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Abstract 

Background: Stratified medicine seeks to identify patients most likely to respond to treatment. 

Individual participant data (IPD) network meta-analysis (NMA) models have greater power 

than individual trials to identify treatment-covariate interactions (TCI). TCI contain “within” 

and “across” trial interactions, where the across trial interaction is more susceptible to 

confounding and ecological bias.  

Methods: We considered a network of IPD from 37 trials (5922 patients) for cervical cancer 

(2394 events), where previous research identified disease stage as a potential interaction 

covariate. We compare two models for NMA with TCI: (i) two effects separating within and 

across trial interactions and (ii) a single effect combining within and across trial interactions. 
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We argue for a visual assessment of consistency of within and across trial interactions and 

consider more detailed aspects of interaction modelling, e.g. common vs trial-specific effects 

of the covariate. This leads us to propose a practical framework for IPD NMA with TCI.  

Results: Following our framework, there was no evidence in the cervical cancer network for a 

treatment-stage interaction based on the within trial interaction. The NMA provided additional 

power for an across trial interaction over and above the pairwise evidence. Following our 

proposed framework, the within and across trial interactions should not be combined.  

Conclusion: Across trial interactions are susceptible to confounding and ecological bias. It is 

important to separate the sources of evidence to check their consistency and identify which 

sources of evidence are driving the conclusion. Our framework provides practical guidance for 

researchers, reducing the risk of unduly optimistic interpretation of TCI.  

 

Keywords: Framework; IPD; Network meta-analysis; Treatment-covariate interaction.  
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1. Background 

Introduction 

Stratified medicine seeks to identify patients most likely to respond to treatment. However, 

individual trials are rarely powered to detect interactions between treatment effects and 

participant characteristics. Meta-analysis (MA) models potentially have greater power to 

identify such treatment-covariate interactions (TCI), particularly when individual participant 

data (IPD) are available. One of the big advantages of IPD MA over aggregate data (AD) MA 

is the greater power that it affords for investigating treatment and patient-level covariate 

interactions (Berlin et al., 2002; Debray et al., 2015; Lambert et al., 2002; Tierney et al., 2015). 

To explore how the treatment effect may vary in relation to a patient-level covariate, a TCI can 

be fitted (Donegan et al., 2012; Hua et al., 2017). The power to detect TCI will depend on the 

distribution of the covariate within each study (Simmonds and Higgins, 2007).  

Pairwise IPD MA of TCI often results in two sources of information; so-called ‘within trial’ (at 

the individual patient level) and ‘across trial’ (at the trial level) interactions, where the across 

trial interaction is particularly susceptible to confounding and ecological bias as it is based on 

observational associations  (Berlin et al., 2002; Debray et al., 2015; Hua et al., 2017; Riley et 

al., 2008; Riley and Steyerberg, 2010; Simmonds and Higgins, 2007; Thompson and Higgins, 

2005).The same is true of IPD network meta-analysis (NMA); therefore it is important that the 

within and across trial interaction estimates are reviewed separately, before deciding whether 

to combine them. We reiterate that confounding from unmeasured covariates (e.g. differences 

in baseline disease risk) can affect both within and across trial interactions (Jackson et al., 

2006). However, within trial effects are less susceptible because of the protection provided by 

the trials randomisation. Ecological bias arises if across trial information, which uses trial 

average covariate values, isused to draw conclusions about individuals (Greenland, 1987; 

Hong et al., 2015; Morgenstern, 1982; Simmonds and Higgins, 2007). However, if interest lies 



 

 
This article is protected by copyright. All rights reserved. 

in the population level effect and it is interpreted correctly as a population effect (and not an 

individual effect) then (by definition) there cannot be ecological bias. In some instances, it may 

be the case that the across trial interaction (e.g. the mean effect for a patient aged 50) truly 

differs from the within trial interaction (e.g. the effect for an individual patient aged 50) 

(Simmonds and Higgins, 2007). Separating out within and across trial interactions may change 

the conclusions drawn from combining within and across trial interactions. For example, an 

IPD MA comparing two anti-epileptic drugs as monotherapy for controlling seizures originally 

combined the within and across trial interactions and identified an interaction between 

treatment and age (Tudur Smith et al., 2005). However, a recent re-analysis separating out the 

within and across trial interactions no longer indicated an interaction between treatment and 

age based on the within trial interaction only (Hua et al., 2017).  

IPD MA models separating out within and across trial interactions were first developed for 

continuous outcomes (Riley et al., 2008) and later applied to time-to-event outcomes (Fisher et 

al., 2011). In the IPD NMA setting models separating out within and across trial interactions 

have been proposed for dichotomous outcomes (Donegan et al., 2012) and time-to-event 

outcomes using the Cox regression model (Hua et al., 2017). In this paper we show how to 

separate out the within and across trial interactions in the IPD NMA setting for time-to-event 

outcomes using the Royston-Parmar model.  

A key assumption of NMA is consistency between the direct and the indirect evidence (Salanti, 

2012; Dias et al., 2013). The inclusion of TCI in a NMA model offers one of many ways for 

exploring and understanding inconsistency (Cooper et al., 2009; Donegan et al., 2012, 

2013a,b). With the presence of TCI in a NMA model, the consistency assumption may be 

violated if one or more of the true treatment effects is modified by a covariate and included 

trials differ with respect to the covariate (Donegan et al., 2012). Furthermore, when we include 

TCI in a NMA model we assume that the treatment effects estimated at the covariate value of 
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zero are consistent and that the regression coefficients for the TCI parameters are also 

consistent (Donegan et al., 2017). Therefore, it is important to assess the consistency 

assumption either at each level of the covariate (for categorical covariates) or across a range of 

values (for continuous covariates) (Donegan et al., 2017).  

There are three different ways to model TCI effects: common, independent or exchangeable 

(Cooper et al., 2009). Common effects assume that the regression coefficients are the same for 

all TCI so that the TCI effect is the same for each treatment compared tothe control. 

Independent effects assume that all TCI are different for each treatment versus the control so 

that a separate regression coefficient for each TCI is included in the model. Exchangeable 

effects assume that all TCI are different from each other but similar enough that they can be 

sampled from a common distribution. For IPD MA, and as we show by extension in IPD NMA, 

there are three possible ways of analysing TCI: using the across trial interaction only, using the 

within trial interaction only and combining the two (Fisher et al., 2017). We now describe three 

approaches for IPD MA with TCI before considering the NMA setting.  

In one commonly used approach for interactions in MA (which can be shown to combine 

within and across trial interactions), specifically for categorical covariates, the treatment effect 

is calculated within each trial for each level of the covariate. The treatment effects for each 

level of the covariate are combined across all trials, using standard MA techniques, resulting in 

an overall effect for each level of the covariate which are then compared to each other (Fisher et 

al., 2011, 2017; Riley et al., 2008). Any trials where all patients have the same covariate value 

will not contribute to the within trial interaction but can contribute to the across trial 

interaction. This is a common approach used in IPD MA. However, the within trial interaction 

can be exaggerated or masked by the across trial interaction, which is at risk of ecological bias. 

Therefore, this approach is also at risk of ecological bias (Fisher et al., 2011, 2017; Riley et al., 

2008).  
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An analysis using the across trial interaction only considers how the treatment effect varies 

across trials in relation to the trial mean value of the covariate and fails to use the patient-level 

information (Thompson and Higgins, 2002). This requires the assumption of no unmeasured 

confounding between the outcome and the covariate, and that there is no ecological bias (Fisher 

et al., 2017; Riley et al., 2008; Riley and Steyerberg, 2010). Unfortunately it is typically not 

possible to identify such confounders as baseline data often varies across trials. Therefore it is 

often not possible to test whether the inclusion of the across trial interaction will induce bias.  

 

An analysis using the within trial interaction only more closely parallels the underlying 

principles of MA. Estimates of the TCI effect are calculated within each trial and then pooled 

together using MA methods (Simmonds and Higgins, 2007; Riley et al., 2008; Fisher et al., 

2011). Any trials where all patients have the same covariate value will not contribute to this 

analysis as they do not provide any within trial interactions (Fisher et al., 2017; Riley et al., 

2008; Simmonds and Higgins, 2007). Recommendations on the presentation and analysis of 

TCI using this approach are proposed by Fisher (2017). A key aim of this paper is to show how 

these recommendations can be brought to bear in NMA.  

In the pairwise MA case, it is clear that within trial interactions are the most clinically relevant 

estimates, as they are free from ecological bias (Berlin et al., 2002; Donegan et al., 2012; Fisher 

et al., 2017; Hua et al., 2017; Riley et al., 2008). In the NMA case, more research is needed to 

explore how the consistency assumptions of the network applied to within trial interactions (as 

in our model) can help to improve their precision. Nevertheless, the framework described here 

explicitly separates the within and across trial interactions throughout the network, and hence 

guarantees that an unbiased estimate of the within trial interaction is obtained. The methods 

proposed here are applicable to both continuous and categorical covariates. Specifically, in this 

paper we illustrate how the within and across trial interactions can be separated for 
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time-to-event outcomes modelled using the IPD Royston-Parmar NMA model, we propose a 

framework for conducting NMA with TCI, showing how to fit models which separate out the 

within and across trial interactions. We then illustrate our framework by applying it to a 

cervical cancer network.  

Why do we need a framework? 

Fitting a NMA with TCI is often a more complex process than researchers anticipate. There are 

a number of additional important decisions that need to be taken, beyond those that need to be 

considered in a MA. These include the parameterisation and consistency of covariate and 

interaction effects. An added complication, frequently encountered in practice, is how to 

handle missing patient-level covariate data.  

When it comes to reporting a NMA with TCI, the preferred reporting items for systematic 

reviews and meta-analyses based on IPD (PRISMA-IPD) guidelines recommend 

pre-specification of whether the across trial interaction is to be combined with the within trial 

interaction (Stewart et al., 2015; Tierney et al., 2015). Therefore, it is important that authors are 

aware of the potential implications of combining within and across trial interactions. By 

proposing a framework for conducting NMA with TCI we aim to equip researchers with the 

knowledge and tools for successfully fitting an appropriate NMA with TCI.  

In Section 2 we discuss issues to consider before conducting NMA with TCI, outline a 

nine-step framework for one-stage IPD NMA with TCI, provide guidance on implementing the 

framework and introduce a cervical cancer dataset. In Section3 we present the results of 

applying the framework to the cervical cancer network. In Section 4 we discuss the framework 

before drawing some conclusions in Section 5.  
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2. Methods 

Issues to consider 

Preliminary analysis 

NMA often starts with a systematic review being conducted to identify all treatments and trials 

to be considered in the network. As part of the review and in discussion with appropriate 

clinicians, discussion of any covariates which could be included in a NMA with TCI should 

take place before any models are fitted. Such models require a number of considerations and 

preliminary analysis of the data can help inform the decision of which model to fit.  

Common main effect vs trial-level main effect of covariate 

A patient-level covariate can be fitted as a common effect or a trial-level effect (Govan et al., 

2010). A common effect pools the effect of the covariate across all trials. A fixed trial effect 

results in a separate estimate of the effect of the covariate for each trial and does not provide an 

overall effect for the covariate. A random trial effect of a covariate allows the effect of the 

covariate to differ in each trial assuming that the coefficients for each trial come from a 

common (typically normal) distribution.  

We encourage the use of a trial-level effect, either fixed or random. If a common effect of a 

covariate is used when a trial-level effect would be more appropriate this can result in a poorly 

fitting model which could affect convergence, suppress the differences between trials and 

affect the treatment effect estimates. Assuming a common effect of a covariate is generally not 

appropriate when the distribution of the covariate varies between trials or in a network where 

trials vary in size, because it is known that smaller studies can give more extreme parameter 

estimates (Chaimani and Salanti, 2012). A hypothesis test to check the effect of the covariate in 

each trial should be conducted before assuming a common effect, as this choice is likely to 
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critically impact the estimate of the TCI.  

Parameterisation of within and across trial interactions 

TCI can be included in MA models in two ways. Firstly, as a single effect which combines 

within and across trial interactions; and secondly, as two effects which separate out the within 

and across trial interactions (Riley et al., 2008; Fisher et al., 2011). We now describe how to do 

this in the NMA setting using the Royston-Parmar model for time-to-event data.  

Consider the one-step fixed treatment effect Royston-Parmar NMA model for a network of 

𝑞 + 1 treatments (Freeman & Carpenter, 2017). Including a fixed trial effect of a patient-level 

covariate 𝑧𝑖𝑗 , the log cumulative hazard for patient i from trial j can be modelled as:   

 

      1ln | ln trt1 trtj ij j ij q ij j ijH t X s t a z      (1) 

where 𝑠𝑗 (ln ( 𝑡)) is the restricted cubic spline for trial j, trt1𝑖𝑗 , … , trtq𝑖𝑗  are the treatment 

indicators with corresponding coefficients 𝛽1, … , 𝛽𝑞  and 𝛼𝑗  is the effect of the patient-level 

covariate 𝑧𝑖𝑗  for trial j.  

Adding a common TCI to (?) which separates the within and across trial interactions results in:  
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 (2) 

 

where the covariate 𝑧𝑖𝑗  is fitted as a fixed trial-level effect with coefficient 𝛼𝑗  for trial j and 𝑧 𝑗  

is the mean value of 𝑧𝑖𝑗  for trial j. The within trial interaction is represented by the 𝑎𝐴1, … , 𝛿𝐴𝑞  

parameters whilst the across trial interaction is represented by the 𝛿𝐵1, … , 𝛿𝐵𝑞  parameters. The 

difference 𝛿𝐵𝑘 − 𝛿𝐴𝑘  quantifies the amount of ecological bias for interaction k (Fisher et al., 
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2011).  

Adding a common TCI to (1) which combines the within and across trial interactions results in:  

 ln { 𝐻𝑗 (𝑡|𝑥𝑖𝑗 )} = 𝑠𝑗 (ln ( 𝑡)) + 𝛽1trt1𝑖𝑗 + ⋯+ 𝛽𝑞 trtq𝑖𝑗 + 𝛼𝑗 𝑧𝑖𝑗  

                +𝛿1trt1𝑖𝑗 𝑧𝑖𝑗 + ⋯+ 𝛿𝑞 trtq𝑖𝑗 𝑧𝑖𝑗  (3) 

where the covariate 𝑧𝑖𝑗  is fitted as a fixed trial-level effect with coefficient 𝛼𝑗  for trial j and 

𝛿1, … , 𝛿𝑞  are the coefficients of the TCI effects.  

In practice, these models can also be fitted with random treatment effects, random trial-level 

treatment-covariate interactions and random trial-level effect of the covariate (Appendix A).  

Missing covariate data 

NMA can be conducted in both the frequentist and Bayesian frameworks (Lu and Ades, 2004; 

Lumley, 2002). One of the advantages of conducting NMA within a Bayesian framework, and 

in particular using WinBUGS, is that missing covariate data can be naturally handled in 

WinBUGS. Missing covariate data can be accommodated within the NMA model by including 

a distribution for the covariate with missing values. This allows two things to happen: missing 

covariate values are imputed which allows a patient to be included in the NMA model and this 

in turn increases the precision of the treatment effects which themselves inform the imputation 

of the missing values (Lunn et al., 2013). If we wish to perform a frequentist analysis, the most 

straightforward way to handle missing covariate values is by multiple imputation; however, 

this is not a straightforward application of multiple imputation, because the imputation needs to 

be done in a way that is consistent with the NMA model. The R-pacakge jomo (Quartagno and 

Carpenter, Stat Med, 2016) has the flexibility to handle this, but we do not pursue this further.  

Nine-step framework for one-stage IPD NMA with treatment-covariate interactions 

The aim of this framework is to provide guidance on the steps that need to be considered before 

a NMA with TCI can be fitted, so that the analysis is conducted systematically and 
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appropriately. This framework concentrates specifically on building NMA with TCI models. 

Therefore, the framework assumes that the usual MA activities such as protocol writing, 

defining inclusion/exclusion criteria and determining whether trials are similar enough for 

inclusion in a MA have already been conducted. Further, we assume that the network is 

connected and any covariates for inclusion in the NMA models have been identified through 

discussion with clinicians. As usual, when interpreting the results, a range of possible causes of 

heterogeneity (e.g. baseline differences, design, treatment doses, delivery, escape therapies) 

must be kept in mind. Steps 1-4 are applicable for any NMA whether covariates are considered 

for inclusion or not. From step 5 onwards the framework specifically considers the inclusion of 

covariates and TCI. This framework has been developed to be applicable to a range of 

outcomes (e.g. binary, continuous and time-to-event). As is common, we work on the log-odds 

or log-hazard scale. However, the principles underlying our proposed framework will apply to 

other settings but the technical details may vary. The framework may need to be tweaked to 

take into account additional issues arising in specific settings.  

1. Assess all pairwise treatment comparisons for evidence of heterogeneity  

(a) If heterogeneity is present, explore the baseline characteristics of all 

trials. Can the heterogeneity be explained by differences in baseline 

characteristics across trials?  

i. If yes, all important covariates should be considered going 

forwards  

ii. If no, it could be unsuitable to combine the pairwise comparison 

in a NMA  

2. Identify a reference treatment across the network and determine which 

treatment contrasts will be parameterised in the model (all other treatment contrasts 

should be obtained through consistency equations)  



 

 
This article is protected by copyright. All rights reserved. 

3. Fit the NMA model without covariates taking into account any heterogeneity 

identified in step 1 (e.g. by using a random effect model)  

4. Assess the network for evidence of inconsistency  

5. Investigate patterns of missing data for the covariate of interest  

6. Consider modelling assumptions for including the covariate in the NMA model 

(fixed or random treatment effects? common, fixed-trial or random-trial effect of 

covariate?)  

7. Fit NMA model including covariate and assess model results  

8. Fit NMA model including TCI with within and across trial interactions 

separated and assess agreement between the within and across trial interactions  

9. Fit NMA model including TCI with within and across trial interactions 

combined, if appropriate  

Note, when there is missing covariate data it is often practically and computationally easier to 

fit step 9 before step 8. More details can be found in the guidance on implementing the 

framework section.  

Guidance on implementing the framework 

Step 1: Before a NMA model is fitted all pairwise treatment comparisons in the network 

should be explored for evidence of heterogeneity. Heterogeneity can be assessed through the 

𝐼2, 𝜏2 and Cochran’s Q statistics (Cochran, 1954; Higgins et al., 2003; R¨ucker et al., 2008). If 

heterogeneity is present, explore the baseline characteristics of all trials. If one trial, or a 

subgroup of trials, are found to be causing the heterogeneity then exploring the baseline 

characteristics can identify what isdifferent about this trial, or trials, and the impact this might 

have on the treatment effect. The identification of heterogeneity, at this stage, in one or more 

pairwise comparisons can determine whether fixed treatment effect (FTE) or random treatment 

effect (RTE) models are used in step 4 (Mills et al., 2013). If the source of heterogeneity cannot 
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be identified or accounted for then either RTE will need to be used or it will be unsuitable to 

use this comparison in a NMA, particularly if removingthe pairwise comparison exhibiting 

heterogeneity means that a FTE model can be used. Any covariates identified, during this step, 

as potentially causing heterogeneity should be considered in steps 6 to 9.  

Step 2: The previous standard of care, the largest treatment node or the treatment connected to 

the greatest number of other treatments are the most appropriate choices for the reference 

treatment within the network. The treatment parameterisation of the network should satisfy the 

consistency equations (Higgins and Whitehead, 1996). The number of treatment parameters 

should be one less than the number of treatments in the network. The network diagram can help 

inform which treatment parameters should be directly estimated in the NMA model and which 

will be calculated as contrasts through the consistency equations. Network diagrams can be 

created in Stata  [52] using the networkplot command (Chaimani et al., 2013).  

Step 3: A NMA model can be fitted using both FTE and RTE and monitoring the deviance 

information criteria (DIC). If heterogeneity was present in step 2, the RTE model should be 

used as this increases the variability around the point estimate to reflect the heterogeneity. The 

RTE model gives more weight to smaller studies than the FTE model. Therefore, a difference 

in the treatment effect estimates between the FTE and RTE models can indicate publication 

bias and small study effects (Chaimani and Salanti, 2012). DIC is a measure of model fit which 

penalises model complexity - smaller values are better. DIC can be used to compare models 

although small differences (i.e. < 5) should not be over-interpreted and simpler models should 

be chosen where they can be (Spiegelhalter et al., 2002). In addition, in some cases, total 

residual deviance can be used to assess goodness of fit; see Dias (2013) for details.  

Step 4: The network should be assessed for evidence of inconsistency (Caldwell et al., 2005; 

Donegan et al., 2012, 2013b; Ioannidis, 2009; Lu and Ades, 2006; Salanti et al., 2007; Veroniki 

et al., 2013). To visualise this, it is useful to present the model results as a forestplot with the 
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network, direct and indirect evidence separated out. There are many approaches to assessing 

inconsistency (e.g. node-splitting (e.g. node-splitting (Dias et al., 2010; van Valkenhoef et al., 

2016; Tu, 2016), inconsistency models such as the design-by-treatment interactionmodel 

(Higgins et al., 2012; White et al., 2012), random inconsistency effects (Jackson et al., 2014, 

2016; Law et al., 2016), factorial analysis of variance (Piepho, 2014), generalised linear mixed 

models (Tu, 2015; Günhan et al., 2017)) and the two-stage approach (Lu et al., 2011)). We 

recommend consulting review papers such as Donegan et al (2013a) and Efthimiou et al (2016) 

which describe and compare different methods for assessing consistency to help select the most 

appropriate method for the network at hand.  

We use the inconsistency parameter approach of Lu & Ades (2006) in which an inconsistency 

parameter is fitted for each treatment loop and the model is re-fitted including the additional 

parameters. This approach complements the assessment of heterogeneity from step 1 and 

follows the approach outlined in Freeman & Carpenter (2017). Here an inconsistency 

parameter is initially added to the FTE model before considering the RTE model and exploring 

whether the conclusions are sensitive to the inclusion of the inconsistency parameter. If 

inconsistency is present in the network then an inconsistency parameter can be used in all 

further models. Treatment loops with inconsistency parameters are reduced to thedirect 

evidence only and therefore do not contribute to the across trial interaction in the network. 

Furthermore, if inconsistency is present, the cause of the underlying 

inconsistency/heterogeneity must be resolved before the results are used for clinical inference 

(Donegan et al., 2017; Freeman and Carpenter, 2017).  

Step 5: Consider the distribution of the covariate of interest in each trial. Are there any trials 

where some patients have missing covariate data? Are there any trials where all patients have 

missing covariate data? Is the covariate continuousor categorical? Can a linear effect between 

the groups of an ordered categorical covariate be assumed? What is the reference value of the 
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covariate? In WinBUGS (Lunn et al., 2000), as in all Bayesian modelling software, missing 

covariate data can be imputed once the marginal distribution of the covariate is specified.  

Step 6: Covariates can be included as common effects, fixed trial-level effects or random 

trial-level effects. DIC can be used to determine which of these assumptions is most 

appropriate. However, assuming a common effect of a covariate is only likely to be appropriate 

if the distribution of the covariate is the same in every trial in the network. The choice of FTE 

or RTE should be informed by previous steps such as the presence of heterogeneity from step 2 

or the DIC from step 4.  

Step 7: Fit the NMA models including the patient-level covariate and assess the results. This 

can help inform the decision of which NMA model with TCI to fit. TCI can be fitted as either 

common effects, fixed trial-level effects or random trial-level effects. A common effect 

assumes that the TCI has the same effect in all trials. A random trial-level effect allows the 

effect of the TCI to differ in each trial but assumes that the coefficients for each trial come from 

a common (typically normal) distribution. The choice of assumption for TCI can be informed 

by the distribution of the covariate within and across trials.  

Steps 8 & 9: The framework recommends that the within and across trial interactions are 

considered separately at first and then combined if it is appropriate to do so. However, the 

mean covariate value from each trial is needed to separate out the within and across trial 

interactions and to calculate this missing covariate data needs to be imputed. Although it is 

possible, in principle, to impute the missing covariate data, calculate the mean covariate value 

and fit the NMA model separating within and across trial interactions in one step, in practice 

software is unlikely do this. Therefore it is more practical and computationally easier to fit the 

model combining within and across trial interactions first and monitor the mean value of the 

covariate in any trials with missing covariate data before using these values to fit the model 

separating the within and across trial interactions. For trials with only some missing covariate 
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data the weighted average of the mean observed value and mean imputed value of the covariate 

can be used as the trial mean value. In trials where all patients have missing covariate values 

the mean covariate value from the imputed values can be used as the trial mean value. A 

sensitivity analysis in which patients with missing covariate data are excluded can be 

conducted to check the imputation of the missing covariate data has been handled correctly.  

A visual assessment of the agreement between the within and across trial interactions can be 

made by plotting the parameter estimates for the TCI. Log hazard ratios along with 95% 

credible intervals can be presented in tables. If TCI are present, the treatment effect parameters 

on their own do not have a useful interpretation. Treatment effects should be presented 

separately for each level of the covariate. Consistency can then be checked for each level of the 

covariate following methods described by Donegan et al (2017). Graphs ranking the treatments 

for each level of the covariate can be used as a visual aid for determining the most effective 

treatment for each level of the covariate (Chaimani et al., 2013; Salanti et al., 2011).  

Example 

Our example, comes from three meta-analyses of randomised controlled trials (RCTs) in 

cervical cancer performed by two international collaborations (Chemoradiotherapy for 

Cervical Cancer Meta-Analysis Collaboration, 2008; Neoadjuvant Chemotherapy for Cervical 

Cancer Meta-analysis Collaboration, 2003). The three meta-analyses considered four different 

treatments: radiotherapy (RT), chemoradiation (CTRT), neoadjuvant chemotherapy plus 

radiotherapy (CT+RT) and neoadjuvant chemotherapy plus surgery (CT+S) (Figure 1).  

The RT v CTRT comparison included a total of 18 RCTs and 4818 patients. In the original 

publication five of these trials were only included in sensitivity analyses as patients on at least 

one of the treatment arms received additional treatment. This resulted in a subset of 13 trials 

(3104 patients) which were identified and used for the primary analysis. Within this subset of 

13 trials one three-arm trial combined two different forms of CTRT and compared them with a 
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single control arm and three four-arm trials were split into two unconfounded comparisons of 

RT v CTRT for analysis as separate trials. This resulted in 16 trials included in the primary 

analysis. In this paper we will only consider the trials used in the primary analysis and will treat 

the data in the same way as the original publication (Chemoradiotherapy for Cervical Cancer 

Meta-Analysis Collaboration, 2008).  

Across the three meta-analyses that form our network of trials, overall survival data was 

available for 5922 patients from 37 RCTs (35 two-arm RCTs, 2 three-arm RCTs). Covariate 

data was available for stage of disease from 5517 patients from 36 RCTs.  

3. Results 

Application of framework to cervical cancer network 

In this section we illustrate the application of the proposed framework for one-stage IPD NMA 

with TCI to the cervical cancer network. In this example we use the one-stage IPD 

Royston-Parmar NMA model in the Bayesian setting to analyse overall survival (Freeman and 

Carpenter, 2017). Based on the availability of IPD stage of disease will be considered for 

inclusion in a NMA model with TCI. Based on a test of linearity we treat stage of disease as 

linear throughout the rest of this paper. All models were fitted in WinBUGS version 1.4.3 

(Lunn et al., 2000) and run with 20,000 burn-in and 20,000 iterations and two sets of initial 

values. Convergence was checked by examining the trace and histograms of the posterior 

distribution. Models were compared using the DIC statistic (Lunn et al., 2013; Spiegelhalter et 

al., 2002). Parameters representing the spline function for the baseline log cumulative hazard 

function, treatment effects and inconsistency parameters were fitted with non-informative 

normal prior distributions. In the random treatment effect (RTE) model the treatment effects 

were modelled using a multivariate normal distribution with the mean coming from a normal 

distribution and precision from a Wishart distribution. Parameter estimates are presented as log 
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hazard ratios (LogHR) and 95% credible intervals (CrI) for the posterior mean. A LogHR of 

zero indicates a null effect and a LogHR less than zero indicates a beneficial effect relative to 

the reference treatment, RT.  

Step 1: All pairwise treatment comparisons were assessed for evidence of heterogeneity using 

Cochran’s Q statistic and the 𝐼2 statistic (Cochran, 1954; Higgins et al., 2003). There was no 

evidence of heterogeneity within the RT v CTRT (p=0.625, Table 1) and CT+RT v CT+S 

(p=0.939) comparisons while there was some evidence of statistical heterogeneity in the RT v 

CT+S (p=0.065) comparison and substantial heterogeneity in the RT v CT+RT comparison 

(p<0.001, also noted in the original publication (Neoadjuvant Chemotherapy for Cervical 

Cancer Meta-analysis Collaboration, 2003)). The baseline characteristics of all trials were 

compared. A pre-specified analysis of RT v CT+RT identified a difference in treatment effect 

by chemotherapy cycle length. Therefore, CT+RT was split into two treatments based on the 

length of chemotherapy cycles. Throughout the rest of this paper trials with chemotherapy 

cycles less than or equal to 14 days will be referred to as ‘short cycles’ and trials with 

chemotherapy cycles greater than 14 days will be referred to as ‘long cycles’. No evidence of 

heterogeneity was found in the RT v CT+RT long cycles comparison (p=0.263). However, 

there was evidence of heterogeneity in the RT v CT+RT short cycles comparison (p=0.002). 

Heterogeneity can also be assessed visually from the forest plots in Figure 2. Treatment effects 

are presented in Table 1.  

We also assessed the assumption of proportional hazards (PH). Following the methods 

described by Freeman and Carpenter (2017), we performed a global test of non-proportionality 

which was not significant for any of the pairwise comparisons; therefore we continue under the 

assumption of PH in the cervical cancer network.  

Step 2: RT was chosen as the reference treatment because it was the previous standard of care. 

We included the RT v CTRT, RT v CT+RT and RT v CT+S treatment contrasts as parameters 
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in the NMA model resulting in the treatment effect for CT+RT v CT+S being estimated 

through the consistency equation.  

Step 3: A one-stage IPD Royston-Parmar NMA model was fitted to the cervical cancer 

network using both FTE and RTE with the results presented in Table 2. The DIC provides only 

weak evidence in favour of the RTE model (FTEDIC=12321.5, RTE DIC=12315.8). However, 

due to the presence of heterogeneity in the RT v CT+S short cycles comparison, identified in 

step 1, the RTE model was deemed to be the most appropriate model.  

Step 4: In Figure 3 the direct and indirect treatment effects differ from each other with the 

network estimates balancing out these two sources of information. The direct and indirect 

treatment effects are estimated through the inclusion of an inconsistency parameter which was 

estimated as -0.484 (95% CrI: -1.314, 0.354). Cochran’s Q statistic showed some evidence of 

inconsistency between designs (Q=10.32, 2 df, p=0.006). The inconsistency between designs is 

driven by one trial (Sardi et al., 1996) which had a treatment effect estimate more extreme than 

the other trials.  

In addition, we also assessed globally the assumption of proportional hazards across the 

network using the method recommended by Freeman and Carpenter (2017). The Wald test for 

non-PH from the RTE model with random treatment-ln(time)interactions gave 𝜒2 = 0.324 on 

3 degrees of freedom (p=0.955) giving no evidence of non-PH within the network.  

Step 5: A linear effect of stage of disease was assumed which could take the values 0 = stages 

1A-2A, 1 = stage 2B, 2 = stages 3A-4A. We assessed this assumption by conducting a Wald 

test for each trial which included patients covering all three categories of stage of disease. As 

each trial is independent, we summed together the chi-squared statistics to provide an overall 

test of the linearity assumption. This gave 𝜒2=8.19 on 12 degrees of freedom and p=0.77. 

Therefore, we proceeded withthe assumption of a linear effect for stage of disease.  

Thirteen trials had at least one patient with missing stage data. One of these trials had missing 
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stage data for all patients. To impute values of missing stage of disease (whether explicitly, 

using multiple imputation, or as part of a Bayesian model) we need to assume a distribution. 

We used a truncated normal distribution which we believe is a reasonable approximation for a 

clinical severity measure of this kind. This is especially so as (in common with other settings) 

the majority of information is recovered by bringing the observed data on patients with missing 

stage into the model, and not on the stage coefficients themselves. In WinBUGS, the normal 

distribution was truncated through the use of the ‘I’ function to restrict missing covariates to 

take values between 0 and 2. Results with a categorical stage model were similar, but we found 

it harder to obtain convergence  

Step 6: A common effect of stage of disease appeared to be inappropriate as the distribution of 

stage of disease varies across trials and the network includes trials of varying sizes. In addition, 

the DIC showed that a random effect of stage was most appropriate. Therefore, a RTE model 

with random trial-level effect of stage of disease was fitted.  

Step 7: As expected, when included as a covariate, the parameter estimate for stage of disease 

suggests that overall survival is reduced as stage of disease increases (LogHR=0.561, 95% CrI: 

0.475, 0.641; Table 2). Despite the inclusion of stage of disease as a covariate, the treatment 

effect for CTRT compared to RT remained statistically significant.  

Step 8: A RTE model with fixed trial-level effect of stage of disease and random trial-level 

effect of treatment-stage interactions separating out the within and across trial interactions was 

fitted. There were no statistically significant interactions between treatment and stage of 

disease (Table 3). The credible intervals for the RT v CT+S comparison are much wider, 

relative to the other treatment comparisons, possibly reflecting the small amount of within trial 

interaction. In this comparison, there are only two trials which have patients distributed over 

more than one value of stage and can therefore contribute to the within trial interaction.  

A visual assessment of the consistency of the within and across trial interactions was conducted 
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by plotting the parameter estimates for the treatment-stage interactions (Figure 4). To 

determine whether any information was gained from the NMA we also plotted the MA 

estimates from a FTE model (Figure 4). We used a relatively strict criterion considering 

agreement to be shown if the within trial interaction was within half a standard error of the 

across trial interaction.For the RT v CTRT comparison there is agreement between the within 

and across trial interactions. This is in line with our expectations as the RT v CTRT comparison 

was a branch of the network without any indirect evidence informing the comparison. 

However, in the case of RT v CT+RT and RT v CT+S the within and across trial interactions do 

not agree. For example, the LogHR of the within trial interaction for CT+RT is -0.035 (95% 

CrI: -0.285, 0.204) and the LogHR for the across trial interaction is 0.110 (95% CrI: -0.315, 

0.545; Table 3). The within and across trial interactions are not consistent with each other and 

the across trial interaction could be subject to ecological bias. Therefore we should focus on the 

within trial interaction only. For the RT v CT+RT and RT v CT+S comparisons further 

investigation into the difference between the within and across trial interactions may be 

required as these comparisons could be subject to ecological bias. 

Step 9: To fully illustrate our framework we also fitted a model combining the within and 

across trial interactions (Table 3). However, as mentioned in step 8, the within and across trial 

interactions should remain separated. Additionally, a sensitivity analysis in which patients with 

missing stage of disease were excluded was conducted (Table B.1, Appendix B). Table 3 and 

Table S.1 show good agreement between the two models. However, in Table S.1 the across 

trial interaction from the CT+S and stage interaction was statistically significant.  

4. Discussion 

NMA with TCI has the potential to identify groups of patients most likely to respond to 

treatment. We have proposed a practical framework which aims to encourage researchers to 

conduct one-stage IPD NMA with TCI in a systematic and appropriate manner. We have 
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successfully applied the framework to a cervical cancer network. The framework highlights the 

importance of preliminary analyses to consider issues such as heterogeneity and inconsistency 

which may inform decisions around the most appropriate modelling assumptions. This 

framework is deliberately generic, so that it can be applied to a range of outcomes (e.g. binary, 

continuous and time-to-event) and has the potential to improve the conduct and analysis of 

NMA with TCI.  

In the cervical cancer network we showed that stage of disease had a statistically significant 

effect on overall survival with advanced disease increasing the risk of death. Due to the 

presence of heterogeneity in the network a RTE model was considered to be the most 

appropriate. There was no evidence of a treatment-stage interaction based on the within trial 

interaction for any of the treatments leading to the conclusion that stage of disease did not 

modify the treatment effect. Based on our relatively strict criterion, the treatment-stage 

interaction models showed a difference between the within and across trial interactions for 

some of the comparisons and it was therefore most appropriate to separate out the within and 

across trial interactions. The small difference in the NMA and MA estimates of the across trial 

interaction suggested that some across trial interaction might have been gained from the 

network. Our criterion for assessing agreement between the within and across trial interactions 

is arguably somewhat strict and arbitrary. However, we feel it is better to be cautious as a 

number of treatment-covariate interactions identified in the literature have subsequently been 

debunked (Hua et al., 2017).  

The cervical cancer network is a small, well-connected network with a lot of direct evidence. 

Despite this we were still able to show that some across trial interaction is gained when 

conducting a NMA. Information (in the statistical sense of the inverse of the squared standard 

error) is gained in a NMA when the direct and indirect evidence are consistent. In practice, not 

all networks will contain as much direct evidence as the cervical cancer network. Therefore, we 
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would expect NMA to contribute agreater amount of statistical information on an across trial 

interaction in a consistent network where some treatment comparisons are only informed by a 

small amount of direct evidence. We may also expect to gain more information when using a 

fixed effects NMA.  

A reviewer suggested that (as the IPD data are available) the following simpler analysis may be 

preferable: (i) perform a two-stage MA of the within-study interaction effects, then (ii) derive 

the interaction effects within each study using the IPD and then perform NMA on these. In 

applications, this could provide a useful cross-check of the results. However, in our setting the 

network gives us the best treatment estimates against which to estimate an interaction. Further, 

NMA goes beyond just estimating treatment and interaction effects: a key motivation for NMA 

is to rank treatments in terms of efficacy. The inclusion of treatment-covariate interactions 

allows us to consider whether the ranking of treatments varies by covariate level. Indeed, if a 

treatment-covariate interaction is present, we should rank treatments for each level of the 

covariate.  

With the cervical cancer network we did not need to include an inconsistency parameter. 

However, in a network with one treatment loop if an inconsistency parameter is included then it 

may also be appropriate to allow for inconsistency in the TCI. This would be equivalent to 

conducting separate pairwise MA with TCI and nothing would be gained from conducting a 

NMA. We also only considered one covariate whereas in practice researchers may wish to 

consider multiple covariates. In this case, we would recommend considering each covariate on 

its own initially before combining any covariates identified as being clinically important within 

a NMA model.  

By definition, NMA uses both the within and across trial interactions. Using the across trial 

interaction requires the assumption of no unmeasured confounding, but unfortunately this 

assumption will always be hard to test. Making this assumption allows information to be 
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gained from the network to inform both treatment effect estimates and TCI. Each trial 

contributes to the within trial interaction which is estimated using patient-level covariates. 

Meanwhile the across trial interaction is estimated through the relation of the trial-level 

aggregated covariates (Hong et al., 2015). Although combining within and across trial 

interactions can result in greater power to detect TCI, the across trial interaction can introduce 

ecological bias (Lambert et al., 2002). It is therefore important that the within and across trial 

interactions for TCI can be separated out (Hua et al., 2017). Separating out the within and 

across trial interactions allows the influence of the across-trial interaction on the TCI to be 

assessed and allows researchers to identify which data source is driving the TCI.  

5. Conclusion 

NMA with TCI has the potential to identify groups of patients most likely to respond to 

treatment. To do this NMA requires the use of both within and across trial interactions. 

However, the across trial interaction can be subject to ecological bias. Therefore, it is important 

that the within and across trial interactions in a NMA can be separated and checked for 

agreement. We have shown that NMA models can be parameterised to separate out the within 

and across trial interactions. Our proposed framework incorporates the separation of within and 

across trial interactions, can be applied to any outcome, outlines the steps to conducting NMA 

with TCI in a systematic manner, provides practical guidance for researchers and reduces the 

risk of unduly optimistic interpretation of treatment-covariate interactions.  

Highlights 

What is already known?  

 Treatment-covariate interactions explore how a treatment effect varies in 

relation to a patient-level covariate.  

 Treatment-covariate interactions contain within and across trial interactions, 
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where the across trial interaction is susceptible to confounding and ecological bias.  

What is new?  

 We propose a nine-step framework for individual participant data network 

meta-analysis with treatment-covariate interactions  

 We use a cervical cancer example to show how to implement the framework, 

parameterise the network meta-analysis models to separate out the within and across 

trial interactions and assess the consistency of the within and across trial interactions.  

Potential impact for RSM readers outside the authorsâ€™ field  

 This framework provides practical guidance for researchers outlining the steps 

for conducting network meta-analysis with treatment-covariate interactions in a 

systematic manner reducing the risk of overly optimistic interpretation of 

treatment-covariate interactions.  
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Table 1. Cervical cancer meta-analysis results using Royston-Parmar models. FTE = 

fixed treatment effect. * Values are log hazard ratios and 95% credible intervals. 

 

Comparison  FTE*  Cochran’s Q  Global non-PH test   

RT v CTRT  -0.215  12.71, 15df,  𝜒2=0.161, 1df,   

 (-0.336, -0.086)  p=0.625  p=0.688   

RT v CT+RT  -0.191  20.69, 6df,  𝜒2=2.522, 1df,   

short cycles  (-0.375, -0.007)  p=0.002  p=0.112   

RT v CT+RT  0.227  12.34, 10df,  𝜒2=0.006, 1df,   

long cycles  (0.073, 0.385)  p=0.263  p=0.944   

RT v CT+S  -0.447  8.85, 4df,  𝜒2=0.118, 1df,   

 (-0.654, -0.243)  p=0.065  p=0.731   

CT+RT v CT+S  -0.444  0.01, 1df,  𝜒2=0.164, 1df,   

 (-0.830, -0.061)  p=0.939  p=0.686   
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Table 2. Posterior mean and 95% credible intervals for treatment effects from NMA 

models. FTE = fixed treatment effect, RTE = random treatment effect, RT = 

radiotherapy, CTRT = chemoradiation, CT+RT = neoadjuvant chemotherapy plus 

radiotherapy, CT+S = neoadjuvant chemotherapy plus surgery. *Stage is fitted as a 

random trial-level effect 

 

 FTE  RTE  RTE + Stage*  

CTRT  -0.211 (-0.337, -0.087)  -0.207 (-0.374, -0.046)  -0.198 (-0.346, -0.031)   

CT+RT short cycles  0.028 (-0.164, 0.220)  0.086 (-0.229, 0.428)  0.005 (-0.320, 0.328)   

CT+RT long cycles  0.223 (0.065, 0.380)  0.273 (0.031, 0.538)  0.254 (0.008, 0.540)   

CT+S  -0.396 (-0.611, -0.185)  -0.333 (-0.701, 0.011)  -0.372 (-0.803, 0.056)   

Stage    0.561 (0.475, 0.641)   
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Table 3. Posterior mean and 95% credible intervals for treatment and treatment-stage 

interaction effects from NMA models including treatment-stage interactions with within 

and across trial interactions separated and combined. Reference level is stages 1A-2A. 

RT = radiotherapy, CT+RT = neodadjuavnt chemotherapy plus radiotherapy, CT+S = 

neoadjuvant chemotherapy plus surgery. 

 

 Within & across trial 

interactions separated  

Within & across trial 

interactions combined   

RT v CTRT  -0.421 (-0.910, 0.101)  -0.428 (-0.738, -0.114)   

RT v CT+RT short cycles  -0.007 (-0.519, 0.550)  0.118 (-0.273, 0.596)   

RT v CT+RT long cycles  0.100 (-0.551, 0.670)  0.099 (-0.426, 0.613)   

RT v CT+S  0.332 (-0.593, 1.102)  -0.195 (-0.855, 0.380)   

RT v CTRT - stage within  0.176 (-0.069, 0.417)   

RT v CT+RT - stage within  -0.035 (-0.285, 0.204)   

RT v CT+S - stage within  0.172 (-0.459, 0.776)   

RT v CTRT - stage across  0.165 (-0.279, 0.584)   

RT v CT+RT - stage across  0.110 (-0.315, 0.545)   

RT v CT+S - stage across  -0.563 (-1.319, 0.230)   

RT v CTRT - stage combined   0.170 (-0.043, 0.373)   

RT v CT+RT - stage combined   0.006 (-0.234, 0.212)   

RT v CT+S - stage combined   -0.120 (-0.635, 0.415)   
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Figure 1: Cervical cancer network diagram. Node size is proportional to the number of patients 

randomised to each treatment and line thickness is proportional to the number of studies 

involved in each direct comparison. RT = radiotherapy, CTRT = chemoradiation, CT+RT = 

neoadjuvant chemotherapy plus radiotherapy, CT+S = neoadjuvant chemotherapy plus 

surgery. Note that this network diagram includes the main set of 13 RT v CTRT trials only 

(which in this paper is analysed as 16 trials due to the splitting of three four-arm trials each into 

two unconfounded comparisons of RT v CTRT), and the number of patients for each treatment 

arm does not add up to the total number of patients included in the network, because multi-arm 

patients are counted twice. There are a total of 37 trials in this network. However, in the figure 

the two multi-arm trials are counted three times each as they are included in the number of 

trials for each pairwise comparison. 
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Figure 2: Cervical cancer meta-analysis plots. Trial results come from a fixed treatment effect 

Royston-Parmar model. Overall results come from a one-stage IPD fixed treatment effect 

Royston-Parmar MA model. Top left: RT v CTRT, Top right: RT v CT+RT, Bottom left: RT v 

CT+S, Bottom right: CT+RT v CT+S. RT = radiotherapy, CTRT = chemoradiation, CT+RT = 

neoadjuvant chemotherapy plus radiotherapy, CT+S = neoadjuvant chemotherapy plus 

surgery, LogHR = log hazard ratio, CrI = credible interval. 
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Figure 3: NMA results for the cervical cancer network. Left = Fixed treatment effect, Right = 

Random treatment effect. RT = radiotherapy, CTRT = chemoradiation, CT+RT = neoadjuvant 

chemotherapy plus radiotherapy, CT+S = neoadjuvant chemotherapy plus surgery. 
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Figure 4: Treatment-stage interaction parameter estimates. Top: RT v CTRT, Middle: RT v 

CT+RT, Bottom: RT v CT+S. FTE = fixed treatment effect, RTE = random treatment effect, 

NMA = network meta-analysis, MA = meta-analysis. Solid lines represent NMA estimates. 

Dashed lines represent pairwise MA estimates. 


