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Abstract 

Lipooligosaccharide (LOS) structures in the outer core of Gram-negative mucosal 

pathogens such as Neisseria meningitidis and Haemophilus influenzae contain 

characteristic glycoepitopes that contribute significantly to bacterial virulence. An 

important example is the digalactoside epitope generated by the retaining α-1,4-

galactosyltransferase LgtC. These digalactosides camouflage the pathogen from the 

host immune system and increase its serum resistance. Small molecular inhibitors of 

LgtC are therefore sought after as chemical tools to study bacterial virulence, and as 

potential candidates for anti-virulence drug discovery. We have recently discovered a 

new class of non-substrate-like inhibitors of LgtC. The new inhibitors act via a 

covalent mode of action, targeting a non-catalytic cysteine residue in the LgtC active 

site. Here, we describe, for the first time, structure-activity relationships for this new 

class of glycosyltransferase inhibitors. We have carried out a detailed analysis of the 

inhibition kinetics to establish the relative contribution of the non-covalent binding 

and the covalent inactivation steps for overall inhibitory activity. Selected inhibitors 

were also evaluated against a serum-resistant strain of Haemophilus influenzae, but 

did not enhance the killing effect of human serum. 
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1. Introduction 

Glycoconjugates such as glycolipids and glycoproteins play a critical role for the 

virulence and viability of many bacterial pathogens [1]. The biosynthetic machinery 

required for bacterial glycoconjugate synthesis therefore offers a rich source of 

potential targets for the development of novel anti-bacterial or anti-virulence agents. 

A central role for bacterial glycoconjugate biosynthesis is played by 

glycosyltransferases (GTs), a family of enzymes that catalyse the transfer of a sugar 

from a glycosyl donor to a requisite acceptor [2]. It has been estimated that for most 

organisms, 1-3% of their genes encode GTs and other carbohydrate-active enzymes 

[3]. From the 1.6 Mb genome of Campylobacter jejuni NCTC 11168, for example, 

approximately 45 GTs have been predicted [4]. Individual bacterial GTs such as the 

N-acetylglucosamine transferase MurG, a key enzyme for peptidoglycan 

biosynthesis, have been identified as promising targets for the discovery of novel 

antibiotics [5]. 

Another important bacterial GT is the retaining α-1,4-galactosyltransferase LgtC 

[6], which catalyses the transfer of a D-galactose moiety from a UDP-D-galactose 

(UDP-Gal) donor to lactose-containing acceptors in the lipooligosaccharide (LOS) 

envelope of Gram-negative pathogens such as Neisseria and Haemophilus (Fig. 1). 

LgtC is a member of family GT-8 in the CAZy database of carbohydrate-active 

enzymes [7], and is highly conserved across different Neisseria, Haemophilus and 

Pasteurella species. The resulting digalactoside epitopes confer resistance to pre-

existing antibody and complement-mediated lysis [8] and have been associated with 

increased virulence in an in-vivo model of Haemophilus influenzae infection [9]. The 

expression of LgtC has also been linked directly with the high-level serum resistance 

of H. influenzae R2866 [10]. Small molecular inhibitors of LgtC are therefore of 
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considerable interest as chemical tools for microbiological investigation and as 

potential lead compounds for anti-virulence drug discovery [11]. 

Previously reported LgtC inhibitors are mainly substrate-like molecules derived 

from the UDP-Gal donor [6,12]. Due to the presence of the charged diphosphate 

fragment and their potentially limited stability, such donor analogues are not suitable 

for applications with bacterial cultures or cells. We have recently discovered a novel 

class of non-substrate-like LgtC inhibitors based on a pyrazol-3-one scaffold (Fig. 2) 

[13]. These inhibitors behave as substrate mimics and react covalently, at their 

Michael acceptor system, with a non-catalytic cysteine in the LgtC active site [13]. 

Due to their uncharged, drug-like structure and straightforward synthesis, these 

pyrazol-3-ones are attractive for applications in chemical biology and drug discovery. 

 

Fig. 1 The LgtC reaction 

 

 

In the present study, we have systematically explored structural modifications 

around the pyrazol-3-one scaffold. Starting from prototype inhibitor 1 [13], we first 

designed and synthesised analogues with various substituents at the 5-position of 

the pyrazol-3-one scaffold (Fig. 2). We investigated a range of 5-substituents with 

different steric and electronic properties, in order to probe their effect on the 

reactivity of the Michael acceptor system. Following the identification of a 5-CF3 

substituent as advantageous, further structural optimisation was carried out on the 2- 
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and 4-position. To understand the relative contribution of the non-covalent binding 

step and the covalent inactivation step to the overall inhibition of LgtC, we carried out 

detailed covalent inhibition kinetics with selected derivatives. Determination of their 

inhibition constants Ki and inactivation rates kinact and correlation of these parameters 

with IC50 values allowed us, for the first time, to establish SAR in this series. We also 

tested selected pyrazol-3-ones against H. influenzae strain R2866, both in growth 

inhibition and serum survival assays. Unfortunately, these inhibitors had no effect on 

serum resistance, and only a minimal effect on bacterial growth. Although these 

pyrazol-3-ones therefore have probably limited potential as drug candidates, our 

strategy and results provide a strong foundation for the rational design of alternative 

covalent inhibitor chemotypes for this enzyme as well as related bacterial GTs. 

 

Fig. 2 Design strategy for pyrazol-3-one derivatives investigated in this study 

 

 

 

2. Results and discussion 

2.1 Chemistry 

To obtain the target molecules, one of the key steps was the synthesis of 

intermediates with different substituents in the 5-position of the pyrazol-3-one 

scaffold (Scheme 1A). Six intermediates (3a-3c, 4a-b, and 5) were obtained by 

condensation reactions of commercially available aryl hydrazines and β-ketoesters 
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2a-c in acetic acid at 120 °C. The condensation products were obtained in 41-75% 

yield after purification by column chromatography. 3c was then converted to other 

cyclised intermediates by different synthetic routes. 3c was heated at reflux in 28% 

aqueous ammonia for 12 h to generate the amide derivative 3d, while a hydrolysis 

reaction with 3c afforded carboxylic acid derivative 3e. With intermediates 3, 4, and 5 

in hand, the benzylidene-substituted pyrazol-3-one products 6-8 were obtained by 

condensation with the respective aldehyde in moderate to good yield under 

microwave conditions (Scheme 1B). 

 

 

Scheme 1. Synthesis of pyrazol-3-one derivatives 6-8. Reagents and conditions: (i) 
AcOH, 110 °C, overnight, 41-75%; (ii) aq. NH3 (28%), reflux, 38%; (iii) aq. NaOH (1 
N), EtOH, rt, 91%; (iv) aldehyde, 160 °C, microwave, 15 mins, 15-80%. For 
substituents R2 and R3 see Tables 1-3. 
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Compounds 10 and 12 were prepared as shown in Scheme 2. The carboxylic 

acid intermediate 4b, was reacted with 2-aminoethan-1-ol in the presence of 

diisopropylethylamine (DIEA) and 2-(1H-benzotriazol-1-yl)-1,1,3,3-

tetramethyluronium hexafluorophosphate (HBTU) in DMF to afford amide 9. 

(Scheme 2A). For the synthesis of intermediate 11, ethyl 3-oxobutanoate was heated 

to reflux with benzylhydrazine in glacial acetic acid (Scheme 2B). The target 

compounds 10 and 12 were obtained from 9 and 11, respectively, via condensation 

reaction with 3-bromo-4-methoxybenzaldehyde under the microwave conditions 

described above. 

 

 

Scheme 2. Synthesis of pyrazol-3-one derivatives 10 and 12. Reagents and 
conditions: (i) HBTU, DIEA, DMF, rt, 75%; (ii) AcOH, 110 °C, overnight, 17%; (iii) 3-
bromo-4-methoxybenzaldehyde, 160 °C, microwave, 15 mins, 9% (10) or 28% (12). 
 

The 1D NMR spectra of all benzylidene-substituted pyrazol-3-ones showed the 

presence of only a single geometric isomer (ESI). Consistently, the peak for the H-1 

and/or H-6 proton at the benzylidene ring appeared distinctly downfield (>8.5 ppm). 
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of the double bond [14]. Further evidence for the (Z) configuration was obtained from 

a NOESY experiment with 5-methyl pyrazol-3-one 6 (ESI), which showed a NOE 

correlation between the protons of the 5-CH3 group (δ 2.3 ppm) and the CH at the 

exocyclic double bond (δ 7.75). While a similar NOESY analysis is not applicable in 

the 5-CF3 series, due to the absence of protons from position 5, the (Z) configuration 

of 6 is in keeping with the configuration observed in the crystal structure of a 

structurally related 5-CF3 pyrazol-3-one [15]. 

 

2.2 Biochemical evaluation of inhibitors 

2.2.1 Inhibition of LgtC 

To assess the inhibitory activity of the pyrazolone derivatives, we used a 

colorimetric biochemical assay previously reported by our group [16]. In this enzyme-

coupled assay, calf intestinal phosphatase (CIP) is used to selectively and 

quantitatively release inorganic phosphate (Pi) from UDP, the secondary product of 

the LgtC reaction, followed by quantification of Pi with Malachite Green. Because of 

the covalent mode of action previously observed in this inhibitor series [13], we pre-

incubated the enzyme with inhibitor prior to starting the enzymatic reaction. 

First, we assessed the potency of pyrazol-3-one derivatives with different 

substituents at the 5-position, but identical substituents at positions 2 and 4 (Table 1). 

Inhibitory activity was determined at two different concentrations of inhibitor (25 µM 

and 50 µM), and with 30 mins pre-incubation time. Under these conditions, the 5-

CF3-substituted derivative 7b displayed the strongest inhibitory activity, with about 84% 

inhibition at 50 µM. Practically all derivatives with an electron-withdrawing 5-

substituent were more active than the electron-donating 5-methyl congener 6, which 

showed only about half the level of inhibition of 7b. These results suggested that 
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electron-withdrawing 5-substituents are advantageous for LgtC inhibition, possibly by 

increasing the reactivity of the Michael acceptor system. However, caution has to be 

applied when analysing the behaviour of covalent inhibitors, as their overall activity is 

determined not only by the reactivity of their electrophilic warhead, but also by their 

binding affinity at the target [17]. Variations in potency within this series of 5-

substituted pyrazol-3-ones may therefore result not only from differences in Michael 

acceptor reactivity, but also from different non-covalent binding affinities. The 

decreased activity of compounds with bulky electron-withdrawing 5-substituents (8c, 

8d), for example, may be due to suboptimal non-covalent binding outweighing the 

increased reactivity of the Michael acceptor. 

To better understand the interplay between covalent inactivation and non-

covalent binding for overall inhibitory activity of these pyrazol-3-ones, we next 

investigated how different substituents on the 2-phenyl and 4-benzylidene moieties 

affect inhibitory activity in a series of analogues with the same 5-substituent. Based 

on initial SAR trends, we selected 5-CF3 derivative 7b as the starting point for this 

set of modifications (Table 2). 

 

Table 1 Pyrazol-3-ones with different 5-substituents, and their inhibitory activity 
against LgtC. 

 

 

Cmpd R1 
inhibition (%)a 

at 50 µM at 25 µM 

6 -CH3 43 ± 2 33 ± 0.1 

7b -CF3 84 ± 3 80 ± 4 

8a -CO2Et 66 ± 3 61 ± 3 

N
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8b -CH2CO2Et 67 ± 4 32 ± 5 

8c -CO2H 58 ± 1 35 ± 1 

8d -C(O)NH2 39 ± 6 31 ± 6 
aLgtC was pre-incubated with inhibitor (25 µM or 50 µM) or DMSO, UDP-Gal (28 
μM), MnCl2 (5 mM), CIP (10 U/mL), CEL (1 mg/mL), and Triton (0.01%) for 30 mins 
at 30 °C in 13 mM HEPES buffer (pH 7.0). Lactose (2 mM) was added, and the 
reactions were incubated for 20 mins at 30 °C. Each compound was tested in 
triplicate; results are presented as average ± SD.  

 

Derivative 7c with an unsubstituted 4-benzylidene moiety showed approximately 

10-fold weaker inhibition than reference inhibitor 7b. Analogues of 7b in which the 3-

Br, 4-OCH3 substitution pattern was replaced with a 3-OBn (7a) or 4-Cl (7d) group 

displayed a similar drop in potency. Introduction of a bulky group at the ortho-

position of the 4-benzylidene ring (7e) completely abolished inhibitory activity, which 

suggested that sterically demanding substituents in this position are not tolerated by 

the enzyme. In contrast, compounds with different modifications at the 3- or 4-

position of the 2-phenyl ring (7f, 7g, and 10) maintained similar inhibitory activity as 

the parent 7b. These general SAR trends are consistent with previous results from 

docking experiments, which indicated that the 2-phenyl ring is oriented away from 

the binding pocket towards solvent [13]. This proposed binding mode can explain the 

observed tolerance towards different substituents in this position. In contrast, the 

insertion of an additional CH2 group between the phenyl ring and the N2 of the 

pyrazol-3-one scaffold was less well tolerated, and led to a 4-fold loss in activity (12). 

 

Table 2 5-CF3 pyrazol-3-ones with different 2- and 4-substituents, and their 
inhibitory activity against LgtC. 
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Cmpd R2 R3 IC50 (µM)a 

6 H 3-Br, 4-OCH3 >50 

7a H 3-OBn 18 ± 1 

7b H 3-Br, 4-OCH3 3.1 ± 0.5 

7c H H 28 ± 5 

7d H 4-Cl 25 ± 2 

7e H 2-CO2CH2CH3 >100 

7f 3-CO2H 3-Br, 4-OCH3 3.0 ± 0.3 

7g 4-CO2H 3-Br, 4-OCH3 2.9 ± 0.2 

10 3-C(O)NHCH2CH2OH 3-Br, 4-OCH3 4.3 ± 0.4 

12 n/a n/a 12 ± 2 
 

aLgtC was pre-incubated with inhibitor (7a, 7c-7g, 10: 0.1-100 µM; 7b, 12: 0.1-50 µM) 
or DMSO, UDP-Gal (28 μM), MnCl2 (5 mM), CIP (10 U/mL), CEL (1 mg/mL), and 
Triton (0.01%) for 30 mins at 30 °C in 13 mM HEPES buffer (pH 7.0). Lactose (2 mM) 
was added, and the reactions were incubated for 20 mins at 30 °C. Each compound 
was tested in triplicate; results are presented as average ± SD. 
 

 

2.2.2 Covalent inhibition kinetics for selected pyrazol-3-ones 

Although IC50 values are commonly used as a measure of potency and for SAR 

studies, they are not ideal for the analysis of covalent inhibitors [18]. The interaction 

between a covalent inhibitor and its target can be separated into a reversible, non-

covalent binding step, and an irreversible inactivation step (Fig. S1). The first step 

can be described quantitatively by the inhibition constant Ki, and the second step by 

the inactivation rate kinact. Experimental protocols have been established to 

determine these kinetic parameters, and thus the relative contribution of each step to 

overall inhibition [17]. To fully understand the covalent inhibition kinetics in the 

N

N

O

CF3

Br

OCH3

N

N

O

R1

R2
R3

12
6:  R1  = -CH3

7 and 10:  R1  = -CF3



  

 12 

pyrazol-3-one series, we used these protocols to determine the Ki and kinact values of 

eight selected derivatives (Fig. S2), and correlate them with IC50 values (Table 3). 

Within this set of 5-CF3 pyrazol-3-ones, kinact values did not vary significantly 

(0.9-2.5 × 10-3 s-1). This suggests that independent of the substitution pattern at the 

4-benzylidene substituent, the covalent bond formation rate is of a similar order of 

magnitude for all eight derivatives. In contrast, a considerable spread of Ki values 

was observed for the same derivatives (5-150 µM). This indicates that different 

substituents on the 4-benzylidene moiety directly affect the reversible binding affinity 

of these inhibitors for LgtC. Taken together, these results suggest that it is non-

covalent binding, not covalent inactivation, that drives LgtC inhibition in this series of 

pyrazol-3-ones. This interpretation is supported by the good correlation between Ki 

values and IC50 values (Table 3). The rank orders of Ki and IC50 values correspond 

almost perfectly, with only a single outlier (7d). This correlation is even stronger 

between IC50 values and the ratio of kinact/Ki. Thus, inhibitors with a high kinact/Ki ratio 

have low IC50 values, as previously observed for other covalent inhibitors [19]. 

The availability of Ki and kinact values also enabled us to delineate SAR for the 

different substitution patterns on the 4-benzylidene moiety (Table 3). Almost all 

derivatives with one or more substituents on the 4-benzylidene moiety displayed 

higher kinact/Ki values, and hence better affinity for LgtC, than the derivative 7c 

bearing an unsubstituted 4-benzylidene. Regarding the effect of individual 

modifications, substitution of the 3-position (7a, 7j) was generally less favourable 

than substitution of the 4-position. Most notably, moving a benzyloxy substituent 

from position 3 to position 4 led to a 10-fold improvement, both in terms of Ki and 

IC50 value (7h vs 7a). This suggests that a large substituent in position 3 is 

disadvantageous for non-covalent binding affinity, which may be indicative of a 
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possible steric clash with the enzyme in this position. In contrast, substituents at 

position 4 were generally very well tolerated, with the exception of a chloro 

substituent (7d). 

 

Table 3 Kinetic parameters for covalent inhibition of LgtC by selected 5-CF3 
pyrazol-3-ones. 

 

 

Cmpd R3 kinact (×10-3 s-1)a Ki (µM)a kinact/Ki (M
-1s-1) IC50 (µM)b 

7a 3-OBn 1.8 ± 0.1 50 ± 9 36 38 ± 13 

7b 3-Br, 4-OCH3 1.2 ± 0.07 7.1 ± 1.1 163 6.4 ± 1.6 

7c H 2.0 ± 0.2 153 ± 31 13 63 ± 8 

7d 4-Cl 0.9 ± 0.1 49 ± 18 18 80 ± 26 

7h 4-OBn 1.1 ± 0.07 4.7 ± 1.0 238 3.3 ± 0.6 

7i 4-OCH3 1.5 ± 0.07 19 ± 2 80 8.9 ± 1.8 

7j 3-Cl 1.6 ± 0.3 88 ± 33 18 64 ± 5 

7k 4-OH 2.5 ± 0.2 6.8 ± 1.5 370 5.8 ± 0.5 
 

aEach compound was tested in triplicate; results are presented as average ± SD. For 
details see ESI, Fig. S2. bLgtC was pre-incubated with inhibitor (7a: 0.1-100 μM; 7b, 
7h, 7i, 7k: 0.1-50 μM; 7d, 7j: 0.1-200 μM; 7c: 0.1-250 μM) or DMSO, UDP-Gal (28 
μM), MnCl2 (5 mM), CIP (10 U/mL), CEL (1 mg/mL), and Triton (0.01%) for 20 mins 
at 30 oC in 13 mM HEPES buffer (pH 7.0). Lactose (2 mM) was added, and the 
reactions were incubated for 20 mins at 30 °C. Each compound was tested in 
triplicate; results are presented as average ± SD. 
 

 

2.3 Microbiological evaluation of selected inhibitors 

2.3.1 Growth inhibition assay 

To assess the activity of this class of LgtC inhibitors against live bacteria, we 

evaluated the 5-CF3 pyrazol-3-ones 7a and 7b against non-typeable H. influenzae 

(NTHi) strain R2866. For direct comparison, we also included the prototype inhibitor 
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1 [13] in these experiments. NTHi strain R2866 was first isolated by Nizet from the 

blood of children with a meningitis infection [20]. Despite its lack of a capsular 

polysaccharide structure, this strain has been reported to be serum-resistant at a 

similar level as encapsulated type b H. influenzae [10]. The unusual serum 

resistance and increased virulence of the R2866 strain has been linked to the lgtC 

gene and the expression of terminal digalactoside epitopes on LOS structures in the 

outer membrane [9]. LgtC inhibitors may therefore be able to reduce this increased 

serum resistance and potentiate serum killing. Such a mechanism would make them 

useful as potential anti-virulence agents [21]. 

Before putting this hypothesis to the test in serum survival experiments, we first 

evaluated the effect of 1, 7a and 7b on bacterial growth. To identify the optimal time 

point for growth inhibition experiments, we monitored the growth of strain R2866 by 

measuring the optical density (OD) over 20 hours. A single colony of the organism 

was grown in the supplemented Brain Heart Infusion broth (sBHI) at 37 °C for 19 

hours, and the OD590 was recorded at various time points (Fig S3). The doubling 

time of H. influenzae R2866 was 2 hours. The organism reached the stationary 

phase after 10-12 hours, with a maximal OD590 of 2.6, followed by a decline in 

growth. 

To assess the potential toxicity of pyrazol-3-ones 1, 7a and 7b against R2866, 

we used a bacterial viable count method [22] to quantify viable bacteria after inhibitor 

treatment. Thus, a stationary culture of H. influenza was diluted to the required OD590 

and incubated for 1 h with inhibitors at various concentrations (0-200 µM), or DMSO 

as the control. Samples were centrifuged, and the cell pellet was washed twice to 

remove excess inhibitors. Bacterial samples were serially diluted and plated on 
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chocolate agar plates. The cultures were incubated at 37 °C, 5% CO2 for 24 hours, 

and the viable count was recorded (Fig. 3). 

 

Fig. 3 Activity of pyrazol-3-ones 1, 7a, and 7b in the H. influenzae R2866 growth 
inhibition assay.a  

 

aConditions: H. influenzae R2866 was incubated with inhibitors 1, 7a, or 7b (0-200 
µM, final percentage of DMSO: 10%) at 37 °C for 1 h. Excess inhibitor was removed 
by centrifugation, and the cell pellet was washed with sBHI twice. Resuspended cell 
samples were plated on agar plates and incubated at 37 oC, 5% CO2 for 24 h. Viable 
count was recorded and data were analysed with GraphPad Prism v6.0. Each 
concentration was tested in triplicate; results are shown as the mean. Statistical 
analysis was performed by an unpaired t-test; *P < 0.05. 
 

At concentrations up to 100 µM, none of the inhibitors had a significant effect on 

bacterial growth under these conditions. This is not unexpected, as LgtC is not 

essential for bacterial viability. This lack of growth inhibitory activity is, in fact, 

desirable, as an anti-virulence agent is, ideally, devoid of bactericidal or 

bacteriostatic activity [11]. However, in cultures treated with 1 or 7a at 200 µM we did 

7a

Control 50 µM 100 µM 200 µM

2.0X107

1.5X107

1.0X107

0.5X107

0

2.5X107

C
F

U
/m

L

Control 50	µM	 100	µM	 200	µM	

2.0X107

1.5X107

1.0X107

0.5X107

0

CF
U
/m

L

1

Control 50 µM 100 µM 200 µM

2.0X107

1.5X107

1.0X107

0.5X107

0

C
F

U
/m

L

Control 50 µM 100 µM 200 µM

7b

2.0X107

1.5X107

1.0X107

0.5X107

0

2.5X107

C
F

U
/m

L



  

 16 

observe a significant reduction in bacterial growth (P<0.05). This suggests that at 

this concentration, these pyrazol-3-ones interfere with one or more targets other than 

LgtC that are critical for bacterial viability. 

 

2.3.2 Serum survival assay 

To test the hypothesis that LgtC inhibitors may be able to increase the sensitivity 

of H. influenzae strain R2866 to serum, we designed a serum survival experiment. 

First, bacteria in the stationary phase were exposed to various concentrations of 

normal human serum (NHS) for 1 h, before plating the cultures on agar plates. The 

general protocol followed that of the growth inhibition assay. As shown in Fig. 4A, 10% 

(v/v) NHS had no killing effect on R2866 compared to untreated bacteria. However, 

the viable count dropped significantly in samples treated with 30% and 50% NHS, 

with P values less than 0.05 (30%) and 0.01 (50%), respectively. These results 

showed that as expected, strain R2866 was only susceptible to serum killing at high 

levels of NHS. 

To assess if LgtC inhibitors may enhance the killing effect of serum, we next 

determined bacterial viability in the presence of both serum (30% v/v) and inhibitors. 

As our goal was to attenuate bacterial serum resistance rather than kill the bacteria 

outright, we tested 1, 7a, and 7b at concentrations that did not affect bacterial growth 

(1 and 7a: 100 µM; 7b: 50 µM). The overnight culture of R2866 was diluted to the 

required OD590, followed by incubation with both serum and the respective inhibitor 

for 1 h at 37 °C. Serum and free inhibitors were removed by centrifugation. Cell pellet 

was washed twice with sBHI and plated on agar plates. After 24 h incubation, the 

viable count was recorded (Fig. 4B). No significant reduction in serum resistance 
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was observed in the presence of inhibitor. This suggests that none of these three 

pyrazol-3-ones potentiates serum killing of H. influenzae strain R2866. 

 

Fig. 4 Serum survival assay in the absence (a) or presence of inhibitors (b).a 

 

aConditions: (A) H. influenzae R2866 was incubated with different concentrations of 
serum for 1 h at 37 oC, followed by centrifugation to remove excess serum. The cell 
pellet was plated on agar plates and incubated for another 24 h at 37 oC, 5% CO2. 
Viable count was recorded, and data were analysed by GraphPad Prism v6.0. Each 
concentration was tested in triplicate; results are shown as the mean. Statistical 
analysis was performed by an unpaired t-test; *P < 0.05, **P < 0.01. (B) Bacteria 
were exposed to 30% NHS and inhibitor (1: 100 µM; 7a: 100 µM; 7b: 50 µM) for 1 h 
at 37 oC (Control: 30% NHS). Serum and inhibitors were removed by centrifugation. 
Cell pellet was plated on agar plates, and incubated for another 24 h at 37 oC, 5% 
CO2. Viable count was recorded, and data were analysed by GraphPad Prism v6.0. 
Each concentration was tested in triplicate; results are shown as the mean. 

 

3. Conclusions 

We have recently identified 5-substituted pyrazol-3-ones as novel, non-

substrate-like inhibitors of the bacterial glycosyltransferase LgtC with a covalent 

mode of action [13]. In this study, we have systematically explored the effect of 

different substituents in position 2, 4 and 5 of the pyrazol-3-one scaffold on inhibitory 

activity. We found that an electron-withdrawing CF3 substituent in position 5 is 

superior not only to the electron-donating 5-CH3 substituent of the prototype inhibitor, 

but also to other electron-withdrawing groups. Focusing specifically on derivatives 
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with a 5-CF3 substituent, we carried out a detailed analysis of inhibition kinetics to 

dissect the non-covalent binding and covalent inactivation steps that are 

characteristic for covalent inhibitors [17]. This analysis showed that different 

substitution patterns at the 4-benzylidene moiety have limited influence on the 

reactivity of the electrophilic Michael acceptor warhead, but a strong effect on non-

covalent binding. In conjunction with IC50 values, these results indicate that non-

covalent binding rather than covalent inactivation is the driver for overall inhibitory 

activity in this 5-CF3 pyrazol-3-one series of LgtC inhibitors. Non-catalytic cysteines 

are a common motif in bacterial GTs [13]. The insights from this study may therefore 

also be useful for the rational development of covalent inhibitors against other 

bacterial GTs. 

LgtC increases serum resistance in some H. influenzae strains and is therefore a 

potential target for anti-virulence drug discovery [10]. This prompted us to evaluate 

selected pyrazol-3-ones against the serum-resistant H. influenzae strain R2866. 

While none of these LgtC inhibitors affected bacterial growth at concentrations up to 

100 µM, neither did they enhance serum killing. A possible explanation for this 

disappointing result is the phase variable expression of LgtC. Several genes related 

to serum resistance in H. influenzae, including lgtC, are subject to phase variation 

via slipped strand mispairing of DNA, a mechanism that allows bacterial pathogens 

to rapidly and reversibly adapt to changing environments [8, 23]. The expression of 

the digalactoside epitope in NTHi is controlled by tetranucleotide repeats [23] and, as 

a consequence of slipped strand mispairing, is turned on or off at high frequency, 

resulting in structural heterogeneity of the LOS structures [23]. Although H. 

influenzae strain R2866 was, as expected, remarkably resistant to NHS in our serum 

survival assay, under the current conditions of the assay, this serum resistance 
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cannot be linked directly to the presence of the digalactoside epitope, or the 

expression of LgtC. The phase variable expression of LgtC under the conditions of 

the serum survival assay therefore provides a likely explanation for the observed 

lack of activity of our LgtC inhibitors in this assay. 

As phase variation is an important adaptation mechanism of bacterial pathogens 

in-vivo, the results from this study suggest that LgtC inhibitors have probably only 

limited potential as anti-virulence agents. Due to their covalent mode of action, the 5-

CF3 pyrazol-3-ones described herein are, however, attractive templates for the 

development of novel labeling reagents. Such labeling reagents would enable the 

direct labeling of LgtC and related phase-variable GTs in bacterial cells and cell 

lysates. Because of their minimal effect on bacterial growth, the 5-CF3 pyrazol-3-

ones described herein are ideally suited for such applications. The development of 

such probes is currently underway [24]. 

 

4. Experimental section 

4.1 Chemistry 

All chemical reagents were obtained commercially and used as received. 

Microwave-assisted reactions were conducted on a Monowave 300 microwave 

synthesis reactor from Anton Paar. Target compounds and synthetic intermediates 

were purified by flash chromatography column and characterised by TLC, 1H-NMR, 

13C-NMR, and ESI-MS. Flash chromatography columns were packed wet. Thin layer 

chromatography (TLC) was performed on precoated aluminium plates (Silica Gel 60 

F254, Merck). Compounds were visualized by exposure to UV light (254/365 nm). 

NMR spectra were recorded on a Bruker BioSpin at 400 MHz (1H) or 100 MHz (13C). 

Chemicals shifts (δ) are reported in ppm, and coupling constants (J) are reported in 
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Hz. The order of citation in parentheses is (i) multiplicity (s, singlet; d, doublet; t, 

triplet; q, quartet and m, multiplet), (ii) coupling constant (J) quoted in Hertz to the 

nearest 0.1 Hz, (iii) number of equivalent nuclei (by integration). Mass spectra were 

recorded at the EPSRC National Mass Spectrometry Service Centre, Swansea. 

Bromine-containing compounds 6, 7b, 7f, 7g, 8a-d, 10 and 12 contain the naturally 

occurring isotope mixture of the two stable bromine isotopes Br-79 and Br-81. 

Pyrazol-3-ones 1, 7a, and 7b were synthesised as previously reported [13].  

 

Phenyl-3-(trifluoromethyl)-1H-pyrazol-5-ol (3a). [13] Phenylhydrazine (433 mg, 4 

mmol) and ethyl 4,4,4-trifluoroacetoacetate (736 mg, 4 mmol) were dissolved in 

glacial acetic acid. The reaction mixture was stirred at 110 oC until TLC 

(hexane/EtOAc 1:1) showed complete consumption of the starting material. Upon 

cooling a white solid precipitated from the solution and was filtered and washed with 

ice-cold ethanol. Purification by flash column chromatography afforded the title 

compound as a white solid (652 mg, 2.86 mmol, 72 %). 1H-NMR (400 MHz, DMSO-

d6, ppm) δ: 5.94 (s, 1H), 7.39 (t, J = 8.0 Hz, 1H), 7.52 (t, J = 8.0 Hz, 2H), 7.71 (d, J = 

8.0 Hz, 2H), 12.49 (s, 1H) ppm; 13C-NMR (100 MHz, DMSO-d6, ppm) δ: 85.6, 121.3 

(q, 1JCF = 267 Hz), 122.3, 127.2, 129.1, 137.7, 140.4 (d, 2JCF = 37 Hz), 153.7 ppm. 

 

Ethyl 2-(5-hydroxy-1-phenyl-1H-pyrazol-3-yl)acetate (3b) [25]. Phenylhydrazine (2.5 

g, 22.8 mmol) and diethyl 3-oxopentanedioate (4.6 g, 22.8 mmol) were dissolved in 

EtOH, and the mixture was heated to reflux for 2 h. Upon completion, the reaction 

mixture was cooled down, followed by evaporation to remove most of the solvent. 

Purification by flash column chromatography afforded the title compound (2.3 g, 9.3 

mmol, 41%) as a light yellow powder. 1H-NMR (400 MHz, CDCl3, ppm) δ: 1.32 (t, J = 
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7.1 Hz, 3H), 3.60 (s, 2H), 3.65 (s, 2H), 4.24 (q, J = 7.1 Hz, 2H), 7.21 (t, J = 7.4 Hz, 

1H), 7.35-7.46 (m, 2H), 7.83-7.88 (m, 2H). 

 

Ethyl 5-hydroxy-1-phenyl-1H-pyrazole-3-carboxylate (3c) [25]. The title compound 

was obtained as a light yellow solid (6.7 g, 28.8 mmol, 61%) from phenylhydrazine 

(5.4 g, 50 mmol) and diethyloxalacetate sodium salt (10 g, 48 mmol) under the 

conditions described for 3b. 1H-NMR (400 MHz, DMSO-d6, ppm) δ: 1.29 (t, J = 7.1 

Hz, 3H), 4.28 (t, J = 10.7 Hz, 2H), 5.96 (s, 1H), 7.37 (t, J = 7.4 Hz, 1H), 7.51 (t, J = 

7.9 Hz, 2H), 7.73 (d, J = 7.5 Hz, 2H), 12.15 (s, 1H). 

 

5-Hydroxy-1-phenyl-1H-pyrazole-3-carboxamide (3d). 3c (1.3 g, 5.6 mmol) was 

added into 28% ammonium hydroxide aqueous solution and heated to reflux for 12 h. 

Then the solution was neutralized with hydrochloric acid, followed by addition of cold 

water. Precipitate was formed and filtered. The powder residue was further purified 

by flash column chromatography to afford the title compound (431 mg, 2.1 mmol, 

38%) as a grey powder. 1H-NMR (400 MHz, DMSO-d6, ppm) δ: 5.88 (s, 1H), 7.25 (s, 

1H), 7.34 (t, J = 7.4 Hz, 1H), 7.44-7.56 (m, 3H), 7.78 (d, J = 7.5 Hz, 2H), 11.95 (s, 

1H). 

 

5-Hydroxy-1-phenyl-1H-pyrazole-3-carboxylic acid (3e). To a solution of 3c (928 mg, 

4 mmol) in ethanol was added 1 N aqueous NaOH solution. The mixture was stirred 

at room temperature for 3 h. Most of the organic solvent was evaporated, and the 

residue was acidified with 1 N HCl solution. Precipitate was formed and filtered to 

afford the title compound (745 mg, 3.6 mmol, 91%) as a white powder. 1H-NMR (400 



  

 22 

MHz, DMSO-d6, ppm) δ: 5.93 (s, 1H), 7.36 (t, J = 7.4 Hz, 1H), 7.43-7.56 (m, 2H), 

7.73 (d, J = 7.5 Hz, 2H), 12.05 (s, 1H), 12.75 (s, 1H). 

 

4-(5-Hydroxy-3-(trifluoromethyl)-1H-pyrazol-1-yl)benzoic acid (4a). The title 

compound was obtained as a white solid (1.4 g, 5.1 mmol, 61%) from 4-

hydrazinylbenzoic acid (1.3 g, 8.5 mmol) and ethyl 4,4,4-trifluoroacetoacetate (1.32 

mL, 8.5 mmol) under the conditions described for 3a. 1H-NMR (400 MHz, DMSO-d6, 

ppm) δ: 5.94 (s, 1H), 7.90 (d, J = 9.0 Hz, 2H), 7.99 (d, J = 9.0 Hz, 2H), 11.78 (s, 1H), 

12.49 (s, 1H). 

 

3-(5-Hydroxy-3-(trifluoromethyl)-1H-pyrazol-1-yl)benzoic acid (4b). The title 

compound was obtained as a white solid (1.83 g, 6.7 mmol, 75%) from 3-

hydrazinylbenzoic acid (1.37 g, 9.0 mmol) and ethyl 4,4,4-trifluoroacetoacetate (1.32 

mL, 9.0 mmol) under the conditions described for 3a. 1H-NMR (400 MHz, DMSO-d6, 

ppm) δ: 5.98 (s, 1H), 7.65 (t, J = 7.9 Hz, 1H), 7.91-7.96 (m, 1H), 7.98-8.04 (m, 1H), 

8.30 (t, J = 1.9 Hz, 1H), 12.74 (s, 1H), 13.29 (s, 1H). 

 

5-Methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one (5) [26]. The title compound was 

obtained as a light yellow solid (343 mg, 1.97 mmol, 97%) from ethyl 3-oxobutanoate 

(264 mg, 2.03 mmol) and phenylhydrazine (219 mg, 2.03 mmol) under the conditions 

described for 3a. 1H-NMR (400 MHz, CDCl3, ppm) δ: 2.26 (s, 3H), 3.49 (s, 2H), 7.27-

7.32 (m, 1H), 7.48-7.54 (m, 2H), 7.96-8.01 (m, 2H); 13C-NMR (100 MHz, CDCl3, ppm) 

δ: 16.9, 43.0, 118.8, 125.0, 128.8, 138.0, 156.4, 170.0. 
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(Z)-4-(3-Bromo-4-methoxybenzylidene)-5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-

one (6). 5 (174 mg, 1.0 mmol) and 3-bromo-4-methoxybenzaldehyde (322.5 mg, 1.5 

mmol) were dissolved in glacial acetic acid. The reaction was heated to reflux until 

TLC showed complete consumption of starting material. The product was purified by 

flash column chromatography. The title compound was obtained as an orange solid 

(199 mg, 0.54 mmol, 54%). 1H-NMR (400 MHz, DMSO-d6, ppm) δ: 2.32 (s, 3H), 3.98 

(s, 3H), 7.20 (t, J = 7.4 Hz, 1H), 7.32 (d, J = 8.8 Hz, 1H), 7.39-7.51 (m, 2H), 7.76 (s, 

1H), 7.91 (d, J = 7.6 Hz, 2H), 8.56 (dd, J = 8.8, 2.1 Hz, 1H), 9.25 (d, J = 2.1 Hz, 1H). 

13C-NMR (100 MHz, DMSO-d6, ppm) δ: 13.1, 56.8, 110.7, 112.6, 118.4, 124.6, 124.9, 

127.3, 128.8, 136.6, 138.0, 138.1, 146.6, 151.7, 159.2, 161.7. ESI-MS: m/z 371.03 

(100%) [M+H]+; HR-MS: m/z 371.0386 (100%), 372.0419 (20%), 373.0364 (100%), 

374.0396 (20%) [M+H]+, [C18H16BrN2O2]
+ calcd for 371.0390, 372.0423, 373.0369, 

374.0403. 

 

(Z)-4-Benzylidene-2-phenyl-5-(trifluoromethyl)-2,4-dihydro-3H-pyrazol-3-one (7c) 

[15]. 3a (141 mg, 0.5 mmol) and benzaldehyde (106 mg, 0.75 mmol) were placed in 

a microwave-proof glass tube and heated for 15 mins at 160 oC in a commercial 

microwave apparatus. The reaction was cooled to room temperature. The reaction 

product was precipitated by addition of ethyl acetate and hexane, collected by 

filtration, and recrystallized from hexane and ethyl acetate. The title compound was 

obtained as an orange solid (93 mg, 0.30 mmol, 59%). 1H-NMR (400 MHz, CDCl3, 

ppm) δ: 7.28-7.34 (m, 1H), 7.44-7.51 (m, 2H), 7.57 (t, J = 7.5 Hz, 2H), 7.65 (t, J = 7.4 

Hz, 1H), 7.80 (s, 1H), 7.94 (dd, J = 8.7, 1.1 Hz, 2H), 8.55 (d, J = 7.3 Hz, 2H). 13C-

NMR (100 MHz, CDCl3, ppm) δ: 119.8 (q, 1JCF = 270 Hz), 120.0, 121.5, 126.3, 128.9, 

129.0, 132.5, 134.5, 134.6, 137.5, 140.7 (q, 2JCF = 37 Hz), 150.6, 161.1. ESI-MS: 
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m/z 317.1 (100%) [M+H]+; HR-MS: m/z 317.0900 [M+H]+, [C17H12F3N2O]+ calcd for 

317.0896. 

 

(Z)-4-(4-Chlorobenzylidene)-2-phenyl-5-(trifluoromethyl)-2,4-dihydro-3H-pyrazol-3-

one (7d) [15]. The title compound was obtained as an orange solid (35 mg, 0.1 mmol, 

20%) from 3a (114 mg, 0.5 mmol) and 4-chlorobenzaldehyde (106 mg, 0.75 mmol) 

under the conditions described for 7c. 1H-NMR (400 MHz, CDCl3, ppm) δ: 7.31 (t, J 

= 7.4 Hz, 1H), 7.45-7.51 (m, 2H), 7.54 (d, J = 8.7 Hz, 2H), 7.91 (d, J = 7.6 Hz, 2H), 

7.72 (s, 1H), 8.52 (d, J = 8.6 Hz, 2H). 13C-NMR (100 MHz, CDCl3, ppm) δ: 119.7 (q, 

1JCF = 270 Hz), 120.0, 121.8, 126.4, 129.0, 129.4, 130.9, 135.8, 137.3, 140.6 (d, 2JCF 

= 39 Hz), 141.3, 148.8, 161.1. ESI-MS: m/z 351.1 (100 %) [M+H]+; 383.1 (95%) 

[M+MeOH+H]+; 405.1 (55%) [M+MeOH+Na]+; HR-MS: m/z 351.0506 [M+H]+, 

[C17H11ClF3N2O]+ calcd for 351.0507. 

 

Ethyl (Z)-2-((5-oxo-1-phenyl-3-(trifluoromethyl)-1,5-dihydro-4H-pyrazol-4-

ylidene)methyl)-benzoate (7e). The title compound was obtained as an orange solid 

(15 mg, 0.04 mmol, 15%) from 3a (54 mg, 0.25 mmol) and ethyl 2-formylbenzoate 

(66.8 mg, 0.38 mmol) under the conditions described for 7c. 1H-NMR (400 MHz, 

CDCl3, ppm) δ: 1.42 (t, J = 7.1 Hz, 3H), 4.42 (q, J = 7.1 Hz, 2H), 7.25 (d, J = 7.4 Hz, 

1H), 7.43 (t, J = 8.0 Hz, 2H), 7.60-7.69 (m, 2H), 7.86 (d, J = 7.7 Hz, 2H), 8.04 (d, J = 

7.1 Hz, 1H), 8.19 (d, J = 7.5 Hz, 1H), 8.62 (s, 1H). 13C-NMR (100 MHz, CDCl3, ppm) 

δ: 14.2, 61.9, 119.6, 119.7 (q, 1JCF = 270 Hz), 121.2, 126.2, 129.0, 129.9, 131.0, 

131.2, 131.7, 132.0, 132.9, 137.3, 140.5 (d, 2JCF = 37 Hz), 151.5, 160.9, 166.1. ESI-

MS: m/z 389.1 (85%) [M+H]+, 421.1 (100%) [M+MeOH+H]+, 443.1 (56%) 

[M+MeOH+Na]+; HR-MS: m/z 389.1110 [M+H]+, [C20H16F3N2O3]
+ calcd for 389.1108. 
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(Z)-3-(4-(3-Bromo-4-methoxybenzylidene)-5-oxo-3-(trifluoromethyl)-4,5-dihydro-1H-

pyrazol-1-yl)benzoic acid (7f). The title compound was obtained as an orange solid 

(118 mg, 0.25 mmol, 50%) from 4b (114 mg, 0.5 mmol) and 3-bromo-4-

methoxybenzaldehyde (161 mg, 0.75 mmol) under the conditions described for 7c. 

1H-NMR (400 MHz, DMSO-d6, ppm) δ: 4.03 (s, 3H), 7.39 (d, J = 8.9 Hz, 1H), 7.65 (t, 

J = 8.0 Hz, 1H), 7.88 (d, J = 7.9 Hz, 1H), 7.94 (s, 1H), 8.10 (d, J = 8.1 Hz, 1H), 8.44 

(t, J = 1.8 Hz, 1H), 8.71 (dd, J = 8.9, 2.1 Hz, 1H), 9.31 (d, J = 2.1 Hz, 1H), 13.19 (s, 

1H). ESI-MS: m/z 468.98 (5%) [M+H]+, 499.01 (100%) [M+MeOH+H]+; HR-MS: m/z 

467.0015 (100%), 467.9850 (30%), 468.9824 (50%), 469.9879 (5%) [M-H]-, 

[C19H11BrF3N2O4]
- calcd for 466.9860, 467.9891, 468.9840, 469.9872. 

 

(Z)-4-(4-(3-Bromo-4-methoxybenzylidene)-5-oxo-3-(trifluoromethyl)-4,5-dihydro-1H-

pyrazol-1-yl)benzoic acid (7g) [27]. The title compound was obtained as an orange 

solid (66 mg, 0.14 mmol, 28%) from 4a (114 mg, 0.5 mmol) and 3-bromo-4-

methoxybenzaldehyde (161 mg, 0.75 mmol) under the conditions described for 7c. 

1H-NMR (400 MHz, DMSO-d6, ppm) δ: 4.02 (s, 3H), 7.35 (d, J = 8.9 Hz, 1H), 7.90 (s, 

1H), 8.00 (d, J = 8.9 Hz, 2H), 8.06 (d, J = 8.9 Hz, 2H), 8.64 (d, J = 8.9 Hz, 1H), 9.28 

(s, 1H). ESI-MS: m/z 467.0 (100 %) [M-H]-; HR-MS: m/z 466.9854 (100%), 467.9889 

(15%), 468.9833 (100%), 469.9867 (15%) [M-H]-, [C19H11BrF3N2O4]
- calcd for 

466.9860, 467.9893, 468.9839, 469.9873. 

 

(Z)-4-(4-(Benzyloxy)benzylidene)-2-phenyl-5-(trifluoromethyl)-2,4-dihydro-3H-

pyrazol-3-one (7h). The title compound was obtained as an orange solid (31 mg, 

0.07 mmol, 30%) from 3a (57 mg, 0.25 mmol) and 4-(benzyloxy)benzaldehyde (64 
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mg, 0.3 mmol) under the conditions described for 7c. 1H-NMR (400 MHz, DMSO-d6, 

ppm) δ: 5.31 (s, 2H), 7.27 (d, J = 9.0 Hz, 2H), 7.33 (t, J = 7.4 Hz, 1H), 7.38 (d, J = 

7.1 Hz, 1H), 7.43 (t, J = 7.2 Hz, 2H), 7.51 (t, J = 7.7 Hz, 4H), 7.84 (d, J = 7.8 Hz, 2H), 

7.91 (s, 1H), 8.81 (d, J = 9.0 Hz, 2H). 13C-NMR (100 MHz, DMSO-d6, ppm) δ: 70.0, 

115.4, 117.56, 119.8 (q, 1JCF = 270 Hz), 120.0, 125.9, 126.2, 128.0, 128.2, 128.5, 

129.0, 136.0, 137.3, 138.2, 139.9 (d, 2JCF = 36 Hz), 150.0, 161.1, 164.3. ESI-MS: 

m/z 423.1 (100 %) [M+H]+; HR-MS: m/z 423.1312 [M+H]+, [C24H18F3N2O2]
+ calcd for 

423.1315. 

 

(Z)-4-(4-Methoxybenzylidene)-2-phenyl-5-(trifluoromethyl)-2,4-dihydro-3H-pyrazol-3-

one (7i) [28]. The title compound was obtained as an orange solid (68 mg, 0.20 

mmol, 39%) from 3a (114 mg, 0.5 mmol) and 4-methoxybenzaldehyde (102 mg, 0.75 

mmol) under the conditions described for 7c. 1H-NMR (400 MHz, CDCl3, ppm) δ: 

3.96 (s, 3H), 7.06 (d, J = 9.0 Hz, 2H), 7.29 (t, J = 7.4 Hz, 1H), 7.44-7.51 (m, 2H), 

7.72 (s, 1H), 7.95 (dd, J = 8.7, 1.1 Hz, 2H), 8.67 (d, J = 9.0 Hz, 2H). 13C-NMR (100 

MHz, CDCl3, ppm) δ: 55.82, 114.65, 118.50, 119.9 (q, 1JCF = 270 Hz), 120.04, 

126.11, 126.14, 128.96, 137.73, 138.05, 140.9 (d, 2JCF = 36 Hz), 150.05, 161.65, 

165.25. ESI-MS: m/z 347.1 (100 %) [M+H]+; 379.1 (10%) [M+MeOH+H]+; 401.1 (20%) 

[M+MeOH+Na]+; HR-MS: m/z 347.1002 [M+H]+, [C18H14F3N2O2]
+ calcd for 347.1002. 

 

(Z)-4-(3-Chlorobenzylidene)-2-phenyl-5-(trifluoromethyl)-2,4-dihydro-3H-pyrazol-3-

one (7j) [28]. The title compound was obtained as an orange solid (74 mg, 0.21 

mmol, 42%) from 3a (114 mg, 0.5 mmol) and 3-chlorobenzaldehyde (105 mg, 0.75 

mmol) under the conditions described for 7c. 1H-NMR (400 MHz, CDCl3, ppm) δ: 

7.31 (t, J = 7.4 Hz, 1H), 7.49 (m, 3H), 7.58-7.64 (m, 1H), 7.70 (s, 1H), 7.91 (d, J = 
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8.6 Hz, 2H), 8.38 (d, J = 7.8 Hz, 1H), 8.61 (t, J = 1.8 Hz, 1H). 13C-NMR (100 MHz, 

CDCl3, ppm) δ: 119.7 (q, 1JCF = 270 Hz), 120.0, 122.7, 126.5, 129.1, 130.1, 132.4, 

133.6, 133.8, 134.1, 135.0, 137.3, 140.4 (d, 2JCF = 36 Hz), 148.5, 160.8. ESI-MS: 

m/z 351.1 (80 %) [M+H]+; 383.1 (100%) [M+MeOH+H]+; 405.1 (45%) 

[M+MeOH+Na]+; HR-MS: m/z 351.0506 [M+H]+, [C17H11ClF3N2O]+ calcd for 

351.0507. 

 

(Z)-4-(4-Hydroxybenzylidene)-2-phenyl-5-(trifluoromethyl)-2,4-dihydro-3H-pyrazol-3-

one (7k). The title compound was obtained as an orange solid (60 mg, 0.18 mmol, 

35%) from 3a (114 mg, 0.5 mmol) and 4-hydroxybenzaldehyde (92 mg, 0.75 mmol) 

under the conditions described for 7c. 1H-NMR (400 MHz, DMSO-d6, ppm) δ: 6.99 (d, 

J = 8.9 Hz, 2H), 7.31 (t, J = 7.4 Hz, 1H), 7.42-7.55 (m, 2H), 7.79-7.89 (m, 3H), 8.74 

(d, J = 8.9 Hz, 2H), 11.34 (s, 1H). 13C-NMR (100 MHz, DMSO-d6, ppm) δ: 116.10, 

116.27, 119.87, 119.9 (q, 1JCF = 270 Hz), 124.56, 126.07, 128.98, 137.40, 138.95, 

140.0 (d, 2JCF = 36 Hz), 150.34, 161.18, 165.08. ESI-MS: m/z 333.1 (100 %) [M+H]+; 

355.1 (20%) [M+Na]+; 387.1 (25%) [M+MeOH+Na]+; HR-MS: m/z 333.0847 [M+H]+, 

[C17H12F3N2O2]
+ calcd for 333.0845. 

 

Ethyl (Z)-4-(3-bromo-4-methoxybenzylidene)-5-oxo-1-phenyl-4,5-dihydro-1H-

pyrazole-3-carboxylate (8a). The title compound was obtained as an orange solid 

(109 mg, 0.26 mmol, 51%) from 3c (116 mg, 0.5 mmol) and 3-bromo-4-

methoxybenzaldehyde (161 mg, 0.75 mmol) under the conditions described for 7c. 

1H-NMR (400 MHz, CDCl3, ppm) δ: 1.49 (t, J = 7.1 Hz, 3H), 4.03 (s, 3H), 4.50 (q, J = 

7.1 Hz, 2H), 7.03 (d, J = 8.8 Hz, 1H), 7.30 (t, J = 7.4 Hz, 1H), 7.44-7.50 (m, 2H), 7.94 

(d, J = 7.5 Hz, 2H), 8.65 (s, 1H), 8.69 (dd, J = 8.8, 2.2 Hz, 1H), 8.91 (d, J = 2.2 Hz, 
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1H). 13C-NMR (100 MHz, CDCl3, ppm) δ: 14.3, 56.7, 61.9, 111.5, 112.0, 120.8, 122.1, 

126.4, 127.7, 128.9, 136.6, 137.6, 139.9, 140.1, 151.2, 160.4, 161.2, 162.1. ESI-MS: 

m/z 429.0 (100%) [M+H]+, 451.0 (25%) [M+Na]+, 483.0 (35%) [M+MeOH+Na]+; HR-

MS: m/z 429.0444 (100%), 430.0478 (20%), 431.0423 (100%), 432.0456 (20%) 

[M+H]+, [C20H18BrN2O4]
+ calcd for 429.0444, 430.0478, 431.0424, 432.0458. 

 

Ethyl (Z)-2-(4-(3-bromo-4-methoxybenzylidene)-5-oxo-1-phenyl-4,5-dihydro-1H-

pyrazol-3-yl)acetate (8b). The title compound was obtained as an orange solid (93 

mg, 0.21 mmol, 53%) from 3b (123 mg, 0.5 mmol) and 3-bromo-4-

methoxybenzaldehyde (161 mg, 0.75 mmol) under the conditions described for 7c. 

1H-NMR (400 MHz, CDCl3, ppm) δ: 1.31 (t, J = 7.1 Hz, 3H), 3.78 (s, 2H), 4.03 (s, 3H), 

4.25 (q, J = 7.1 Hz, 2H), 7.03 (d, J = 9.3 Hz, 1H), 7.23 (t, J = 7.4 Hz, 1H), 7.38 (s, 

1H), 7.44 (t, J = 8.0 Hz, 2H), 7.97 (d, J = 8.5 Hz, 2H), 8.72-8.77 (m, 2H). 13C-NMR 

(100 MHz, CDCl3, ppm) δ: 14.2, 34.6, 56.6, 61.8, 111.5, 111.9, 119.4, 124.9, 125.2, 

127.3, 128.8, 135.6, 138.2, 139.3, 146.1, 147.2, 159.9, 162.0, 168.8. ESI-MS: m/z 

443.1 (100%) [M+H]+, 475.1 (45%) [M+Na]+, 479.1 (15%) [M+MeOH+Na]+; HR-MS: 

m/z 443.0598 (100%), 444.0633 (20%), 445.0576 (100%), 446.0610 (20%) [M+H]+, 

[C21H20BrN2O4]
+ calcd for 443.0601, 444.0633, 445.0581, 446.0614. 

 

(Z)-4-(3-Bromo-4-methoxybenzylidene)-5-oxo-1-phenyl-4,5-dihydro-1H-pyrazole-3-

carboxylic acid (8c). The title compound was obtained as an orange solid (160 mg, 

0.40 mmol, 80%) from 3f (103 mg, 0.5 mmol) and 3-bromo-4-methoxybenzaldehyde 

(161 mg, 0.75 mmol) under the conditions described for 7c. 1H-NMR (400 MHz, 

DMSO-d6, ppm) δ: 3.99 (s, 3H), 7.31 (t, J = 8.0 Hz, 2H), 7.50 (t, J = 8.0 Hz, 2H), 7.87 

(d, J = 7.6 Hz, 2H), 8.39 (dd, J = 8.9, 2.1 Hz, 1H), 8.57 (s, 1H), 9.25 (d, J = 2.1 Hz, 



  

 29 

1H), 13.79 (s, 1H). 13C-NMR (100 MHz, DMSO-d6, ppm) δ: 57.0, 110.9, 112.6, 119.9, 

121.8, 126.0, 127.1, 129.0, 137.5, 137.6, 138.1, 141.1, 150.5, 159.9, 161.7, 162.0. 

ESI-MS: m/z 401.0 (100%) [M+H]+; HR-MS: m/z 401.0132 (100%), 402.0166 (20%), 

403.0110 (100%), 404.0144 (20%) [M+H]+, [C18H14BrN2O4]
+ calcd for 401.0131, 

402.0165, 403.0111, 404.0145. 

 

(Z)-4-(3-Bromo-4-methoxybenzylidene)-5-oxo-1-phenyl-4,5-dihydro-1H-pyrazole-3-

carboxamide (8d). The title compound was obtained as an orange solid (60 mg, 0.15 

mmol, 30%) from 3d (102 mg, 0.5 mmol) and 3-bromo-4-methoxybenzaldehyde (161 

mg, 0.75 mmol) under the conditions described for 7c. 1H-NMR (400 MHz, DMSO-d6, 

ppm) δ: 4.01 (s, 3H), 7.27-7.35 (m, 2H), 7.46-7.53 (m, 2H), 7.77 (s, 1H), 8.01 (d, J = 

7.6 Hz, 2H), 8.17 (s, 1H), 8.38 (dd, J = 8.9, 2.1 Hz, 1H), 8.74 (s, 1H), 9.31 (d, J = 2.1 

Hz, 1H). 13C-NMR (100 MHz, DMSO-d6, ppm) δ: 57.0, 110.9, 112.7, 119.5, 122.0, 

125.6, 127.2, 128.9, 137.6, 137.7, 138.0, 142.8, 151.0, 159.8, 161.8, 162.6. ESI-MS: 

m/z 400.0 (100%) [M+H]+; HR-MS: m/z 400.0293 (100%), 401.0326 (20%), 402.0273 

(100%), 403.0306 (20%) [M+H]+, [C18H15BrN3O3]
+ calcd for 400.0291, 401.0325, 

402.0271, 403.0305. 

 

3-(5-Hydroxy-3-(trifluoromethyl)-1H-pyrazol-1-yl)-N-(2-hydroxyethyl)benzamide (9). 

To a solution of 4b (272 mg, 1 mmol) in DMF, HBTU (758 mg, 2.0 mmol), DIEA (387 

mg, 3.0 mmol), and 2-aminoethan-1-ol (92 mg, 1.5 mmol) were added. The reaction 

mixture was stirred at rt for 16 h. Most of the DMF was then evaporated. The residue 

was diluted with water and extracted with ethyl acetate for 3 times. The combined 

organic layer was dried over Na2SO4. The crude product was purified by flash 

chromatograph to afford the title compound (235 mg, 0.76 mmol, 75%). 1H-NMR 
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(400 MHz, DMSO-d6, ppm) δ: 2.79-3.01 (m, 2H), 3.52 (t, J = 5.7 Hz, 2H), 4.76 (s, 

1H), 5.96 (s, 1H), 7.60 (t, J = 7.9, 1H), 7.85 (s, 1H), 8.18 (s, 1H), 8.62 (t, J = 5.5 Hz, 

1H), 12.75 (s, 1H). 

 

(Z)-3-(4-(3-Bromo-4-methoxybenzylidene)-5-oxo-3-(trifluoromethyl)-4,5-dihydro-1H-

pyrazol-1-yl)-N-(2-hydroxyethyl)benzamide (10). The title compound was obtained as 

an orange solid (20 mg, 0.04 mmol, 9%) from 9 (126 mg, 0.4 mmol) and 3-bromo-4-

methoxybenzaldehyde (129 mg, 0.6 mmol) under the conditions described for 7c. 

1H-NMR (400 MHz, DMSO-d6, ppm) δ: 3.52 (q, J = 5.6 Hz, 2H), 4.04 (s, 3H), 4.16 (t, 

J = 5.7 Hz, 2H), 7.39 (d, J = 8.9 Hz, 1H), 7.62 (t, J = 7.9 Hz, 1H), 7.79 (d, J = 9.1 Hz, 

1H), 7.95 (s, 1H), 7.99-8.05 (m, 1H), 8.29 (s, 1H), 8.70 (dd, J = 8.9, 2.1 Hz, 1H), 8.77 

(t, J = 5.5 Hz, 1H), 9.34 (d, J = 2.1 Hz, 1H). ESI-MS: m/z 512.04 (100%) [M+H]+; HR-

MS m/z 512.0422 (100%), 513.0464 (23%), 514.0415 (100%), 515.0444 (23%) 

[M+H]+, [C21H18BrF3N3O4]
+ calcd for 512.0427, 513.0455, 514.0409, 515.0435. 

 

1-Benzyl-3-(trifluoromethyl)-1H-pyrazol-5-ol (11). The title compound was obtained 

as a light yellow solid (120 mg, 0.50 mmol, 17%) from ethyl 4,4,4-trifluoro-3-

oxobutanoate (662 mg, 3.6 mmol) and benzylhydrazine (585 mg, 3 mmol) under the 

conditions described for 3a. 1H-NMR (400 MHz, CDCl3, ppm) δ: 5.08 (s, 2H), 5.59 (s, 

1H), 7.10-7.26 (m, 5H), 11.07 (s, 1H). 

 

(Z)-2-Benzyl-4-(3-bromo-4-methoxybenzylidene)-5-(trifluoromethyl)-2,4-dihydro-3H-

pyrazol-3-one (12). The title compound was obtained as an orange solid (50 mg, 

0.11 mmol, 28%) from 11 (97 mg, 0.4 mmol) and 3-bromo-4-methoxybenzaldehyde 

(103 mg, 0.48 mmol) under the conditions described for 7c. 1H-NMR (400 MHz, 
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CDCl3, ppm) δ: 4.04 (s, 3H), 5.05 (s, 2H), 7.03 (d, J = 8.8 Hz, 1H), 7.35-7.40 (m, 5H), 

7.55 (s, 1H), 8.68 (dd, J = 8.8, 2.2 Hz, 1H), 8.88 (d, J = 2.2 Hz, 1H). 13C-NMR (100 

MHz, CDCl3, ppm) δ: 48.9, 56.7, 111.6, 112.2, 119.5, 119.8 (q, 1JCF = 270 Hz), 127.2, 

128.0, 128.3, 128.8, 136.0, 136.4, 139.5 (d, 2JCF = 36 Hz), 139.7, 147.8, 160.7, 162.4. 

ESI-MS: m/z 439.03 (100 %) [M+H]+, 471.05 (50%) [M+MeOH+H]+, 493.03 (65%) 

[M+MeOH+Na]+; HR-MS: m/z 439.0262 (100%), 440.0297 (20%), 441.0241 (92%), 

442.0275 (20%) [M+H]+, [C19H15BrF3N2O2]
+ calcd for 439.0264, 440.0295, 441.0243, 

442.0276. 

 

4.2 Biochemistry 

4.2.1 Inhibition assays 

Recombinant LgtC from Neisseria meningitidis was expressed and purified as 

previously described [13]. For single concentration experiments and IC50 

experiments, LgtC activity was adjusted to 20-50% turnover of UDP-Gal donor. 

Recombinant LgtC was activated with DTT (10 mM, in HEPES buffer) in a 1:1 ratio 

for 30 mins at 30 °C prior to each experiment. Inhibition experiments were carried 

out with pre-incubation of LgtC with inhibitor, in the presence of donor, as previously 

described [13]. Briefly, aliquots (15 µL each) of activated LgtC, MnCl2 (5 mM), CEL 

(1 mg/mL), CIP (10 U/mL), Triton (0.01%) and HEPES buffer (13 mM, pH 7.0) were 

combined with inhibitor at various concentrations in DMSO (15 µL, 10% final DMSO 

concentration) or DMSO only (15 µL, control) in the requisite microplate wells. UDP-

Gal donor (15 µL, 28 µM) was added, and the mixtures were pre-incubated for the 

requisite time at 30 °C. Lactose acceptor (30 µL, 2 mM) or HEPES buffer (30 µL, 

control) were added, and the reactions were incubated for 20 mins at 30 °C. 

Reactions were stopped by addition of Malachite Green Reagent A (30 µL). The 
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microplate was shaken carefully, and Malachite Green Reagent B (30 µL) was added. 

The colour was allowed to develop over 20 mins, and the absorbance in each well 

was recorded at 620 nm on a Polarstar Optima plate reader (BMG Labtech). The 

absorbance measurements were used to calculate enzyme activity. 

 

4.2.2 Determination of kinetic parameters kinact and Ki. 

Ki and kinact values were determined as previously described [13]. LgtC activity 

was determined at various concentrations of inhibitor (7a, 7d, 7j: 0-200 μM; 7b, 7i: 0-

50 μM; 7c: 0-250 μM; 7h: 0-100 μM) and after different pre-incubation times (0, 5, 10, 

and 20 mins). Enzyme activity is expressed as percentage of control (DMSO only) 

and plotted on a semi-logarithmic scale over pre-incubation time. From these plots, 

values for Kobs were extracted by exponential regression using the equation 

                                   , where t = pre-incubation time. Observed rate 

constants Kobs were extracted from the plots, re-plotted over inhibitor concentrations, 

and fitted to the hyperbolic equation Kobs = kinact × [I]/(Ki+[I]). All experiments were 

performed in triplicate.  

 

4.3 Microbiology 

4.3.1 Bacterial growth assay 

H. influenzae R2866 was streaked out on a bacitracin chocolate agar plate 

(chocolate agar: Columbia blood agar with 10% lysed horse blood) and incubated at 

37 °C, 5% CO2 overnight. A single colony was chosen from the plate and inoculated 

into 10 mL sBHI broth (supplemented Brain Heart Infusion broth: 7.5 g Brain Heart 

Infusion in 200 mL deionised water, 10 µm/mL NAD, and 10 µL/mL Hemin), followed 

by incubation at 37 °C, 180 rpm overnight. 200 µL of the overnight culture was added 
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into fresh sBHI and incubated at 37 °C 180 rpm. OD590 was recorded at various time 

points. The data were tested in triplicate and presented as average. The number of 

viable count: OD590 0.7 was approximately 4*108 CFU/mL. 

 

4.3.2 Growth inhibition assays 

A single colony of H. influenzae R2866 was chosen from the agar plate and 

inoculated into 10 mL sBHI broth, followed by incubation at 37 oC 180 rpm overnight. 

The overnight culture was diluted to OD590 0.7 with sBHI. 900 µL of the bacterial 

culture was incubated with 100 µL of the respective inhibitor stock solution in DMSO 

(1: 0.5 mM; 7a: 1 mM; 7b: 2 mM) at 37 oC for 1 h. Upon completion, excess inhibitor 

was removed by centrifugation, and the cell pellet was washed with sBHI twice. Cells 

were re-suspended in sBHI and serially diluted. Finally, 10 µL of the diluted samples 

were plated on chocolate agar plates and incubated for another 24 h at 37 oC, 5% 

CO2. Viable count was recorded and data were analysed by GraphPad Prism v6.0. 

Each inhibitor concentration was tested in triplicate; results are presented as the 

mean. Statistical analysis was performed by an unpaired t-test; *P < 0.05. 

 

4.3.3 Serum survival assay 

A single colony of H. influenzae R2866 was chosen from the agar plate and 

inoculated into 10 mL sBHI broth, followed by incubation at 37 °C, 180 rpm overnight. 

The overnight culture was diluted to OD590 0.7 with sBHI. Bacteria were exposed for 

1 h at 37 °C either to human serum alone (0-50%, v/v), or to human serum (30%, v/v) 

and inhibitor (1 and 7a: 100 µM; 7b: 50 µM). Serum and excess inhibitors were 

removed by centrifugation, and the cell pellet was washed twice with sBHI. Cells 

were re-suspended in sBHI and serially diluted. 10 µL of the diluted samples were 
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plated on chocolate agar plates and incubated for another 24 h at 37 °C, 5% CO2. 

Viable count was recorded and data were analysed by GraphPad Prism v6.0. Each 

experiment was carried out in triplicate; results are presented as the mean. 

Statistical analysis was performed by an unpaired t-test; *P < 0.05, **P < 0.01. 
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