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82  Abstract
83
84  Background
85  Noroviruses are a common aetiology of acute gastroenteritis worldwide. Development
86  of vaccines requires detailed understanding of global genetic diversity of noroviruses.
87  This study describes trends in epidemiology and diversity based on global NoroNet
88  surveillance data, and gives a future perspective on the global surveillance needs in
89  light of these developments.
90
91  Methods
92  The study analysed n=16635 norovirus sequences with associated epidemiological
93  metadata, shared between 2005 and 2016 through NoroNet by partners from Europe,
94  Asia, Oceania, and Africa. Sequences and epidemiological data were obtained from
95  samples collected for outbreak investigations and diagnosis of sporadic gastroenteritis
96  cases by clinical-, public health-, and food microbiology laboratories.
97
98  Findings
99  During the study period, 26 different norovirus capsid genotypes circulated and 22
100  different recombinant genomes were found. The previously observed 2-3-year
101  periodicity of emergence of genogroup II genotype 4 (GIIL.4) drift variants was not
102  observed since 2012. Instead, the GII.4 Sydney capsid seems to persist through
103  recombination, and we report a novel recombinant of GII.P16-GII.4 Sydney 2012
104  variant in Asia and Europe. The novel GII.P17-GII.17, first reported in Asia in 2014,
105  has circulated widely in Europe. GII.4 viruses were more common in outbreaks in
106  healthcare settings compared to other genotypes.
107
108 Interpretation
109  Continuous changes in the global norovirus genetic diversity highlight the need for
110  sustained global norovirus surveillance, including assessment of possible immune
111  escape and evolution by recombination to provide a full overview of norovirus
112 epidemiology for future vaccine policy decisions.
113
114  Funding
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[BOX] Research in context

Evidence before this study

We searched Pubmed for articles published before 9™ of July 2017 using keywords
(worldwide OR global) AND norovirus AND genetic AND diversity in the title or
abstract, and found 109 original research articles. The majority of studies reported on
norovirus genetic diversity in a limited geographic area, timeframe, or focused on a
single genotype. None of the studies presented long-term global norovirus diversity
trends combined with epidemiological metadata, except one study focusing on the

global norovirus diversity among oyster outbreaks.

Added value of this study

This study reports long-term global trends in norovirus genetic diversity combined
with epidemiological metadata, obtained from reports from 19 countries across four
continents/regions shared through a jointly owned database. It shows that multiple
norovirus genotypes are co-circulating simultaneously with continuous and rapid
changes in the norovirus genetic diversity worldwide, and with substantial regional
differences, possibly reflecting differences in epidemiology, susceptibility, or both.
We show differences in the preferred transmission route, preferred outbreak setting,
and seasonal variation between norovirus genotypes. Finally, we discuss gaps in the
norovirus surveillance and give recommendation for improvements to fulfil

surveillance needs in light of vaccine development and other future interventions.

Implications of all the available evidence

Norovirus candidate vaccines are currently tested in clinical trials. This study shows
that a future norovirus vaccine needs to induce broad protective immunity, or would
need to be updated on a regular basis due to continuous and rapid changes in the
norovirus genetic diversity. This study highlights the need for a global norovirus
surveillance system using optimized sequencing protocols to monitor possible
immune escape and evolution by recombination to provide data for vaccine updates.
Future studies need to address the underlying factors for preferences in transmission
routes, preferences in outbreak setting, and differences in seasonality among

noroviruses.
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Background

Acute gastroenteritis is the second greatest burden of all infectious diseases and
norovirus is responsible for almost one fifth of all cases worldwide'. For healthy
individuals, norovirus illness is typically self-limiting and of short duration, but risk
groups like young children, elderly, and immunocompromised patients can suffer
from prolonged symptoms®. In order to better understand the epidemiology and
impact of norovirus and to identify (international) outbreaks, surveillance networks
have been set up in some countries in the last two decades. These efforts have been
challenging as norovirus surveillance is not mandatory in many countries, and if
available does not always include genetic data. Despite these challenges, collaborative
studies have identified international food-borne outbreaks, and substantially increased
our knowledge on the norovirus diversity and antigenic evolution with the voluntary
adoption of sequence-based typing®”. The genus Norovirus is highly diverse and
divided in seven genogroups (G) of which GI, GII, and GIV have been found among
humans. Genogroups are further subdivided in more than 40 genotypes’. The
epidemiology and human health impact are strongly shaped by norovirus evolution
through recombination or accumulation of mutations, known as genetic drift’. To
capture this diversity, norovirus nomenclature is based on two parameters describing
the genetic lineages of the gene encoding the viral polymerase (ORF1) and the capsid
protein (ORF2). Polymerase genotypes are distinguished from capsid genotypes by a
P in their name (e.g. GII.P4). This dual typing approach allows for tracking of
noroviruses, including recombinant forms’. In 2002, an informal international data
sharing network was established to study noroviruses and their diversity in relation to
human health impact®. The work from NoroNet has contributed to the understanding
that noroviruses from different genetic lineages may behave differently. Genogroup II
genotype 4 (GII.4) has been the predominant strain globally and responsible for
approximately 70% of outbreaks since the start of NoroNet’ . The antigenicity of the
capsid surface alters in a stepwise manner by selection of variants under the pressure
of population immunity — a process called epochal evolution®. In addition, frequent
exchanging of genes (recombination) results in emergence of novel noroviruses.
There is currently no licensed norovirus vaccine on the market, but potential
candidates have been tested in phase I and II clinical trials'>"?. Vaccine design is
complicated by the large antigenic variation within the genus, and is currently

targeting most commonly found genotypes. In view of the above, most likely, a future
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vaccine would need to be updated on a regular basis given the flexibility of norovirus
to escape natural infection-derived population immunity, hence requiring improved
coverage of surveillance'®. We analysed whether and how data obtained via the
NoroNet surveillance network can be used to address the following outstanding
questions regarding norovirus molecular epidemiology:
1. What are the trends in genomic diversity, recombination, and norovirus
reporting?
2. Is there evidence for differences by genogroup / genotype in region, setting,
and mode of transmission?
3. Where do new variants of norovirus emerge and can emerging variants be

predicted from globally linked surveillance data?

Methods

NoroNet surveillance network

NoroNet links clinical-, public health-, and food microbiology laboratories willing to
share norovirus molecular and epidemiological data on outbreaks and sporadic cases,
and has been in existence since the mid-1990s*'*">. The network started as EU
funded network in 1999, continuing since 2002 as global NoroNet®. A jointly owned
web-based database with online analysis tools was developed in which participants
share and compare their data. Participation is on a give and take basis and partners
have signed a code of conduct on uses of the data, after which they are granted full
access to the data. Partners are expected to contribute to joint reports, and the joint

database has been used for in depth studies following approval of partners.

Samples and study area

Specimens were obtained for the purpose of outbreak investigations and diagnosis of
sporadic gastroenteritis cases. All RT-PCR positive cases confirmed by sequencing
can be shared via NoroNet. Data from partners with less than 50 submitted sequences
during the study period were excluded. Based on these criteria, the study included
norovirus sequences obtained from samples collected in 19 countries: Austria,
Belgium, China, Denmark, Finland, France, Germany, Hungary, Ireland, Italy, Japan,

the Netherlands, New Zealand, Russia, Slovenia, South Africa, Spain, Sweden, and



221  the United Kingdom. Less than 50 entries had been obtained from partners in

222  Australia, Chile and Norway.

223

224 Data analysis

225  All entries submitted from January 1% 2005 to November 17" 2016 were downloaded
226  on November 18" 2016. Records from non-human origin, without sample date or with
227  asample date prior to 2005 were removed from the analysis. Norovirus sequences
228  were genotyped by the online norovirus typing tool'®. Sequences overlapping the
229  ORFI1/ORF2 for which ORF1 and ORF2 genotypes could be assigned were analysed
230  separately. All available sequences in the NoroNet database, including those before
231 2005, were used for the analysis of first reports of emerging GII.4 variants. The

232  Maximum likelihood trees were inferred with PhyML version 3.1, using the general
233  time reversible (GTR) nucleotide substitution model with a proportion of invariant
234  sites and a I distribution of among-site rate variation'’.

235

236  Role of the funding source

237  The funders had no role in designing the study, data collection, data analysis or

238 interpretation of data, writing the report, or in the decision to submit the paper for
239  publication. The corresponding author had full access to all data in the study and had
240  full responsibility for decision to submit for publication.

241

242  Results

243

244 Surveillance coverage

245  Sixteen countries (Austria, Belgium, Denmark, Finland, France, Germany, Hungary,
246  Ttaly, the Netherlands, Spain, China, Japan, South Africa, Sweden, United Kingdom,
247  Russia) submitted norovirus sequences in five or more successive years of which six
248  countries submitted sequences during the entire study period (Finland, France,

249  Germany, Hungary, Italy, and the Netherlands). The NoroNet surveillance network is
250  well represented in Europe and has a smaller number of collaborators in Asia,

251  Oceania, and Africa (Table S1).

252

253 Number of reported sequences, sequence length and genome position
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A median of 870 (IQR 345) ORF1 sequences and a median of 577 (IQR 594) ORF2
sequences was reported per year. Sequence reads had an average length of 351 bases
and the majority of sequences were located in the RNA-dependent RNA polymerase
region of ORF1 or 5’ side of ORF2 (Figure 1). Only 2-7% of sequences covered the
main antigenic sites located at the P2 domain of VP1. During the study period, 154
full VP1 sequences were reported including three full genome sequences (KC175323,
KC631827, and KP998539). An increased number of reported ORF1 sequences was
observed in years of or post introduction of new GII.4 variants (Den Haag 2006b in
2006, New Orleans 2009 in 2009, and Sydney 2012 in 2012) which could be
primarily attributed to GII.P4 and GII.Pe (Figure 2A). The apparent decline in number
of reported sequences in 2016 is an artefact due to the selection of sequences until

November 18" 2016 and a submission delay.

Norovirus diversity at the genotype level

The number of reported sequences and GI versus GII ratio per country was analysed
to get a better understanding of the genogroup coverage and diversity (Table S1).
Overall, 1372 of 16635 (8-2%) sequences belonged to norovirus GI, 15256 of 16635
(91-7%) sequences belonged to GII, and 7 of 16635 (0-0%) sequences belonged to
GIV.1. Austria reported the lowest GI proportion (3-2%) and Sweden the highest
(22:3%) among European countries, while countries in Asia and South Africa only
reported GII strains. Trends per genotype per year for GI and GII are shown in
Figures 2A and 2B. The most consistently and commonly detected genotype was
GIIL.P4 with 6125 of 11252 (54-8%) ORF1 sequences and 4184 of 6423 (65-1%)
ORF?2 sequences listed as GII.4 by the phylogeny based typing tool. The remaining
~40% is a diverse mixture of 31 ORF1 and 25 ORF2 genotypes with some genotypes
only detected incidentally, while other genotypes were detected more often in some

years.

Emergence of novel GII.17 genotype

NoroNet detected a sharp increase in the number of GII.P17 and GII.17 strains in
2015 —2016 compared to previous years (Figure 2A and 2B). GII.P17 and / or GII.17
were widely detected among European countries (Belgium, Finland, France,
Germany, Hungary, Italy, the Netherlands, Russia, and Slovenia) in 2015 — 2016, but
not in all (Ireland, Spain, and United Kingdom) (Table S2A and S2B). The GII.P17

10
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and GII.17 proportion of total number of sequences per country showed large
variation among European countries (range 4-2 - 53-9% and 5-3 - 44-5%,
respectively). GII.P17 and GII.17 were co-circulating with GII.P4, GII.Pe, and GII.4
strains in Europe, and were only more prevalent than GII.P4, GII.Pe, or GII.4 in
France (ORF1) and Russia (ORF1 and ORF2). China and Japan submitted in total
n=10 ORF1 and n=73 ORF2 sequences to NoroNet in 2015 - 2016, and China
reported n=1 GII.17 strain.

Trends in GII.4 variants

The NoroNet GII.4 variant distribution time trends are shown in Figure 3. In 2006,
GII.4 Hunter 2004 was replaced by GII.4 Den Haag 2006b, succeeded by GII.4 New
Orleans 2009 and GII.4 Sydney 2012 in the Northern hemisphere winter seasons of
2009/2010 and 2012/2013, respectively. The GII.4 Sydney ORF2 variant circulated as
recombinant with GII.Pe or GII.P4 New Orleans 2009 since it emerged in 2012, and
has not (yet) developed a new ORF1 variant. The GII.4 New Orleans 2009 ORF2
variant almost disappeared as of 2013, while the corresponding GII.P4 New Orleans
ORF1 variant was still widely detected due to recombination with the GII.4 Sydney
2012 ORF?2 variant. The GII.4 variant group ‘other’ represents variants that were only
detected with limited geographic distribution and at low level incidence or sequences
that could not be typed to the variant level by the norovirus genotyping tool i.e. due to
a short sequence length. Variants that were detected infrequently during the study
period are: Camberwell 1994, Farmington Hills 2002, Asia 2003, Kaiso 2003,
Yerseke 2006a, Apeldoorn 2007, and Osaka 2007. A novel GII.P16-GII.4 Sydney
2012 recombinant was detected in 2014 (n=2) (Germany and the Netherlands), not
detected in 2015, and detected in Japan, China, and the Netherlands (n=13) in 2016
(see paragraph recombination for more information on the novel GII.P16-GII.4

Sydney 2012 recombinant).

Origin of novel GII.4 drifi variants

To assess when and where novel drift variants originate, we assessed the sampling
date and country of origin of the first reported sequence of global drift variants (Table
S3). All assessed variants, except Hunter 2004, were detected 2-5 years before the
global predominance of the particular strain, which may indicate that new drift

variants were present at low levels in the population before their actual global

11
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emergence. Hunter 2004 was firstly detected in the Netherlands in the year of

emergence 2004.

Recombination

To assess the influence of ORF1/ORF2 recombination on the norovirus diversity, we
selected all sequences (n=1047) that were overlapping the ORF1/ORF2 junction and
for which both ORF1 and ORF?2 sides could be genotyped by the norovirus
genotyping tool. 477 of 1047 (45-6%) sequences were assigned as a recombinant
strain (Table S4). No between genogroup recombination was observed. Remarkably,
some polymerase types are more prone to recombine than others. Recombination
within GII was most common: 457 recombinant sequences belong to GII of which
GII.Pe—GII.4, GII.P21-GII.3, and GII.P7—GII.P6 are the most commonly detected
recombinants. ORF2 GII.4 has been detected in combination with GII.P12, GII.P16,
and GII.Pe. The GII.P12 recombinant was detected in 2005 — 2006 in combination
with GII.4 Asia 2003. GII.P16 and GII.Pe are both only found in combination with
GII.4 Sydney 2012 between 2014 and 2016 (data not shown). GII.P16 was found in
combination with five different VP1 genotypes: GII.3, GII.4, GII.10, GII.12, and
GII.13 which each form a separate clade in a maximum likelihood tree inferred from
partial GIL.P16 sequences (Figure S1). Three variants of GII.4 Sydney are currently
co-circulating, all resulting from recombination: GII.P4 Orleans 2009-GII.4 Sydney
2012, GII.Pe-GII.4 Sydney 2012 and GII.P16-GII.4 Sydney 2012. The antigenic
regions in the capsid do not contain any amino acid changes compared to previously
circulating GII.4 Sydney strains, although the VP1 sequences of GII.P16-GII .4
Sydney 2012 cluster separately from other GII.Pe-GII.4 Sydney strains (Table S5 and
Figure S2).

Differences by season, region, setting, and mode of transmission

The European norovirus season coincides with the Northern Hemisphere winter
season (Figure 4A). GII.Pe/GII.P4-GII.4 sequences show the clearest winter
seasonality patterns while GI and GII non GII.Pe/GII.P4-GII.4 strains are more
continuously present throughout the year, but never exceed the number of
GII.Pe/GIIL.P4-GII.4 sequences. The rate of norovirus submissions in Africa (all
reported by South Africa) shows an elevation in the months September — November

which coincides with the Southern Hemisphere spring season (Figure 4B). Asia

12
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(reported by China and Japan) shows an elevation of the norovirus incidence in the
Northern Hemisphere winter season with the peak in November, two months earlier
compared to Europe (Figure 4C). Oceania (reported by New Zealand) shows highest

incidence in October and November (spring) (Figure 4D).

The suspected mode of transmission was reported for n=6446 entries: 77-4% person-
to-person transmission (n=4990), 19-9% foodborne transmission (n=1280), 2-1%
waterborne transmission, and 0-7% other transmission mode (n=133, n=43,
respectively) (Figure SA). GII.4 is relatively more often transmitted via person-to-

person compared to other genotypes.

The setting of the norovirus outbreak was reported for n=8772 entries: 29-7% hospital
setting (n=2603), 36-0% residential institution (n=3154), 9-3% hotel, restaurant or
caterer (n=819), 11-8% day care or school (n=1039), 13-2% other (n=1157) (Figure
5B). The majority of sequences were derived from samples obtained in health care -
or residential institutions. GII.4 was relatively more often detected in healthcare

settings (hospitals and residential institutions) compared to non-GII.4 genotypes.

Discussion

Despite differences in norovirus surveillance among countries and a lack of it in many
others, the current NoroNet system is able to observe global trends and major shifts in
the genetic composition of the virus population at the level of genotype and variant, as

was shown by this study and by others®'®'*!.

The first question addressed in this study is about the trends in norovirus genomic
diversity, recombination, and norovirus reporting. During the study period, we
observed circulation of at least 26 ORF2 genotypes when looking at diversity of the
capsid gene. The viral capsid contains epitopes that are targeted by protective
antibody responses, and understanding this diversity is important for evaluation of
candidate vaccines®™. It was previously noted that increased notification reflect true
increases in disease trends'®*!. Therefore, the observed increase in reported sequences
post emergence of new GII.4 variants is probably related to an increase in norovirus
activity. GII.4 Sydney 2012 is the predominantly detected variant worldwide since

2012 and, given the replacement cycle of two to three years shown for previous
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variants, a new antigenic variant has been anticipated for some years. This trend in
antigenic evolution, however, was not observed in the period described here. Instead,
viruses with GII.4 Sydney capsids, have evolved by recombination, suggesting that
recombination somehow favours virus maintenance in the population. For GII.4,
recombination has previously only been with the closely related sequence types
GII.Pe and GII.P12, which are both suggested to be derived from an ancestor of
GIL.P4*. The drivers for emergence of recombinant genomes in a population
previously exposed to the same capsid sequences remains to be understood. The novel
recombinant GII.P16-GII.4 Sydney 2012 may have increased fitness due to changes
in the RNA dependent RNA polymerase (RdRp) that alter the polymerase fidelity and
interaction with VP1, leading to differences in replication and/or transmission

efficiency™ .

In addition to the globally prevalent GII.4 viruses, recent studies from Asia reported a
major shift in genotype composition from the predominant GII.4 to the novel
GIL.P17-GIL.17 norovirus strain (GIL.17 Kawasaki 2014) late 2014 and onwards'**’.
The number of detected GII.P17-GII.17 strains among Asian countries within our
network was limited and likely caused by a filtered submission of the respective
countries. The GII.P17-GII.17 strain was widely detected among most European
countries in 2015 and 2016 and showed substantial differences in prevalence among

countries. This strain has not (yet) fully replaced GII.4 strains.

The great genetic diversity of noroviruses is typically not considered in
epidemiological or clinical studies, but may translate to differences in the
epidemiology. Therefore, we compared distribution of reported modes of transmission
and settings for the reported outbreaks by genotype (question 2). The most commonly
reported transmission mode for the GII.4 outbreaks reported to NoroNet was person-
to-person transmission and the most commonly reported setting was residential
institution '°. Underlying driving factors for these differences compared with other
genotypes are unknown. We observed substantial regional variation in the norovirus
genotype distribution possibly reflecting differences in epidemiology, susceptibility of

the population, or both.
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Norovirus surveillance is done on a voluntary basis since funding for the network is
unavailable. This is reflected by unstable reporting behaviour of many countries and a
potential bias in this study. A limitation of the NoroNet network is that
unstandardized convenience sampling and irregular submission affects the ability of
the network to robustly identify the effect of introduction of new genotypes and
variants on the norovirus impact and severity. Another limitation of the study are the
gaps on the surveillance map with missing or limited data from most countries in
Africa, Middle East, North — and South America, Oceania, and Asia. The USA and
Australia do have norovirus surveillance, but use separate databases to store and
analyse their data. Future integration of surveillance databases could help to improve

our understanding of the norovirus (molecular) epidemiology.

A potential use of the NoroNet network is the identification of international
outbreaks, which have been observed during periods of sustained funding**®. The
currently provided sequence data can be used to genotype a virus to the level of
genotype and variant, but is less suitable for phylogenetic analysis for the purpose of
international outbreak investigations due to the lack of standardisation of sequencing
protocols. The use of next generation sequencing is explored to allow whole genome
sequencing as a new standard to overcome this problem®>'. Most countries currently
upload data to the NoroNet database batch wise, which leads to a submission delay
and identification of international outbreaks potentially months after their occurrence.
Countries would need to upload data on a weekly basis to be able to set effective
public health measures (i.e. withdraw of a contaminated food product from the

market).

Norovirus vaccine candidates are currently in phase I and II trials and although
vaccine cross-protection, efficacy, and effectiveness need to be evaluated, especially
in vulnerable patient populations, it seems likely that a norovirus vaccine will be
available in the near future. Such a vaccine will likely need to be updated on a regular
basis due to escape of the virus from population immunity, especially by the
predominant GIL.4*%. Essential data about the antigenic changes, especially those
located in the P2 domain of the major capsid of the virus, can be obtained via a global
surveillance system. As a minimum, a shared protocol for sequencing is needed,

preferably including the ORF1 / ORF2 overlap to genotype both the viral RNA-
15
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dependent RNA polymerase and VP1, and to detect recombinant strains. A protocol
for sequencing this particular region has been described™. In addition to this protocol,
a subset of specimens could be monitored for changes in the antigenic regions using a
protocol spanning the P domain of VP1. Whole genome sequencing via next
generation sequencing techniques could replace both protocols and potentially
provide a better insight in the evolution of the virus, including the not well studied

VP2.

One of the major questions within the norovirus research field is whether we are
capable of predicting emerging variants in the near future, the third and last question
addressed in our study. All recent major drift variants were already circulating years
before they became dominant as shown by this study and by others, suggesting early
warning surveillance for variant emergence would be possible*. If we assume that
new variants develop in the human population and could emerge anywhere in the
world, as shown by this study and by others, this would require a surveillance system
with global coverage including large-scale genomics to capture both capsid diversity
and recombination®>*%. A next step would be to predict antigenic properties from the
genomic diversity, although this is likely to be challenging and requires development
of phenotypic assays to assess antigenicity and immunity, similar to the model of the
global influenza virus surveillance network. More research and new funding sources

are needed to address these issues.
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Figure legends

Figure 1 Position of 16628 sequence reads on the norovirus genome. Each sequence
represents a line in the figure. Boxes above the graph represent the norovirus open
reading frames (ORFs) of reference GII.Pe-GII.4 Sydney 2012 (Genbank accession:
JX459908). ORF1 encodes for a polyprotein that is post-translationally cleaved by the
virus-encoded protease (Pro) into six non-structural proteins (p48, NTPase, p22, VPg,
Pro, and RNA-dependent RNA polymerase (RdRp)). ORF2 encodes for the major
capsid protein (VP1) which consists of a shell (S) and protruding domains P1 and P2
with antigenic epitopes A, D, and E. ORF3 encodes for the minor capsid protein VP2.

Figure 2 Number of reported ORF1 sequences (n=11252) stratified per genotype
group, genotype, and year (A) and number of reported ORF2 sequences (n=6423)
stratified per genotype group, genotype, and year (B). Note that n=1047 sequences
overlapping ORF1/ORF2 are counted for both ORF1 and ORF2.

Figure 3 ORF1 GII.P4 variant trends per year (n=8083, top) and ORF2 GII.4 variant
trends per year (n=4184, bottom). The relatively high proportion of viruses/sequences
typed as “other” in the oldest category of submissions is an artefact due to the typing
tool that was used. This tool performs a phylogeny based assignment of norovirus
sequences to genera, genotypes, and variants. For correct assignment of variants, the
reference sequences need to be periodically updated, when a new variants arise. By
focusing on correct assignment of recent sequences, older strains may then be labelled

as “unknown” with the current version of the typing tool.

Figure 4 Norovirus seasonality patterns in Europe (n=13935) (A), Africa (n=195)
(B), Asia (n=262) (C), and Oceania (n=806) (D), stratified per genotype group.

Records without sample month were removed for this analysis.

Figure 5 Norovirus transmission route (n=8772) (A) and suspected outbreak setting
(n=6446) (B), stratified per genotype group. Records without known transmission
route or suspected outbreak setting were removed. Outbreaks with suspected
foodborne origin and subsequent person-to-person transmission were recoded as

foodborne.
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Figure S1 Maximum likelihood tree for region B of ORF1 sequences displaying the
genetic diversity of GII.P16 sequences that are found in combination with different
VP1 sequences (used sequence length 289 nucleotides, n=34). GI1.P16-GII.4 Sydney

2012 sequences are indicated in red.

Figure S2 Maximum likelihood tree inferred from all complete GI1.4 VP1 sequences
displaying the genetic diversity of GII.4 sequences that are detected in combination
with different polymerase genotypes. GII.P16-GII.4 Sydney 2012 sequences are

indicated in red.
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GL6 3(13) 2(0,3) 1(0,5) 5(2.3) 0(0) 7(14) 1118 2227 2837  17(19)  13(16)  3(0.6)
GL7 0(0) 1(0.2) 0(0) 1(0,5) 0(0) 8(1.6)  2(03) 9(1,1) 4(0,5) 1(0,1) 4(0,5) 0(0)
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Figure 5
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Necessary additional data - Figure S2
Click here to down‘oad Necessary additional data: Fi&ure S$2.pdf
GlI.4 Den Haag"2006b 11-12-2006 NETHERLANDS

@ Gll.4 Den Haag 2006b 08-01-2007 NETHERLANDS
Gil.4 Den Haag 2006b 30-03-2006 NETHERLANDS

Gll.4 Den Haag 2006b 11-01-2008 NETHERLANDS
Gll.4 Den Haag 2006b 07-12-2006 NETHERLANDS
GIl.4 Den Haag 2006b 12-05-2006 NETHERLANDS school
@ Gll.4 Den Haag 2006b 31-10-2006 NETHERLANDS
@ Gil.4 Den Haag 2006b 18-12-2006 NETHERLANDS
@ Gll.4 Den Haag 2006b 03-01-2007 NETHERLANDS
@ Gll.4 Den Haag 2006b 10-01-2008 NETHERLANDS
Gll.4 Den Haag 2006b 18-10-2007 NETHERLANDS
@ Gil.4 Den Haag 2006b 06-10-2007 NETHERLANDS
@ Gll.4 Den Haag 2006b 25-12-2008 NETHERLANDS
@ Gll.4 Den Haag 2006b 04-12-2006 NETHERLANDS
Gll.4 Den Haag 2006b 11-11-2006 NETHERLANDS
@ Gll.4 Den Haag 2006b 09-02-2009 NETHERLANDS
'® Gll.4 Den Haag 2006b 12-02-2009 NETHERLANDS
@ Gil.4 Den Haag 2006b 12-10-2007 NETHERLANDS
@ Gll.4 Den Haag 2006b 05-12-2007 NETHERLANDS
@ Gil.4 Den Haag 2006b 10-2008 NETHERLANDS
@ Gll.4 Den Haag 2006b 10-2008 NETHERLANDS

GII.4 Hunter 2004
mm Gll.4 Yerseke 2006a
mm Gll.4 Osaka 2007
= Gll.4 Den Haag 2006b
Gll.4 Apeldoorn 2007
= Gll.4 New Orleans 2009
= Gll.4 Sydney 2012
= Gll.4 Could not assign

76

@ Gil.4 Osaka 2007 08-2006 NETHERLANDS

@ Gll.4 Could not assign 03-09-2009 SOUTHAFRICA
GlI.4 Hunter 2004 20-01-2006 NETHERLANDS

Gll.4 Hunter 2004 12-02-2006 NETHERLANDS

-® GIl.4 Yerseke 2006a 06-02-2006 NETHERLANDS

® GIl.4 Yerseke 2006a 12-2006 NETHERLANDS

® Gll.4 Yerseke 2006a 08-01-2008 NETHERLANDS

® Gll.4 Yerseke 2006a 20-11-2006 NETHERLANDS
@ GIl.4 Yerseke 2006a 07-03-2006 NETHERLANDS

@ Gll.4 Yerseke 2006a 08-11-2006 NETHERLANDS
® Gll.4 Yerseke 2006a 18-10-2007 NETHERLANDS
-® Gll.4 Yerseke 2006a 02-12-2007 NETHERLANDS

® Gll.4 Yerseke 2006a 30-01-2007 NETHERLANDS
@ Gll.4 Yerseke 2006a 08-01-2007 NETHERLANDS

® Gll.4 Yerseke 2006a 04-2008 NETHERLANDS
@ Gll.4 Yerseke 2006a 04-2008 NETHERLANDS
-® Gll.4 Yerseke 2006a 04-2008 NETHERLANDS

87

® Gll.4 C 01-07-2010 SOUTHAFRICA

@ Gll.4 New Orleans 2009 15-05-2009 SOUTHAFRICA
@ Gll.4 New Orleans 2009 05-06-2009 SOUTHAFRICA
@ Gll.4 New Orleans 2009 05-08-2009 SOUTHAFRICA
@ Gll.4 New Orleans 2009 10-09-2009 SOUTHAFRICA
@ Gll.4 New Orleans 2009 17-09-2010 SOUTHAFRICA
@ Gll.4 New Orleans 2009 22-09-2010 SOUTHAFRICA
@ Gll.4 New Orleans 2009 07-05-2009 SOUTHAFRICA
@ Gll.4 New Orleans 2009 08-04-2010 SOUTHAFRICA
@ GII.P4 New Orleans 2009 Gll.4 New Orleans 2009 05-02-2012 ITALY
@ GlI.P4 New Orleans 2009 Gll.4 New Orleans 2009 24-01-2011 ITALY
@ GIl.P4 New Orleans 2009 GlI.4 New Orleans 2009 22-01-2013 ITALY
@ GIIP4 New Orleans 2009 Gll.4 New Orleans 2009 06-06-2011 ITALY
@ GlI.P4 New Orleans 2009 GlI.4 New Orleans 2009 07-2009 NETHERLANDS
@ GlI.P4 New Orleans 2009 Gll.4 New Orleans 2009 27-12-2011 ITALY
@ GIl.P4 New Orleans 2009 Gll.4 New Orleans 2009 30-01-2012 ITALY
@ GIIP4 New Orleans 2009 Gll.4 New Orleans 2009 10-11-2011 ITALY
@ Gll.P4 New Orleans 2009 Gll.4 New Orleans 2009 21-02-2010 HUNGARY
@ GlI.P4 New Orleans 2009 Gil.4 New Orleans 2009 01-10-2011 ITALY
@ GlI.P4 New Orleans 2009 Gll.4 New Orleans 2009 10-10-2011 ITALY

Gil.4 Apeldoorn 2007 04-2008 NETHERLANDS
Gil.4 Apeldoorn 2007 04-12-2007 NETHERLANDS

.4 Sydney 2012 10-2007 NETHERLANDS
Lro Gll.4 Sydney 2012 19-05-2010 SOUTHAFRICA

Gll.4 Sydney 2012 06-07-2010 SOUTHAFRICA

@ Gll.4 Sydney 2012 12-09-2016 HONGKONG

@ Gll.4 Sydney 2012 18-04-2015 HONGKONG

@ GlI.P4 New Orleans 2009 Gll.4 Sydney 2012 10-01-2013 ITALY

@ GII.P16 Gll.4 Sydney 2012 25-07-2016 NETHERLANDS
GII.P16 Gll.4 Sydney 2012 25-03-2016 HONGKONG
100'@ GII.P16 Gll.4 Sydney 2012 27-03-2016 HONGKONG

@ GII.P16 Gll.4 Sydney 2012 27-01-2016 HONGKONG
GII.P16 GlI.4 Sydney 2012 01-2016 JAPAN school

@ GII.P16 Gll.4 Sydney 2012 03-2016 JAPAN food

@ GII.P16 Gll.4 Sydney 2012 04-04-2016 HONGKONG

GII.LP16 GIl.4 Sydney 2012 22-04-2016 NETHERLANDS
GIl.P16 Gll.4 Sydney 2012 25-07-2016 NETHERLANDS

0.04

GIL.P16 GlI.4 Sydney 2012 05-08-2016 HONGKONG
@ GII.P16 Gll.4 Sydney 2012 02-09-2016 HONGKONG
GILP16 Gll.4 Sydney 2012 04-09-2016 HONGKONG
@ GII.P16 Gll.4 Sydney 2012 01-09-2016 HONGKONG
@ Gll.Pe GIL4 Sydney 2012 03-04-2014 HUNGARY
g6 [@ Gll.Pe Gll.4 Sydney 2012 20-09-2014 HUNGARY
@ Gll.Pe GL.4 Sydney 2012 26-09-2014 HUNGARY
@ GILPe GIL4 Sydney 2012 07-10-2014 HUNGARY
@ GIlPe Gil.4 Sydney 2012 07-10-2014 HUNGARY
@ GIL.Pe GlL4 Sydney 2012 12-10-2014 HUNGARY
GILPe GlL.4 Sydney 2012 07-10-2014 HUNGARY
GILPe GlL.4 Sydney 2012 10-10-2014 HUNGARY
@ Gll.Pe Gll.4 Sydney 2012 01-2012 JAPAN
@ Gll.4 Sydney 2012 25-02-2013 HONGKONG
Gll.4 Sydney 2012 14-04-2015 HONGKONG
@ GIl.Pe Gll.4 Sydney 2012 06-02-2014 HUNGARY
GlL4 Sydney 2012 18-02-2014 HONGKONG
@ Gll.4 Sydney 2012 28-02-2014 HONGKONG
@ Gll.4 Sydney 2012 07-01-2015 HONGKONG
@ GlL4 Sydney 2012 13-06-2015 HONGKONG
@ GIL4 Sydney 2012 28-10-2014 HONGKONG
@ GlL.4 Sydney 2012 20-10-2014 HONGKONG
Gll.4 Sydney 2012 08-01-2015 HONGKONG
@ Gll.4 Sydney 2012 18-01-2015 HONGKONG
GlL.4 Sydney 2012 24-09-2014 HONGKONG
Gll.4 Sydney 2012 10-11-2014 HONGKONG
@ Gll.4 Sydney 2012 08-10-2012 HONGKONG
GIL4 Sydney 2012 13-11-2015 HONGKONG
11.4 Sydney 2012 10-11-2014 HONGKONG
Gll.4 Sydney 2012 07-01-2015 HONGKONG
@ GIL4 Sydney 2012 22-12-2014 HONGKONG
@ GIL4 Sydney 2012 18+12-2015 HONGKONG
@ Gil.4 Sydney 2012 16-10-2015 HONGKONG
@ GIL4 Sydney 2012 28-06-2015 HONGKONG
@ Gil.4 Sydney 2012 02-07-2015 HONGKONG
@ Gll.4 Sydney 2012 11-02-2014 HONGKONG
@ GlL4 Sydney 2012 17-07-2015 HONGKONG
@ GIL4 Sydney 2012 02-03-2015 HONGKONG
GIL.4 Sydney 2012 06-02-2015 HONGKONG
Gll.4 Sydney 2012 18-02-2015 HONGKONG
@ GlL4 Sydney 2012 01-04-2015 HONGKONG
@ Gll4 Sydney 2012 07-01-2015 HONGKONG
@ Gll.4 Sydney 2012 17-10-2015 HONGKONG
@ GlL4 Sydney 2012 13-10-2015 HONGKONG
@ GlL4 Sydney 2012 30-10-2015 HONGKONG
@ Gll.4 Sydney 2012 24-08-2015 HONGKONG
~® GIlPe Gll.4 Sydney 2012 10-12-2012 HONGKONG
L. GlL.Pe GlL.4 Sydney 2012 15-08-2012 HONGKONG
@ Gll.4 Sydney 2012 11-02-2014 HONGKONG
|———@ Gil.4 Sydney 2012 03-08-2014 HONGKONG
@ GlL4 Sydney 2012 22-01-2015 HONGKONG
‘Lr. GlL4 Sydney 2012 01-11-2014 HONGKONG
'@ Gll.4 Sydney 2012 13-11-2014 HONGKONG
E‘ Gll.4 Sydney 2012 14-04-2015 HONGKONG
@ GILPe Gll.4 Sydney 2012 12-05-2014 HUNGARY
Gll.4 Sydney 2012 28-10-2014 HONGKONG
[® Gil4 Sydney 2012 31-12:2014 HONGKONG
@ GlL4 Sydney 2012 01-12-2015 HONGKONG
[—@ Gil.4 Sydney 2012 01-10-2015 HONGKONG
@ Gil.4 Sydney 2012 01-01-2015 HONGKONG
@ GlL4 Sydney 2012 21-08-2015 HONGKONG
@ Gll.4 Sydney 2012 03-09-2015 HONGKONG
@ Gll.4 Sydney 2012 21-11-2015 HONGKONG
@ GIl.4 Sydney 2012 31-10-2015 HONGKONG
@ GIL4 Sydney 2012 24-08-2015 HONGKONG
'@ Gll.4 Sydney 2012 23-08-2015 HONGKONG
@ Gll.4 Sydney 2012 01-09-2015 HONGKONG
@ Gll.4 Sydney 2012 17-08-2015 HONGKONG
@ GlL4 Sydney 2012 02-09-2015 HONGKONG
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