
Testing for linkage and

Hardy-Weinberg disequilibrium

E KULINSKAYA∗, A LEWIN†

SUMMARY

This paper concerns several important points when testing for Hardy-

Weinberg equilibrium (HWE) and linkage disequilibrium (LD) in ge-

netics. First, we challenge the necessity of using exclusively two-sided

tests for LD. Next, we show that the exact 2-sided tests based on the

most popular measures of LD are not equivalent, and neither are the

standard statistical tests even though the 1-sided tests are equivalent.

We show how this results in different inference about LD for two data

sets consisting of small groups of markers. Finally, we advocate the

use of the conditional p-value for both LD and HWE testing. An im-

portant advantage of this p-value is that equivalent 1-sided tests are

transformed into equivalent 2-sided tests.
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1 Introduction

Testing for linkage disequilibrium (LD) and Hardy Weinberg equilibrium

(HWE) both involve the apparently simple problem of testing for indepen-

dence in 2×2 contingency tables. However, there are many different possible

test statistics commonly used. Hedrick (1987), Devlin & Risch (1995) and

Mueller (2004) consider several different LD measures and their properties.

Maiste & Weir (1995) compare tests for HWE using different test statistics.

In addition, all statistical tests for LD and HWE involve discrete test statis-

tics and asymmetric null distributions (the hypergeometric for LD and Hal-

dane for HWE). There is ongoing controversy about how 2-sided p-values

should be constructed for the hypergeometric distribution (Agresti, 2002)

and other non-symmetric distributions (Kulinskaya, 2008). Fisher advo-

cated doubling the 1-sided p-value in his letter to Finney in 1946 (Yates,

1984, p.444), motivated by equal prior weights of departure in either direc-

tion. This choice has the drawback that the p-value can exceed 1. A popular

two-sided p-value for non-symmetric discrete distributions implemented in

computer packages is found by summing the probabilities of the points less

probable than the observed (at both tails). Another possibility is to order

the points by the squared or absolute values of correlation or other measures,

when marker alleles are arbitrarily labelled (Mueller, 2004).
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A new proposal for a two-sided p-value called the ‘conditional p-value’ was

introduced in Kulinskaya (2008). This new two-sided p-value has properties

which make it a definite improvement on currently used two-sided p-values

for both discrete and continuous non-symmetric distributions. It is closely

related to the doubled p-value (but is automatically less than or equal to 1)

and has an intuitive appeal.

In this paper we consider three kinds of p-values for exact 2-sided tests of

LD: (1) the p-values which are the sum of the probabilities of the points

less probable than observed (we refer to this as the standard 2-sided Fisher’s

test), (2) the p-values based on absolute values of different LD measures and

test statistics and (3) the new conditional p-values.

The structure of the paper is as follows. In Section 2 we formulate the

problems of linkage disequilibrium and linkage analysis and introduce some

popular measures of LD. In Section 3 we point out that it can be appropriate

to use one-sided tests; the use of two-sided tests is not required by invariance

to relabelling of alleles. We also demonstrate that all measures of LD con-

sidered result in equivalent exact one-sided tests equal to the Fisher’s exact

test.

It is still more common to use 2-sided tests. In Section 4 we show that 2-sided

p-values using the absolute values of different LD measures are not equiva-

lent, and all are different to the Fisher’s test and to the exact likelihood ratio

test. Thus the choice of an appropriate 2-sided test for LD should depend

on the measure of interest to a researcher. However, using the conditional

p-values, all LD measures result in equivalent tests. This resolves the neces-
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sity of the careful choice of the 2-sided test for non-symmetric distributions.

In Section 5 we show how the different LD tests result in different inference

for two data sets consisting of small groups of markers.

In Section 6 we show that the same problems found for LD testing are also

relevant for HWE testing, and propose the use of the conditional p-value

with the Haldane test. Discussion is in Section 7.

A software package for R (R Development Core Team, 2004) is available

from http://www.bgx.org.uk/alex/ or from the CRAN website http://cran.r-

project.org/.

2 Measures of Linkage Disequilibrium

For bi-allelic markers at loci A and B, linkage disequilibrium data can be pre-

sented in the form of 2x2 contingency tables where haplotypes are classified

in terms of their alleles at each of the 2 loci:

TAB =

B1 B2 total

A1 n11 n12 n1+

A2 n21 n22 n2+

total n+1 n+2 n

Testing for linkage equilibrium is equivalent to testing for independence in

the 2x2 table. Since there are often tables with low cell counts, the ap-

proximations used in the standard chi-squared test or in the likelihood ratio

test are not valid, thus exact tests using the hypergeometric distribution are
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generally most appropriate.

Fisher’s exact test uses n11 as the test statistic. Since the exact tests are

conditional on the observed margins of the table (n1+, n+1, n), the n11 value

defines all the other entries in the table. We shall refer to the respective

haplotypic probabilities as pij, i, j = 1, 2, corresponding to the counts nij.

These probabilities can be estimated by the observed haplotypic frequencies

p̂ij = nij/n. A parameter of primary importance is the odds ratio ρ =

p11p22/p12p21 estimated by ρ̂ = n11n22/n12n21. The case of no association

pij = pi+p+j is equivalent to ρ = 1.

Contingency tables for LD are often summarised by a measure of the degree

of disequilibrium. The difference between the observed and expected frequen-

cies is the LD parameter D = p11−p1+p+1 = p22−p2+p+2 = −(p12−p1+p+2) =

−(p21 − p2+p+1) = p11p22 − p12p21. There exist a variety of disequilibrium

measures, many of which are based on D standardized in different ways.

Devlin & Risch (1995) discuss 5 popular measures listed here.

To reduce the dependence of D on allele frequencies Lewontin (1964) in-

troduced D′ = D/Dmax, where Dmax is the maximum value given the al-

lele frequencies calculated as Dmax = min{p1+p+2, p2+p+1} when D > 0,

and Dmax = min{p1+p+1, p2+p+2} when D < 0. The Pearson’s correlation

coefficient is r = D/(p1+p+1p2+p+2)
1/2. Other popular measures include

the difference in proportions d = p11/p+1 − p12/p+2 = D/(p+1p+2), an ap-

proximation for the population attributable risk under case-control sampling

δ = D/p+1p22, and Yule’s Q = (ρ − 1)/(ρ + 1) = D/(p11p22 + p12p21) (De-

vlin & Risch, 1995). The most frequently used measures of LD are D′ and r.
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Mueller (2004) further discusses the differing properties of D′ and r2 resulting

in differing applications: D′ is useful for assessing historical recombination in

a given population, and the r2 is useful in the context of association studies.

Devlin & Risch (1995) proclaim δ to be superior for fine mapping because it

is directly related to the recombination fraction.

Exact tests based on these different LD measures all use the hypergeometric

distribution. Each possible 2x2 table has a particular probability under the

null. The differences in 2-sided p-values come from the different orderings of

the possible tables according to absolute value of LD measure.

3 One-sided statistical tests for Linkage Dis-

equilibrium

The distribution of n11 is the hypergeometric (Fisher, 1935):

f(n11; n1+, n+1; ρ) =

(
n1+

n11

)(
n−n1+

n+1−n11

)
ρn11

∑
u

(
n1+

u

)(
n−n1+

n+1−u

)
ρu

,

where ρ is the odds ratio. The null distribution (standard hypergeometric)

has ρ = 1. For the one-sided test of H0 : ρ = 1 vs H1 : ρ > 1, Fisher

proposed the p-value p+ =
∑

u≥n11
f(u; n1+, n+1; 1), and for H0 : ρ = 1 vs

H1 : ρ < 1 the p-value p− =
∑

u≤n11
f(u; n1+, n+1; 1). This is known as the

Fisher’s Exact Test.

The one-sided p-values for tests using an LD measure L are similarly p+ =
∑

L(u)≥L(n11) f(u; n1+, n+1; 1) and p− =
∑

L(u)≤L(n11)
f(u; n1+, n+1; 1). Here
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we consider 5 possible LD measures: D̂′, r̂, δ̂, d̂, and Q̂.

To be able to deduce the properties of the various measures of LD, let us

relabel the probabilities as p11 = x, p1+ = a, p+1 = b (Crook & Good, 1982).

Then D = x− ab and

D′ = (x− ab)/min(a(1− b), (1− a)b) when D > 0 and

D′ = (x− ab)/min(ab, (1− a)(1− b)) when D < 0;

r = (x− ab)/
√

ab(1− a)(1− b);

d = (x− ab)/(b(1− b));

δ = b−1(1− (1− a− b + ab)/(1− a− b + x));

ρ = 1 + (x− ab)/((a− x)(b− x));

Q = 1− 2/(1 + ρ).

(1)

It is easy to see that all these functions are increasing functions of x, and

all the resulting test statistics are increasing functions of n11 (note that x̂ =

n11/n). Therefore all the 1-sided tests are equivalent to Fisher’s exact test.

This was shown first by Davis (1986) for r̂, d̂ and ρ̂. Thus Fisher’s exact test

is an appropriate 1-sided test to test that any of these measures are positive

(D > 0) or negative (D < 0). Also Fisher’s exact test is the Uniformly Most

Powerful Unbiased (UMPU) test if the randomization is allowed (Tocher,

1950).

3.1 Invariance to relabelling

An exact test for association of two nominal variables should be invariant

under relabelling of rows and columns. A two-sided version of Fisher’s test is

a traditional remedy when an invariance in respect to row/column relabelling

is required. Is it appropriate?
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Let us explore the effects of relabelling the rows of the table TAB. The

resulting table is

Tπ(A)B =

B1 B2 total

A2 n21 n22 n2+

A1 n11 n12 n1+

total n+1 n+2 n

.

The odds ratio is now ρ̃ = p21p12/p22p11 = ρ−1 and D̃ = p21− p2+p+1 = −D.

Therefore all signed measures of LD change their sign, but are otherwise

unchanged, except for δ, which is not invariant as it requires specification of

case or control status.

The Fisher’s test statistic after relabelling is n21 = n+1 − n11, and it is easy

to see that the probability f(n21; n2+, n+2; ρ̃) = f(n11; n1+, n+1; ρ). Thus,

the two tables have the same probability P (TAB) = P (Tπ(A)B). A 1-sided

test for ρ > 1 is transformed into an equivalent test for ρ̃ < 1, i.e. the

p-value is invariant under the permutation of rows. This invariance of the

p-value also applies to the relabelling of columns, and to changing the rows to

columns and vice versa. Therefore Fisher’s one-sided test is in fact invariant

to relabelling, and thus is a valid test for association on a nominal scale.

The usual perception of a one-sided test is that it tests for a particular

direction, say for ρ > 1. Given a particular labelling on A and B, a resulting

sign of ρ merely indicates a prevalence of a particular combination of A and

B values. This information does not change with relabelling, even though

the sign of ρ and D does, thus the significance of LD (and p-value) does

not change either. Therefore, when it is known which allele of a marker is

associated with a disease, a one-sided test should be used. This is the case in
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confirmatory studies, for example, a candidate-gene study of a disease based

on a different population. A two-sided test should be used when there is no

knowledge of which allele in a marker is detrimental and which is protective

to a disease.

4 Two-sided tests for Linkage Disequilibrium

In this section we consider six different exact 2-sided tests: the standard

2-sided Fisher’s test, the exact test based on the likelihood ratio (LR) test

statistic, tests using absolute values of the correlation coefficient, |D′| and

Yule’s |Q|, and the conditional p-values introduced by (Kulinskaya, 2008).

The exact tests based on the standard chi-squared statistic and on d are

included in this comparison, as these are equivalent to the test based on the

correlation coefficient. We do not look at 2-sided p-values based on |δ|, as

these are not invariant to row/column relabelling. For the purposes of testing

independence between two loci this is not appropriate.

4.1 Table orderings for different LD measures

To calculate the exact two-sided tests for LD based on the absolute values

of LD measures, we need to order all possible tables TAB with given margins

according to an LD measure of choice, calculate their probabilities using the

hypergeometric distribution, and their p-values as the cumulative probabili-

ties under the ordering. Thus in order to see the differences between the LD
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measures, we compare the orderings corresponding to each of the absolute

values of the LD measures. The standard 2-sided Fisher’s test uses the statis-

tic FP = −P (n11), which orders the tables according to their probability.

Here we also consider the Likelihood Ratio test statistic LR = 2
∑

ij nij log(nij/mij),

where mij = ni+n+j/n is the expected value of nij under the null hypothesis

of no association, and 0 × log(0) = 0 by definition (Agresti, 2002). The LD

measure |d| results in the same ordering of 2x2 tables as does |r|, and thus is

omitted from the comparison. Note that the Pearson’s chi-square test statis-

tic X2 =
∑

ij(nij−mij)
2/mij = nr2 is also equivalent to |r|, and so the exact

version of this test is implicitly included in our comparison.

All five statistics FP , LR, |r|, |D′| and |Q| are strictly decreasing functions of

n11 for n11 ≤ m11 or equivalently for the LD parameter D ≤ 0 (‘the left tail’)

and strictly increasing functions of n11 for n11 ≥ m11 or D ≥ 0 (‘the right

tail’), (Davis, 1986). The 2-sided test based on a statistic Y rejects for large

values of |Y |, and the 2-sided p-value is calculated as p(|Y |) = P (|y| ≥ |Y |).

Example 1: Consider the table with margins (n1+, n2+, n+1, n+2) = (9, 21, 5, 25)

used as an example in Davis (1986). The possible n11 values are 0 through 5,

the expected value is m11 = 1.5, so the left tail has two tables only, for n11 = 0

and 1, with the total probability of wL = 0.521. Tables with n11 = 2, · · · , 5

are on the right tail, the total probability is wR = 0.479. The 6 tables, their

exact probabilities based on hypergeometric distribution, and the respective

values of 5 statistics of interest are given in Table 1. The values of FP omit-

ted from Table 1 to avoid duplication are easily obtained as FP = −P (TAB).

Each table TAB is uniquely defined by the value of n11, and we shall refer to
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them by this number from now on.

n11 n12 n21 n22 P (TAB) LR |r| |D′| |Q|
0 9 5 16 0.143 1.990 0.293 1.000 1.000
1 8 4 17 0.378 0.152 0.098 0.333 0.306
2 7 3 18 0.336 0.137 0.098 0.143 0.263
3 6 2 19 0.124 1.184 0.293 0.429 0.652
4 5 1 20 0.019 3.314 0.488 0.714 0.882
5 4 0 21 0.001 7.334 0.683 1.000 1.000

Table 1: The 6 possible tables TAB with margins (n1+, n2+, n+1, n+2) =

(9, 21, 5, 25) are given in columns 1-4, their probabilities P (TAB) and the values of

various LD measures are given in columns 5-9.

The tables are ordered by the increasing values of test statistics, as follows:

FP : 1 2 0 3 4 5

LR : 2 1 3 0 4 5

|r| : {1 2} {0 3} 4 5

|D′| : 2 1 3 4 {0 5}
|Q| : 2 1 3 4 {0 5}

Table 2 gives the p-values from the different orderings. Results for |δ| and |Q|
are omitted, as they coincide with those for LR and D′ respectively. The last

column provides the conditional p-values pC discussed in the next Section.

Only tables 4 and 5 have small enough probabilities to ever result in small

p-values. The three standard tests (PF , LR and the chi-square test based

on |r|) have the largest test statistic values for tables 4 and 5. The p-values

for all these three tests are p(4) = 0.019 and p(5) = 0.001, resulting in the

conclusion of LD when one of these tables is observed. However a test based

on |D′| or |Q| would result in p(5) = p(0) = 0.144 and p(4) = 0.162, thus for

these two tests, neither table would draw a conclusion of LD.
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n11 n12 n21 n22 pFish pLR pr pD′ pC

0 9 5 16 0.286 0.162 0.286 0.144 0.274
1 8 4 17 1.000 0.664 1.000 0.664 1.000
2 7 3 18 0.622 1.000 1.000 1.000 1.000
3 6 2 19 0.143 0.286 0.286 0.286 0.299
4 5 1 20 0.019 0.019 0.019 0.162 0.041
5 4 0 21 0.001 0.001 0.001 0.144 0.002

Table 2: 2-sided p-values for linkage disequilibrium, example 1.

In this example the orderings based on D′ and |Q| coincide. This is not true

in general, as will be seen in Section 4.3 for an example with larger sample

size.

These results show that when using standard 2-sided tests, the choice of LD

measure can have a large effect on inference. It makes sense to use a two-

sided test based on the LD measure of interest. Only this can guarantee a

consistency between the conclusions of the test and the degree of LD as given

by the measure of choice. Our R package includes the calculation of all five

2-sided tests.

4.2 Conditional p-values for LD

The conditional 2-sided p-value pC(x) (Kulinskaya, 2008) is the one-sided

p-value for the observed tail, conditioned on the observed tail. Effectively,

the one-sided p-value is weighted by the probability of the tail. (Compare

this to the doubled one-sided p-value, which weights always by 0.5.) For

a continuous symmetric distribution the conditional p-value is the doubled

p-value.
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When calculating the conditional p-value, the first task is to decide on the

point A separating the two tails of the distribution in question. The mean

or expected value E is often the most suitable choice, but it may be instead

the median m, the mode M , or some other location parameter.

Definition 4.2.1 Conditional p-value for a discrete distribution is

pC(x|A) =

{ P (X ≤ x)/wL, x < A;

1 x = A;

P (X ≥ x)/wR, x > A;

(2)

where the weights are wL = P (x ≤ A) and wR = P (x ≥ A).

When A = m is an attainable value of the discrete distribution, the values of

pC(x|m) are (1 + P (m)) times smaller than doubled 1-sided p-values. When

A = E as is often more appropriate, the weights of the tails differ unless

the distribution is symmetric. The conditional p-value has a mode of 1 at A

when this value is attainable, and two modes of 1 at the attainable values

above and below A when A is not an attainable value.

For LD testing we use the choice A = E = m11, which means that the tail is

defined by the sign of the LD parameter D, similar to the previous Section.

The critical region for any two-sided test at level α is defined by probabilities

α1 = wLα and α2 = wRα, with the weights of the two tails wL + wR = 1.

The two-sided test corresponding to the conditional p-value corresponds to

the choice of weights wL and wR as in definition 4.2.1.

Lemma 1 from Kulinskaya (2008) ensures that equivalent 1-sided tests are

transformed into equivalent 2-sided tests when the conditional p-value pC(x|E)
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is used. This is true because the conditional p-value ignores any equivalence

between the points at different tails. Therefore all five statistics FP , LR, |r|,
|D′| and |Q| discussed in Section 4.1 for LD testing result in the same 2-sided

tests when the conditional p-value is used (as we saw in Section 3, these all

give equivalent 1-sided tests).

The conditional p-values are included in Table 2 for the Example in the pre-

vious Section. The table with n11 = 0 is on the left tail and pC(0|E) =

0.143/0.521 = 0.274. The tables with n11 = 4 and 5 are on the right

tail, and the p-values are pC(4|E) = 0.019/0.479 = 0.041 and pC(5|E) =

0.001/0.479 = 0.002. The conclusions coincide with those from the three

standard tests but the p-values are noticeably larger.

4.3 Large sample behaviour of exact tests for LD

The differences between p-values obtained using different LD measures re-

main for large sample sizes. Figure 1 shows the two-sided p-values from the

three standard tests (Fisher’s, Likelihood ratio and correlation-based) and

the conditional p-values for two different null distributions with large sample

sizes (n = 500 and n = 1000). It is clear that there are still considerable dif-

ferences between the p-values from different tests. In some cases this would

lead to different conclusions being drawn from the different tests.

The null distributions used for the illustration here have the same ratios of

margins to sample size n1+ : n+1 : n, but different tests give larger p-values

in the two cases. We have not been able to discern a pattern in the behaviour
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of the p-values from these four tests as sample size increases.

Figure 2 shows the p-values based on D′ and Yule’s Q, with Fisher’s p-

values for comparison, for two null distributions with sample size 1000. Here

there are very large differences between the p-values. In the very skewed

case, (n1+, n+1, n) = (20, 50, 1000), the D′ and Q p-values can never be

small enough for any observation to reject the null hypothesis, though there

are tables with very small probabilities under the null, which would lead to

rejection of the null hypothesis if Fisher’s test were used. In the less skewed

case, (n1+, n+1, n) = (130, 150, 1000), the p-values from Yule’s Q are closer

to the Fisher’s p-values, but the D′ p-values still show very large differences.

The D′ and Yule’s Q p-values become closer to the Fisher’s p-values as sam-

ple size increases, but for any given sample size there will always be null

distributions too skewed to be rejected regardless of observations using the

D′ and Q tests.

The reason for the large |D′| and |Q| p-values in the skewed case is because

both these statistics are scaled in such a way that the tables at the two

extremes (those with the smallest and largest values of n11) have statistics

with absolute value close to 1. This scaling means that the tables at the two

extremes are effectively given similar weights in the hypothesis tests. Hence

the tables with small n11, which in the skewed case have high probability

under the null, contribute to the p-values for tables with large n11. This

results in large p-values for tables with large n11, despite the fact that these

tables actually have very small probabilities under the null hypothesis. These

results reflect the fact that |D′| is less powerful to detect LD when a rare
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Figure 1: Two-sided p-values for the three standard LD measures and the

conditional p-values, for all possible values of n11 under two different null

distributions. Left: (n1+, n+1, n) = (65, 75, 500). Right: (n1+, n+1, n) =

(130, 150, 1000). Symbols used are: 1 Fisher’s p-values, 2 Likelihood ratio

test p-values, 3 correlation-based p-values, 6 conditional p-values. The x-axes

are limited to show the non-zero p-values. The y-axes are focused on small

p-values to enable the differences to be seen. Lines at 0.05 and 0.01 indicate

the thresholds traditionally used to assess significance.
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Figure 2: Two-sided p-values for the Fisher’s test and for the tests based

on D′ and Yule’s Q, for all possible values of n11 under two different null

distributions. Left: (n1+, n+1, n) = (130, 150, 1000). Right: (n1+, n+1, n) =

(20, 50, 1000). Symbols used are: 1 Fisher’s p-values, 4 p-values based on D′,

5 p-values based on Yule’s Q.
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allele is associated with another rare allele or a very common allele.

5 Application to genetic marker sets

We apply the tests for LD to two data sets. The first is a set of 28 2x2

tables resulting from pairwise comparisons of 8 RFLPs (restriction fragment

length polymorphisms) at the insulin receptor (INSR) locus, obtained from

228 independent haplotypes (Elbein, 1992). Seven RFLPs were examined

in all 228 haplotypes and an additional RFLP was included for 172 of the

haplotypes. Thus 7 tables have sample size n = 172 and the remaining 21

have n = 228. The tables do not in general have the same margins, so the

null distributions are different.

The second data set is another set of 28 comparisons of 8 RFLPs, this time

at the phenylalanine hydroxylase locus, from 33 families with at least one

phenylketonuric (PKU) child (Chakraborty et al., 1987). Independent hap-

lotypes were obtained from 66 parents, 33 with the PKU mutation and 33

without. Thus the sample size n is 66 for all tables, again with different null

distributions. PKU and non-PKU haplotypes were analysed separately.

Figure 3 shows the results of the different tests of linkage disequilibrium

for the Elbein data set, controlling the false discovery rate at 5% using the

Benjamini & Hochberg (1995) procedure. The lower panel shows the different

p-values for the 28 tables, with the tables arranged along the x-axis in order

of increasing Fisher’s p-value. The upper panel indicates with crosses for
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Figure 3: Six different LD tests for the Elbein data (28 2x2 tables). Upper

panel indicates for which tables the null hypothesis of no LD is rejected,

controlling the false discovery rate at 5% (crosses indicate rejection of the

null). Lower panel shows the two-sided p-values from all tests. Symbols used

are: 1 Fisher’s p-values, 2 Likelihood ratio test p-values, 3 correlation-based

p-values, 4 p-values based on D′, 5 p-values based on Yule’s Q, 6 conditional

p-values. Tables are ordered by increasing Fisher’s p-value.
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Figure 4: Six different LD tests for the Chakraborty data (PKU only). Plot

format as Figure 3.

which tables the null hypothesis is rejected. In this case the three standard

tests (Fisher’s, Likelihood ratio and correlation-based) reject the null for

different sets of tables. The conditional p-value provides the same results

as the Likelihood ratio test, D′ and Q, and the correlation-based test is the

most conservative for this data.

Figures 4 and 5 show the equivalent plots for the Chakraborty data, with

PKU and non-PKU analysed separately (as in the original work). In both

cases the three standard tests give equivalent inference. The tests based on

D′ and Yule’s Q give the same results as each other, and the conditional test
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Plot format as Figure 3.
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is different again. In both cases it is more conservative than the standard

three tests for this data.

All three data sets contain tables which have very large D′ and Q p-values

but small p-values from all other tests. This suggests that these two measures

of LD should be used with great caution. There is no discernable pattern in

the behavior of the tests based on r, LR, Fisher, or conditional p-values. In

the Elbein data, PC-based test coincides with the majority vote of the three

standard tests; in the Chakraborty data it is the most conservative. In each

data set, and in general, it does not seem obvious which out of r, Fisher and

LR to choose; unified inference for the different LD measures based on the

conditional p-value seems a reasonable choice.

6 Testing for Hardy-Weinberg equilibrium

In this section we consider the problem of testing for Hardy-Weinberg equi-

librium (HWE). For a locus with two alleles A and a in a sample of size n

genotypes, denote by nAA, nAa, naa the observed genotypic counts. The gene

frequencies are denoted by nA = 2nAA +nAa and na = 2n−nA, with na < nA

(so na/2n is the minor allele frequency). The probability of the observed set

of heterozygotes nAa = x is (Levene, 1949)

P (x|nA) =
n!nA!(2n− nA)!2x

[(nA − x)/2]!x![n− (nA + x)/2]!(2n)!

A conditional exact test based on the fixed gene frequencies is named af-

ter Haldane (1954) though earlier publications include Levene (1949) and
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Stevens (1938). We call this distribution the Haldane distribution. The sam-

ple set is the full set of possible number of heterozygotes x which is either even

or odd numbers from 0 to na depending on whether nA (and na = 2n−nA) is

even or odd. The distribution P (x|nA) is a unimodal non-symmetric distribu-

tion with the mode (nAna− 2)/(2n+3) ≤ mode ≤ 2 + (nAna− 2)/(2n+3)

(Vithayasai, 1973). The expected values of heterozygotes under HWE is

E(nAa) = nAna/(2n−1) (Levene, 1949). A 1-sided test would reject for either

small or large values of nAa, depending on whether inbreeding (nAa < E(nAa))

or outbreeding (nAa > E(nAa)) is the alternative of interest.

The standard exact 2-sided test for HWE is based on the ordering induced

by P (x|nA). We denote the corresponding p-value by pH . The distribu-

tion of P (x|nA) is asymptotically Normal, and the search for a suitable ap-

proximation to the exact test generated numerous contenders. A list of 10

asymptotic tests all based on the chi-square(1) distribution is given by Emigh

(1980). The 2-sided tests result in differing orderings on the sample set,

and provide quite different p-values, especially for the intermediate values of

na/(nA + na) < 0.5 (Emigh, 1980). Wigginton et al. (2005) demonstrated

that the chi-square approximation results in inflated type 1 error rates in

comparison to the exact 2-sided test even for large n = 1000 when na = 100.

An efficient calculation of the exact test is given by Wigginton et al. (2005),

cancelling the rationale of using the asymptotic tests. But the definition of

the exact 2-sided test or the corresponding p-value is a problem very simi-

lar to that discussed for Fisher’s exact test for LD in the previous section.

We advocate the use of the conditional p-value pC(x|E) with the Haldane

distribution. We denote this 2-sided p-value by pHC(x).
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When na < nA the left tail of the Haldane distribution is considerably longer

and somewhat heavier than the right tail, i.e. wL > wR. See Figure 6 for

some examples. The smallest probability on the right tail (for x = na) can be

rather large, and is always larger than the probabilities for a whole interval of

small x values on the left tail. As a result the 2-sided p-value pH(x) coincides

with the p-value for the 1-sided test of inbreeding for this range of small x

values. This may lead to too many rejections. The 2-sided pHC-based test

is more conservative in this case than the standard pH-based Haldane test

and may show even more differences in the p-values with the chi-square test

than those found by Wigginton et al. (2005) for the pH test. This makes the

exact calculation paramount.

The conditional p-value is easily calculated with a minor modification of the

Wigginton et al. (2005) algorithm. This is included in our R package.

As an example, consider a case with number of genotypes n = 100 and

na = 34 (minor allele frequency 0.17) given in Table 2 of Emigh (1980). The

number of heterozygotes can be an even number from 0 to 34 (18 possible

values). The null distribution is shown in Figure 6. The mean is 28.4, and the

mode is an even number between 27.8 and 29.8, therefore equal to 28. The

left tail consists of {2y, y ≤ 14}, the weight is wL = 0.569, and the right tail

consists of only 3 values: 30, 32, and 34; the sum of the three probabilities

is wR = 0.431.

Table 3 shows the 1-sided inbreeding p-values (pin), the 2-sided Haldane and

conditional p-values. The probabilities in the right hand tail of the null

distribution are all larger than the probability of x = 22, thus the 2-sided
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Figure 6: Null densities of nAa for the two examples. Vertical lines indicate

the mean under the null.
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nAa pin(nAa) pH(nAa) pHC(nAa) nAa pin(nAa) pH(nAa) pHC(nAa)
14 < 10−4 < 10−4 < 10−4 1 < 10−4 < 10−4 < 10−4

16 0.0001 0.0001 0.0002 3 < 10−4 < 10−4 < 10−4

18 0.0011 0.0011 0.0019 5 < 10−4 < 10−4 < 10−4

20 0.0071 0.0071 0.0125 7 < 10−4 < 10−4 < 10−4

22 0.0337 0.0337 0.0593 9 < 10−4 < 10−4 0.0002
24 0.1171 0.1507 0.2058 11 0.0009 0.0009 0.0032
26 0.2991 0.4735 0.5258 13 0.0103 0.0103 0.0362
28 0.5689 1.0000 1.0000 15 0.0696 0.0696 0.2450
30 0.8256 0.7303 1.0000 17 0.2840 0.2840 1.0000
32 0.9664 0.2915 0.4045 19 0.6904 1.0000 1.0000
34 1.000 0.0674 0.0780 21 1.000 0.5936 0.4324

Table 3: Left: 1-sided inbreeding p-values, 2-sided Haldane and conditional

p-values for the first example, for nAa between 14 and 34. Lower values of

nAa have p-values of less than 10−4 in both cases. Right: Similar for the

second example.

pH values up to x = 22 coincide with the 1-sided p-values. In particular,

pH(20) = P (x ≤ 20) = 0.007 and pH(22) = P (x ≤ 22) = 0.034. Using the

conditional 2-sided test the p-values are almost doubled.

Next comes the most extreme point in the right hand tail, with probability

P (34|34) = 0.0336 and 2-sided pH p-value of pH(34) = 0.067. This is the

standard situation commented upon in Emigh (1980): the exact 2-sided test

at α = 0.05 level is equivalent to the 1-sided test for inbreeding, and cannot

detect outbreeding. The latter cannot be helped due to the large probabilities

on the right tail, but the lack of any penalty for using a 2-sided test instead

of a 1-sided test for inbreeding seems wrong. If the conditional 2-sided test

is used instead, the p-value is pHC(34) = 0.0336/0.431 = 0.078.
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An even more extreme example for n = 100, na = 21 (minor allele frequency

0.11) is considered by Wigginton et al. (2005). In their example the expected

value E(nAa) = 18.89, and there are only two points on the right tail with

probabilities P (19|21) = 0.406 and P (21|21) = 0.310 (see Figure 1). The 2-

sided pH test is equivalent to the test for inbreeding for all points on the left

tail x ≤ 17 because the largest probability on the left tail is P (17|21) = 0.214.

Since the weight of the left tail is wL = 0.284, the pHC values are 3.52 times

larger.

As the sample size increases, the differences between the conditional p-values

and the two-sided Haldane p-values grow smaller. However for genes with

small minor allele frequency, there can still be differences for substantial

sample sizes. For example, with 500 genotypes and a minor allele frequency

of 0.05 (n = 500, na = 50) the conditional p-values for the left hand tail are

approximately twice the Haldane p-values.

7 Discussion

The routine genetics problems such as testing for Hardy-Weinberg and link-

age disequilibrium give rise to non-trivial statistical issues. This is due to

the fact that the underlying distributions are discrete and non-symmetric.

We believe that the two-sided tests for LD and HWE are over- and misused.

We showed that the usage of the two-sided tests is not necessitated by the

invariance to relabelling. The 1-sided tests should be used when the direction
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of the association is known from prior research or is of particular interest.

All 1-sided tests for LD are equivalent.

An important example is the fine-mapping of a disease-susceptibility locus.

This can be achieved by testing for LD between disease and marker loci, or

(for both recessive and additive disease model) by testing for HWE amongst

cases only at a marker locus (Feder et al., 1996; Nielsen et al., 1999; Song &

Elston, 2006). For recessive disease model, excess homozygosity convention-

ally indicating inbreeding indicates the proximity to the disease locus (Feder

et al., 1996). In a general disease model, the direction of deviation from HWE

is completely defined by the model (Nielsen et al., 1999; Wittke-Thompson

et al., 2005; Zheng & Ng, 2008). Therefore for Mendelian diseases the di-

rection of interest is usually known, and exact 1-sided tests are considerably

more powerful than any two-sided tests, including the traditional chi-square

test. The use of two-sided tests makes sense only for complex diseases where

this direction may be unknown.

We showed the non-equivalence of the most popular 2-sided tests for LD, such

as the Fisher’s exact test, the exact chi-square and likelihood ratio tests, and

the discrepancies in their results with those from the most popular measures

of LD. An important conclusion of this paper is that a choice of a 2-sided test

for LD should be based on a measure of interest to a researcher. To influence

the practice, we provide the R package which calculates 6 exact tests based

on the most popular measures of LD.

Two-sided statistical tests and p-values are well defined only when the test
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statistic in question has a symmetric distribution. Then the doubled 1-sided

p-value makes perfect sense. But for non-symmetric distributions such as

hypergeometric and Haldane distributions used in testing for LD or HWE,

respectively, there is no consensus on how the 2-sided p-value should be

defined.

We advocate the use of the conditional p-value introduced by Kulinskaya

(2008) for both LD and HWE testing. This is the p-value given the tail.

It weighs the tails inversely proportionate to their probabilities. In other

words, it evaluates how unusual the observed value is given the direction of

departure from the null hypothesis. It does not add up the probabilities of

values at opposite direction. Given the importance of the direction for both

LD and HWE, this has an intuitive appeal for a geneticist. An important

advantage of this p-value bf from a statistical point of view is that equivalent

1-sided tests are transformed into equivalent 2-sided tests. When testing for

LD, this means that all tests for LD provide the same results. For quality

control, where markers are selected by comparing p-values to a threshold

value, this unification means that the sets of markers selected are consistent,

whichever LD measure is used. Our R package includes these conditional

tests for both LD and HWE.

The tests considered in this paper are conditional exact tests. The distri-

butions are conditional on the total gene frequencies. A different class of

exact tests are unconditional tests. For LD, the conditional tests are based

on the hypergeometric distribution; the most popular representative of this

class is Fisher’s exact test. Unconditional tests go back to Barnard (1947)
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and are, in general, less accepted. Unconditional tests may be more pow-

erful and therefore require smaller sample sizes than the conditional tests

(Suissa & Shuster, 1985), but their power largely depends on the chosen test

statistic and a poor choice can result in a less powerfull analysis in compari-

son to conditional tests (Mehrotra et al., 2003). For LD exact unconditional

tests for the difference in two binomial proportions implemented in StatX-

act (www.cytel.com) can be used. For the HWE an unconditional exact test

based on the chi-square statistic is given in Haber (1994). Another test based

on the Bayes factor was suggested by Montoya-Delgado et al. (2001). Both

tests are two-sided by design. There also exists a considerable literature on

the Bayesian methods in LD and HWE (Shoemaker et al., 1998; Sebastiani

& Abad-Grau, 2007) among others. The effect of the choice of LD parameter

is explicit in a Bayesian analysis, as this must be specified as part of a model.

Additionally the choice of prior may affect the inference. The specific issue

discussed in this paper regarding definition of the p-value arises from the

different possible orderings of 2x2 tables that might be observed under the

null hypothesis. This issue does not arise in Bayesian analysis as inference is

conditional upon the observed 2x2 table.

Another important statistical issue, only mentioned in passing in Section

5, is the multiplicity of tests when testing for LD or HWE. Family-wise

error rate procedures, such as Bonferroni, are much too stringent. False

discovery rate (FDR) based procedures (Benjamini & Hochberg, 1995) are

more suitable. An important advantage of the conditional p-value in this

context is that it has discrete uniform distribution at each tail under the

null hypothesis of equilibrium. This enables its use in fuzzy FDR procedures

30



introduced for discrete distributions by Kulinskaya & Lewin (2008), resulting

in the comprehensive statistical approach to LD and HWE testing. The finer

details of this approach to multiple testing in genetics are to be described

elsewhere.
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