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Summary

Fuzzy multiple comparisons procedures are introduced as a solution to

the problem of multiple comparisons for discrete test statistics. The critical

function of the randomized p-values is proposed as a measure of evidence

against the null hypotheses. The classical concept of randomized tests is ex-

tended to multiple comparisons. This approach makes all theory of multiple
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comparisons developed for continuously distributed statistics automatically

applicable to the discrete case. Examples of family wise error rate and false

discovery rate procedures are discussed and an application to linkage dis-

equilibrium testing is given. Software for implementing the procedures is

available.

Some keywords: Benjamini-Hochberg procedure; Bonferroni procedure; False

discovery rate; Fuzzy decision-making; Multiple comparisons; Randomized

tests.

1 Introduction

The Bonferroni correction controls the family wise error rate, that is the probability

of committing any type 1 error in families of comparisons under simultaneous con-

sideration. Less conservative family wise error rate procedures using the observed

individual p-values were introduced by Simes (1986), Hochberg (1988) and Rom

(1990). Benjamini & Hochberg (1995) introduced a novel class of more powerful

procedures that control the false discovery rate. Their procedure is referred to as

the bh procedure in what follows. Benjamini & Yekutieli (2001) studied the false

discovery rate procedures under dependence. An alternative approach, estimating

false discovery rate was introduced in Storey (2002) and Storey et al. (2004).

The controlling procedures cited above were developed for p-values arising from

continuous test statistics. Under appropriate conditions, each will control either

the family wise error rate or the false discovery rate at a level α. The proofs use
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the fact that the p-values have a Un(0, 1) distribution under the null hypothe-

sis. This will not hold for discrete distributions, even for a single test, and the

problem is exacerbated for multiple tests of null hypotheses with different discrete

distributions. The procedures are more conservative, and therefore less powerful.

Multiple testing of discrete test statistics is particularly important currently, with

the development of novel genomics applications. Chakraborty et al. (1987) includes

a typical genetics example of testing for linkage disequilibrium, that is correlation

between alleles at pairs of markers. Gilbert (2005) uses Fisher’s tests to identify the

positions at which the probability of a non-consensus amino-acid differs between

two sequence sets. Other applications include testing gene functional categories

for independence with respect to differential gene expression (Al-Shahrour et al.,

2004) and association studies in genetics.

To overcome inherent difficulties in working with discrete distributions, Tarone

(1990) managed to reduce the number of comparisons by disregarding the hypothe-

ses which have no chance of achieving significance after the adjustment. Further

improved family wise error rate procedures are given in Roth (1999). Benjamini

& Yekutieli (2001) considered a case of discrete test statistics and proved that the

bh procedure is then conservative. Gilbert (2005) developed a false discovery rate

procedure that combines the Tarone (1990) ideas with the bh type procedure.

We use an approach based on the idea of randomized tests (Cox & Hinkley, 1974,

pp. 99-101). For one test, the test critical function taking on values between 0 and

1 can be used as a fuzzy measure of evidence against the null hypothesis. This
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quantity can be seen as a fuzzy membership function for the set of rejected tests.

This depends only on the observed p-values and the level α of the test procedure:

no randomization is performed to obtain the fuzzy measure. The connection be-

tween test critical functions and fuzzy quantities was discussed in Dollinger et al.

(1996) and applied recently to randomized tests and p-values by Geyer & Meeden

(2005). We show how this idea can be extended to the multiple testing situation.

Multiple tests are randomized independently, and the marginal critical function

for each test is used to construct a multiple comparisons procedure. We provide

algorithms for exact calculation of the fuzzy measures. An R (R Development

Core Team, 2004) package implementing the fuzzy procedures is available from

http://www.bgx.org.uk/alex/.

2 Randomized p-values and fuzzy decision rules

Consider a discrete test statistic X, which can take values in {x1 < x2 < ...}. If

the observed value of the statistic is xi, the traditional ‘crisp’ p-value P for a one-

sided test is pi ≡ pr(X ≥ xi) calculated under the null hypothesis. Since the set of

possible values of X is discrete, the set of possible p-values is also discrete. Under

the null the crisp p-value has a discrete uniform distribution, i.e. pr(P ≤ pi) = pi,

as opposed to the continuous Un(0, 1) distribution for p-values of continuously

distributed statistics. Thus in general it is not possible to obtain the exact level-α

test.
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This difficulty may be solved by the introduction of randomized tests. For a discrete

null distribution of a test statistic X, let c be the value of the statistic such that

pr(X ≥ c) > α but pr(X > c) < α. Then the exact level-α test can be achieved by

using a randomized p-value P (c) = pr(X > c)+Upr(X = c) for U ∼ Un(0, 1) (Cox

& Hinkley, 1974, p. 101). Traditionally this was interpreted as a need for an extra

Bernoulli experiment with probability of rejection {α − pr(X > c)}/P (c) when

X = c. An alternative interpretation is that the p-value is a random variable,

uniformly distributed between two discrete consecutive values. Unconditionally,

this randomized p-value has a continuous Un(0, 1) distribution under the null.

If pi− ≡ pr(X > xi) = pr(X ≥ xi+1), then pi− < pi and the randomized p-value is

Pi|xi ≡ pi− + U(pi − pi−) ∼ Un(pi−, pi) conditionally on xi. Thus the conditional

probability of rejection of the null hypothesis based on the randomized p-value

pr(Pi ≤ α|xi) is

τ(pi) =

{ 0, α < pi−,

(α− pi−)/(pi − pi−), pi− ≤ α ≤ pi,

1, α > pi.

It is clear that τ(pi) depends only on the observed p-values and the level α.

Geyer & Meeden (2005) used τ(pi) as a fuzzy measure of evidence against the

null hypothesis. We extend this to the multiple comparison situation by calculat-

ing the marginal probabilities of rejection for randomized p-values when standard

multiple testing procedures are used to control the family wise error rate and false

discovery rate. Since the randomized p-values have unconditionally a Un(0, 1)

distribution under the null hypothesis, all properties of multiple comparison pro-
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cedures for continuous test statistics are automatically fulfilled. Multiple tests are

randomized independently, i.e. conditionally random variables Pi|xi, i = 1, ...,m

are independent by construction. Calculations of rejection probabilities for the

p-values in §§3 and 4 use this conditional independence. This construction is suffi-

ciently general not to be detrimental to the properties of the resulting procedures,

as discussed in §6.

3 Fuzzy Bonferroni procedure

For continuous p-values, the Bonferroni procedure rejects each test that has a p-

value less than α/m, where m is the number of tests. Thus, for the fuzzy Bonferroni

procedure, we need to calculate pr(Pi ≤ α/m|xi).

What we call the fuzzy Bonferroni procedure is defined by the marginal critical

functions of the randomized tests:

τB(pi) =

{ 0, α/m < pi−,

(α/m− pi−)/(pi − pi−), pi− ≤ α/m ≤ pi,

1, α/m > pi.

Example 1: Fuzzy Bonferroni procedure for Binomial tests. Consider the results

of seven one-sided Binomial tests of H0 : p = 0.5 versus the 1-sided alternative

p < 0.5. The tests reject for small values of Xi ∼ Bi(ni, 0.5), i = 1, ..., 7. The

seven p-values are given in Table 1, and the support intervals (pi−, pi) are plotted

in Fig. 1. The standard level–0.05 Bonferroni procedure compares p-values to

0.05/7 = 0.00714, thus only the smallest p-value is rejected in this case. The fuzzy

6



procedure has three more candidates for rejection, with probabilities provided in

the last column of Table 1.

4 Controlling false discovery rate for a discrete

distribution

4.1 The Benjamini and Hochberg procedure

As before, we calculate the marginal probabilities of rejection for the randomized

p-values, this time using the Benjamini & Hochberg (1995) procedure. The contin-

uous bh procedure consists of ordering the p-values, then examining them in turn

starting from the largest. Hypothesis i is rejected if the ith p-value is less than

rank(i)α/m. As soon as one hypothesis is rejected, all hypotheses with smaller

p-values are also rejected.

For the discrete case the calculation of the probabilities of rejection are more com-

plex than for the Bonferroni procedure, since now the ordering of the p-values must

be taken into account. In general the order of the randomized p-values will vary

between realisations. For this reason, it will be useful to think about the support

intervals (pi−, pi) of the randomized p-values. The calculation of probabilities of

rejection is much easier when these support intervals do not overlap, e.g. when all

test statistics have the same null distribution. This case is considered in §4.2. The

case of overlapping intervals is presented in §4.3.
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4.2 Nonoverlapping support intervals

If the support intervals (pi−, pi] do not overlap, and there are many tests, it is

likely that several observed p-values will be equal, and these will have the same

probability of rejection. We call this subset of equal p-values a tie. The calculation

of the probabilities can be done for each of the J distinct support intervals, rather

than for each of the m p-values, where J can be considerably smaller than m.

Denote the probability of rejection for p-values in interval j by πj. Then the

probability of rejection for test i is τbh(pi) = πj where j is the index of the interval

to which randomized p-value i belongs.

In a similar manner to the continuous bh procedure, we examine each support

interval in turn, starting with the interval corresponding to the largest observed p-

value. Let the largest p-value rank for interval (pj−, pj] be Rj+. Suppose, without

loss of generality, that all hypotheses corresponding to p-values larger than pj are

accepted. Then there are three cases:

Case 1: Rj+α/m ≤ pj− ; All randomized p-values are greater than α/m multiplied

by their respective rank with probability 1, thus the tie is accepted, i.e. πj = 0.

Case 2: pj− < Rj+α/m < pj ; The probability of the randomized p-values being

less than α/m multiplied by their respective rank is between 0 and 1, thus the tie

is fuzzily rejected, 0 < πj < 1.

Case 3: pj ≤ Rj+α/m ; All randomized p-values are less than α/m multiplied by

their respective rank with probability 1, thus the tie is crisply rejected, i.e. πj = 1.

Consider the fuzzy rejection case in more detail. Suppose there are l tests with
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observed p-value pj, and denote the probability of exactly k randomized p-values

out of l being rejected by Tk,l(pj−, pj), 0 ≤ k ≤ l. Calculation of Tk,l is given in

the Appendix. Given k rejections, the probability that a particular hypothesis is

rejected is
(

l − 1

k − 1

)
/

(
l

k

)
= k/l.

The unconditional probability that any hypothesis out of the l is rejected is the

expected proportion of rejections:

πj = l−1

l∑

k=1

kTk,l(pj−, pj).

We stress that this probability is the exact unconditional probability of rejection for

the randomized test. It does not depend on drawing any realisations of randomized

p-values.

Next consider decisions about the p-values in previous intervals, those correspond-

ing to smaller p-values, in each of the above three cases.

In Case 1, when the interval (pj−, pj] is accepted, the previous interval is accepted

or crisply/fuzzily rejected on its own merit.

In Case 2, if (pj−, pj] is a fuzzy interval there are 2 sub-cases to be consid-

ered. With probability 1 − T0l(pj−, pj) at least one hypothesis in (pj−, pj] is

rejected, in which case the preceding interval is crisply rejected. With proba-

bility T0l(pj−, pj) no hypothesis in (pj−, pj] is rejected, so the preceding interval

may be accepted or crisply/fuzzily rejected on its own merit. The probability

of rejection for the preceding interval is therefore πprec
j = {1 − T0l(pj−, pj)} +

T0l(pj−, pj)l
−1

∑l
k=1 kTk,l(p

prec
j− , pprec

j ) and the probability of no rejection in the pre-
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ceding interval is T0l(pj−, pj)T0l(p
prec
j− , pprec

j ).

In Case 3, if the interval (pj−, pj] is crisply rejected, all preceding intervals are also

crisply rejected.

In this paragraph we define what we call the fuzzy bh procedure for ordered

nonoverlapping support intervals. Let m ordered p-values have J ≤ m distinct

values p1, ..., pJ , with ties of length lj, j = 1, ..., J ,
∑

lj = m. Let each cor-

responding randomized p-value be uniformly distributed on a support interval

Ij = (pj−, pj], where the intervals Ij, j = 1, ..., J are nonoverlapping and are

ordered by value of pj. Let the ranks of the p-values in the jth tie be from

Rj− =
∑

t<j lt + 1 to Rj+ =
∑

t≤j lt. Define sf = max{j : pj− ≤ Rj+α/m}

and sc = max{j : pj ≤ Rj+α/m}, sc ≤ sf . Then all p-values in the in-

terval Drej = ∪{Ij, j ≤ sc} are crisply rejected and all p-values in the in-

terval Dacc = ∪{Ij, j > sf} are accepted. The fuzzy interval is defined as

F = {Ij, sc < j ≤ sf}. Then τi for p-value i is equal to πj where j is the

label of the interval corresponding to p-value i, see Algorithm 1.

Algorithm 1. Calculation of rejection probabilities in each interval.

Let interval j be (pj1, pj2]. For the nonoverlapping intervals case pj1, pj2 = pj−, pj.

Let πj denote the unconditional probability of rejecting the randomized p-values in

interval j, and let ηj be the probability of no p-values in interval j being rejected.

For j = J, J − 1, ..., sf + 1, set πj = 0, ηj = 1.

For j = sf , sf −1, ..., sc +1, compute πj = (1−ηj+1)+ηj+1l
−1

∑l
k=1 kTk, lj(pj1, pj2)
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and ηj = ηj+1T0, lj(pj1, pj2).

For j = sc, ..., 1, set πj = 1.

Exact calculation of the Tk,lj(pj1, pj2) is given in the Appendix.

Lemma 1. For independent test statistics, and for m0 ≤ m true null hypotheses,

the above randomized bh procedure controls false discovery rate exactly at level

m0α/m.

Proof. This is part of Theorem 5.1 from Benjamini & Yekutieli (2001), applicable

to any continuous test statistics. Any m-tuple of randomized p-values have the

continuous uniform distribution, and Theorem 5.1 holds. Since the intervals Ij are

ordered, the p-values outside of the ‘fuzzy subset’ F = {Isc +1, ..., Isf
} are rejected

or accepted regardless of their generated values. The false discovery rate is exactly

m0α/m, conditional on any generated realisation within the fuzzy subset F . The

proof follows by integrating over all possible realisations. ¤

Example 2: Fuzzy bh procedure for the same discrete distribution. Consider m =

10 one-sided sign tests for n = 8 subjects, Si ∼ Bi(8, 0.5). Set the false discovery

rate level at α = 0.05. The p-values are 0.004, 0.035×3, 0.145×2 and 0.363×4.

For p = p2 the interval I2 = (p2−, p2] = (0.004, 0.035] contains l = 3 p-values,

R2−α/m = 0.01 and R2+α/m = 0.02. Therefore, sc = 1 and sf = 2.

The qk values defined in the Appendix are 0.194, 0.355 and 0.516 respectively. We

obtain

T1,3(p2) = 6q1(q3 − q2)(1− q3) + 3q1(1− q3)
2 = 0.227,

T2,3(p2) = 3q2
2(1− q3) = 0.183,

T3,3(p2) = q3
3 = 0.137.
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For each of the three hypotheses with p-value of 0.035 the probability of rejection

is π2 = π(0.035) = 3−1
∑

kTk,3(p2) = 0.335 and the probability of rejecting at least

one of the three hypotheses is 1 − T0,3(0.035) = 0.547. The p-value p1 = 0.004 is

crisply rejected.

4.3 General case.

When the randomized p-values {Pi, i = 1, ..., m} originate from different distri-

butions, the support intervals may overlap, so there is no strict ordering between

them. We partition the unit interval into intervals based on the intersections of

the support intervals, so that these smaller intervals are nonoverlapping. For each

realisation of m randomized p-values, we can think of allocating these p-values

to the nonoverlapping intervals. Given a particular allocation, the calculation of

πj for interval j can proceed as in §4.2. In order to calculate the τbh(pi) for each

test i, we must integrate over the possible allocations of randomized p-values. We

stress again that the value of τbh(pi) does not depend on any particular realisation

of randomized p-values, but only on the observed discrete p-values.

In the next three paragraphs we define what we call the fuzzy bh procedure in the

general case of overlapping support intervals. Let each randomized p-value have

support in the interval Ii. Partition the support set I =
⋃

Ii, i = 1, ..., m into

J ≤ 2m ordered subintervals I =
⋃

Dj, j = 1, ..., J , where Dj = (Dj−, Dj+]. Let

the probability of randomized p-value Pi belonging to interval Dj be denoted by

φij = |Dj ∩ Ii|/|Ii|. Let A = {Ad, d = 1, ..., ∆} be the set of all possible allocations
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of all m p-values to the intervals Dj. Denote by zd
i the label j of the interval to

which randomized p-value i is allocated in allocation d.

For each subinterval Dj, j = 1, ..., J , denote the maximum and the minimum pos-

sible ranks across all allocations Ad by Rj+ and Rj−. Define sf = max{j : Dj− ≤

Rj+α/m} and sc = max{j : Dj+ ≤ Rj−α/m}, sc ≤ sf . Then all p-values in

the interval Drej = ∪{Dj, j ≤ sc} are crisply rejected, all p-values in the interval

Dacc = ∪{Dj, j > sf} are accepted, and only p-values which can be allocated to

the ‘fuzzy subset’ F = {Dj, sc < j ≤ sf} should be investigated further.

For each allocationAd, the rejection probabilities for each interval πd
j are calculated

using Algorithm 1. Then τi for the ith p-value is

τbh(pi) =
∆∑

d=1

pr(Ad)π
d
zd
i
.

where the probability of an allocation Ad is pr(Ad) =
∏

i φi,zd
i
.

Since we do not need to distinguish between different allocations in subintervals of

Dacc and Drej, the number of allocations to be considered can be greatly reduced

by treating Dacc and Drej each as one subinterval; see Example 3.

Lemma 2. For independent test statistics, and for m0 ≤ m true null hypotheses,

the above randomized bh procedure controls false discovery rate exactly at level

m0α/m.

Proof. For a given allocationAd, the result holds as for Lemma 2, with the intervals

Ij replaced by Dj. The proof follows by integrating over all possible Ad. ¤

Example 3: Fuzzy bh procedure. Consider the seven p-values from a mixture
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of Binomial distributions, given in Table 1. The support set I = [0, 0.145] is

partitioned into the 8 subintervals Dj, j = 1, ..., 8, given in Table 2 and plotted in

Fig. 1. Here sc = 4, sf = 6. The first four intervals have Dj+ < Rj−α/7 and

therefore constitute Drej; intervals 7 and 8 constitute Dacc; intervals 5 and 6 are the

fuzzy subset F . The p-values which may end up in the fuzzy subset are p-values 4

to 7. Each can belong to 3 different subintervals, and therefore 34 = 81 allocations

are possible. Since we do not need to distinguish between different allocations in

intervals before 5 and after 6, this number is reduced to 36 = 22 × 32: the p-value

4 may belong to D5 or to Drej and p-value 7 may belong to D6 or to Dacc.

Allocations of the first three p-values do not change the ranks of the last four p-

values within F , and are therefore ignored. Given an allocation Ad, any p-values

allocated to D6 will be fuzzily rejected with probability π6|Ad. When R5+ > 4,

which happens every time two or three p-values belong to D5, we have D5+ <

R5+α/7, and every p-value in D5 is crisply rejected, π5 = 1. When there is

only one p-value with rank 4 in D5, it is fuzzily rejected with probability π5 =

1− T0,l6(D6) + T0,l6(D6)
∑l

k=1 kTk,l5(D5). This happens only when p-value 4 alone

belongs to D5, with p-value 5 in D6, and p-values 6 and 7 in D6 or Dacc; this occurs

in four possible allocations with l6 varying from 1 to 3.

Summing up the probabilities of rejection for each p-value we obtain τbh(P1) =

τbh(P2) = τbh(P3) = 1, τbh(P4) = 0.941, τbh(P5) = 0.632, τbh(P6) = 0.281 and

τbh(P7) = 0.080. The standard bh procedure rejects the first three p-values.

Note the very high probability of rejection for the p-value 4; p-value 7 has a low
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probability of rejection, it can be rejected only if it is allocated to D6.

5 Application: testing for linkage disequilibrium

In this section we demonstrate our procedure on a dataset used to test linkage

disequilibrium, that is, the association between alleles at different markers on the

same chromosome. Genotype data consist of pairs of alleles at each locus, with

no information about the chromosome from which each allele comes. Haplotype

data include the chromosome information. For example, for a pair of markers,

each with two possible alleles, A,a for the first marker and B,b for the second,

the possible haplotypes are (A,B), (A,b), (a,B) and (a,b). A pair of markers is in

linkage disequilibrium in a population if the alleles found at the two markers on

the same chromosome are associated in that population.

Linkage disequilibrium data can be presented in the form of 2 x 2 contingency

tables in which haplotypes are classified in terms of their alleles at each of the

two loci of interest. It is usual to use the hypergeometric distribution, as used in

Fisher’s exact test, for testing independence between the loci, as there are many

tables with low cell counts and thus the approximation used in the chi-squared

test is not valid.

The hypergeometric distribution can be used to find significant positive and neg-

ative correlations separately. Thus 2-sided tests are used when both positive and

negative correlations are of interest. However, there is ongoing controversy about
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how 2-sided p-values should be constructed for the hypergeometric distribution

(Agresti, 2002, p. 93). We propose to use 1-sided p-values conditioned on the sign

of the correlation. These are given by

pi ≡





pr(X ≥ xi)/pr(X ≥ xmode), r ≥ 0,

pr(X ≤ xi)/pr(X ≤ xmode), r < 0,

where X is the random variable for one of the cell entries in the contingency table

and follows a hypergeometric distribution conditional on the margins of the table.

The quantity xmode is the value of X corresponding to the most probable table

under the null, and r is the correlation coefficient. The randomized p-values based

on observed p-values constructed as above are Un(0, 1) under the null hypothesis.

For symmetric distributions the 1-sided conditional p-values are equal to the usual

2-sided p-values.

Chakraborty et al. (1987) looked at the relationship between the disease phenylke-

tonuria and 8 markers at the human phenylalanine hydroxylase locus. As part

of this investigation they tested for linkage disequilibrium between the markers.

For this purpose, haplotypes were divided into cases, with a mutant allele at the

phenylketonuria locus, and controls, normal allele, since the marker allele frequen-

cies were significantly different for cases and controls. There were 66 case and 66

control haplotypes. Correlation coefficients were calculated for all pairs of markers,

28 in all, and tested for difference from zero. No multiple testing correction was

performed.

Table 3 shows the 1-sided conditional p-values for the controls haplotypes for each
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pair of markers. The markers are given in the table in the same order as they

appear on the chromosome, in a similar format to that presented in the original

paper. As there, the markers which are closest together have the smallest p-values,

except for the pairs involving the marker HindIII.

Table 4 shows the fuzzy measures τ of evidence against the null of no correlation

for each marker pair, using the randomized Benjamini and Hochberg method for

controlling false discovery rate at a level of α = 0.01. The pairs with τ = 1

here would also have their null hypotheses rejected in the usual non-fuzzy method.

All other null hypotheses would not be rejected, i.e. they would be declared to

provide no evidence against the null hypothesis. With our analysis we can show

that, for the marker PvuII(b), there is evidence for linkage disequilibrium with

other markers.

6 Discussion

We have shown how the classical concept of randomized tests can be extended to

multiple comparisons. It should be possible to generalize other methods, such as

Storey et al. (2004), along the same lines.

To be of practical use these procedures should be efficiently programmed. If there

are ties in the observed p-values in the general overlapping intervals case, the order

of computation can be further reduced since we do not have to calculate separately

all the different possible allocations of several copies of the same observed p-value;
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details are available on request. Another possibility would be to generate N sets of

m p-values from
∏m

i=1 Un(Ii), and to estimate probabilities of rejection τi through

proportions of rejection out of N .

False discovery rate control at exactly level m0α/m requires independence of the p-

values. However, the calculation of rejection probabilities τ(pi) in §§3 and 4 holds

regardless, because of the conditional independence of the randomized p-values. As

long as the properties of positive regression dependence from Benjamini & Yekutieli

(2001) between components of the marginally uniform multivariate distribution of

the p-values on [0, 1]m are satisfied, the randomized bh procedure is conservative.

A critical feature of the procedures introduced in this paper is the conditional

independence of the randomized p-values Pi|xi, i = 1, ..., m. This construction is

equivalent to a well known technique of embedding a multivariate discrete distri-

bution in a continuous one, termed the standard extension copula by Schweizer &

Sklar (1974). Nešlehová (2007) shows that this construction of a continuous joint

distribution on [0, 1]m with uniform marginals captures the monotonic dependence

between the original random variables. Since the positive regression dependence

property of the copula distribution is invariant under comonotone transformations

(Benjamini & Yekutieli, 2001, p.1170), we conjecture that it is inherited from the

original monotonic dependence between the discrete random variables. Thus our

procedure should be general enough not to be unduly conservative.

The theory in this paper applies directly only to 1-sided p-values or p-values

from symmetric distributions. Treatment of p-values for 2-sided tests with non-
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symmetric distributions is technically more involved, see Geyer & Meeden (2005),

and is not discussed. Instead we used conditional 1-sided p-values in §5; see also

an unpublished Imperial College Technical Report by E. Kulinskaya.

Interpretation of results of fuzzy multiple comparisons procedures is not straight-

forward. If a binary decision is required, a simple rule could be adopted, perhaps

rejecting all p-values with probability of rejection above 50%. However this would

change the false discovery rate level. We believe that actual probabilities of rejec-

tion provide more information, and applied scientists may decide for themselves

which hypotheses require further exploration.
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Appendix

Calculation of Tk,l

When we examine an interval Dj in the fuzzy subset F , where Dj = Ij in the

nonoverlapping case, we need to calculate the unconditional probability πj that

a particular hypothesis is rejected and the probability ηj that no hypothesis in

the interval is rejected. Both of these can be calculated from the probabilities

Tk,lj(p1, p2) of rejecting exactly k of the hypotheses, for k = 1, ..., lj. Here p1, p2
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are the boundaries of the interval Dj, that is pj−, pj in the nonoverlapping case.

Let the number of randomized p-values in the interval be lj, and let the minimum

and maximum ranks be Rj− and Rj+ respectively. For k = 1, ..., lj, let αjk = (Rj−+

k− 1)α/m, qjk = max{0, (αjk − p1)/(p2− p1)} and tj = qj(k+1)− qjk = α/m|Dj| is

independent of k. From now on we suppress the index j in the tie length lj.

We need to calculate

Tk,l(p1, p2) ≡ pr(Pjk < αjk, Pj(k+1) > αj(k+1), ..., Pjl > αjl)

=
l!

k!
qk
jkpr(Pj(k+1) > αj(k+1), ..., Pjl > αjl), (A1)

where Pjk, i = 1, ..., l are order statistics from a Un(p1, p2) distribution.

In order to calculate the probability in equation A1, the {Pj(k+1), ..., Pjl} have to

be allocated to the intervals defined by {αj(k+1), ..., αjl, p2} in such a way that the

condition in the probability holds. Given such an allocation, it is easy to calculate

the probability as a product of two types of term:

pr(αjr < Pj(s+1) < ... < Pj(s+u) < αj(r+1)) =
tuj
u!

,

pr(Pjl > ... > Pj(l−r+1) > αjl) =
(1− qjl)

r

r!
.

These terms correspond respectively to u p-values being allocated between two ad-

jacent α’s and to the largest r p-values being allocated to the top interval (αjl, p2).

The allocations can be labelled uniquely by l − k integers, denoting the number

of randomized p-values in the above alpha intervals; for example, α1 < P1 < α2 <

α3 < P2 < P3 is denoted by 102 (i.e. l = 3 and k = 0). If we call these integers
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nk+1, ..., nl, the probability we need for equation A1 can be written

Tk,l(p1, p2) =
l!

k!
qk
jk

∑

Z(l−k)
d

t
l−k−n

(d)
l

j (1− qjl)
n

(d)
l

∏l
i=k+1 n

(d)
i !

,

where Z(l−k)
d stands for one of the allocations allowed for l−k intervals. Note that

the allocation labels depend only on l − k, not j, and therefore can be calculated

just once for each l − k.

The allocations can be calculated in a straightforward way:

for n1 = 0, 1 {

for n2 = 0, ..., 2− n1 {

for n3 = 0, ..., 3− n1 − n2 {

...

for n(l−k)−1 = 0, ..., (l − k)− 1−∑(l−k)−2
1 nj {

n(l−k) = (l − k)−∑(l−k)−1
1 nj

allocation Z l−k
d = {n1, n2, ..., nl−k}.

},...}

We must have
∑r

i=1 ni ≤ r for each r, since the first r intervals may not contain

more than r p-values if the condition in equation A1 is to be satisfied.
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ni ki pi pi− pi − pi− τB(pi)

8 0 0.003906 0 0.003906 1

10 1 0.010742 0.000977 0.009766 0.631429

6 0 0.015625 0 0.015625 0.457143

8 1 0.035156 0.003906 0.03125 0.103571

10 2 0.054688 0.010742 0.043945 0

6 1 0.109375 0.015625 0.09375 0

8 2 0.144531 0.035156 0.109375 0

Table 1: Fuzzy Bonferroni procedure example. Here pi = pr(Xi ≤ ki) is a p-value

from a 1-sided binomial test, with Xi ∼ Bi(ni; 0.5) under the null hypothesis, pi−

is the previous attainable p-value and τB(pi) is the probability of rejection by the

fuzzy Bonferroni procedure.
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j Dj− Dj+ |Dj| p-values Rj− Rj+ Aj− Aj+

1 0.000 0.001 0.001 1,3 1 2 0.007 0.014

2 0.001 0.004 0.003 1,2,3 1 3 0.007 0.021

3 0.004 0.011 0.007 2,3,4 2 4 0.014 0.029

4 0.011 0.016 0.005 3,4,5 3 5 0.021 0.036

5 0.016 0.035 0.020 4,5,6 4 6 0.029 0.043

6 0.035 0.055 0.020 5,6,7 5 7 0.036 0.05

7 0.055 0.109 0.055 6,7 6 7 0.043 0.05

8 0.109 0.145 0.035 7 7 7 0.050 0.05

Table 2: Fuzzy bh procedure example with overlapping support intervals. Data

are given in Table 1. Here j is the number of an interval Dj = (Dj−, Dj+], |Dj|

is its length, ‘p-values’ provides the list of p-values which can belong to Dj, Rj−

and Rj+ are the smallest and the largest ranks in Dj, and Aj± = Rj±α/7.
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BglI PvuII(a) PvuII(b) EcoRI MspI XmnI HindIII

PvuII(a) 5× 10−15 - - - - - -

PvuII(b) 1× 10−5 1× 10−5 - - - - -

EcoRI 2× 10−4 2× 10−4 3× 10−2 - - - -

MspI 1 1 2× 10−2 2× 10−10 - - -

XmnI 1 1 2× 10−2 2× 10−2 3× 10−19 - -

HindIII 7× 10−4 7× 10−4 7× 10−2 1× 10−3 3× 10−7 3× 10−7 -

EcoRV 1 1 1× 10−2 5× 10−7 5× 10−3 5× 10−3 1× 10−10

Table 3: Linkage disequilibrium data set. One-sided p-values conditional on the

sign of the correlation coefficient. The markers are listed in the order they appear

on the chromosome.
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BglI PvuII(a) PvuII(b) EcoRI MspI XmnI HindIII

PvuII(a) 1 - - - - - -

PvuII(b) 1 1 - - - - -

EcoRI 1 1 0.21 - - - -

MspI 0 0 0.39 1 - - -

XmnI 0 0 0.39 1 1 - -

HindIII 1 1 0.10 1 1 1 -

EcoRV 0 0 0.62 1 1 1 1

Table 4: Linkage disequilibrium data set. The values given are τ , the fuzzy measure

of evidence against the null hypothesis of no linkage disequilibrium, for the Ben-

jamini and Hochberg false discovery rate method at level α = 0.01. The markers

are listed in the order they appear on the chromosome.
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Fig. 1: Plot of p-values and related intersecting support intervals for the data from

Example 4, given in Table 2. Support intervals, given by horizontal segments, are

ordered by the ranks of respective p-values on the vertical axis. The support set

I = [0, 0.145] is split by vertical dashed lines into 8 subintervals Dj, j = 1, ..., 8,

on the horizontal axis.
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