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Abstract

Background: trials to identify the minimal e�ective treatment duration are needed in di�erent therapeutic

areas, including bacterial infections, TB and Hepatitis�C. However, standard non-inferiority designs have several

limitations, including arbitrariness of non-inferiority margins, choice of research arms and very large sample sizes.

Methods: we recast the problem of �nding an appropriate non-inferior treatment duration in terms of modelling

the entire duration-response curve within a pre-speci�ed range. We propose a multi-arm randomised trial design,

allocating patients to di�erent treatment durations. We use fractional polynomials and spline-based methods to

�exibly model the duration-response curve. We call this a �Durations design�. We compare di�erent methods in

terms of a scaled version of the area between true and estimated prediction curves. We evaluate sensitivity to key

design parameters, including sample size, number and position of arms.

Results: a total sample size of ∼ 500 patients divided into a moderate number of equidistant arms (5-7) is

su�cient to estimate the duration-response curve within a 5% error margin in 95% of the simulations. Fractional

polynomials provide similar or better results than spline-based methods in most scenarios.

Conclusions: our proposed practical randomised trial �Durations design� shows promising performance in the

estimation of the duration-response curve; subject to a pending careful investigation of its inferential properties,

it provides a potential alternative to standard non-inferiority designs, avoiding many of their limitations, and yet

being fairly robust to di�erent possible duration-response curves. The trial outcome is the whole duration-response

curve, which may be used by clinicians and policy makers to make informed decisions, facilitating a move away

from a forced binary hypothesis testing paradigm.
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Introduction

While much early phase drug development focusses on identifying the most appropriate dose, for many

conditions less emphasis is placed on identifying the most appropriate treatment duration. Consequently,

duration is often based as much on precedent as evidence. A motivating example is bacterial infections,

where concerns about under-treatment and low costs have historically led to long antibiotic courses. However,

widespread antibiotic overuse over the last decades, for example for non-bacterial infections or for longer than

necessary to cure an infection, is now considered the main driver for increasing antimicrobial resistance [1,2].

How to design trials to optimise treatment duration (which will often take the form of �nding the shortest

e�ective treatment duration) is, however, unclear.

The most widely used design is a non-inferiority trial [3,4]; two key design choices are the new duration of

therapy and the non-inferiority margin, i.e. the maximum di�erence in e�cacy of the new versus standard

treatment duration that investigators will tolerate. If the whole con�dence interval (CI) for the di�erence in

treatment e�cacy lies below this margin, non-inferiority of the shorter duration is demonstrated. However,

non-inferiority trials have been often criticized [5]; key limitations are:

• The non-inferiority margin is somewhat arbitrary, typically being a multiple of 5% on the absolute

di�erence scale. European Medicines Agency guidance [6] recommends that the non-inferiority margin

for antibiotic trials should be decided so that equivalent e�cacy versus placebo can be excluded, e.g.

if cure rates are 80% with control and 20% without antibiotics, then the non-inferiority margin should

ensure that the intervention has ≥ 20% cure rate. This is rarely helpful, given low cure rates for

serious infections without antibiotics, and high cure rates with antibiotics (also see Food and Drug

Administration Guidance [7]). Furthermore, at the design stage, there is often relatively little a-priori

information on the expected control event rate [8] and variation even between 80− 90% can substantially

impact the sample size required to demonstrate non-inferiority on an absolute scale;

• Whether the CI should be 95% (two-sided alpha=0.05, one-sided alpha=0.025) or 90% (two-sided

alpha=0.10, one-sided alpha=0.05) is still debated;

• Consequently, sample sizes for non-inferiority trials with reasonably small margins (5%) are usually

very large, and they are often unsuccessful [9];

• The shorter duration(s) to be tested have to be chosen in advance; again, limited prior knowledge

makes this choice di�cult. A bad choice inevitably leads to failure of the trial or an unnecessarily

long duration being adopted in clinical practice. Comparing multiple durations increases the chance of

selecting sensible durations to test, but requires even bigger sample sizes with the traditional design;

• There is no consensus for best analysis methods for non-inferiority trials; both intention-to-treat and

per-protocol approach can lead to unreliable results. International recommendations di�er [5]; at best,

leading to challenges in interpretation and, at worst, to manipulation towards the most favourable

results.

An alternative approach to non-inferiority trials is therefore attractive, but relatively little work has been

done in this area. A recent proposal is the DOOR/RADAR trial design [10]. Response Adjusted for Duration

of Antibiotic Risk (RADAR) �rst categorises patients using a composite clinical outcome (based on bene�ts

and harms), and then successively ranks them with respect to a Desirability Of Outcome Ranking (DOOR),

assigning higher ranks to patients with better composite outcomes and shorter antibiotic durations. Finally
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the probability that a randomly selected patient will have a better DOOR if assigned to the new treatment

duration is calculated. The main criticisms of DOOR/RADAR are that combining clinical outcome and

treatment duration into a single composite may hide important di�erences in the clinical outcome alone and

intrinsically assumes (rather than estimates) that shorter durations are bene�cial, and hence the clinical

interpretation of the treatment e�ect on the composite endpoint is far from clear. Phillips et al. [11] showed

that two non-inferiority trials where shorter durations had been unequivocally demonstrated not to be non-

inferior would have instead demonstrated non-inferiority using DOOR/RADAR.

To identify appropriate treatment durations, another possible approach is to model the duration-response

curve, borrowing information from other durations when calculating treatment e�ect at a particular duration.

This was �rst proposed, in a limited way, by Horsburgh et al. [12] where, on the log-odds scale, the e�ect of

duration on response rate was assumed to be linear (logistic regression model).

However, in general, and certainly for antibiotic treatment duration, this strong assumption is unlikely to

hold. Therefore, here we instead propose using �exible regression modelling strategies to model the duration-

response curve, to provide robustness under general forms of the true duration-response curve.

Proposals

Suppose a treatment T has currently recommended duration Dmax and there is a minimum duration Dmin

we are willing to compare with Dmax, possibly because an even shorter duration is thought unlikely to be

su�ciently e�ective. Our goal is to model the duration-response curve for response Y between Dmin and

Dmax. In the equations below, Y can be either a continuous outcome or a linear predictor of a binary outcome

(representing cure). In simulations, we will assume Dmin = 10 and Dmax = 20.

The most appropriate design depends on the true shape of the duration-response curve; we therefore have

to ensure robustness against a series of di�erent scenarios. For example, allocating patients to only two arms,

at Dmax and Dmin would be a very good design if the duration-response curve was linear, but a terrible

design for quadratic duration-response relationships.

Therefore, instead of focusing on a single duration-response curve, we simulated data from a set of plausible

duration-response curves, and then evaluated several study designs across these scenarios. In particular we

explored the e�ect of changing: (i) total sample size N , (ii) number and (iii) position of duration arms and

(iv) the type of �exible regression model used.

However, to select the most accurate procedure for estimating the duration-response curve, we need to

choose a measure of discrepancy between the true and estimated curves.

Lack of accuracy is often evaluated through either the integral error or the expected error. For a �xed set

of chosen durations D = (D1, . . . , Dn) = (Dmin, . . . , Dmax), the expected error is de�ned as:

EE =
1

n

n∑
i=1

∆(f(Di), f̂(Di)) (1)

where ∆ represents a sensible measure of distance, e.g. squared di�erence or absolute di�erence, f(Di)

represents the true response (typically probability of cure) corresponding to treatment duration Di and

f̂(Di) represents the corresponding estimate from the �tted model. However, this sum is over the durations

de�ning the support, e.g. only over the speci�ed durations, while we would like to evaluate the �t of the

model across the whole duration range [Dmin, Dmax]. Therefore, we instead used a type of integral error, i.e.
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a measure of accuracy de�ned though an integral, instead of a sum, to characterize model accuracy over the

entire domain of interest D = [Dmin, Dmax]:

IE =

∫ Dmax

Dmin

∆(f(D), f̂(D))dD (2)

We chose the absolute di�erence as measure of distance ∆, as it has the most straightforward interpretation,

namely the area between the true and estimated duration-response curve. Henceforth, we refer to this measure

as the Area Between Curves. However, this has as units probability-days which is challenging to interpret.

Therefore, we divided it by (Dmax −Dmin) to produce a measure on the probability scale, the scaled Area

Between Curves. For a particular �tted curve, this can be interpreted as the average absolute error in the

estimation of probability of cure, with respect to a uniform distribution for duration on (Dmin, Dmax). In

some areas of the curve the model may �t better, and in some others it may �t worse; however this measure

provides an average across the whole duration range. We then additionally considered the maximum absolute

error in (Dmin, Dmax) and the coverage level, de�ned as the proportion of the true curve included within

the point-wise 95% con�dence region around the estimated curve.

All these measures can only be calculated when the true underlying curve is known. They are therefore

only useful for simulations to evaluate the behaviour of our proposed method.

To model the duration-response curve as �exibly as possible, we compared four di�erent regression

strategies:

1. Fractional Polynomials (FP) [13,14] of the form:

Y = β1D
p1 + . . .+ βMD

pM . (3)

with powers p1, . . . , pM taken from a special set S = {−2,−1,−0.5, 0, 0.5, 1, 2, 3}. Usually M < 3 is

su�cient for a good �t; here, we �x M = 2, producing 36 possible combinations;

2. Linear splines, with the simplest form, under a single knot K:

Y = β0 + β1D + β2(D −K)+ (4)

where (D −K)+ = 0 if D < K. We investigated linear splines with di�erent numbers of knots; we

present results with 3 or 5 knots. Knots are equidistant, within the duration range considered, e.g. for

3 knots, positioned at K = {12.5, 15, 17.5};
3. Linear spline with non-equidistant knots: this concentrates knots for the linear splines in the �rst half

of the duration range, where the duration-response relationship is most likely to be non-linear. We use

3 knots, that we arbitrarily chose to position at K = {11, 13, 15};
4. Multivariate Adaptive Regression Splines (MARS) [15,16], which builds models of the form:

Y =

k∑
i=1

βiBi(D) (5)

where each Bi(D) can be (i) a constant, (ii) a hinge function, i.e. max(0, D −K) or max(0,K −D),

or (iii) a product of two hinge functions. A forward selection step, building on a greedy algorithm, is
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followed by a backward elimination step, to avoid over-�tting. Candidate knots K are all durations

observed in the sample, i.e. all selected duration arms.

We did not consider restricted cubic splines [17] because preliminary work showed similar results to piece-

wise linear splines; therefore we focussed on linear splines for simplicity. Other non-linear regression methods

include logistic or Gompertz growth models; however, these lose �exibility.

Other key design parameters are: how many di�erent duration arms should we allocate patients to? How

should we space arms across our duration range? How many patients should we enrol?

We addressed these questions in an extensive simulation study.

Results

The eight di�erent scenarios considered represented a wide range of possible duration-response relationships,

from linear to quadratic, sigmoid curves and piecewise functions (Table 1). We simulated binary responses,

representing cure of infection, from a binomial distribution with duration-speci�c event rates, with 1000

simulated trials for each combination of design parameters.

Base-case design. We �rst �xed a sample size of 504 individuals randomised between 7 equidistant duration

arms:

D = {10, 11.6, 13.3, 15, 16.6, 18.3, 20}

We kept durations unrounded, simulating a situation where an antibiotic is administered 3 times a day, and

therefore 11.6 means three times daily for eleven days and then twice on the last day. Simulated data were

analysed with a fractional polynomial logistic regression model, i.e. on the log-odds scale.

In all 8 scenarios, the worst �t still led to a scaled Area Between Curves below 5.3% in 95% of simulations

(Table 2), that is, in each scenario 95% of the simulated trials led to an estimated duration-response curve

whose error in the estimation of the probability of cure was under 5.3%.

Scenarios 1, 2 and 3 had the poorest performance. Figure 1 shows the �tted prediction curves for a random

sample of 100 simulations (red) against the true data generating curve (black). In Scenario 1, fractional

polynomials had di�culty in capturing satisfactorily the substantial change in curvature around day 12 and

14, tending to underestimate curvature at these time-points.

Best performances were obtained with Scenario 5, where the true duration-response curve is linear on the

log-odds scale, which is exactly a FP model, with a single parameter for the term with power p = 1. Similar

results were obtained for Scenario 7.

The maximum scaled Area Between Curves was smaller than 10% in all scenarios, meaning that even the

simulation leading to the worst �tted prediction curve led to a total bias under 10% in all scenarios.

The median of the maximum absolute error was 5.5% across all simulations, and < 7% except for Scenario

1, meaning that, irrespective of the real data-generating mechanism, in half of the simulations even the

single design point corresponding to the worse �t had an absolute error below 5.5%. When considering the

95th percentile of the same measure, this was just below 13% overall. Figure 5 (Additional material) shows

that durations corresponding to the worst absolute error tended to be in the �rst part of the curves, where

treatment was less e�ective.

Mean coverage was 95% only for Scenario 5, where the analysis model was correctly speci�ed; however

most scenarios had coverage greater than 80% and Figure 6 (Additional Material) shows that even the 100
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simulations leading to the worst coverages approximated the true duration-response curve quite well for a

wide variety of scenarios, similarly to the randomly selected predictions in Figure 1.

Next, we investigated the sensitivity of these results to the choice of design parameters and analysis

methods.

Di�erent �exible regression strategies. We re-analysed the same simulated data in Table 2 using either

fractional polynomials (FP), linear spline with 3 or 5 equidistant knots, linear spline with knots concentrated

in the �rst half of the curve and multivariate adaptive regression splines (MARS). Only Scenario 5 is the

true model for both data generation and analysis.

For all methods, scaled areas for the �tted prediction curves were fairly similar (Figure 2, (a) and (b)).

The only method with slightly inferior performance was 5-knot linear spline. FP had the smallest mean

scaled Area Between Curves across the eight scenarios, but marginally higher variability between di�erent

scenarios. FP was best in terms of smallest maximum absolute error, while splines better behaved in terms

of coverage (Figure 7 Additional material).

Finally, FP had an advantage in terms of monotonicity, as shown in Figure 3, comparing prediction curves

for the simulated dataset with the worst �t (largest scaled Area Between Curves), across the eight scenarios,

with FP (red) or 3-knot linear spline (blue). Spline-based methods led to undulating functions, particularly in

Scenarios 4,5,6 and 8, while FP prediction curves were smoother and, at least approximately, monotonously

increasing, the only exception being the worst �t from Scenario 6. Spline based methods led to even worse

prediction curves in other scenarios, particularly with smaller sample sizes (e.g. 250 patients) and with poor

knot positioning relative to arms, e.g. two adjacent knots with no arm in between.

Total sample size. One motivation for this study was large sample sizes often required for non-inferiority

trials. We therefore investigated the sensitivity of simulation results to total sample sizes varying across

N = (252, 301, 350, 406, 455, 504, 602, 756, 1001), (each divisible by 7 (arms)).

As expected, increasing total sample size reduced the scaled Area Between Curves (second row of Figure

2). With N ≥ 350, in more than half the scenarios the 95th percentile for scaled Area Between Curves

was under 5%, and in all scenarios for N ≥ 750. Therefore, above this threshold, whatever the true data-

generating curve, in at least 95% of simulated trials we estimated a duration-response curve whose error was

lower than 5%.

Figure 2 and Table 2 suggest our base-case scenario sample size of 504 might be a reasonable compromise,

guaranteeing good estimation of the duration-response curve without requiring too many patients.

Number of duration arms. Figures 4(a)-(b) compare results from allocating the same number of patients

(∼ 504) to 3, 5, 9 or 20 arms, rather than the base-case of 7 arms.

The 3-arm design was clearly inferior and generally led to worse scaled Area Between Curves. All other

designs had similar performance, and particularly distributions from 7, 9 and 20 arms appeared virtually

identical, suggesting that, compared to a base-case of 7 duration arms, there is little gain from adding

additional arms while keeping sample size �xed.

Position of arms. Finally, we investigated the sensitivity of results to the position, rather than the number,

of duration arms, by comparing:

• The standard 7 equidistant arms design;
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• A `not-equidistant' arms design, with 5 arms condensed in the �rst part of the curve, i.e. A =

{10, 11, 13, 15, 20}.

As for the linear spline regression model, the motivation for this choice is that the early part of the curve is

where the linearity assumption is least likely to hold.

With fractional polynomials, results were similar with both designs (Figure 4 (c)-(d)). This is mainly

because the eight scenarios have at most modest departure from linearity in the second half of the curve.

The 3-knot spline regression performed particularly poorly with the �not-equidistant� design, highlighting

the issue of knot choice with spline-based methods. If knots are chosen inappropriately, e.g. two adjacent

knots with no arms in between, as here, then results may be highly variable. Whilst obvious in this case,

similar issues with inappropriate knot positioning might be less trivial to identify in other situations. In

contrast, FP regression is standardised and does not require users to make additional choices.

Extensions

Having demonstrated promising performance of our proposed method, several issues remain. The �rst is

accounting for uncertainty. Point-wise con�dence bands around the estimated curve can be calculated from

the FP regression and were used here to estimate coverage levels. These intervals were generally quite narrow,

the mean width around the estimated cure rate ranging between 7− 10% in the base-case scenarios. However,

these do not account for model selection uncertainty [18]. Broadly, since we use the same set of data that we

want to analyse to select the �nal model of interest, the usual standard error estimates from the model tend

to be too small. Therefore, a measure of precision of our estimated duration-response curve would require

methods, such as bootstrap model averaging [19�21].

The second issue is how the estimated duration-response curve might be used. Possible approaches that

decision-makers could take given the estimated curve include:

1. Estimating the minimum duration that achieves a certain �xed acceptable cure rate (e.g. > 80%)

analogous to a cost-e�ectiveness acceptability curve [22], together with a con�dence interval. We then

would be 95% con�dent that the upper bound would give us a cure rate greater or equal to 80%;

2. Alternatively, if we did not know the true control success rate, estimating the duration leading to a

certain acceptable loss in e�ciency compared to the maximum duration tested, for example 10%;

3. The information gathered from the estimated curve could also be combined with other information

about toxicity or cost in a decision analytic framework.This could be particularly appealing in the

example of Hepatitis-C, where cost is quanti�able, but would be more complex in the antibiotic example,

where resistance is more complex.

Discussion

We have proposed a new design for randomised trials to �nd e�ective shorter durations of treatment, for

example antibiotics, broadening a previous suggestion [12]. The underpinning concept is, instead of directly

comparing a limited and arbitrarily chosen number of particular durations, to model the whole duration-

response curve across a pre-speci�ed range of durations, in order to maximise the information gained about
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the e�ect of shorter or longer regimens. The resulting estimate of the dose-response curve could then be used

in a variety of clinically meaningful ways.

Because of lack of information on the true shape of this duration-response curve, we used �exible modelling

strategies, to protect against parametric model misspeci�cation. We compared four di�erent strategies, three

based on splines and one on fractional polynomials, concluding that, although spline-based methods can

potentially better estimate locally the duration associated with a particular cure rate, fractional polynomials

are better at providing a reasonable curve describing the evolution of the cure rate over treatment duration.

Binder et al. [23] conducted a vast simulation study comparing fractional polynomials and spline-based

methods, broadly concluding that with large datasets the two methods lead to similar results, while in

medium-sized datasets FP outperforms spline-based methods on several criteria. They also noted that a

major advantage of FP is the simplicity of implementation in standard software packages, compared to the

absence of recommendations regarding appropriate spline based methods, matching our conclusions.

While we could have used FP with more than two polynomials, we focussed on two to reduce the number

of parameters, having only a small number of duration arms in our setting. Similarly, we focussed on the

standard set of possible powers, but higher powers could be considered, if thought likely to improve �t.

FP and MARS implementation in standard software packages do not allow restriction to monotonously

increasing functions; since it is reasonable to assume monotonicity of the duration-response curve, this could

be explored in future.

Regarding design parameters, a modest number of equidistant arms, e.g. 7, appeared su�cient to give

robust results, i.e. the resulting prediction curve from the �t of the model was reasonably close to the true

underlying duration-response curve, and can therefore provide su�cient information for clinicians about the

e�ect of duration on treatment response. The `not-equidistant' design provided similar results with only 5

arms (but the same number of patients); however, such a design might be less robust to other shapes of

the duration-response curve, e.g. if the curve was far from linear even in the second part of the duration

range investigated. When multi-arm multi-stage designs were �rst mooted, multiple arms were often raised

as a theoretical barrier to recruitment, but subsequent practice has demonstrated that, if anything, these

trials are more acceptable to patients, since they ably demonstrate equipoise between a substantial number

of treatment options [24].

One legitimate criticism of non-inferiority trials is the arbitrary nature of the non-inferiority margin; in our

framework, since Dmax represents the currently recommended treatment duration, the only arbitrary choice

is that of the minimum duration to be considered, Dmin. This choice certainly has a much smaller impact on

the trial results than the choice of a non-inferiority margin, but nevertheless it is still extremely important

to choose this carefully. Since we lack any information about the true shape of the duration-response curve

below the currently recommended duration, Dmax, a multi-stage adaptive design could be used to change

the position of Dmin if results after a �rst stage clearly showed this to be too long (i.e. the shortest duration

still leading to high e�cacy) or too short (i.e. duration extremely ine�ective, which might be considered

unethical to keep randomising patients to).

Here, we have considered models where the only covariate was treatment duration; however, it would be

interesting to investigate the e�ect of incorporating additional covariate data, such as age and sex. This

could be done as a main e�ect, for example to adjust the minimum duration needed to achieve a threshold

cure rate according to other characteristics a�ecting cure; alternatively, this could be done as an interaction,
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providing a di�erent duration-response curve for speci�ed subgroups, e.g. males vs females. Either would

allow strati�ed or personalised medicine, allowing clinicians to prescribe di�erent durations according to key

patient characteristics.

The underpinning motivation for this paper was a phase-IV trial design to identify minimal e�ective

antibiotic treatment duration, and the design could be applied to other similar situations. However, an

evaluation of the inferential properties of the methodology is key before recommending it in these late phase

settings; in particular, preservation of type-I error rate is fundamental, as these are treatments that are known

to be e�ective, and recommending an insu�ciently long duration could potentially have serious public health

consequences. Once this is done, examples of applications may include phase-III trials in TB, where shorter

treatment durations could improve adherence compared to standard-of-care control duration, or phase-IV

trials in Hepatitis-C where current treatment regimens achieve cure in > 95% of patients but are extremely

costly. Similar approaches could be applied to dose-intensity of chemotherapy regimens.

The problem addressed here has similarities with that of �nding the optimal treatment dose in early-phase

clinical trials. There is a vast literature on methods for modelling dose-response relationship to �nd optimal

treatment doses [25,26]. However, there are important di�erences making it di�cult to use those methods

in our situation. The sample sizes required are much smaller in dose-response studies, because the guiding

principle is to start with a low dose and to increase it, avoiding exposing too many patients to excessive,

and thus unsafe, doses. This is usually done before the drug has actually been tested in phase II-III trials.

The power of these methods to identify the correct minimum e�ective dose is therefore often quite low [27].

With larger sample sizes, methods like the Continual Reassessment Method become infeasible, most of all in

the example of TB where treatment may last several months. Furthermore, in early-stage trials, the focus is

often on pharmacokinetics, and the speci�c forms of the dose-response curves used usually derive from the

underlying pharmacokinetic models for drug absorption into the bloodstream.

In conclusion, our proposed new paradigm for clinical trials to optimise treatment duration has the

potential to revolutionise the design of trials where reducing treatment duration is our goal, e.g. in the

�ght against anti-microbial resistance. Our approach moves away from multiple ine�cient trials of arbitrary

antibiotic durations that may all be suboptimal. We have shown how certain design parameters may a�ect

the �t of a �exible regression strategy to model the duration-response curve. Randomising approximately

500 patients between a moderate number of equidistant arms (5-7) is su�cient under a range of di�erent

possible scenarios to give a good �t and describe the duration-response curve well. Further work on how to

use this estimated curve to draw inference, controlling power and type-I error rate, will follow.
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Type Equation Characteristics Plot

1. Logistic growth
curve

Psuccess =

0.05 +
0.9

1 + exp(−2D + 25)

Increases and asymptotes
early

2. Gompertz curve A
Psuccess =

0.9 exp(− exp(−0.5(D − 11)))
Small curvature

3. Gompertz curve B
Psuccess =

0.9 exp(− exp(−(D − 11)))

Larger curvature, asymptotes
more clearly

4. Gompertz curve C
Psuccess =

0.9 exp(−2 exp(−(D − 9)))
Asymptotes extremely early

5. Linear
duration-response

curve on logodds scale

logit(Psuccess) =

0.847 + 0.210(D − 10)

Situation where simple logistic
regression is appropriate

6. Quadratic
duration-response
curve, curvature>0

Psuccess =
0.7 + 0.0015(D − 10)2

First derivative increasing

7. Quadratic
duration-response
curve, curvature<0

Psuccess = 0.7− 0.0015(D −
10)2 + 0.03(D − 10)

First derivative decreasing

8. Piece-wise linear
duration-response

curve

Psuccess=
(0.5 + 0.15(D − 10))1(D <

12) + (0.8 + 0.05(D −
12))1(D < 15) + (0.94 +
0.01(D − 15))1(D > 15)

Di�erent from linear spline
logistic regression, here it is
linear in the success rate, not

in the logodds

Table 1. Simulation scenarios: eight di�erent data generating mechanisms were investigated. In plots, x axis is treatment
duration, and y axis is probability of cure.
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sABC maxd AE(d) Coverage (%)
Min 5th percentile Med. 95th percentile Max Med. 95th percentile Mean

Scenario 1 0.019 0.022 0.032 0.051 0.077 0.105 0.164 61.0
Scenario 2 0.005 0.006 0.024 0.053 0.082 0.047 0.128 83.4
Scenario 3 0.003 0.007 0.022 0.048 0.079 0.055 0.123 86.8
Scenario 4 0.007 0.010 0.022 0.039 0.050 0.066 0.105 79.6
Scenario 5 0.000∗ 0.003∗ 0.015∗ 0.030

∗ 0.061∗ 0.030∗ 0.078∗ 94.7∗

Scenario 6 0.011 0.012 0.022 0.044 0.066 0.051 0.100 89.5
Scenario 7 0.002 0.004 0.015 0.031 0.056 0.033 0.082 92.9
Scenario 8 0.009 0.010 0.025 0.041 0.061 0.070 0.138 72.7

Overall 0.000 0.006 0.022 0.046 0.082 0.055 0.129 82.6

Table 2. Scaled Area Between Curves (sABC), maxd AE(d) and coverage (%) across the 8 di�erent scenarios in the
base-case design (1000 simulations of 504 patients randomised across 7 arms, using FP). Column for the 95th scaled Area
Between Curves is in bold, to show how scaled Area Between Curves is smaller, or close to, 5% in all scenarios and overall
across all 8000 simulations. Stars next to Scenario 5 results indicate that this is the only scenario where the data
generating mechanism is actually a particular case of fractional polynomial on the log-odds scale and therefore performs
optimally. sABC is the scaled Area Between Curves as de�ned in the proposals section, while maxd AE(d) indicates the
maximum absolute error for a single duration d ∈ (Dmin, Dmax) and coverage (%) is de�ned as the percentage of the
true underlying curve included within the point-wise 95% con�dence region around the estimated curve.
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Figure 1. Prediction curves (red) of a random selection of 100 simulations against the true data generating curve (black)
for all the eight scenarios under the base-case con�guration. The base-case scenario assumes a sample size of 504 patients,
randomised to 7 equidistant arms, and �ts a fractional polynomial model to estimate the duration-response curve.
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(a) Comparison �exible regression methods: 8000 simulations (b) Comparison �exible regression methods: 95th percentiles

(c) Sensitivity to sample size: 8000 simulations (d) Sensitivity to sample size: 95th percentiles

Figure 2. Comparison of results of trial simulations from the eight scenarios varying either (i) the �exible regression
method used (LS3, LS5, LSNE, MARS, FP), with total sample size of 504 patients (panels (a) and (b)), or (ii) the total
sample size between 250 and 1000 patients, using FP (panel (c) and (d)). Patients are divided in 7 equidistant duration
arms. The red horizontal line indicates 5% scaled Area Between Curves (sABC). In the left panels we show the boxplots
of the whole simulation results, while in the right panels we compare 95th percentiles from the eight scenarios. LS3-5:
Linear Spline with 3-5 knots. LSNE: Linear Spline with Non-Equidistant knots. MARS: Multivariable Adaptive Regression
Splines. FP: Fractional Polynomials.
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Figure 3. Prediction curves leading to the largest scaled Area Between Curves for each of the eight scenarios with the
base-case design, analysing data either with 3-knot linear spline (blue) or Fractional Polynomials (red).
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(a) Sensitivity to number of arms: 8000 simulations (b) Sensitivity to number of arms: 95th percentiles

(c) Sensitivity to placement of arms: 8000 simulations (d) Sensitivity to placement of arms: 95th percentiles

Figure 4. Comparison of results of trial simulations from the eight scenarios either varying the number of equidistant
arms (panels (a) and (b)) between 3 and 20, using Fractional Polynomials (FP), or using di�erent designs, Equidistant
(ED) or Not Equidistant (NED), comparing four di�erent regression methods (panels (c) and (d)). The total sample size
is always 504 patients. The red horizontal line indicates 5% scaled Area Between Curves. In the left panels we show the
boxplots of the whole simulation results, while in the right panels we compare 95th percentiles from the eight scenarios.
In panel (d), there is only one point for NED-LS3, since only in one scenario the 95th percentile for scaled Area Between
Curves was smaller than 0.25. LS3: Linear Spline with 3 knots. LSNE: Linear Spline with Non-Equidistant knots. MARS:
Multivariable Adaptive Regression Splines. FP: Fractional Polynomials.
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