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Abstract 31 

Background: Global climate change is likely to increase the geographic range and seasonality 32 

of malaria transmission. Areas suitable for distribution of malaria vectors is are predicted to 33 

increase with climate change but evidence is limited on future distribution of malaria with 34 

climate in China.  35 

Objective: Our aim was to assess a potential effect of climate change on Plasmodium vivax (P. 36 

vivax) and Plasmodium falciparum (P. falciparum) malaria under climate change scenarios.  37 

Methods: National malaria surveillance data during 2005-2014 were integrated with 38 

corresponding climate data to model current weather-malaria relationship. We used the 39 

Generalized Additive Model (GAM) with a spatial component, assuming a quasi-Poisson 40 

distribution and including an offset for the population while accounting for potential non-41 

linearity and long-term trend. The association was applied to future climate to project county-42 

level malaria distribution using ensembles of Global Climate Models under two climate 43 

scenarios-Representative Concentration Pathways (RCP4.5 and RCP8.5).  44 

Results: Climate change could substantially increase P. vivax and P. falciparum malaria, under 45 

both climate scenarios, but by larger amount under RCP8.5, compared to the baseline. P. 46 

falciparum is projected to increase more than P. vivax. The distributions of P. vivax and P. 47 

falciparum malaria are expected to increase in most regions regardless of the climate scenarios. 48 

A high percentage (>50%) increases are projected in some counties of the northwest, north, 49 

northeast, including northern tip of the northeast China, with a clearer spatial change for P. 50 

vivax than P. falciparum under both scenarios, highlighting potential changes in the latitudinal 51 

extent of the malaria.  52 

Conclusion: Our findings suggest that spatial and temporal distribution of P. vivax and P. 53 

falciparum malaria in China will change due to future climate change, if there is no policy to 54 

mitigate it. These findings are important to guide the malaria elimination goal for China. 55 
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1. Introduction 62 

Malaria is a lethal vector-borne parasitic disease mainly affecting people in tropical and 63 

subtropical countries [1]. The burden of malaria is decreasing over the recent years because of 64 

intensive control interventions but the disease is still a significant public health problem [2] 65 

with 214 million cases and 438, 000 deaths reported globally in 2015, and about 3.2 billion 66 

people in the world are at risk of the disease [1].  In China, more than 30 million malaria cases 67 

were recorded annually in the 1940s. Following the establishment of the malaria control 68 

program and several decades of control interventions, the malaria burden greatly declined. In 69 

2010, the Chinese government endorsed the National Action Plan for Elimination of Malaria, 70 

with the aim of disease elimination by 2020 [3]. However, there is possibility of malaria 71 

resurgence following reduction of transmission because the risk factors in endemic areas still 72 

exist and the environment may be more conducive for transmission owing to the ongoing 73 

climate change [4]. Change in vectorial capacity, population movement, response to 74 

reintroduced cases, and public awareness in non or low endemic areas are another determinants 75 

of dealing with malaria resurgence [5]. In addition to the historical challenges in maintaining 76 

malaria control in the country [6, 7], the most recent study in some provinces of the country 77 

estimated a potential increase of malaria by 19-29% in 2020s [8]. Hence, improving the 78 

understanding of the potential impact of climate change on the spatial and temporal dynamism 79 

of malaria transmission is of great importance.  80 

Malaria is caused by four species of the genus Plasmodium-P. vivax, P. falciparum, P. malaria, 81 

and P. ovale. In China, P. vivax and P. falciparum are the two most important Plasmodium 82 

species [9]. P. vivax was the most common Plasmodium parasite for a long time, accounting 83 

for 76.9% of all reported malaria cases during 2004-2012, with a peak in 2006 [10, 11]. P. 84 

vivax has a wider geographical coverage with stable and unstable transmission spanning the 85 

south, central, southeast and some province in the north of the country. P. falciparum, a 86 
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causative agent of severe malaria, has a lower incidence in China. The disease is transmitted 87 

by four malaria vectors under genus Anopheles: A. dirus, A. lesteri, A. minimus and A. sinensis. 88 

Malaria is acknowledged as one of the most climate-sensitive infectious diseases [12, 13] 89 

because the growth and development of Anopheles mosquitoes, and the Plasmodium 90 

development in the mosquito called sporogonic cycle or extrinsic incubation period) are 91 

affected by changes in the climatic factors [14]. Although the sporogonic stages specific effect 92 

of climate factors is not well defined, available evidence indicated that the rate of ookinate 93 

maturation [15] and ex-flagellation and sporozoite formation in the oocyct [16] are more 94 

responsive and are regarded as bottleneck stage in the lifecycle of malaria [17]. Climate-95 

malaria relationship has been widely investigated in China and other neighbouring countries, 96 

with the most frequently reported significant climate predictors: temperature, precipitation, and 97 

relative humidity [18-24]. 98 

There is a general consensus that global warming is mainly due to atmospheric concentrations 99 

of greenhouse gasses [25]. Evidences have indicated that with rising global climate, many areas 100 

of the world will become more favorable for the survival of climate-sensitive vectors such as 101 

mosquitoes. Likewise, an assessment of the potential impact of climate change on malaria 102 

showed an increasing risk of malaria in previously malaria-free areas [26-28]. The spatial limits 103 

of malaria distribution are predicted to follow the change of climatic factors, including rainfall 104 

and temperature [29-33]. Using global climate models, studies have predicted a latitudinal and 105 

longitudinal increase in distribution of malaria and suitable areas in some regions [34-36], 106 

while others have predicted a reductions in the geographic range of the disease distribution in 107 

some regions [35].  In China, a warmer climate is predicted by 2081-2100, with an annual 108 

average temperature increase of 1.3oc to 5.2oc, and an increase in average annual precipitation 109 

of 5%-12%, compared to 1986-2005. The temperature and precipitation pattern increases from 110 

south to north, and the northern regions are expected to experience hotter and wetter climate 111 
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[37, 38]. This means that the previously cooler areas could then be more suitable for malaria 112 

transmission. Using ecological niche modeling, one study predicts a potential increase of areas 113 

suitable for distribution of the four common malaria vectors in China under climate change 114 

scenarios [39]. For example, A. sinensis, the broadly distributed mosquito was predicted to 115 

consistently increase and expand northward along the margin of endemicity. Projecting the 116 

magnitude and location of future weather-related changes in malaria are of significant public 117 

health importance, and will inform developing sustainable strategies for mitigation of  climate 118 

change effects [40].  However, evidence on the effect of future climate on potential malaria 119 

distribution in China is limited. One study conducted recently in China using a remotely sensed 120 

environmental predictors in a Genetic Program model estimated a potential increase of malaria 121 

(by 19-29% in 2020), and expansion of high-risk areas [8]. However, this study focused on 122 

only a few provinces of Northern China. The study linked future malaria risk to climate 123 

variables with more emphasis on temperature and precipitation without considering the 124 

potential effect of other important climate predictor such as relative humidity [24, 40, 41] 125 

previously used to estimate an extent of malaria transmission in China [42]. Furthermore, there 126 

are limitations to the usefulness of modelling changes in future distributions of malaria due to 127 

climate change when other drivers of transmission, such as land use change [43, 44] are not 128 

considered in scenarios. This study aims to predict future weather-related malaria in China 129 

under the recent climate scenarios-RCP4.5 and RCP8.5, while considering a potential effect of 130 

population increase.  131 

 132 

 133 

 134 

 135 
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2. Methodology 136 

2.1. Study Site 137 

This study was conducted in China, a country with a population of approximately 1.34 billion 138 

according to the 2010 census [45]. The climate is extremely diverse across the country, with 139 

the southern regions exhibiting tropical climate while the northern region is subarctic [46]. 140 

Substantial temperature and precipitation changes are ongoing in the country owing to climate 141 

change over the last decades [38], establishing an ideal environment for malaria transmission.  142 

2.2. Malaria data 143 

 Detailed malaria data used for this study were previously described [47]. Briefly, the national 144 

malaria case data at a county-level was obtained from the China Information System for 145 

Disease Control and Prevention (CISDCP) for the period from 2005 to 2014. In 2004, the 146 

government of China enhanced infectious disease surveillance, establishing the online 147 

Nationwide Notifiable Infectious Diseases Reporting Information System (NIDRIS) which 148 

includes malaria as a notifiable disease [48]. Laboratory-confirmed (microscopy and/or Rapid 149 

Diagnostic Test) and suspected cases are reported to the county-level CDC within 24 hours [5]. 150 

Case investigation and identification are conducted within three days of receiving the case 151 

report following standard criteria [49]. The malaria dataset included laboratory diagnosed 152 

malaria species, demographic factors, residential location (county code) and associated geo-153 

coordinate. The county-level population data available from China Bureau of Statistics were 154 

used to generate the data for each consecutive year through linear interpolation.  155 

2.3. Observed weather-malaria relationship 156 

In China, meteorological information is regularly recorded at several weather stations on a 157 

daily basis. For this study, we used county-level weather variables, including annual 158 

temperature, precipitation, and relative humidity obtained from the China Meteorological data 159 
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Sharing Centre for the period 2005-2014, giving nationwide coverage of climatic factors. An 160 

average annual value of weather variables from all stations was calculated and linked to the 161 

county-level annual malaria data to establish a database for estimating the baseline weather-162 

malaria relationship.  163 

 2.4. Future weather data 164 

Global Climate Model (GCM) projected climate data from the IPCC Data Distribution Centre 165 

[50] was downscaled to each region by using NWAI-WG,  a weather generator based statically 166 

downscaling model developed at NSW DPI’s Wagga Wagga Agricultural Institute [51]. This 167 

method includes a bias correction of the monthly raw GCMs data, where the observed and raw 168 

GCM projected monthly values of the historical period 1961-2000 are used to establish the 169 

relationship using a qq-plot technique for adjusting GCMs distribution to match with the 170 

observed distribution. The same relationship is applied to adjust the GCM projected future data 171 

[51]. The daily values of the climate variables for the baseline and future time periods were 172 

disaggregated by a modified WGEN [52] to simulate a series of county-specific future climate 173 

change scenarios RCP 4.5 and RCP 8.5. We used all GCMs available under RCP4.5 and 174 

RCP8.5 scenarios, resulting 26 GCMs for each counties. RCP is the scenario used in climate 175 

research to give possible description of change in future climate with respect to anthropogenic 176 

greenhouse gasses emission, air-pollutants, land use change and climate policies. We selected 177 

two scenarios, RCP4.5 and RCP8.5 which represent medium stabilisation, and high emission 178 

scenario, respectively [53]. Average annual temperature, precipitation, and relative humidity 179 

were considered as weather predictors in this study based on their relative importance in 180 

previous studies [8, 36, 40, 54]. To incorporate the effect of population change on future 181 

malaria distribution, a 10% increase in population was assumed extending the previous 182 

estimation that China population will increase by 10% until 2050 [55].  183 
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2.5. Statistical modelling 184 

Nationwide historical weather variables were used with the national malaria surveillance data 185 

to examine the current weather-malaria relationship. A GAM model with a spatial component, 186 

assuming a quasi-Poisson distribution and including an offset for the population. This type of 187 

GAMs allows modelling potential non-linear associations while adjusting for long-term trends 188 

and spatial correlation [56]. This method has been found to perform better than other modeling 189 

approaches [57, 58] and has been widely used for projection purposes [59, 60]. Specific details 190 

of the GAM models has been previously described [56, 61]. We used smooth terms for the 191 

effect of climatic variables and potential confounders as relationships are usually non-linear 192 

[49]. The spatial dependency between the neighbouring counties was modelled through a tensor 193 

product spline function of latitude and longitude at each county’s centroid. To evaluate the 194 

performance of the model, cross-validation was performed with 90% randomly selected for the 195 

training set and 10% for the test set. Five hundred replicates were used to ensure reliability of 196 

the model measured by R square. The entire data set was used for the final projection of 197 

weather-related P. vivax and P. falciparum malaria.  198 

Weather-related malaria was projected for the time period 1985-2100. The malaria projections 199 

were based on an average of 26 global climate models (GCMs), each run under two 200 

Representative Concentration Pathway scenarios RCP 4.5 and RCP 8.5. The malaria 201 

projections for the period of 1985-2014 was used to compare the historical malaria observations 202 

for examining possible bias for the baseline malaria occurrences so it can ensure confidence of 203 

the future projections. The average of all available GCMs (Table S1) were used to capture a 204 

plausible ranges of responses and performances in the GCM models because the projection 205 

results from multiple models could minimize uncertainty in future climate [62, 63].  206 

Then, future malaria cases for P. vivax and P. falciparum were separately reported as a 207 

percentage (%) change across time periods and regions, compared to baseline. The spatial 208 
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extent of projected change in malaria was reported following the regional classification 209 

previously described by  Xie et al. 2011  [64]. All statistical analysis were performed using the 210 

“mgcv” package in R software [65] and projections were mapped using ArcGIS software [66]. 211 

The protocol for this study was approved by the Ethics Committee of The University of 212 

Queensland, Australia.  213 

3. Results 214 

Cross-validation of our model showed that the model effectively captured the current 215 

distribution of P. vivax (R2 = 0.94) and P. falciparum (R2 =0.88) malaria. Figure 1 presents 216 

baseline (2005-2014) weather-malaria relationships for P. vivax and P. falciparum malaria. 217 

Temperature, rainfall and relative humidity were associated with the malaria incidence.  218 

 219 
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Fig.1. The relationships between weather variables and malaria in China during 2005-2014. A. 220 

P. vivax; B. P. falciparum. 221 

As shown in Fig. 2, future climate could potentially increase cases of P. vivax and P. falciparum 222 

malaria up to 2100, under both scenarios. Both P. vivax and P. falciparum were projected to 223 

increase more substantially under RCP8.5 than RCP4.5. Nevertheless, different GCMs 224 

provided slightly different projections, especially under the RCP4.5 climate scenario (Fig. S1).  225 

 226 

Fig.2. Time series plot of percentage change in the weather-related P. vivax and P. falciparum 227 

malaria cases in China, compared to baseline (1985-2014). The black line indicates change in 228 
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weather-related P. vivax under RCP 4.5 scenario. The red line indicates change in weather-229 

related P. vivax under RCP 8.5 scenario. These projections used an average of 26 GCMs (Table 230 

S2). Polygon area indicates 95%CI. 231 

 232 

3.1. Change in P. vivax and P. falciparum malaria 233 

The percentage change in weather-related P. vivax in the 2030s, 2050s, and 2080s time periods 234 

using 26 GCMs under two scenarios (RCP4.5 and RCP8.5), compared to baseline (1985-2014) 235 

are depicted in Table 1 and Figure 3. The projections show consistent increase of P. vivax and 236 

P. falciparum malaria throughout the study period under both scenarios. Compared to baseline 237 

period (1985-2014), P. vivax is predicted to increase by an average of 9.8%, 19.5%, and 34.3% 238 

in the 2030s, 2050s, and 2080s, respectively, under RCP8.5, and by an average of 5.5%, 18.7%, 239 

and 49.8%, respectively, under RCP4.5. Similarly, P. falciparum malaria is predicted to 240 

increase under RCP8.5 scenario by an average of 6.9%, 26.2%, and 79.6% in the 2030s, 2050s, 241 

and 2080s, respectively, and under RCP4.5, by 8.4%, 22.0%, and 47.1%, respectively. 242 

Generally, both P. vivax and P. falciparum would increase consistently up to the  end of this 243 

century regardless of the scenarios (Table 1 and Fig.3).  244 

Table 1. Percentage (%) change in malaria with climate change scenarios-RCP8.5 and RCP4.5.  245 

Malaria Scenarios                                         Periods    
2030s 2050s 

 
2080s 

P. vivax RCP4.5 9.8% 19.5%  34.3%  
RCP8.5 5.5% 18.7%  49.8% 

P. falciparum RCP4.5 8.4% 22.0%  47.1%  
RCP8.5 6.9% 26.2%  79.6% 

 246 
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                   247 

Fig.3. Percentage (%) change in the P. vivax and P. falciparum malaria in China under RCP 248 

4.5 and RCP 8.5 in 2030s, 2050s, and 2080s compared to the baseline period (1985-2014).  249 

                  250 

3.2. Spatial change in malaria 251 

There would be considerable changes in the spatial distribution of P. vivax malaria across 252 

different regions of China in the 2030s, 2050s, and 2080s under RCP4.5 and 8.5 (Fig. 4-5). 253 

These projections are based on averages of 26 GCMs, and show a consistent increase of P. 254 

vivax in most counties of southern, southeastern, southwestern, central, and some parts of 255 

northeast and northwest of China under both scenarios in the 2030s, 2050s, and 2080s, 256 

compared to the baseline distribution (1985-2014). A large percentage increase (>50%) of P. 257 

vivax is projected in some counties of the north, northeast, and northwest, under both climate 258 
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scenarios, with a greater increase under RCP4.5. The projection under RCP4.5 scenario 259 

indicated that a large percentage increase of P. vivax will involve some counties in the 260 

southwest, and northern tip of the northeast of the country in the 2050s and 2080s (Fig. 4, A-261 

C).  262 

 263 

Fig. 4. Percentage change (%) in P. vivax and P. falciparum malaria at the county level in 264 

China under RCP 8.5, compared to baseline period (1985-2014). A-C indicate the distribution 265 

of P. vivax, while E-G indicate the distribution of P. falciparum malaria. Projections are based 266 

on an average of 26 GCMs. 267 

 268 

 Climate change will also increase the potential distribution of P. falciparum malaria under 269 

both climate scenarios (Fig. 4-5). Compared to the baseline period, P. falciparum malaria will 270 

increase in most counties of the south, southeast, southwest, central, northwest and some 271 

counties of the north and northeast regions in 2030s, 2050s and 2080s. Similar to P. vivax, a 272 

higher percentage (>50%) increase of P. falciparum is predicted in some counties of the 273 

northwest, north, northeast, including northern tip of the northeast China under RCP8.5, but 274 

some areas of the south and central southwestern regions are also expected to have high 275 
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percentage increase during the same period (Fig.4, E-G). However, the spatial pattern of this 276 

increase is not clear under RCP4.5 (Fig.5, E-G).  277 

 278 

Fig.5. Percentage change (%) in the spatial distribution of projected P. vivax and P. falciparum 279 

malaria in China under the RCP 4.5 scenario, compared with the baseline period (1985-2014).  280 

A-C indicates the distribution of P. vivax, while E-G indicates the distribution of P. falciparum 281 

malaria. Projections are based on an average of 26 GCMs. 282 

 283 

4. Discussion 284 

 This is the first national study to project the long-range possible future distribution of P. vivax 323 

and P. falciparum malaria in China using ten years of malaria surveillance data and 26 global 324 

climate models under two emission pathways (RCP8.5 and RCP4.5). Cross-validation of the 325 

projection model showed good agreement between predicted and observed malaria cases, and 326 

was therefore used to project the malaria distribution. The findings indicate that P. vivax and 327 

P. falciparum malaria will increase in China, but by a larger amount under RCP8.5 scenario. 328 

Both P. vivax and P. falciparum are projected to increase in most parts of the regions 329 

throughout the century under both emission scenarios. A high percentage (>50%) increase of 330 
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malaria is predicted in some counties of the northwest, north, and northeast, including northern 331 

tip of the northeast China, with a clearer spatial change for P. vivax than P. falciparum. These 332 

findings are crucial for providing evidence-based information to achieve the goal of malaria 333 

elimination in China. 334 

The findings indicated that climate change could potentially increase both P. vivax and P. 335 

falciparum malaria. Studies have predicted increase in average surface temperature, and 336 

percentage change in precipitation (in northwest region of China) by 2081-2100 [37]. There 337 

have also been increased occurrence and intensity of extreme weather events such as floods, 338 

floods, landslides and droughts. These changes in climate will possibly enhance the 339 

transmission of malaria and other climate-sensitive vector-borne diseases. In addition to 340 

climate change with high impact on the transmission of malaria, the projected increase of 341 

malaria in the present study could be explained by some other factors. For example, 342 

urbanization has been accelerating in China, with increasing urban population over the last few 343 

decades [67]. This and increased population migration [68] can lead independently and 344 

synergistically to malaria transmission.   345 

There was a difference in the magnitude of malaria increase across the two emission pathways, 346 

which is likely to be related to differences in their underlying assumptions. The RCP4.5 347 

emission pathway leads to low greenhouse gas concentration levels (4.5 watts/km2) through 348 

resilient climate policy intervention [69]. In contrast, RCP8.5, the highest emission scenario, 349 

assumes no climate policy, and that greenhouse gas concentration will consistently rise 350 

associated with high population growth, followed by over-use of land and high energy demands 351 

[70].  Thus, the malaria transmission may be more enhanced under the latter scenario.  352 

The magnitude of change was slightly higher for P. falciparum than P. vivax regardless of the 353 

scenario, which may indicate that the two malaria types respond differently to climatic factors 354 
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[71-73]. Climate factors plays a vital role in malaria transmission because the survival and 355 

development of Anopheles mosquitoes and rate of malaria parasites developmental within the 356 

mosquitoes also called sporogonic cycle or extrinsic incubation period [74] is sensitive to 357 

change in environmental conditions. The species-specific effect of climate factors on malaria 358 

parasite is not well defined. Some evidences suggest that P. falciparum is more sensitive to 359 

climate factors than P. vivax [23, 71]  which concur with our findings. More recently P. vivax 360 

is reported to have shorter extrinsic incubation period (reviewed in [75], but no reported 361 

evidence comprising specific duration and temperature ranges of different malaria parasites. 362 

Some other literatures reported a likely shift towards a predominance of P. vivax malaria 363 

attributed to difference some biological features of the malaria parasites. They pointed out that 364 

i) the gametocyte of P. vivax appear earlier in victim’s erythrocytes enabling transmission 365 

before P. falciparum. ii) P. vivax is characterized by hyponozoites (dormant life stage in human 366 

liver) which cause relapse long time after original infection, meaning that transmission of the 367 

latter poses greater challenge on the malaria elimination goal [75]. However, these biological 368 

processes and malaria transmission can happen when and where environment is suitable.  369 

The distribution of P. vivax and P. falciparum malaria will change in future decades, but the 370 

magnitude of change and patterns vary by the scenario. Both P. vivax and P. falciparum might 371 

increase in most parts of the south, southeast, central, southwest and some parts of the north, 372 

northwest, and northeast regions across all decades for the rest of the century under both 373 

emission scenarios, if there is no policy to mitigate climate change damage. Historically, P. 374 

vivax was mostly distributed in the provinces of the southwest, central, south and southeast 375 

regions of China [76]. During 1999-2004, around 910-1,336 counties reported malaria most of 376 

which were from southern and central provinces. More than 50% of the national malaria cases 377 

during 2002-2004 were reported from Yunnan and Hainan provinces [76-78]. Although 378 

malaria cases and number of affected counties slightly decreased after several years of 379 
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interventions, malaria is still public health problem in some of the southern and central 380 

provinces with a consistent malaria transmission and focal outbreaks, especially in the A. 381 

sinensis transmission areas [77-79]. Human behavioural factors, such as population movement 382 

has also the potential to contribute to the geographic distribution of malaria, especially P. 383 

falciparum in China. Using only local malaria cases,  potential increases are predicted in this 384 

study along the margins of existing transmission [21], as well as malaria/vector-free areas, 385 

indicating the potential of future climate in sustaining malaria transmission in current endemic 386 

areas, and geographic expansion of the disease in the future.  387 

 388 

The highest percentage increase (>50%) of both P. vivax and P. falciparum malaria is predicted 389 

in some of the presently cooler regions of China (i.e., the north, northeast, northwest regions) 390 

under the high emission scenario. Furthermore, P. falciparum is expected to be expanded to 391 

the northern tip of the northeastern region under RCP8.5 scenario, while P. vivax is predicted 392 

in the areas under both scenarios. This may be explained by the expectation that future climate 393 

change will have a significant effect on expanding suitable habitat, therefore transmission of 394 

malaria [80] [81] or a potential northward shift of malaria. Coinciding with this, a latitudinal 395 

change of malarious areas was reported by a study in Africa [81]. Similarly, some regions of 396 

India, including the northern and northeast were predicted to have malaria in 2050s [82]. In 397 

China, the northern and northwest regions (currently cooler regions) were predicted to be 398 

wetter and warmer [37, 54], resulting in greater future malaria transmission associated with 399 

creation of an environment suitable for malaria vectors [36, 81]. Previous studies have 400 

indicated that the average surface temperature have risen in China, and projected to increase 401 

by 2.6oC (under RCP4.5) during 2080-2100 [37]. Compared to the south, the north of China,  402 

the northwest and northeast are estimated to have a high average temperature by 2080s [37, 403 

83]. The percentage change in precipitation was also projected to increase by a larger amount 404 
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in the north and northwest regions of the country [84, 85], which was expected to create a 405 

suitable environment for malaria vectors in the regions [39]. However, the geographic 406 

distribution of the principal (and efficient)  malaria vectors such as A. lesteri and A. dirus has 407 

been shrinking following several years of control interventions, and shifting to predominance 408 

of A. sinensis-the exophilic and zoophilic mosquito [86]. This vector has developed resistance 409 

to insecticide, and projected to increase with climate change [39, 86] but China would have the 410 

economic resources to contain the spread of malaria through vector control intervention, 411 

improved housing or medical treatment.  412 

  413 

The projection showed a clearer spatial change of malaria for P. vivax than P. falciparum, with 414 

a high percentage increase of P. vivax projected only in the north, northeast, and parts of the 415 

northwest of China under both scenarios. Although a high percentage increase is projected in 416 

these regions, some parts of south, southwest and central China are also expected to have P. 417 

falciparum under both scenarios. This may indicates differential impact of change in the 418 

climatic factors on malaria parasites, hence their spatiotemporal distribution. For example, a 419 

study indicated the minimum temperature for development of malaria parasite is lower for P. 420 

vivax (15oC) than for P. falciparum (18oC) [14, 87]. Thus, small increase in this climatic factor 421 

may enhanced vivax transmission in cooler area while limiting the spread of malaria in the 422 

previously hotter areas of the south, southwest and central China where temperature is expected 423 

to exceed the malaria transmission threshold [88].  424 

4.1. Limitations of the study  425 

There are several limitations that need caution when interpreting the results. First, the future 426 

projections of malaria under climate change need to consider the observed national decline in 427 

the disease over the last few decades, mainly owing to the control interventions. Second, 428 
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although climate change is of major concern and present the framework within which malaria 429 

transmission is possible, other non-climate factors such as socioeconomic growth may 430 

contribute to future outcomes [89, 90]. Second, the underlying spatial distribution of malaria 431 

modelled with the bi-dimensional spline was assumed fixed in time during projection for the 432 

future periods. Third, several technologies are available for climate change mitigation and 433 

adaptation, and others are under research and development to minimize carbon emission [91, 434 

92]. Therefore, in future, human being may control the public health effect of climate change 435 

through effective use of technology together with socioeconomic improvement may promote 436 

local capacity of the diseases control, better environmental management and land-use patterns, 437 

and implementation of health warning systems. However, the possible effects of 438 

socioeconomic and technological information were not considered, as these data were not 439 

available. These might have overestimated the impact of climate change. Fourth, we used 440 

annual data based on its importance in previous studies [27] and clearer trends to help long-441 

term planning. However, we concede that using county-level data, rather than individual data 442 

might have introduced uncertainty in the malaria-weather relationship. Finally, even though 443 

we used well-established model (GAM), every model has limitations, and we haven’t reported 444 

uncertainty associated with our projections, which would have arose from the climate data, 445 

model fit or distribution of malaria data.  446 

 453 

5. Conclusion  454 

Our findings suggest that spatial and temporal distribution of P. vivax and P. falciparum 455 

malaria in China will increase due to future climate change, if there is no policy to mitigate 456 

climate change. These findings are important to guide China’s malaria elimination goal and 457 

will provide targeted, evidence-based information to plan  malaria control intervention  458 
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Based on these findings, it is important that possible risk management strategies should be 459 

developed, and surveillance-response system enhanced, including in the currently malaria-free 460 

areas projected to have malaria in future. Although this study presents the results from an 461 

average of 26 GCMs projections, future study should evaluate an accuracy of every GCM in 462 

each region for the most plausible projections. Future research will be benefit by combing the 463 

RCPs with the Shared Socioeconomic Pathway (SSP) that consider the key scenario drivers 464 

such as socioeconomic growth, urbanization and population for the estimation of future 465 

malaria. 466 
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