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S1. Missingness in several variables

Section 2 of the main text outlined the MI methods for Cox regression in a full-cohort setting

for a single covariate with missing data. Often there are missing data in several covariates,

say X = (X1, X2, . . . , Xp)
′, and missingness in these variables may be non-monotone. There

are two main ways of handling missing data in more than one variable: ‘joint modelling’ and

‘full conditional specification’ (FCS) (also called ‘multiple imputation by chained equations’).

We focus here on FCS, because both of the MI methods considered in this paper (MI-approx

and MI-SMC) easily extend to handle missingness in several variables using this method.

In the FCS method, missing values of Xk (k = 1, . . . , p) are drawn from the distribution

p(Xk|T,D,Z,X−k) where X−k = (X1, . . . , Xk−1, Xk+1, . . . , Xp)
′. An iterative procedure is

used in which the previous imputed value of X−k is used to impute Xk until the process has

converged to a stationary distribution.

For MI-approx, the FCS algorithm to generate a single imputed dataset is as follows.

(1) Replace the missing values in X by arbitrary starting values, to create a complete data

set. In practice, one could replace missing values of Xk (k = 1, . . . , p) by the mean of Xk

among those individuals in whom Xk is observed. Set k = 1.

(2) If Xk is a continuous variable, fit the imputation model Xk = α0+α′1Z+α2D+α3Ĥ(T )+

α′4X−k + ε with residual error variance σ2
ε to the subset of individuals for whom Xk is

observed, using the current values of X−k. If Xk is a binary variable, the imputation

model is the logistic regression logit P (Xk = 1) = α0 + α′1Z + α2D + α3Ĥ(T ) + α′4X−k.

Take a random draw (α∗0, α
∗
1, α

∗
2, α

∗
3, α

∗
4, σ

2∗
ε ) (if Xk is continuous) or (α∗0, α

∗
1, α

∗
2, α

∗
3, α

∗
4)

(if Xk is binary) from the approximate posterior distribution of the parameters in this

model.

(3) If Xk is continuous, then for each individual with missing Xk in the original data set,

replace the current value of Xk with a sample from a normal distribution with mean
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α∗0 + α∗′1 Z + α∗2D + α∗3Ĥ(T ) + α∗′4X−k and variance σ2∗
ε . If Xk is binary, sample instead

from a Bernoulli distribution with the same mean, i.e. α∗0+α∗′1 Z+α∗2D+α∗3Ĥ(T )+α∗′4X−k.

(4) If k < p, set k = k + 1 and return to step 2.

Repeat steps 2–4 until the sampled values of X converge in distribution. At this point, use

these sampled values as the imputed values for the single imputed dataset. Repeat the whole

process M times to generate M imputed datasets.

S2. Substantive model compatible multiple imputation (‘MI-SMC’)

Here we describe the MI-SMC method referred to in Section 2.3 of the main text. For MI-

SMC with p partially observed variables, the algorithm to generate one imputed data set is

as follows.

(1) Replace the missing missing values in X with arbitrary starting values, to create a

complete dataset. Set k = 1.

(2) Fit the Cox model to the current complete data set to obtain estimates (β̂X , β̂Z) and

their estimated variance Σ̂. Draw values β∗X , β
∗
Z from a joint normal distribution with

mean (β̂X , β̂Z) and variance Σ̂.

(3) Calculate Breslow’s estimate, denoted H∗0 (t), of the baseline cumulative hazard H0(t)

using the parameter values β∗X , β
∗
Z and the current imputations of X.

(4) Fit a regression model (e.g. linear or logistic, as appropriate) of Xk on X−k and Z to

the current complete data set. Draw a value γ∗Xk from the approximate joint posterior

distribution of the parameters γXk in this model.

(5) For each individual for whom Xk is missing, (a) draw a value X∗k from the distribution

p(Xk|X−k, Z; γ∗Xk) and let X∗ denote X with Xk replaced by its proposed value X∗k , (b)

draw a value U from a uniform distribution on [0, 1], and (c) accept the proposal X∗k if

either D = 0 and U 6 exp{−H∗0 (t)eβ
∗
XX
∗+β∗′Z Z} or D = 1 and U 6 H∗0 (t) exp{1+β∗XX

∗+
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β∗′ZZ −H∗0 (t)eβ
∗
XX
∗+β∗′Z Z}. If X∗k is not accepted, then discard it and repeat (a), (b) and

(c).

(6) If k < p, let k = k + 1 and return to step 2.

Repeat steps 2–6 until the sampled values of X converge in distribution. At this point,

use these sampled values as the imputed values for the single imputed dataset. Repeat the

whole process M times to generate M imputed datasets.

In the full-cohort and intermediate MI approaches, the MI-SMC algorithm just described is

applied to all the data on the full cohort. In the setting described in the main text, there were

only p = 2 partially observed variables, X1 and X2 (as well as the fully observed variables

Z), but the algorithm allows for any number of partially observed variables.

In the substudy approach, the MI-SMC algorithm is applied only to the data on the

substudy, but with the following modifications to steps 3 and 4 (steps 1, 2, 5 and 6 remain

unchanged). Steps 3 and 4 involve estimating, respectively, the (population) baseline cumu-

lative hazard H0(t) and the parameters of the distribution p(X2|X1, Z). In Section 5.2 of

the main text we described modified estimators of these two quantities that should be used

in steps 3 and 4 when using the substudy approach. In the setting described in the main

text, there was only p = 1 partially observed variable, X2 (since X1 is fully observed in the

substudy), but the algorithm allows for any number of partially observed variables.

S3. Further details of the simulation study

We base our simulation partly on information from a recent review of case-cohort studies

(Sharp et al., 2014) and partly on studies in cardiovascular epidemiology, from which we

take our example in Section 7 of the main text. The full cohort size of 15,000 individuals

used in the simulation study was approximately the 25th percentile of full cohort sizes in

the studies reviewed by Sharp et al. (2014). Variable Z is binary and was generated from a
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Bernoulli distribution with probability 0.5, variable X2 is binary and was generated from a

Bernoulli distribution such that logit Pr(X2 = 1|Z) = 0.5Z, and variable X1 is continuous

and was generated from a normal distribution with mean 0.25Z + 0.25X2 and variance 1.

Loss-to-follow-up times were generated from an exponential distribution with hazard λC .

The parameter λ in the hazard model used to generate event times, and λC , were chosen

so that 10% of individuals have the event, 20% are lost to follow-up and the remainder are

administratively censored after 15 years of follow-up. The follow-up time and event rate are

realistic values for studies in cardiovascular epidemiology. For the case-cohort sample we

used a subcohort sampling percentage of 5%, which was similar to the median subcohort

sampling fraction of 4.1% found in the review by Sharp et al. (2014)

Missingness in X2 was generated using probability of missingness exp(a + 0.2Z + 0.2D +

0.2ZD)/{1+exp(a+0.2Z+0.2D+0.2ZD)} , with a chosen to give 10% or 50% missingness.

All MI analyses used 10 imputed data sets. MI-SMC used 100 iterations; using fewer

iterations results in non-convergence for a situation with large effect size and large amounts

of missing data when using the full-cohort approach in the case-cohort setting, though in

other simulation scenarios fewer iterations (e.g. 10) tended to be sufficient. In the nested

case-control setting, the MI-SMC full-cohort approach did not require a large number of

iterations because a larger proportion of the full cohort is in the nested case-control sample.

MI-approx analyses used 5 iterations, which is the default in the mice package in R.

S4. Additional simulation scenario: Model misspecification

We investigated the performance of the methods when the imputation model is misspecified.

For this, X1 was generated from a log normal distribution with logX1 having mean 0.25Z

and standard deviation 0.65 (so that the variance of X1 was around 1, as in the main

simulation). X2 was generated from a Bernoulli distribution using logit Pr(X2 = 1|X1, Z) =

0.5Z + 0.25(X1 +X2
1 ). In MI-approx, the misspecified imputation model for X1 (full-cohort
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and intermediate approaches) was X1 = α0 + α1X2 + α′2Z + α3D + α4Ĥ(T ) + ε, and the

misspecified imputation model for X2 was logit Pr(X2 = 1|X1, Z, T,D) = α0+α1X1+α′2Z+

α3D + α4Ĥ(T ). MI-SMC allows imputed variables to be used on a transformed scale in the

substantive model. We considered two forms for the model for X1|X2, Z: (1) a misspecified

normal distribution for X1|X2, Z with main effects of X2 and Z; (2) a correctly specified

normal distribution for logX1|X2, Z with main effects of X2 and Z. In both cases we used a

model for X2|X1, Z with main effects of X1 and Z, which is misspecified.

S5. Software

Traditional analyses of nested case-control and case-cohort studies (Section 3 of the main

text) can be performed in standard software using Cox regression. For case-cohort studies

the data should be modified so that cases not in the subcohort have a start of follow-up

time which is just before their event time. For nested case-control studies the Cox regression

should be stratified by the matched set indicator (this gives an analysis which is equivalent

to using conditional logistic regression).

Example R and Stata code for applying the methods described in this paper is available

at https://github.com/ruthkeogh/MI-CC.

MI-approx (full-cohort, intermediate, and substudy approaches) can be implemented using

the mice package in R (Van Buuren and Groothuis-Oudshoorn, 2011) and the mi command

in Stata. The MI-approx analyses could also be performed using other statistical packages

(e.g. PROC MI in SAS). The MI-approx methods described in this paper require estimates of

the cumulative hazard (see https://github.com/ruthkeogh/MI-CC).

For the full-cohort and intermediate approaches, MI-SMC is applied in the full cohort

and this can be implemented using the smcfcs package (Bartlett and Morris, 2015) in

Stata (see https://github.com/jwb133/Stata-smcfcs, and also available on SSC) or R (see
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https://github.com/jwb133/smcfcs, and also available on CRAN). We have implemented

the MI-SMC substudy approach (main text Section 5.2) in the new smcfcs.nestedcc and

smcfcs.casecohort functions in the smcfcs package in R.

MI matched set (Section 5.3 of the main text) can be performed using mice in R or ice

in Stata (Royston, 2005) after some rearrangement of the data, as described by Seaman and

Keogh (2015). MI matched set could also be performed using other statistical packages (e.g.

PROC MI in SAS).

S6. Extensions

S6.1 Censoring, left-truncation and auxiliary variables

MI-approx and MI-SMC (Section 2 of the main text) assume that any right-censoring

occurs independently of the variables with missing data given the fully observed variables.

Such dependence can be accommodated in MI-approx by adding the term Ĥcens(t) into

the imputation model, where Ĥcens(t) denotes the Nelson-Aalen estimate of the cumulative

hazard for the censoring (Borgan and Keogh, 2015). Event times are also commonly subject

to left-truncation, for example when the time scale for the analysis is age but individuals

are followed from age at entry to the cohort. When there is left truncation, the distribution

we wish to draw imputed values from becomes p(X|T,D,Z, T > TL), where TL is the left-

truncation time. Left-truncation can be accommodated in MI-approx by replacing Ĥ(T )

with (Ĥ(T )− Ĥ(TL)) and Ĥcens(T ) by (Ĥcens(T )− Ĥcens(TL)). These methods can be applied

directly in the full-cohort approach and intermediate approach for nested case-control and

case-cohort studies. For the substudy approach, Ĥcens(T ) can be obtained in the maximum

information setting and the time-only information setting using the data on (T,D) in the full

cohort. In the minimum information setting in a case-cohort study Hcens(T ) can be estimated

using a modified version of Ĥ∗CC(T ) with ‘event’ replaced by ‘censoring’. MI-SMC has been



Multiple imputation in nested case-control and case-cohort studies 7

extended to allow competing risks (Bartlett and Taylor, 2016) and this can be used to handle

dependence of right-censoring on variables with missing data. Left truncation has also been

incorporated in the Stata version of the smcfcs package.

Auxiliary variables are variables that may be predictive of the value of a partially missing

variable but that we do not wish to include as covariates in the substantive model. Auxiliary

variables could be incorporated into imputation models in all of the MI methods with no

other changes, except that in MI-SMC the auxiliary variables are included in the outcome

model at the imputation stage but then omitted from the analysis model.

S6.2 Matching, weighting, and stratification

In nested case-control studies, controls are often matched to cases using variables observed in

the full cohort. Matching variables should be included as additional predictors in the imputa-

tion model in MI-approx. In MI-SMC they should be included in the covariate model used for

the proposal distribution and in the Cox model. The denominator of the cumulative hazard

estimate ĤNCC
0 (t) =

∑
τk6t

1∑
l∈R̃k

{n(τk)/(c(τk)+1)} exp(β̂X1X1l+β̂X2X2l+β̂ZZl)
should be modified to

incorporate stratum-specific weights. In the full-cohort approach, the Cox analysis performed

on the imputed data should incorporate the matching variables, either by stratifying or by

including them as covariates.

The traditional case-cohort analysis (Section 3 of the main text) was described by Prentice

(1986). Modifications have been proposed in which the denominator in the pseudo-partial

likelihood Lsubstudy is modified to include individual weights (Onland-Moret et al., 2007).

This is relevant for the substudy and intermediate approaches, in which the imputation

methods can be used without modification. Case-cohort studies can also use stratified random

sampling of the subcohort. One version of the traditional analysis uses a modified version of

the psuedo-partial likelihood Lsubstudy in which R̃j is replaced by R̃gj, the subset of R̃j that

is in the same stratum g as the case whose event time is τj. See Borgan et al. (2000) for
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alternative methods for use when the subcohort is selected by stratified random sampling. In

MI-approx the imputation model should include the stratifying variables, and the cumulative

hazard estimate ĤCC(t) = nS(0)
n

∑
τk6t

d(τk)
nS(τk)

should be modified to incorporate stratum-

specific weights in the denominator. In MI-SMC the covariate model used for the proposal

distribution should include the matching variables as predictors, and the denominator of

the cumulative baseline hazard estimate ĤCC
0 (t) = nS(0)

n

∑
τk6t

1∑
l∈Sk

exp(β̂X1X1l+β̂X2X2l+β̂ZZl)
is

modified using stratum-specific weights.
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Figure S1. Simulation study results: case-cohort study within a cohort; 10% missing X2.
The points are the means of the point estimates from 1000 simulated data sets. The horizontal
lines around each point are the 95% confidence intervals obtained based on Monte Carlo
errors. The relative efficiency is relative to the complete-data sub-study analysis.
(a) βX1 = βX2 = βZ = 0.2

(b) βX1 = βX2 = βZ = 0.7
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Figure S2. Simulation study results: nested case-control study with 1 control per case
within a cohort; 10% missing X2. The points are the means of the point estimates from 1000
simulated data sets. The horizontal lines around each point are the 95% confidence intervals
obtained based on Monte Carlo errors. The relative efficiency is relative to the complete-data
sub-study analysis.
(a) βX1 = βX2 = βZ = 0.2

(b) βX1 = βX2 = βZ = 0.7
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Figure S3. Simulation study results: nested case-control study with 4 controls per case
within a cohort; 50% missing X2. The points are the means of the point estimates from 1000
simulated data sets. The horizontal lines around each point are the 95% confidence intervals
obtained based on Monte Carlo errors. The relative efficiency is relative to the complete-data
sub-study analysis.
(a) βX1 = βX2 = βZ = 0.2

(b) βX1 = βX2 = βZ = 0.7
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Figure S4. Simulation study results: nested case-control study with 4 controls per case
within a cohort; 10% missing X2. The points are the means of the point estimates from 1000
simulated data sets. The horizontal lines around each point are the 95% confidence intervals
obtained based on Monte Carlo errors. The relative efficiency is relative to the complete-data
sub-study analysis.
(a) βX1 = βX2 = βZ = 0.2

(b) βX1 = βX2 = βZ = 0.7
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Figure S5. Simulation study results: case-cohort study within a cohort with 50% missing
X2. Results for different sample sizes and size of subcohort. The points are the means of
the point estimates from 1000 simulated data sets. Horizontal lines around each point are
the 95% confidence intervals obtained based on Monte Carlo errors. The relative efficiency
is relative to the complete-data substudy analysis.
(a) Cohort of size 30,000 with subcohort of size 1500 (5%). βX1 = βX2 = βZ = 0.7.

(b) Cohort of size 15,000 with subcohort of size 3000 (20%). βX1 = βX2 = βZ = 0.7


