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Abstract: 349 

Breast cancer risk variants identified in genome-wide association studies explain only a small 350 

fraction of familial relative risk, and genes responsible for these associations remain largely 351 

unknown. To identify novel risk loci and likely causal genes, we performed a transcriptome-wide 352 

association study evaluating associations of genetically predicted gene expression with breast 353 

cancer risk in 122,977 cases and 105,974 controls of European ancestry. We used data from 67 354 

subjects included in the Genotype-Tissue Expression Project to establish genetic models to 355 

predict gene expression in breast tissue and evaluated model performance using data from 86 356 

subjects included in The Cancer Genome Atlas. Of the 8,597 genes evaluated, significant 357 

associations were identified for 48 at a Bonferroni-corrected threshold of P < 5.82×10-6, 358 

including 14 genes at loci not yet reported for breast cancer risk. We silenced 13 genes and 359 

showed an effect for 11 on cell proliferation and/or colony forming efficiency. Our study 360 

provides new insights into breast cancer genetics and biology.  361 

  362 
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Breast cancer is the most commonly diagnosed malignancy among women in many countries1. 363 

Genetic factors play an important role in breast cancer etiology. Multiple high- and moderate-364 

penetrance genes, including BRCA1, BRCA2, PALB2, CHEK2 and ATM, have been identified as 365 

contributors to familial breast cancer2,3. However, deleterious germline mutations in these genes 366 

are rare, thus accounting for only a small fraction of breast cancer cases in the general 367 

population4,5. Since 2007, genome-wide association studies (GWAS) have identified 368 

approximately 180 genetic loci harboring common, low-penetrance variants for breast cancer6-13, 369 

but these more common variants explain less than 20% of familial relative risk7. 370 

 371 

A large proportion of disease-associated risk variants identified by GWAS are located in non-372 

protein coding or intergenic regions and are not in linkage disequilibrium (LD) with any 373 

nonsynonymous coding single nucleotide polymorphisms (SNPs)14. Many of these susceptibility 374 

variants are located in gene regulatory elements15,16, and it has therefore been hypothesized that 375 

most of the GWAS-identified associations may be driven by the regulatory function of risk 376 

variants on the expression levels of nearby genes. For breast cancer, recent studies have shown 377 

that GWAS-identified associations at 1p34, 1p36, 2q35, 5p12, 5p15.33, 5q11.2, 5q14, 6q25, 378 

7q22, 9q31.2, 10q21.3, 10q26.13, 11p15, 11q13.3, 15q26.1, 19p13 and 19q13.31 are likely due 379 

to the effect of risk variants at these loci on regulating the expression of either nearby or more 380 

distal genes: CITED4, KLHDC7A, IGFBP5, FGF10/MRPS30, TERT, MAP3K1, ATP6AP1L, 381 

RMND1, RASA4/PRKRIP1, KLF4, NRBF2, FGFR2, PIDD1, CCND1, RCCD1, ABHD8, and 382 

ZNF4047,9,10,13,17-22. However, for the large majority of the GWAS-identified breast cancer risk 383 

loci, the genes responsible for the associations remain unknown.  384 

 385 
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Several recent studies have reported that regulatory variants may account for a large proportion 386 

of disease heritability not yet discovered through GWAS23-25. Many of these variants may have a 387 

small effect size, and thus are difficult to identify in individual SNP-based GWAS studies, even 388 

with a very large sample size. Applying gene-based approaches that aggregate the effects of 389 

multiple variants into a single testing unit may increase study power to identify novel disease-390 

associated loci. Transcriptome-wide association studies (TWAS) systematically investigate 391 

across the transcriptome the association of genetically predicted gene expression with disease 392 

risk, providing an effective approach to identify novel susceptibility genes26-29. Instead of testing 393 

millions of SNPs in GWAS, TWAS evaluate the association of predicted expression for selected 394 

genes, thus greatly reducing the burden of multiple comparisons in statistical inference. 395 

Recently, Hoffman et al performed a TWAS including 15,440 cases and 31,159 controls and 396 

reported significant associations for five genes with breast cancer risk30. However, the sample 397 

size of that study was relatively small and several reported associations were not statistically 398 

significant after Bonferroni correction. Herein, we report results from a larger TWAS of breast 399 

cancer that used the MetaXcan method26 to analyze summary statistics data from 122,977 cases 400 

and 105,974 controls of European descent from the Breast Cancer Association Consortium 401 

(BCAC). 402 

 403 

Results 404 

Gene expression prediction models 405 

The overall study design is shown in Supplementary Figure 1. We used transcriptome and 406 

high-density genotyping data from 67 women of European descent included in the Genotype-407 

Tissue Expression (GTEx) project to build genetic models to predict RNA expression levels for 408 
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each of the genes expressed in normal breast tissues, by applying the elastic net method (Į=0.5) 409 

with ten-fold cross-validation. Genetically regulated expression was estimated for each gene 410 

using variants within a 2 MB window flanking the respective gene boundaries, inclusive. SNPs 411 

with a minor allele frequency of at least 0.05 and included in the HapMap Phase 2 subset were 412 

used for model building. Of the models built for 12,696 genes, 9,109 showed a prediction 413 

performance (R2) of at least 0.01 (≥10% correlation between predicted and observed expression). 414 

For genes for which the expression could not be predicted well using this approach, we built 415 

models using only SNPs located in the promoter or enhancer regions, as predicted using three 416 

breast cell lines in the Roadmap Epigenomics Project/Encyclopedia of DNA Elements Project. 417 

This approach leverages information from functional genomics and reduces the number of 418 

variants for variable selection, and therefore potentially improving statistical power. This 419 

enabled us to build genetic models for additional 3,715 genes with R2≥0.01. Supplementary 420 

Table 1 provides detailed information regarding the performance threshold and types of models 421 

built in this study. Overall, genes that were predicted with R2≥0.01 in GTEx data were also 422 

predicted well in The Cancer Genome Atlas (TCGA) tumor-adjacent normal tissue data 423 

(correlation coefficient of 0.55 for R2 in two datasets; Supplementary Figure 2). Based on 424 

model performance in GTEx and TCGA, we prioritized 8,597 genes for analyses of the 425 

associations between predicted gene expression and breast cancer risk using the following 426 

criteria: 1) genes with a model prediction R2 of at least 0.01 in the GTEx set (10% correlation) 427 

and a Spearman’s correlation coefficient of >0.1 in the external validation experiment using 428 

TCGA data, 2) genes with a prediction R2 of at least 0.09 (30% correlation) in the GTEx set 429 

regardless of their performance in the TCGA set, 3) genes with a prediction R2 of at least 0.01 in 430 
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the GTEx set (10% correlation) that could not be evaluated in the TCGA set because of a lack of 431 

data.  432 

 433 

Association analyses of predicted gene expression with breast cancer risk 434 

Using the MetaXcan method26, we performed association analyses to evaluate predicted gene 435 

expression and breast cancer risk using the meta-analysis summary statistics of individual 436 

genetic variants generated for 122,977 breast cancer cases and 105,974 controls of European 437 

ancestry included in BCAC. For the majority of the tested genes, most of the SNPs selected for 438 

prediction models were used for the association analyses (e.g., ≥95% predicting SNPs used for 439 

83.8% of the tested genes, and ≥80% predicting SNPs used for 95.6% of the tested genes). 440 

Lambda 1,000 (Ȝ1,000), a standardized estimate of the genomic inflation scaling to a study of 441 

1,000 cases and 1,000 controls, was 1.004 in our study (Quantile-quantile (QQ) plot presented in 442 

Supplementary Figure 3 (A)). Of the 8,597 genes evaluated in this study, we identified 179 443 

genes whose predicted expression was associated with breast cancer risk at P<1.05×10-3, a FDR-444 

corrected significance level (Figure 1, Supplementary Table 2). Of these, 48 showed a 445 

significant association at the Bonferroni-corrected threshold of P≤5.82×10-6 (Figure 1, Tables 1-446 

3), including 14 genes located at 11 loci that are 500 kb away from any of the risk variants 447 

identified in previous GWAS of breast cancer risk (Table 1). An association between lower 448 

predicted expression and increased breast cancer risk was detected for LRRC3B (3p24.1), 449 

SPATA18 (4q12), UBD (6p22.1), MIR31HG (9p21.3), RIC8A (11p15.5), B3GNT1 (11q13.2), 450 

GALNT16 (14q24.1) and MAN2C1 and CTD-2323K18.1 (15q24.2). Conversely, an association 451 

between higher predicted expression and increased breast cancer risk was identified for ZSWIM5 452 

(1p34.1), KLHDC10 (7q32.2), RP11-867G23.10 (11q13.2), RP11-218M22.1 (12p13.33) and 453 
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PLEKHD1 (14q24.1). The remaining 34 significantly associated genes are all located at breast 454 

cancer susceptibility loci identified in previous GWAS (Tables 2-3). Among them, 23 have not 455 

yet been previously implicated as genes responsible for association signals with breast cancer 456 

risk identified at these loci through expression quantitative trait loci (eQTL) and/or functional 457 

studies, and do not harbor GWAS or fine-mapping identified risk variants (Table 2), while the 458 

other eleven (KLHDC7A7, ALS2CR1231, CASP831,32, ATG109, SNX3233, STXBP434,35 , ZNF4048, 459 

ATP6AP1L9, RMND117, L3MBTL36, and RCCD110) had been reported as potential causal genes 460 

at breast cancer susceptibility loci or harbor GWAS or fine-mapping identified risk variants 461 

(Table 3). Except for RP11-73O6.3 and L3MBTL3, there was no evidence of heterogeneity in 462 

the gene-expression association (I2<0.2) across the iCOGS, OncoArray, and GWAS datasets 463 

included in our analyses (Supplementary Table 3). Overall, through our agnostic search, we 464 

identified 37 novel susceptibility genes for breast cancer, including 21 protein-coding genes, 15 465 

long non-coding RNAs (lncRNAs) and a processed transcript, and confirmed eleven genes 466 

known to potentially play a role in breast cancer susceptibility. 467 

 468 

To determine whether the associations between predicted gene expression and breast cancer risk 469 

were independent of the association signals identified in previous GWAS, we performed 470 

conditional analyses adjusting for the GWAS-identified risk SNPs closest to the TWAS-471 

identified gene (Supplementary Table 4)36. We found that the associations for 11 genes 472 

(LRRC3B, SPATA18, KLHDC10, MIR31HG, RIC8A, B3GNT1, RP11-218M22.1, MAN2C1, 473 

CTD-2323K18.1 (Table 1), ALK, CTD-3051D23.1 (Table 2)) remained statistically significant 474 

at P<5.82×10-6 (Tables 1-3). This suggests the expression of these genes may be associated with 475 

breast cancer risk independent of the GWAS-identified risk variant(s). For nine of the genes 476 
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(SPATA18, KLHDC10, MIR31HG, RIC8A, RP11-218M22.1, MAN2C1, CTD-2323K18.1 (Table 477 

1), ALK, and CTD-3051D23.1 (Table 2)), the significance level of the association remained 478 

essentially unchanged, suggesting these associations may be entirely independent of GWAS-479 

identified association signals. 480 

 481 

Of the 131 genes showing a significant association at P values between 5.82×10-6 and 1.05×10-3 482 

(significant after FDR-correction but not Bonferroni-correction), 38 are located at GWAS-483 

identified breast cancer risk loci (± 500 kb of the index SNPs) (Table 4). Except for RP11-484 

400F19.8, there was no evidence of heterogeneity in TWAS association (I2<0.2) across the 485 

iCOGS, OncoArray, and GWAS studies (Supplementary Table 3). After adjusting for the index 486 

SNPs, breast cancer associations for MTHFD1L, PVT1, RP11-123K19.1, FES, RP11-400F19.8, 487 

CTD-2538G9.5, and CTD-3216D2.5 remained significant at p ≤ 1.05×10-3, again suggesting that 488 

the association of these genes with breast cancer risk may be independent of the GWAS-489 

identified association signals (Table 4).  490 

 491 

For 41 of the 48 associated genes that reached the Bonferroni-corrected significant level, we 492 

obtained individual-level data from subjects included in the iCOGS (n=84,740) and OncoArray 493 

(n=112,133) datasets, which was 86% of the subjects included in the analysis using summary 494 

statistics (Supplementary Table 5). The results from the analysis using individual-level data 495 

were very similar to those described above using MetaXcan analyses (Pearson correlation of z-496 

scores was 0.991 for iCOGS data and 0.994 for OncoArray data), although not all associations 497 

reached the Bonferroni-corrected significant level, possibly due to a smaller sample size 498 

(Supplementary Table 5). Conditional analyses using individual level data also revealed 499 
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consistent results compared with analyses using summary data. We found that for several genes 500 

within the same genomic region, their predicted expression levels were correlated with each 501 

other (Tables 1-3). The associations between predicted expression of PLEKHD1 and ZSWIM5 502 

and breast cancer risk were largely influenced by their corresponding closest risk variants 503 

identified in GWAS, although these risk variants are >500 kb away from these genes (Table 1). 504 

There were significant correlation of rs999737 and rs1707302 with genetically predicted 505 

expression of PLEKHD1 (r = -0.47 in the OncoArray dataset and -0.48 in the iCOGS dataset) 506 

and ZSWIM5 (r = 0.50 in the OncoArray dataset and 0.51 in the iCOGS dataset), respectively. 507 

 508 

INQUISIT algorithm scores for the identified genes 509 

For the 48 associated genes after Bonferroni correction, we assessed their integrated expression 510 

quantitative trait and in sil ico prediction of GWAS target (INQUISIT) scores7 to assess whether 511 

there are other lines of evidence beyond the scope of eQTL for supporting our TWAS-identified 512 

genes as candidate target genes at GWAS-identified loci. The detailed methodology for 513 

INQUISIT scores have been described elsewhere7. In brief, a score for each gene-SNP pair is 514 

calculated across categories representing potential regulatory mechanisms - distal or proximal 515 

gene regulation (promoter). Features contributing to the score are based on functionally 516 

important genomic annotations such as chromatin interactions, transcription factor binding, and 517 

eQTLs. Compared with evidence from eQTL only, INQUISIT scores incorporate additional lines 518 

of evidence, including distal regulations. The INQUISIT scores for our identified genes are 519 

shown in Supplementary Table 6. Except for UBD with a very low score in the distal regulation 520 

category (0.05), none of the genes at novel loci (Table 1) showed evidence to be potential target 521 

genes for any of the GWAS-identified breast cancer susceptibility loci. This is interesting and 522 
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within the expectation since these genes may represent novel association signals. There was 523 

evidence suggesting that RP11-439A17.7, NUDT17, ANKRD34A, BTN3A2, AP006621.6, 524 

RPLP2, LRRC37A2, LRRC37A, KANSL1-AS1, CRHR1 and HAPLN4 listed in Table 2, and all 525 

eleven genes listed in Table 3, may be target genes for risk variants identified in GWAS at these 526 

loci (Supplementary Table 6). For NUDT17, ANKRD34A, RPLP2, LRRC37A2, LRRC37A, 527 

KANSL1-AS1, CRHR1, HAPLN4, KLHDC7A, ALS2CR12, CASP8, ATG10, ATP6AP1L, 528 

L3MBTL3, RMND1, SNX32, RCCD1, STXBP4 and ZNF404, the INQUISIT scores were not 529 

derived only from eQTL data, providing orthogonal support for these loci. For these loci, the 530 

associations of candidate causal SNPs with breast cancer risk may be mediated through these 531 

genes. This is in general consistent with the findings from the conditional analyses described 532 

above.  533 

 534 

Pathway enrichment analyses 535 

Ingenuity Pathway Analysis (IPA)37 suggested potential enrichment of cancer-related functions 536 

for the significantly associated protein-coding genes identified in this study (Supplementary 537 

Table 7). The top canonical pathways identified in these analyses included apoptosis related 538 

pathways (Granzyme B signaling (p=0.024) and cytotoxic T lymphocyte-mediated apoptosis of 539 

target cells (p=0.046)), immune system pathway (inflammasome pathway (p=0.030)), and 540 

tumoricidal function of hepatic natural killer cells (p=0.036). The identified pathways are largely 541 

consistent with findings in previous studies7. For the significantly associated lncRNAs identified 542 

in this study, pathway analysis of their highly co-expressed protein-coding genes also revealed 543 

potential over-representation of cancer related functions (Supplementary Table 7). 544 

 545 
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Knockdown of predicted risk-associated genes in breast cells 546 

To assess the function of genes whose high levels of predicted expression were associated with 547 

increased breast cancer risk, we selected 13 genes for knockdown experiments in breast cells: 548 

ZSWIM5, KLHDC10, RP11-218M22.1 and PLEKHD1 (Table 1), UBLCP1, AP006621.6, RP11-549 

467J12.4, CTD-3032H12.1 and RP11-15A1.7 (Table 2), and ALS2CR12, RMND1, STXBP4 and 550 

ZNF404 (Table 3). As negative controls, we selected B2M, ARHGDIA and ZAP70 using the 551 

following criteria: 1) at least 2 MB from any known breast cancer risk locus; 2) not an essential 552 

gene in breast cancer38,39; and 3) not predicted to be a target gene in INQUISIT. In addition, as 553 

positive controls, we included in the experiments PIDD1 (Table 4)7, NRBF220 and ABHD822, 554 

which have been functionally validated as the target genes at breast cancer risk loci. We 555 

performed quantitative PCR (qPCR) on a panel of three ‘normal’ mammary epithelial and 15 556 

breast cancer cell lines to analyze their expression level (Supplementary Figure 4 and 557 

Supplementary Table 8). All 19 genes were expressed in the normal mammary epithelial line 558 

184A140 and the luminal breast cancer cell lines, MCF7 and T47D, so we used these cell lines 559 

for the proliferation assay, and MCF7 for the colony formation assay41. We also evaluated 560 

SNX32, ALK and BTN3A2 by qPCR, but they were not expressed in T47D and MCF7 cells; 561 

therefore they were not evaluated further. It was difficult to design siRNAs against RP11-562 

867G23.1 and RP11-53O19.1 because they both have multiple transcripts with limited, GC-rich 563 

regions in common. We did not include RPLP2 because it is already known to be an essential 564 

gene for breast cancer survival42. Knockdown of the 19 tested genes was achieved by small short 565 

interfering RNA (siRNA) (Supplementary Table 9) and the knockdown efficiency was 566 

calculated in 184A1, MCF7 and T47D for each siRNA pair. Robust knockdown of the gene of 567 
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interests (GOI) was validated by qPCR with the majority of the siRNAs (Supplementary Figure 568 

5).  569 

 570 

To evaluate the survival and proliferation ability of cells following gene interruption, we used an 571 

IncuCyte to quantify cell proliferation in real time and quantified the corrected proliferation of 572 

cells with knocking down of GOI in comparison to that of cells with non-target control (NTC) 573 

siRNA). As expected, knockdown of the three negative control genes (B2M, ARHGDIA and 574 

ZAP70) did not significantly change cell proliferation in any of the three cell lines (Figure 2A, 575 

Supplementary Figure 6). However, with the exception of UBLCP1, RMND1 and STXBP4, 576 

knockdown of all other genes (11 TWAS-identified genes along with two known genes, ABHD8 577 

and NRBF2) resulted in significantly decreased cell proliferation in 184A1 normal breast cells, 578 

with KLHDC10, PLEKHD1, RP11-218M22.1, AP006621.6, ZNF404, RP11-467J12.4, CTD-579 

3032H12.1 and STXBP4 showing a similar effect in one or both cancer cell lines. Down-580 

regulation of three lncRNAs (RP11-218M22.1, RP11-467J12.4 and CTD-3032H12.1) resulted in 581 

significant reduction in cell proliferation in all three cell lines. We also evaluated the effect of 582 

inhibition of these genes on colony forming ability in MCF7 cells. Knockdown of the three 583 

negative control genes did not significantly affect colony forming efficiency (CFE). By contrast, 584 

knockdown of PIDD1, RP11-15A1.7, RP11-218M22.1, AP006621.6, ZNF404, RP11-467J12.4 585 

and CTD-3032H12.1 resulted in significantly decreased colony forming efficiency in MCF7 cells 586 

compared to the NTC (Figure 2B, Supplementary Figure 7).  587 

 588 

Discussion 589 

This is the largest study to systematically evaluate associations of genetically predicted gene 590 
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expression across the human transcriptome with breast cancer risk. We identified 179 genes 591 

showing a significant association at the FDR-corrected significance level. Of these, 48 showed a 592 

significant association at the Bonferroni-corrected threshold, including 14 genes at genomic loci 593 

that have not previously been implicated for breast cancer risk. Of the 34 genes we identified that 594 

are located at known risk loci, 23 have not previously been shown to be the targets of GWAS-595 

identified risk SNPs at corresponding loci and not harbor any risk SNPs. Our study provides 596 

substantial new information to improve the understanding of genetics and etiology for breast 597 

cancer, the most common malignancy among women in most countries. 598 

 599 

It is possible that TWAS-identified genes may be associated with breast cancer risk through their 600 

correlation with disease causal genes. To determine the potential functional significance of 601 

TWAS-identified genes and provide evidence for causal inference, we knocked down 13 genes 602 

for which high predicted levels of expression were associated with an increased breast cancer 603 

risk, in one normal and two breast cancer cell lines, and measured the effect on proliferation and 604 

colony forming efficiency. Although there was some variation between cell lines, knockdown of 605 

11 of the 13 genes showed an effect in at least one cell line, particularly on proliferation in 606 

184A1 normal breast cells; the effects were strongest and most consistent for the lncRNAs, 607 

RP11-218M22.1, RP11-467J12.4 and CTD-3032H12.1. The observation of a more consistent 608 

effect in the normal breast cell line compared with the cancer cell lines is not surprising as cancer 609 

cell lines have increased capacity to handle gene interference through mutations which enhance 610 

cell survival. Rewiring of pathways and compensatory mechanisms is a hallmark of cancer. 611 

Knockdown of PIDD1, NRBF2 and ABHD8¸ for which breast cancer risk associated haplotypes 612 

have been shown to be associated with increased expression in reporter assays7,20,22, affected 613 
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either proliferation or colony forming efficiency, supporting the results from this study. 614 

Knockdown of UBLCP1 and RMND1 did not affect proliferation or colony formation but they 615 

could mediate breast cancer risk through other mechanisms. 616 

 617 

Some of the genes with strong functional evidence from our study have been reported to have 618 

important roles in carcinogenesis. For example, RP11-467J12.4 (PR-lncRNA-1) is a p53-619 

regulated lncRNA that modulates gene expression in response to DNA damage downstream of 620 

p5343. STXBP4 encodes Syntaxin binding protein 4, a scaffold protein that can stabilise and 621 

prevent degradation of an isoform of p63, a member of the p53 tumor suppressor family44. 622 

KLHDC10 encodes a member of the Kelch superfamily that can activate apoptosis signal-623 

regulating kinase 1, contributing to oxidative stress-induced cell death45. Notably, another 624 

member of this superfamily, KLHDC7A, has recently been identified as the target gene at the 625 

1p36 breast cancer risk locus7.  626 

 627 

SNX32, ALK and BTN3A2 are also likely susceptibility genes for breast cancer risk. However, 628 

their low or absent expression in our chosen breast cell lines prevented further functional 629 

analysis. SNX32 (Sorting Nexin 32) is not well characterized, but ALK (Anaplastic lymphoma 630 

kinase) copy number gain and overexpression have been reported in aggressive and metastatic 631 

breast cancers46. Therapeutic targeting of ALK rearrangement has significantly improved 632 

survival in advanced ALK-positive lung cancer47, making it an attractive target for breast and 633 

other cancers. BTN3A2 is a member of the B7/butyrophilin-like group of Ig superfamily 634 

receptors modulating the function of T-lymphocytes. While the exact role of BTN3A2 remains 635 
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unknown, over-expression of this gene in epithelial ovarian cancer is associated with higher 636 

infiltrating immune cells and a better prognosis48.  637 

 638 

Our analyses identified multiple genes with reduced expression levels associated with increased 639 

breast cancer risk. Among them, LRRC3B and CASP8 are putative tumor suppressors in multiple 640 

cancers, including breast cancer. Leucine-rich repeat-containing 3B (LRRC3B) is a putative 641 

LRR-containing transmembrane protein, which is frequently inactivated via promoter 642 

hypermethylation leading to inhibition of cancer cell growth, proliferation, and invasion49. 643 

CASP8 encodes a member of the cysteine-aspartic acid protease family, which play a central role 644 

in cell apoptosis. Previous studies have suggested that caspase-8 may act as a tumor suppressor 645 

in certain types of lung cancer and neuroblastoma, although this function has not yet been 646 

demonstrated in breast cancer. Notably, several large association studies have identified SNPs at 647 

the 2q33/CASP8 locus associated with increased breast cancer risk31,50. Consistent with our data, 648 

eQTL analyses showed that the risk alleles for breast cancer were associated with reduced 649 

CASP8 mRNA levels in both peripheral blood lymphocytes and normal breast tissue31.  650 

 651 

For seven of the genes listed in Tables 1 and 2, we found some evidence from studies using 652 

tumor tissues, in vitro or in vivo experiments linking them to cancer risk (Supplementary Table 653 

10), although their association with breast cancer has not been previously demonstrated in human 654 

studies. For five of them, including LRRC3B, SPATA18, RIC8A, ALK and CRHR1, previous in 655 

vitro and in vivo experiments and human tissue studies showed a consistent direction of the 656 

association as demonstrated in our studies. For two other genes (UBD and MIR31HG), however, 657 

results from previous studies were inconsistent, reporting both potential promoting and inhibiting 658 
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effects on breast cancer development. Future studies are needed to evaluate functions of these 659 

genes. 660 

 661 

We included a large number of cases and controls in this study, providing strong statistical power 662 

for the association analysis. This large sample size enabled us to identify a large number of 663 

candidate breast cancer susceptibility genes, much larger than the number identified in a TWAS 664 

study with a sample size of about 20% of ours30. The previous study included subjects of 665 

different races, which could affect the results as linkage disequilibrium (LD) patterns differ by 666 

races. Of the five genes reported in that smaller TWAS that showed a suggestive association with 667 

breast cancer risk, the association for the RCCD1 gene was replicated in our study (Table 3). 668 

The other four genes (ANKLE1, DHODH, ACAP1 and LRRC25) were not evaluated in our study 669 

because of unsatisfactory performance of our breast specific models for these genes which were 670 

built using the GTEx reference dataset including only female European descendants. In our 671 

study, the expression prediction model for ANKLE1 has a marginal performance in predicting 672 

gene expression (R2=0.013 in the GTEx). The model, however, did not perform well in the 673 

TCGA data. For ACAP1 and LRRC25, previous results for suggestive associations were based on 674 

blood tissue models. 675 

 676 

A substantial proportion of SNPs included in the OncoArray and iCOGS were selected from 677 

breast cancer GWAS and fine-mapping analyses, and thus these arrays were enriched for 678 

association signals with breast cancer risk. As a result, the overall Ȝ value for the BCAC 679 

association analyses of individual variants is 1.26 after adjusting for population stratifications 680 

(QQ plot in Supplementary Figure 3 (B))7. The Ȝ value for the associations of the ~257,000 681 
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SNPs included in the gene expression prediction models of the 8,597 genes tested in our 682 

association analysis is 1.40 (QQ plot in Supplementary Figure 3 (C)). This higher Ȝ value is 683 

perhaps expected because of a potential further enrichment of breast cancer associated signals in 684 

the set of SNPs selected to predict gene expression. There could be additional gain of power (and 685 

thus a higher Ȝ value) in TWAS as it aggregates the effect of multiple SNPs to predict gene 686 

expression and use genes as the unit for association analyses. The lambda (Ȝ) for our associated 687 

analyses of 8,597 genes was 1.51 (QQ plot presented in Supplementary Figure 3 (A)) likely 688 

due to the potential enrichment and power gain discussed above as well as our large sample size, 689 

and the highly polygenic nature of the disease7,51. Interestingly, high Ȝ values were also found in 690 

recent large studies of other polygenic traits, such as body mass index (BMI) (Ȝ = 1.99) and 691 

height (Ȝ = 2.7)52,53. The Ȝ1,000, a standardized estimate of the genomic inflation scaling to a study 692 

of 1,000 cases and 1,000 controls, is 1.004 in our study. 693 

 694 

The statistical power of our study is very large to detect associations for genes with a relatively 695 

high cis-heritability (h2) (Supplementary Figure 8). For example, our study has 80% statistical 696 

power to detect an association with breast cancer risk at P<5.82×10-6 with an OR of 1.07 or 697 

higher per one standard deviation increase (or decrease) in the expression level of genes with an 698 

h2 of 0.1 or higher. One limitation of our study is the small sample size for building gene 699 

expression prediction models, which may have affected the precision of model parameter 700 

estimates. The prediction performance (R2) for several of the genes identified in our study was 701 

not optimal, and thus additional research is needed to confirm our findings. We expect that 702 

models built with a larger sample size (and thus with more stable estimates of model parameters) 703 

will identify additional association signals. We used samples from women of European origin in 704 
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model building, given differences in gene expression patterns between males and females and in 705 

genetic architecture across ethnicities54. We also used gene expression data of tumor-adjacent 706 

normal tissue samples from European descendants in TCGA as an external validation step to 707 

prioritize genes for association analyses. Given potential somatic alterations in tumor-adjacent 708 

normal tissues, we retained all models showing a prediction performance (R2) of at least 0.09 in 709 

GTEx, regardless of their performance in TCGA. Not all genes have a significant hereditary 710 

component in expression regulation, and thus these genes could not be investigated in our study. 711 

For example, previous studies have provided strong evidence to support a significant role of the 712 

TERT, ESR1, CCND1, IGFBP5, TET2 and MRPS30 genes in the etiology of breast cancer. 713 

However, expression of these genes cannot be predicted well using the data from female 714 

European descendants included in the GTEx and thus they were not included in our association 715 

analyses. Supplementary Table 11 summarizes the performance of prediction models and 716 

association results for breast cancer target genes reported previously at GWAS-identified loci.  717 

 718 

In summary, our study has identified multiple gene candidates that can be further functionally 719 

characterized. By evaluating the associations of predicted gene expression levels with breast 720 

cancer risk, we provided evidence for the direction of the association for the identified genes. 721 

The silencing experiments we performed suggest that many of the genes identified by TWAS are 722 

likely to mediate risk of breast cancer by affecting proliferation or colony forming efficiency, 723 

two of the hallmarks of cancer. Further investigation of genes identified in our study will provide 724 

additional insight into the biology and genetics of breast cancer. 725 

 726 

Methods 727 
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Building of gene expression prediction models  728 

We used transcriptome and high-density genotyping data from the Genotype-Tissue Expression 729 

(GTEx) study to establish prediction models for genes expressed in normal breast tissues. Details 730 

of the GTEx have been described elsewhere55. Genomic DNA samples obtained from study 731 

subjects included in the GTEx were genotyped using Illumina OMNI 5M or 2.5M SNP Array 732 

and RNA samples from 51 tissue sites were sequenced to generate transcriptome profiling data. 733 

Genotype data were processed according to the GTEx protocol 734 

(http://www.gtexportal.org/home/documentationPage). SNPs with a call rate < 98%, with 735 

differential missingness between the two array experiments (5M/2.5M Arrays), with Hardy-736 

Weinberg equilibrium p-value < 10-6 (among subjects of European ancestry), or showing batch 737 

effects were excluded. One Klinefelter individual, three related individuals, and a chromosome 738 

17 trisomy individual were also excluded. The genotype data were imputed to the Haplotype 739 

Reference Consortium reference panel56 using Minimac3 for imputation and SHAPEIT for 740 

prephasing57,58. SNPs with high imputation quality (r2 ≥ 0.8), minor allele frequency (MAF) ≥ 741 

0.05, and included in the HapMap Phase 2 version, were used to build expression prediction 742 

models. For gene expression data, we used Reads Per Kilobase per Million (RPKM) units from 743 

RNA-SeQC59. Genes with a median expression level of 0 RPKM across samples were removed, 744 

and the RPKM values of each gene were log2 transformed. We performed quantile normalization 745 

to bring the expression profile of each sample to the same scale, and performed inverse quantile 746 

normalization for each gene to map each set of expression values to a standard normal. We 747 

adjusted for the top ten principal components (PCs) derived from genotype data and the top 15 748 

probabilistic estimation of expression residuals (PEER) factors to correct for batch effects and 749 

experimental confounders in model building60. Genetic and transcriptome data from 67 female 750 
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subjects of European descent without a prior breast cancer diagnosis were used to build gene 751 

expression prediction models for this study. 752 

 753 

We built an expression prediction model for each gene by using the elastic net method as 754 

implemented in the glmnet R package, with Į=0.5, as recommended by Gamazon et al27. The 755 

genetically regulated expression for each gene was estimated by including variants within a 2 756 

MB window flanking the respective gene boundaries, inclusive. Expression prediction models 757 

were built for protein coding genes, long non-coding RNAs (lncRNAs), microRNAs (miRNAs), 758 

processed transcripts, immunoglobulin genes, and T cell receptor genes, according to categories 759 

described in the Gencode V19 annotation file (http://www.gencodegenes.org/releases/19.html). 760 

Pseudogenes were not included in the present study because of potential concerns of inaccurate 761 

calling61. Ten-fold cross-validation was used to validate the models internally. Prediction R2 762 

values (the square of the correlation between predicted and observed expression) were generated 763 

to estimate the prediction performance of each of the gene prediction models established.  764 

 765 

For genes that cannot be predicted well using the above approach, we built models using only 766 

SNPs located in predicted promoter or enhancer regions in breast cell lines. This approach 767 

reduces the number of variants for model building, and thus potentially improves model 768 

accuracy, by increasing the ratio of sample size to effective degrees of freedom.  769 

SNP-level annotation data in three breast cell lines, namely, Breast Myoepithelial Primary Cells 770 

(E027), Breast variant Human Mammary Epithelial Cells (vHMEC) (E028), and HMEC 771 

Mammary Epithelial Primary Cells (E119) in the Roadmap Epigenomics Project/Encyclopedia 772 

of DNA Elements Project16, were downloaded from 773 
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http://archive.broadinstitute.org/mammals/haploreg/data/ (Version 4.0, assessed on December 6, 774 

2016). SNPs in regions classified as promoters (TssA, TssAFlnk), enhancers (Enh, EnhG), or  775 

regions with both promoter and enhancer signatures (ExFlnk) according to the core 15 chromatin 776 

state model16 in at least one of the cell lines were retained as input SNPs for model building.  777 

 778 

Evaluating performance of gene expression prediction models using The Cancer Genome 779 

Atlas (TCGA) data 780 

To assess further the validity of the models, we performed external validation using data 781 

generated in tumor-adjacent normal breast tissue samples obtained from 86 European-ancestry 782 

female breast cancer patients included in the TCGA. Genotype data were imputed using the same 783 

approach as described for GTEx data. Expression data were processed and normalized using a 784 

similar approach as described above. The predicted expression level for each gene was calculated 785 

using the model established using GTEx data and then compared with the observed level of that 786 

gene using the Spearman’s correlation.  787 

 788 

Evaluating statistical power for association tests 789 

We conducted a simulation analysis to assess the power of our TWAS analysis. Specifically, we 790 

set the number of cases and controls to be 122,977 and 105,974, respectively, and generated the 791 

gene expression levels from the empirical distribution of predicted gene expression levels in the 792 

BCAC. We calculated statistical power at P<5.82×10-6 (the significance level used in our 793 

TWAS) according to cis-heritability (h2) which we aim to capture using gene expression 794 

prediction models (R2). The results based on 1000 replicates are summarized in Supplementary 795 

Figure 8. Based on the power calculation, our TWAS analysis has 80% power to detect a 796 
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minimum odds ratio of 1.11, 1.07, 1.05, 1.04, or 1.03 for breast cancer risk per one standard 797 

deviation increase (or decrease) in the expression level of a gene whose cis-heritability is 5%, 798 

10%, 20%, 40%, or 60%, respectively. 799 

 800 

Association analyses of predicted gene expression with breast cancer risk 801 

We used the following criteria to select genes for the association analysis: 1) with a model 802 

prediction R2 of ≥ 0.01 in GTEx and a Spearman’s correlation coefficient of ≥ 0.1 in TCGA, 2) 803 

with a prediction R2 of ≥ 0.09 in GTEx regardless of the performance in TCGA, 3) with a 804 

prediction R2 of ≥ 0.01 in GTEx but unable to be evaluated in TCGA. The second group of genes 805 

was selected because some gene expression levels might have changed in TCGA tumor-adjacent 806 

normal tissues, and thus it is anticipated that some genes may show low prediction performance 807 

in TCGA data due to the influence of tumor growth62,63. Overall, a total of 8,597 genes met the 808 

criteria and were evaluated for their expression-trait associations.  809 

 810 

To identify novel breast cancer susceptibility loci and genes, the MetaXcan method, as described 811 

elsewhere, was used for the association analyses26. Briefly, the formula:  812 

௚ܼ ൎ  ෍ ୑୭ୢୣ୪೒א௟௚௟ݓ
ො௚ߪො௟ߪ  መ௟ሻ  813ߚመ௟seሺߚ 

was used to estimate the Z-score of the association between predicted expression and breast 814 

cancer risk. Here ݓ௟௚ is the weight of SNP ݈ for predicting the expression of gene ݃, ߚመ௟and 815 seሺߚመ௟ሻ are the GWAS association regression coefficient and its standard error for SNP ݈, and ߪො௟ 816 

and ߪො௚ are the estimated variances of SNP ݈ and the predicted expression of gene ݃ respectively. 817 

Therefore, the weights for predicting gene expression, GWAS summary statistics results, and 818 
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correlations between model predicting SNPs are the input variables for the MetaXcan analyses. 819 

For this study we estimated correlations between SNPs included in the prediction models using 820 

the phase 3, 1000 Genomes Project data focusing on European population. 821 

 822 

For the association analysis, we used the summary statistics data of genetic variants associated 823 

with breast cancer risk generated in 122,977 breast cancer patients and 105,974 controls of 824 

European ancestry from the Breast Cancer Association Consortium (BCAC). The details of the 825 

BCAC have been described elsewhere7,9,13,64,65. Briefly, 46,785 breast cancer cases and 42,892 826 

controls of European ancestry were genotyped using a custom Illumina iSelect genotyping array 827 

(iCOGS) containing ~211,155 variants. A further 61,282 cases and 45,494 controls of European 828 

ancestry were genotyped using the OncoArray including 570,000 SNPs 829 

(http://epi.grants.cancer.gov/oncoarray/). Also included in this analysis were data from nine 830 

GWAS studies including 14,910 breast cancer cases and 17,588 controls of European ancestry. 831 

Genotype data from iCOGS, OncoArray and GWAS were imputed using the October 2014 832 

release of the 1000 Genomes Project data as reference. Genetic association results for breast 833 

cancer risk were combined using inverse variance fixed effect meta-analyses7. For our study, 834 

only SNPs with imputation r2 ≥ 0.3 were used. All participating BCAC studies were approved by 835 

their appropriate ethics review boards. This study was approved by the BCAC Data Access 836 

Coordination Committee. 837 

 838 

Lambda 1,000 (Ȝ1,000) was calculated to represent a standardized estimate of the genomic 839 

inflation scaling to a study of 1,000 cases and 1,000 controls, using the following formula: 840 

Ȝ1,000=1+(Ȝobs-1) × (1/ncases+1/ncontrols)/(1/1,000cases+1/1,000controls)66,67. We used a Bonferroni 841 
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corrected p threshold of 5.82×10-6 (0.05/8,597) to determine a statistically significant association 842 

for the primary analyses. To identify additional gene candidates at previously identified 843 

susceptibility loci, we also used a false discovery rate (FDR) corrected p threshold of 1.05×10-3 844 

(FDR ≤ 0.05) to determine a significant association. Associated genes with an expression of >0.1 845 

RPKM in less than 10 individuals in GTEx data were excluded as the corresponding prediction 846 

models may not be stable.  847 

 848 

To determine whether the predicted expression-trait associations were independent of the top 849 

signals identified in previous GWAS, we performed GCTA-COJO analyses developed by Yang 850 

et al36 to calculate association betas and standard errors of variants with breast cancer risk after 851 

adjusting for the index SNPs of interest. We then re-ran the MetaXcan analyses using the 852 

association statistics after conditioning on the index SNPs. This information was used to 853 

determine whether the detected expression-trait associations remained significant after adjusting 854 

for the index SNPs.  855 

 856 

For 41 identified associated genes at the Bonferroni-corrected threshold, we also performed 857 

analyses using individual level data in iCOGS (n=84,740) and OncoArray (n=112,133) datasets. 858 

We generated predicted gene expression using predicting SNPs, and then assessed the 859 

association between predicted gene expression and breast cancer risk adjusting for study and 860 

nine principal components in iCOGS dataset, and country and the first ten principal components 861 

in OncoArray dataset. Conditional analyses adjusting for index SNPs were performed to assess 862 

potential influence of reported index SNPs on the association between predicted gene expression 863 

and breast cancer risk. Furthermore, we evaluated whether the predicted expression levels of 864 
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genes within a same genomic region were correlated with each other by using the OncoArray 865 

data.  866 

  867 

INQUISIT algorithm scores for TWAS-identified genes 868 

To evaluate whether there are additional lines of evidence supporting the identified genes as 869 

putative target genes of GWAS identified risk SNPs beyond the scope of eQTL, we assessed 870 

their INQUISIT algorithm scores, which have been described elsewhere7. Briefly, this approach 871 

evaluates chromatin interactions between distal and proximal regulatory transcription-factor 872 

binding sites and the promoters at the risk regions using Hi-C data generated in HMECs68 and 873 

Chromatin Interaction Analysis by Paired End Tag (ChiA-PET) in MCF7 cells. This could detect 874 

genome-wide interactions brought about by, or associated with, CCCTC-binding factor (CTCF), 875 

DNA polymerase II (POL2), and Estrogen Receptor (ER), all involved in transcriptional 876 

regulation68. Annotation of predicted target genes used the Integrated Method for Predicting 877 

Enhancer Targets (IM-PET)69, the Predicting Specific Tissue Interactions of Genes and 878 

Enhancers (PreSTIGE) algorithm70, Hnisz71 and FANTOM72. Features contributing to the scores 879 

are based on functionally important genomic annotations such as chromatin interactions, 880 

transcription factor binding, and eQTLs. The detailed information for the INQUISIT pipeline and 881 

scoring strategy has been included in a previous publication7. In brief, besides assigning integral 882 

points according to different features, we also set up-weighting and down-weighting criteria 883 

according to breast cancer driver genes, topologically associated domain (TAD) boundaries, and 884 

gene expression levels in relevant breast cell lines. Scores in the distal regulation category range 885 

from 0-7, and in the promoter category from 0-4. A score of "none" represents that no evidence 886 

was found for regulation of the corresponding gene.  887 
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 888 

Functional enrichment analysis using Ingenuity Pathway Analysis (IPA)  889 

We performed functional enrichment analysis for the identified protein-coding genes reaching 890 

Bonferroni corrected association threshold. To assess potential functionality of the identified 891 

lncRNAs, we examined their co-expressed protein-coding genes determined using expression 892 

data of normal breast tissue of European females in GTEx. Spearman’s correlations between 893 

protein-coding genes and identified lncRNAs of ≥ 0.4 or ≤ -0.4 were used to indicate a high co-894 

expression. Canonical pathways, top associated diseases and biofunctions, and top networks 895 

associated with genes of interest were estimated using IPA software37.  896 

 897 

Gene expression in breast cell lines 898 

Total RNA was isolated from 18 cell lines (Supplementary Table 8) using the RNeasy Mini Kit 899 

(Qiagen). cDNA was synthesized using the SuperScript III (Invitrogen) and amplified using the 900 

Platinum SYBR Green qPCR SuperMix-UDG cocktail (Invitrogen). Two or three primer pairs 901 

were used for each gene and the mRNA levels for each sample was measured in technical 902 

triplicates for each primer set. The primer sequences are listed in Supplementary Table 12. 903 

Experiments were performed using an ABI ViiA(TM) 7 System (Applied Biosystems), and data 904 

processing was performed using ABI QuantStudio™ Software V1.1 (Applied Biosystems). The 905 

average of Ct from all the primer pairs for each gene was used to calculate ǻCɬ. The relative 906 

quantitation of each mRNA normalizing to that in 184A1 was performed using the comparative 907 

Ct method (ǻǻCɬ) and summarized in Supplementary Figure 4. 908 

 909 

Short interfering RNA (siRNA) silencing  910 
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MCF7 and T47D cells were reverse-transfected with siRNAs targeting genes of interest (GOI) or 911 

a non-targeting control siRNA (consi; Shanghai Genepharma) with RNAiMAX (Invitrogen) 912 

according to the manufacturer’s protocol. Verification of siRNA knockdown of gene expression 913 

by qPCR was performed 36 hours after transfection.  914 

 915 

Proliferation and colony formation assays  916 

For proliferation assays, MCF7 and T47D cells were trypsinized at 16 hours post-transfection 917 

and seeded into 24 well plates to achieve ~10% confluency. Phase-contrast images were 918 

collected with IncuCyte ZOOM (Essen Bioscience) for seven days. Duplicate samples were 919 

assessed for each GOI siRNA transfected cells along with non-target control si (NTCsi) treated 920 

cells in the same plate. 184A1 cells were reverse-transfected in 96 well plates to achieve 50% 921 

confluence at 8 hours after transfection. Two independent experiments were carried out for all 922 

siRNAs in all three cell lines. Each cell proliferation time-course was normalized to the baseline 923 

confluency and analyzed in GraphPad Prism. The area under the curve was calculated for each 924 

concentration (n=4) and used to calculate corrected proliferation (Corrected proliferation % = 925 

100 +/- (relative proliferation in indicated siRNA - proliferation in NTC siRNA) / knockdown 926 

efficiency (“+” if the GOI promotes proliferation and “-” if it inhibits proliferation)). For each 927 

gene, results from two siRNAs in two independent experiments were averaged and summarized 928 

in Figure 2 and Supplementary Figure 6. For colony formation assays; the same number of 929 

GOI siRNA transfected MCF7 cells was seeded in 6 well plates at 16 hours after transfection to 930 

assay colony forming efficiency at two weeks. All siRNA-treated cells were seeded in duplicate. 931 

Colonies (defined to consist of at least 50 cells) were fixed with methanol, stained with crystal 932 

violet (0.5% w/v), scanned and counted using ImageJ as batch analysis by a self-defined plug-in 933 
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Macro. Correct CFE % = 100 +/- (relative CFE in indicated siRNA - CFE in NTC siRNA) / 934 

knockdown efficiency (“+” if the GOI promotes CF and “-” if it inhibits CF). For each gene, 935 

results from two siRNAs in two independent experiments were averaged and summarized in 936 

Figure 2 and Supplementary Figure 7.  937 

 938 

Data availability  939 

The GTEx data are publicly available via dbGaP (www.ncbi.nlm.nih.gov/gap; dbGaP Study 940 

Accession: phs000424.v6.p1). TCGA data are publicly available via National Cancer Institute's 941 

Genomic Data Commons Data Portal (https://gdc.cancer.gov/). Most of the BCAC data used in 942 

this study are or will be publicly available via dbGAP. Data from some BCAC studies are not 943 

publicly available due to restraints imposed by the ethics committees of individual studies; 944 

requests for further data can be made to the BCAC (http://bcac.ccge.medschl.cam.ac.uk/) Data 945 

Access Coordination Committee. 946 

 947 

Code availability 948 

The computer codes used in our study are available upon reasonable request. 949 
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Figure Legends 1180 

Figure 1. Manhattan plot of association results from the breast cancer transcriptome-wide 1181 

association study. The red line represents P = 5.82ௗ×ௗ10-6. The blue line represents P = 1182 

1.00ௗ×ௗ10-3. 1183 

 1184 

Figure 2. Heat maps of proliferation and colony formation efficiency in breast cells. (A) 1185 

184A1, MCF7 or T47D cells were transfected with indicated siRNAs over seven days and phase-1186 

contrast images collected using an IncuCyte ZOOM. Each cell proliferation time-course was 1187 

normalized to the baseline confluency and analyzed using GraphPad Prism. Corrected 1188 

proliferation % = 100 +/- (relative proliferation in indicated siRNA - proliferation in control 1189 

siRNA (consi))/knockdown efficiency. (B) MCF7 cells were transfected with indicated siRNAs, 1190 

then reseeded after 16 hours for colony formation (CF) assay. At day 14, colonies were fixed 1191 

with methanol, stained with crystal violet, scanned and batch analyzed by ImageJ. Corrected CF 1192 

efficiency (CFE) % = 100 +/- (relative CFE in indicated siRNA - CFE in control siRNA 1193 

(consi))/knockdown efficiency. Error bars, SD (N=2). P-values were determined by one-way 1194 

ANOVA followed by Dunnett’s multiple comparisons test: *P-value < 0.05. NTC: non-target 1195 

control. 1196 
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Table 1. Fourteen expression-trait associations for genes located at genomic loci at least 500 kb away from any GWAS-identified 1 
breast cancer risk variants 2 
 3 

Region Genea Typeb 
Z 
score P valuec R2c 

Closest risk 
SNPd 

Distance to 
the closest 
risk SNP 
(kb) 

P value after 
adjusting for 
adjacent risk SNPse 

1p34.1 ZSWIM5 Protein 5.26 1.43ௗ×ௗ10-7 0.17 rs1707302 829 0.006 
3p24.1 LRRC3B Protein -9.57 1.11ௗ×ௗ10-21 0.17 rs653465 591 1.60ௗ×ௗ10-6 
4q12 SPATA18 Protein -4.62 3.86ௗ×ௗ10-6 0.11 rs6815814 14,101 3.98ௗ×ௗ10-6 
6p22.1 UBD Protein -4.87 1.10ௗ×ௗ10-6 0.13 rs9257408 597 0.94 
7q32.2 KLHDC10 Protein 5.21 1.92 ×ௗ10-7 0.14 rs4593472 892 2.90 ×ௗ10-7 
9p21.3 MIR31HG lncRNA -5.02 5.22ௗ×ௗ10-7 0.12 rs1011970 502 1.23ௗ×ௗ10-7 
11p15.5 RIC8A Protein -5.27 1.40ௗ×ௗ10-7 0.15 rs6597981 588 4.95ௗ×ௗ10-6 
11q13.2 B3GNT1 Protein -5.85 4.88 ×ௗ10-9 0.09 rs3903072 530 3.50 ×ௗ10-6 
11q13.2 RP11-867G23.10 transcript 4.71 2.49ௗ×ௗ10-6 0.03 rs3903072 594 2.61ௗ×ௗ10-4 
12p13.33 RP11-218M22.1 lncRNA 5.02 5.27ௗ×ௗ10-7 0.19 rs12422552 13,641 5.17ௗ×ௗ10-7 
14q24.1 GALNT16 Protein -8.27 1.38ௗ×ௗ10-16 0.04 rs999737 691 8.57ௗ×ௗ10-4 
14q24.1 PLEKHD1 Protein 7.50 6.55ௗ×ௗ10-14 0.02 rs999737 917 0.12 
15q24.2 MAN2C1 f Protein -5.32 1.02ௗ×ௗ10-7 0.39 rs2290203 15,851 9.56ௗ×ௗ10-8 
15q24.2 CTD-2323K18.1 f lncRNA -4.65 3.27ௗ×ௗ10-6 0.07 rs2290203 15,619 3.16ௗ×ௗ10-6 
 4 
a Genes that were siRNA-silenced for functional assays are bolded; SNPs used to predict gene expression are listed in the Supplementary Table 13 5 
b Protein: protein coding genes; lncRNA: long non-coding RNAs; transcript: processed transcript 6 
c P value: derived from association analyses; associations with p≤5.82×10-6 considered statistically significant based on Bonferroni correction of 7 
8,597 tests (0.05/8,597); R2: prediction performance (R2) derived using GTEx data. 8 
d Risk SNPs identified in previous GWAS or fine-mapping studies. The risk SNP closest to the gene is presented. A full list of all risk SNPs, and 9 
their distances to the genes are presented in the Supplementary Table 4  10 
e Use of COJO method36 11 
f Predicted expression of MAN2C1 and CTD-2323K18.1 was correlated (spearman R=0.76) 12 
 13 
 14 
 15 
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Table 2. Twenty-three expression-trait associations for genes located at genomic loci within 500 kb of any previous GWAS-identified 1 
breast cancer risk variants but not yet implicated as target genes of risk variants#  2 
 3 

Region Genea Typeb Z score P valuec R2c 
Closest risk 
SNPd 

Distance to 
the closest 
risk SNP (kb) 

P value after 
adjusting for 
adjacent risk 
SNPse 

1p11.2 RP11-439A17.7 lncRNA -5.34 9.07ௗ×ௗ10-8 0.22 rs11249433 442 0.02 
1q21.1 NUDT17 Protein -6.27 3.58ௗ×ௗ10-10 0.01 rs12405132 56 0.08 
1q21.1 ANKRD34A Protein -5.05 4.42ௗ×ௗ10-7 0.01 rs12405132 169 4.28ௗ×ௗ10-5 
2p23.1-2p23.2 ALK Protein 4.67 3.06ௗ×ௗ10-6 0.06 rs4577244 295 2.70ௗ×ௗ10-6 
3p21.31 PRSS46 Protein -5.83 5.68ௗ×ௗ10-9 0.13 rs6796502 89 0.002 
3q12.2 RP11-114I8.4 lncRNA -5.84 5.19ௗ×ௗ10-9 0.02 rs9833888 356 0.09 
5p12 RP11-53O19.1 lncRNA 10.38 2.94ௗ×ௗ10-25 0.03 rs10941679 39 7.46ௗ×ௗ10-4 
5q33.3 UBLCP1 Protein 5.93 3.04ௗ×ௗ10-9 0.07 rs1432679 446 0.37 
5q33.3 RP11-32D16.1 lncRNA -5.41 6.37ௗ×ௗ10-8 0.09 rs1432679 283 1.32ௗ×ௗ10-4 
6p22.2 BTN3A2 Protein 4.61 3.97ௗ×ௗ10-6 0.28 rs71557345 229 0.72 
6q23.1 RP11-73O6.3  f lncRNA -6.61 3.74 ×ௗ10-11 0.11 rs6569648 105 0.41 
11p15.5 AP006621.6 g lncRNA 5.61 2.01ௗ×ௗ10-8 0.34 rs6597981 21 0.52 
11p15.5 RPLP2 g Protein 4.64 3.46ௗ×ௗ10-6 0.27 rs6597981 7 0.51 
14q32.33 CTD-3051D23.1 lncRNA -5.06 4.21ௗ×ௗ10-7 0.05 rs10623258 97 7.05ௗ×ௗ10-7 
16q12.2 RP11-467J12.4 lncRNA 8.04 9.02ௗ×ௗ10-16 0.23 rs3112612 434 0.79 
16q12.2 CTD-3032H12.1 lncRNA 4.92 8.58ௗ×ௗ10-7 0.03 rs28539243 290 0.006 
17q21.31 LRRC37A g Protein -5.89 3.85ௗ×ௗ10-9 0.43 rs2532263 118 0.79 
17q21.31 KANSL1-AS1 g lncRNA -5.58 2.44ௗ×ௗ10-8 0.62 rs2532263 18 0.95 
17q21.31 CRHR1 g Protein -5.29 1.22ௗ×ௗ10-7 0.22 rs2532263 339 0.99 
17q21.31 LINC00671 lncRNA -5.85 4.95ௗ×ௗ10-9 0.07 rs72826962 190 0.26 
17q21.31 LRRC37A2 Protein -5.77 7.93ௗ×ௗ10-9 0.46 rs2532263 336 0.93 
19p13.11 HAPLN4 Protein -7.13 9.88ௗ×ௗ10-13 0.02 rs2965183 172 0.22 
19q13.31 RP11-15A1.7 h lncRNA 5.45 5.06ௗ×ௗ10-8 0.02 rs3760982 215 0.28 

# not yet reported from eQTL and/or functional studies as target genes of GWAS-identified risk variants and not harbor GWAS or fine-mapping 4 
identified risk variants 5 
a Genes that were siRNA-silenced for functional assays are bolded; SNPs used to predict gene expression are listed in the Supplementary Table 13 6 
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b Protein: protein coding genes; lncRNA: long non-coding RNAs  1 
c P value: nominal P value from association analysis; the threshold after Bonferroni correction of 8,597 tests (0.05/8,597=5.82×10-6) was used; R2: 2 
prediction performance (R2) derived using GTEx data 3 
d Risk SNPs identified in previous GWAS or fine-mapping studies. The risk SNP closest to the gene is presented. A full list of all risk SNPs, and 4 
their distances to the genes are presented in the Supplementary Table 4  5 
e Use of COJO method36; all index SNPs in the corresponding region were adjusted in the conditional analyses 6 
f Predicted expression of RP11-73O6.3 and L3MBTL3 was correlated (spearman R=0.88) 7 
g Predicted expression of AP006621.6  and RPLP2 was correlated; predicted expression of LRRC37A, KANSL1-AS1, and CRHR1 was correlated  8 
(spearman R>0.1) 9 
h Predicted expression of RP11-15A1.7 and ZNF404 was correlated (spearman R=0.64) 10 
  11 
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Table 3. Eleven expression-trait associations for genes previously reported as potential target genes of GWAS-identified breast cancer 1 
risk variants or genes harboring risk variants 2 
 3 

Region Genea Typeb 
Z 
score P valuec R2c 

Closest risk 
SNPd 

Distance to the 
closest risk SNP 
(kb) 

P value after 
adjusting for 
adjacent risk 
SNPse 

Association 
direction 
reported 
previouslyf Reference 

1p36.13 KLHDC7A Protein -5.67 1.40ௗ×ௗ10-8 0.04 rs2992756 0.085 0.06 - 7 
2q33.1 ALS2CR12 Protein 6.70 2.11ௗ×ௗ10-11 0.10 rs1830298 intron of the gene 0.17 NA 31 
2q33.1 CASP8 Protein -8.05 8.51ௗ×ௗ10-16 0.22 rs3769821 intron of the gene 0.16 - 31,32 
5q14.1 ATG10 Protein -6.65 2.85 ×ௗ10-11 0.51 rs7707921 intron of the gene 0.21 NA 9 
5q14.2 ATP6AP1L Protein -4.98 6.32ௗ×ௗ10-7 0.63 rs7707921 37 0.98 NA 9 
6q23.1 L3MBTL3 g Protein -6.69 2.27 ×ௗ10-11 0.10 rs6569648 208 0.44 NA 6 
6q25.1 RMND1 Protein 4.76 1.95ௗ×ௗ10-6 0.13 rs3757322 169 1.11ௗ×ௗ10-4 mixed 17 
11q13.1 SNX32 Protein 4.70 2.60ௗ×ௗ10-6 0.19 rs3903072 18 0.17 NA 33 
15q26.1 RCCD1 Protein -7.18 7.23 ×ௗ10-13 0.13 rs2290203 6 1.66ௗ×ௗ10-4 - 10 
17q22 STXBP4 Protein 6.69 2.21 ×ௗ10-11 0.03 rs6504950 intron of the gene 0.90 + in GTEx 34,35 

19q13.31 ZNF404 h Protein 7.42 1.15 ×ௗ10-13 0.15 rs3760982 90 0.005 NA 8 
 4 
a Genes that were siRNA silenced for functional assays are bolded; SNPs used to predict gene expression are listed in the Supplementary Table 13 5 
b Protein: protein coding genes; lncRNA: long non-coding RNAs; NA: not available 6 
cP value: nominal P value from association analysis; the threshold after Bonferroni correction of 8,597 tests (0.05/8,597=5.82×10-6) was used; R2: 7 
prediction performance (R2) derived using GTEx data . 8 
d Risk SNPs identified in previous GWAS or fine-mapping studies. The risk SNP closest to the gene is presented. A full list of all risk SNPs, and 9 
their distances to the genes are presented in the Supplementary Table 4 10 
e Use of COJO method36; all index SNPs in the corresponding region were adjusted for the conditional analyses 11 
f  -: inverse association; +: positive association; mixed: both inverse and positive associations reported; NA: not available 12 
g Predicted expression of L3MBTL3 and RP11-73O6.3 was correlated (spearman R=0.88) 13 
h Predicted expression of ZNF404 and RP11-15A1.7 was correlated (spearman R=0.64) 14 
 15 
 16 
 17 
 18 
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Table 4. Genes at GWAS-identified breast cancer risk loci (± 500kb of the index SNPs) whose predicted expression levels were 1 
associated with breast cancer risk at p-values between 5.82×10-6 and 1.05×10-3 (FDR corrected p-value≤0.05) 2 
 3 

Region Gene Typea Z 
score 

P valueb R2b Closest risk 
SNPc 

Distance to the 
closest risk SNP 
(kb) 

P value after 
adjusting for 
adjacent risk 
SNPsd 

1p34.1 UQCRH Protein -3.90 9.51ௗ×ௗ10-5 0.12 rs1707302 168 0.06 
1p22.3 LMO4 Protein -3.76 1.73ௗ×ௗ10-4 0.09 rs12118297 15 0.002 
2p23.3 DNAJC27-AS1 lncRNA 3.84 1.24ௗ×ௗ10-4 0.03 rs6725517 65 0.13 
4p14 KLHL5 Protein 3.52 4.35ௗ×ௗ10-4 0.13 rs6815814 230 0.03 
5q11.2 AC008391.1 miRNA -4.03 5.60ௗ×ௗ10-5 0.13 rs16886113 242 0.76 
6p22.1 HCG14 lncRNA -3.47 5.19ௗ×ௗ10-4 0.11 rs9257408 61 0.03 
6p22.2 TRNAI2 miRNA -3.71 2.09ௗ×ௗ10-4 0.02 rs71557345 307 0.007 
6q25.1 MTHFD1L Protein 3.85 1.17ௗ×ௗ10-4 0.10 rs3757318 491 2.36ௗ×ௗ10-4 
8q24.21 PVT1 transcript 3.85 1.20ௗ×ௗ10-4 0.03 rs11780156 81 1.09ௗ×ௗ10-4 
9q33.3 RP11-123K19.1 lncRNA -4.10 4.05ௗ×ௗ10-5 0.05 rs10760444 20 1.26ௗ×ௗ10-4 
10q25.2 RP11-57H14.3 lncRNA 3.42 6.16ௗ×ௗ10-4 0.08 rs7904519 108 0.002 
10q26.13 RP11-500G22.2 lncRNA 4.48 7.54ௗ×ௗ10-6 0.15 rs2981582 336 0.91 
11p15.5 PTDSS2 Protein -3.47 5.16ௗ×ௗ10-4 0.04 rs6597981 312 0.02 
11p15.5 AP006621.5 Protein 4.35 1.37ௗ×ௗ10-5 0.51 rs6597981 19 0.01 
11p15.5 PIDD1 Protein 4.24 2.28ௗ×ௗ10-5 0.45 rs6597981 intron of the gene 0.12 
11p15.5 MRPL23-AS1 lncRNA -3.86 1.12ௗ×ௗ10-4 0.10 rs3817198 95 0.06 
11q13.1-11q13.2 PACS1 Protein -3.59 3.36ௗ×ௗ10-4 0.06 rs3903072 255 0.001 
12p11.22 RP11-860B13.1 lncRNA 3.46 5.42ௗ×ௗ10-4 0.17 rs10771399 221 0.86 
13q22.1 KLF5 Protein -4.08 4.44ௗ×ௗ10-5 0.22 rs6562760 306 NA 
14q24.1 CTD-2566J3.1 lncRNA -3.84 1.22ௗ×ௗ10-4 0.04 rs2588809 64 0.55 
14q32.33 C14orf79 Protein 4.37 1.22ௗ×ௗ10-5 0.11 rs10623258 240 0.91 
15q26.1 FES Protein 4.37 1.26ௗ×ௗ10-5 0.21 rs2290203 73 3.04ௗ×ௗ10-6 
16q12.2 BBS2 Protein 3.97 7.23ௗ×ௗ10-5 0.26 rs2432539 80 0.36 
16q12.2 CRNDE lncRNA 3.28 1.05ௗ×ௗ10-3 0.02 rs28539243 271 0.69 
16q24.2 RP11-482M8.1 lncRNA 3.32 9.16ௗ×ௗ10-4 0.02 rs4496150 441 0.19 
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17q11.2 GOSR1 Protein 3.79 1.51ௗ×ௗ10-4 0.10 rs146699004 376 0.04 
17q21.2 ATP6V0A1 Protein 3.61 3.02ௗ×ௗ10-4 0.03 rs72826962 162 0.01 
17q21.2 RP11-400F19.8 transcript -3.96 7.65ௗ×ௗ10-5 0.01 rs72826962 122 6.62ௗ×ௗ10-4 
17q21.31 RP11-105N13.4 transcript -4.51 6.46ௗ×ௗ10-6 0.02 rs2532263 359 NA 
17q25.3 CBX8 Protein 4.38 1.16ௗ×ௗ10-5 0.05 rs745570 6 0.99 
19p13.11 CTD-2538G9.5 lncRNA 3.56 3.76ௗ×ௗ10-4 0.01 rs8170 432 4.38ௗ×ௗ10-4 
19p13.11 HOMER3 Protein -3.87 1.08ௗ×ௗ10-4 0.10 rs4808801 469 0.18 
20q11.22 CTD-3216D2.5 lncRNA 4.03 5.60ௗ×ௗ10-5 0.16 rs2284378 281 9.24ௗ×ௗ10-4 
22q13.1 TRIOBP Protein 3.34 8.34ௗ×ௗ10-4 0.07 rs738321 396 0.003 
22q13.1 RP5-1039K5.13 lncRNA 3.73 1.93ௗ×ௗ10-4 0.01 rs738321 99 0.053 
22q13.1 CBY1 Protein 3.91 9.34ௗ×ௗ10-5 0.05 chr22:39359355 289 0.06 
22q13.1 APOBEC3A Protein -4.11 3.98ௗ×ௗ10-5 0.07 chr22:39359355 0.2 0.02 
22q13.2 RP1-85F18.6 lncRNA 3.52 4.28ௗ×ௗ10-4 0.12 rs73161324 460 0.72 

 1 
a Protein: protein coding genes; lncRNA: long non-coding RNAs; transcript: processed transcript 2 
bP value: nominal P value from association analysis; R2: prediction performance derived using GTEx data.  3 
c Risk SNPs identified in previous GWAS or fine-mapping studies. The risk SNP closest to the gene is presented. A full list of all risk SNPs, and 4 
their distances to the genes are presented in the Supplementary Table 4 5 
d Use of COJO method36; all index SNPs in the corresponding region were adjusted for the conditional analyses 6 
 7 


