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Abstract 

 

Objectives 

 

Extrapolation of time-to-event data can be a critical component of cost-effectiveness analysis. This 

paper contrasts the value of external data on treatment effects as a selection aid in model fitting to the 

clinical data or for the direct extrapolation of survival.  

 

Methods 

 

We assume the existence of external summary data on both treatment and control and consider two 

scenarios: availability of external individual patient data (IPD) on the control only; and an absence of 

external IPD. We describe how the summary data can be used to extrapolate survival or to assess the 

plausibility of extrapolations of the clinical data. We assess the merit of either approach using a 

comparison of Cemented and Cementless Total Hip Replacement as a case study. Merit is judged by 

comparing Incremental Net Benefit (INB) obtained in scenarios with incomplete IPD with that derived 

from modelling external IPD on both treatment and control.  

 

Results 

 

Measures of fit with the external summary data did not identify survival model specifications which 

best estimated INB. Addition of external IPD for the control only did not improve estimates of INB. 

Extrapolation of survival using the external summary data comparing treatment and control improved 

estimates of INB. 

Conclusions 
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Our case study indicates that summary data comparing treatment and control are more valuable than 

IPD limited to the control when extrapolating event rates for cost-effectiveness analysis. These data 

are best exploited in direct extrapolation of event rates, rather than as an aid to select extrapolations 

based on the clinical data. 
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Introduction 

 

Accurate quantification of incremental costs and benefits of new medical technologies often requires 

the extrapolation of event data beyond the time horizon of clinical trials.(1,2) Generally, this is 

undertaken by parameterisation of the hazard rate for the event of interest with respect to time, 

allowing extrapolation and prediction of event rates beyond the point of maximum trial follow-up 

(hereon ‘tmax’).(3,4) Selection of the appropriate parameterisation of time is often based on a limited 

number of standard specifications ranked by measures of model fit such as Akaike’s Information 

Criteria (AIC) and Bayesian Information Criteria (BIC).(5) Such measures give little confidence that 

extrapolations are appropriate and there is mounting evidence that inappropriate extrapolations can 

lead to incorrect inference on cost-effectiveness.(6-9) 

 

In this context it is important to consider any additional data that might inform event rates beyond tmax. 

Frequently, long term survival data are available in disease registries, administrative databases or 

mortality statistics. A number of publications have addressed the incorporation of such data to inform 

survival extrapolations.(10) Joint modelling of trial data and individual patient data (IPD) from the 

external source is typically undertaken using a Bayesian framework under assumptions of 

proportional hazards, proportional cause specific hazards or additive hazards. Whilst this approach 

can ensure plausible extrapolations, the external IPD are rarely available on both treatment and 

control. In the literature to date the treatment effect is estimated from the trial data (11) or informed 

entirely from an external source such as a hazard ratio derived from meta-analysis.(12-14) There is 

considerable evidence which demonstrates the sensitivity of cost-effectiveness inference to 

assumptions on relative survival after extrapolation of data.(9,15,16) 

 

In this paper we address the incorporation of external data identifying both treatment and control to 

improve estimation of relative survival, within a likelihood based framework. Such data may be limited 

to summary statistics from case reports and observational studies, or derived from expert opinion.(17) 

Recent methodological guidance from the National Institute of Health and Care Excellence (NICE) 
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Decision Support Unit recommended utilisation of external data to guide model selection on the 

clinical data or to directly extrapolate survival, but did not elaborate on methods.(18) We illustrate how 

such data can be used to guide model selection, or to directly extrapolate survival beyond tmax. We 

consider scenarios where external data are available in summary form only and where, in addition, 

IPD are available for the control. We compare these scenarios with a scenario in which IPD is 

available on treatment and control which we consider to provide the ‘best estimates’ of survival. We 

contrast inference derived from modelling survival in these scenarios with the optimal situation in 

which IPD are available for both treatment and control in a case study. We conclude with 

recommendations on the utilization of external data to extrapolate survival. 

Methods 

 

Overview 

 

We use a previously published economic evaluation of alternative technologies for Total Hip 

Replacement (THR) to illustrate the role of external data.(19) Here, IPD on treatment and control, 

taken from the National Joint Registry of England, Wales, Northern Ireland (NJR), constitutes the 

clinical or ‘trial’ data.(20) The external IPD are drawn from a large hospital administrative database, 

Hospital Episode Statistics (HES).(21) The external data are used to simulate a scenario in which 

external IPD are available for the control only, and to generate summary survival statistics for 

treatment and control for six subgroups – men and women aged 60, 70 and 80. We describe how 

these data might be used to guide survival model selection, or to estimate event rates beyond tmax. 

We apply the best fitting parameterisations of event data to a probabilistic Markov model to generate 

Incremental Net Benefit (INB) and Cost-Effectiveness Acceptability Curves (CEACs) for Cementless 

THR compared to Cemented THR. We evaluate how well alternative methods to extrapolate event 

data perform by comparing the resulting estimates of INB and CEACs with those derived from 

modelling the external IPD for both treatment and control. 
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Application of external data 

 

External data in summary form only 

 

We assume summary survival statistics from the external data are available at time t1 < tmax and t2 > 

tmax by population subgroup c. We assume no published Kaplan-Meier survival curves are available; 

methods are available to reconstruct life table data from Kaplan-Meier curves.(22) These data can be 

used in two ways: as a selection aid to evaluate survival models fitted to the clinical data; or to directly 

estimate survival beyond tmax. Use of these data as a selection aid requires criteria for ranking 

models. In the absence of external IPD we cannot calculate the Brier score (23) or Harrell’s c index 

(24). Instead, we apply measures based on the sum of the squared error between predicted and 

observed survival.(4) We calculate two measures of how well relative survival at t2 predicted by each 

model compares to the observed data. For each model, we calculate the difference in predicted 

survival between treatment and control (dpc) for each population subgroup c at time t2. We calculate 

the comparable difference (doc) in observed survival for each subgroup c at time t2 in the external 

data. We then calculate the mean square error of prediction (MSE) (25) as the sum of the squared 

difference between predicted (model) differences and observed differences in the external data 

across each subgroup c, and the mean absolute deviation (MAD) (26) as the sum of the absolute 

(positive) difference between predicted (model) differences and observed differences in the external 

data for each subgroup c. 

 

    MSE  = c(dpc – doc)2 

    MAD = c|dpc – doc| 

 

Alternatively, summary survival statistics from the external data can be used to directly estimate 

survival beyond tmax. In the absence of contrary evidence, we assume a constant hazard over time 

after t1 as recommended by others.(9,10) The failure probability Fcd over each of the j periods of 

length (
𝑡2−𝑡1

𝑗
) comprising the interval (t1,t2) for each subgroup c and therapy d can then be written, 
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Fcd = 1 − √𝑆2cd/𝑆1cd
𝑗

  

 

where S1cd and S2cd are the reported survival at t1 and t2 for subgroup c and therapy d respectively, 

and j is the number of time periods between t1 and t2.(27) j would typically be chosen by the analyst to 

match the time cycle of the model. The resulting probabilities for each subgroup c can be inserted 

directly into a Markov model to extrapolate survival beyond tmax. Or we can exploit the linear 

relationship between the log cumulative hazard and subgroup covariates in the exponential 

specification to estimate the failure probability for each subgroup via complementary log-log 

regression.(28) The latter approach allows estimation of the uncertainty in the failure probability which 

can be propagated through a probabilistic analysis via the cholesky decomposition of the covariance-

correlation matrix.  

 

External IPD available on control 

 

The second scenario assumes that IPD are available for the control therapy, in addition to summary 

statistics on treatment and control. We follow recommendations to model the combined clinical and 

external IPD.(14,29) We use a dummy variable to identify patients in the external IPD. Such an 

approach assumes that the shape of the hazard is the same across populations, and has been 

previously applied.(14) Differences between populations are assumed to have a proportional impact 

on the hazard, the log odds of the event or the acceleration of time dependent on model specification. 

 

Again, the summary data can be used in two ways. In order to use the summary data as a model 

selection aid we calculate MSE and MAD (as above). The summary data can also be utilised in 

conjunction with models fitted to the combined clinical data and external IPD to directly extrapolate 

survival with an assumption of proportional hazards for the period beyond t1. A hazard ratio (HR) can 

be estimated as, 
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HR = { ∑ ln𝑐 (𝑆2ct/𝑆1ct)/ ln(𝑆2cc/𝑆1cc)}/nc 

 

where 𝑆1ct and 𝑆2ct are the summary estimates of survival for the treatment subgroup c at time t1 and 

t2, respectively, 𝑆1cc and 𝑆2cc are the corresponding survival estimates for the control, and nc is the 

number of subgroups.(28) The mean HR assumes no interaction between treatment effect and 

subgroup. A crude estimate of the uncertainty around the HR can be derived from the standard 

deviation of the subgroup estimates of the HR. Where an interaction is indicated separate means can 

be calculated by subgroup. The hazard for the treatment group beyond tmax can then be derived as 

the product of the HR and the predicted hazard for the control.(11,28) Such an approach necessitates 

the choice of a proportional hazards model for the combined clinical and external IPD and can 

introduce bias.(30) 

 

Underlying assumptions 

 

Table 1 summarises the role of external data and the assumptions made in each scenario. In the first 

scenario only summary data are available beyond tmax. Either, one assumes the relationship between 

the hazard and time after tmax can be correctly specified from the clinical data only. Or, one assumes 

the form of the hazard (i.e. constant) and utilizes the external summary data to estimate it. In the 

second scenario external IPD for the control therapy are used to specify the relationship between the 

baseline hazard and survival time beyond tmax. Either, one assumes the treatment effect can be 

adequately specified from the clinical data only. Or, one assumes that hazards are proportional for 

events occurring after t1.  

 

Case study 
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We have published a cost-effectiveness analysis comparing Cemented, Cementless and Hybrid 

technology for THR in elderly people with Osteoarthritis.(19) The lifetime of each technology is a key 

consideration in evaluating cost-effectiveness since failure of the THR necessitates costly and 

invasive revision surgery. The analysis utilized a Markov model of THR built in Excel and 

parameterised from three large observational databases to quantify the impact of THR failure on costs 

and outcomes (Figure 1). Quality of life in each health state was estimated from data on THR 

collected for the Patient Reported Outcome Measures programme.(31) Clinical data on THR lifetime 

were taken from the NJR, a large clinical database for joint replacement.(20) External data on THR 

lifetime were drawn from HES, an administrative database used primarily for reimbursement of 

publicly funded secondary care in England.(20) Additional transition parameters, such as post-

operative mortality, were also estimated from HES.  

 

We made some simplifications to facilitate comparisons in this study. Firstly, we compare only 

Cemented and Cementless THR. Second, we ignore any differences in post-operative quality of life 

(QOL) or length of stay across THR technologies. Third, we make no distinctions according to the 

reason for THR failure. Fourth, for clarity and simplicity we report only the results for the youngest age 

groups for whom extrapolation of THR survival has the largest impact. Markov model parameters are 

reported in Table S12 in the supplementary material. 

  

For the purpose of this study the NJR constituted the clinical data on event rates (failure of THR). 

However, we exploited the linkage of data across the NJR and HES to identify THR failures in both 

datasets. We chose to limit the clinical data to the subset of linked NJR and HES records, and classify 

THR failure as the first recorded revision operation in either dataset. After exclusions for non-standard 

diagnoses or non-standard procedures the (linked) NJR data consisted of 76,587 Cemented THR with 

964 failures (1.3%), and 48,271 Cementless THR with 924 failures (1.9%) from 2003 to 2009. After 

exclusions, external (HES) data consisted of 268,757 Cemented THR with 6049 failures (2.3%), and 

91,993 Cementless THR with 2164 failures (2.4%) from 1997 to 2009. 
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Figure 2 provides Kaplan-Meier survival plots for men and women aged 55 to 65 with Cemented and 

Cementless THR derived from NJR data and from HES. Careful inspection reveals that hazards are 

not proportional across THR types, especially in men, as indicated by the narrowing or crossing of 

survival curves. The gradients of the curves fall initially to a minimum at around five years after 

surgery and then begin to rise, consistent with the classic ‘bath-tub’ or U-shaped  hazard. The U-

shape is evident from non-parametric estimates of the hazard function (supplementary material).  

Histograms of failures over time in the first year demonstrate elevated hazard rates in the first few 

weeks after surgery, particularly for Cementless THR. (This can also be seen in the Figure 2 as the 

sharp early fall in survival.)  

 

Specification of survival models 

 

‘Standard’ parameterisations of event data, available in many statistical software packages, include: 

Weibull, Lognormal, Exponential, Gompertz, Loglogistic and Generalized Gamma.(32) Each places 

restrictions on the shape of the hazard. For the Weibull and Gompertz specifications the hazard is 

either monotonically increasing or monotonically decreasing. The lognormal and Loglogistic 

specifications allow a hazard that increases initially and then decreases. Only the Generalized 

Gamma allows a hazard that decreases initially and then increases. In practice, these functions may 

be a poor fit with the observed hazard.(9) More flexible specifications are possible including three 

parameter variations of the Weibull,(33) the Generalized F,(16) which nests the Generalized Gamma  

and mixture models.(34) However, these specifications may require bespoke coding and may 

encounter problems with convergence. 

 

Two approaches which provide flexibility in modelling the hazard rate whilst remaining easy to 

implement in standard software packages are modelling the log cumulative hazard using restricted 

cubic splines,(35) and applying a piecewise constant specification.(36) The latter approach splits 

survival time into segments which allows the scale of the hazard to vary arbitrarily across segments. 

Typically piecewise segmentation is imposed on an exponential function which generates a constant 
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hazard on extrapolation. Replacing the exponential with a Weibull or Gompertz function allows 

flexibility over the observed time period and extrapolation of an increasing or decreasing hazard. 

 

We selected survival parameterisations from the five standard specifications (Weibull, Lognormal, 

Gompertz, Loglogistic and Generalized Gamma), and a restricted cubic spline model. In addition, 

when modelling the combined clinical and external data on treatment and control we included a 

piecewise segmented model. We included age and sex as covariates, and models were stratified by 

THR (allowing non-proportional hazards). External IPD were identified using a dummy variable. 

Interaction terms were included where they led to improvements in model fit. Stata code used in 

survival modelling is provided in the supplementary material. Selection across specifications was 

based on measures of internal fit and, where relevant, measures of fit with the external summary 

data. We tabulate survival at t1 and t2, along with 95% confidence intervals, and provide plots of 

observed survival and predicted survival curves from selected model specifications in the 

supplementary material, but do not base model selection on them. The plots confirm the challenges in 

interpreting such visual data without ambiguity.(3) Following the recommendation of Bagust and 

Beale (9) we excluded the first 65 days follow-up prior to fitting all survival functions due to the highly 

elevated failure rates in this period. Revisions in the first 65 days were modelled on uncensored data 

using logistic regression. 

 

Cost-effectiveness analysis 

 

Lifetime costs and quality adjusted life expectancy for men aged 60 and women aged 60 were 

estimated using the Markov model of THR (figure 1). The model was fully probabilistic and results are 

reported as the INB of Cementless THR compared to Cemented THR. To calculate INB the 

incremental health outcome, Q, is multiplied by the threshold willingness to pay value, , for a unit 

gain in health. After subtraction of incremental cost, C, a positive INB indicates the intervention is 

cost-effective:  
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INB = Q* – C 

 

A threshold of £20,000 per QALY, which is commonly applied in the UK, was chosen.(37) To capture 

uncertainty in parameters each parameter was specified as a random variable, and the probabilistic 

model was run 1,000 times with parameter values drawn from the specified distributions prior to each 

run.(38) As the majority of model parameters, including all of the parameters for event rates, were 

estimated from regression models, we used the Cholesky decomposition of the covariance-correlation 

matrices to parameterise uncertainty.(39) Reported INB values are mean values derived from 1,000 

model runs with 95% credible intervals determined from 2.5th percentile and 97.5th percentile of the 

distribution of INB values. In addition to reporting INB the model simulations were used to construct 

CEACs. These curves plot the proportion of simulations in which Cementless THR has a higher INB 

as the threshold, , is varied between zero and £50,000. 

 

Evaluation of the performance of alternative uses of external data 

 

The true survival curves for Cemented and Cementless THR are unknown. To estimate as accurately 

as possible we fit survival models to the complete clinical and external IPD on treatment and control, 

and apply these in the Markov model. The resulting INB and CEAC are considered the ‘best 

estimates’. We evaluate the performance of the alternative applications of external summary data 

(model selection and direct extrapolation) in the two scenarios in which external IPD are limited, by 

comparison of INB and the resulting inference on cost-effectiveness with the best estimates. We also 

consider how well, in comparison with the best estimates, the CEACs capture uncertainty. 

  

Results 
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Assessment criteria (AIC, BIC, MSE and MAD) for survival models and the resulting INB with 95% 

credible intervals are reported in Table 2 for both subgroups and for each scenario with respect to 

external IPD availability. 

 

‘Best estimates’ of survival 

 

The flexible restricted cubic spline and piecewise constant survival models fitted to the combined 

clinical and external IPD on both treatment and control provide consistent results - cementless THR is 

not cost-effective in either subgroup. The CEACs and the 95% credible intervals demonstrate 

considerable uncertainty in this finding at a threshold of £20,000 per QALY for men aged 60 

(supplementary material). Measures of internal fit indicate a much better fit to the data for the flexible 

models compared to any of the ‘standard’ models. The flexible models better capture the ‘U’ shaped 

hazard revealed by the additional external IPD, as can be seen in the hazard plots (supplementary 

material). The best fitting ‘standard’ models, Weibull and Gompertz, generate very different INB and 

opposing inference on cost-effectiveness. 

 

External data in summary form only 

 

Measures of fit with the summary data (MSE and MAD) and measures of model fit (AIC and BIC) favour 

the Gompertz specification, which generates the conclusion that Cementless THR is cost-effective in 

both subgroups. Inference from the remaining models is consistent and in line with inference from the 

best estimates of INB, but the associated CEACs and 95% credible intervals underestimate the 

uncertainty in the decision for men aged 60. INB is closer to the best estimates when extrapolation of 

survival is undertaken using the external data. Here, model selection for the clinical data has little 

impact, reflecting the relatively close fit of each of the models to the observed clinical data. 

 

External IPD available on control 
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Measures of fit with the summary data (MSE and MAD) again favour the Gompertz specification. In 

contrast, measures of model fit favour the restricted cubic spline model. Neither model generates INB 

close to the best estimates. When an HR estimated from the summary data is used to estimate 

survival for the treated group beyond tmax INB estimates are closer to the best estimates for all three 

of the best fitting models (Weibull, Gompertz, restricted cubic spline) and uncertainty is better 

captured.  

 

Discussion 

 

In this study we have illustrated how external data might be exploited in the extrapolation of event 

data beyond maximum trial follow-up, either as a model selection aid or to directly extrapolate 

survival. In our case study, the value of external data for model selection using the measures MSE 

and MAD appears low. In both scenarios with incomplete external IPD, MSE and MAD fail to identify 

the best performing survival specification. There may be superior measures to MSE and MAD or 

potential improvements through modifications such as weighting by subgroup size. However, our 

results do not encourage further investigation in this area. In contrast, use of the summary data to 

directly extrapolate survival improves estimates of INB in each case. This suggests the value of 

external data, in our case study, lies in its use to directly specify survival or the treatment effect 

beyond tmax rather than as a model selection aid. Further case studies would help to establish the 

generalizability of this finding. We have considered external data at a single time point beyond tmax. 

However, the methods we applied are generalizable to external summary data at multiple time points, 

either by assuming a constant hazard between time points or fitting a parametric model using 

regression.(40) Where such data is taken from multiple sources it may be helpful to combine survival 

estimates prior to incorporation into the framework suggested here.(41) Our analysis could also be 

extended to the comparison of multiple treatments. Calculation of Fcd from summary statistics for 

multiple treatments is straightforward. Where external IPD is available on one treatment it would be 

straightforward to calculate HRs for multiple comparators against that treatment.    
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Extrapolation of survival by calculation of Fcd from summary statistics requires an assumption of a 

constant hazard. The appropriateness of this assumption depends on the underlying biological 

mechanism driving the event rate. The hazard for all-cause mortality exhibits a well-known ‘bath-tub’ 

shape; extrapolation using age-specific population data is likely to provide better long term prediction 

(10). However, where disease specific mortality is high, as commonly observed in cancer trials, an 

assumption of a constant hazard may be reasonable in the absence of contrary evidence. Indeed in 

this context, Bagust and Beale recommend ‘…the exponential distribution should be considered the 

default parametric function for long-term survival projection…’(9) Considerations of the plausibility of 

extrapolations should be tempered by a focus on parsimony and accurately estimating the difference 

in survival between treatment and control. 

 

Measures of model fit to the clinical data are poor guides to the appropriateness of extrapolations,(9) 

and do not prioritise relative survival between treatment and control. Hence they are of limited use in 

selecting model specifications for incremental analysis. Likewise, visual inspection of predicted 

survival by treatment group is rarely unambiguous. Inclusion of external IPD on the control therapy 

improves the overall accuracy of extrapolated. However, INB is influenced by relative survival, and 

estimation of the treatment effect is still dependent on the clinical data. In our case study, application 

of a treatment effect beyond tmax estimated from summary data on treatment and control improved the 

estimates of INB for all three models considered. Weighting the estimate of treatment effect by 

subgroup size may offer further improvements, but the selection of weights is not straightforward and 

further research is required. Our case study suggests the value of external IPD on the control therapy 

in isolation may be limited for the estimation of INB. Comparative data on treatment and control is of 

greater value, even when limited to summary statistics, and the publication of such data should be 

encouraged. 

 

Modelling survival using restricted cubic splines has been recommended for extrapolation of time to 

event data in CEA.(10, 42,43) We illustrate an alternative flexible approach – piecewise segmentation 

of follow-up time in combination with a Gompertz specification. This approach provides flexibility to fit 

the observed hazard without constraining extrapolation with a constant hazard. Selection of piecewise 
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segments can be guided by measures of internal fit, or visual inspection of the hazard estimated 

without parameterisation using a kernel smoother.(44) We would recommend selection of segments 

to ensure a single segment covers the entire latter period for which the hazard is changing 

monotonically. The similarity in estimates of INB and the CEACs generated from analysis using the 

restricted cubic spline and the piecewise Gompertz model provides some reassurance that these 

models are generating the most appropriate inference. It is essential to fully recognise the impact of 

structural uncertainty in the selection of survival models and we would urge analysts to report and 

contrast results across multiple candidate models. 

 

This study is based on real data which was applied to a longstanding clinical debate (cemented vs 

cementless THR). We made some simplifications, most notably the assumption of similar post-

operative QOL across THR types, which increased the impact of survival on cost-effectiveness. 

Otherwise, the authenticity of the data was maintained. The analysis exploits a well-established 

Markov model of THR. The case study represents a challenging scenario for extrapolation - hazards 

are ‘U’ shaped with minima around five years, beyond which the clinical data was sparse. It is 

precisely such scenarios in which the judicious use of external data is important. We start from two 

premises: that all available IPD would be modelled; and that some data on control and treatment 

would be available. The latter might be obtained from expert opinion if unavailable from observational 

studies or case series reports.(45) We applied the commonly selected survival models and two 

flexible models that can be easily fitted in Stata, with minimal convergence problems. 

 

Data external to the RCT can be used to directly estimate the relative effect of treatment on long-term 

survival, if the requisite data are available for both treatment and control regimens. However, the use 

of such observational data raises the risk of selection bias due to differences in prognostic factors 

between the treatment and control arms. Analysts must consider carefully the potential for 

confounding, and ideally adjust for all potential confounders.(46) An advantage of approaches using 

IPD for extrapolating event rates is that such data allow adjustment for measured confounders using 

regression.  Greater care is needed where summary data are used due to the concern that the 

selection of patients into either the ‘control’ or ‘treatment’ is due to prognostic variables. Unless this is 
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fully recognised in the analysis, then this use of observational data in the extrapolation may lead to 

biased estimates of long-term effectiveness even where clinical trial data are available for the short 

term endpoints. More generally, with any use of observational data it is essential to consider the risk 

of unobserved confounding and to ensure that methods to adjust for observed confounders are 

appropriate. These risks of confounding should be explicitly acknowledged and explored through the 

use of sensitivity analysis wherever possible.(47) However, these risks should be considered in the 

context of potential concerns around the generalisability and extrapolation of randomised trial data. 

 

Our analysis has some limitations. We assume that the flexible models applied to the combined 

clinical and external IPD on treatment and control correctly specify survival, and that the resulting INB 

is the best estimate. Negrin and co-workers took a similar approach in their evaluation of a proposed 

extension to Bayesian Model Averaging.(48) We have not undertaken simulation work to evaluate the 

reproducibility of our findings. Whilst it would have been possible to create bootstrap replicates of the 

clinical and external data, this would have necessitated the automated selection of survival models, 

which might have downplayed rather than highlighted the sometimes conflicting evidence guiding 

model selection. There is likely to be some heterogeneity in costs and outcomes between centres 

undertaking THR which our analysis did not capture. We consider a scenario where external 

summary data are limited to one time point beyond tmax. The diagnostic value of data at multiple time 

points would be increased. We utilise a clinical dataset, the NJR, that is observational rather than trial 

based; trial data are likely to consist of fewer observations but with a lower risk of selection bias. 

 

Conclusions 

 

Recent research activity has outlined methods for the inclusion of external data when extrapolating 

clinical time to event data. Whilst such methods can improve the plausibility of extrapolations, unless 

the data differentiate treatment and control, their value in estimating relative survival, and hence 

incremental benefit, may be limited. We have illustrated how summary (aggregate) data on treatment 

and control can be used either to assess models fitted to the clinical data, or to directly inform the 
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extrapolation of survival. The value of external summary data as a selection aid appears limited. In 

contrast, extrapolation of survival using external summary data can improve estimates of cost-

effectiveness; it should be considered alongside the extrapolation of clinical data after evaluation of 

the risk of selection bias. The utility of additional IPD on the control therapy only may be limited for 

cost-effectiveness inference since relative rather than absolute survival has the largest impact on 

incremental analysis. Instead, analysts should focus efforts on retrieving any available long term data 

on survival for treatment and control. 
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Tables 
 

 
 

Data sources for survival Assumptions on 
extrapolation of baseline 
hazard and treatment effect  During trial 

follow-up 
Beyond trial 
follow-up 

External data in 
summary form only: 
used for model selection 

Clinical data Clinical data Hazard and treatment effect 
correctly specified from 
clinical data 

External data in 
summary form: used to 
extrapolate survival 

Clinical data External 
summary data 

Constant hazard beyond tmax 

External IPD on control: 
summary data used for 
model selection 

Clinical and 
external data 
(control) 

External data 
(control) 

Treatment effect correctly 
specified from clinical data 

External IPD on control: 
summary data used to 
extrapolate survival 

Clinical and 
external data 
(control) 

External data 
(control) and 
summary data 

Hazards proportional 
beyond tmax 

 

Table 1 Data sources and assumptions underpinning alternative methods applied to available external 

data 
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Measures of 
model fit 

Measure of fit 
with external 

data 

INB at £20,000 per QALY (95% credible interval) 

Survival 
Parameterization AIC BIC 

MSE 
(x106) 

MAD 
(x104) 

Men aged 60 Women aged 60 

Models fitted to combined clinical and external data on treatment and control (‘best estimates’) 

Weibull 81829 81937 429 429 -673    (-1,163 to -172) -1,424    (-1,959 to -916) 

Gompertz 81830 81938 173 288 1,829    (954 to 2,747) 1,276       (289 to 2,349) 

Restricted Cubic 
Splinea 

81640 81877 
232 325 -278     (-1,264 to 735) -1,334    (-2,480 to -256) 

Piecewise 
Gompertzb 

81651 82008 
293 344 -164     (-1,053 to 747) -1,439    (-2,507 to -437) 

Models fitted to clinical data and used to extrapolate survival 

Weibull 18113 18184 737 585 -1,407 (-1,886 to -915) -1,366    (-1,797 to -912) 

Gompertz 18094 18165 159 269 250  (-1,104 to 3,058) 348     (-1,003 to 3,446) 

Lognormal 18096 18167 451 431 -1,203 (-1,535 to -841) -1,212    (-1,520 to -884) 

Loglogistic 18113 18184 610 474 -1,241 (-1,754 to -718) -1,267    (-1,763 to -777) 

Generalized 
Gamma 

18112 18192 
379 373 -1,381 (-2,171 to -648) -1,358    (-2,116 to -741) 

Restricted Cubic 
Splinec 

18101 18181 
619 506 -1,346 (-1,705 to -983) -1,294    (-1,685 to -939) 

Models fitted to clinical data with extrapolation of survival using the summary external data 

Gompertz As  above   165    (-1,062 to 1,618) -1,278     (-2,571 to 105) 

Lognormal     218    (-1,017 to 1,758) -1,287     (-2,564 to 219) 

Restricted Cubic 
Spline 

  
  112    (-1,176 to 1,491) -1,339       (-2,502 to 26) 

Models fitted to combined clinical data and external data on control and used to extrapolate survival 

Weibull 77103 77200 550 501 -766    (-1,411 to -145) -1,634 (-2,228 to -1,109) 

Gompertz 77070 77167 385 425 3,146 (2,095 to 4,290) 2,385    (1,417 to 3,436) 

Restricted Cubic 
Splined 76953 77083 810 592 -1,129 (-1,949 to -370) -2,233 (-2,988 to -1,539) 

Models fitted to combined clinical data and external data on control with treatment effect beyond tmax 
estimated from summary external data  

Weibull As  above   -2            (-960 to 752) -1,410    (-2,678 to -410) 

Gompertz     780      (-799 to 2,176) -1,280     (-3,351 to 312) 

Restricted Cubic 
Spline     339   (-1,005 to 1,365) -1,409    (-3,143 to -129) 

aProportional hazards specification with five degrees of freedom (four knots) for baseline hazard and 

with age and type of THR modelled as time dependent effects with five degrees of freedom. 
bPiecewise segmentation of time into yearly intervals for the first five years. cProportional hazards 

specification with two degrees of freedom for baseline hazard and with age and type of THR modelled 

as time dependent effects with one degree of freedom. dProportional hazards specification with four 

degrees of freedom for baseline hazard and with age and type of THR modelled as time dependent 

effects with one degree of freedom. 

 

Table 2 Models optimised in the three scenarios exploiting clinical data only, external IPD on control 

only, and external data on treatment and control (representing the ‘best estimate’ of survival). 

Measures of fit using external summary data to aid model selection, and INB derived from applying 

the survival model in the CEA using summary data either to aid model selection or to extrapolate 

survival. 
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Figures 

 

Figure 1. Markov model of total hip replacement. 
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Figure 2. Observed prosthesis survival for men and women aged 55 to 65 recorded in NJR and HES 
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Supplementary material 
 

Figure S1. For men aged 60, predicted survival from the best survival models fitted to the clinical data 

only; the clinical data and external IPD on control; the combined clinical and external IPD on 

treatment and control. 

 

Figure S2. For women aged 60, predicted survival from the best survival models fitted to the clinical 

data only; the clinical data and external IPD on control; the combined clinical and external IPD on 

treatment and control. 

 

Figure S3. Hazard function for cemented and cementless THR estimated using the Epanechnikov 

kernel smoother (non-parametric estimate) from the external data and adjusted for age and sex. 

 

Figure S4. Hazard functions for men and women aged 60 estimated on the combined data for 

cemented and cementless THR using Weibull, Gompertz, Piecewise Gompertz and restricted cubic 

spline functions   

 

Figure S5. CEACs generated from survival extrapolations based on the clinical data only 

 

Figure S6. CEACs generated from applying survival models fitted to the clinical data for years 1-5 with 
simple extrapolation from the external data in summary form 
 

 

Figure S7. CEACs generated from survival extrapolations based on the clinical data and external IPD 

on control. 

 

Figure S8. CEACs derived from combining clinical data and external IPD on control with extrapolation 

of treatment effect beyond 5 years derived from the external data in summary form 

 

Figure S9. CEACs derived from survival extrapolations based on combined clinical and external IPD 

(best estimates) 

 

Table S1. Measures of model fit for all models fitted in each scenario 

 

Tables S2 to S11. Survival estimates at 5 and 10 years and 95% confidence intervals for each of the 

survival models. 

 

Stata code to fit survival models 
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Figure S1. Fitted and observed survival, men aged 60. 
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Figure S2. Fitted and observed survival, women aged 60. 

 

Figure S3. Non-parametric estimate of hazard for cemented and cementless THR 
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Figure S4. Hazards derived from survival models fitted to the combined data. 
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Figure S5. CEACs generated from applying survival models fitted to the clinical data only 
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Figure S6. CEACs generated from applying survival models fitted to the clinical data for years 1-5 with 
simple extrapolation from the external data in summary form 
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Figure S7. CEACs generated from survival extrapolations based on the clinical data and external IPD 

on control. 
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Figure S8. CEACs derived from combining clinical data and external IPD on control with extrapolation 

of treatment effect beyond 5 years derived from the external data in summary form 
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Figure S9. CEACs derived from survival models fitted to the combined clinical and external IPD  
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 Data available 

 Clinical only 

Plus external 
IPD on control 

Clinical and 
external IPD on 
treatment and 

control 

Model AIC BIC AIC BIC AIC BIC 

Weibull 18113 18184 77103 77200 81829 81937 

Gompertz 18094 18165 77070 77167 81830 81938 

Lognormal 18096 18167 77261 77358 82001 82109 

Loglogistic 18113 18184 77119 77217 81849 81957 

Generalized Gamma 18112 18192 77228 77336 81837 81966 

Restricted Cubic Spline 18101 18181 76953 77083 81640 81877 

Piecewise Gompertz     81651 82008 

 
Table S1. Measures of model fit for survival models fitted to the available data in each scenario 
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The following tables report survival estimates at 5 and 10 years with 95% confidence intervals using 

each of the survival models evaluated in the study. In addition, the absolute difference in survival 

(cemented – cementless) is reported. 

 

 Weibull Gompertz Spline Lognormal Loglogistic Gamma 

Cemented 5yr 97.137% 97.086% 97.173% 97.008% 97.991% 96.913% 

95%CI 96.736 to 
97.451 

96.696 to 
97.432 

96.799 to 
97.503 

96.535 to 
97.378 

97.678 to 
98.222 

96.059 to 
97.265 

Cemented 10 yr 94.447% 93.897% 94.691% 94.929% 96.137% 94.399% 

95%CI 93.452 to 
95.205 

91.845 to 
95.211 

93.848 to 
95.445 

94.063 to 
95.592 

95.334 to 
96.683 

92.810 to 
95.140 

Cementless 5 yr 96.157% 96.299% 96.198% 96.285% 96.932% 96.363% 

95%CI 95.700 to 
96.573 

95.833 to 
96.692 

95.726 to 
96.592 

95.825 to 
96.663 

96.598 to 
97.196 

95.509 to 
96.662 

Cementless 10 yr 93.380% 94.716% 93.651% 94.279% 94.868% 94.353% 

95%CI 92.430 to 
94.185 

93.551 to 
95.562 

92.710 to 
94.467 

93.513 to 
94.896 

94.147 to 
95.407 

92.871 to 
94.869 

Difference 5 yr 0.980% 0.787% 0.976% 0.723% 1.059% 0.550% 

95%CI 0.482 to 
1.510 

0.305 to 
1.296 

0.511 to 
1.455 

0.120 to 
1.243 

0.745 to 
1.392 

-0.235 to 
1.362 

Difference 10 yr 1.067% -0.818% 1.039% 0.649% 1.269% 0.045% 

95%CI -0.012 to 
2.166 

-2.753 to 
0.772 

0.020 to 
2.001 

-0.387 to 
1.532 

0.453 to 
2.058 

-1.546 to 
1.462 

 

Table S2. Men aged 60, survival estimated using NJR data only. 

 

 Weibull Gompertz Spline Lognormal Loglogistic Gamma 

Cemented 5yr 97.827% 97.786% 97.855% 97.816% 98.365% 97.710% 

95%CI 97.013 to 
97.944 

97.470 to 
98.030 

97.600 to 
98.090 

97.469 to 
98.078 

98.114 to 
98.533 

97.013 to 
97.944 

Cemented 10 yr 95.787% 95.362% 95.974% 96.203% 96.848% 95.792% 

95%CI 94.381 to 
96.334 

93.856 to 
96.336 

95.337 to 
96.511 

95.543 to 
96.706 

96.229 to 
97.264 

94.381 to 
96.334 

Cementless 5 yr 96.308% 96.450% 96.346% 96.458% 97.437% 96.539% 

95%CI 95.684 to 
96.835 

96.064 to 
96.838 

95.962 to 
96.704 

96.040 to 
96.803 

97.132 to 
97.666 

95.684 to 
96.835 

Cementless 10 yr 93.569% 94.891% 93.834% 94.486% 95.697% 94.565% 

95%CI 93.047 to 
95.102 

93.834 to 
95.672 

92.955 to 
94.629 

93.769 to 
95.076 

95.067 to 
96.164 

93.047 to 
95.102 

Difference 5 yr 1.519% 1.335% 1.509% 1.357% 0.927% 1.171% 

95%CI 0.557 to 
1.930 

0.924 to 
1.794 

1.127 to 
1.878 

0.921 to 
1.838 

0.663 to 
1.202 

0.557 to 
1.930 

Difference 10 yr 2.218% 0.471% 2.139% 1.717% 1.151% 1.226% 

95%CI -0.118 to 
2.573 

-0.954 to 
1.810 

1.334 to 
2.907 

0.926 to 
2.558 

0.507 to 
1.746 

-0.118 to 
2.573 

 

Table S3. Women aged 60, survival estimated using NJR data only. 
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 Lognormal Gompertz Spline 

Cemented 5yr 97.008% 97.086% 97.173% 

95%CI 96.511 to 97.377 96.671 to 97.440 96.792 to 97.471 

Cemented 10 yr 92.938% 93.013% 93.097% 

95%CI 90.585 to 94.440 90.807 to 94.514 90.875 to 94.536 

Cementless 5 yr 96.285% 96.299% 96.198% 

95%CI 95.839 to 96.658 95.841 to 96.684 95.766 to 96.598 

Cementless 10 yr 93.963% 93.976% 93.877% 

95%CI 92.566 to 94.930 92.569 to 94.874 92.567 to 94.794 

Difference 5 yr 0.723% 0.787% 0.976% 

95%CI 0.109 to 1.277 0.309 to 1.314 0.492 to 1.455 

Difference 10 yr -1.024% -0.963% -0.781% 

95%CI -3.176 to 0.816 -3.125 to 0.664 -2.813 to 0.875 

 

Table S4. Men aged 60, survival estimated using NJR data with extrapolation of survival beyond five 

years using a constant hazard calculated from HES data  

 

 

 Lognormal Gompertz Spline 

Cemented 5yr 97.816% 97.786% 97.855% 

95%CI 97.492 to 98.061 97.483 to 98.031 97.585 to 98.081 

Cemented 10 yr 94.910% 94.881% 94.949% 

95%CI 93.247 to 95.953 93.189 to 96.004 93.269 to 96.037 

Cementless 5 yr 96.458% 96.450% 96.346% 

95%CI 96.056 to 96.796 96.053 to 96.762 95.922 to 96.707 

Cementless 10 yr 93.647% 93.640% 93.539% 

95%CI 92.020 to 94.663 91.867 to 94.701 91.850 to 94.594 

Difference 5 yr 1.357% 1.335% 1.509% 

95%CI 0.933 to 1.804 0.959 to 1.762 1.104 to 1.941 

Difference 10 yr 1.263% 1.241% 1.410% 

95%CI -0.423 to 2.977 -0.405 to 2.941 -0.277 to 3.116 

 

Table S5. Women aged 60, survival estimated using NJR data with extrapolation of survival beyond 

five years using a constant hazard calculated from HES data  
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 Weibull Gompertz Spline 

Cemented 5yr 96.699% 96.866% 96.801% 

95%CI 96.436 to 96.926 96.598 to 97.100 96.545 to 97.029 

Cemented 10 yr 93.013% 92.619% 92.673% 

95%CI 92.429 to 93.520 91.953 to 93.206 92.058 to 93.219 

Cementless 5 yr 95.740% 96.023% 95.770% 

95%CI 95.281 to 96.116 95.614 to 96.402 95.314 to 96.131 

Cementless 10 yr 92.328% 94.178% 91.497% 

95%CI 91.365 to 93.082 93.205 to 95.004 90.464 to 92.350 

Difference 5 yr 0.959% 0.843% 1.031% 

95%CI 0.494 to 1.459 0.395 to 1.286 0.592 to 1.509 

Difference 10 yr 0.685% -1.559% 1.176% 

95%CI -0.357 to 1.867 -2.619 to -0.460 0.138 to 2.312 

 

Table S6. Men aged 60, survival estimated using NJR data and individual patient data from HES for 

cemented THR only  

 

 Weibull Gompertz Spline 

Cemented 5yr 97.706% 97.814% 97.782% 

95%CI 97.530 to 97.869 97.648 to 97.974 97.611 to 97.924 

Cemented 10 yr 95.150% 94.859% 94.928% 

95%CI 94.767 to 95.529 94.457 to 95.249 94.513 to 95.269 

Cementless 5 yr 96.233% 96.491% 96.264% 

95%CI 95.904 to 96.502 96.173 to 96.768 95.961 to 96.545 

Cementless 10 yr 93.171% 94.841% 92.432% 

95%CI 92.418 to 93.778 93.948 to 95.523 91.616 to 93.177 

Difference 5 yr 1.473% 1.323% 1.519% 

95%CI 1.203 to 1.772 1.049 to 1.618 1.241 to 1.809 

Difference 10 yr 1.979% 0.018% 2.496% 

95%CI 1.344 to 2.714 -0.746 to 0.932 1.768 to 3.255 

 

Table S7. Women aged 60, survival estimated using NJR data and individual patient data from HES 

for cemented THR only 
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 Weibull Gompertz Spline 

Cemented 5yr 96.699% 96.866% 96.801% 

95%CI 96.422 to 96.934 96.633 to 97.087 96.526 to 97.026 

Cemented 10 yr 93.013% 92.619% 92.673% 

95%CI 92.437 to 93.498 91.983 to 93.206 92.022 to 93.232 

Cementless 5 yr 95.740% 96.023% 95.770% 

95%CI 95.283 to 96.130 95.605 to 96.372 95.357 to 96.141 

Cementless 10 yr 93.644% 93.601% 93.422% 

95%CI 92.320 to 94.553 92.116 to 94.634 91.856 to 94.396 

Difference 5 yr 0.959% 0.843% 1.031% 

95%CI 0.462 to 1.450 0.428 to 1.343 0.595 to 1.506 

Difference 10 yr -0.631% -0.982% -0.749% 

95%CI -1.642 to 0.681 -2.089 to 0.561 -1.844 to 0.796 

 

Table S8. Men aged 60, survival estimated using NJR data and individual patient data from HES for 

cemented THR with a hazard ratio estimated from the summary data for cemented and cementless 

THR from HES 

 

 

 Weibull Gompertz Spline 

Cemented 5yr 97.706% 97.814% 97.782% 

95%CI 97.528 to 97.851 97.639 to 97.961 97.610 to 97.943 

Cemented 10 yr 95.150% 94.859% 94.928% 

95%CI 94.739 to 95.498 94.443 to 95.205 94.502 to 95.301 

Cementless 5 yr 96.233% 96.491% 96.264% 

95%CI 95.929 to 96.523 96.195 to 96.749 95.974 to 96.541 

Cementless 10 yr 93.764% 93.631% 93.507% 

95%CI 92.175 to 94.756 91.834 to 94.768 91.731 to 94.574 

Difference 5 yr 1.473% 1.323% 1.519% 

95%CI 1.195 to 1.761 1.041 to 1.611 1.240 to 1.785 

Difference 10 yr 1.386% 1.228% 1.421% 

95%CI 0.423 to 2.916 0.103 to 2.959 0.316 to 3.225 

 

Table S9. Women aged 60, s survival estimated using NJR data and individual patient data from HES 

for cemented THR with a hazard ratio estimated from the summary data for cemented and 

cementless THR from HES 
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 Weibull Gompertz Spline Piecewise-
Gompertz 

Cemented 5yr 97.088% 97.219% 97.275% 97.266% 

95%CI 96.850 to 97.315 96.990 to 97.429 97.037 to 97.472 97.033 to 97.475 

Cemented 10 yr 93.835% 93.478% 93.519% 93.705% 

95%CI 93.275 to 94.320 92.915 to 94.018 92.979 to 94.030 93.165 to 94.167 

Cementless 5 yr 96.200% 96.150% 96.231% 96.249% 

95%CI 95.852 to 96.498 95.805 to 96.453 95.899 to 96.538 95.886 to 96.544 

Cementless 10 yr 93.305% 93.498% 93.030% 93.432% 

95%CI 92.619 to 93.901 92.802 to 94.150 92.272 to 93.699 92.627 to 94.048 

Difference 5 yr 0.888% 1.069% 1.044% 1.018% 

95%CI 0.510 to 1.276 0.706 to 1.438 0.705 to 1.421 0.636 to 1.408 

Difference 10 yr 0.530% -0.020% 0.489% 0.273% 

95%CI -0.269 to 1.372 -0.842 to 0.878 -0.330 to 1.327 -0.518 to 1.198 

 

Table S10. Men aged 60, survival estimated using individual patient data from NJR and HES on 

cemented and cementless THR  

 

 

 Weibull Gompertz Spline Piecewise-
Gompertz 

Cemented 5yr 97.743% 97.848% 97.897% 97.891% 

95%CI 97.552 to 97.907 97.670 to 98.013 97.727 to 98.059 97.712 to 98.049 

Cemented 10 yr 95.218% 94.940% 94.987% 95.132% 

95%CI 94.830 to 95.581 94.493 to 95.364 94.557 to 95.387 94.675 to 95.483 

Cementless 5 yr 96.337% 96.311% 96.384% 96.409% 

95%CI 95.990 to 96.652 95.978 to 96.581 96.074 to 96.673 96.107 to 96.704 

Cementless 10 yr 93.469% 93.683% 93.205% 93.617% 

95%CI 92.815 to 94.077 92.953 to 94.255 92.450 to 93.882 92.962 to 94.251 

Difference 5 yr 1.406% 1.537% 1.513% 1.482% 

95%CI 1.052 to 1.759 1.237 to 1.887 1.201 to 1.826 1.164 to 1.796 

Difference 10 yr 1.748% 1.257% 1.782% 1.515% 

95%CI 1.010 to 2.475 0.552 to 2.075 0.975 to 2.618 0.749 to 2.288 

 

Table S11. Women aged 60, survival estimated using individual patient data from NJR and HES on 

cemented and cementless THR 
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Stata code to fit each of the survival models used in the study is reported below. The variable age is 

the patient’s age, Male is a dummy for male sex, Unc is a dummy for Cementless THR, HES is a 

dummy for observations from the HES dataset. [Parameterization] is a place holder for the 

specification of the survival function: wei (weibull), gom (gompertz), lnorm (lognormal), llog 

(loglogistic). 

 

Models fitted to the NJR data only: 

stset time, failure(revised) origin(time 65) scale(365) id(id) 

gen MaleUnc = Male*Unc 

set more off 

streg age Male Unc MaleUnc, d([Parameterization]) anc(age Unc) 

matrix a = e(V) 

matrix b=cholesky(a) 

matrix list b 

 

streg age Male Unc MaleUnc, d(ggamma) anc(age Unc) anc2(Unc) 

matrix a = e(V) 

matrix b=cholesky(a) 

matrix list b 

set more off 

 

stpm2 age Male Unc MaleUnc, df(2) tvc(age Unc) dftvc(1) /* 

*/scale(hazard) noorthog 

matrix a = e(V) 

matrix b = a["xb:age" . . "xb:_cons", "xb:age" . . "xb:_cons"] 

matrix c = cholesky(b) 

matrix list c 

 

Models fitted to the NJR data and HES data on cemented THR only: 

stset time, failure(revised) origin(time 65) scale(365) id(id) 

gen MaleUnc = Male*Unc 

set more off 

streg age Male Unc MaleUnc HES, d([Parameterization]) anc(age Unc) 

matrix a = e(V) 

matrix b=cholesky(a) 

matrix list b 

 

streg age Male Unc MaleUnc HES, d(ggamma) anc(Unc) anc2(Unc) 

matrix a = e(V) 

matrix b=cholesky(a) 

matrix list b 

set more off 

 

stpm2 age Male Unc MaleUnc HES, df(4) tvc(age Unc) dftvc(1) /* 

*/scale(hazard) noorthog 

matrix a = e(V) 

matrix b = a["xb:age" . . "xb:_cons", "xb:age" . . "xb:_cons"] 

matrix c = cholesky(b) 

matrix list c 
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Models fitted to the NJR data and HES data on cemented and cementless THR: 

stset time, failure(revised) origin(time 65) scale(365) id(id) 

gen MaleUnc = Male*Unc 

set more off 

streg age Male Unc MaleUnc HES, d([Parameterization]) anc(age Unc) 

matrix a = e(V) 

matrix b=cholesky(a) 

matrix list b 

 

streg age Male Unc MaleUnc HES, d(ggamma) anc(age Unc) anc2(Unc) 

matrix a = e(V) 

matrix b=cholesky(a) 

matrix list b 

set more off 

 

stpm2 age Male Unc MaleUnc HES, df(5) tvc(age Unc) dftvc(5) /* 

*/scale(hazard) noorthog 

matrix a = e(V) 

matrix b = a["xb:age" . . "xb:_cons", "xb:age" . . "xb:_cons"] 

matrix c = cholesky(b) 

matrix list c 

 

stsplit Duration, at(0.8219178 1.8219178 2.8219178 3.8219178 

4.8219178) 

gen year1 = 0 

gen year2 = 0 

gen year3 = 0 

gen year4 = 0 

gen year5 = 0 

 

replace year1 = 1 if _t<=float(0.8219178) 

replace year2 = 1 if _t>float(0.8219178) & _t<=float(1.8219178) 

replace year3 = 1 if _t>float(1.8219178) & _t<=float(2.8219178) 

replace year4 = 1 if _t>float(2.8219178) & _t<=float(3.8219178) 

replace year5 = 1 if _t>float(3.8219178) & _t<=float(4.8219178) 

 

gen year1Unc = year1*Unc 

gen year2Unc = year2*Unc 

gen year3Unc = year3*Unc 

gen year4Unc = year4*Unc 

gen year5Unc = year5*Unc 

 

gen ageYear1 = age*year1 

gen ageYear2 = age*year2 

gen ageYear3 = age*year3 

gen ageYear4 = age*year4 

gen ageYear5 = age*year5 

 

streg age Male Unc MaleUnc year1 year2 year3 year4 year5 year1Unc/* 

*/ year2Unc year3Unc year4Unc year5Unc HES, d(gom) anc(age year1/* 

*/ year2 year3 year4 year5 ageYear1 ageYear2 ageYear3 ageYear4/* 

*/ ageYear5) nohr 

matrix a = e(V) 

matrix b=cholesky(a) 

matrix list b 


