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ABSTRACT 
Interrupted time series analysis differs from most other intervention study designs in that it involves 

a before-after comparison within a single population rather than a comparison with a control group. 

This has the advantage that selection bias and confounding due to between-group differences are 

limited. However, the basic interrupted time series design cannot exclude confounding due to co-

interventions or other events occurring around the time of the intervention. One approach to 

minimise potential confounding from such simultaneous events is to add a control series so that there 

is both a before-after comparison and an intervention-control group comparison. A range of different 

types of controls can be used with interrupted time series designs, each of which have associated 

strengths and limitations. Researchers undertaking controlled interrupted time series studies should 

carefully consider a priori what confounding events may exist and whether different controls can 

exclude these or if they could introduce new sources of bias to the study. A prudent approach to the 

design, analysis and interpretation of controlled interrupted time series studies is required to ensure 

that valid information on the effectiveness of health interventions can be ascertained. 
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KEY MESSAGES 
 History bias due to other interventions or events occurring around the time of the intervention 

is the primary threat to the validity of interrupted time series studies. 

 A wide range of different controls can be used in order to limit history bias and improve the 

validity of an ITS study.  

 Controls should be selected by considering, a priori, the possible sources of history bias and 

examining for differential changes in covariates between the study series and the control 

series throughout the study period. 

 Researchers should take care in interpreting the results of controlled interrupted time series 

studies, in particular when the results differ from those of simple (uncontrolled) analysis. 
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INTRODUCTION 
Evaluation of public health interventions normally relies on comparing the outcome of interest in a 

population exposed to an intervention to that in an external control group not subject to the same 

intervention.(1) Interrupted time series (ITS) is an increasingly popular design that adopts a different 

approach whereby comparisons are instead made across time within a single population.(2) This 

design is generally applied to natural experiments with an intervention introduced at a known point 

in time. By collecting data at regular intervals over time, a pre-post comparison can be made while 

accounting for underlying trends in the outcome.(2) Because the evaluation is based on observing a 

single population over time, the ITS design is free from problems due to between-group differences, 

such as selection bias or unmeasured confounders. Furthermore, by modelling the underlying trend, 

ITS also controls for within-group characteristics that tend to change only slowly over time, secular 

changes, random fluctuations from one time point to the next and regression to the mean.(3, 4) 

Nevertheless, ITS studies cannot exclude time-varying confounders which do not form part of the 

underlying trend, for example other interventions or events occurring around the time of the 

intervention that may also affect the outcome.(5) 

 

One approach that limits the threat of these other confounding events is to include a control series, a 

design known as a controlled (or comparative) interrupted time series (CITS) analysis. A lack of effect 

in a well-chosen control can provide stronger evidence to support a causal relationship between the 

intervention and outcome. Conversely, the presence of an effect in the control series indicates that 

the change may be attributable to different factors. Indeed, a number of recent within study 

comparisons have provided empirical evidence of the validity of the CITS design by demonstrating 

comparable results to RCT benchmarks.(6-9) Nevertheless, while the basic ITS design has been 

described in detail elsewhere and reference is made to the inclusion of a control as a method of 

improving the validity of the design,(2, 10) there is little guidance available on the what a control series 

can and cannot solve and how to select an appropriate control in CITS studies. The purpose of this 
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paper is to evaluate the use of controls in ITS studies and provide a framework for their selection, 

analytical approaches and the interpretation of results. We then provide an illustration of the 

application of this framework using an example from a recent study where alternative types of 

controls can be selected and compared. 

 

 

EVALUATIVE STUDY DESIGNS 
In order to know whether an intervention has caused an effect, a comparison needs to be made 

between the observed change in the outcome and the counterfactual, that is, what would have 

happened if the intervention had not taken place. Of course, it is not possible to observe the 

intervention both being implemented and not being implemented in the same individuals in the same 

population at the same time, therefore the true counterfactual is never known. Evaluation design is 

therefore centred on creating the best approximation of the true counterfactual and then comparing 

what happened in the intervention group to the approximated counterfactual.(3) There are two main 

approaches to approximating the counterfactual: controlled designs and before-and-after designs.(3) 

Controlled designs: 
Controlled designs normally compare the same outcome in the intervention group and an external 

control. Randomised controlled trials, cross sectional studies as well as other designs less commonly 

used for intervention evaluations (such as cohort and case control studies) all make comparisons 

between a intervention group and a control. The advantage of this approach is that both intervention 

and control groups are compared at the same point in time so other time sensitive factors that would 

affect both populations (such as other interventions or events that might impact on the outcome of 

interest) can be excluded. Nevertheless, selection bias and differences between the intervention and 

control population may mean that observed effects could be due to other confounding factors (which 

may be unknown or difficult to measure) rather than the intervention.(1) Randomisation addresses 

this limitation in experimental studies, however this is often not desirable, feasible or practical in 
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studies evaluating public health interventions.(1, 11, 12) Other approaches, such as adjusting for 

multiple variables in regression models or propensity score matching can account for known 

characteristics that differ between the two groups, but cannot control for unmeasured 

confounders.(1, 12, 13) 

Before-and-after designs: 
Before-after designs involve making a comparison between a period of time after the intervention has 

occurred and a period of time before the intervention within a single population. Here, the pre-

intervention period effectively acts as the control. Simple pre-post designs make before-after 

comparisons by estimating the change from a single pre-intervention time point to a single post-

intervention time point. However, these have poor internal validity as they cannot exclude underlying 

trends as a cause for any change. Conversely, interrupted time series use multiple pre-intervention 

and post-intervention observations, thereby allowing the underlying trend to be accounted for. These 

have the advantage that confounding is rarely a problem as population characteristics tend to only 

change gradually over time. (3, 14) Nevertheless, such before-after comparisons cannot exclude other 

events or co-interventions occurring around the same time as the intervention under investigation as 

the cause of any detected change in the outcome. This phenomenon is known as history bias in 

Campell and Stanley’s classical list of threats to internal validity.(5) 

 

CONTROLLED INTERRUPTED TIME SERIES 
Controlled (or comparative) interrupted time series (CITS) involves adding a control series, which was 

not exposed to the intervention, to the basic ITS design (Figure 1).(9) This results in the definition of a 

more complex counterfactual based on both  a before-and-after comparison and an intervention-

control comparison. The primary benefit of this approach is that it can help to control for history bias 

due to time-varying confounders, in particular co-interventions and other events concurrent to the 

intevention.(3) In a CITS, if an effect is detected in the intervention group but not in a well-chosen 

control (Figure 1a) this suggests that the effect is more likely to be due to the intervention; conversely 
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if an effect is detected in both the intervention and control series (Figure 1b), this suggests that it is 

due to some confounding event. 

 

 

Figure 1: Controlled interrupted time series 

Red line = intervention series, green line = control series. (a) Here there is an effect in the intervention series (step and slope 
decrease) but no effect in the control series which increases confidence that the effect is due to the intervention. (b) Here 
there is a step and slope decrease in both the intervention and control series suggesting the change is due to some other 
event or co-intervention that affected both groups. 

 

CITS is related to other study designs applied in evaluation analyses. For instance, the  controlled 

before and after design (CBA) also involves a before-and-after and intervention-control comparison. 

Nevertheless, the CBA design involves a comparison of a single pre and a single post intervention, or 

a comparison of pre and post-intervention means. While both CITS and CBA designs involve a 

difference in difference calculation, CBA designs do not take into account baseline trends and 

therefore use the control group alone in order to approximate the counterfactual.(3, 15)  

An extension of the CITS design is the multiple baseline design. This is similar to a stepped wedge 

cluster randomised trial but typically does not involve randomisation. Here, following a baseline 

period, the intervention is first introduced in one group while one or more other groups act as a 

control.(16, 17) The intervention is subsequently introduced in other groups at different times, with a 

different subset acting either as intervention or control groups at each time. In this design, the 

observation of an effect of similar strength and magnitude following the intervention in multiple 
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different groups at multiple sequential time points, can provide strong evidence that the observed 

effect is due to the intervention rather than other potential confounding events.(16, 17) 

 

SELECTING A CONTROL 
With studies that rely on the control as the sole means of approximating the counterfactual (including 

RCTs, cross-sectional studies and CBA studies) the central prerequisite when selecting a control is that 

it is as similar as possible to the intervention group. The ideal control is the same in terms of all 

variables other than exposure to the intervention.(1, 3) RCTs accomplish this through randomisation. 

Where randomisation is not possible a range of methods have been developed to achieve covariate 

balance in cross-sectional and CBA designs including multivariable regression, propensity score 

matching and synthetic controls.(18-20) Nevertheless, none of these methods can account for 

systematic differences in unknown variables.(18, 21) 

 

As described above, ITS studies use the pre-intervention trend to predict the counterfactual. The 

purpose of the control in this case is to exclude time varying confounders, in particular co-

interventions or other events occurring around the time of the intervention, as these are generally 

unpredictable based on modelling pre-intervention trends.(2, 3) It follows that the key attribute of a 

control series for a CITS study should be its ability to control for known co-interventions or external 

events that may affect the outcome. Therefore, the control series should be exposed to any such co-

interventions or events that might also affect the intervention series, however, it should not be 

exposed to other interventions or events that could impact on the control series alone (and not the 

intervention series). The latter could result in artifactual effects being detected in the CITS which are 

in fact due to independent changes in the control series. Several different types of control series have 

been used for CITS analyses; we have broadly classified some of the most commonly used controls as 

follows: location based control groups, characteristic based control groups, behaviour based control 
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groups, historical cohort controls, control outcomes and control time periods. Table 1 describes these 

six types of controls, each of which may plausibly control for different sources of confounding events. 

 

Researchers should also consider whether the intervention under study could have an indirect effect 

on the control series, for example there may be a contamination effect in location based or 

characteristic based control groups, or a substitution effect with control outcomes.(22, 23) A 

contamination effect occurs when the effects of the intervention spreads beyond the target 

population, for example with behaviour change interventions, whereby members of the control 

population learn about the new behaviour and adopt it themselves.(22) An example of a substitution 

effect would be an evaluation of the effect of an intervention aimed  at reducing the prescription of a 

certain drug; in this scenario, prescriptions of a similar drug not targeted by the intervention may be 

considered as a control intervention, however, doctors may substitute the targeted drug with the 

similar drug so that it is indirectly affected by the intervention.(23)Control series that could be 

indirectly affected by the intervention should be excluded. 

 

Finally, while covariate balance between the intervention and control series in ITS is not required to 

predict the counterfactual, and is therefore not the fundamental prerequisite that it is in other 

controlled designs, it remains important for two reasons: firstly, certain subgroups may be more 

susceptible to either an intervention or a confounding event than others. If such a subgroup is more 

concentrated in the intervention group than the control, one would expect a greater effect in the 

intervention group simply due to the population distribution. Secondly, if certain characteristics are 

associated with the outcome and these characteristics change differentially over time in the 

intervention and control groups, the trend in the outcome may change in one group but not the other 

simply due to differential changes in the populations under investigation. For example, there is 

evidence that rates of cycle head injuries are lower in females than in males.(24) In the cycle helmet 
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legislation study by Dennis et al described in Table 1, if the intervention population had a higher 

proportion of females at baseline than the control population this would not necessarily be a 

problem.(25) Nevertheless, if the proportion of females increased more rapidly in the intervention 

group than in the control population following the intervention, this would be a source of confounding 

as there may be a decrease in head injuries in the intervention group simply due to the population 

change, rather than any effect of the intervention. Matching techniques, including propensity score 

matching can be used to ensure balance of known covariates at baseline which can help to limit the 

effects of differential susceptibility to the intervention by population subgroup.(19, 26) Furthermore, 

synthetic control approaches can be applied to ITS studies where multiple potential controls exist. This 

approach reweights a range of different control groups so that the weighted average of their baseline 

characteristics is as similar as possible to those of the study group (maximising covariate balance).(27) 

Linden 2018 demonstrates an example of the use of synthetic controls in interrupted time series which 

produces strong covariate balance and no significant difference from the intervention group in terms 

of pre-intervention level and trend in the outcome.(27) Nevertheless, whether matching or using 

synthetic controls, it is still important to check for covariate balance between the control and 

intervention group throughout the study period. If there are changes over time, variables associated 

with the outcome can be included in the interrupted time series regression model to adjust for 

confounding. However, none of these methods can control for unknown confounding and this should 

be recognised as a limitation of CITS studies in common with other non-randomised controlled 

designs. 

Table 1: Types of controls  

Type of Control Description Examples Strengths Limitations 

Location based 
control 

The control series is 
selected from another 
location similar to the 
study location but that 
did not receive the 
intervention. The type 
of location depends on 
the scale of the 
intervention, for large 
scale interventions this 

Dennis et al (2013) 
evaluated the impact of 
the introduction of 
helmet legislation in a 
number of Canadian 
provinces on cycling 
related head injuries by 
comparing outcomes in 
Canadian provinces that 

Help to control for 
confounding events 
that would affect 
both locations. 

Cannot exclude 
events that are 
unique to the 
intervention location. 
For example, in the 
study of helmet 
legislation, 
reductions in head 
injuries could be due 
to a protective effect 
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may be a different 
geographical area (such 
as a country, district or 
city), whereas for 
smaller scale 
interventions this could 
be a different 
institution or a 
different ward within a 
hospital. 

did not implement 
helmet legislation.(25)  
 
Lopez Bernal et al (2017) 
compared the change in 
hospital activity in 
England, following major 
health reforms, to those 
in Scotland where the 
reforms did not 
apply.(28)  

of helmets 
(presumably the 
desired effect) or due 
to a reduction in the 
number of cyclists if 
the need to wear a 
helmet acts as a 
deterrent (which 
may not be a desired 
effect), comparing to 
provinces that did 
not implement the 
legislation would not 
help to distinguish 
these.(25) 

Characteristic 
based control 

Interventions are 
sometimes targeted 
according to certain 
characteristics, for 
example only males or 
only females, a certain 
age group, a specific 
ethnic minority group 
or patients with a 
certain diagnosis. 
Controls may be chosen 
from those groups that 
were not targeted.  

Feigl et al (2015) 
investigated the impact 
of a national ban on 
smoking in high schools 
and selected a control 
based on age by 
comparing trends in 
smoking prevalence 
among those aged 12-18 
years compared to those 
aged 19-24 years.(29)  
 
Kontopantelis et al (2015) 
examined the impact of a 
national primary care 
financial incentive 
scheme on trends in 
consultation rates among 
patients with severe 
mental illness compared 
to matched patient 
controls with no severe 
mental illness.(30) 

In cross sectional or 
similar designs, this 
type of control is not 
ideal as the 
characteristic that 
differentiates the 
two groups is a 
known confounder 
that cannot be 
controlled for, 
nevertheless in ITS 
studies, where the 
pre-intervention 
trend is the primary 
control, 
characteristic 
control groups can 
help to exclude 
concurrent events to 
the intervention that 
both groups would 
have been exposed 
to. 

Interventions may 
have been targeted 
at the intervention 
group because of a 
detected deviation in 
the trend, for 
example in the 
smoking ban study, 
high schools may 
have been targeted 
because of recent 
increases in smoking 
among adolescents 
therefore trends 
could differ 
substantially from 
the control 
group.(29) 

Behaviour 
based control 

Sometimes the 
intervention does not 
affect all of those 
within the population 
to whom it is targeted, 
this tends to occur 
when the intervention 
targets a behaviour 
that some individuals 
never performed 
(either prior to the 
intervention starting or 
since). Those 
individuals who never 
performed the 
behaviour can 
therefore be used as a 
control group. 

Ross-Degnan et al  (1993) 
evaluated the impact of 
the national withdrawal 
of a non-steroidal anti-
inflammatory drug 
(Zomepirac) on 
prescribing of other 
analgesics. They used 
physicians who never 
prescribed Zomepirac 
(and were thus 
unaffected by its 
withdrawal) as the 
control group.(23)  
 
Kiseley et al (2011) used a 
CITS to evaluate the 
impact of an increase in 
taxation of “alcopops” on 
alcohol related harm by 
comparing the effect in 
young people aged 15-29 
to the effect in those 
aged 30-49. Alcopops 
tend to be favoured by 

Controls can be very 
similar to the 
intervention group 
other than in the 
specific behaviour 
targeted by the 
intervention.  

It may be difficult to 
directly identify 
those who did not 
perform the 
behaviour, therefore, 
a proxy may have to 
be used – such as, 
age, in the alcopops 
study. This proxy 
may, however, 
introduce selection 
bias for example 
selecting based on  
age could bias the 
alcopops study 
because age could be 
independently 
associated with both 
the intervention 
(younger people may 
be lower earners and 
thus more affected 
by a tax increase) 
and the outcome (if 
rates of alcohol 
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young people so it was 
expected that older 
groups would be largely 
unaffected.(31) 

related harm vary 
with age).(31) 

Historical 
cohort control 

Historical cohorts are 
commonly used in the 
evaluation of education 
interventions but have 
also been used for 
healthcare 
evaluations.(8) This is 
possible where a cohort 
periodically progresses 
to another level (for 
example moving from 
one school year to the 
next) and is replaced by 
another cohort. The 
intervention cohort can 
then be compared to a 
previous or subsequent 
cohort.(3) 

Schneeweiss et al (2004) 
evaluated the impact of a 
restriction of state 
funding of nebulised 
respiratory 
medication.(32) The 
intervention time series 
used monthly 
observations of nebulised 
drug expenditure, 
primary care visits and 
admissions to emergency 
department for a year (6 
months prior to the 
policy and 6 months after 
the policy). Control series 
were taken from the 
same population one 
year and two years 
before. 

Historical cohorts 
help to rule out 
seasonal effects 
(such as stockpiling 
of drugs in the 
Scheeweiss et al 
study) and events 
that occur on an 
annual basis.(32) 

They would not 
control for events 
that are unique to 
the year in which the 
intervention was 
implemented. 

Control 
outcome 

Where no control 
group is possible, 
another option is to 
compare the effect on 
the primary outcome to 
that in a related 
‘control outcome’ (or 
‘non-equivalent 
dependant variable’) 
within the same group. 
Such an outcome 
should not be affected 
by the intervention, but 
would be affected by 
confounding events. 

Walter et al (2011) 
conducted a study on the 
impact of helmet 
legislation on head 
injuries in Australia 
(similar to that by Dennis 
et al described 
above)(25). Rather than 
other locations, they 
used limb injuries as a 
control outcome to 
exclude other effects on 
cycling.(33)  
 
Lopez Bernal et al (2016) 
used accidental deaths as 
a control outcome in 
their ITS study of the 
impact of the financial 
crisis on suicides in Spain 
as both suicides and 
accidental deaths 
undergo similar judicial 
review and recording 
methods.(34) This 
enabled them to control 
for other events that 
could have impacted on 
these processes. 

Uses the same group 
as an intervention 
population therefore 
it is not sensitive to 
many of the 
between group 
differences that can 
affect other 
controls. 
Can often be used to 
control for potential 
confounders that 
would only affect 
the intervention 
group. For example 
by using limb 
injuries as a control 
outcome Walter et 
al were able to 
control for any 
changes in the 
number of cyclists 
where comparing to 
different states 
could not.(25, 33) 

Can only control for 
factors that would 
affect both the 
primary outcome and 
the control outcome. 

Control time 
period 

It may be possible to 
use the primary 
outcome as its own 
control for 
interventions that are 
only active at certain 
times (certain times of 
day or days of the 
week). In this case the 
outcome during times 

Ross et al (1970) studied 
the impact of 1967 British 
Road Safety Act, which 
increased the use of 
breathalysers to reduce 
drink driving, on traffic 
casualties. They 
compared the effect on 
the weekend evenings 
when pubs are busiest 

Uses the same group 
as the intervention 
group therefore it is 
not sensitive to 
many of the 
between group 
differences that can 
affect other 
controls. 

Can only be used for 
short-term outcomes 
with rapid onset.  
The outcome must 
be recorded at a 
sufficiently high time 
resolution to allow 
identification of 
when the 
intervention is active 
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in which the 
intervention is inactive 
act as the control. 

and accidents are more 
likely to be due to drink 
driving to that at 
commuting hours when 
pubs are closed and 
accidents are less likely to 
be due to drink 
driving.(35) 

and inactive. For 
example to the 
nearest hour if the 
intervention is only 
active at night 
time.(36) 

 

 

ANALYSIS AND INTERPRETATION OF CITS STUDIES 
There are a range of analyses that can be employed when undertaking CITS studies. These can broadly 

be divided into two: separate analysis of the intervention series and the control series; or a single 

model incorporating both series. Separate analysis is the simpler approach and may be suitable, 

particularly if there is no change in the control series. A single model can be developed by including 

indicator variables for the intervention or control series as interaction terms (web appendix 1) or by 

generating a new series of the ratio or difference between the intervention and control series at each 

time point.(6, 37) This approach provides a test of the differential effects of the intervention (level or 

slope change) across the groups. The benefit of this approach is that if there are trend changes in the 

control series which could be due to some confounding event, any additional effect of the intervention 

can still be calculated. 

Even if a single model combining the intervention and control series is selected, we would recommend 

starting with a simple (uncontrolled) ITS of the intervention group. Both the uncontrolled ITS and the 

CITS should always be planned a priori and the results reported with equal prominence. If the result 

of the simple ITS mirrors that of the CITS this provides a greater degree of confidence that any 

association between intervention and effect is likely to be causal. Results should be interpreted more 

cautiously if either the simple ITS shows an effect but the CITS shows no effect (or a smaller effect) or 

if the CITS shows an effect but the simple ITS does not. If the simple ITS shows an effect but the CITS 

does not, then there may have been a change in both the intervention and the control series – this 

suggests possible history bias due to some simultaneous event or co-intervention.3 If the CITS shows 
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an effect but the simple ITS does not, the change may be due (at least in part) to a change in the 

control series, as a result of some other event that affected the control population but not the 

intervention group. This framework for analysing and interpreting CITS studies is summarised in Figure 

2. 

Analysis of CITS studies requires careful consideration of a number of statistical issues particular to 

time series data including overdispersion, autocorrelation and seasonality. Furthermore, where 

multiple controls or intervention groups are used, clustering effects need to be taken into 

consideration. These analytical issues are beyond the scope of this paper but have been described in 

more detail elsewhere.(2, 38-40) 

It should be noted that the CITS model, outlined above and in web appendix 1, works best where the 

underlying trend is linear. Where non-linear trends exist, non-linear terms can be included within the 

time series model, nevertheless, the more complex the trend, the more difficult it becomes to 

differentiate intervention effects from underlying fluctuations in the trend.(41) Where complex pre-

intervention trends exist, it may be preferable to use a generalised difference in difference approach. 

This has fewer restrictions on the shape of the time trend, however, this approach does assume that 

the treatment and control groups follow parallel trends. In either case, it is important that the 

assumption of linearity or parallel trends is checked. 
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Figure 2: Suggested steps for undertaking a controlled interrupted time series study  

*Both analyses should be undertaken and reported 

 

SENSITIVITY ANALYSIS 
Different ITS model assumptions can be checked using sensitivity analyses. Specific to CITS designs, 

different types of controls may control for different sources of bias or confounding events. Therefore, 

where possible researchers should undertake sensitivity analyses using different types of controls to 

control for those potential sources of bias that have been identified a priori. Similar to the primary 

model, sensitivity analyses should be clearly pre-specified to avoid the possibility of ‘data dredging’. 
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ILLUSTRATIVE EXAMPLE 
Steinbach et al (2015) recently used a CITS design to evaluate the impact of a range of changes to 

streetlights in various regions of the UK on road traffic crashes and crime at night.(36, 42) The purpose 

of the intervention was to save energy and costs. The intervention consisted of reductions in the 

brightness of streetlights, replacement of bulbs with lower energy consumption bulbs, reducing the 

hours during which streetlights were turned on at night (i.e. turning on later and turning off earlier) 

and reducing the ambient light threshold at which sensors would activate streetlights. The authors 

hypothesised that while the intervention may save costs, reduced street lighting may unintentionally 

increase road traffic crashes and crime at night. To illustrate the design and interpretation of CITS 

studies we used an extract of these data on minor roads in the Birmingham and Black Country region 

to analyse the impact of the intervention (introduced from 2010) on the number of casualties from 

road traffic crashes. Outcome data was taken from the STATS19 Road Accident dataset, a STATS19 

report form is completed by police officers for all accidents involving human injury or death. This 

includes information on the location, date and time of the accident and the severity of the injury. Note 

that, for simplicity of this illustration, we make the assumption that the intervention was introduced 

simultaneously in 2010 throughout the region and that it would have a step change effect. A number 

of different controls can be considered for the analysis and we work through the process of selecting 

controls and analysing the CITS. 

 

Data on road traffic crash casualties included variables on the region, the road type and the time of 

the road traffic crash. Therefore, three potential controls could be considered (1) another region as a 

location based control, (2) comparison of casualties from road traffic crashes on minor roads to those 

on major roads as a characteristic based control, (3) comparison of road traffic crash casualties at night 

to road traffic crash casualties during the day when street lights are not in use as a control time period.  
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Our first step in selecting a control is to identify potential confounding events or co-interventions that 

would affect the study outcome.  In this study other changes to roads, such as changes to road layout 

or new road safety measures, were identified as a potential confounding event that could impact on 

road traffic crashes independently of the street lighting interventions. Another potential concern was 

instrumentation effects due to unidentified changes to data collection. Data quality reports suggest 

that “local circumstances (for example organisational changes, reviews of coding practice and local 

initiatives) may affect the data and trends over time”. Considering each of the controls in turn: the 

location based control would not be able to control for the identified confounding factors as road 

changes may have differed from one region to the next and data collection was separate in each 

region. The characteristic controls (different road types), would control for changes to data collection 

processes within a region but would not be able to control for road changes as these are likely to differ 

between minor and major roads. In this example, the control time period is the most appropriate as 

this uses the same roads and same data source and should therefore adequately control for all known 

potential confounders. No other interventions or events that would only affect day time road traffic 

crashes were identified and it was considered unlikely that the intervention would have any indirect 

effect on this control. Day time road traffic crashes were therefore selected as the control series. 

 

The next step was to check characteristics of the control and intervention series at baseline and 

throughout the study period for covariate balance. We know that the data comes from the same roads 

therefore this will not be different between night and day. However, no data on the characteristics of 

the population of night time drivers compared to day time drivers were available. One might assume 

that there are fewer elderly drivers with visual impairments at night, however this is unlikely to change 

differentially between the intervention and control group over the study period independently of the 

intervention.  
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Figure 3 shows the results of the analysis. First, an uncontrolled ITS analysis (Figure 3a) was 

undertaken. This shows a significant decrease in road traffic crash casualties following the 

intervention, contrary to the hypothesised increase. Nevertheless, when a CITS analysis using daytime 

road traffic crash casualties is run (Figure 3b), the decrease is also present in the controls series and 

there is no evidence of any additional effect in the intervention series. This suggests that the effect is 

due to a change occurring at the same time as the intervention and biasing the previously estimated 

association. 

 

To demonstrate the possible consequences of poor control selection, in figure 3c a location based 

control is used instead. We select the most closely matched region according to baseline 

characteristics (including number of roads in the region, population size, age distribution, sex 

distribution and level of unemployment). There is also no significant difference in baseline trends 

between the control and intervention group. In this case the results are very similar to the 

uncontrolled analysis, showing strong evidence of a decrease in road traffic crash casualties following 

the intervention. Nevertheless, this control group is clearly unable to account for changes to road 

layout or changes to data collection that are unique to the region, and could result in erroneous 

conclusions about the effect of the intervention. This highlights the potential pitfalls of selecting 

controls without first carefully considering potential confounding events or co-interventions specific 

to the study context, even when there is good covariate balance between the intervention and control 

group. 

 

Where multiple possible confounding events exist, at may be best to use multiple different types of 

controls that can exclude different factors and can provide a more detailed picture of the intervention 
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effect. For example, it is possible that the reduction in streetlighting could result in a substitution 

effect whereby people with poor vision are less inclined to drive at night following the intervention 

due to poorer lighting and do more of their driving during the day. This could therefore actually result 

in a reduction in night time accidents. In order to examine this, one might consider comparing an 

analysis using the control time period and location based control. 
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Figure 3: The effect of the Birmingham and Black Country street lighting intervention on road traffic crash casualties  

Red regression line is the intervention series (night time road traffic casualties on minor roads in Birmingham and the Black 
Country); blue regression line is the control series: (a) no control, (b) control time period: day time road traffic crash casualties 
on minor roads in Hertfordshire (c) location based control: night time road traffic crash casualties on major roads in West 
Yorkshire.  The vertical red line is the intervention point. The incident rate ratio (IRR) is the step change in road traffic crash 
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casualties following the intervention compared to before the intervention, in figures (b) and (c) the IRR is the step change in 
the intervention series over and above any step change in the control series. 

 

 

CONCLUSION 
In this paper we have highlighted how ITS studies differ from other evaluation designs by making 

within group rather than between group comparisons. While this has the advantage of limiting 

confounding by factors that change only slowly through time history bias can still threaten the validity 

of ITS studies. A wide range of different controls can be used in order to limit history bias and improve 

the validity of an ITS study. Nevertheless, it is important to systematically consider a priori the degree 

of risk of history bias associated with any particular study, what control series are available and 

whether these will adequately control for history bias. Finally, researchers should take care in 

interpreting the results of CITS studies, in particular when the results of CITS analysis differ from those 

of simple (uncontrolled) ITS analysis. If the results of the CITS and the ITS analysis are aligned, CITS 

studies can provide strong evidence on the effectiveness of public health interventions and when 

appropriate controls are selected the design ranks second only to randomised controlled designs in 

terms of their capacity to control for bias.(14) 
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