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Summary

We present a Bayesian hierarchical model for detecting differentially expressing genes

that includes simultaneous estimation of array effects, and show how to use the output

for choosing lists of genes for further investigation. We give empirical evidence that

expression-level dependent array effects are needed, and explore different non-linear

functions as part of our model-based approach to normalization. The model includes

gene-specific variances but imposes some necessary shrinkage through a hierarchical

structure. Model criticism via posterior predictive checks is discussed. Modelling the

array effects (normalization) simultaneously with differential expression gives fewer false

positive results. To choose a list of genes, we propose to combine various criteria (for

instance, fold change and overall expression) into a single indicator variable for each

gene. The posterior distribution of these variables is used to pick the list of genes,

thereby taking into account uncertainty in parameter estimates. In an application to
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mouse knockout data, Gene Ontology annotations over and under-represented amongst

the genes on the chosen list are consistent with biological expectations.

Key words: Microarray; Differential Expression; Normalization; Bayesian analysis;

Hierarchical model; Model checks; MCMC; WinBUGS

1. Introduction

Analysing gene expression data is a complex process due to the many sources of vari-

ability, both obscuring and interesting, that combine to produce the recorded level of

transcription. Reviews of the underlying biological process have been written by many

authors (e.g. Nguyen et al., 2002, and references therein). In this paper we are concerned

with modelling differential gene expression between two experimental conditions.

In early studies, differential gene expression was assessed using the fold change of

genes under different conditions (Chen, Dougherty, & Bittner, 1997). This is straight-

forward, but as genes are known to vary widely under different conditions, raw fold

change measures are not directly comparable between genes. Recently, differential ex-

pression has been assessed using standardised fold change, which is the fold change

divided by an estimate of its variability (e.g. Tusher, Tibshirani, & Gilbert, 2001).

One recognised difficulty is that most microarray experiments have very small num-

bers of replicate arrays. In order to obtain stable results, further assumptions are

needed on the variability of gene expression between replicates under the same con-

dition. The SAM method (Tusher et al., 2001) shrinks the raw variance estimates by

adding a constant to the estimated standard deviation. Lönnstedt & Speed (2003) use

a hierarchical model with exchangeable gene variances to shrink the variance estimates.

As well as the uncertainty in expression due to biological variability, there are sys-

tematic effects in gene expression measurements due to differences between arrays. Ad-

justment for this is known as normalization. In many cases, it has been found necessary
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to go beyond simple (constant) normalization procedures and to make this adjustment

dependent on the level of expression (Schadt et al., 2000), and various algorithms have

been proposed to deal with this (e.g. Schadt et al., 2000; Kepler, Crosby, & Morgan,

2002; Workman et al., 2002) in a pre-processing step of the analysis.

In this paper, we propose an integrated statistical approach where intrinsic biological

variability, systematic array effects and differential expression are modelled simultane-

ously. Our starting point is an ANOVA formulation, as suggested by Kerr, Martin, &

Churchill (2000). This is the first level of a Bayesian hierarchical model, the distribu-

tion of the gene variances being modelled at the next level. We estimate our model in a

fully Bayesian way, with the WinBUGS software (Spiegelhalter, Thomas, & Best, 1999).

This enables us to obtain the posterior distribution of any parameter in the model and

any function of parameters. We show how to exploit these posterior distributions to

assess differential expression in a new way, using multiple criteria. The uncertainty in

parameter estimates is thereby incorporated in a natural manner into a declared list of

interesting genes. A Bayesian estimate of the false discovery rate (FDR; Benjamini &

Hochberg, 1995; Storey, 2002) is used to find a reasonable cut-off point on the list.

Several people have carried out Empirical Bayes analysis on microarray data (Efron

et al., 2001; Lönnstedt & Speed, 2003; Newton et al., 2004). Other fully Bayesian

approaches include Ishwaran & Rao (2003) and Bhattacharjee et al. (2004).

Details of the data used to motivate the model in this paper are given in Section 2.

Our integrated model for differential expression is presented in Section 3. The model is

justified with exploratory work and model checks in Section 4. Section 5 discusses the

advantages of the integrated model over a two-step procedure where data is normalized

in a pre-processing step. Results obtained from implementing the full model on our

data set, with discussion of FDR, decision rules and Gene Ontology annotations, are
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given in Section 6. We conclude with a brief discussion.

2. Data

The Cd36 gene has been found to play an important role in the syndrome of insulin-

resistance (Aitman et al., 1999). Cd36-deficient mice and rats have defective metabolism

of fatty acids and triglycerides. The data used in this paper derives from a set of

experiments on three wildtype mice and three mice with Cd36 removed (Febbraio et al.,

1999). Samples of peritoneal fat were taken from each animal. RNA from the 6 samples

was hybridized on Affymetrix U74A-C chips, making a total of 18 microarrays.

The exploratory work in Section 4 was done on all 18 arrays. Results in Section 6

are shown for the U74A chip data (6 arrays). This set of data can be thought of as

3 repeat measurements of 2 conditions (wildtype and knockout) for each of the 12488

genes represented on the U74A chip. One gene with three identical measurements under

one condition is excluded from our analysis, as our model estimates variances on the

log scale, thus the dataset used in Section 6 contains 12487 genes.

The expression data we use are the output of the Affymetrix MAS 5.0 software

(Hubbell, Liu, & Rui, 2002). Since the distribution of these values is strongly skewed,

we model them on the log scale. There has been much work done on alternative data

transformations, mostly variants on the log transformation (e.g. Huber et al., 2002). We

use the log transformation for simplicity, but other transformations could be considered.

The log transformation has the advantage that the parameter δg defined in the next

section can be interpreted as the log fold difference.

3. Bayesian Hierarchical Model for Differential Expression

3.1 The Model

We start with an ANOVA model, as suggested by Kerr et al. (2000), where log gene

expression ygsr for gene g, condition s = 1, 2 and replicate r is modelled with additive
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effects for gene and array:

yg1r ∼ N(αg − 1

2
δg + βg1r, σ

2
g1)

yg2r ∼ N(αg +
1

2
δg + βg2r, σ

2
g2) (1)

where αg is the gene effect or overall expression level, βgsr is the array effect (this

normalizes the arrays) that depends on g through αg (see below), and σ2
gs is the gene-

specific variance for condition s. The differential effect between conditions is δg.

The array effect is a function of the expression level, βgsr = fsr(αg). For flexibility,

we choose fsr to be a quadratic spline:

βgsr = b
(0)
sr0 + b

(1)
sr0(αg − a0) + b

(2)
sr0(αg − a0)

2 +
K∑

k=1

b
(2)
srk(αg − asrk)

2I[αg ≥ asrk] (2)

where the polynomial coefficients b
(p)
srk and knots asrk are unknown parameters which

are estimated as part of the model. The number of knots K is fixed (but sensitivity to

different choices of K can be investigated as part of model checking).

The equations (1) and (2) define the first level of the hierarchical model. At the sec-

ond level, information is shared between genes to stabilise the variances. The variances

are modelled as exchangeable within each condition, i.e. the variances are assumed to

come from a common distribution, chosen here to be log Normal:

σ2
gs ∼ logNorm(µs, η

2
s). (3)

The third level of the model specifies prior distributions for all the unknown para-

meters, which are intended to be non-informative. The gene-effects αg and knots asrk

are Uniformly distributed on (a0, aK+1) where a0 and aK+1 are fixed lower and upper

limits (chosen to be wide enough not to affect the results). Polynomial coefficients b
(p)
srk

have independent N(0, 102) priors and the hyperparameters µs and η−2
s have N(0, 103)
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and Gamma(10−2, 10−2) priors respectively. In this work, the differential effects δg are

given independent N(0, 104) priors.

The model in equation (1) is unidentifiable as it stands, since constants can be

transferred between the gene, array and differential effects for each gene, so constraints

must be imposed on the parameters. Our choice is to normalize in a non-linear way

within each condition by setting β̄gs. = 0 ∀ g, s, where the dot indicates that we are

taking an average over the index r. This fully identifies the model. Normalizing using

all genes within condition seems reasonable, as we do not expect systematic differences

between genes on replicate arrays.

3.2 Confounding between Array Effects and Differential Effects

In our model we normalize within each condition. Alternatively, normalization

across replicates and conditions is achieved by setting β̄g.. = 0 ∀g (average taken over

s and r). This set of constraints is a subset of the within condition constraints β̄gs. =

0 ∀ g, s; it is insufficient to identify the model fully. Normalization across replicates and

condition is usually completed by setting δg = 0 for some control genes (e.g. Kepler

et al., 2002). It is important to realise that normalizing across replicates and conditions

in a pre-processing step for all genes and not solely for the controls implicitly assumes

all δg = 0 which means the δg estimated in a subsequent model are mis-specified.

3.3 Implementation

We estimate the model in a fully Bayesian way, using the WinBUGS software

(Spiegelhalter et al., 1999) to perform Monte Carlo Markov Chain (MCMC) simulations

of the posterior distribution. The WinBUGS code is given in the supplementary mater-

ial. The constraints β̄gs. = 0 are imposed by defining quantities zgs ∼ N(β̄gs., 10−6) and

giving the program “dummy data” zgs which are equal to zero for all g and s. Since

the variance of the zgs is so small (10−6) this construct forces the β̄gs. to be very close
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to zero (e.g. for the U74A wildtype data the maximum β̄gs. = 4× 10−4).

We allow 10,000 iterations for the sampler to converge and another 10,000 for sam-

pling the joint posterior. Convergence is checked visually and by using several starting

points. The 10,000 posterior samples are thinned to 1000 for estimating the posterior

distribution of quantities of interest. For each of the parameters αg, δg, βgsr, σ
2
gs the

Monte Carlo errors (as estimated using the batch method in WinBUGS) are around

3% of posterior standard deviation for most genes, less than 5% for 99% of the genes,

and less than 7% for all genes. In Sections 4.2, 5 and 6 we use predictive p-values and

posterior probabilities, which are estimated by means of indicator functions. For all

genes, the MC errors for these quantities are less than 5%, except for the genes with

posterior probability very close to zero, which have larger errors. For our purposes we

are not interested in genes with very low probability, however.

The WinBUGS software is particularly user friendly, but due to its general purpose

nature can be slow for treating the very large data sets common in genomics applica-

tions. For the full model processing 74,922 data points, 1000 iterations take 2 hours 50

minutes on a dual processor 2.4 GHz machine running version 1.4 of WinBUGS under

Windows. In the future, we will develop faster, purpose built code.

3.4 Rules for Selecting Genes

As we obtain the joint posterior distribution of all parameters, a rich variety of

inference criteria can be used. The main biological quantities of interest are the differ-

ential effects δg and the overall level of expression αg. In the spirit of a volcano plot,

we propose to use the joint posterior on both these parameters to pick genes:

pg ≡ P(|δg| > δcut and αg > αcut| data ) (4)

Genes are selected if pg ≥ pcut. This rule is used in Section 6 to analyse our data

set. In Section 5, on simulated data, we use a simpler decision rule based only on the
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differential effects: if we define p
′
g ≡ P(δg > δcut), we declare genes positive if p

′
g ≥ pcut.

These posterior probabilities are easily estimated by counting the proportion of MCMC

samples for which the chosen criteria are true.

The choice of δcut and αcut correspond to statements of biological interest. The

choice of pcut is determined by the evaluation of the False Discovery Rate (and/or False

Non-discovery Rate), see Section 6.

4. Model Checking

In this section, we present analyses carried out on biological replicate data. These

consist of 3 repeat measurements for each gene, obtained from the same strain of mouse

under the same experimental condition. The estimated model is thus as given in Section

3 but restricted to one condition (s = 1), with δg = 0. We carried out the exploratory

work in this simpler setting to focus on array effects and not on differential effects.

Results are displayed here for one particular set of 3 arrays, the wildtype data on chip

U74A, but we reached similar conclusions for the other replicate data sets in this study.

4.1 Exploratory Analysis of Array Effects

We explore the form of the array effects by splitting the data into equal sized groups

based on average expression level across the 3 arrays. In order to have a sufficient

number of genes per group, we split the genes into 6 groups. For each group j, we fit

a model with constant array effect βj1r and variances σ2
j1, j ∈ {1, ..., 6},

yg1r ∼ N(αg + βj1r, σ
2
j1). (5)

The array effects are subject to the constraints β̄j1. = 0 to ensure identifiability.

The posterior mean of the array effects for the 6 groups, βj(g)1r, are shown as hor-

izontal straight lines in the left hand panel of Figure 1, plotted against the expression

levels αg. The array effects show a clear non-linear trend with expression level, not
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compatible with random fluctuations around a constant effect. We have found similar

patterns in all sets of three replicated arrays studied. Similarly, Schadt et al. (2000)

looked at a large number of Affymetrix data sets and found many array pairs needed a

non-linear normalization effect. FIGURE 1 ABOUT HERE

The array effects shown in Figure 1 cross over each other. This means that, on the

same array, if genes with relatively low expression are normalized upwards, genes with

relatively high expression are normalized downwards, and vice versa. A constant array

effect would normalize all genes either upwards or downwards together, and so would

give qualitatively different results.

We include expression level dependent normalization in our model using equations

(1) and (2). For the U74A wildtype data set, we have fitted (2) using three different

functions for fsr(αg), a single quadratic, a quadratic spline with one knot and a single

cubic:

βgsr = b
(0)
sr0 + b

(1)
sr0(αg − a0) + b

(2)
sr0(αg − a0)

2 + b
(3)
sr0(αg − a0)

3. (6)

All give similar looking results and are superimposed on the cubic curves which are

shown in Figure 1 (middle panel). In order to inform our choice of f(.) in (2), we

used the deviance information criterion (DIC) proposed by Spiegelhalter et al. (2002),

designed to assess fit versus complexity of different models. For this data, the single

cubic has the lowest DIC value of the three. In all our subsequent results for this data

set, we therefore use the model with cubic array effects, though we recommend starting

with the spline form in equation (2) as a more general non-linear function.

4.2 Predictive Checks on Prior for Gene Variances

The Bayesian setting has the desirable feature of allowing us to criticise various

aspects of the model from a predictive point of view. Here we choose to investigate

the prior distribution of the gene variances as it is an important aspect of the model.
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We consider 4 possibilities: an “equal variance model” where σ2
gs ≡ σ2

s and σ2
s ∼

logNorm(0, 104), the exchangeable log Normal variance model presented in Section 3, an

exchangeable variance model with a 1-parameter Gamma distribution on the variances:

σ−2
gs ∼ Gam(2, βprior

s ); βprior
s ∼ Gam(10−2, 10−2) and an exchangeable model with a

2-parameter Gamma: σ−2
gs ∼ Gam(αprior

s , βprior
s ); αprior

s ∼ Gam(10−2, 10−2); βprior
s ∼

Gam(10−2, 10−2). A plot of the smoothed variances (using the exchangeable log Normal

prior) showing the amount of shrinkage is given in the supplementary material.

In order to assess the fit of the variance part of each model, we compare, by way

of a Bayesian “p-value”, the observed sample variance for each gene (calculated on the

3 replicates) to that evaluated using predictive values for each gene under the model.

The distribution of p-values for all 12487 genes is then used to assess the overall fit of

the variance part of the model.

For the equal variance model, we use posterior predictive p-values (Gelman, Meng,

& Stern, 1996), taking the sample variance as the discrepancy measure. For each gene,

new data for the r replicates is predicted from the model, y
(pred)
gsr ∼ N(αg + fsr(αg), σ

2
s),

and the predicted sample variance S
2(pred)
gs calculated. For the exchangeable mod-

els, we use mixed predictive p-values (Gelman et al., 1996; Marshall & Spiegelhalter,

2003). These differ from posterior predictive p-values in that a new variance para-

meter σ
2(pred)
gs is first predicted for each gene, and secondly new data is predicted:

y
(pred)
gsr ∼ N(αg + fsr(αg), σ

2(pred)
gs ). In each case the distribution of the predicted sample

variance is compared to the observed sample variance, S
2(obs)
gs , by computing a p-value

P(S
2(pred)
gs > S

2(obs)
gs ). The supplementary material includes a directed acyclic graph for

both exchangeable and equal variance models that highlights the difference between

mixed and posterior predictive p-values.

Under the null hypothesis of the model being “true”, the distribution of the p-
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values is almost uniform (Bayarri & Berger, 2000). Since the data from a particular gene

influences its prediction, the p-values are shrunk towards 0.5, i.e. they are conservative.

Mixed predictive checks have been shown to be much less conservative than posterior

predictive checks (Marshall & Spiegelhalter, 2003). FIGURE 2 ABOUT HERE

Figure 2 shows histograms of the p-values for the 4 models for the wildtype data

(s = 1) on chip U74A. The equal variance model has a large number of small and

large p-values, indicating that this model does not allow enough variability for the

data. If these p-values were corrected for their conservativeness, they would show even

stronger evidence against the equal variance model. The exchangeable variance models

fit the data much better. Having only 1 parameter in the prior for the variances still

does not allow enough variability, but with 2 parameters both Gamma and log Normal

priors seem adequate. Furthermore, there are no extremely small p-values (which would

indicate individual outlying genes). We are therefore confident that the exchangeable

variance model we propose in Section 3 is appropriate for this data set.

5. Comparison of Integrated and Non-integrated Analyses

The problem of estimating functions of the gene effects simultaneously with the gene

effects themselves is similar to a measurement error problem, where covariates in a

regression are not measured accurately but have some unknown variability. It is well

known that in such problems ignoring this variability leads to a bias in estimates of

regression coefficients (e.g. Carroll et al., 1995). Therefore, we would expect to obtain

biased estimates of the array effects if they are estimated in a pre-processing step, which

in turn will lead to worse estimates of the differential effects δg. To illustrate this, we

compare the results from the full model with those found by pre-normalizing the data

using array effects from local regression smoothing (loess).

We simulate a microarray data set with 1000 genes and 3 repeat arrays under 2
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conditions. The gene effects αg range uniformly between 0 and 10, and the array effects

are functions of the gene effects:

βgsr = 5× 10−3 × (xgsr − x̄gs.) (7)

where xg11, xg12, xg13, xg21, xg22, xg23 are (αg − 5)3,−5(0.3αg − 4)3, 2(αg − 5.5)3,−(αg −
4)3, 5(0.05αg − 7)3 + 103, 2(αg − 5.5)3 respectively. The gene variances are simulated

from the model we fit (equation 3), with µ1 = −1.8, µ2 = −2.2, η2
s = 1 for s = 1, 2,

giving a similar range of variances to those we observed in the real data. The differential

effects δg are zero for 900 genes, N(log(3), 0.12) for 50 genes and N(− log(3), 0.12) for

the other 50 with the differentially expressed genes uniformly spread over the range of

αg. The right hand panel of Figure 1 shows the array effects and data points for one set

of three simulated arrays. The middle panel shows the same plot for the mouse data

set used in Section 4.1, using posterior means for the array effects.

To calculate loess estimates of array effects, we use the R function “loess” with

ygsr − ȳgs. as a function of ȳg... The array effects β̂loess
gsr are the values of the loess curve

for sample s and array r predicted at ȳg...

We have performed 5 simulations of the above set-up. For each of the 6 arrays we

obtain the mean square error (MSE)
∑

g(β̂
est
gsr − βtrue

gsr )2 for both the loess array effects

and for those found in the full model. In 28 out of the 30 array-simulations, the loess

MSE is bigger than the full-model MSE. The ratios of loess MSE to full-model MSE for

the 6 arrays are 1.5, 1.3, 1.2, 1.2, 1.4, 1.3 (averages for the 5 simulations). As expected,

the integrated model obtains estimates of the array effects closer to the true values than

those found by loess smoothing.

The quantities of real interest are the differential effects δg. In order to assess the

effect on these of using a pre-processing step, we fit a model where we pre-normalize

the data by subtracting point estimates of the array effects: y
′
gsr ≡ ygsr − β̂gsr, and
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run our model as in Section 3 without array effects. We have done this for 2 different

cases: the first with β̂gsr = β̂loess
gsr and the second with β̂gsr = E(βgsr| data ) from the

full model.

The δg found by using the two pre-normalized models are very close. The differ-

ences between the loess procedure and the full model do not come from the way the

array effects are computed but from using a two step procedure as opposed to the

full integrated model. Here we show the results from the pre-normalized model using

β̂gsr = β̂loess
gsr since this is what is usually done in practice. FIGURE 3 ABOUT HERE

We use the simpler rule proposed in Section 3.4 to pick a list of genes: if P(δg >

δcut| data ) ≥ pcut then gene g is selected. Based on this, we can calculate the number

of false positives and negatives. Figure 3 shows the observed false discovery rate (FDR:

the number of false positives divided by the number of genes declared positive), and the

analogous false non-discovery rate (FNR), for both the full and pre-normalized models,

as a function of the cut-off probability pcut, for a choice of δcut = log(3). Graphs shown

are curves averaged over the 5 simulations. The full and pre-normalized models have

very similar FNR (only a small fraction of genes are differentially expressed), while the

FDR is consistently lower for the integrated model than for the pre-normalized model.

The difference shown here between the full and pre-normalized models is fairly small,

as the simulation is inspired by the data we use in this paper, which has small array

effects. In general, the larger the magnitude of array effects, the larger the difference

between the pre-normalized and integrated models.

6. Application to Mouse Data set

6.1 Discussion of Decision Rules

So far we have concentrated on producing a flexible model, well-grounded in the

data. Here we discuss the output of the model applied to the data set discussed in
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Section 2 and illustrate our chosen decision rule. The results shown use a subset of the

arrays from the full study (wildtype and knock-out mice on U74A chips) in order to

illustrate the generic methodology we propose.

Figure 4 shows point estimates of log fold change E(δg| data ) versus overall expres-

sion E(αg| data ). It can be seen that genes with low overall expression have a greater

range of fold change than those with higher expression. For this reason, it is appropriate

to use the rule proposed in Section 3.4 (Equation 4) where pg ≡ P(|δg| > δcut and αg >

αcut| data ) and genes are selected if pg ≥ pcut. We use αcut = 4 as this corresponds to

a background level of 54 on the original scale of the data, and δcut = ln(2) as this is a

(conservative) value often used in microarray analysis. FIGURE 4 ABOUT HERE

Genes with probability pg greater than 0.5 and 0.8 are highlighted in Figure 4. There

are 280 genes with pg ≥ 0.5, 140 over-expressed and 140 under-expressed, and 46 with

pg ≥ 0.8, 30 over-expressed and 16 under-expressed. The gene Cd36, which is expected

to be under-expressed in this data, is also marked in Figure 4. It stands out clearly

from the bulk of the genes. The value of pg for Cd36 is 0.49.

To determine an appropriate probability cut-off pcut, we can calculate an estimate

of the false discovery rate (FDR) based on the decision rule above. Here δcut and

αcut determine H0 (so must be chosen beforehand). This type of null distribution is

similar to those used in bioequivalence studies, where a cut-off is chosen to indicate a

biologically relevant difference (e.g. Bickel, 2004). It is a composite hypothesis rather

than the more usual point hypothesis. We estimate the FDR as in Newton et al.

(2004), by 1
|S(pcut)|

∑
g∈S(pcut)

(1− pg), where S(pcut) is the group of genes with pg ≥ pcut

and |S(pcut)| denotes its cardinality. The analogous false non-discovery rate (FNR) is

estimated in a similar way. An FDR of 10% corresponds to a probability cut-off of 0.83.

The number of genes obtained using this cut-off is 33 and the estimated FNR in this
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case is 7%. These values depend on the chosen δcut and αcut, of course, which determine

the null hypothesis under consideration.

The quantities pg are a convenient way to combine biological significance with sta-

tistical significance. Statistical significance is ensured in the usual way through use

of the posterior probability. The pg increase with the standardised log fold difference

tg ≡ E( δg√
(σ2

g1+σ2
g2)/3

| data ), which is analogous to a t-statistic (though using shrunken

variance estimates), so requiring high pg is partly similar to performing a t-test (see

Figure 5). The biological significance is determined by the cut-off on the fold differ-

ence δcut. If genes were selected using only tg, many genes with low fold difference

would be declared as statistically significant. For example, there are 118 genes above

background (E(αg| data ) > 4) with |tg| ≥ 2.78 (corresponding to a 95% confidence

interval for a t-test with 4 degrees of freedom). These genes are shown as green tri-

angles in Figure 5). Of these, a large proportion (32/118) have low fold difference

|E(δg| data )| < log(2). This can be seen in the left hand panel of Figure 5: the vertical

lines mark |E(δg| data )| = log(2). FIGURE 5 ABOUT HERE

6.2 Analysis of Gene Ontology terms

In order to illustrate the biological significance of the genes found by the above

rule (Equation 4), we compare the Gene Ontology (GO) annotations of these genes

(the “query group”) with the annotations of a reference group made up of the least

differentially expressed genes. The query group is defined by pg ≥ 0.5, giving 280

genes. The reference group is all genes with pg ≤ 0.2 (11171 genes). When these lists

are reduced to genes with both Gene Symbol and GO annotation, we retain 95 query

versus 4931 reference genes.

The Gene Ontology can be represented as a directed acyclic graph relating biolog-

ical terms of different degrees of specificity, with directed links from less specific to
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more specific terms. Each term can have several parents (broader related terms) and

children (more specific related terms). Annotation of a gene to any given term A im-

plies automatic annotation to all ancestors of A (the set of broader terms related to

A by directed paths). For each GO term we perform a Fisher’s exact test using the

FatiGO website (Al-Shahrour et al., 2004), to compare the proportions of genes in the

query and reference groups annotated to that term. Our definition of a GO term being

“significant” is a p-value less than 0.05 and (for terms over-represented in the query

group) annotations for 3 or more genes on the query list. For this interpretative step

we do not use multiple testing corrections as there is a large amount of dependency

between tests, due both to genes being annotated in several categories and to the graph

structure of the Gene Ontology. Since we use a conservative criterion in our definition

of pg this seems reasonable. TABLE 1 ABOUT HERE

The left-hand column of Table 1 shows the most specific GO terms that are found

significant according to this criterion. The right-hand column shows the ancestors

(broader terms) in the ontology of these terms that are found significant. Also shown

are the observed and expected numbers of genes in the query group annotated to each

term. Expected numbers are calculated by multiplying the percentage of annotations

in the reference group with the number of genes in the query group.

It can be seen that many of the ancestors of “inflammatory response” are signifi-

cant (in fact only one ancestor of this term is not significant). This result is of interest

in view of the emerging observations of the importance of inflammation-related genes

in adipocyte biology (Clément et al., 2004). A graph showing the relations between

“inflammatory response” and all its ancestors is included in the supplementary ma-

terial. In addition, the significant over-representation of lipid catabolism and under-

representation of protein transport are consistent with the known biological functions
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of Cd36 in metabolism (Aitman et al., 1999).

7. Discussion

We have presented a unified Bayesian hierarchical model for differential gene expression

incorporating both non-linear array effects and exchangeable gene variances, and have

justified our functional choices by exploratory analysis. We have drawn attention to the

issue of confounding between array and differential effects, and shown how analysing

the data in a two step process can lead to a greater number of false positives. Bayesian

joint estimation of differential effects and array effects has also been carried out in a

recent paper by Bhattacharjee et al. (2004).

The Bayesian formulation enables us to obtain a much richer output from our model

than most current analyses. Our method for choosing lists of genes provides a straight-

forward way to rank genes using multiple criteria, and a suitable cut-off on the list can

be chosen based on the estimated false discovery rate.

Expert opinion is used to set suitable cut-offs on the log fold change and (optionally)

overall expression level. The “null hypothesis” formulated here is composite. If a point

null hypothesis is required, a mixture model can be used to classify genes and estimate

the FDR (Lönnstedt & Speed, 2003; Newton et al., 2004), and we intend to explore

this in further work. Another interesting fully Bayesian model has been developed by

Ishwaran & Rao (2003). Their approach is complementary to ours: we use a flat prior

on the differential effects but shrink the gene variances while they shrink the differential

effects, using a “spike and slab” variable selection approach, but use raw variances that

in their main model are not gene-specific. Gene lists are then formed using t-statistics.

One interesting alternative would be to look at distributions of gene ranks, for

instance based on fold change. Simply ranking genes based on point estimates of fold

change is not enough, as some highly ranked genes will have high variability and some
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will have low variability. By looking at the distributions of ranks (easily obtained in the

Bayesian approach) one can find the highly ranked genes with the lowest variability.

The probability statements made so far have been on a gene by gene basis, but in

this framework, we can also make joint statements about the genes that circumvent in

some way the problem of multiple testing. For example, for a given list of genes derived

from independent biological information, we can make joint statements such as: “the

probability (conditional on the data) that 80% of genes {g1, . . . , gn} have δg > log(2)

is at least 0.80”, which can be readily interpreted by biologists. Statements about the

joint distribution of the ranks could also be made.

We have implemented our model using the WinBUGS software for ease and ubiquity

of use and the code is available (see supplementary material). For a much larger number

of arrays, it will become unfeasible to use WinBUGS and we are in the process of

developing code that would cut the computing time by a substantial fraction.

The ideas in this paper apply to data from cDNA chips as well as Affymetrix, with

extra terms included to account for within slide normalization. In future work, we aim

to include in the hierarchical specification another layer consisting of the Bayesian signal

extraction model for Affymetrix PM’s and MM’s as proposed in Hein et al. (2005).
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Figure 1. Left panel: Array effects as functions of gene expression level for the wildtype
mouse fat hybridized to chip U74A. The straight lines are the posterior means of the
array effects found by fitting model 5 on the relevant expression level range for the data
divided into 6 groups. Dashed, dotted and dot-dash lines represent one array each. The
smooth curves (dashed, dotted and dot-dash) are the posterior means of the cubic array
effects from our model (equations 1, 3 and 6). Middle panel: Array effects as functions
of gene expression level for the wildtype mouse fat hybridized to chip U74A. Lines are
the posterior means of the cubic array effects from our model. Points are the data points
with the overall gene expression level subtracted for each gene (ygsr − E(αg| data )).
Right panel: Array effects βgsr (lines) used for three of the simulated arrays in section
5 of the main paper. The points on the plot are the simulated data points with the
overall gene expression level subtracted for each gene (ygsr − αg). Note the similarity
of spread and array effects between simulated and mouse data.
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Figure 2. Mixed and posterior predictive p-values for the wildtype mouse U74A data
(s=1) obtained from fitting the model with equal variances, exchangeable variances
with a 1-parameter Gamma prior, exchangeable variances with a 2-parameter Gamma
prior and exchangeable variances with a 2-parameter log Normal prior (as discussed in
Section 3).
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Figure 3. Observed false discovery rate (FDR) and false non-discovery rate (FNR)
versus probability cut-off pcut for the simulated data set described in Section 5. The
solid line is for the full, integrated model and the dashed line is for the pre-normalized
model. All curves are averages over 5 simulations.
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Figure 4. Posterior means of log fold change E(δg| data ) and gene expression level
E(αg| data ) for the U74A chip. Genes with pg ≥ 0.5 are plotted with triangles and
those with pg ≥ 0.8 with crosses. The arrow indicates the gene Cd36, whose pg is 0.49.
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Figure 5. Posterior probabilities pg versus log fold difference (left hand panel) and
versus standardised log fold difference (right hand panel) for genes above background
(E(αg| data ) > 4). Genes with pg ≥ 0.83 (corresponding to an estimated FDR of 10%)
are shown as blue crosses, while genes with |tg| ≥ 2.78 (but not pg ≥ 0.83) are shown
as green triangles. All except two of the genes with pg ≥ 0.83 have |tg| ≥ 2.78. The
vertical lines show where |E(δg| data )| = log(2).
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Most specific “significant” terms Ancestor terms also “significant” (GO level > 3)
inflammatory response (O=4, E=1.2) immune response (O=9, E=4.5)

response to pest, pathogen or parasite (O=8, E=2.6)
response to wounding (O=6, E=1.8)
defense response (O=11, E=5.8)
response to external stimulus (O=12, E=4.7)
response to biotic stimulus (O=14, E=6.9)
response to stress (O=12, E=5.9)

neuromuscular physiological process neurophysiological process (O=8, E=2.6)
(O=5, E=1.3) organismal movement (O=7, E=1.9)
transmission of nerve impulse (O=5, E=1.3) neurophysiological process (O=8, E=2.6)

cell-cell signaling (O=5, E=1.9)
DNA repair (O=4, E=1.3) response to stress (O=13, E=5.9)

nucleobase, nucleoside, nucleotide and
nucleic acid metabolism (O=15, E=23.8)

lipid catabolism (O=3, E=0.6) -
protein transport (O=0, E=5.0) -
fertilization (O=3, E=0.2) -

Table 1
The left column shows the most specific GO terms found significant. The right-hand
column shows the ancestors (broader terms) in the ontology of these terms that are
also found significant. Numbers in brackets indicate observed (O) and expected (E)
numbers of genes in the query list (those most differentially expressed) annotated to

the term. Expected numbers are calculated by multiplying the percentage of
annotations in the reference group with the number of genes in the query group.
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