Two-way effect modifications of air pollution and air temperature on total natural and cardiovascular mortality in eight European urban areas Kai Chen^a, Kathrin Wolf^a, Susanne Breitner^a, Antonio Gasparrini^b, Massimo Stafoggia^c, Evangelia Samoli^d, Zorana Jovanovic Andersen^e, Getahun BeroBedada^f, Tom Bellander^{f,g}, Frauke Hennig^h, Bénédicte Jacquemin^{i,j}, Juha Pekkanen^{k,1}, Regina Hampel^a, Josef Cyrys^a, Annette Peters^a, and Alexandra Schneider^a, on behalf of the UF&HEALTH Study Group ^aInstitute of Epidemiology II, Helmholtz Zentrum München- German Research Center for Environmental Health, Neuherberg, Germany; ^bDepartment of Social and Environmental Health Research, London School of Hygiene & Tropical Medicine, London, UK; ^cLazio Region Health Service - Department of Epidemiology, Italy; ^dDepartment of Hygiene, Epidemiology and Medical Statistics, National and Kapodistrian University of Athens, Athens, Greece; ^eDepartment of Public Health, Center for Epidemiology and Screening, University of Copenhagen, Copenhagen, Denmark; ^fInstitute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; ^gStockholm County Council, Centre for Occupational and Environmental Medicine, Stockholm, Sweden; ^hInstitute for Occupational, Social and Environmental Medicine, Center for health and Society, University of Düsseldorf, Düsseldorf, Germany; ⁱINSERM-Aging and Chronic Diseases, Epidemiological and Public Health Approaches (VIMA), Villejuif, France; ^jBarcelona Institute for Global Health - Campus MAR (ISGlobal), Barcelona, Spain; ^kDepartment of Public Health, University of Helsinki, Helsinki, Finland; ¹Environment and Health Unit, National Institute for Health and Welfare (THL), Kuopio, Finland. Correspondence: Kai Chen, Institute of Epidemiology II, Helmholtz Zentrum München, Ingolstädter Landstr.1, 85764 Neuherberg, Germany. E-Mail: kai.chen@helmholtz-muenchen.de

Abstract

Background: Although epidemiological studies have reported associations between

mortality and both ambient air pollution and air temperature, it remains uncertain whether the

mortality effects of air pollution are modified by temperature and vice versa. Moreover, little is known on the interactions between ultrafine particles (diameter ≤ 100 nm, UFP) and

temperature.

Objective: We investigated whether the short-term associations of particle number

concentration (PNC in the ultrafine range ($\leq 100 \text{ nm}$) or total PNC $\leq 3000 \text{ nm}$, as a proxy for

UFP), particulate matter $\leq 2.5 \ \mu m \ (PM_{2.5})$ and $\leq 10 \ \mu m \ (PM_{10})$, and ozone with daily total

natural and cardiovascular mortality were modified by air temperature and whether air

pollution levels affected the temperature-mortality associations in eight European urban areas during 1999-2013.

Methods: We first analyzed air temperature-stratified associations between air pollution and total natural (nonaccidental) and cardiovascular mortality as well as air pollution-stratified temperature-mortality associations using city-specific over-dispersed Poisson additive models with a distributed lag nonlinear temperature term in each city. All models were adjusted for long-term and seasonal trend, day of the week, influenza epidemics, and population dynamics due to summer vacation and holidays. City-specific effect estimates were then pooled using random-effects meta-analysis.

Results: Pooled associations between air pollutants and total and cardiovascular mortality were overall positive and generally stronger at high relatively compared to low air temperatures. For example, on days with high air temperatures (>75th percentile), an increase of 10,000 particles/cm³ in PNC corresponded to a 2.51% (95% CI: 0.39%, 4.67%) increase in cardiovascular mortality, which was significantly higher than that on days with low air

119 120		
121 122	57	temperatures (<25 th percentile) [-0.18% (95% CI: -0.97%, 0.62%)]. On days with high air
123 124	58	pollution (>50 th percentile), both heat- and cold-related mortality risks increased.
125 126 127	59	Conclusion: Our findings showed that high temperature could modify the effects of air
128 129	60	pollution on daily mortality and high air pollution might enhance the air temperature effect
130 131	61	
132 133	62	Keywords:
134 135 136	63	Ultrafine particles; particulate matter; ozone; air temperature; mortality; effect modificatio
137 138	64	
139 140 141	65	Highlights:
141 142 143	66	• High air temperature enhanced the mortality effects of UFP, $PM_{2.5}$, PM_{10} , and O_3
144 145	67	• Heat-related mortality risks were higher at high levels of $PM_{2.5}$, PM_{10} , and O_3
146 147 148	68	• Cold effects on mortality were stronger when PNC was high
149 150	69	• First study to investigate the interaction between UFP and temperature on mortalit
151 152	70	
153 154 155		
155 156 157		
158 159		
160 160 161		
162		
163 164		
165		
167		
168		
169		
170		
172		
173		
174		
175 176		3
170		0

onclusion: Our findings showed that high temperature could modify the effects of air Ilution on daily mortality and high air pollution might enhance the air temperature effects. eywords: ltrafine particles; particulate matter; ozone; air temperature; mortality; effect modification ighlights: High air temperature enhanced the mortality effects of UFP, PM_{2.5}, PM₁₀, and O₃ ٠ Heat-related mortality risks were higher at high levels of PM_{2.5}, PM₁₀, and O₃ • Cold effects on mortality were stronger when PNC was high ٠ First study to investigate the interaction between UFP and temperature on mortality •

1. Introduction

Exposure to ambient air pollution has been identified as a leading contributor to the global disease burden which caused 4.5 million deaths in 2015 (Cohen et al. 2017). Meanwhile, a large number of epidemiological studies has shown adverse impacts of exposure to both high and low ambient air temperatures on mortality (Basu and Samet 2002; Curriero et al. 2002; Guo et al. 2014; Ma et al. 2014). Given the increasing concern regarding the health impacts of climate change, interest has grown recently in estimating the joint effects of air pollution and air temperature on health. However, little is known about the potential interaction between air temperature and air pollution, which is crucial for estimating their joint health effects.

Meteorological conditions affect surface air quality by influencing emissions, atmospheric chemistry, and pollutant transport (Fiore et al. 2015). Especially, ground-level ozone (O_3) is formed by chemical reactions between nitrogen oxides and volatile organic compounds in the presence of sunlight and high temperature (Crutzen 1974; Sillman 1999). Thus, air pollution can be influenced by air temperature. In studies assessing air pollution health effects, air temperature is usually controlled for as a confounder rather than a modifier (Chen et al. 2013; Li et al. 2017). The potential effect modification of air pollution on mortality by air temperature has been largely neglected, until recently, in epidemiological studies (Stafoggia et al. 2008). On the other hand, air pollution may amplify people's vulnerability to the adverse effects of temperature (Gordon 2003) and could act as an effect modifier in the short-term effects of air temperature on mortality (Breitner et al. 2014; Ren et al. 2006). This effect modification of temperature health effects by air pollution may be of great importance to public health benefits because air temperature is expected to continue to rise over the 21st century under all emission scenarios (IPCC 2013), whereas air pollution can be reduced in a few decades to yield measurable improvements in public health (Breitner

et al. 2009; Pope III et al. 2009). Thus, both directions of effect modification, hence the two-way effect modifications, matter for public health under a warming climate and changing air quality.

Although a few studies have examined the modifying effect by air temperature on particulate matter (PM)- and O_3 -associated mortality, results are inconsistent regarding: (1) the direction of the interaction: most studies reported stronger PM or O₃ effects on days with high air temperatures (Jhun et al. 2014; Kim et al. 2015; Li et al. 2011; Qian et al. 2008; Ren et al. 2008a; Stafoggia et al. 2008), whereas few also reported stronger air pollution effects on days with low air temperatures (Chen et al. 2013; Cheng and Kan 2012; Sun et al. 2015); (2) the significance of interaction: among 12 studies of PM effects on daily total nonaccidental mortality, only six found statistically significant interactions, five observed nonsignificant interactions, and one reported significance only in Southern Chinese cities (Li et al. 2017; Meng et al. 2012). In contrast, only a limited number of studies have evaluated the modifying effect of air pollution on air temperature-related mortality (Breitner et al. 2014; Li et al. 2015; Ren et al. 2006). PM was found as a significant effect modifier in the association between temperature and total and cardiovascular mortality in Brisbane, Australia (Ren et al. 2006) and Guangzhou, China (Li et al. 2015), but not in three cities of Bavaria, Germany (Breitner et al. 2014). However, these studies have important limitations in characterizing the complex interaction between air temperature and air pollution: first, their analyses were based on a single city analysis; second, they assumed a linear effect, a single lag, or a moving average lag structure for temperature, therefore simplifying to a great extent the nonlinear and delayed temperature-mortality dependencies (Gasparrini et al. 2015b). Epidemiological evidence on whether air temperature modifies the effect of ultrafine

collected relevant data. UFP are hypothesized to have a high and independent toxic potential

particles (UFP) and vice versa is lacking, mostly due to the unavailability of routinely

due to their small size (<100nm), large active surface area, and their ability to penetrate into the pulmonary alveoli and to translocate in the circulation (Brook et al. 2010; HEI Review Panel on Ultrafine Particles 2013). Few epidemiological studies have reported a (weak) positive association between short-term UFP exposure and mortality (Atkinson et al. 2010; Breitner et al. 2011; Breitner et al. 2009; Lanzinger et al. 2016; Stafoggia et al. 2017). In the present study, we aimed to investigate the two-way effect modifications of air pollution (UFP, PM, and O_3) and air temperature on total (nonaccidental) and cardiovascular mortality in eight European urban areas. This study is the result of a collaborative effort among the Ultrafine Particles and Health (UF&HEALTH) Study Group in Europe (Stafoggia et al. 2017). The UF&HEALTH Study aimed to gather available data on UFP measures and mortality over a relatively long time period from cities across Europe to enlarge statistical power to detect weak associations (Samoli et al. 2016). 2. Methods 2.1 Data collection Daily mortality, air pollution, and air temperature data during 1999-2013 were collected from eight European urban areas: Athens (Greece), Augsburg (Germany), Barcelona (Spain), Copenhagen (Denmark), Helsinki (Finland), Rome (Italy), Ruhr area (three adjacent cities including Essen, Mülheim, and Oberhausen, Germany), and Stockholm (Sweden) (Supplemental Information, Fig.S1). Detailed description of the study areas, including main sources of air pollution, are reported in the Supplemental Information, Text S1.

Daily death counts of urban residents were provided by each participating center of the UF&HEALTH Study Group. Mortality data were classified into the following categories using the International Classification of Diseases, 9th revision (ICD-9) and the International Statistical Classification of Diseases and Related Health Problems, 10th revision (ICD-10): deaths from total natural (ICD-9 1-799 and ICD-10 A00-R99) and cardiovascular (ICD-9

390-459 and ICD-10 I00-I99) causes. Respiratory mortality was not investigated because our previous study did not found associations of UFP and PM with respiratory mortality (Stafoggia et al. 2017). For total natural mortality, daily counts were also stratified by sex and age (0-74 years and 75 and above years). The two age groups (nonelderly vs. elderly) were used for analysis as previous studies suggested that the elderly are more vulnerable to the mortality risks of air pollution and air temperature (Anderson and Bell 2009; Bell et al. 2005; Hajat et al. 2007; Samoli et al. 2008).

Daily mean particle number concentration (PNC, as a surrogate for UFP (HEI Review Panel on Ultrafine Particles 2013)) was obtained from independent monitoring campaigns in each city. In all cities, one urban or suburban background PNC monitoring site was used, except for a traffic site in Rome. Due to different monitoring instruments used in different cities, PNC was measured in slightly different size ranges (Supplemental Information, Table S1). For Athens, Copenhagen, and Helsinki, PNC was available in the ultrafine range (≤100 nm), in the other cities total PNC (\leq 3000 nm) was used as it is often assumed that particles in the ultrafine range dominated PNC (HEI Review Panel on Ultrafine Particles 2013). In each city, we further collected daily 24-h average PM with an aerodynamic diameter $\leq 2.5 \,\mu m$ (PM_{25}) and $\leq 10 \ \mu m \ (PM_{10})$ and daily maximum 8-h average O₃ concentrations from multiple stations of the local air quality monitoring networks. Daily concentrations were averaged from all valid monitoring stations in each city, which had at least 75% of the daily data for the study period. For details with regard to air pollution data collection we refer to the preceding publication (Stafoggia et al. 2017). As in previous studies, daily mean air temperature was used as the metric for temperature (Chen et al. 2016; Gasparrini et al. 2015b). Data on daily mean air temperature were collected from local meteorological services or airport meteorological networks. Relative humidity was not collected since previous studies showed robust air temperature effects on daily mortality when additionally

adjusting for relative humidity (Breitner et al. 2014; Gasparrini et al. 2015b; Guo et al. 2014). Influenza epidemics (a dummy variable denoting days with particularly high influenza episodes) were identified from national surveillance systems and hospitalization records. 2.2 Statistical Analysis. 2.2.1 Basic confounder model We used Poisson additive models with over-dispersion to estimate the city-specific associations between mortality and air pollutants or air temperature. Several confounders were included in the city-specific models; (1) natural cubic spline with eight degrees of freedom (df) per year to control for long-term and seasonal trend, (2) indicator variables for day of the week, (3) an indicator variable for influenza epidemics, (4) an indicator variable for population dynamics due to summer vacation and holidays (Stafoggia et al. 2017), and (5) a penalized distributed lag nonlinear temperature term using marginal P-spline smoothers with dimension 7 for both exposure and lag spaces and a maximum lag of 21 days. The penalized distributed lag nonlinear temperature term was characterized as a cross-basis matrix, which had 42 (7×6) parameters for the bi-dimensional space of the exposure and lags. Penalization was implemented through a double varying penalty with a second-order difference penalty and a ridge penalty (Gasparrini et al. 2017). Because of the different lag periods for heat effect (within a few days) and cold effect (up to 3 or 4 weeks) (Anderson and Bell 2009; Gasparrini et al. 2015b), we applied a maximum of 21 lag days for temperature. 2.2.2 Air pollution effects stratified by air temperature To examine effect modification by air temperature in each city, we categorized air temperature into three levels: high (>75th city-specific percentile), medium (25th-75th city-specific percentile), and low (<25th city-specific percentile). Consistent with prior studies (Chen et al. 2013; Jhun et al. 2014; Ren et al. 2008a), the 25th and 75th percentiles were used as temperature cut-offs. In addition, compared with other percentile cut-offs (5th and 95th, 10th

473		
474		
475 476	196	and 90th, 15th and 95th, 20th and 80th), this percentile cut-offs could yield similar estimates but
477 478	197	with narrower confidence intervals due to increased sample size in the low and high
479 480	198	temperature levels (Chen et al. 2013; Jhun et al. 2014). After defining the basic confounder
481 482	199	model, we introduced the interaction terms between air pollutant (PNC, $PM_{2.5}$, PM_{10} , and O_3
403 484 485	200	in turn) and categorized air temperature at the same lag structure. Due to the multiple missing
486 487	201	data in many of the air pollution series (Supplemental Information, Table S2), we could not
488 489	202	compute averages over multiple days for air pollution. Based on our previous analysis
490 491	203	(Stafoggia et al. 2017), we chose lag 6 for PNC and lag 1 for other pollutants. Heterogeneity
492 493	204	among city-specific air pollution effects was assessed by the I ² statistic from Cochran's Q test.
494 495	205	Heterogeneity was considered to be significant if $I^2 > 0.5$, moderately significant if $0.25 < I^2$
496 497 408	206	\leq 0.5, and nonsignificant if I ² \leq 0.25 (Higgins et al. 2003).
490 499 500	207	2.2.3 Air temperature effects stratified by air pollution concentrations
501 502	208	For each city, we introduced an interaction term between the above mentioned penalized
503 504	209	distributed lag nonlinear temperature term and an air pollutant strata indicator in the basic
505 506	210	confounder model. To examine effect modification by air pollutants, we divided the air
507 508	211	pollutants (PNC at lag 6, $PM_{2.5}$, PM_{10} , and O_3 at lag 1) into two levels: high (> city-specific
509 510	212	median value) and low (\leq city-specific median value). Air pollution was categorized into two
511 512	213	levels rather than three levels in order to ensure enough statistical power for the parameters in
513 514 515	214	the cross-basis matrix of temperature and its interaction term with air pollution strata
516 517	215	indicator. As the short-term effects of air pollutants are generally within several days (Bell et
518 519	216	al. 2005; Samoli et al. 2008), we did not used the same cumulative lag structure (lag0-21) for
520 521	217	air pollution and air pollution categories. To adjust for potential residual confounding, the air
522 523	218	pollutant was also included as a linear continuous term in the model. The overall cumulative
524 525	219	exposure-response curves for temperature and mortality were estimated along percentiles of
526 527	220	the average temperature distribution in the eight European urban areas under study, with a
ວ∠ช 529		

minimum mortality temperature percentile between the first and the 99th percentiles as the reference temperature (Gasparrini et al. 2015b). Relative, city-specific temperature percentiles were used to characterize differences in temperature distributions and population acclimatization to temperature changes in cities with different climate conditions (Guo et al. 2014; Jhun et al. 2014). Because the average temperature distributions were similar in different strata of PNC and PM but different in different strata of O₃ (Supplemental Information, Table S3), we constructed overall cumulative exposure-response relationships for each strata of air pollutants and represented these curves on a relative scale, along percentiles of the overall average temperature distribution. In addition, we calculated heat effects as cumulative mortality risk at the 99th percentile relative to the 90th percentile and cold effects as cumulative mortality risk at the 1st percentile relative to the 10th percentile. Since the 99th percentile (25.6 °C) is larger than the maximum value of temperature in low ozone levels, we calculated the heat effects in low ozone levels by comparing its maximum value (24.4 °C) with the 90th percentile (21.5 °C). The overall lag-response relationships for heat and cold effects across the lag period (0-21) were estimated separately. City-specific effect estimates were pooled using univariate random-effects meta-analyses (Gasparrini et al. 2012). For temperature effects, city-specific coefficients for the cross-basis term were first pooled and then the pooled coefficients were used to reconstruct overall cumulative exposure-response associations on a relative scale using average temperature distribution percentiles (Gasparrini et al. 2015a). We tested the statistical significance of differences between the pooled estimates of the temperature or air pollutant strata by calculating the 95% confidence interval (CI) as $(\hat{Q}_1 - \hat{Q}_2) \pm 1.96\sqrt{(S\hat{E}_1)^2 + (S\hat{E}_2)^2}$, where \hat{Q}_1 and \hat{Q}_2 are the estimates, and $S\hat{E}_1$ and $S\hat{E}_2$ are their respective standard errors (Zeka et al. 2006). We also tested the statistical significance of differences between the overall temperature-mortality associations at low and high air pollution levels using a multivariate

Wald test based on the pooled reduced coefficients of the cross-basis matrix of temperature (Gasparrini et al. 2015a).

2.3 Sensitivity analyses

We performed several sensitivity analyses by changing the df (6-10 per year) for time trend and using alternative maximum lag days for temperature (14 and 28 days). In addition, when analyzing modifications of the air pollution effects by air temperature, different cutoffs (20th/80th, 15th/85th, and 10th/90th) and lag days (lag 0 to lag 6) for temperature categories were also explored. Moreover, we fitted two-pollutant models by adding other co-pollutants one at a time to account for potential confounding from multiple exposures. Additionally, we explored whether differences in city-specific characteristics such as average temperature, temperature range, average air pollution level, and total number of population were associated with the estimated temperature-stratified air pollution effects. Using potential city-specific characteristics as additional meta-predictors, we then performed sensitivity analyses to pool the city-specific results using multivariate meta-regression models (Gasparrini et al. 2012). Furthermore, we tested effect modification by sex and age group performing genderand age-specific subgroup analyses. Besides, we compared the results of using UFP (3-100 nm) with using total PNC (10-2000 nm) in Augsburg during 2004-2009. Finally, as Rome was previously found to dominate the pooled effects of PNC on mortality (Stafoggia et al. 2017), we also checked the influence of Rome on the modification of air pollution effects by air temperature through removing it from the meta-analyses. All analyses were performed with R software, version 3.2.1 (R Foundation for Statistical

Computing, Vienna, Austria), using the packages mgcv (Wood 2011), dlnm (Gasparrini 2011), and mymeta (Gasparrini et al. 2012).

3. Results

3.1. Descriptive statistics

Table 1 summarizes daily mortality counts and cutoffs for air pollution and temperature strata in the eight European cities. Different research periods with available data on UFP measurements and mortality were investigated across different cities. During the study period, there were overall 742,526 total natural deaths in the eight cities, among which 39.3% were cardiovascular deaths. Daily total and cardiovascular mortality were highest in Athens and lowest in Augsburg. Median values of daily PNC ranged from 4,685 particles/cm³ in Copenhagen to 29,168 particles/cm³ in Rome. Cutoffs for both air pollutants and air temperature were generally higher in the Southern cities. The correlations of PNC with PM, ozone, and air temperature, and correlations between PM and temperature were weak to moderate in each city (Supplemental Information, Fig.S2). On the contrary, ozone was moderately to strongly positively correlated with air temperature. 3.2. Air pollution effects modified by temperature Table 2 shows that the pooled effects of PNC, PM, and ozone on daily mortality varied by temperature levels. Associations between increases in air pollutants and mortality were generally stronger at high compared to low air temperatures. For example, a 10,000 particles/cm³ increase in PNC at lag 6 was associated with percent increases in cardiovascular mortality of -0.18% (95% CI: -0.97%, 0.62%), 0.81% (95% CI: -1.92%, 0.32%), and 2.51% (95% CI: 0.39%, 4.67%) at low, medium, and high air temperatures, respectively. The corresponding effect estimates on total mortality at each temperature level for a 10 μ g/m³ increase in PM_{2.5} were -0.46% (95% CI: -1.02%, 0.12%), 0.84% (95% CI: 0.05%, 1.63%), and 2.36% (95% CI: 0.11%, 4.65%). Nonsignificant or moderately significant heterogeneity $(I^2 \le 0.5)$ across different cities was observed for associations between mortality and PNC, PM_{10} , and O_3 , whereas significant heterogeneity ($I^2 > 0.5$) was found for associations between mortality and PM_{2.5} at high temperatures (Table 2 and Supplemental Information, Fig.S3-S6).

3.3. Air temperature effects modified by air pollutants

In the basic confounder model, the pooled air temperature-mortality associations were Ushaped and significant for both total natural and cardiovascular mortality (Fig.1). The lagresponse relationships showed that heat effects were limited within the first week while cold effects lasted two to three weeks. No harvesting effect (deaths advanced by a few days) or mortality displacement was observed for both heat and cold effects.

Fig.2 shows the pooled estimates of the exposure-response relationship between air temperature and total and cardiovascular mortality at low and high air pollution levels. Associations between high temperatures and mortality were generally stronger at high PNC, PM, and O_3 levels. Estimates for low temperatures and mortality were much stronger at high PNC levels compared to low PNC levels, while were similar at PM and O₃ strata, with overlapping CIs. The results of the multivariate Wald test indicated evidence (p < 0.05) of significant differences in the exposure-response curves for total natural mortality stratified by PM and O₃ levels.

Table 3 reports the overall cumulative mortality risk of heat exposure (99th percentile relative to 90th percentile of air temperature) and cold exposure (1st percentile relative to 10th percentile of air temperature) by air pollutant strata. In general, both heat and cold effects on total and cardiovascular mortality were stronger at high air pollution levels. For example, heat exposure was associated with an increase in cardiovascular mortality by 19.02% (95% CI: -13.24%, 46.68%) at high PNC levels and 3.75% (95% CI: 0.29%, 7.33%) at low PNC levels. Cold-related cardiovascular mortality risk was also higher at high PNC levels (16.23%; 95% CI: 3.80%, 30.14%), compared to low PNC levels (2.00%; 95% CI: 0.16%, 3.88%). 3.4. Subgroup and sensitivity analyses In population subgroup analyses, we did not find substantially different interactions

- $\frac{762}{763}$ 320 between air temperature and PNC, PM, and O₃ on total natural mortality across age groups

and sex (data not shown). Sensitivity analyses indicated that our results were robust when we changed df for time-trend (Supplemental Information, Fig.S7 and Fig.S8), used different percentile cutoffs of air temperature categories, and different lag periods for the air temperature effect (data not shown). Choosing different lag days for air temperature categories did not materially change the temperature-stratified air pollution effects on mortality (Supplemental Information, Fig.S9). After adjustment for co-pollutants, the pattern of effect modification on air pollution-related mortality by air temperature did not change substantially (Supplemental Information, Fig.S10). The effects of PNC on mortality across air temperature levels decreased after adjustment for PM2.5 but remained similar when controlling for PM₁₀ and ozone. Estimates of PM-related mortality across air temperature levels were robust when we controlled for PNC and ozone. Effect modification of ozone-related mortality by air temperature persisted after adjustment for PNC and PM. When we considered potential predictors (average temperature, temperature range, and population) of the city-specific risk estimates (Supplemental Information, Fig.S11), we found similar temperature-stratified air pollution effects (Supplemental Information, Fig.S12) and air pollution-stratified temperature effects (Supplemental Information, Fig.S13). Using UFP instead of total PNC generated similar results in Augsburg (Supplemental Information, Fig.S14). When we excluded Rome from the meta-analyses, the pooled effect modification of PNC- and PM-related cardiovascular mortality risks by high temperatures became nonsignificant, whereas effect modification of PM2.5-related total natural mortality by high temperatures remained statistically significant (data not shown).

4. Discussion

343 To the best of our knowledge, this is the first time-series study to examine the interactions
344 between UFP and air temperature on total natural and cardiovascular mortality. Our multi345 city analyses in eight European urban areas showed that high temperatures could significantly

add enhance the effect of PNC on cardiovascular mortality, the effects of PM_{2.5} and PM₁₀ on total natural and cardiovascular mortality, and the effects of O₃ on total natural mortality.
add results and cardiovascular mortality, and the effects of O₃ on total natural mortality.
Furthermore, our results showed that the air temperature effects on mortality were greater at high air pollution levels. Significant effect modification was found on heat-related total natural mortality by PM_{2.5}, PM₁₀, and O₃, and on cold-related total natural and cardiovascular mortality by PNC.

4.1 Effect modification of air pollution effects by temperature

We found stronger PM effects on mortality on days with high air temperatures. Similarly, high temperatures were found to enhance the acute effect of PM on mortality in Australia (Ren and Tong 2006), China (Li et al. 2011; Meng et al. 2012; Qian et al. 2008; Qin et al. 2017), South Korea (Kim et al. 2015), and Europe (Katsouyanni et al. 2001; Pascal et al. 2014; Shaposhnikov et al. 2014; Stafoggia et al. 2008). In the present analysis, an increase of 10 µg/m³ in PM₁₀ was associated with 0.03% (95% CI: -0.32%, 0.38%), 0.28% (95% CI: 0.01%, 0.55%), and 0.93% (95% CI: 0.31%, 1.55%) increase of total natural mortality at low, medium, and high temperatures. Our results were consistent with a recent meta-analysis, which reported a 0.19% (95% CI: -0.01%, 0.40%), 0.31% (95% CI: 0.21%, 0.42%) and 0.78% (95% CI: 0.44%, 1.11%) increase in total natural mortality per 10 µg/m³ increase in PM₁₀ at study-specific low, medium, and high temperatures (Li et al. 2017). Moreover, in our study we observed a high heterogeneity of the PM_{2.5} effects between the cities and therefore our results should be regarded with caution.

In accordance with our PM analysis, we also found stronger UFP effects on daily
mortality on days with high temperatures. However, the effect modification was only
significant for cardiovascular mortality. Evidence from very few studies on the seasonal
association between PNC and mortality indicate that UFP effects may be larger in the warm
season (Meng et al. 2013; Stafoggia et al. 2017), which provides support for our findings.

887		
888 889	371	Effect estimates were robust after adjustment for PM_{10} and O_3 , but weaker after adjustment
890 891	372	for $PM_{2.5}$. In contrast, the temperature-stratified $PM_{2.5}$ effects on mortality remained robust
092 893 804	373	after adjustment of co-pollutants, which suggests independent effects of $PM_{2.5}$. This
895 896	374	contrasting effects indicates some residual confounding in PNC effects due to co-exposure to
897 898	375	$PM_{2.5}$. However, the contrasting results between PNC and $PM_{2.5}$ should be interpreted with
899 900	376	caution due to different size fractions of PNC measured in different cities. Except for Athens,
901 902	377	Copenhagen, and Helsinki, total PNC (\leq 3000 nm) rather than PNC at ultrafine range (\leq 100
903 904	378	nm) was measured (Supplemental Information, Table S1). In previous studies measuring UFP
905 906	379	at ultrafine range (\leq 100 nm), the mortality effects of UFP remained similar when adjusting
907 908	380	for $PM_{2.5}$ (Lanzinger et al. 2016) or mass concentration metrics (Breitner et al. 2011).
909 910	381	City-specific effect modification of PNC effects by temperature showed different patterns,
911 912 913	382	where largest effects occurring at high temperatures were observed in Athens, Augsburg,
914 915	383	Barcelona, Helsinki, and Rome, but not in Copenhagen, Ruhr area, and Stockholm
916 917	384	(Supplemental Information, Fig.S3). This difference may be due to different source
918 919	385	contributions to UFP in different cities. A previous study evidenced that in Northern and
920 921	386	Central EU cities PNC and black carbon (BC) had a similar hourly pattern, whereas in
922 923	387	Southern EU cities, maximum PNC occurred at midday with minimum BC levels due to
924 925	388	midday nucleation episodes (Reche et al. 2011). To quantify the sources and processes
926 927	389	contributing to UFP, it can be segregated into two components based on the high correlation
920 929 930	390	between BC and PNC: N1, the primary emission of vehicle exhaust, and N2, the newly
931 932	391	formed secondary origin from mostly nucleation processes and other low BC-bearing UFPs
933 934	392	from different sources (Brines et al. 2015; Cheung et al. 2011; Rodríguez and Cuevas 2007).
935 936	393	Short-term effects of UFP on daily mortality are affected by different origins of UFP. A
937 938	394	recent study in three Spanish cities found an association of daily mortality with N1 but not
939 940 941 942	395	with N2 in Barcelona and Santa Cruz de Tenerife, which were influenced by traffic emissions,

whereas an association with N2 was observed in an industrial city Huelva (Tobías et al. 2018). Thus, different source contributions of UFP in our eight EU cities may lead to different effects of PNC on daily mortality. Further studies with both PNC and BC measurements are need to differentiate modification effects of primary and secondary UFP on health by air temperature. Furthermore, city-specific modified PNC effects by temperature on total mortality were not fully explained by those effects on cardiovascular mortality. This suggests that PNC may have effects on other causes of deaths.

A small number of studies have examined the modifying effect of air temperature on ozone-related mortality and the results are inconsistent (Li et al. 2017). In line with our findings, significant effect modifications of the association between O₃ and mortality with stronger effects on warmer days were found in the U.S. (Jhun et al. 2014; Ren et al. 2008a) and France (Pascal et al. 2012). On the contrary, stronger O₃ effects on colder days were observed in several cities in China (Chen et al. 2013; Cheng and Kan 2012; Liu et al. 2013). This difference may be likely due to inadequate control of cold effects in these studies by using short lags for temperature in the ozone-mortality association. A previous study in 21 East Asia cities demonstrated that adjusting only for short lags of temperature could result in higher ozone effect estimates in winter than in summer (Chen et al. 2014).

983
984 413 4.2 Effect modification of temperature effects by air pollution

Effect modification by air pollution on air temperature-mortality relationships has been barely investigated. We observed higher heat- and cold-related mortality risks at high air pollution levels, with significant effect modification by PM_{2.5}, PM₁₀, and O₃ on heat-related mortality risks and by PNC on cold-related mortality risks (Table 3). Similar findings on PM₁₀ and O₃ were obtained by time-series studies conducted in Guangdong, China (Li et al. 2015), Brisbane, Australia (Ren et al. 2006), 95 U.S. communities (Ren et al. 2008b), Berlin, Germany, and Lisbon, Portugal (Burkart et al. 2013), and three cities of Bavaria, Germany

(Breitner et al. 2014). Another study using a case-crossover design also reported larger heat effects on mortality at high PM₁₀ concentrations in Rotterdam, The Netherlands (Willers et al. 2016). No prior investigations have assessed the modifying effect of short-term exposure to PNC and PM_{2.5} on temperature-mortality associations.

1015 425 *4.3 Plausible biological mechanism* 1016

Although the underlying biological mechanism of effect modification of air pollution and temperature on mortality is not fully understood, several hypotheses have been proposed. Firstly, PM, O₃, and air temperature may have synergistic effects on cardiovascular system as they have common pathophysiological pathways. Air temperature changes (higher or lower) are associated with increased blood viscosity and coagulability, elevated cholesterol levels, and inflammatory responses (Keatinge et al. 1986; Schneider et al. 2008). Increased UFP and PM can also cause increased blood pressure and platelet aggregation, systemic oxidative stress and inflammation (Brook et al. 2010; Rückerl et al. 2011). In addition, both airborne particles and temperature were associated with changes in heart rate and repolarization parameters among myocardial infarction survivors (Hampel et al. 2010). On the other hand, ozone at high temperatures may impair fibrinolysis, thus reducing the efficiency of preventing clot formation and clearance (Kahle et al. 2015). Second, high temperatures could increase thermoregulatory stress and alter the physiological response to toxicants, leading to a higher susceptibility to air pollution effects (Gordon 2003). Third, population exposures to air pollution might increase during the warm season (Meng et al. 2013) as people tend to go more outside and to keep windows open and at the same time the chemical composition of UFP (Kim et al. 2002) and PM (Bell et al. 2007) could vary by season. In addition, secondary UFPs formed from mostly nucleation events contributed as a major component of UFP in Australian and European cities (Brines et al. 2015; Salma et al. 2014). Because nucleation events generally occurred at midday with high temperature and low levels of nitrogen oxides

(Brines et al. 2015), source contribution of UFP may greatly differ at low and high temperatures. Seasonal variations in both chemical composition and source contribution of UFP may affect its toxicity, which was observed to be higher in the summer (Baldauf et al. 2016). 4.4 Strengths and limitations The eight European cities with PNC measurements offer advantages for the study of the interactions between UFP and air temperature on daily mortality for the first time to our knowledge. Furthermore, this study benefits from analyses on different particle sizes (UFP, PM_{2.5}, and PM₁₀) and the potential synergistic role of temperatures. Another main strength of this study is the multi-city design with standardized protocols for health data collection covering a wide range of locations in Europe with different climates, which can provide robust results and may avoid potential publication bias that commonly occur in single-city studies. Moreover, disentangling interactions between the air pollution and air temperature on health is challenging in part because of their different lag structures and a different shape of their exposure-response functions (Zanobetti and Peters 2015). In the present analysis on effect modification by air pollutant, rather than using a linear, single lagged or moving averaged temperature term, we applied a distributed lag nonlinear temperature term, which captures the complex non-linear and lagged dependencies in both the exposure-response and lag-response associations (Gasparrini et al. 2015b). In the interaction term, this distributed lag nonlinear temperature term was added together with a linear single lagged air pollution strata. Thus, our models characterizing interactions with different lag structures and different exposure-response functions may better assess the complex interplay between air pollutants and air temperature on daily mortality. Several limitations should be acknowledged in this study. First, there were potential exposure measurement errors because we used measured air pollution and air temperature at fixed

outdoor monitoring stations. This measurement error may be especially relevant to UFP as it is known to have a high spatial variation within cities (HEI Review Panel on Ultrafine Particles 2013). However, this concern was lessened to some extent as we analyzed the temporal variations in time-series models and the temporal correlations across different sites within a city were generally high (Cyrys et al. 2008). Second, different air pollution measurement instruments were used and slightly different size fractions of PNC were collected in different cities (Stafoggia et al. 2017), which might limit the direct comparison among cities and introduce differential exposure measurement errors. Third, the UFP measurements in Rome were influenced by traffic and had much higher particle number concentrations, which may increase the statistical power and lead to the dominating role of Rome in the pooled PNC effects (Stafoggia et al. 2017). Moreover, the multiple missing data in air pollution measurements prevented us from conducting a sensitivity analysis using the same cumulative lag structure for air temperature and air pollutants in assessing their interactions. Furthermore, due to power issue we did not examine whether the observed effect modifications varied by season. Further study is warranted to investigate the seasonal interactions between air pollution and air temperature. Another limitation is that by testing multiple air pollutants, temperature, and total and cardiovascular mortality, the possibility that some of the observed significant effect modifications might occur by chance cannot be fully excluded. In addition, our results might not be generalized to health impact assessments in another region with different basic health status and air pollution compositions (Krzyzanowski et al. 2002). 5. Conclusion Overall, our findings showed that the association between daily total natural and cardiovascular mortality and air pollution (UFP, PM_{2.5}, PM₁₀, and ozone) was modified by air temperature and vice versa. Results therefore suggest that interactions between air pollution

1181		
1182		
1183 1184	496	and air temperature should be considered to assess their joint health effects. Our findings
1185 1186	497	point to the importance of understanding and reducing the health burdens attributable to
1187 1188	498	ambient air pollution and air temperature in the context of climate change. Further studies are
1189 1190	499	needed to investigate the effect modification of air pollution and air temperature using
1191 1192 1193	500	morbidity data (i.e. hospitalization, emergency room visits) to get a more comprehensive
1194 1195	501	knowledge of the air temperature-pollution interaction.
1196 1197	502	
1198 1199	503	Founding
1200 1201	504	K.C was supported by the Alexander von Humboldt Foundation (Humboldt Research
1202 1203	505	Fellowships for postdoctoral researchers). A.G. was supported by the Medical Research
1204 1205	506	Council UK (Grant ID: MR/M022625/1)
1200 1207 1208	507	
1209 1210	508	Conflict of interest
1211 1212	509	The authors declare no conflicts of interests.
1213 1214	510	
1215 1216	511	Acknowledgements
1217 1218	512	We thank the Instituto Nacional de Estadística and the Agència de Salut Pública de Barcelona
1219 1220	513	for providing the mortality data and the Agencia Estatal de Meteorologia (Ministerio de
1221 1222 1223	514	Agricultura, Alimentación y Medio Ambiente) for providing the weather data for Spain. We
1224 1225	515	thank the Institute of Environmental Assessment and Water Research (IDAEA-CSIC,
1226 1227	516	Barcelona, Spain) for providing the air pollution data for Spain. Colleagues from IDAEA-
1228 1229	517	CSIC were supported by the project PI15/00515, integrated in the National Plan for I+D+I
1230 1231	518	and co-funded by the ISCIII-Directorate General for Evaluation and the European Regional
1232 1233	519	Development Fund (FEDER). We thank "Information und Technik NRW, Düsseldorf, 2014"
1234 1235 1236	520	and "Landesamt für Natur, Umwelt und Verbraucherschutz Land NRW, Recklinghausen,
1237 1238 1239		21

1240		
1241 1242		
1242	521	www.lanuv.nrw" for providing, respectively, mortality and exposure data for the three cities
1244 1245	522	of the Ruhr Area. We thank Dr. H. Ott from the Bavarian Environmental Agency
1240 1247 1248	523	(Bayerisches Landesamt für Umwelt) for providing the air pollution and meteorological data
1240 1249 1250	524	from Augsburg, Germany. The UFP measurements in Augsburg were exclusively granted by
1250 1251 1252	525	the Helmholtz Zentrum München. We thank Helsinki Region Environmental Services
1253 1254	526	Authority HSY for providing the air pollution (other than UFP) data from Helsinki, Finland.
1255 1256	527	We also thank Finnish Meteorological Institute for providing the weather data and Statistics
1257 1258	528	Finland for providing the mortality data for Finland. The study has been conducted as a
1259 1260	529	collaborative effort of the UF&HEALTH Study Group. UF&HEALTH Study Group: S.
1261 1262	530	Breitner, J.Cyrys, R. Hampel, F. Hennig, B. Hoffmann, T. Kuhlbusch; S. Lanzinger, A.
1263 1264	531	Peters, U. Quass, A. Schneider, K. Wolf (Germany); E. Diapouli, K. Elefteriadis, K.
1266 1267	532	Katsouyanni, E. Samoli, S. Vratolis (Greece); T. Ellermann, Z. Ivanovic-Andersen, S. Loft, A.
1268 1269	533	Massling, C. Nordstrøm (Denmark); P. P. Aalto, M. Kulmala, T. Lanki, J. Pekkanen, P.
1270 1271	534	Tiittanen, T. Yli-Tuomi (Finland); G. Cattani, A. Faustini, F. Forastiere, M. Inglessis, M.
1272 1273	535	Renzi, M. Stafoggia (Italy); D. Agis, X. Basagaña, B. Jacquemin, N. Perez, J. Sunyer, A.
1274 1275	536	Tobias (Spain); T. Bellander, G. Bero-Bedada (Sweden).
1276 1277	537	
1278		
1279		
1280		
1281		
1282		
1203		
1285		
1286		
1287		
1288		
1289		
1290		
1291		
1293		
1294		
1295		
1296		
1297		22
1298		

1299		
1300		
1301 1302	538	References
1303	539	Anderson, B.G.; Bell, M.L. Weather-related mortality: how heat, cold, and heat waves affect
1305	540	mortality in the United States. Epidemiology 2009;20:205-213
1307	541	Atkinson, R.W.; Fuller, G.W.; Anderson, H.R.; Harrison, R.M.; Armstrong, B. Urban
1308 1309	542	ambient particle metrics and health: a time-series analysis. Epidemiology
1310	543	2010;21:501-511
1311 1312	544	Baldauf, R.W.; Devlin, R.B.; Gehr, P.; Giannelli, R.; Hassett-Sipple, B.; Jung, H., et al.
1313	545	Ultrafine particle metrics and research considerations: review of the 2015 UFP
1314	546	workshop. Int J Environ Res Public Health 2016;13:1054
1316 1317	547	Basu, R.; Samet, J.M. Relation between elevated ambient temperature and mortality: a review
1318	548	of the epidemiologic evidence. Epidemiol Rev 2002;24:190-202
1319 1320	549	Bell, M.L.; Dominici, F.; Ebisu, K.; Zeger, S.L.; Samet, J.M. Spatial and temporal variation
1321 1322	550	in PM2.5 chemical composition in the United States for health effects studies.
1323	551	Environ Health Perspect 2007;115:989-995
1324 1325	552	Bell, M.L.; Dominici, F.; Samet, J.M. A meta-analysis of time-series studies of ozone and
1326	553	mortality with comparison to the National Morbidity, Mortality, and Air Pollution
1327	554	Study. Epidemiology 2005;16:436-445
1329 1330	555	Breitner, S.; Liu, L.; Cyrys, J.; Brüske, I.; Franck, U.; Schlink, U., et al. Sub-micrometer
1331	556	particulate air pollution and cardiovascular mortality in Beijing, China. Sci Total
1332 1333	557	Environ 2011;409:5196-5204
1334	558	Breitner, S.; Stölzel, M.; Cyrys, J.; Pitz, M.; Wölke, G.; Kreyling, W., et al. Short-term
1335 1336	559	mortality rates during a decade of improved air quality in Erfurt, Germany. Environ
1337 1338	560	Health Perspect 2009;117:448
1339	561	Breitner, S.; Wolf, K.; Devlin, R.B.; Diaz-Sanchez, D.; Peters, A.; Schneider, A. Short-term
1340 1341	562	effects of air temperature on mortality and effect modification by air pollution in three
1342	563	cities of Bavaria, Germany: a time-series analysis. Sci Total Environ 2014;485:49-61
1343 1344	564	Brines, M.; Dall'Osto, M.; Beddows, D.C.S.; Harrison, R.M.; Gómez-Moreno, F.; Núñez, L.,
1345 1346	565	et al. Traffic and nucleation events as main sources of ultrafine particles in high-
1347	566	insolation developed world cities. Atmos Chem Phys 2015;15:5929-5945
1348 1349	567	Brook, R.D.; Rajagopalan, S.; Pope, C.A.; Brook, J.R.; Bhatnagar, A.; Diez-Roux, A.V., et al.
1350	568	Particulate matter air pollution and cardiovascular disease. Circulation 2010;121:2331
1351 1352		
1353		
1354 1355		
1356		23
1357		

1358		
1359 1360		
1361	569	Burkart, K.; Canário, P.; Breitner, S.; Schneider, A.; Scherber, K.; Andrade, H., et al.
1362 1363	570	Interactive short-term effects of equivalent temperature and air pollution on human
1364	571	mortality in Berlin and Lisbon. Environ Pollut 2013;183:54-63
1365 1366	572	Chen, K.; Yang, H.B.; Ma, Z.W.; Bi, J.; Huang, L. Influence of temperature to the short-term
1367	573	effects of various ozone metrics on daily mortality in Suzhou, China. Atmos Environ
1368 1369	574	2013;79:119-128
1370	575	Chen, K.; Zhou, L.; Chen, X.; Ma, Z.; Liu, Y.; Huang, L., et al. Urbanization level and
1371 1372	576	vulnerability to heat-related mortality in Jiangsu Province, China. Environ Health
1373	577	Perspect 2016;124:1863-1869
1374 1375	578	Chen, R.; Cai, J.; Meng, X.; Kim, H.; Honda, Y.; Guo, Y.L., et al. Ozone and daily mortality
1376	579	rate in 21 cities of East Asia: How does season modify the association? Am J
1377	580	Epidemiol 2014;180:729-736
1379 1380	581	Cheng, Y.; Kan, H. Effect of the interaction between outdoor air pollution and extreme
1381	582	temperature on daily mortality in Shanghai, China. J Epidemiol 2012;22:28-36
1382 1383	583	Cheung, H.C.; Morawska, L.; Ristovski, Z.D. Observation of new particle formation in
1384	584	subtropical urban environment. Atmos Chem Phys 2011;11:3823-3833
1385 1386	585	Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K., et al. Estimates
1387	586	and 25-year trends of the global burden of disease attributable to ambient air pollution:
1388	587	an analysis of data from the Global Burden of Diseases Study 2015. Lancet 2017:
1390	588	Crutzen, P.J. Photochemical reactions initiated by and influencing ozone in unpolluted
1391	589	tropospheric air. Tellus 1974·26·47-57
1393 1394	590	Curriero F C · Heiner K S · Samet I M · Zeger S L · Strug L · Patz I A Temperature and
1395	591	mortality in 11 cities of the Eastern United States Am I Enidemiol 2002:155:80-87
1396 1397	592	Cvrvs J: Pitz M: Heinrich J: Wichmann H-F: Peters A Spatial and temporal variation
1398	593	of particle number concentration in Augsburg Germany Sci Total Environ
1399 1400	594	2008-401-168 175
1401	505	Eioro A.M. Naile V. Laibongnargar E.M. Air quality and alimate connections. I Air Weste
1402	595	Marage Agene 2015:65:645 685
1404 1405	590	Manage Assoc 2013,03.043-083
1405	597	Gasparrini, A. Distributed Lag Linear and Non-Linear Models in R: The Package dinm. J Stat
1407 1408	598	Softw 2011;43:1-20
1409	599	Gasparrini, A.; Armstrong, B.; Kenward, M.G. Multivariate meta-analysis for non-linear and
1410 1411	600	other multi-parameter associations. Stat Med 2012;31:3821-3839
1412		
1413 1414		
1415		24
1416		

1417		
1418 1419		
1420	601	Gasparrini, A.; Guo, Y.M.; Hashizume, M.; Kinney, P.L.; Petkova, E.P.; Lavigne, E., et al.
1421 1422	602	Temporal variation in heat-mortality associations: A multicountry study. Environ
1423	603	Health Perspect 2015a;123:1200-1207
1424 1425	604	Gasparrini, A.; Guo, Y.M.; Hashizume, M.; Lavigne, E.; Zanobetti, A.; Schwartz, J., et al.
1426	605	Mortality risk attributable to high and low ambient temperature: a multicountry
1427	606	observational study. Lancet 2015b;386:369-375
1429 1430	607	Gasparrini, A.; Scheipl, F.; Armstrong, B.; Kenward, M.G. A penalized framework for
1430	608	distributed lag non-linear models. Biometrics 2017;73:938-948
1432 1433	609	Gordon, C.J. Role of environmental stress in the physiological response to chemical toxicants.
1434	610	Enviro Res 2003;92:1-7
1435 1436	611	Guo, Y.; Gasparrini, A.; Armstrong, B.; Li, S.; Tawatsupa, B.; Tobias, A., et al. Global
1437	612	variation in the effects of ambient temperature on mortality: A systematic evaluation.
1438 1439	613	Epidemiology 2014;25:781-789
1440	614	Hajat, S.; Kovats, R.S.; Lachowycz, K. Heat-related and cold-related deaths in England and
1441	615	Wales: who is at risk? Occup Environ Med 2007;64:93
1443 1444	616	Hampel, R.; Schneider, A.; Brüske, I.; Zareba, W.; Cyrys, J.; Rückerl, R., et al. Altered
1445	617	cardiac repolarization in association with air pollution and air temperature among
1446 1447	618	myocardial infarction survivors. Environ Health Perspect 2010;118:1755
1448	619	HEI Review Panel on Ultrafine Particles. Understanding the Health Effects of Ambient
1449 1450	620	Ultrafine Particles. HEI Perspectives 3. Boston, MA.: Health Effects Institute; 2013
1451 1452	621	Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-
1453	622	analyses. BMJ 2003;327:557-560
1454 1455	623	IPCC. Summary for Policymakers. in: Stocker T.F., Qin D., Plattner GK., Tignor M., Allen
1456	624	S.K., Boschung J., Nauels A., Xia Y., Bex V., Midgley P.M., eds. Climate Change
1457 1458	625	2013: The Physical Science Basis Contribution of Working Group I to the Fifth
1459 1460	626	Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge,
1461	627	United Kingdom and New York, NY, USA: Cambridge University Press; 2013
1462 1463	628	Jhun, I.; Fann, N.; Zanobetti, A.; Hubbell, B. Effect modification of ozone-related mortality
1464	629	risks by temperature in 97 US cities. Environ Int 2014;73:128-134
1465 1466	630	Kahle, J.; Neas, L.; Devlin, R.; Case, M.; Schmitt, M.; Madden, M., et al. Interaction effects
1467	631	of temperature and ozone on lung function and markers of systemic inflammation,
1469	632	coagulation, and fibrinolysis: a crossover study of healthy young volunteers. Environ
1470 1471	633	Health Perspect 2015;123:310-316
1472		
1473 1474		25
1475		

1476		
14 <i>11</i> 1478	(2)	
1479	634	Katsouyanni, K.; Touloumi, G.; Samoli, E.; Gryparis, A.; Le Tertre, A.; Monopolis, Y., et al.
1480 1481	635	Confounding and effect modification in the short-term effects of ambient particles on
1482	636	total mortality: results from 29 European cities within the APHEA2 project.
1483 1484	637	Epidemiology 2001;12:521-531
1485	638	Keatinge, W.R.; Coleshaw, S.R.K.; Easton, J.C.; Cotter, F.; Mattock, M.B.; Chelliah, R.
1486 1487	639	Increased platelet and red cell counts, blood viscosity, and plasma cholesterol levels
1488	640	during heat stress, and mortality from coronary and cerebral thrombosis. Am J Med
1489 1490	641	1986;81:795-800
1491	642	Kim, S.; Shen, S.; Sioutas, C.; Zhu, Y.; Hinds, W.C. Size distribution and diurnal and
1492 1493	643	seasonal trends of ultrafine particles in source and receptor sites of the Los Angeles
1494	644	basin. J Air Waste Manage Assoc 2002;52:297-307
1495	645	Kim, S.E.; Lim, YH.; Kim, H. Temperature modifies the association between particulate air
1497 1498	646	pollution and mortality: A multi-city study in South Korea. Sci Total Environ
1499	647	2015;524:376-383
1500 1501	648	Krzyzanowski, M.; Cohen, A.; Anderson, R. Quantification of health effects of exposure to
1502 1503	649	air pollution. Occup Environ Med 2002;59:791
1503	650	Lanzinger, S.; Schneider, A.; Breitner, S.; Stafoggia, M.; Erzen, I.; Dostal, M., et al.
1505 1506	651	Associations between ultrafine and fine particles and mortality in five central
1507	652	European cities — Results from the UFIREG study. Environ Int 2016;88:44-52
1508	653	Li, G.; Zhou, M.; Cai, Y.; Zhang, Y.; Pan, X. Does temperature enhance acute mortality
1510 1511	654	effects of ambient particle pollution in Tianjin City, China. Sci Total Environ
1512	655	2011;409:1811-1817
1513 1514	656	Li, J.; Woodward, A.; Hou, XY.; Zhu, T.; Zhang, J.; Brown, H., et al. Modification of the
1515	657	effects of air pollutants on mortality by temperature: A systematic review and meta-
1517	658	analysis. Sci Total Environ 2017;575:1556-1570
1518 1519	659	Li, L.; Yang, J.; Guo, C.; Chen, PY.; Ou, CQ.; Guo, Y. Particulate matter modifies the
1520	660	magnitude and time course of the non-linear temperature-mortality association.
1521 1522	661	Environ Pollut 2015;196:423-430
1523	662	Liu, T.; Li, T.T.; Zhang, Y.H.; Xu, Y.J.; Lao, X.Q.; Rutherford, S., et al. The short-term
1524	663	effect of ambient ozone on mortality is modified by temperature in Guangzhou, China.
1526 1527	664	Atmos Environ 2013;76:59-67
1528	665	Ma, W.; Chen, R.; Kan, H. Temperature-related mortality in 17 large Chinese cities: How
1529 1530	666	heat and cold affect mortality in China. Environ Res 2014;134:127-133
1531		
1532 1533		26
1534		

1535		
1536		
1537	667	Meng, X.; Ma, Y.; Chen, R.; Zhou, Z.; Chen, B.; Kan, H. Size-fractionated particle number
1539	668	concentrations and daily mortality in a Chinese city. Environ Health Perspect
1540 1541	669	2013;121:1174
1542 1543	670	Meng, X.; Zhang, Y.; Zhao, Z.; Duan, X.; Xu, X.; Kan, H. Temperature modifies the acute
1544	671	effect of particulate air pollution on mortality in eight Chinese cities. Sci Total
1545 1546	672	Environ 2012;435:215-221
1547	673	Pascal, M.; Falq, G.; Wagner, V.; Chatignoux, E.; Corso, M.; Blanchard, M., et al. Short-term
1548 1549	674	impacts of particulate matter (PM10, PM10-2.5, PM2.5) on mortality in nine French
1550	675	cities. Atmos Environ 2014;95:175-184
1552	676	Pascal, M.; Wagner, V.; Chatignoux, E.; Falq, G.; Corso, M.; Blanchard, M., et al. Ozone and
1553 1554	677	short-term mortality in nine French cities: Influence of temperature and season.
1554	678	Atmos Environ 2012;62:566-572
1556 1557	679	Pope III, C.A.; Ezzati, M.; Dockery, D.W. Fine-particulate air pollution and life expectancy
1558 1550	680	in the United States. N Engl J Med 2009;360:376-386
1560	681	Qian, Z.; He, Q.; Lin, HM.; Kong, L.; Bentley, C.M.; Liu, W., et al. High temperatures
1561 1562	682	enhanced acute mortality effects of ambient particle pollution in the" oven" city of
1563	683	Wuhan, China. Environ Health Perspect 2008;116:1172
1564 1565	684	Qin, R.X.; Xiao, C.; Zhu, Y.; Li, J.; Yang, J.; Gu, S., et al. The interactive effects between
1566 1567	685	high temperature and air pollution on mortality: A time-series analysis in Hefei, China.
1568	686	Sci Total Environ 2017;575:1530-1537
1569 1570	687	Reche, C.; Querol, X.; Alastuey, A.; Viana, M.; Pey, J.; Moreno, T., et al. New
1571	688	considerations for PM, Black Carbon and particle number concentration for air quality
1572 1573	689	monitoring across different European cities. Atmos Chem Phys 2011;11:6207-6227
1574 1575	690	Ren, C.; Tong, S. Temperature modifies the health effects of particulate matter in Brisbane,
1576	691	Australia. Int J Biometeorol 2006;51:87-96
1577 1578	692	Ren, C.; Williams, G.M.; Mengersen, K.; Morawska, L.; Tong, S. Does temperature modify
1579	693	short-term effects of ozone on total mortality in 60 large eastern US communities?—
1580 1581	694	An assessment using the NMMAPS data. Environ Int 2008a;34:451-458
1582	695	Ren, C.; Williams, G.M.; Morawska, L.; Mengersen, K.; Tong, S. Ozone modifies
1584	696	associations between temperature and cardiovascular mortality: analysis of the
1585 1586	697	NMMAPS data. Occup Environ Med 2008b;65:255-260
1587	698	Ren, C.; Williams, G.M.; Tong, S. Does particulate matter modify the association between
1588 1589	699	temperature and cardiorespiratory diseases? Environ Health Perspect 2006;114:1690-
1590	700	1696
1591		27
1593		

1594		
1595 1596		
1597	701	Rodríguez, S.; Cuevas, E. The contributions of "minimum primary emissions" and "new
1598 1599	702	particle formation enhancements" to the particle number concentration in urban air. J
1600	703	Aerosol Sci 2007;38:1207-1219
1601 1602	704	Rückerl, R.; Schneider, A.; Breitner, S.; Cyrys, J.; Peters, A. Health effects of particulate air
1603	705	pollution: a review of epidemiological evidence. Inhal Toxicol 2011;23:555-592
1604 1605	706	Salma, I.; Borsós, T.; Németh, Z.; Weidinger, T.; Aalto, P.; Kulmala, M. Comparative study
1606	707	of ultrafine atmospheric aerosol within a city. Atmos Environ 2014;92:154-161
1607 1608	708	Samoli, E.; Andersen, Z.J.; Katsouyanni, K.; Hennig, F.; Kuhlbusch, T.A.; Bellander, T., et al.
1609	709	Exposure to ultrafine particles and respiratory hospitalisations in five European cities.
1611	710	Eur Respir J 2016;48:674-682
1612 1613	711	Samoli, E.; Peng, R.; Ramsay, T.; Pipikou, M.; Touloumi, G.; Dominici, F., et al. Acute
1614	712	effects of ambient particulate matter on mortality in Europe and North America:
1615 1616	713	results from the APHENA Study. Environ Health Perspect 2008;116:1480-1486
1617	714	Schneider, A.; Panagiotakos, D.; Picciotto, S.; Katsouyanni, K.; Löwel, H.; Jacquemin, B., et
1618 1619	715	al. Air temperature and inflammatory responses in myocardial infarction survivors.
1620	716	Epidemiology 2008;19:391-400
1622	717	Shaposhnikov, D.; Revich, B.; Bellander, T.; Bedada, G.B.; Bottai, M.; Kharkova, T., et al.
1623 1624	718	Mortality related to air pollution with the Moscow heat wave and wildfire of 2010.
1625	719	Epidemiology 2014;25:359
1626 1627	720	Sillman, S. The relation between ozone, NOx and hydrocarbons in urban and polluted rural
1628 1629	721	environments. Atmos Environ 1999;33:1821-1845
1630	722	Stafoggia, M.; Schneider, A.; Cyrys, J.; Samoli, E.; Andersen, Z.J.; Bedada, G.B., et al.
1631 1632	723	Association between short-term exposure to ultrafine particles and mortality in eight
1633 1634	724	European urban areas. Epidemiology 2017;28:172-180
1635	725	Stafoggia, M.; Schwartz, J.; Forastiere, F.; Perucci, C. Does temperature modify the
1636 1637	726	association between air pollution and mortality? A multicity case-crossover analysis
1638	727	in Italy. Am J Epidemiol 2008;167:1476-1485
1639 1640	728	Sun, S.; Cao, P.; Chan, KP.; Tsang, H.; Wong, CM.; Thach, TQ. Temperature as a
1641	729	modifier of the effects of fine particulate matter on acute mortality in Hong Kong.
1642 1643	730	Environ Pollut 2015;205:357-364
1644 1645	731	Tobías, A.; Rivas, I.; Reche, C.; Alastuey, A.; Rodríguez, S.; Fernández-Camacho, R., et al.
1646	732	Short-term effects of ultrafine particles on daily mortality by primary vehicle exhaust
1647 1648	733	versus secondary origin in three Spanish cities. Environ Int 2018;111:144-151
1649		
1650 1651		28
1652		

1653		
1654 1655		
1656	734	Willers, S.M.; Jonker, M.F.; Klok, L.; Keuken, M.P.; Odink, J.; van den Elshout, S., et al.
1657 1659	735	High resolution exposure modelling of heat and air pollution and the impact on
1659	736	mortality. Environ Int 2016;89:102-109
1660 1661	737	Wood, S.N. Fast stable restricted maximum likelihood and marginal likelihood estimation of
1662	738	semiparametric generalized linear models. J R Stat Soc Ser C Appl Stat 2011;73:3-36
1663 1664	739	Zanobetti, A.; Peters, A. Disentangling interactions between atmospheric pollution and
1665	740	weather. J Epidemiol Community Health 2015;69:613-615
1667	741	Zeka, A.; Zanobetti, A.; Schwartz, J. Individual-level modifiers of the effects of particulate
1668 1669	742	matter on daily mortality. Am J Epidemiol 2006;163:849-859
1670	743	
1671 1672	/ - 5	
1673		
1674 1675		
1675		
1677		
1678		
1679		
1680		
1682		
1683		
1684		
1685		
1687		
1688		
1689		
1690		
1691		
1692		
1694		
1695		
1696		
1697		
1698		
1700		
1701		
1702		
1703		
1704		
1705		
1707		
1708		
1709		20
1/10 1711		27
1711		

Figure Legends

Fig.1. Overall cumulative exposure-response relationships and lag-response relationships between air temperature and mortality with 95% CIs. The vertical lines in (A) and (B) represent the 1st, 10th, 90th, and 99th percentiles of the air temperature distribution. The y-axis in (A) and (B) represents the relative risk of air temperature on daily mortality compared with the minimum mortality temperature; in (C) and (D) represents the relative risk of heat effect (99th percentile vs. 90th percentile) on daily mortality; and in (E) and (F) represents the relative risk of cold effect (1st percentile vs. 10th percentile) on daily mortality. Fig.2. Modified overall cumulative air temperature-mortality associations by air pollution with 95% CIs. Blue lines represent for low air pollution level (concentration below median value) and red lines represent a high air pollution level (concentration above median value). The vertical lines represent the 1st, 10th, 90th, and 99th percentiles of the air temperature distribution. The y-axis represents the relative risk of temperature on daily mortality compared to the minimum mortality temperature. P value is the result of significance test between air pollution levels, based on a multivariate Wald test of the pooled reduced coefficients of the temperature effects at low and high air pollution levels.

1774 761 **Tables**

Table 1. Descriptive statistics for study period, daily deaths, and cutoffs for air pollutants and

1777 763 air temperature in eight European cities.

1778 -	*						_		
1779-		Helsinki	Stockholm	Copenhagen	Ruhr Area	Augsburg	Rome	Barcelona	Athens
1780	Study period	2001-	2001-2005,	2001-2010	2009-2013	1999-2009	2001-	2005-2010	2008-
1781	Sindy period	2010	2008-2010				2010		2010
1782	Daily mortality (me	$an \pm sd$							
1783	Total natural	18 ± 5	39±7	26±9	32±6	8±3	58±10	41 ± 8	80±12
1784	Cardiovascular	7±3	16±4	8±4	12±4	4±2	24±6	13±4	36±7
1785	Air pollutants perce	entiles (mea	lian)						
1786	PNC (particles/cm	1 ³)						100	
1787	Min	793	2113	503	1513	2243	2295	1926	582
1788	25th	4658	6210	3285	7523	7184	19384	13807	3775
1789	50th	6636	8150	4685	9740	9977	29168	18696	5599
1790	75th	9868	10910	6382	12331	13728	44202	24663	8696
1791	Max	38761	44170	21260	28905	44755	139640	50929	36024
1702	$PM_{2.5} (\mu g/m^3)$	0		0		_	0		_
1702	Min	0	1	0	4	1	0	2	5
170/	25th	5	5	9	10	10	13	15	16
1705	50th	7	7		14	15	18	20	20
1706	75th		9	15	22	21	24	28	26
1790	Max	57	37	70	128	126	73	104	63
1700	$PM_{10} (\mu g/m^3)$		2	•			_		-
1790	Min	1	3	2	4	4	7	4	7
1799	25th	10	9	14	14	19	26	23	24
1800	50th	13	12	18	19	29	33	32	32
1801	75th	19	17	23	28	40	44	43	42
1802	Max	116	82	100	131	169	Γ/4	190	291
1803	$O_3 (\mu g/m^3)$	•	_	<u>_</u>					10
1804	Min	2	5	0	3	3	1		10
1805	25th	48	51	26	36	45	42	41	49
1806	50th	62	64 70	33	55	67	75	65	71
1807	75th	76	78	40	75	93	100	83	91
1808	Max	159	129	11	196	190	199	142	138
1809	Air temperature per	centiles (°		0.1	11.0	10.0	0.4	0	1.0
1810	Min	-24.2	-17.9	-8.1	-11.0	-12.9	-0.4	0	-1.8
1811	1 St	-18.0	-11.3	-4.5	-4.6	-7.8	2.6	1./	4.9
1812	10th	-6.5	-2.9	0.4	1.0	-0.9	0.0 10. 2	0.4	10.0
1813	25th	-0./	1.2	4.5	0.4 11.5	5.0	10.2	9.5	13.8
1814	SUIN	5./ 12.7	/.0	9.4	11.5	10	15.6	14./	18.5
1815	/Sth	13.7	13.9	15.2	16.7	16.2	21.9	19.6	23.3
1816	90th	17.9	17.7	18.7	19.9	20.2	25.8	22.7	29.3
1817	99th	22.8	22.3	22.9	25.2	24.9	28.9	25.7	32.2
1818	Max	26.6	25.1	25.5	29.6	27.7	31	28.3	33.6

1820 764

Table 2. Percent increase (95% CI) in daily total natural and cardiovascular mortality766associated with a 10,000 particles/cm³ increase in PNC or a 10 μ g/m³ increase in PM2.5, PM10,767and O3 at different temperature levels.

Dallatant	Tanananatana lamala a	Total natural		Cardiovascula	ar
Ponutant	Temperature levels "	% increase	I^2	% increase	I ²
	Low	0.08 (-0.44, 0.61)	7%	-0.18 (-0.97, 0.62)	2%
PNC_lag6	Medium	-0.49 (-1.08, 0.11)	0%	-0.81 (-1.92, 0.32)	0%
	High	1.24 (-0.72, 3.24)	28%	2.51 (0.39, 4.67) ^{b,c}	0%
	Low	-0.46 (-1.02, 0.12)	0%	-0.03 (-0.91, 0.87)	12%
PM _{2.5} _lag1	Medium	0.84 (0.05, 1.63) ^b	47%	1.22 (0.35, 2.10) ^b	0%
	High	2.36 (0.11, 4.65) ^b	74%	3.58 (0.46, 6.81) ^b	66%
	Low	0.03 (-0.32, 0.38)	0%	0.23 (-0.43, 0.9)	8%
PM ₁₀ _lag1	Medium	0.28 (0.01, 0.55)	34%	0.25 (-0.16, 0.66)	0%
	High	0.93 (0.31, 1.55) ^b	0%	1.61 (0.73, 2.50) ^{b,c}	0%
	Low	0.17 (-0.14, 0.49)	0%	0.44 (-0.05, 0.93)	0%
O ₃ lag1	Medium	0.24 (-0.08, 0.57)	34%	0.69 (0.07, 1.31)	55%
	High	0.67 (0.36, 0.98) ^b	0%	0.54 (0.06, 1.02)	0%

^a The 25th and 75th percentiles of daily mean temperature were used as temperature cut-offs.

^b Significantly different from the low temperature level.

^c Significantly different from the medium temperature level.

1858 768

Table 3. Pooled cumulative mortality risks (percent increase and 95% CI) of daily total
natural and cardiovascular mortality associated with heat exposure (99th percentile relative to
90th percentile of air temperature) and cold exposure (1st percentile relative to 10th percentile
of air temperature) by air pollutant strata.

Pollutant	Pollutant levels ^a	Total natural	Cardiovascular	
DNC log6	Low	6.94 (2.76, 11.29)	3.75 (0.29, 7.33)	
PNC_lago	High	13.22 (-10.78, 43.67)	19.02 (-13.24, 46.68)	
DM log1	Low	4.53 (0.97, 8.21)	4.99 (-1.15, 7.56)	
1 WI _{2.5} _1ag1	High	17.71 (7.98, 28.31) ^b	16.10 (-1.62, 37.02) 7.04 (0.51, 9.69) 13.69 (1.84, 26.91) 3.90 (0.69, 7.22) 14.83 (2.35, 28.83) 2.00 (0.16, 3.88) 16.23 (3.80, 30.14) ^b 4.85 (1.71, 8.08)	
DM log1	Low	6.78 (0.53, 13.42)	7.04 (0.51, 9.69)	
1 wi ₁₀ lag1	High	17.39 (9.95, 25.33) ^b	13.69 (1.84, 26.91)	
0 lag1	Low	-2.08 (-4.43, 0.32)	3.90 (0.69, 7.22)	
	High	14.61 (8.24, 21.36) ^b	14.83 (2.35, 28.83)	
DNC loof	Low	3.64 (1.00, 6.35)	2.00 (0.16, 3.88)	
FINC_lago	High	14.06 (4.45, 24.55) ^b	16.23 (3.80, 30.14) ^b	
DM log1	Low	4.00 (1.08, 7.00)	4.85 (1.71, 8.08)	
1 W12.5_1ag1	High	9.39 (-1.71, 21.74)	8.38 (-7.67, 27.21)	
PM., lag1	Low	4.32 (1.50, 7.21)	3.71 (0.28, 7.26)	
1 w110_1ag1	High	10.53 (0.24, 21.88)	14.18 (0.11, 30.22)	
0. lag1	Low	6.24 (1.72, 10.96)	6.58 (1.17, 12.29)	
U ₃ _lag1	High	18.39 (-31.1, 103.42)	25.75 (-51.47, 225.85)	
-	Pollutant PNC_lag6 PM _{2.5} _lag1 PM ₁₀ _lag1 O ₃ _lag1 PNC_lag6 PM _{2.5} _lag1 PM ₁₀ _lag1 O ₃ _lag1	PollutantPollutant levels aPNC_lag6LowHighLowPM2.5_lag1LowPM10_lag1LowPM10_lag1LowO3_lag1LowPNC_lag6LowPM2.5_lag1LowPM10_lag1LowPM10_lag1LowPM10_lag1LowPM10_lag1LowPM10_lag1LowPM10_lag1LowHighLowHighLowPM10_lag1LowHighLowHig	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

^a The median value for each pollutant in each city was used as cut-offs for air pollution levels.

^b Significantly different from the low air pollution levels.

Temperature percentile

Supplemental Information

Two-way effect modifications of air pollution and air temperature on total natural and cardiovascular mortality in eight European urban areas

Kai Chen, Kathrin Wolf, Susanne Breitner, Antonio Gasparrini, Massimo Stafoggia, Evangelia Samoli, Zorana Jovanovic Andersen, Getahun Bero-Bedada, Tom Bellander, Frauke Hennig, Bénédicte Jacquemin, Juha Pekkanen, Regina Hampel, Josef Cyrys, Annette Peters, and Alexandra Schneider, on behalf of the UF&HEALTH Study Group

Table of contents

Text.S1. Description of the study areas.

Table S1. General information about the PNC measurements and measurement stations.

Table S2. Percentage of missing data for daily deaths, air pollution, and air temperature in eight European cities.

Table S3. Average air temperature distribution (°C) at different air pollution levels in eight European cities.

Fig.S1. Locations of the eight European urban areas in the UF&HEALTH study.

Fig.S2. Pearson correlation matrix plots between PNC, PM_{2.5}, PM₁₀, O₃, and air temperature in eight study areas.

Fig.S3. City-specific and pooled estimates on the short-term association between PNC and daily cause-specific mortality: percent increase (95% CI) per 10,000 particles/cm³ increase in PNC at lag 6. (A) Nonaccidental mortality; (B) cardiovascular mortality. The point size for city-specific estimates represent the weights used in the random effects meta-analyses. The diamonds represent the pooled estimates.

Fig.S4. City-specific and pooled estimates on the short-term association between $PM_{2.5}$ and daily cause-specific mortality: percent increase (95% CI) per 10 µg/m³ increase in $PM_{2.5}$ at lag 1. (A) Nonaccidental mortality; (B) cardiovascular mortality. The point size for city-specific estimates represent the weights used in the random effects meta-analyses. The diamonds represent the pooled estimates.

Fig.S5. City-specific and pooled estimates on the short-term association between PM_{10} and daily cause-specific mortality: percent increase (95% CI) per 10 µg/m³ increase in PM_{10} at lag 1. (A) Nonaccidental mortality; (B) cardiovascular mortality. The point size for city-specific estimates represent the weights used in the random effects meta-analyses. The diamonds represent the pooled estimates.

Fig.S6. City-specific and pooled estimates on the short-term association between O_3 and daily cause-specific mortality: percent increase (95% CI) per 10 μ g/m³ increase in O_3 at lag 1. (A) Nonaccidental mortality; (B) cardiovascular mortality. The point size for city-specific

estimates represent the weights used in the random effects meta-analyses. The diamonds represent the pooled estimates.

Fig.S7. Sensitivity analysis of modified air pollution-related mortality risk estimates (95% CI) by air temperature levels (low, medium, high) using 6-10 degree of freedom (df) per year for time trend.

Fig.S8. Sensitivity analysis of modified heat- and cold-related nonaccidental mortality risk estimates (95% CI) by air pollution strata using 6-10 degree of freedom (df) per year for time trend. For cardiovascular mortality, results were similar.

Fig.S9. Sensitivity analysis of modified air pollution-related mortality risk estimates (95% CI) by air temperature levels (low, medium, and high) using different lag days for air temperature category in eight European urban areas. Risk estimates are presented as percent increase (95% CI) in daily cause-specific mortality associated with a 10,000 particles/cm³ increase in PNC at lag day 6 or a 10 μ g/m³ increase in PM_{2.5}, PM₁₀, and O₃ at lag day 1.

Fig.S10. Modified air pollution-related mortality risk estimates (95% CI) by air temperature levels (low, medium, and high) with and without adjustment for co-pollutants in eight European urban areas. Risk estimates are presented as percent increase (95% CI) in daily cause-specific mortality associated with a 10,000 particles/cm³ increase in PNC at lag day 6 or a 10 μ g/m³ increase in PM_{2.5}, PM₁₀, and O₃ at lag day 1.

Fig.S11. Scatter plot of modified air pollution-related mortality risk estimates by air temperature levels (low, medium, and high) and city-specific characteristics (average temperature, temperature range, average air pollution level, and total number of population). The solid lines show the estimated association using a penalized cubic regression spline, and the shaded bands indicate 95% CIs. P-values represents the significance of Spearman correlations.

Fig.S12. Sensitivity analysis of modified air pollution-related mortality risk estimates (95% CI) by air temperature levels (low, medium, high) using multivariate meta-regression models, which included city-specific average temperature, temperature range, and population as additional meta-predictors.

Fig.S13. Sensitivity analysis of modified overall cumulative air temperature-mortality associations by air pollution with 95% CIs using multivariate meta-regression models, which included city-specific average temperature, temperature range, and population as additional meta-predictors.

Fig.S14. Sensitivity analysis of using UFP and total PNC in Augsburg, during 2004-2009.

Text.S1. Description of the study areas.

Athens

In Athens, because of its high population (3.75 million in the metropolitan area) and the concentration of commercial and industrial activities in a relatively small area (approximately 450 km²), severe environmental degradation has taken place characterized by high loadings of atmospheric pollutants. The urban aerosol is strongly affected by the local air-circulation in the basin and the sea-breeze effects developing between the Attica peninsula and the surrounding sea. The wind speed increases during the day and subsides in the night. Combustion processes used for transportation, power generation and other human activities produces a mixture of thousands chemical pollutants.

Augsburg

Augsburg is a mid-sized city with about 250,000 inhabitants in Bavaria, southern Germany. The City of Augsburg is the administrative center of the northwestern region of Bavaria. Small and middle-sized industrial entities are located in the northeastern part of the city. City planning has designed these as industrial sites. Therefore, the emissions from these sites contribute little to the air pollution concentrations in the City of Augsburg if the predominately westerly winds prevail. The terrain is moderately flat at 500 m above sea level. *Barcelona*

The city of Barcelona, NE Spain, with around 1,600,000 inhabitants in the city center and over 5,000,000 in the metropolitan area, is located on the Mediterranean coast and geographically constrained by the Collserola mountain range to the west, thus atmospheric dynamics are influenced by the breeze regime. This area is characterized by mild winters, warm summers and prevalent clear sky conditions all year round. Solar radiation is thus intense and precipitations are scarce. In the urban background of Barcelona the main source of atmospheric PM is road traffic, although contributions from industry, regional secondary atmospheric pollutants, construction, and shipping are also relevant. Barcelona has one of the highest car densities in Europe (5800 cars taxed in the city/km², Barcelona City Council, 2014), with diesel vehicles making up around 47% of the fleet, and one of the most important ports of the Mediterranean. In spite of these adverse facts, PM₁₀ and PM_{2.5} mass concentrations have decreased considerably in the last decade. Moreover, different meteorological scenarios can have an impact on the levels of pollutants, such as stagnant anticyclonic conditions, recirculation of air masses, Atlantic air mass advection or African dust outbreaks.

Copenhagen

Copenhagen is a city with about 580,000 inhabitants, an area of 86 km² and a population density of 6,700 inhabitants km⁻² located on Sealand, one of the largest Danish islands. Copenhagen is the capitol of Denmark and about 1,000,000 people live in the greater Copenhagen area. There are only few industrial sites in Copenhagen and thus only little contribution from these sites is expected to affect air pollution in Copenhagen. On the other hand a harbor area is located on the eastern side of Copenhagen directly connected to the city where ships stop but also pass by the city crossing the Øresund Strait. On Amager, an island south of the inner city center the Copenhagen airport is located in a distance of less than 10 km where aircrafts take off and land with high frequency as the airport is distributing passengers to other Scandinavian distributions. The overall terrain is flat and approximately at a few meters above sea level. The climate in Copenhagen can be described as marine or continental depending on the prevailing meteorological situation. In general, westerly winds are dominating the main wind directions.

Helsinki

The city of Helsinki is the capital of Finland, with around 600,000 inhabitants. The Helsinki metropolitan area consists of four cities (Helsinki, Vantaa, Espoo, and Kauniainen) and is by far the biggest and most densely populated area of Finland with about 1 million inhabitants. Population density in certain parts of Helsinki's inner city area is very high, reaching 20,000 inhabitants per km², but as a whole Helsinki's population density of 2,741 per km² (July 2010) ranks it as quite sparsely populated in comparison to other European capital cities. Helsinki metropolitan area is located on a relatively flat land on the coast of the Gulf of Finland. The area has a humid continental climate. Average temperature varies from -5 °C in February to +18 °C in July. The vast majority of the inhabitants live in the urban areas of the cities, but within the boundaries of these cities there are also suburban and rural areas. The majority of homes are heated with district heat throughout the year, but in some areas residential wood combustion.

Rome

Rome is the largest Italian city, with 2.9 million inhabitants in a 1,285 km² area. The urban area is divided into five concentric circular zones, corresponding with different levels of urbanization, population density and road traffic. The historical center, which corresponds to the limited traffic zone (LTZ) (55,000 inhabitants over an area of 6 km²), shows the highest concentration of business activity in Rome. Warm months, lasting in Rome generally from

June to September, are generally characterized by large-scale high-pressure systems. Cold months (November – March) are generally characterized by moderately low temperature, prevailing north wind. Moreover periodically high pressure systems can produce temperature inversions and weak winds, leading to stagnation episodes associated with pollutant accumulation in the lowers layers due to poor dispersion conditions. The main pollutants emission sources are road vehicles exhausts and small-scale combustion units, with thermal capacity < 50 MWth used in the civil sector for heating. Services and commerce are the main working activities, and emission of air pollutants from industries is relatively low compared with those originating from road traffic sources.

Ruhr Area (Essen-Mülheim-Oberhausen)

The so-called Ruhr Area is one of the most populated regions in Europe, covering 4,435 km² with about 5 million inhabitants. It has an industrial (coal mining and steel production) history that dominated the air quality for long time. While industrial emissions are still a concern, especially in certain hot-spots, traffic and domestic heating seem to dominate pollution nowadays. The three adjacent cities Essen, Mülheim and Oberhausen are located in the western part of the Ruhr Area (378.72 km2) with a total of approximately 946,000 inhabitants.

Stockholm

The city of Stockholm is the capital of Sweden, with around 900,000 inhabitants on 2014. The metropolitan area of Greater Stockholm has around 2 million inhabitants (2014). Stockholm is situated on the south-central east coast of Sweden, where the freshwater Lake Mälaren flows out into the Baltic Sea. The central parts of the city consist of fourteen islands that are continuous with the Stockholm archipelago. Over 30% of the city area is made up of waterways and another 30% is made up of parks and green spaces. The terrain is flat. Annual precipitation is around 500 – 600 mm and mean temperature around 7 °C. The main local source of PNC and PM10 is road traffic. PNC is mainly due to local vehicle exhaust, whereas PM10 is mainly from non-exhaust traffic emissions and long-range transport. Road wear is more important for PM10 concentrations in Stockholm than in many other countries where the use of studded tires is not so common. High PM10 concentrations are found in the inner city in springtime mostly due to particle suspension, as a result of the use of studded tires when roads are free from snow. Road surface wetness is very important for PM10 with systematically higher levels during dry conditions as compared to wet, while no significant difference can be observed for PNC.

City/Area	Time Period	Site ID	Site type	Sampling height (m)	Monitor, sampling method, etc.	Size range
Athens	01.01.08- 31.12.10	NCSR Demokritos (DEM)	Suburban background	10	TSI SMPS	10-102 nm
Augsburg	01.02.99- 29.11.04	Au_KG	Urban background	2	CPC 3022A	7-3000 nm
Augsburg	30.11.04- 31.12.09	Au_FH	Urban background	4	custom build TDMPS using TSI CPC 3025 and 3010	10-2000 nm
Barcelona	13.07.05- 31.01.09	Ba_IJA	Urban background	10	WCPC 3785	5-1000 nm
Barcelona	09.02.09- 31.12.10	BA_TG	Urban background	2	WCPC 3785	5-1000 nm
Copenhagen	15.05.01- 31.12.10	Co_HCOE	Urban background	20	custom build DMPS using TSI CPC 3010	10-110 nm
Helsinki	06.01.01- 01.10.04	Kumpula1	Urban background	18	DMA TSI307 + CPC TSI3022	10-100 nm
Helsinki	13.10.04- 31.12.10	Kumpula SMEAR III	Urban background	4	Hauke-type DMA + CPC TSI3025 Hauke- type DMA + CPC TSI3010	10-100 nm
Rome	12.04.01- 31.12.10	Rome_15	Urban traffic	2	TSI 3022A	7-3000 nm
Ruhr Area	01.03.09- 31.12.13	E_MH_OB	Urban background	4	TSI SMPS 3936/DMA 3080/UWCPC 3786	14-750 nm
Stockholm	01.05.01- 31.07.05	Sto_Rosenlundsgatan	Urban background	20	TSI 3022	7-3000 nm
Stockholm	17.02.08- 31.12.10	Sto_Torkel	Urban background	24	TSI 3755	4-3000 nm

Table S1. General information about the PNC measurements and measurement stations.

	Helsinki	Stockholm	Copenhagen	Ruhr Area	Augsburg	Rome	Barcelona	Athens
Daily mortality								
	0	0	0	0	0	0	0	0
Nonaccidental								
	0	0	0	0	0	0	0	0
Cardiovascular								
Air pollutants								
$PM_{2.5} (\mu g/m^3)$	0.2	0.0	31.8	51.0	3.2	50.1	6.2	28.4
$PM_{10} (\mu g/m^3)$	0.1	0.3	28.0	1.8	0.8	0.1	6.2	5.2
$O_3(\mu g/m^3)$	0.0	1.7	28.2	8.4	0.7	0.3	2.3	16.4
PNC (particles/cm ³)	3.6	23.1	48.1	16.5	16.7	39.1	33.2	45
Air								
temperature (°C)	0	0	3.3	3.7	2.0	0.6	1.1	0

Table S2. Percentage of missing data for daily deaths, air pollution, and air temperature in eight European cities

Air pollution levels	Min	1st percentile	10th percentile	25th percentile	50th percentile	75th percentile	90th percentile	99th percentile	Max
PNC levels									
Low	-9.2	-4.2	2.6	7.1	13.1	18.5	21.6	25.5	28.1
High	-8.3	-4.6	1.2	5.5	10.2	15.5	19.9	25.0	27.5
PM _{2.5} levels									
Low	-7.3	-3.1	2.5	6.4	11.6	16.9	20.4	24.3	27.3
High	-8.6	-4.9	1.5	5.6	11.2	18.3	22.3	26.0	28.1
PM ₁₀ levels									
Low	-8.5	-3.7	2.0	5.9	11.5	17.4	20.7	24.5	27.3
High	-8.9	-4.1	2.0	6.2	11.7	18.3	22.2	26.1	28.4
O ₃ levels									
Low	-9.5	-5.6	0.0	3.8	7.6	12.6	16.6	21.2	24.4
High	-6.4	-0.9	5.8	10.8	16.5	20.5	23.1	26.5	28.4

Table S3. Average air temperature distribution (°C) at different air pollution levels in eight European cities. ^a

^a The median value for each pollutant in each city was used as cut-offs for air pollution levels.

Fig.S1. Locations of the eight European urban areas in the UF&HEALTH study.

Athens

PNC				0	0.75
0.15	PM2.5			•	0.5
0.09	0.69	PM10		۲	- 0
-0.06	0.2	-0.09	03		-0.25 -0.5
-0.06	0.34	0.12	0.74	Temp	•0.75

PM10

-0.1

-0.13

Helsinki

۲

0

03

0.68

0

Tem

1.75

PNC

0.46

0.49

-0.24

-0.31

PM2.5

0.83

-0.16

-0.29

Barcelona

-	- *	•		•	PNC
	•			PM2.5	0.39
	0	•	PM10	0.8	0.51
		03	-0.17	-0.23	-0.28
	Temp	0.58	0.05	-0.1	0

0					PNG
0	٥	•		PM2.5	0.15
-			PM10	0.86	0.29
		03	0.11	-0.02	0.08
	Temp	0.44	0.12	-0.03	0.06

	0		•		PNC
	6	0		PM2.5	0.22
	0	•	PM10	0.74	0.26
	0	03	0.32	0.16	-0.15
0	Tem	0.44	0.03	-0.04	-0.34

PNC			0		0.7
0.56	PM2.5		•	•	-0.
D.44	0.88	PM10			- 0
0.52	-0.36	-0.19	03		-0.
0.53	-0.26	-0.07	0.75	Temp	0.

Rome

PNC . 0.07 PM2.5 PM10 0 0.12 0.96 25 -0.24 03 0.19 -0.2 0.5 0.25 -0.33 -0.32 0.67 Temp 0.75

_	1				1
PNC					0.75
0.09	PM2.5		•	•	-0.5 0.25
0.13	0.76	PM10	0		D
-0.23	0.26	0.41	03		+0.2
-0.49	0.08	0.07	0.44	Temp	-0.78

All 8 cit	ties
-----------	------

Fig.S2. Pearson correlation matrix plots between PNC, PM_{2.5}, PM₁₀, O₃, and air temperature in eight study areas.

PNC_lag6 and daily mortality

Fig.S3. City-specific and pooled estimates on the short-term association between PNC and daily cause-specific mortality: percent increase (95% CI) per 10,000 particles/cm³ increase in PNC at lag 6. (A) Nonaccidental mortality; (B) cardiovascular mortality. The point size for city-specific estimates represent the weights used in the random effects meta-analyses. The diamonds represent the pooled estimates.

PM2.5_lag1 and daily mortality

Fig.S4. City-specific and pooled estimates on the short-term association between $PM_{2.5}$ and daily cause-specific mortality: percent increase (95% CI) per 10 µg/m³ increase in $PM_{2.5}$ at lag 1. (A) Nonaccidental mortality; (B) cardiovascular mortality. The point size for city-specific estimates represent the weights used in the random effects meta-analyses. The diamonds represent the pooled estimates.

PM10_lag1 and daily mortality

O3_lag1 and daily mortality

Fig.S7. Sensitivity analysis of modified air pollution-related mortality risk estimates (95% CI) by temperature levels (low, medium, high) using 6-10 degree of freedom (df) per year for time trend.

Fig.S8. Sensitivity analysis of modified heat- and cold-related nonaccidental mortality risk estimates (95% CI) by air pollution strata using 6-10 degree of freedom (df) per year for time trend. For cardiovascular mortality, results were similar.

Fig.S9. Sensitivity analysis of modified air pollution-related mortality risk estimates (95% CI) by air temperature levels (low, medium, and high) using different lag days for air temperature category in eight European urban areas. Risk estimates are presented as percent increase (95% CI) in daily cause-specific mortality associated with a 10,000 particles/cm³ increase in PNC at lag day 6 or a 10 μ g/m³ increase in PM_{2.5}, PM₁₀, and O₃ at lag day 1.

Fig.S10. Modified air pollution-related mortality risk estimates (95% CI) by air temperature levels (low, medium, and high) with and without adjustment for co-pollutants in eight European urban areas. Risk estimates are presented as percent increase (95% CI) in daily cause-specific mortality associated with a 10,000 particles/cm³ increase in PNC at lag day 6 or a 10 μ g/m³ increase in PM_{2.5}, PM₁₀, and O₃ at lag day 1.

Fig.S11. Scatter plot of modified air pollution-related mortality risk estimates by air temperature levels (low, medium, and high) and city-specific characteristics (average temperature, temperature range, average air pollution level, and total number of population). The solid lines show the estimated association using a penalized cubic regression spline, and the shaded bands indicate 95% CIs. P-values represents the significance of Spearman correlations.

Fig.S12. Sensitivity analysis of modified air pollution-related mortality risk estimates (95% CI) by air temperature levels (low, medium, high) using multivariate meta-regression models, which included city-specific average temperature, temperature range, and population as additional meta-predictors.

Fig.S13. Sensitivity analysis of modified overall cumulative air temperature-mortality associations by air pollution with 95% CIs using multivariate meta-regression models, which included city-specific average temperature, temperature range, and population as additional meta-predictors.

Fig.S14. Sensitivity analysis of using UFP and total PNC in Augsburg, during 2004-2009.

22