shows the total abundance 

of each OTU or group of OTUs within the whole dataset; OTUs that dominate a common MPG 

are coloured to match that MPG. (B) Distribution of MPGs within each time period, shown 

separately for healthy and ARI (acute respiratory illness) samples.  

 

Figure 2: Within-sample diversity is associated with age and acute respiratory illness 

symptoms (see also Figure S3 and Table S3). 

(A) Shannon diversity index (SDI) per sample over time, coloured by symptom status as 

indicated (URI=upper respiratory illness; LRI=lower respiratory illness). Solid lines, loess 

smoothed curves; dashed lines, 95% confidence intervals. (B) SDI distributions within 

common MPGs. *=FDR adjusted p-value <0.05 in GEE linear regression of SDI against 

healthy vs. LRI, adjusted for age at collection (as in Table S3). (C) Relative abundances of the 

dominant OTU within each MPG (as specified in Table S1). 

 

Figure 3: Time varying associations of bacterial taxa with acute respiratory illness 

symptoms (see also Figure S4). 

(A) Log2 fold change (solid lines) and 95% confidence intervals (dashed lines) comparing 

symptomatic vs. healthy samples, estimated using smoothing splines ANOVA. Non-significant 

segments are coloured grey. (B) (same as A) but including further adjustment for Moraxella 

OTU 4398454 abundance (dark green curve); and vice-versa (dark red curve).  

 

Figure 4: Microbial interaction networks and stability (see also Figure S6 and Table S4). 

(A) Pairwise correlations among eight characteristic OTUs, calculated separately for samples 

collected up to and including two years of age (lower triangles), and samples collected after 

two years of age (upper triangles). Cell colours indicate correlation coefficients; non-

significant correlations (p>0.001) are coloured white. *Bonferroni-corrected p<0.05/28, testing 

for change in correlation before and after 2 years of age using Fisher’s z test. (B) Correlations 

between Alloiococcus or Corynebacterium and Moraxella or Streptococcus or Haemophilus 

OTUs (bolded black box in A) over half-yearly time periods (Filled circles, significant 

correlations, p=0.001; empty circles, non-significant correlations, p>0.001). (C) Transitions 

between microbiome profile groups (MPGs) for consecutive pairs of healthy samples collected 

from the same individuals 6-12 months apart. OTU key: Haemophilus A=240051, B=4469627, 

C=956702; Moraxellaceae A= 1057260, B=854899; Corynebacterium A=4474764, 

B=1049188, C=4376867. (D) Proportion of healthy samples collected at each time point, for 

which the same MPG was detected in the next healthy sample from each individual. Colours 

indicate the specific MPGs involved, coloured as in panel C.  

 

Figure 5: NPM associations with symptoms of acute respiratory illness (ARI) and wheeze 

(see also Figures S5, S7). 
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(A) Frequency of symptoms (URI=upper respiratory illness, LRI=lower respiratory illness) 

amongst samples stratified by the presence or absence (+/-) of known respiratory viruses and 

presence or absence (+/-) of bacterial communities assigned to Moraxella, Streptococcus or 

Haemophilus microbiome profile groups (MPGs). (B) Association of ARI symptoms with 

specific MPGs, stratified by the presence or absence (+/-) of common respiratory viruses 

(RV=rhinovirus, RSV=respiratory syncitial virus, Vir=any virus). Odds ratios (OR) and 95% 

confidence intervals were estimated using generalized estimating equations (GEE) with 

unstructured correlation and robust standard errors, adjusting for age, gender and season. (C) 

Proportion of healthy samples assigned to Moraxella, Streptococcus or Haemophilus MPGs, 

stratified by time relative to a recorded LRI episode. Standard error bars are given for the 

Moraxella MPG. We regressed assignment to Moraxella MPG against time to LRI (separate 

models for each time category versus all other healthy samples) (*p<0.05). (D) Frequency of 

pre-school wheeze phenotypes (y-axis), stratified by frequency of Moraxella, Streptococcus or 

Haemophilus MPGs amongst healthy samples collected from 6 months to 2 years of age (x-

axis, in tertiles). Data are shown separately for 73 children who were allergic sensitized by 2 

years of age, and 64 who were not. 
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TABLES 

 

Table 1: Associations between proportion of illness-associated MPGs in healthy samples 

and LRI frequency. We modelled the proportion of illness-associated Moraxella, 

Haemophilus and Streptococcus MPGs present amongst healthy samples (≥50% vs. <50%) on 

LRI or febrile LRI frequency using logistic regression. Separate models were fit for different 

time periods, and for children with and without early allergic sensitization. Values indicate 

odds ratios (95% CI) and p-values for the association between LRI count and illness-associated 

MPG frequency ≥50% (collected during the period specified in the column header, i.e. 6m–2y 

or 2.5y–4y). 

 

Outcome 

Early allergic sensitization All other children 

MPGs 6m–2y 

(N=74) 

MPGs 2.5y–4y 

(N=83) 

MPGs 6m–2y 

(N=65) 

MPGs 2.5y–4y 

(N=65) 

# LRI at 

ages 0 to 1 

1.6 (1-2.6), 

p = 0.043 

1.1 (0.83-1.5), 

p = 0.49 

1.5 (0.95-2.3), 

p = 0.081 

1.1 (0.79-1.5), 

p = 0.57 

# LRI at 

ages 1 to 2 

1.5 (1-2.2), 

p = 0.036 

1.1 (0.81-1.5), 

p = 0.6 

1.4 (0.91-2.1), 

p = 0.12 

1.2 (0.81-1.7), 

p = 0.38 

# LRI at 

ages 2 to 4 

1.4 (1-1.9), 

p = 0.032 

1.1 (0.79-1.4), 

p = 0.72 

0.99 (0.79-1.2), 

p = 0.93 

1.1 (0.87-1.3), 

p = 0.47 

# Febrile 

LRI at ages 

0 to 1 

2.5 (1-6.3), 

p = 0.049 

1.2 (0.63-2.4), 

p = 0.53 

2.2 (0.77-6.1), 

p = 0.14 

0.84 (0.36-2), 

p = 0.69 

# Febrile 

LRI at ages 

1 to 2 

1.8 (0.85-3.6), 

p = 0.13 

0.59 (0.3-1.2), 

p = 0.13 

2.4 (0.65-8.9), 

p = 0.19 

1.8 (0.71-4.6), 

p = 0.21 

# Febrile 

LRI at ages 

2 to 4 

1.8 (0.88-3.9), 

p = 0.11 

0.99 (0.5-2), 

p = 0.98 

1.6 (0.74-3.5), 

p = 0.23 

1.4 (0.76-2.5), 

p = 0.3 
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Table 2: Prediction of subsequent wheeze phenotypes based on proportion of illness-

associated MPGs amongst healthy samples during the first two years of life. Logistic 

regression of wheeze phenotype (Y) against tertiles of the proportion of illness-associated 

Moraxella, Haemophilus and Streptococcus MPGs (MPG), adjusting for illness frequency (X). 

Separate models were fit for children with and without early allergic sensitization by 2 years 

of age. 

 

Data 

subset 

Model (Y ~ MPG + X) Predictor = MPG Predictor = X 

Y X OR (95% CI)  p OR (95% CI)  p 

Early 

sensitized 

children 

(N = 73) 

Wheeze 

at 5y 

(N = 26) 

None 2.5 (1.3-4.6)  0.0054 NA  

# LRI (yr 1) 2.2 (1.1-4.2) 0.018 1.5 (0.94-2.5) 0.085 

# LRI (yr 2) 2.3 (1.2-4.3) 0.013 1.3 (0.89-1.8)  0.18 

# LRI (yr 3-4) 2 (0.94-4.2) 0.073 2.4 (1.5-3.9)  0.00059 

# febrile LRI (yr 1) 2.1 (1.1-4.1) 0.026 2.9 (1.1-7.5)  0.032 

Transient 

wheeze  

(N = 19) 

None 0.5 (0.23-1.1) 0.074 NA  

# LRI (yr 1) 0.44 (0.19-0.99) 0.047 1.4 (0.8-2.3) 0.26 

# LRI (yr 2) 0.41 (0.17-0.96) 0.039 1.3 (0.93-1.9) 0.12 

# LRI (yr 3-4) 0.54 (0.25-1.2),  0.12 0.86 (0.6-1.2) 0.39 

# febrile LRI (yr 1) 0.48 (0.22-1.1) 0.068 1.3 (0.45-3.5) 0.67 

All other 

children 

(N = 64) 

Wheeze 
at 5y  

(N = 15) 

None 0.94 (0.5-1.8) 0.86 NA  

# LRI (yr 1) 0.93 (0.49-1.8) 0.83 1.1 (0.73-1.5) 0.74 

# LRI (yr 2) 0.91 (0.46-1.8) 0.78 1.5 (0.99-2.2) 0.059 

# LRI (yr 3-4) 1.2 (0.49-3) 0.66 3.8 (1.8-8.3) 0.00062 

# febrile LRI (yr 1) 0.94 (0.49-1.8) 0.84 1.2 (0.42-3.2) 0.76 

Transient 

wheeze 

(N = 22) 

None 2.2 (1.2-4.1) 0.014 NA  

# LRI (yr 1) 2.2 (1.1-4.2) 0.022 1.5 (1-2.2)  0.027 

# LRI (yr 2) 2.2 (1.2-4.1) 0.014 1.1 (0.75-1.6) 0.62 

# LRI (yr 3-4) 2.3 (1.2-4.6) 0.014 0.53 (0.3-0.92) 0.024 

# febrile LRI (yr 1) 2.2 (1.1-4.3) 0.018 3.4 (1.2-9.5) 0.018 
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STAR METHODS 

CONTACT FOR REAGENT AND RESOURCE SHARING  

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact Michael Inouye (minouye@baker.edu.au). 

EXPERIMENTAL MODEL AND SUBJECT DETAILS  

Sample and data collection 

This study is part of the Childhood Asthma Study (CAS) – a prospective community-based 

cohort of 244 children (57% male) at high risk of allergic sensitization (at least one parent with 

a doctor diagnosed history of asthma, hay fever or eczema) who were followed prenatally until 

five years of age with the goal of identifying risk factors for allergic diseases, as previously 

described (Kusel et al., 2006; Kusel et al., 2007; Kusel et al., 2012; Teo et al., 2015). Children 

were recruited between 1996 and 1998, before the introduction of the pneumococcal vaccine 

in Western Australia in 2005. Healthy nasopharyngeal (NP) samples were collected at planned 

half-yearly visits (first sample from about 2 months of age, subsequently at 6 months, 1 year, 

and so on), in the absence of any symptoms of acute respiratory illness (ARI) for at least 4 

weeks. In addition, parents were to contact a study clinician at the onset of any ARI symptoms, 

at which point a study nurse visited the family within 48 hours to collect a NP sample from the 

child and interview the parents on the symptoms and medications used in relation to the illness. 

ARIs were classified as a lower respiratory illness (LRI) if accompanied by wheeze or rattly 

chest; or an upper respiratory illness (URI) otherwise. A total of 1943 healthy samples, 2579 

URI samples, and 1056 LRI NP samples were collected and divided into aliquots that were 

cryofrozen for later analysis. Healthy samples that did not fulfil the criterion of >4 weeks after 

an illness episode were excluded. Parents kept a daily record of any medication used, from 

which antibiotic exposure information was extracted, and completed yearly questionnaires 

during face-to-face interviews. Blood samples were collected from each child at 6 months, 1, 

2, 3, 4 and 5 years of age, and positive sensitization status at each timepoint was defined as 

serum IgE levels > 0.35 kU/L to house dust mite, cat epithelium and dander, peanut, foodmix, 

couch grass, rye grass, mould mix, or infant phadiatop (details of which were described in (Holt 

et al., 2010)). All models included sex as a covariate except for the regression of diversity with 

age, however the gender term was not significant (p=0.5). 

 

The study design is a large prospective birth cohort, the gold standard for observational 

research. There were no interventions thus randomization and blinding were not relevant. 

Individuals were representative of the local population (Perth, Australia). Replication of this 

study is not currently feasible as this would require a separate prospective birth cohort with 

similar environment, sampling, sequencing, clinical follow-up, etc. Future studies are 

anticipated to address this. 

 

Approval for the study was obtained from the ethics committee of King Edward Memorial and 

Princess Margaret Hospitals in Western Australia. Fully informed written consent was obtained 

from the parents for the use of stored samples for research projects.  

METHOD DETAILS  

Bacterial 16S profiling 



 23 

One aliquot from each of 1331 healthy, 996 URI and 1055 LRI samples were prepared for 

bacterial 16S rRNA amplicon sequencing. Total DNA was extracted using a method combining 

homogenization and chemical lysis of cells. Extractions were performed in biosafety cabinets 

that were UV-sterilised, including all plastic-ware, for 30 min prior to the procedure. The 

samples were thawed from -80°C storage, transferred into 1.5 mL sterile screw-capped tubes 

and briefly micro-centrifuged. The saline storage buffer was removed and pellets were 

resuspended in 400 μL of lysis solution supplied with the Wizard SV Genomic DNA System 

(Promega, Victoria, Australia). Samples were mixed vigorously by pipetting and then 

transferred into a labelled Lysing Matrix B tube (MP Biomedicals, New South Wales, 

Australia). Suspensions were homogenized using a FastPrep-24 homogenizer for 40 s at 6.5 

m/s. Following micro-centrifugation, homogenates were transferred into a 1.5 mL screw-

capped tube. A further 200 μL of lysis solution was added into each lysing matrix tube and 

vortexed to wash off any residual homogenate, then transferred to the respective homogenate 

tube to retain the original lysis volume. Homogenates were then treated with nuclei lysis 

buffer/RNase A and DNA extraction was carried out using the Wizard SV Genomic DNA 

System as per manufacturer’s instructions. Purified DNA was eluted in 100 μL of pre-warmed 

sterile low 1 X TE (Fisher Biotec, WA, Australia), aliquoted and stored at -80°C. 

 

Amplicons were prepared for MiSeq sequencing using primers (prepared by Integrated DNA 

Technologies, Iowa, USA) spanning the V4 region of the 16S rRNA gene and containing 

barcoded reverse primers as published by Caporaso et al. (Caporaso et al., 2012). The forward 

universal primer included the 5´ Illumina adapter sequence, forward primer pad, linker and the 

515F 16S rRNA sequence: 5´-

AATGATACGGCGACCACCGAGATCTACACTATGGTAATTGTGTGCCAGC 

MGCCGCGGTAA-3´. The reverse primer included the 3´ Illumina adapter sequence, a 12-

mer Golay barcode (denoted as N), reverse primer pad, linker and the 806R 16S rRNA 

sequence: 5´-

CAAGCAGAAGACGGCATACGAGATNNNNNNNNNNNNAGTCAGTCAGCCGGACT

ACHVGGGTWTCTAAT-3´. All laboratory equipment used was wiped with DNA Away 

(MBP, Mexico) before conducting each PCR procedure. Master mixes were prepared in a UV-

treated PCR chamber before they were dispensed into 96-well plates using a Multiprobe II 

liquid handling system (Perkin Elmer, Victoria, Australia), followed by addition of samples 

and controls using the robot. Amplification of each sample was performed in quadruplicate to 

obtain enough amplicon for sequencing. To each plate, a positive control (gDNA from S. 

enterica strain LT2, a bacterium not normally associated with the respiratory system 

(ATCC#700720D-5, USA)) and water and TE negative controls (obtained from each extraction 

procedure) were included and assessed for amplification by agarose gel electrophoresis. All 

controls were as expected: S. enterica controls were positive and the water and TE negative 

controls were negative. Positive control samples were not analysed further, while the negative 

controls were prepared for sequencing in the same way as samples.  

 

Due to the high throughput nature of this study, we did not quantify and normalize sample 

DNA that was added into each PCR reaction, rather a fixed volume (4 µL) of DNA template 

was used per well. Amplification was conducted on a GeneAmp 9700 PCR System (Perkin 

Elmer) using the following conditions: an initial 94°C denaturation step for 2 min, followed by 

30 cycles of 94°C denaturation for 30 s, 58°C annealing for 30 s and 72°C extension for 1 min.  

 

Quadruplicate sample amplicons were combined into a single well on the PCR reaction plate, 

then transferred to a fresh round-bottom polystyrene plate where they were purified using 

Agencourt AMPure XP beads as directed by the manufacturer, with slight modifications 
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(Beckman Coulter, USA). Purified amplicons were eluted in 25 μL sterile low 1 X TE buffer 

(Fisher Biotec). Quantitation of amplicon was performed using the Quant-iT PicoGreen 

dsDNA quantitation kit (Life Technologies, Victoria, Australia) and fluorescence was 

determined on a Wallac Victor3 Multilabel counter (Perkin Elmer). PCR samples were 

equalized to 2 nM concentration (a neat aliquot was used where a sample fell below this 

concentration) and pools of 48, 60 or 96 barcoded samples were generated and sent for 

sequencing.  

 

Primer adaptors were removed from library pools using a 0.8x ratio of Agencourt AMPure XP 

beads (Beckman Coulter, USA). Library quantitation was determined by the high sensitivity 

Qubit kit (Life Technologies, USA) whilst library quality and average size distribution was 

assessed by the Bioanalyser (Agilent Technologies, USA) high sensitivity kit. Library pools 

were diluted to 2nM followed by NaOH denaturation as per manufacter’s instructions (Illumina 

Inc., USA). Sequencing primers read 1: 5’- 

TATGGTAATTGTGTGCCAGCMGCCGCGGTAA -3’, read 2: 5’-

AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3’ and index: 5’-

ATTAGAWACCCBDGTAGTCCGGCTGACTGACT-3’ (Sigma, Australia) were spiked into 

the MiSeq Cartridge at a final concentration of 0.5µM. Denatured libraries were loaded at 

6.5pM with a 5% PhiX spike for diversity and sequencing control, onto a v2 300 cycle cartridge 

for sequencing on the Illumina MiSeq.  

 

Paired end reads were merged using Flash version 1.2.7 (Magoc and Salzberg, 2011) with read 

length 151 base pairs (bp) and expected fragment length 253 bp. The merged reads were quality 

filtered as follows: ≤3 low-quality bp (Phred quality score < 3) allowed before truncating a 

read, ≥189 consecutive high-quality bp, sequences with any N characters were discarded. 

Reads were clustered into operational taxonomic units (OTUs) using the closed reference OTU 

picking method in QIIME v1.7 using the Greengenes 99% reference database version 13_05. 

Mean of 1% of reads per sample had no match to the Greengenes database and were excluded 

from further analysis (except for alpha diversity calculations, as described below). Negative 

control samples had a median of >1500 (taxonomy-assigned) reads (interquartile rage 900 – 

2300), while NP samples had a median of >147K reads (IQR 45K – 230K). We therefore 

removed 142 NP samples with <3000 taxonomy-assigned reads. A total of 3014 samples were 

left for further analysis, including 1018 healthy samples (median 5 samples per child, IQR 3-

6), 964 samples from upper respiratory illnesses (URIs; median 4 samples per child, IQR 2-6), 

and 1,032 samples from lower respiratory illnesses (LRIs; median 4 samples per child, IQR 2-

7). 

 

Because entries in the Greengenes database may be identical in the V4 subregion that we 

sequenced, it is possible for identical read sequences to be assigned to different Greengenes 

OTUs. We therefore merged counts for OTUs that were identical in the sequenced V4 region 

(identified by extracting the sequence between the forward and reverse primer sequences), as 

shown in Figure S2. Read counts were corrected for OTU-specific copy number using Picrust 

v1.0 (Langille et al., 2013) using the pre-computed copy number estimates for Greengenes 

OTUs version 13_05; and relative abundances were calculated by normalising to the total 

taxonomy-assigned reads for each sample. Phylogenetic analyses were conducted by BLAST 

(Camacho et al., 2009) searching the NCBI 16S rRNA database using representative V4 region 

sequences from the common taxa (Figure S1B) to identify similar sequences. For each genus, 

the sequences were aligned using Muscle (Edgar 2004) and a maximum-likelihood tree 

constructed using PhyML (Guindon et al., 2010) and visualized in Seaview (Galtier et al., 
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1996) (Figure S2); these were used to identify the closest known species for each common 

OTU (Table S2).  

 

Virus detection 

A second aliquot from 736 healthy, 583 URI and 789 LRI samples from the first three years 

(72%, 76% and 60% of all healthy, URI and LRI samples, respectively for which we had 16S 

profiles), were prepared for viral detection via reverse transcriptase polymerase chain reactions 

(PCR).  Target organisms were: human rhinoviruses (RV); other picornaviruses (coxsackie, 

echo and enteroviruses); coronaviruses 229E and OC43; respiratory syncytial virus (RSV); 

influenza A and B; parainfluenzaviruses 1-3; adenoviruses and human metapneumovirus 

(HMPV). Primers, probes and PCR assay conditions have been previously described (Bochkov 

et al., 2014; Kusel et al., 2006; Kusel et al., 2007).  

 

QUANTIFICATION AND STATISTICAL ANALYSIS  

Clustering into microbiome profile groups  

Samples were assigned to microbiome profile groups (MPGs) based on hierarchical clustering 

of OTU relative abundances, using Bray-Curtis dissimilarity as the distance metric and 

complete linkage (implemented in the R function hclust). These analyses included all common 

OTUs (defined as mean relative abundance >0.1%, present in >20% of samples, and 

dominating (>50%) at least one sample); aggregated counts of other OTUs from each of the 

major genera (Moraxella, Streptococcus, Haemophilus, Alloiococcus, Corynebacterium, 

Staphylococcus) and family Moraxellaceae; and a final group consisting of aggregated counts 

of all other OTUs (labelled ‘rare OTUs’; see rows in Figure 1). The number of clusters (i.e. 

unique MPGs) was chosen to maximise the median silhouette value. MPGs were named based 

on the dominant genus or OTU, as indicated in Table S1. Alpha (within-sample) diversity was 

assessed using Shannon’s diversity index measure, which takes into account both number and 

relative abundance of the OTUs.  

 

Association of bacterial OTUs with symptoms of acute respiratory illness 

We normalized the copy-number-corrected OTU read counts using cumulative sum scaling 

(CSS) (Paulson et al., 2013). Briefly, for each sample, the OTU counts were divided by the 

cumulative sum of counts up to the smallest percentile for which sample-specific count 

distributions were largely invariant (98.9th percentile for our data). We then tested for 

differential abundance in ARI vs healthy samples, for each of 1,090 OTUs that were present in 

≥10% of samples. A zero inflated Gaussian mixture model was fitted to the log transformed 

CSS-normalized OTU counts, separately for samples before and after 2 years of age (before 2 

years: inclusive of samples at 2-year timepoint; after 2 years: from 2.5-year timepoint), using 

the R package metagenomeSeq (Paulson et al., 2013). We summarized the results for OTUs 

with an absolute fold change of >1.5 and FDR adjusted p-value <0.025 in either age strata. We 

picked eight representative OTUs to more precisely investigate how the associations changed 

over time, and modelled the longitudinal structure of the data using smoothing splines ANOVA 

with 100 permutations to assess significance (Paulson et al., 2017). All models for the ARI vs. 

healthy association were adjusted for age, season, gender, and any antibiotics within the last 4 

weeks.  

 

Correlations between bacterial OTUs 
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We inferred correlation networks among the 1090 common OTUs present in >10% of samples 

using FastSpar (Watts et al., 2018), an efficient C++ implementation of the SparCC algorithm, 

which was designed to deal specifically with compositional data and produces more reliable 

and robust correlation estimates compared to Pearson or Spearman correlation especially in the 

case of low diversity samples (Friedman and Alm, 2012). SparCC uses a log ratio 

transformation and calculates correlations between OTUs in an iterative manner, under the 

assumption of a sparse network. Statistical significance of the correlation was assessed using 

1000 bootstrap samples with exact p-value calculations based on the permp function in R 

package statmod (Phipson and Smyth, 2010). Correlation networks were generated across all 

samples, as well as separately for samples before and after 2 years of age, samples within each 

half yearly time periods, and samples with low abundance (<1%) of Moraxella OTU. We 

assessed differences in correlation before and after two years using the Fisher’s r-to-Z 

transformation (cocor R package). 

 

Within-individual dynamics 

We first explored microbiome changes within each child in terms of transitions from a healthy 

sample to the next healthy sample half a year or a year later. Transitions which resulted in a 

MPG change indicated an abrupt shift in the major OTU (termed “unstable transitions”); stable 

otherwise. We also assessed the transitions using the Bray-Curtis dissimilarity calculated on 

the CSS-transformed OTU count matrix using the vegan R package (Oksanen et al., 2017), 

which represented subtle changes. Transition stability and distance were assessed for the 

effects of intervening ARI, LRI and antibiotics using GEE regression (logistic or linear where 

appropriate), adjusting for the age of first sample and difference in ages between samples. 

 

We then investigated whether we could detect changes in the NPM prior to ARI symptoms, 

and how long these changes persisted after the illness. We grouped the healthy samples 

according to how soon after illness occurred (pre-illness: 1-2 weeks, 2-3 week, 3-4 weeks or 

>4 weeks) and how long after the last illness episode (post-illness: 1-2 months, 2-4 months, 4-

6 months, 6-12 months, or >12 months). We used GEE logistic or linear regression to model 

(i) assignment to specific illness-associated MPGs or (ii) log abundance of specific illness-

associated OTUs, against time to ARI/URI/LRI (separately for each pre-illness time category 

compared to all other healthy samples), and adjusted for time post-illness, gender, age, season, 

recent antibiotics, and any virus.  

 

Lastly, we examined per child, if the proportion of illness-associated Moraxella, Haemophilus 

and Streptococcus MPGs in their healthy asymptomatic samples over different time periods (6 

months to 2 years, and 2.5 years to 4 years) was associated with LRI frequency and subsequent 

wheeze phenotypes (wheeze at age 5 years or transient wheeze). Logistic regression was used 

to model (i) the proportion of illness-associated MPGs (as a binary: ≥50% versus <50%, 

excluding children with <2 healthy samples in each corresponding time period) against LRI 

and febrile LRI frequency in years 1, 2, 3 and 4, (ii) wheeze phenotypes against proportion of 

illness-associated MPGs (as quartiles), adjusting for LRI frequency. Separate models were fit 

for children with and without early allergic sensitization by 2 years of age. 

 

Statistical Methods 

All statistical analyses were performed using R (R Core Team, 2015) unless otherwise stated. 

Association analyses that involved multiple samples from the same subject were modelled 

using generalized estimating equations (GEE) with unstructured correlation and robust 
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standard errors, where possible. In the case of non-convergence due to insufficient sample size, 

the ordinary logistic regression was used. Potential confounders were included in the model. 

We used the Benjamini-Hochberg false discovery rate method (FDR) (Benjmini, 1995) or 

Bonferroni correction where multiple testing p-value adjustments were needed, as stated. All 

boxplots shown use the Tukey format, in which the bottom and top of the box represents the 

lower and upper quartiles respectively and the ends of whiskers represents the lowest/highest 

datum still within 1.5 interquartile range of the lower/upper quartile. 

 

Definition of variables used in statistical analyses 

• Wheeze at age 5: Presence of wheeze in the last 12 months recorded in the 5 year 

questionnaire. 

• Transient wheeze: Any wheeze in the first three years, but no wheeze in the 5th year. 

• Early allergic sensitization: Any allergen-specific IgE levels > 0.35 kU/L by two years 

of age (at any of 6 month, 1 year or 2 years timepoints). 

• Season: According to month of collection: spring (September–November), summer 

(December–February), autumn (March–May) or winter (June–August).  

• Recent antibiotics: Any record of antibiotics intake within the last 4 weeks prior to 

sample collection. 

 

OTU and Microbiome Profile Group (MPG) distributions and associated predicted species 

 

The Moraxella genus was overwhelmingly represented by OTU 4398454 (M. catarrhalis) 

throughout all five years (Figure S1B). The associated Moraxella MPG, which was dominated 

by this OTU, was of relatively low frequency in the 2-month healthy samples (13%), but 

increased sharply thereafter, stabilizing at an average of 39% from one year of age. In ARI 

samples, the Moraxella MPG followed a similar trend, increasing from 29% at two months of 

age to ~43% in the later time periods (Figure 1B). In addition, 5% of all samples fell into one 

of two MPGs dominated by OTUs classified to the Moraxellaceae family (either OTU 1057260 

or 854899); NCBI blastn searches of these sequences matched closely to Moraxella lincolnii 

(Figure S2). This species had been previously isolated from the human respiratory tract (ages 

6 months – adult) (Vandamme et al., 1993), and was also observed in a 16S analysis of NP 

samples of children aged 6 months to 2 years in a Dutch population (Biesbroek et al., 2014). 

In our data, these MPGs were negatively associated with ARI (OR 0.7, p = 0.016; Table S2).  

 

The Streptococcus genus was mostly represented by OTU 1059655 (67% of all Streptococcus 

reads; orange in Figures 1A, S1), whose representative sequence was closest to the 

Streptococcus pneumoniae–pseudopneumoniae complex (Figure S2, Table S1). The presence 

of this OTU in ARI samples in the first year was correlated with detectable IgG1 antibodies to 

S. pneumoniae pneumococcal surface protein A1, A2, or C at one year of age as previously 

reported (Teo et al., 2015). Samples dominated by this OTU clustered into a single MPG we 

labelled “Streptococcus” (orange in Figure 1B), which was rarely observed in two-month 

samples but common thereafter (from 6 months: mean of 5% and 14% in healthy and ARI 

samples, respectively). The next most frequently observed Streptococcus OTU was 1004451 

(15%; green in Figure S1); its V4 sequence is distinguished from 1059655 by a common base 

substitution (tree in Figure S2), and is close to many commensal Streptococcus species (Table 

S1). Samples assigned to the “other Streptococcus” MPG were often dominated by this OTU 

(Figure 1A).  

 

https://en.wikipedia.org/wiki/Interquartile_range
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The Haemophilus genus was represented by two distinct MPGs dominated by OTU 240051 or 

956702 (Figure 1A), both of which show best matches with H. influenzae and H. haemolyticus 

sequences (which are not distinguishable at the V4 region; see Figure S2). As previously 

reported, the presence of these OTUs in ARI samples in the first year was correlated with 

detectable IgG1/IgG4 antibodies to H. influenzae P4/P6 surface proteins at one year of age 

(Teo et al., 2015). These MPGs were infrequent in the healthy samples (2%), but comprised 

11% of ARI samples (Figure 1B). The rare Haemophilus OTUs were also close to H. 

influenzae and H. haemolyticus sequences, with the exception of 4404220, 4053636 and 

3605478 which were distant from these but clustered with H. parainfluenzae and H. 

parahaemolyticus (Figure S2) and were occasionally detected in healthy samples (Figure S1). 

 

The Corynebacterium genus was primarily represented by OTU 4474764, which best matched 

the commensal orophangeal bacterium C. propinquum (Figure S2). A distantly related OTU 

4376867 (matching the nasal coloniser C. accolens) was detected in infancy (16% of 

Corynebacterium reads in the first 6 months) but very rarely thereafter (Figure S1B; all 17 

samples assigned to the associated MPG were collected during the first year of life, 15 (88%) 

of which in the first 6 months, Figure 1B). Samples dominated (>29%) by OTU 4474764 

(closest to C. propinquum and C. pseudodiphtheriticum) clustered into a single MPG we 

labelled “Corynebacterium”, which was frequent in healthy samples in the first 6 months (10-

12%), but declined to <7% thereafter (Figure 1B). Corynebacterium OTU 4474764 frequently 

co-occurred with Alloiococcus (overwhelmingly represented by the A. otidis / Dolosigranulum 

pigrum OTU 886735), in samples belonging to the Alloiococcus-Corynebacterium MPG 

(median 43% Alloiococcus OTU 886735 and 32% Corynebacterium OTU 4474764).  

 

The Staphylococcus genus was mostly represented by OTU 929976, although there were also 

numerous low-abundance Staphylococcus OTUs that co-occurred with this one (Figure 1A). 

The Staphylococcus MPG (median 43% OTU 929976 and 9% other Staphylococcus OTUs) 

was most common at 2 months (36% and 28% in healthy and ARI samples, respectively) but 

declined to low levels subsequently in ARI samples (0-11%, Figure 1B). Staphylococcus 

species are not well resolved at the 16S V4 region; OTU 929976 is identical to known 

sequences from S. aureus but also other species (Figure S2).  

 

DATA AND SOFTWARE AVAILABILITY  

Sequencing data for this study, cleaned for human reads, has been deposited in the NCBI 

GenBank (accession SRP056779).  


