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ABSTRACT 

Cluster randomized trials are the gold standard for assessing efficacy of community-level 

interventions, such as vector control strategies against dengue. We describe a novel cluster 

randomized trial methodology with a test-negative design, which offers advantages over 

traditional approaches. It utilizes outcome-based sampling of patients presenting with a 

syndrome consistent with the disease of interest, who are subsequently classified as test-

positive cases or test-negative controls on the basis of diagnostic testing. We use 

simulations of a cluster trial to demonstrate validity of efficacy estimates under the test-

negative approach. This demonstrates that, provided study arms are balanced for both test-

negative and test-positive illness at baseline and that other test-negative design 

assumptions are met, the efficacy estimates closely match true efficacy. We also briefly 

discuss analytical considerations for an odds ratio-based effect estimate arising from 

clustered data, and outline potential approaches to analysis. We conclude that application 

of the test-negative design to certain cluster randomized trials could increase their 

efficiency and ease of implementation. 

KEY WORDS 

Case control; cluster randomized trial; dengue; efficacy; odds ratio; study design; test-

negative design; Wolbachia. 

ABBREVIATIONS 

CRT: Cluster randomized controlled trial; CR-TND: Cluster randomized trial with test-

negative design sampling; TND: Test-negative design  
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Cluster randomized controlled trials (CRTs) are the gold standard for evaluating the efficacy 

of health interventions delivered at the community level, including vector control 

interventions to reduce transmission of arboviruses such as dengue and Zika. A recent 

literature review emphasized the need for quality randomized controlled trials to improve 

disease control strategies (1, 2). The importance of measuring impact on disease, not only 

on vector indices, has been specifically highlighted. However, it is widely accepted that trials 

using clinical endpoints can be resource intensive and logistically difficult to implement. 

CRTs customarily randomly allocate an intervention to some predefined spatial units, and 

follow a cohort of ‘at risk’ participants over time to measure the endpoint of interest in 

treated versus untreated clusters. When sufficient units are available, randomization results 

in groups comparable in all factors except for the intervention under study, and provides the 

basis for statistical inference (3). Such trials with epidemiological endpoints are resource 

intensive due to the requirement for active case surveillance. The non-independence of 

individuals within each cluster and resultant statistical inefficiency necessitates inflation of 

the CRT sample size to achieve power equivalent to an individually randomized trial (3-6). 

Traditional CRTs frequently require thousands of participants to generate sufficient events 

for hypothesis testing (7-12) particularly for interventions against uncommon events, e.g. 

clinically apparent dengue. This has significant cost, time, ethical and logistical implications. 

These challenges may partly account for the small number of cluster randomized controlled 

trials and subsequent weak evidence base for vector-control interventions against 

arboviruses (1), limiting evidence-based decision making for disease control. 

Considerable literature demonstrates that sampling participants on the basis of their 

outcome status (case-control design) rather than their exposure status (cohort design) 
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increases efficiency of observational studies (13-17). We propose a CRT study design with 

test-negative sampling (CR-TND), a form of outcome-based recruitment, as an efficient 

method to assess the efficacy of community-level interventions against dengue (such as 

introgression of Wolbachia into mosquito populations (18, 19)). The approach offers the 

advantage of being more efficient, cost-effective, and logistically simpler to achieve than a 

traditional CRT.  We review the assumptions inherent to the test-negative design (TND) and 

how these relate to its application in the context of a cluster randomized trial, use 

simulations to demonstrate the validity of estimates produced by a CR-TND study, and 

discuss potential approaches to analysis and interpretation of results. 

 

ASSUMPTIONS OF THE TEST-NEGATIVE DESIGN AND APPLICATION TO CRTs 

The TND is a modified case-cohort study in which symptomatic patients meeting pre-

defined inclusion/exclusion criteria are enrolled and subsequently classified as test-positive 

‘cases’ or test-negative ‘controls’ based on the results of definitive diagnostic testing. This 

design is frequently used for evaluating the effectiveness of seasonal influenza vaccination  

(20-25) and its internal validity has been explored in depth (20-23, 26-28). Briefly, validity 

depends primarily upon the avoidance of selection bias in the sampling of cases and 

controls, and the extent to which the exposure distribution amongst controls is 

representative of the exposure distribution amongst the source population that gives rise to 

cases. Key assumptions and their relevance to CR-TND trials are discussed below. For ease 

of discussion we refer to the illness in those testing positive for the pathogen of interest as 

“test-positive illness”, and in those testing negative as “test-negative illness”. 
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Assumption 1. Test-negative illness is not associated with the intervention  

A core assumption of the TND is that the test-negative illness is not affected by the 

intervention (21, 22, 26); i.e. in the case of influenza VE studies, receipt of the influenza 

vaccine would not be expected to modify the incidence of non-influenza ARI. In randomized 

trials, random allocation of the intervention reduces the likelihood of any association 

between test-negative illness and the intervention. With an increasing number of clusters, 

the likelihood of test-negative illness occurring disproportionately in one study arm by 

chance is reduced. This may be particularly relevant where the test-negative illness is a 

communicable disease, as these tend to cluster in space and time. In cluster randomized 

trials with few allocation units, constrained randomization (29) can improve balance in 

factors potentially associated with test-positive or test-negative illness. Randomization thus 

represents a methodological advantage over influenza vaccine effectiveness studies in 

which self-selection may lead to an association between the intervention and outcome.  

Assumption 2. Non-differential probability of seeking health care 

Haber et al. (26) suggested the TND yields an unbiased estimate of effectiveness/efficacy 

even if the likelihood of seeking healthcare (and being enrolled) is associated with the 

intervention, provided this association exists for both test-positive and test-negative 

patients (26). Thus the TND may reduce bias due to intervention-driven changes to 

healthcare-seeking behavior relative to traditional cohort designs, a feature that may be 

particularly appealing in cluster randomized trials if blinding the community to intervention 

status is not feasible. A recent exploration of the theoretical basis of the TND in 

observational studies of influenza vaccine effectiveness (28) argued that the TND achieves a 

reduction in, rather than elimination of, bias due to healthcare-seeking behavior, since 
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healthcare-seeking behavior represents a continuous propensity rather than a simple binary 

variable that can be conditioned upon. Such potential bias should be further reduced in the 

CR-TND, since randomization of the intervention should achieve balance between study 

arms in individuals’ average propensity to seek healthcare. Constrained randomization can 

further enforce a balance between study arms in their baseline observed incidence of test-

negative illness (that incorporates care-seeking propensity as well as true disease 

incidence).  

Assumption 3.  The efficacy of the intervention is not associated with healthcare-seeking 

behavior 

The external validity of the TND depends on the intervention being equally effective across 

groups with different healthcare-seeking behavior, such that the effectiveness/efficacy 

estimate generated through a study of individuals presenting to clinics is generalizable to 

the broader population (21). A limitation to this assumption could arise in both TND and CR-

TND studies if those more or less likely to seek care at a study clinic differ systematically in 

some factor associated with intervention effectiveness. For example, if socioeconomic 

status differs with healthcare-seeking behavior, this may correlate with differences in 

housing, vector density, community uptake of the intervention, or other factors that might 

impact the effectiveness of a dengue vector control intervention.  Tacitly, in extending 

effectiveness estimates to cases of all severity, we assume that the intervention does not 

modify the spectrum of disease outcomes. 

Assumption 4. The test used to determine disease status is highly sensitive and specific. 
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Several authors (23, 26, 30) have modeled the effects of imperfect diagnostic testing on the 

TND estimate under different scenarios, demonstrating that a test (or combination of tests) 

with imperfect sensitivity or specificity biases the estimate toward the null, with the 

greatest bias arising from imperfect specificity. This, of course, remains true with clustered 

participants since clustering affects variation and not bias. Thus TND or CR-TND studies that 

demonstrate effectiveness/efficacy even with imperfect test sensitivity and/or specificity 

will underestimate the true effect (23). Use of a consistent diagnostic algorithm, gold 

standard diagnostic tests, and with laboratory testing performed blind to exposure status, 

will minimize the potential for differential or non-differential outcome misclassification to 

bias the estimates from a TND or CR-TND study, in the same way as for other designs. 

Assumption 5. Uncensored sampling of controls 

The effect measure estimated from a retrospective study depends critically upon the criteria 

applied to the selection of controls (31, 32). If controls are drawn from all individuals in the 

population at risk, without exclusion of those who test positive at any other time during the 

study period (i.e. uncensored or inclusive sampling), then the exposure distribution in the 

controls can be assumed to reflect the exposure distribution in the source population. In 

that case the study provides a direct estimate of the population relative risk, without 

dependence on the rare disease assumption (32, 33), and, in this regard, a TND most 

resembles a case-cohort design. If controls are sampled inclusively as above, and also 

longitudinally throughout the study period concurrently with cases (incidence-density or risk-

set sampling), then their cumulative exposure distribution represents that of the source 

population at each point in time (‘risk period’) that a case arose. If this temporal matching is 
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accounted for in the analysis, then the odds ratio directly estimates a population incidence 

rate ratio (31, 33, 34).  

In the case of a (cluster randomized) test-negative design study, patients presenting to 

participating clinics with a test-negative illness are assumed to represent a sample of the 

source population from which cases arise, i.e. the population who would present to these 

clinics and be enrolled as a case if they experienced a test-positive illness. Foppa et al. (25) 

have demonstrated that TND studies using incidence density sampling produce valid 

estimates of effect even when the incidence of test-positive or test-negative illness varies 

temporally. Because calendar time may correlate also with the exposure distribution (e.g. 

influenza vaccination uptake), analyses of observational TND studies have often included 

adjustment for calendar time (21). In the analysis of a CR-TND study, a participant’s 

exposure to the intervention is considered fixed and non-time varying for the purpose of the 

intention-to-treat analysis, as per the randomized allocation, in which case time adjustment 

is not warranted. A per-protocol analysis, however, may account for individuals’ time-

varying exposure to the intervention and require adjustment for calendar time. 

Assumption 6.  Participants with test-negative illness are only recruited when test-positive 

illness is circulating 

An extension of assumption 5 in the case of a seasonal illness is that, in order to achieve 

incidence density sampling of test-positive and test-negative participants, recruitment 

should only occur during periods when test-positive illness is circulating (21). Outside the 

transmission season there is effectively no ‘population at risk’ of test-positive illness, and 

therefore test-negative controls recruited during this period are not a valid sample of the 

source population from which test-positive cases arise. This principle holds also for CR-TND 
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studies. In practice, if a study is to run over more than one transmission season it may be 

infeasible to stop and start patient recruitment, or the beginning and end of the 

transmission periods may not be easily predicted in advance. This criterion can still be met 

while allowing continuous recruitment, by restricting the dataset for analysis to include only 

those test-negative controls enrolled during periods in which there were also test-positive 

participants recruited. 

Finally, we note that many of the concerns regarding the TND raised by careful 

consideration of biases (27, 28, 35) are mitigated, or removed, by exposure randomization 

in a CR-TND. For example, randomization essentially removes the impact of differential 

misclassification of disease outcome within levels of extraneous factors (28) since the latter 

are balanced across arms. In addition, in the case of an infectious disease where spatio-

temporal heterogeneity could lead to differences in baseline risk of illness between clusters, 

randomization of a sufficient number of clusters will ensure the overall risk of illness 

remains balanced between study arms. The causal diagrams relevant to TNDs (specifically 

directed acyclic graphs: DAGs) (28) apply here directly but are simplified as no arrows point 

into the (randomly assigned) intervention node; clustering of response does not affect a 

DAG. Further, randomization of exposure removes bias from estimation of marginal odds 

ratio measures of association (27). The non-collapsibility of the odds ratio (27) applies here 

to the extent that an intervention’s effect at a cluster level may be greater than the 

population effect; however, this means that the latter measure will simply be conservative. 

Later, in the paper we show that basic estimation procedures for CRTs and TNDs can be 

straightforwardly extended to CR-TND study data.  

SIMULATIONS 
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We assessed the validity of efficacy estimates generated through a CR-TND using 

simulations and found accurate and unbiased estimates are produced, provided the 

randomization achieves balance between study arms at baseline in both the outcome of 

interest and the test-negative illness, and other assumptions of the TND are met.  We 

simulated scenarios to compare the CR-TND efficacy estimate against the true efficacy of a 

hypothetical preventive intervention against dengue (Web Figure 1). Initially we assumed 

the intervention had no effect. Hypothetical study populations were generated, consisting 

of 20-100 clusters, each with a random population size drawn from a uniform distribution 

with range 5000 to 25,000. Baseline dengue and test-negative illness incidence rates in each 

cluster were simulated based on independent Beta distributions, and applied to cluster 

population sizes to yield case counts for each category (Web Figure 2). Parameter choices 

for test-negative illness incidence were selected to yield two distinct values of the inter-

cluster coefficient of variation (k), k = 0.5 and 0.25; k was set at 0.5 for dengue incidence. 

The rate parameters were selected to mimic dengue case notification rates (36-38) and k 

values (39) from southeast Asian dengue endemic settings. Note that any co-variation of 

dengue and test-negative case counts arises solely from common cluster population sizes.  

We randomly allocated half the clusters to receive the intervention. We performed simple 

randomization, plus three constrained randomizations in which we generated a large 

number of potential random allocations and accepted only those in which the baseline i) 

dengue incidence, ii) test-negative illness incidence or iii) both dengue and test-negative 

illness incidence were balanced between arms, defined as a difference of ≤10% in aggregate 

incidence. 
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We calculated the exposure odds ratio (OR) in dengue vs test-negative controls for each 

random allocation, using the standard formula:  

OR = 
𝑑𝑒𝑛𝑔𝑢𝑒 𝑐𝑎𝑠𝑒𝑠 𝑖𝑛 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛 𝑎𝑟𝑚

𝑑𝑒𝑛𝑔𝑢𝑒 𝑐𝑎𝑠𝑒𝑠 𝑖𝑛 𝑛𝑜𝑛−𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛 𝑎𝑟𝑚
 / 

𝑡𝑒𝑠𝑡−𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 𝑖𝑛 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛 𝑎𝑟𝑚

𝑡𝑒𝑠𝑡−𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 𝑖𝑛 𝑛𝑜𝑛−𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛 𝑎𝑟𝑚
 . 

For simplicity, we assumed complete sampling of dengue (test-positive) cases and test-

negative controls from both study arms, perfect diagnostic test sensitivity and specificity, 

and that all assumptions of the TND were met. Thus the only variation across simulations 

was in cluster intervention assignment. We repeated each simulation 1,000 times for each 

combination of the number of clusters and inter-cluster coefficient of variation. The 

percentage deviation from the expected null value (i.e. OR=1) was assessed for each 

simulation (Figure 1). 

Results demonstrate that the odds ratio estimated through a CR-TND study approximates 

the true null value. Random variation around the null is particularly reduced when study 

arms are balanced for both test-positive and test-negative illness baseline incidence. Such 

variation also decreases as the number of study clusters increases and at the lower value of 

inter-cluster heterogeneity for test-negative illness incidence. With balance on historical 

incidence of both dengue and test-negative outcomes, estimation is effective even with 

small numbers of clusters (Figure 1D). 

We further investigated validity of the odds ratio estimates assuming a true intervention 

efficacy of 50%, by repeating the above steps while deterministically halving dengue 

incidence in each intervention cluster. The deviation of the simulation-derived odds ratio 

estimates from the expected ‘true’ value was identical for an assumed efficacy of 50% (Web 

Figure 3) and at the null (Figure 1).   
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ANALYSIS OF CLUSTER RANDOMIZED TEST-NEGATIVE DESIGN STUDIES 

Community-level interventions introduce additional complexity into analysis of a CR-TND 

compared to an observational TND study, while allowing inference to be based on 

randomization. With test-negative designs, vaccine effectiveness is usually estimated 

through the odds ratio as defined above (21).  Logistic regression models allow adjustment 

for potential confounders (20, 40) including calendar time. Common adjustments are time-

matching using a conditional logistic regression model, or inclusion of calendar week as a 

categorical parameter using splines in an unconditional model  (40). For a CR-TND, however, 

any analysis needs to account for the clustering. We note two possible approaches that 

adapt procedures commonly used for CRTs. 

(a) Cluster-level Summary Data: We can simply use the estimated odds ratio based on 

data aggregated across all clusters, with the null hypothesis that the odds of being in the 

intervention arm is the same among test-positives as test-negatives. Inference can be based 

on the permutation distribution that considers all possible cluster intervention assignments. 

An approximate version of this test uses an estimate of the variance of the estimated odds 

ratio that accounts for the clustering using simple finite population sampling ideas (41).  

The aggregate odds ratio provides a consistent estimate of the relative risk, albeit at a 

population-averaged, or marginal, level (41). (This is in contrast to a cluster-specific odds 

ratio that is, in general, further from the null than the marginal version—see (3); the 

difference is not of practical concern with rare outcomes). Confidence intervals can either 

be based on inverting the permutation test or via the approximate variance formula (41).  
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An alternative summary efficacy measure is based on the proportion of test-positive 

patients (amongst all tested individuals) in each cluster. At the null, the average of these 

proportions should be the same in both arms. For testing, the average of these proportions 

for the intervention clusters can then be compared to the same for control clusters via the t-

statistic, with inference based on a permutation test again, or on an approximate variance 

(41).  

This approach also provides an estimate of the (cluster-specific) relative risk (RR). 

Specifically, with 2m clusters (m assigned to intervention), the expected proportion of test-

positives in the intervention clusters is approximately 
𝑅𝑅

𝑅𝑅+(
𝑟

2
)(1+𝑅𝑅)

 , and 
1

1+(
𝑟

2
)(1+𝑅𝑅)

 for the 

control clusters, where the ratio of sampled controls to cases is r. For example, if r = 1 and 

RR = 0.5, the average proportion of test-positives in a treated cluster is 2/5 (0.40) and 4/7 

(0.57) in a control cluster. These calculations assume that the intervention effect is identical 

in all treated clusters. The difference in these average proportions of test-positives between 

intervention and control clusters yields an estimate of the relative risk since we can 

substitute the estimated difference in the proportions, d, into the formula 𝑑 =
1

1+(
𝑟

2
)(1+𝑅𝑅)

−

𝑅𝑅

𝑅𝑅+(
𝑟

2
)(1+𝑅𝑅)

, yielding a quadratic equation for RR. This yields an estimate of RR, along with 

an appropriately transformed confidence interval (from that for d) (41).  

Note that Generalized Estimating Equations estimates of the odds ratio that use robust 

variances do not perform well in situations where there are relatively few clusters. On the 

other hand, random effects logistic regression performs better and may provide a third 

alternative approach with sufficient clusters available (41).  
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(b) Individual-level analysis: In the CR-TND a form of ‘per-protocol’ analysis is 

likely of interest, to reduce the potential impact of exposure misclassification arising from 

the fact that some individuals in an intervention cluster may spend substantial time in a 

control cluster and vice-versa. This ‘contamination’ would necessarily reduce the observed 

effect of the intervention. Available measurements on such mobility contemporaneous to 

symptoms would then be included in an analysis that allows for individual-level covariates, 

in addition to calendar time as previously discussed.  

Modifications to the permutation distribution techniques used for either the odds ratio or 

the difference in average test-positive proportions across clusters, may be developed by 

extending similar approaches for standard cluster randomized trials (42-44). In addition, 

covariates can be introduced straightforwardly into a random effects logistic regression 

model. Incorporating calendar time in this way effectively fits a proportional hazards frailty 

model if one assumes that the intervention effect is constant over time.   

 

DISCUSSION 

Public health strategies to control dengue and other arboviruses lack a robust evidence base 

due to the absence of well-powered cluster randomized trials of community-level 

interventions with disease endpoints (2).  The absence of such trials might reflect the 

common belief that mosquito population suppression must inevitably lead to lower disease 

incidence, yet this relationship is poorly characterized and unlikely to be linear (45, 46).  

Additionally, there is a perception that cluster randomized trials require fever surveillance of 

pre-defined cohorts of ‘at risk’ individuals and that such efforts must always be logistically 
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and financially demanding. Here we propose that cluster randomized trials with test-

negative design sampling offer increased efficiency and validity by recruiting participants 

based on their outcome, rather than exposure status. Advantages include a smaller total 

sample size and potentially single rather than repeat contact with study participants, as well 

as avoidance of potential biases that can arise in longitudinal studies from under-

ascertainment of illness events or loss to follow-up. A primary advantage of the CR-TND 

approach over traditional TNDs is the randomization of the intervention that reduces 

confounding and provides a firm basis for inference. The CR-TND therefore represents an 

attractive novel design for trials of community-based interventions against acute infectious 

diseases such as dengue. 

The key assumption underlying the validity of CR-TND effect estimates is that the ratio of 

exposed to unexposed patients with test-negative illness is an unbiased estimate of the 

ratio of exposed to unexposed persons in the source population who would seek health care 

if they developed the test-negative (or test-positive) illness. This assumption could be 

violated if an inappropriate test-negative illness was selected, upon which the intervention 

has a true effect. For example, in the case of a dengue vector control intervention trial, 

another Aedes-borne pathogen such as Zika or chikungunya must be excluded from the 

classification of test-negative illness because the intervention could also feasibly modify the 

distribution of these diseases.  Furthermore, small numbers of clusters limit the power of 

the design. Our simulations indicate that constrained randomization may be useful to 

increase precision, particularly when the number of clusters under study is small. 

The outcome-based sampling in a CR-TND uses an odds ratio as the estimate of effect, the 

interpretation of which depends on the criteria applied in sampling test-negative controls. 
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When controls are sampled concurrently with cases and without regard for past or future 

test-positive illness, as is proposed here, the odds ratio of exposure in test-positive vs test-

negative patients yields a direct estimate of the relative risk in the source population. If the 

temporal matching of test-positives and test-negatives is accounted for in the analysis, then 

this becomes an unbiased estimate of the rate ratio , and thus the CR-TND can produce an 

equivalently intuitive and valid effect estimate as a traditional longitudinal CRT design but 

with potentially substantial savings in time and resources (41). 

In addition to its efficiency benefits, the outcome-based sampling employed in the CR-TND 

also has a potential advantage over traditional study designs in reducing biases that can 

arise through longitudinal follow-up where the ascertainment of disease endpoints relies on 

passive case detection of study participants presenting to clinics when ill. Such designs carry 

a risk of misclassification bias, as any cohort members with the disease of interest who fail 

to present to a study clinic, or to be identified upon presentation, are falsely classified as 

disease-free (21). Loss-to-follow up that is differential between study arms and/or outcome 

status is another potential source of bias in traditional longitudinal designs, particularly 

when follow-up periods are long. The health care-seeking behaviour of the population, if 

differential between treatment arms e.g. with a non-blinded intervention, can also 

confound the observed association between intervention and outcome (21). These biases 

are avoided in the CR-TND through the sampling of test-negative controls from the same 

patient population as the test-positive cases, and because of the random assignment of the 

intervention. CRTs of community interventions are susceptible to exposure misclassification 

if participants’ mobility patterns lead to contamination between intervention and control 

clusters. The CR-TND allows for inclusion of a per-protocol analysis employing more 
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nuanced exposure classification based on recall of movements just prior to illness onset, 

which would not be possible in e.g. a prospective serological cohort with sampling at annual 

or six-monthly intervals. 

A key challenge to implementation of the CR-TND, compared with an observational TND, is 

adaptation of analytical methods to account adequately for clustering of participants with 

respect to their intervention allocation status. We have elsewhere proposed methods to 

accommodate clustering in group-level analysis of intervention effect, using a permutation 

approach to statistical inference (41). Published CRT formulae for sample size calculations 

are inadequate for the CR-TND, and simulation studies based on baseline data, best 

estimates, or pilot studies are needed to assess the required sample size (41). Even for CRTs, 

sample size calculations need preliminary estimates of design effects induced by the 

clustering, information that is often poorly reported.  

Both the accuracy of sample size estimations, and the benefits conferred by constraining 

randomization to only those allocations in which balance is achieved in both test-negative 

and test-positive illness incidence, depend on the availability of reliable baseline data, and 

the degree to which historical patterns are likely to reflect the future illness distribution. The 

spatial and temporal variability in many infectious diseases, and their propensity to cluster 

in space and time, could lead to a different distribution being observed during the study 

period compared to baseline. The incidence rate ratio of test-negative illness between 

treated and untreated arms during the study period should therefore be reported; this 

should approximate one if the assumption of no relationship between intervention and test-

negative illness is upheld. Re-estimation of power/sample size at an interim time point after 

study commencement – using the trial data from the control arm to determine inter-cluster 
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heterogeneity of test-positive and test-negative illness – may also be advisable to affirm the 

estimates based on historical data. 

The study design described here extends the test-negative design to cluster-randomized 

intervention trials. We have demonstrated that valid estimates of effect are produced by 

the CR-TND, even with a relatively small number of clusters, particularly when constrained 

randomization is employed to ensure balance in baseline test-positive and test-negative 

illness, and assuming the core assumptions of the TND are upheld. This design offers 

potential for improving the efficiency of cluster randomized trials of preventive 

interventions, including for arboviral diseases such as dengue and Zika, through targeted 

clinic-based enrolment and testing of patients with a specified disease syndrome instead of 

longitudinal follow-up of large cohorts. Other public health applications in which the CR-TND 

could prove valuable include the evaluation of mass drug administration for parasitic 

infections, and estimation of both the direct and indirect (‘herd’) effects of vaccine-derived 

immunity in the context of vaccine trials or observational studies, subject to first 

establishing that the assumptions outlined here are upheld. 

Further extensions to this work will refine the approaches to statistical inference and 

sample size estimation, and develop methods for individual-level analysis that allow 

adjustment for individual covariates such as time of recruitment or non-binary exposure 

status due to mobility or heterogeneous coverage of the intervention. Extension to non-

parallel randomized allocations will also be explored, for example where a community-level 

intervention is deployed using a stepped-wedge design. The first field implementation of the 

CR-TND, to our knowledge, will be a cluster randomized controlled trial to assess the 

efficacy of Wolbachia-infected mosquito deployments against dengue in Yogyakarta, 
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Indonesia (ClinicalTrials.Gov #NCT03055585; (47)). This will provide a valuable opportunity 

to test both the feasibility and validity of the design in practice, generating learnings to 

inform improved design of trials to evaluate preventive interventions for vector-borne 

diseases and other public health priorities. 
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FIGURE LEGENDS 

Figure 1. Validity of odds ratio estimates from a simulated CR-TND study, under the null 

hypothesis of no intervention effect. Box and whiskers plots show the distribution of odds 

ratio estimates from 1000 simulated cluster-randomized allocations of a hypothetical 

dengue preventive intervention, displayed as the % deviation from the expected OR=1 

assuming that the true intervention efficacy is zero. The ten different scenarios within each 

graph represent a variable number of clusters under study (20 – 100) and two scenarios of 

the inter-cluster coefficient of variation (k) in baseline test-negative illness incidence: high 

(H; k=0.5) or low (L; k=0.25). Inter-cluster variation in baseline dengue incidence was 

constant in all scenarios (k=0.5). Random allocation of the intervention was either 

unconstrained (A), or constrained to ensure balance between the study arms (+/- 10%) in 

baseline dengue incidence (B), test-negative illness incidence (C), or both dengue and test-

negative illness incidence (D). Note that five OR estimates from Panel A (4/1000 simulations 

with 20 clusters & high k, and 1/1000 simulation with 20 clusters & low k) and two OR 

estimates in Panel C (2/1000 simulations with 20 clusters & low k) had a deviation value less 

than -150% and are not shown on the graph. 
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