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Abstract 

Many African counties, like Kenya, have introduced pneumococcal conjugate vaccines 

(PCVs) with financial support from Gavi, the Vaccine Alliance. However, in the near future, 

they are expected to transition and take up the full costs. Kenya introduced the ten-valent 

PCV (PCV10) in 2011 and enters the accelerated transition phase in 2022. This work 

aimed to study the effects of PCV10 vaccination on pneumococcal carriage and disease in 

the pre- and the immediate post-vaccination period, predict the long-term vaccination 

impact on carriage of pneumococcus and subsequent invasive pneumococcal disease, 

evaluate immune factors that may influence that impact and, ultimately, investigate the 

cost-effectiveness of potential policy options in order to guide Kenya’s decision-making. 

A dynamic transmission model was fitted to pre-vaccination carriage data and its 

predictions were validated against post-vaccination carriage data. In order to evaluate 

immune factors that may influence vaccination impact and thus warrant consideration in 

the mathematical model, statistical modelling of the association between pre-existing 

pneumococcal carriage and vaccine responsiveness, and between maternally-derived 

anti-protein and anti-capsular antibodies and the rate pneumococcal acquisition in 

newborns, was undertaken. A cost-effectiveness analysis was done based on the disease 

incidence predictions from the transmission model. 

The dynamic transmission model was shown be useful as it closely predicted the observed 

magnitude and timing of serotype replacement. Maternal anti-capsular antibodies were 

estimated to have a limited role while impaired immune responses were observed among 

vaccine serotype carriers at the point of vaccination. These two immune factors were 

evaluated within the decision making structure and considered to have negligible impact 
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on the performance of the model. In the conclusion, I estimated that sustaining PCV10 

vaccination in Kenya will be cost-effective but will present a significant challenge to 

affordability by the Kenyan Government. 
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Preface  

This PhD thesis is written in a research paper style format. The first chapter is a general 

introduction to the pneumococcus and pneumococcal vaccines and their impact. It also 

outlines the gaps in knowledge and sets the theme for the four manuscripts, each as a 

chapter, that follow. Three of the manuscripts are already published in peer-reviewed 

journals. The last manuscript is in preparation for submission. The last chapter in the 

thesis integrates the results of the four discrete but related investigations to attempt to give 

an answer to the problems posed in the introduction chapter. 
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Chapter 1: General introduction 

1.1 Context 

Many African counties, like Kenya, have introduced pneumococcal conjugate vaccines 

(PCVs) with financial support from Gavi, the Vaccine Alliance. However, in the near future, 

they are expected to transition and take up the full costs. Kenya introduced the ten-valent 

PCV (PCV10) in 2011 and enters the accelerated transition phase in 2022. Therefore, a 

cost-effectiveness study of the potential policy options is useful in guiding Kenya’s decision 

making on the future of its PCV vaccination programme. This work aimed to study the 

effects of PCV10 vaccination on pneumococcal carriage and disease in the pre- and the 

immediate post-vaccination period, predict the long-term vaccination impact on carriage of 

pneumococcus and subsequent invasive pneumococcal disease, evaluate immune factors 

that may influence that impact and, ultimately, investigate the cost-effectiveness of 

potential policy options. 

1.2 The pneumococcus 

Streptococcus pneumoniae (Pneumococcus) is a gram-positive bacterium, which takes the 

shape of a slightly pointed coccus. It usually occurs in pairs but can also exist singly or in 

short chains and it colonises the mucosal surfaces of the nasopharynx and upper 

respiratory tract. It is characterized by a polysaccharide capsule, which when present 

covers the entire cell, the basis upon which the pneumococcus is typed; there are over 90 

known serotypes to date [1,2]. The capsule also plays an important role in the virulence of 

the bacterium. The capsule protects against non-opsonic killing of the bacterium by human 

neutrophils. The susceptibility to killing is directly linked with the degree of encapsulation 

where serotypes that are heavily encapsulated are more resistant to neutrophil-mediated 
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killing [3]. Most pneumococcal capsules are negatively charged [4]. The negative charge 

repels phagocytes through electrostatic repulsion, which enhances colonisation. Also, 

pneumococcal strains with highly negatively charged capsules are less likely to adhere to 

human airway mucus therefore preventing clearance by mucus [4,5]. Upon adherence of 

pneumococci to epithelial cells, the thickness of the capsule is reduced. This results in the 

exposure of adhesion molecules and allows pneumococci to strengthen the attachment to 

host cells enhancing subsequent uptake [6]. The pneumococcus also contains proteins 

that control the host-pathogen interactions. These proteins have varied roles including 

ensuring viability of the pneumococcus [7–10] and determination of virulence, as is the 

case for the group of choline-binding surface proteins [11–13]. About 30-50% of 

pneumococcal strains express pili on their cell surface and this aids in attachment to the 

host epithelial cells [14], however, the pili are not essential for attachment. The 

pneumococcus is mostly found in humans though the host can range from mice, rats, 

guinea pigs, rhesus monkeys to chimpanzees. 

Transmission of pneumococcus from one human host to another is normally through 

infectious droplets that are passed across by coughing or sneezing or very close person-

person contact e.g. oral contact [15–18]. There exists intra-species competition among 

pneumococci in colonising the human nasopharynx and different serotypes of 

pneumococci vary in their competitive abilities. The biological mechanism of competition 

between pneumococcal serotypes is not yet known. Between-serotype competition has 

however been postulated and quantified based mathematical models fitted to 

epidemiological data [19,20] or mouse experimental colonisation models [21]. In 

mathematical models, a competition structure where the rate of acquisition of a second 

serotype in an already colonised individual is lower than the rate of acquisition of that 
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second serotype in a completely susceptible individual is supported better by 

epidemiological data (i.e. better model-fit) than a competition structure where the 

clearance of a resident serotype is enhanced by the acquisition of a second serotype. In a 

mouse model of intranasal carriage of pneumococci, carriage of a resident strain inhibited 

the acquisition of a challenge strain and this inhibitory effect depended on the dose of the 

challenge strain [21]. Challenge with a secondary strain did not significantly influence the 

rate of clearance of the resident strain. This experimental observation is compatible with 

the assumptions of mathematical models about between-serotype competition structures 

that are best supported by epidemiological data. Therefore between-serotype competition 

is believed to essentially work through acquisition rather than clearance [19–21].  

The duration of carriage, which is a function of the clearance rate, varies across serotypes 

and reduces with age [20,22–24]. Two potential explanations for the reduction in duration 

of carriage with age include: (i) the natural immunity acquired after exposure to 

pneumococcal carriage that reduces duration of carriage in subsequent episodes [25,26] 

and: (ii) the maturation of immune responses with age that are independent of natural 

exposure [27]. Given that some serotypes are poor competitors in colonising the 

nasopharynx and are more easily cleared from it, it has been shown, in a mathematical 

modelling study, that the diversity of pneumococcal serotypes is maintained because of 

weak serotype-specific immunity that stabilizes competition, and acquired non-capsular 

immunity that reduces the serotype-specific differences in fitness, like duration of carriage 

[28]. Anti-capsular antibodies drive serotype-specific immunity against homologous 

colonisation [29–31]. Weak serotype-specific immunity allows repeated colonisation of a 

host with a serotype that has previously been encountered naturally. Non-capsular 

immunity is driven by an immune mechanism mediated by interleukin 17 produced by 
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Th17 T cells as demonstrated in mouse models [26,27]. This type of immunity has been 

observed in longitudinal studies in humans [32,33]. 

Pneumococci carried in the nasopharynx can spread to other parts of the body causing 

various forms of non-invasive and invasive pneumococcal diseases. The non-invasive 

pneumococcal diseases include acute otitis media and non-bacteraemic pneumonia. 

Acute otitis media is caused by direct spread of the pneumococcus through the Eustachian 

tubule and is characterized by inflammation of the middle ear and swelling of the eardrum. 

Non-bacteraemic pneumonia is caused by direct spread through the trachea to the lower 

respiratory tract without isolation of pneumococcus in blood and is diagnosed by chest 

radiographs. Invasive pneumococcal disease (IPD) occurs when the pneumococcus 

invades sterile sites such as the blood stream or the cerebrospinal fluid, causing 

bacteraemia/sepsis, or meningitis.  

1.3 Burden of disease caused by the pneumococcus  

The burden of pneumococcal disease is mainly concentrated in children younger than 5 

years and in the elderly [34,35]. In 2000, before the introduction of pneumococcal 

vaccines, the World Health Organization (WHO) estimated that pneumococcal diseases 

led to 1.6 million deaths worldwide. Over half of these deaths (0.83 million) were in 

children under 5 years. Pneumococcus was estimated to cause around 11% (8–12%) of all 

deaths in children aged 1–59 months, not including pneumococcal deaths in HIV-positive 

children [34]. Furthermore, the highest incidence and case-fatality rates were estimated to 

occur in sub-Saharan Africa and Southeast Asia. In 2008, the WHO estimated that there 

were 0.5 million deaths due to pneumococcal diseases in children under 5 years [36]. 
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More recent global estimates of mortality caused by the pneumococcus are being updated 

and will become available later in 2017 [37].  

1.4 Protection from maternally-derived anti-pneumococcal antibodies 

Exposure to pneumococcus in the natural environment of pregnant women can induce 

natural antibodies against the pneumococcal strains encountered [31,38]. These naturally-

acquired antibodies can be passively passed on to the foetus through trans-placental 

diffusion in the late stages of pregnancy [38]. The transfer of antibodies across the 

placenta is not very efficient, especially for polysaccharide antigens [39], which means that 

the antibody concentration in the infant at birth is normally lower than that in the mother. 

These circulating maternally-derived antibodies could potentially protect infants from 

colonisation, which is a necessary precursor for invasive disease [40]. However, several 

studies have documented the limited role of maternally-derived antibodies in protecting 

infants from pneumococcal colonisation [33,38,41].  

Three limitations of the studies of newborn pneumococcal colonisation and maternally-

derived antibodies [33,38,42–44] might mask a potential association. (1) Children born to 

carrier mothers have a higher risk of being infected by the mother; as maternal carriage 

may stimulate a maternal antibody response, they are also more likely to receive higher 

antibody concentrations by passive transfer from the mother. Therefore, failing to account 

for the colonisation status of the mother at birth would confound the estimate of the 

protective role of antibodies. (2) The first swabs were obtained at 1 month of age at the 

earliest and the inter-swab interval was also at least a month [33,38,43–46]. The duration 

of carriage of some pneumococcal serotypes in young infants can be less than a month 

[20,22]. An insensitive ascertainment of carriage in infants can result in an increased 
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number of missed carriage episodes. (3) The relatively small sample size of these studies 

has limited the power to detect modest protective efficacies. We need studies that 

overcome these limitations to determine an un-biased characterization of the impact of 

maternally-derived antibodies on infant pneumococcal carriage and subsequent disease. 

By extension these would provide un-biased information on which to base potential 

vaccination strategies or modelling assumptions. 

1.5 Pneumococcal vaccines  

The first vaccines introduced against pneumococcus were derived from purified capsular 

polysaccharide, and these could be pooled to offer multi-serotype protection. A 

polysaccharide vaccine that is still in current use is the 23-valent pneumococcal 

polysaccharide vaccine (PPV23). It protects against 23 serotypes of pneumococcus (1, 2, 

3, 4, 5, 6B, 7F, 8, 9N, 9V, 10A, 11A, 12F, 14, 15B, 17F, 18C, 19F, 19A, 20, 22F, 23F, and 

33F). However, polysaccharide vaccines are poorly immunogenic in young infants [47,48]. 

In a trial with a 14-valent polysaccharide vaccine, children who were less than two years 

old at the time of primary vaccination were given a booster dose six months later. There 

was no significant increase in antibody to any serotype post-booster, and the geometric 

mean antibody levels waned for most types [47]. In a study among children in Finland, 

aged less than 7 years, there was poor immunogenicity to serotypes 6A and 23F – 

serotypes that frequently cause pneumococcal infections in children. In addition, children 

younger than 2 years of age also responded very poorly to serotypes 19F and 18C [48]. 

Currently, polysaccharide vaccines are not recommended in children younger than two 

years of age. The PPV23 has been mainly used in high-risk groups of older children and 

adults such as those with immunodeficiency or those aged above 65 years. 
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The cause of the poor immunogenicity of polysaccharide vaccines in children under 2 

years is not completely understood. The free polysaccharide antigens induce thymus-

independent anti-polysaccharide antibody responses, which are not fully developed in 

infants [49–51]. Reduced thymus-independent responses are attributed to the low 

numbers of marginal-zone B-cells present during birth and these are poorly developed in 

neonates [51] and in young children [52].Thymus-independent antigens do not require T-

cells to induce immunological response and therefore they do not induce immunological 

memory.  

An interesting observation regarding polysaccharide vaccines is that repeated vaccination 

is associated with hyporesponsiveness (i.e. reduced immunological response) [53], which 

can be long lasting in asplenic children [54] and can be overcome, in the elderly, if the two 

doses are administered at least five years apart [55,56]. Furthermore, polysaccharide 

vaccines have not been shown prevent nasopharyngeal carriage in children [57,58] and by 

extension transmission of pneumococcus, therefore, they do not elicit herd-protection in 

the population. However, in adults, immunisation with specific capsular polysaccharides 

greatly reduced the incidence of pneumonia caused by pneumococci in vaccinated 

individuals and non-vaccinated individuals who frequently interacted with vaccinees [59]. 

As polysaccharide vaccines are not protective in infants, vaccine formulations that could 

stimulate immunity even in young children were explored. The idea of conjugating the 

polysaccharide to an immunogenic protein carrier was conceived in the early 1930s where 

the immunological specificity of an antigen prepared by combining the capsular 

polysaccharide of type III pneumococcus with foreign protein was described [60]. This lead 

to the development of the first glycoconjugate vaccine for use in humans, a Haemophilus 

influenzae type b (Hib) conjugate vaccine, that was licensed in the USA in 1987 and 
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introduced into the US infant immunization schedule [61]. Pneumococcal Conjugate 

Vaccines (PCVs) were subsequently formulated by conjugating pneumococcal 

polysaccharides to carrier proteins. The carrier proteins stimulate the immune system 

through T-helper cells [62,63] which activate polysaccharide-specific B cells to proliferate 

and differentiate into plasma cells, thus making the conjugate vaccines immunogenic even 

in infants and young children. However, the process of conjugation is complex which has 

limited the number of serotypes that can be included in a vaccine and led to high 

manufacturing costs. The first PCV included antigens against seven serotypes - 4, 6B, 9V, 

14, 18C, 19F and 23F. Successively, more serotypes have been included in PCVs and 10-

valent (PCV10 serotypes 1, 4, 5, 6B, 7F, 9V, 14, 18C, 19F and 23F), and 13-valent 

(PCV13 serotypes 1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F and 23F) conjugate 

vaccines have been licensed and are now widely in use. 

Other formulations of pneumococcal vaccines that are in clinical development include 

pneumococcal whole cell vaccines and protein vaccines [64–66]. Because these vaccines 

are not targeted at specific capsular polysaccharides they are expected to protect 

recipients against all serotypes of pneumococcus.   

1.6 Impact of PCVs on carriage of pneumococcus and subsequent disease  

Impact on carriage 

Reduction in nasopharyngeal carriage of vaccine-serotype pneumococci has been 

documented after vaccination with PCVs [67–69]. In a meta-analysis of individually 

randomised studies of the efficacy of PCV7 against carriage [70], the aggregate vaccine 

efficacy against vaccine serotype carriage was estimated as 57% (95% credible interval: 
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50-65%) 6 months after completion on the vaccination schedule. The peak vaccine 

efficacy, measured two months after completion of vaccination schedule, was estimated as 

62%. Moreover, by reducing the likelihood of acquisition of the pneumococcus in the 

nasopharynx, conjugate vaccines reduce pneumococcus transmission and thereby offer 

indirect protection against IPD to the unvaccinated, herd immunity. For example, in the 

Active Bacterial Core Surveillance (ABCs) in USA there was an estimated decline of 

between 64–77% in vaccine serotype IPD from pre-introduction of PCV7 to 4 years post-

introduction among adults [71]. In England and Wales, vaccine serotype disease 

decreased in all age groups; there was a reduction of 98% in individuals younger than 2 

years and of 81% in those aged 65 years or older 4 years following introduction of PCV7 

[72]. However, non-vaccine-serotype pneumococci rapidly colonise this vacated ecological 

niche which gives rise to near-complete serotype replacement carriage where the overall 

carriage prevalence remains unchanged [73–76]. This leads to serotype-replacement 

disease the extent of which depends on the invasiveness of the replacing serotypes, 

therefore, ongoing surveillance post-introduction is always necessary, but this is not in 

place for most developing countries that have introduced PCVs. In contrast to developed 

countries [71], circulation of vaccine serotypes in low-income countries has not been 

eliminated. Data from Kenya [77] and The Gambia [78] suggests that the prevalence of 

vaccine serotypes remains high several years after vaccine introduction. In infants, the 

prevalence of PCV7 serotypes was estimated at 5% in The Gambia in 2012 [78] and the 

prevalence of PCV10 serotypes was estimated at 8% in Kenya [77]   

Impact on disease 

Despite the impact of serotype replacement, PCVs have been shown to be efficacious in 

preventing serious forms of vaccine-type pneumococcal disease [71,74,79–92], 
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radiologically-confirmed pneumonia [85,87,93,94] and acute otitis media (AOM) [95–98]. 

The duration of protection of PCV against disease can be as long as 6 years [99]. The 

efficacy of PCV is higher against vaccine-serotype pneumococcal disease than against 

radiologically-confirmed pneumonia or AOM. This is because the later endpoints are not 

specific for pneumococcal aetiology; vaccine efficacy would be biased downwards when 

there is low specificity of the endpoint. Both radiologically-confirmed pneumonia [100] and 

AOM [101,102] have many aetiologies including but not limited to Streptococcus 

pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis. Therefore, PCV can only 

be expected to prevent the portion of radiological pneumonia and AOM with vaccine-

serotype pneumococcal aetiology.  

There are few individually randomised trials in Africa on the efficacy of PCVs against 

disease. In a randomised placebo-controlled trial in The Gambia among children aged 6 to 

51 weeks, the efficacy of the 9-valent PCV was estimated to be 37% against the first 

episode of radiologically-confirmed pneumonia while the efficacy against vaccine serotype 

IPD and all IPD was 77% and 50%, respectively [93]. In a randomised controlled trial in 

South Africa, where children were vaccinated at ages 6, 10 and 14 weeks, the efficacy of a 

9-valent PCV against the first episode of IPD among HIV negative and HIV positive 

children was 83% and 65% respectively [94].  

Effectiveness studies from population-based surveillance in some African countries have 

also reported a reduction in disease following PCV introduction. South Africa introduced 

PCV7 in 2009 and replaced it with PCV13 in 2011. The rate of IPD among all ages 

dropped by 40% by 2012 [103]. The Gambia introduced PCV7 in 2009 and replaced it with 

PCV13 in May 2011. Using population-based surveillance and nested case-control 

studies, PCV vaccination in The Gambia was associated with a reduction in the incidence 
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of radiologically-confirmed pneumonia by 23%, 29% and 22% in children aged 2-11 

months, 12-23 months and 2-4 years, respectively, up to the period 2014/15. The 

reduction in the incidence of pneumococcal pneumonia was 58%, 75% and 57%, 

respectively, in the same age groups [104]. Using the period before the introduction of 

PCV13 as the baseline (May 12, 2008–May 11, 2010) and a post vaccination period 

spanning two years (Jan 1, 2013–Dec 31, 2014), the incidence of IPD reduced by 55% 

and 56% in children aged 2-23 months and 2-4 years respectively [105].  

Mozambique introduced PCV10 in March 2013. Over three years after PCV introduction, 

data from three main sentinel hospitals have recorded a steep decline in pneumococcal 

meningitis cases in children below of the age of five years. The proportion of cases of 

pneumococcal meningitis decreased from 33.6% to 1.9% in 2015 among children with 

suspected acute bacterial meningitis [91]. 

Kenya introduced PCV10 at the beginning of 2011. In Kilifi, a coastal area in Kenya with 

enhanced surveillance for IPD and carriage prevalence, the vaccine was introduced with a 

catch-up campaign among children <5 years. Vaccine-type pneumococcal carriage and 

IPD dropped substantially in all age groups. Carriage of vaccine serotypes was reduced by 

two-thirds both in children younger than 5 years and in older individuals [77,106]. In 

children <5 years, the incidence of vaccine-serotype IPD fell by 92% while the overall IPD 

decreased by 68% in the post vaccination period (2012-2016) [107]. Among children aged 

2-59 months in Kilifi, PCV10 introduction was associated with a reduction in clinically-

defined and radiologically-confirmed pneumonia of 27% and 48%, respectively [108]. 
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1.7 Immune correlates of protection against disease and carriage 

PCVs induce an immune response characterized by an increase in the anti-capsular 

antibodies to the antigens contained in the vaccine. High levels of vaccine-induced anti-

capsular antibodies have been associated with reduction in IPD [109,110] and 

pneumococcal carriage [111]. For IPD a common correlate of protection (CoP) across 

vaccine-serotypes of 0.35 mcg/ml was derived for PCV7 [109,112] and used for licensing 

extended formulations of PCV such as PCV10 and PCV13 [113]. However, the use of a 

single CoP has recently been criticized as the threshold varied widely across serotypes in 

PCV13 [114]. The statistical method used to derive the CoP for IPD equated relative risk of 

IPD between vaccine and control groups (i.e. one minus the vaccine efficacy) to the 

relative risk of having antibody concentration below the protective threshold. Then, the 

protective threshold was derived from reverse cumulative distribution curves of the 

antibody concentrations of the vaccinated and the control groups as the concentration at 

which this equation is satisfied [112]. A key simplifying assumption of the approach is that 

the relationship between the risk of disease and antibody concentration is a step function, 

where the risk of disease above the threshold is negligible (all or nothing protection), which 

can be violated in reality. 

Carriage is a precursor to IPD [40] and is an endpoint that is both easy and faster to 

measure relative to IPD. In addition to preventing disease, a vaccine that prevents 

transmission confers herd protection against carriage and disease and therefore has 

additional value. This is worth considering when licensing future pneumococcal vaccines. 

Carriage has therefore become a target for vaccine development [115] and  future vaccine 

development will benefit from a better understanding of the relationship between antibody 

development and reduced carriage. In this context, a clear CoP against carriage would be 
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a useful output in the characterisation of the antibody-carriage relationship. However, there 

is only one study, conducted in the United Kingdom, that has identified a clear correlate of 

protection against carriage and this is for only a single serotype [31]. In this study, 

individuals with antibody concentration above 5mcg/ml were protected against acquisition 

of serotype 14. Nonetheless, the study used data from adult subjects, which might limit the 

application of the threshold in children, and related carriage to naturally-acquired 

antibodies rather than vaccine-induced ones.  

1.8 Hyporesponsiveness 

Even though children mount an immune response after vaccination with PCV, the 

magnitude of this response is dependent on the carriage status at the time of vacation. 

Individuals with prevalent carriage at the time of vaccination have an impaired response 

leading to lower concentration of homologous antibody post-vaccination [116–121]. PCV 

responses in African children are generally thought to be higher than those seen in 

developed country settings [79,122–124]. For example, the serotype-specific geometric 

mean fold-rise after a 3-dose primary series of PCV was lower in USA [79] and Finland 

[124] compared to South Africa [122] and The Gambia [123]. Since carriage rates in early 

infancy are extremely high in countries like The Gambia [125] and Kenya [106,126], it is 

possible that hyporesponsiveness does not occur, or is immunologically irrelevant, in 

tropical Africa. However, no study in Africa has yet examined the question of 

hyporesponsiveness. If the reduced responsiveness among carriers leads to lower 

immunogenicity then vaccination strategies that speedily reduce carriage in the whole 

population, such as catch-up campaigns, might be more effective than cohort introduction. 

Hyporesponsiveness might also impact on the fit of mathematical models of carriage if not 
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included in the mechanistic structure, depending on the magnitude of the resulting 

reduction in vaccine efficacy.  

1.9 Roll out of Pneumococcal vaccines  

PCV7 was the first conjugate vaccine licensed for use in infants in the United States of 

America (US) in the year 2000. By August 2008, PCV7 had been introduced in 26 high-

income countries. However, the conjugate vaccines were not introduced in developing 

countries until the year 2009 when Rwanda announced the introduction of PCV7 in its 

childhood immunization programme. The delay in the roll out of PCV vaccination programs 

in developing countries was mainly caused by the high vaccine price. According to the US 

Centers for Disease Control and Prevention (CDC), the contract price for PCV7 in 2001 

was US $45.99 per dose and US $58.75 per dose in the private sector [127]. When 

PCV13 was introduced in the US in 2010, the CDC contract price was US$91.75 per dose, 

currently (2017) it is US$126.97 per dose [128].  

In order to lower the cost of production and by extension the vaccine price per dose, 

vaccine-manufacturing companies would need to increase the manufacturing capacity to 

take advantage of economies of scale. With limited supply, the price of vaccine would be 

too high for developing countries. However, manufacturers would not have the incentive to 

make huge investments if there is no matching demand for the vaccines, which creates a 

stalemate.  

In the Latin American and Caribbean (LAC) countries, PCV vaccination was introduced 

largely with the support of a bulk procurement mechanism for vaccines and related 

supplies [129]. This mechanism was operated by the Pan American Health Organization 



	
	

22	

(PAHO) revolving fund [130] in which forty-one member countries pool their recourses to 

procure vaccines in bulk at lower prices. PAHO prices for PCV10 and PCV13 have 

declined slightly from US$14.24 and US$16.34, respectively, in 2012 but remain high at 

US$12.85 and US$14.50, respectively, in 2017 [131]. 

In many developing countries in Africa, PCVs were introduced through financial support 

from Gavi, the Vaccine Alliance. Gavi developed an innovative vaccine funding and 

delivery mechanism known as the pneumococcal Advanced Market Commitment 

(pneumococcal AMC). Under the pneumococcal AMC, donors committed funds for vaccine 

procurement and Gavi made an advanced commitment to manufacturers to purchase 

specific volumes of vaccine meeting specific requirements (target product profile); this 

gave vaccine manufacturers the incentive to invest in expanding their manufacturing 

capacity and in vaccine research. In return companies signed a legally-binding 

commitment to provide the vaccines at an agreed price to developing countries in the long 

term, ten years [132].  

Countries with an average Gross National Income (GNI) per capita of less than $1580 over 

the three years before application to Gavi are, in principle, eligible for support from Gavi for 

introduction of PCV vaccination in their childhood immunization programs. As of March 

2017, 59 developing countries had been approved for pneumococcal vaccine support and 

more than 50 of them had introduced PCV [133]. Initially, countries are expected to pay a 

small fraction (6%) of the agreed vaccine price, which is currently $3.05, in a co-financing 

agreement, while Gavi pays the rest. However, as each country’s GNI grows and goes 

above the eligibility threshold it enters the accelerated transition phase where, within five 

years, it is expected to take up the full cost of the vaccine [134].  
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1.10 The future of PCV vaccination in Kenya  

Gavi’s initiative to help developing countries access PCVs has been a success, 

considering the uptake of PCVs and the subsequent impact of vaccination in reducing the 

burden of pneumococcal disease in these countries. The challenge that remains for 

countries that have depended on Gavi support is how to sustain the programmes once 

they transition out of Gavi support. At the moment four African countries (Angola, Congo 

Rep., Ghana and Nigeria) are in the accelerated transition phase [134] and five more 

(Ivory Coast, Lesotho, Sudan, Kenya  and  Zambia) are expected to join within the next 

five years. 

Kenya is expected to enter the accelerated transition phase in 2022 which should lead to 

taking up the full cost of the PCV vaccination programme by 2027 [135]. Policy makers in 

Kenya will need to decide in 2022 whether to enter the accelerated transition phase or 

alter or discontinue the programme. PCV is the most expensive vaccine in the national 

immunization programme. However, for most African countries the decision to introduce 

PCV was not preceded by an evaluation of the balance of predicted costs and benefits of 

PCV introduction because Gavi provided the majority of vaccine costs. For Kenya, with 

good local data on disease burden and impact, the decision to continue or amend the PCV 

programme should be based on a rational process informed by infectious disease 

modelling and cost-effectiveness analyses.  

1.11 Research objectives 

The overall aims of the research presented in this thesis are to:  
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1. Model the effects of PCV10 vaccination on pneumococcal carriage and disease in 

the pre- and the immediate post-vaccination period. 

2. Predict the long-term vaccination impact on carriage of pneumococcus and 

subsequent invasive pneumococcal disease 

3. Evaluate immune factors that may influence that impact 

4. Investigate the cost-effectiveness of upcoming policy options in order to guide 

decision-making. 

1.12 Approach used in tackling the research objectives 

To produce valid estimates of the cost-effectiveness of PCV, observed and modelled 

incidence estimates for IPD and/or those of other non-invasive pneumococcal diseases 

are required. Disease incidence estimates are used to calculate the treatment and other 

related costs and to estimate the disability-adjusted-life-years (DALYs). However, disease 

prediction models are subject to a host of influencing factors that demand consideration. 

The principal problem with limited-valency vaccines is serotype replacement: the rapid 

colonisation of the vacated ecological niche by non-vaccine-type pneumococci, which 

results in serotype replacement disease. The additional impact of PCV vaccination on 

carriage and disease, through herd immunity, also needs to be accounted for. Other 

factors, such as social contact patterns, can also influence transmission of carriage. 

Mathematical transmission models are useful tools in encompassing these dynamics and 

have been used in predicting PCV vaccination impact [74,75,136–139]. I use transmission 

modelling in this thesis for prediction of vaccination impact. 

Mathematical transmission models require data for calibration and validation. I use data 

that is mainly collected within the Kilifi Health and Demographic Surveillance System  
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(KHDSS) [140]. KHDSS is housed within the Kenya Medical Research Institute-Wellcome 

Trust Research Programme (KWTRP) in Kilifi, which is located on the Indian Ocean coast 

of Kenya. KHDSS was established in 2000 with an initial population of about 198,000 and 

covers an area of 891 Km2. There are currently about 290,000 residents in its population 

register. Records of births, pregnancies, migrations and deaths among residents are 

updated by 4-monthly household visits, which enable an accurate track of denominators 

for estimating disease burden among the residents. Within the KHDSS area there is a 

single government referral hospital, Kilifi County Hospital (KCH). Approximately 55% of the 

children admitted at KCH are residents of KHDSS. At KCH, morbidity events are linked in 

real time to the population register through an integrated data management system. Since 

2008 linked surveillance was extended to include KHDSS vaccine clinics for the purpose 

of monitoring vaccination coverage [141].   

Using the KHDSS platform studies have generated detailed data on a wide range 

measures, including nasopharyngeal carriage and invasive pneumococcal disease from 

routine surveillance before and after vaccine introduction, that can be used to support 

mathematical models [20,69,140–142]. There are also complementary results from local 

epidemiological studies that provide information on duration of carriage, competitive 

strength of serotypes and rates of social contacts [20,143]. 

The report of the work in this thesis is presented in a research paper style structured into 

four research chapters with the following titles: 

1. Sustained reduction in vaccine-type invasive pneumococcal disease despite waning 

effects of a catch-up campaign in Kilifi, Kenya: a mathematical model based on pre-

vaccination data. 
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2. Pneumococcal conjugate vaccine induced IgG and nasopharyngeal carriage of 

pneumococci: Hyporesponsiveness and immune correlates of protection for 

carriage 

3. Effect of maternally-derived anti-protein and anti-capsular IgG antibodies on the 

rate of acquisition of nasopharyngeal carriage of pneumococcus in newborns. 

4. The merits of sustaining pneumococcal vaccination after transitioning from Gavi 

support – a cost-effectiveness study for Kenya 

In research paper 1, I developed an age-structured dynamic transmission model of 

pneumococcal carriage calibrated with the detailed pre-vaccination data from KHDSS and 

used the post-vaccination data to validate its predictions. In Kilifi, unlike the rest of the 

country, PCV10 was introduced with a catch-up campaign in <5 year olds. Given the 

continued observation of vaccine serotypes in circulation, 5 years after PCV10 introduction 

[77], I also investigated if vaccine-serotype invasive pneumococcal disease may re-

emerge once the effects of the under-5 year old catch-up campaign wear off.  

Mathematical models can broadly be categorised as either agent-based or compartmental. 

In an agent-based model transition between states in the model is determined by the 

behaviour of the individual and not the group as a whole, as is the case with a 

compartmental model. One main advantage of a compartmental model is that it is 

computationally faster. Except for two models that are agent-based [136,138], published 

transmission-dynamic models of pneumococcal transmission to study vaccination impact 

are compartmental [74,75,137–139,144,145].  

Pneumococcal transmission models invariably group hypothetical individuals according 

their pneumococcal carriage status where an individual can be completely susceptible, 
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carry single serotypes, or carry two serotypes simultaneously. In order to reproduce 

serotype replacement, the models almost always group serotypes into two broad 

categories, vaccine-serotypes and non-vaccine serotypes, and encode a mechanism of 

competition between these two serotype groups. Very few models have however 

considered more than two serotype groups [75,136,138].  

The grouping of serotypes into aggregate types tackles the problem with a large number of 

serotypes for which individual characteristics might not be available. However, a key 

criticism of grouping of serotypes is that the aggregate types can have dynamics that are 

different than the individual serotypes included. The grouping of serotypes may also 

artificially promote their co-existence in the model because it artificially reduces serotype-

specific fitness differences.  

From the two pre-vaccination pneumococcal carriage surveys conducted in Kilifi, Kenya, 

the data that our model was fitted to, 46 different serotypes were detected in carriage 

[106]. A transmission model that accounts for the characteristics of each of these 

serotypes individually would be impractical; we do not have information on the duration of 

carriage of each of the serotypes circulating in Kilifi, also, some of them are rarely carried 

and thus occur in very low frequencies, which would lead to convergence problems in 

model fitting especially when the small numbers are further considered by age groups in 

an age-structured model. Some pooling of serotypes was necessary in the model used.  

I pooled serotypes into three classes; vaccine-serotypes, strong non-vaccine serotypes 

and weak non-vaccine serotypes. The separation between weak and strong non-vaccine 

serotypes was based on prior information on the some of the serotypes susceptibility to 

competition. The reason why I did not split the vaccine serotypes into say two classes as 
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we did with the non-vaccine serotypes is because I intended the model to reproduce 

serotype replacement with a small number of competition parameters as possible, by 

limiting the number of compartments. The extent of serotype replacement would be more 

accurately predicted if the heterogeneity within non-vaccine serotypes, rather than those 

within vaccine-serotypes, is incorporated in the model. This is because heterogeneity in 

the non-vaccine serotypes is higher by virtue having a larger number of serotypes.  

In the interests of parsimony, several aspects of pneumococcal immunology and 

epidemiology are simplified in the generation of this model.  Two such simplifying 

assumptions are: (i) the immunogenicity of the vaccine is independent of the carriage 

status of the vaccinees; (ii) children are born completely susceptible to carriage acquisition 

with no protection from maternally acquired antibodies. In order to test the validity of these 

assumptions in Kilifi I undertook statistical modelling of data from prior studies in Kilifi 

examining the safety and immunogenicity of PCV, which also monitored carriage. These 

analyses form research papers 2 and 3 respectively and inform research paper 4. 

For research paper 4, I used the model from research paper 1 but extended the fitting 

process to also include age stratified post-vaccination (2011-2016) pneumococcal 

carriage. I then use the model to predict the impact of continuing or discontinuing the 

PCV10 programme in 2022. On the basis of those predictions I assessed the cost-

effectiveness of continuing with the PCV10 vaccination programme for 11 years from year 

2022 relative to stopping the vaccination programme at that time.  

In a final chapter I will integrate the results of the four discrete investigations to attempt to 

give an answer to the problems posed in the present chapter. 
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Abstract 

Background: In 2011, Kenya introduced the 10-valent pneumococcal conjugate vaccine 

together with a catch-up campaign for children aged <5 years in Kilifi County. In a post-

vaccination surveillance study based in Kilifi, there was a substantial decline in invasive 

pneumococcal disease (IPD). However, given the continued circulation of the vaccine 

serotypes it is possible that vaccine-serotype disease may re-emerge once the effects of 

the catch-up campaign wear off.  

Methods: We developed a compartmental, age-structured dynamic model of 

pneumococcal carriage and invasive disease for three serotype groups: the 10-valent 

vaccine serotypes	and two groups of non-vaccine serotypes based on their susceptibility to 

mutual competition. The model was calibrated to age- and serotype-specific data on 

carriage and IPD in the pre-vaccination era and used to predict carriage prevalence and 

IPD up to ten years post-vaccination in Kilifi. The model was validated against the 

observed carriage prevalence after vaccine introduction. 

Results:  The model predicts a sustained reduction in vaccine-type pneumococcal carriage 

prevalence from 33% to 8% in infants and from 30% to 8% in 1-5 year olds over the 10-

year period following vaccine introduction. The incidence of IPD is predicted to decline 

across all age groups resulting in an overall reduction of 56% in the population, 

corresponding to 10.4 cases per 100000 per year. The vaccine-type IPD incidence is 

estimated to decline by 83% while non-vaccine-type IPD incidence is predicted to increase 

by 52%. The model’s predictions of carriage prevalence agree well with the observed data 

in the first five years post-vaccination. 
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Conclusion: We predict a sustained and substantial decline in IPD through PCV 

vaccination and that the current regimen is insufficient to fully eliminate vaccine-serotype 

circulation in the model. We show that the observed impact is likely to be sustained despite 

waning effects of the catch-up campaign. 

Background 

Reduction in nasopharyngeal carriage of vaccine-type pneumococci has been 

documented after vaccination with pneumococcal conjugate vaccines (PCVs) [1–3]. 

Moreover, by reducing pneumococcal acquisition, PCVs reduce pneumococcal 

transmission in the community offering indirect protection to the unvaccinated [4]. 

However, non-vaccine-type pneumococci rapidly colonise this vacated ecological niche, 

which can result in serotype replacement carriage	[5] and replacement disease reducing 

the overall impact of PCVs [6]. With support from Gavi, The Vaccine Alliance, African 

countries have been introducing PCVs since 2009. Kenya introduced a 10-valent PCV 

(PCV10) targeting serotypes 1, 4, 5, 6B, 7F, 9V, 14, 18C, 19F and 23F in 2011. In Kilifi, a 

coastal area with enhanced surveillance for invasive pneumococcal disease (IPD) and 

carriage prevalence, the introduction was supplemented by a catch-up campaign in 

children <5 years old. At the same time annual carriage prevalence surveys have been 

conducted in the Kilifi Health and Demographic Surveillance System (KHDSS) population 

since 2009 [5]. 
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Within a few months post-vaccination vaccine-type pneumococcal carriage and disease 

had	dropped substantially in all age groups. However, vaccine serotypes (VTs) continue to 

circulate in the community [7,5]. This raises the concern that, after the population effects of 

the catch-up campaign have worn off, vaccine-type pneumococcal disease will re-emerge.  

We developed a dynamic compartmental model parameterized with detailed data from the 

KHDSS population [8] to describe the pre-vaccination pneumococcal epidemiology and 

predict the long-term impact of PCV10 in Kilifi. We use post-vaccination data on carriage 

and disease over the past five years for validation of the model predictions. 

Methods  

Data  

Kilifi County Hospital (KCH) is the main referral hospital in KHDSS. At KCH, morbidity 

events linked with the population register have been used to define the incidence of 

hospital presentation with infectious diseases, including IPD [8,9]. Datasets on 

pneumococcal carriage, IPD and contact patterns in KHDSS are described in detail 

elsewhere [5,10,11]. Here we briefly describe them as used in the current analysis. 

Nasopharyngeal pneumococcal carriage surveys 

Two cross-sectional surveys of pneumococcal carriage were done pre-vaccination. 

Nasopharyngeal swabs were collected and pneumococcal serotype-specific carriage 

ascertained [5] to obtain the pre-vaccination age-specific prevalence and serotype 

distribution of carriage. The two datasets were combined since there were no significant 
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differences between them in the carriage prevalence or serotype distribution (Appendix 

chapter 1).  

The non-vaccine serotypes (NVTs) were classified as weak or strong based on their 

susceptibility to competition and carriage incidence, as estimated in a prior field study 

within KHDSS [12]. Strong NVTs (23B, 11A, 15A, 6A, 16F, 35B, 10A, 13, 23A 19A, 21; 

ordered by increasing susceptibility to competition) were less susceptible to competition. 

Two NVTs (34, 15B/C) were classified as strong for their higher carriage incidences 

compared to many of the ones chosen on the basis of susceptibility. The remaining NVTs 

were classified as weak (Appendix chapter 2).  

Prospective diary survey 

Selected residents from KHDSS filled in a diary on the ages of all persons they physically 

contacted on one randomly assigned weekday [10]. For children, the diary was completed 

by their guardians. This information defined a social mixing matrix of contact frequencies 

between age groups.  

Carriage model structure 	

We developed a compartmental, age-structured dynamic model with 14 pneumococcal 

carriage states (Figure 1). The model has a Susceptible-Infected-Susceptible (SIS) 

structure for three serotype groups: the PCV10 serotypes, strong NVT and weak NVT.  

At any point in time, an unvaccinated individual can be susceptible (non-carrying) in state 

!; carry a VT, !	; carry a weak NVT, !!; carry a strong NVT, !!; carry simultaneously a 
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weak and strong NVT, !!"; carry simultaneously a VT and weak NVT, !!; or carry 

simultaneously a VT and a strong NVT, !!. Once vaccinated, the individual moves to one 

of the corresponding states (!(!), !(!),!!(!), !!(!), !!"(!), !!(!), !!(!)). The equations of inter-

state transitions are presented in Appendix chapter 3.  

Parameterisation  

Population structure 

The model population	is stratified into six age groups (<1, 1-5, 6-14, 15-20, 21-49 and ≥ 

50 years) corresponding to those in the diary survey and reflecting the age structure in 

KHDSS as of 1st January 2010. Individuals in the model are born completely susceptible to 

carriage according to prevailing birth rates and die according to age-specific mortality rates 

from KHDSS (Table 1). 

Acquisition of carriage 

A susceptible unvaccinated individual in age group i becomes colonised with VTs, strong 

NVTs or weak NVTs at age-group-specific time-dependent rates (forces of infection) 

denoted by !!"(!),	!!"#(!) and !!"#(!), respectively. The forces of infection were expressed 

as functions of the social mixing matrix and age-group specific factors (!!) that scale the 

rate of social contacts into infectious contacts (Appendix chapter 3). Due to competition 

between serotypes in colonising the nasopharynx, the acquisition rate of a secondary 

serotype is lower than the acquisition rate of that serotype in a completely susceptible 

individual. Three competition parameters, !!!, !!! and !!!, represent the fraction by which 

acquisition rates of secondary serotypes are reduced in <6 year olds infected with VTs, 
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weak NVTs and strong NVTs, respectively. Two competition parameters, !!" = !! = !! 

and !!, were used for individuals aged ≥ 6 years infected with VTs/weak NVTs and strong 

NVTs, respectively.  

Clearance of carriage 

The immune clearance rates of carriage (Appendix chapter 4) depend on the serotype 

group and age (<1, 1-5 and >5 years) and were obtained from a prior study in Kenyan 

children [12]. 

Disease 

For each serotype group and age group, case-to-carrier ratios were calculated as ratios of 

the observed IPD incidence at KCH [11] to the respective model-predicted pre-vaccination 

carriage incidence. The case-to-carrier ratios were assumed to remain unchanged post-

vaccination and were multiplied with the predicted carriage incidence to predict post-

vaccination IPD incidence. 

Vaccination  

In Kenya, children receive PCV10 at age 6, 10 and 14 weeks. In the model, !=80% of all 

newborns are considered vaccinated at age 18 weeks, one month after the third dose of 

the 3-dose series (Table 1). A catch-up programme is simulated by vaccinating 65% of 

children younger than 5 years at the onset of the vaccination programme. Upon 

vaccination, an individual moves to the corresponding state in the vaccine-protected 

compartment based on his/her prevailing carriage status.  
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The vaccine efficacy against carriage is modelled as a 50% reduction (! = 0.50) in the 

acquisition rate of VTs in a vaccinated individual relative to an unvaccinated individual 

(Table 1). The vaccine efficacy against carriage progression to disease (VEprog) was 

calculated as a function of ! and the vaccine efficacy against IPD (VEIPD = 85%) as:  

!"!"#$ = 1− !!!"!"#
!!! = 70%.  

We assumed that a proportion ! = 0.12 of the vaccinated population loses their protection 

every year. This corresponds to an average duration of protection for an individual of just 

over 8 years (Table 1). 

Implementation and model calibration  

In the first stage, the stationary solution of the transmission model was fitted to the age-

stratified pre-vaccination carriage prevalence and serotype distribution (Appendix chapter 

1). Using a multinomial likelihood function and uninformative priors in a Bayesian 

framework, the five competition parameters (!!", !!!, !!, !!! and !!!) and six 

scaling/infectivity parameters (!!, !!, !!, !!, !!, !!) were estimated (Appendix chapter 5). In 

each iteration, bootstrapping the social contact data and reconstructing the mixing matrix 

incorporated uncertainty in the social contact rates. A stationary population with equal birth 

and mortality rates was assumed.  

In the second stage, the posterior samples of model parameters obtained in the first stage 

were applied in a prediction model. Projections were made assuming a constant 

population. To measure how fast the effect of the catch-up campaign wanes, we 

calculated the additional cases of IPD the campaign prevents in the first 10 years and 



	
	

49	

estimated the time required to achieve 90% of that effect. Simulations were performed in R 

[13].  

Sensitivity analysis  

The sensitivity of the predicted IPD incidence averted, i.e., the difference in the overall 

incidence of IPD before and at 10 years post-vaccination, was assessed with respect to 

uncertainties in the assumed levels of: (i) vaccine efficacy against carriage acquisition; (ii) 

vaccine efficacy against IPD; (iii) the waning rate of vaccine-induced protection against 

carriage; (iv) vaccine coverage.  

We performed additional simulations under a growing population using birth and death 

rates corresponding to the local demographics [8]. The probabilities of contact per person 

per day were recalculated for each time step according to the current population (Appendix 

chapter 6). 

Model validation 

We visually assessed proximity of the base-case predictions of the age-group specific 

carriage of VTs and NVTs to the corresponding observed values over a five-year period 

post-vaccination (2011-2015). 

Results 

Model fit to pre-vaccination epidemiology 
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There was a good agreement between the observed age-group and serotype-group 

specific pre-vaccination carriage prevalence and their posterior estimates (Figure 2). 

Within each age group, the 95% credible intervals agreed with the data. Nonetheless, the 

differences in the posterior mean estimates of the proportions of carriers of VTs and NVTs 

among pneumococcal carriers were in most instances larger than observed in individuals 

≥6 years old, compared to the differences in individuals <6 years old.	

Competition parameters  

The probability of infection per contact was higher among 1-5 and 6-14 year olds as 

compared to other age groups (Table 1). An individual <6 years carrying a vaccine-

serotype had a 61% (95% credible interval, CrI, 29%-85%) protection against acquiring 

NVTs, relative to an uninfected individual of the same age group. In older age groups, the 

corresponding level of protection was 23% (95% CrI 1%-70%).  

Model projections on pneumococcal carriage  

Under the base-case model, the overall prevalence of pneumococcal carriage was 

estimated to remain essentially at its pre-vaccination level, with only a slight reduction from 

44% to 41% within 10 years post-vaccination. The prevalence of VTs in the overall 

population was estimated to reduce from 16% to 4%, with a simultaneous increase in the 

prevalence of NVTs from 28% to 36%.  

The prevalence of VTs was predicted to reduce in all age groups. In the older, mostly 

unvaccinated population, the reduction was estimated to be about two thirds of the pre-

vaccination level (Table 2), suggesting a benefit of herd immunity. Changes in the 
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prevalence of VTs and NVTs occur within the first 4 to 5 years post-vaccination and little 

change was predicted thereafter (Figure 3).  

Model projections on IPD 

The incidence of IPD from VTs was projected to decline in all age groups. The changes in 

IPD and carriage were linked and over 50% reduction in IPD occurs within the first 4 to 5 

years after PCV introduction. The overall reduction in the incidence of IPD ten years post-

vaccination is predicted to be 56% (Table 3). The overall reduction in the incidence of IPD 

from year 5 to 10 was 7% (95% predictive interval: -0.4% to 14%). As a result of waning 

direct effects of the catch-up campaign and increasing herd-effects of routine immunisation 

with time, we estimated that the incremental benefit of a catch-up over routine vaccination 

alone would be negligible from year 7 after introduction of PCV10. 

Sensitivity analyses 

Among the variables included in the sensitivity analysis, the duration of protection had the 

largest effect on the predicted IPD incidence averted in year 10, followed by the vaccine 

efficacy against carriage. The vaccine efficacy against IPD had the least influence (Figure 

S1).  

Assuming a growing population, the overall prevalence of carriage was projected to 

decline to a somewhat lower level of 35% (95% prediction interval 30%-40%) ten years 

post-vaccination (Appendix chapter 7).  

Model validation 
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The point predictions and corresponding 95% prediction intervals (PI) of carriage 

prevalence cover most of the observed values, showing good predictive ability (Figure S2). 

Among <1 and 1-5 year olds the model predicted much lower carriage prevalence of NVTs 

in year 2015 (49% vs. 70% observed and 38% vs. 52% observed, respectively).  

Discussion 

We used a model calibrated with local data to predict the incidence of pneumococcal 

carriage and IPD in Kilifi, Kenya, over a 10-year period post-vaccination to assess whether 

additional measures have to be considered to prevent a resurgence of vaccine-type 

pneumococci once the impact of the catch-up campaign wanes. We validated the model 

against immediate post-vaccination epidemiological data, a unique exercise in 

pneumococcal carriage models, and found that such resurgence is unlikely if the routine 

immunisation programme continues.   

Most PCV introductions in African countries have occurred since year 2011. Therefore, 

only a few years of observation are available to assess impact. A meta-analysis of four 

randomized trials in African children aged 9–24 months showed that carriage of VTs 

decreased with vaccination but the overall carriage remained the same [14]. In the United 

Kingdom, the overall prevalence of pneumococcal carriage was stable four years post-

vaccination [15]. In our model predictions, the overall carriage prevalence remains 

essentially unchanged due to serotype replacement in carriage. Replacement carriage 

was most prominent in <6 year olds because the pre-vaccination proportion of VTs among 

pneumococcal carriers was highest in young children (Appendix chapter 1). We predict 

that elimination of VTs in this community is unlikely. In high-income countries that have 

almost eliminated circulation of VTs, a reduced-dose schedule has been considered to 
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improve the cost-effectiveness of the program [16]. The World Health Organization (WHO) 

also recently convened a working group to review the policy recommendations for the 

optimal use of PCVs in low- and middle-income countries, which includes discussion of 

reduced dose schedules [17]. Theoretically, where herd protection has been established, it 

may be possible to sustain it using, for example, a single dose in infancy and a booster 

dose in the second year of life. In the Kenyan setting, however, where vaccine-type 

pneumococci continue to circulate several years post introduction of PCV with a catch-up 

campaign, it would be difficult to argue that disease prevention among infants is currently 

guaranteed by herd protection.  

In the model presented, the incidence of IPD is predicted to decline across all age groups. 

The non-vaccine-type IPD incidence is expected to increase by 52%, which translates to 

an increase in the annual incidence of 1.9 per 100000, suggesting little replacement 

disease relative to the reduction in the annual overall vaccine-type IPD incidence of 12.3 

per 100000. This is explained by the lower average case-to-carrier ratios (i.e., lower 

invasiveness) of the replacing non-vaccine serotypes (Appendix chapter 8).  

South Africa and The Gambia introduced PCV7 in 2009 and replaced it with PCV13 in 

2011 [18,19]. The reduction in vaccine-type and overall IPD reported in these countries are 

similar to the predictions our model produces for Kilifi, Kenya, over the first few years post-

vaccination. This, however, does not validate the model because of differences across the 

settings. The vaccination coverage in Kenya is likely to differ from coverage in The 

Gambia and South Africa, and Kenya introduced PCV10. We thus validated our model 

predictions against observed carriage prevalence and IPD incidence in Kilifi. The model 

predictions were generally consistent with the observed data (Figure S2). The model, 

however, underestimated prevalence of carriage of NVTs in <6 year olds in 2014-15. 
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Relaxing the assumption of a constant population size only made minimal difference to the 

goodness of fit (Figure S3).  

Pneumococcal serotypes are heterogeneous in transmissibility and mutual competition 

[12,20]. By splitting the NVTs into two groups and allowing unequal mutual competition 

between these groups, our model accounts for some of this heterogeneity. We did not split 

VTs because we aimed to reproduce serotype replacement with as small a number of 

parameters as possible, by limiting the number of compartments. Splitting NVTs was 

preferred because the group has a larger number of serotypes and hence more 

heterogeneity. The model projected differing magnitudes of change in the prevalence of 

the strong and weak NVTs. Given the different case-to-carrier ratios of the two groups of 

NVTs (Appendix chapter 8), the projected non-vaccine-type IPD incidence is different from 

what would have been predicted using a single group of NVTs. Nonetheless, grouping 

serotypes can create some ‘super types’ that might have different characteristics, e.g. 

higher acquisition rate of the VTs group compared to the individual serotypes in the group. 

This might lead to conservative vaccine effectiveness estimates. Grouping of serotypes 

may also result in the estimated acquisition rate of NVTs being lower than that of individual 

serotypes in the group. This would lead to an underestimation of the indirect impact of 

vaccination on NVTs - lower than the observed predicted prevalence of NVTs.  

To limit the number of estimated parameters, age dependency in competition was 

considered using two age classes (<6 and ≥6 years). Some discrepancies between the 

fitted and observed age-specific serotype distributions were present. The proportion of 

carriers of VTs was overestimated among carriers aged ≥15 years (Figure 2); the 

susceptibility to competition of VTs against NVTs is likely biased downwards in adults, thus 

underestimating the reduction in prevalence of VTs. With our current specification, the 
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estimates of competition parameters in age group ≥6 years largely depend on data from 

the age groups 6-14 years. A model including more groups of VTs and NVTs or individual 

serotypes [21–23] would allow for even more heterogeneity. However, the estimation of 

competition parameters from available carriage data would become increasingly difficult in 

a highly compartmentalized model. 

We estimated case-to-carrier ratios using hospital-based data on IPD incidence in KHDSS 

[8]. The access to care for IPD is unknown in KHDSS, but meningitis incidence is 

underestimated by over 30% by hospital-based surveillance [24]. Since IPD and meningitis 

are severe syndromes, the underestimation of IPD incidence could be similar implying 

case-to-carrier ratios are likely underestimated. Nonetheless, since the ratios estimated 

pre-vaccination are applied post-vaccination, the predicted reduction in IPD is not affected.  

We excluded partial protection from first and second doses. Our estimates of the vaccine 

impact may thus be conservative if the vaccines’ efficacy is substantial after fewer than 

three doses. We treated vaccine efficacy against carriage and its waning as equal for 

routine and catch-up vaccination. A Kenyan trial estimated vaccine efficacy against 

carriage of 40% among children aged 1-4 years [3], lower than the 50% for infant 

vaccination [25–27]. The duration of protection of catch-up vaccination is not documented 

yet. One dose of PCV administered outside of infancy may have a more enduring effect 

than 3 routine infant doses. If so, our similar treatment of the duration of immunity means 

there is no inflection on the carriage prevalence of VTs as the cohort of highly immune <5 

year olds who received a catch-up dose is replaced by a new birth cohort of less immune 

children over time. 
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We assumed children are born completely susceptible to acquisition of pneumococcus 

ignoring the influence of maternal antibodies. Newborns in a Kenyan study had a very high 

rate of first acquisition [20]. Early acquisition has also been reported in other African 

settings [28–30]. In Netherlands and Papua New Guinea a protective effect of maternal 

IgG antibodies against colonisation in infancy was not observed [31,32]. Based on high 

early acquisition rates and insufficient evidence of protection from maternal antibodies in 

some studies, this assumption is plausible.  

A significant reduction in IPD caused by vaccine-related serotypes 6A and 19A IPD has 

been observed in some PCV10-using settings [33]. However, surveillance in Kilifi recorded 

no change in carriage of serotype 6A and increased carriage of serotype 19A after vaccine 

introduction [7]. We have not observed a change in IPD caused by these serotypes. We 

therefore did not account for 6A and 19A as vaccine serotypes. 

In conclusion, we predict a substantial and sustainable decline in the carriage prevalence 

of VTs among vaccinated and unvaccinated individuals and consequently a reduction of 

about 56% in overall IPD incidence ten years post-vaccination. While we show that the 

current schedule is sufficient to limit vaccine-type pneumococcal carriage to current levels, 

it is unlikely to achieve elimination of VTs. Strategies that heavily rely on protection from 

the herd, including a reduced dose schedule, will need additional efforts to stop circulation 

of VTs before their implementation.  
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Table 1: Parameters of the dynamic transmission model and the sources of information. 
The parameters are classified as those estimated (calibrated) in the context of the model 
and those derived from external sources. 
 
Parameter / input Estimate/Value (Interval*) Source 

Calibrated   
Competition parameters !!! = 0.44 (0.13, 0.82) 

 !!! = 0.59 (0.19, 0.96)  
!!! = 0.39 (0.15, 0.71) 
!! = 0.11 (0.004, 0.49) 

!!" = !! = !! = 0.77 (0.30, 0.99) 
 

Estimated 

Probability of infection per 100 contacts  !! =0.13 (0.07, 0.25) 
!! =0.40 (0.30, 0.55) 
!! =0.32 (0.24, 0.43) 
!! =0.07 (0.04, 0.13) 
!! =0.16 (0.11, 0.23) 
!! =0.06 (0.04, 0.09) 

Estimated 

Case-to-carrier ratios** Appendix chapter 7 [11] 

   

From external sources   

Clearance rates Appendix chapter 3 [12] 

Birth rate 32.0 per 1000/year [8] 

Age-specific mortality  Appendix chapter 5  [8] 

Contact rates   [10] 
Vaccine efficacy against carriage 
acquisition (!) 50% (40-60) [3,25–27] 

Vaccine efficacy against IPD 85% (80-90) [34] 
Waning rate of protection against 
carriage (!) 0.12 per year (0.09 – 0.20) [35] 

Routine vaccination coverage (!)  80% (70-90) [9,11] 

Catch-up coverage 65% (60-70) [9,11] 
* The intervals indicated for the estimated parameters are 95% credible intervals. The intervals indicated for the rest of the parameters are the ranges within 

which they were sampled in the model to account for their uncertainty and assess the model’s sensitivity. 

**IPD incidence from Kilifi district hospital in KHDSS is divided by the carriage incidence from the model to obtain case-to-carrier ratios (Appendix chapter 

7) 
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Table 2: The prevalence of nasopharyngeal carriage of pneumococci pre- and 10 years post-vaccination. The table presents the posterior 

predictive mean values with the 95% posterior predictive intervals.  

 Pre-vaccination   10 years post-vaccination 

Age group 
(years) 

Carriage  
prevalence 

VT* Strong 
 NVT** 

Weak  
NVT 

  Carriage  
prevalence 

VT Strong  
NVT 

Weak  
NVT 

           

<1 80.8 (67.8-90.1) 32.6 (25.1-40.5) 37.5 (30.6-45.8) 9.9 (7.1-13.2)   75.7 (61.4-87.2) 8.3 (1.6-18.2) 50.9 (40.9-62.6) 15.2 (10.5-22.2) 

1-5 72.5 (65.2-78.5) 29.5 (23.9-35.2) 29.7 (24.6-35.2) 13.1 (9.6-17.0)   67.2 (58.9-74.6) 8.0 (1.5-16.9) 39.2 (32.2-48.5) 19.3 (14.1-25.5) 

6-14 54.0 (43.1-64.8) 17.0 (13.9-21.2) 26.8 (18.9-35.0) 9.9 (7.4-13.5)   49.7 (38.6-61.0) 4.4 (0.9-9.6) 32.0 (23.6-41.2) 12.8 (9.5-17.1) 

15-20 27.9 (17.0-41.7) 9.1 (5.7-13.9) 13.4 (7.6-20.7) 5.3 (3.1-8.6)   25.3 (15.6-38.0) 2.5 (0.5-6.0) 15.8 (9.5-24.3) 6.8 (4.1-10.8) 

21-49 25.5 (17.0-35.5) 8.6 (5.8-12.1) 12.0 (7.6-17.5) 4.8 (3.0-7.2)   23.2 (15.2-33.0) 2.5 (0.5-5.6) 14.2 (9.2-20.9) 6.2 (3.9-9.3) 

50+ 21.0 (14.0-30.0) 7.1 (4.7-10.1) 9.8 (6.2-14.6) 4.0 (2.6-6.0)   19.1 (12.7-27.3) 2.0 (0.4-4.5) 11.7 (7.6-17.2) 5.2 (3.3-7.9) 

           

Overall 44.4 (40.2-48.9) 15.9 (13.3-18.7) 20.4 (16.8-24.2) 8.0 (6.1-10.2)   40.8 (36.0-46.0) 4.3 (0.8-9.1) 25.4 (21.2-30.0) 10.9 (8.4-13.8) 

* Vaccine serotypes 

** Non-vaccine serotypes 
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Table 3: The incidence of invasive pneumococcal disease (IPD) pre- and 10 years post-vaccination. The table presents the posterior predictive 

mean values with the 95% predictive intervals. 

 

 Pre-vaccination IPD incidence (/100,000/year)  10 years post-vaccination IPD incidence (/100,000/year)   

Age group (years) VT Strong NVT Weak NVT  VT Strong NVT Weak NVT IRR* 

         
<1 67.0 21.0 7.1  6.7 (1.1, 15.1) 37.0 (29.5, 50.4) 11.6 (9.4, 15.6) 0.59 (0.51, 0.72) 
1-5 39.3 5.1 0.7  6.4 (1.2, 14.7) 7.8 (6.5, 10.0) 1.1 (0.9, 1.4) 0.34 (0.24, 0.50) 
6-14 7.3  1.0 0.0  1.4 (0.3, 3.3) 1.2 (1.1, 1.5) 0.0 (0.0, 0.0) 0.33 (0.20, 0.54) 
15-20 1.0 0.0 0.0  0.3 (0.1, 0.5) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.26 (0.05, 0.54) 
21-49 4.2 0.9 0.0  1.2 (0.2, 2.3) 1.1 (1.0, 1.3) 0.0 (0.0, 0.0) 0.45 (0.28, 0.66) 
≥50 9.2 2.8 4.1   2.5 (0.5, 5.1) 3.4 (3.1, 3.9) 5.3 (4.7, 6.3) 0.71 (0.60, 0.82) 
         
All ages 14.8 2.7  0.9  2.5 (0.5, 5.6) 4.2 (3.5, 5.3) 1.3 (1.1, 1.6) 0.44 (0.34, 0.56) 
(*) The incidence rate ratio (IRR) is between the overall IPD incidence before vaccination and the IPD incidence 10 years post vaccination. 
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Figure 1. Model structure flow diagram. The epidemiological states include individuals 

that are susceptible (non-carrying), !; carry a vaccine serotype, !; carry a weak non-

vaccine serotype, !!; carry a strong non-vaccine serotype, !!; carry simultaneously a 

weak and a strong non-vaccine serotype, !!"; carry simultaneously a vaccine serotype 

and a weak non-vaccine serotype, !!; or carry simultaneously a vaccine serotype and a 

strong non-vaccine serotype, !! (see text). Once vaccinated, the individual moves to one 

of the corresponding states, !(!),  !(!),!!(!),!!(!),!!(!)!"# !!(!) . The acquisition rates from 

the single to multiple serotype carriage states are reduced by competition parameters 

denoted by ! with two subscripts; the first denoting the serotype group (!, ! !"# !, for VT, 

strong NVT and weak NVT respectively) of the resident serotypes and the second 

denoting the age-group. The competition parameters have two sets of values, one for age 

group <6 and another for age group ≥6 years (see text). The age-group specific VT, weak 

NVT and strong NVT clearance rates are denoted by r!", r!"# and r!"#, respectively. In 

addition to the transitions between the 14 epidemiological states as shown in the Figure, 

individuals die from any states at age-specific death rates and new individuals are born 

into the completely susceptible state.  
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Figure 2. Model fit. Observed prevalence (red points) of pneumococcal carriage across 

age groups (top-left panel) and the proportion of carriers of VT (top-right panel), strong 

NVT (bottom-left panel) and weak NVT (bottom-right panel) among pneumococcal carriers 

prior to vaccine introduction. The black points show the corresponding estimated values of 

the prevalence/proportion, based on data given in Appendix chapter 1. The capped bars 

represent the 95% credible intervals. The dotted lines in the top-left panel (and the points 

they pass through) are the observed (red) and the predicted (black) proportions of double 

carriers among <1 and 1-5 year olds. For these two age groups, the top-right, bottom-left 

and bottom-right panels present the proportions of single carriers of the respective types 

(VT, strong NVT, weak NVT) among all carriers in the age group. 
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Figure 3: Model projections on carriage prevalence over 10 years by age group. 

Projected cumulative prevalence of pneumococcal carriage of VT (red), strong NVT (blue) 

and weak NVT (lime green) by age group over time since vaccine introduction. For each 

age group, the dotted lines show the 95% predictive intervals for the overall prevalence of 

pneumococcal carriage.	
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Supplementary Figure S1: Sensitivity analysis for inputs. The impact of uncertainties 

in four selected model inputs (y-axis) on the predicted number of averted IPD cases per 

year per 100,000 in year 10 after vaccine introduction (x-axis). The vertical line at the 

middle of the plot marks the mean number of IPD cases (10.2) averted in year 10 per 

100,000 when all the shown inputs are at their respective means. The horizontal bars 

correspond to predicted ranges of the number of averted IPD cases when each input 

variable is sampled from a normal distribution, with respective 95% ranges as given in the 

brackets. The number of averted cases is based on a linear model approximation of the 

simulation output. 
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Supplementary Figure S2: Observed and predicted carriage prevalence over time, under constant population. Observed 

(circular dots with 95% credible intervals shown by spikes) and predicted (lines with 95% predictive intervals shown by shaded 

areas) carriage prevalence of VT (red), strong NVT (blue) and weak NVT (lime green) over time since vaccine introduction. The age 

groups are labelled at the panel titles. 
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Supplementary Figure S3: Observed and predicted carriage prevalence over time, under growing population. Observed 

(circular dots with 95% credible intervals shown by spikes) and predicted (lines with 95% predictive intervals shown by shaded 

areas) carriage prevalence of VT (red), strong NVT (blue) and weak NVT (lime green) over time since vaccine introduction. The age 

groups are labelled at the panel titles. 
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Appendix  

Chapter 1. Prevalence of pneumococcal carriage in Kilifi, Kenya.  

Serotypes were grouped as vaccine-types (VT, those included in PCV10), 

strong non-vaccines serotypes (23B, 11A, 15A, 6A, 16F, 35B, 10A, 13, 23A, 

19A, 21, 34, 15B/C; see appendix chapter 2), and weak non-vaccine-types 

(the rest). The data came from two surveys of pneumococcal carriage in Kilifi, 

Kenya (2009-2010) [5]. The reported prevalences in table A.1 below are age-

standardised, with the KHDSS reference population as at 1 Jan 2010 

(midpoint of the two survey years), since the surveys were based on 10 age 

strata collapsed to six in the current analysis. Based on the total number of 

individuals in each age group, the numbers of carriers of VTs, strong NVTs 

and weak NVTs as presented in this table were calculated to match the 

estimated standardised carriage prevalence of the respective serotype 

groups. 

 
Table A.1: Prevalence of pneumococcal carriage and the serotype 
distribution by age group.  
 

Age group 

 (years) 

      Number of  

carriers N (%) 

VT  

N (%) 

Strong NVT  

N (%) 

Weak 

NVT  

N (%) 

Total  

N (%) 

      

<1 51 (83.6) 25 (41.0) 22 (36.1) 4 (6.6) 61 (100.0) 
1-5 200 (72.5) 88 (31.9) 79 (28.6) 33 (12.0) 276 (100.0) 
6-14 86 (52.8) 26 (16.0) 48 (29.4) 12 (7.4) 163 (100.0) 
15-20 29 (26.9) 8 (7.4) 13 (12.0) 8 (7.4) 108 (100.0) 
21-49 49 (25.3) 11 (5.7) 27 (13.9) 11 (5.7) 194 (100.0) 
≥50 43 (20.5) 10 (4.8) 22 (10.5) 11 (5.2) 210 (100.0) 
 

.   
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Chapter 2. Division of serotypes into VTs, strong NVTs and weak NVTs 

Vaccine serotypes (VTs) are serotype in the PCV-10 vaccine (1, 4, 5, 6B, 7F, 9V, 14, 18C, 

19F and 23F). The non-vaccine serotypes (NVTs) were classified as weak or strong based 

on their susceptibility to competition (a measure of competitive strength of a serotype 

defined as the rate at which individuals carrying that serotype switch to carry another 

serotype, relative to the rate at which that other serotype colonizes an uncolonised person) 

and carriage incidence, as estimated in a prior field study within KHDSS1. In our model 

strong NVTs were categorised as those less susceptible to competition by having a lower 

susceptibility; NVTs with susceptibility estimate of 1 and below were considered strong. 

These serotypes were: 23B, 11A, 15A, 6A, 16F, 35B, 10A, 13, 23A 19A and 21, ordered 

by increasing susceptibility to competition. Two NVTs (34, 15B/C) were also classified as 

strong for their higher carriage incidences than many of the ones chosen on the basis of 

susceptibility. The remaining NVTs were classified as weak (Table A.2). 

 

Table A.2: Categorisation of serotypes 

Serotype Serotype  
group 

Susceptibility Incidence 
(per 1000 days) 

Duration of carriage 
(days) 

19F VTs 0.481 3.07 88.5 
23B strong NVTs 0.523 0.93 60.3 
6B VTs 0.524 1.77 115.6 
11A strong NVTs 0.544 1.08 72.3 
15A strong NVTs 0.560 0.65 55.0 
6A strong NVTs 0.580 2.51 123.8 
23F VTs 0.586 1.46 67.8 
16F strong NVTs 0.703 0.44 52.5 
9V VTs 0.752 0.88 44.6 
35B strong NVTs 0.813 1.15 88.1 
10A strong NVTs 0.874 0.97 65.2 
23A strong NVTs 0.910 0.34 54.2 
14 VTs 0.911 1.36 69.5 
19A strong NVTs 0.956 0.87 58.9 
13 strong NVTs 0.969 0.79 70.4 
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18C VTs 0.970 0.49 49.7 
21 strong NVTs 1.059 0.31 93.0 
34 strong NVTs 1.166 0.71 76.3 
19B weak NVTs 1.176 0.54 63.5 
1 VTs 1.183 0.25 31.0 
35A weak NVTs 1.191 0.29 61.9 
15B strong NVTs 1.353 1.25 51.8 
other weak NVTs 1.366 1.86 41.3 
7C weak NVTs 1.400 0.62 40.1 
15C strong NVTs 1.503 1.08 56.3 
3 weak NVTs 1.519 0.74 40.8 
20 weak NVTs 1.533 0.59 28.3 
33B weak NVTs 2.074 0.38 29.6 
 

1 Lipsitch M, Abdullahi O, Dʼamour A, Xie W, Weinberger DM, Tchetgen ET, et al. Estimating Rates of Carriage Acquisition and 

Clearance and Competitive Ability for Pneumococcal Serotypes in Kenya With a Markov Transition Mode. Epidemiology 2012;23:1–10. 

 

Chapter 3. Dynamic model structure in equations 

All parameters and states in the equations below have been defined in the main article 

(see also Figure 1). The quantities !, !! and ! !  denote the birth rate, age-specific death 

rate and population size at time !, respectively. The term !!(!) denotes the rate of 

movement to the next age group from the !!! age group (see Appendix chapter 6). The 

term ! ∗ ! !  in the first equation applies only to the first age group (< 1 year olds). In the 

first age group, all terms with +!!!! !  denoting movement into the age group, by aging, 

from a lower age category should be excluded from all equations. In the last age group, 

≥50 years, all terms with −!! !  denoting movement from the age group by aging should 

be excluded from all equations. 

 

!!! !
!" = !!" ∗ !! ! + !!"# ∗ !!" ! + !!"# ∗ !!" ! − !! ! ∗ !!" ! + !!"# ! + !!"# ! − ! ∗ !! !

+ ! ∗ !! ! ! + ! ∗ ! ! − !! ∗ !! ! − !! ! ∗ !! ! + !!!! ! ∗ !!!! !  
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!!! !
!" = !!"# ∗ !!" ! + !!"# ∗ !!" ! − !!" ∗ !! ! + !!" ! ∗ !! ! − !! !

∗ !! ∗ !!"# ! + !! ∗ !!"# ! − ! ∗ !! ! + ! ∗ !! ! ! − !! ∗ !! ! − !! ! ∗ !! !

+ !!!! ! ∗ !!!! !  

!!!" !
!" = !!"# ∗ !!"# ! + !!" ∗ !!" ! − !!"# ∗ !!" ! + !!"# ! ∗ !! ! − !!" !

∗ !! ∗ !!! ! + !! ∗ !!"# ! − ! ∗ !!" ! + ! ∗ !!"! ! − !! ∗ !!" ! − !! ! ∗ !!" !

+ !!!! ! ∗ !!"!! !
 

!!!" !
!" = !!"# ∗ !!"# ! + !!" ∗ !!" ! − !!"# ∗ !!" ! + !!"# ! ∗ !! ! − !!" !

∗ !! ∗ !!" ! + !! ∗ !!"# ! − ! ∗ !!" ! + ! ∗ !!"! ! − !! ∗ !!" ! − !! ! ∗ !!" !

+ !!!! ! ∗ !!"!! !
 

!!!"# !
!" = !! ∗ !!"# ! ∗ !!" ! + !! ∗ !!"# ! ∗ !!" ! − !!"# + !!"# ∗ !!"# ! − ! ∗ !!"# ! + !

∗ !!"#! ! − !! ∗ !!"# ! − !! ! ∗ !!"# ! + !!!! ! ∗ !!"#!! !
 

!!!" !
!" = !! ∗ !!"! ! ∗ !! ! + !! ∗ !!" ! ∗ !!" ! − !!"# + !!" ∗ !!" ! − ! ∗ !!" ! + ! ∗ !!"! ! − !!

∗ !!" ! − !! ! ∗ !!" ! + !!!! ! ∗ !!"!! !  

!!!" !
!" = !! ∗ !!"# ! ∗ !! ! + !! ∗ !!" ! ∗ !!" ! − !!"# + !!" ∗ !!" ! − ! ∗ !!" ! + ! ∗ !!"! !

− !! ∗ !!" ! − !! ! ∗ !!" ! + !!!! ! ∗ !!"!! !  

 

!!! ! !
!" = !!" ∗ !! ! ! + !!"# ∗ !!"! ! + !!"# ∗ !!"! ! − !! ! !

∗ 1 − ! ∗ !!" ! + !!"# ! + !!"# ! + ! ∗ !! ! − ! ∗ !! ! ! − !! ∗ !! ! ! − !! !

∗ !! ! ! + !!!! ! ∗ !!!!! !  

!!! ! !
!" = !!"# ∗ !!"! ! + !!"# ∗ !!"! ! − !!" ∗ !! ! ! + 1 − ! ∗ !!" ! ∗ !! ! ! − !! ! !

∗ !! ∗ !!"# ! + !! ∗ !!"# ! + ! ∗ !! ! ! − ! ∗ !! ! ! − !! ∗ !! ! ! − !! !

∗ !! ! ! + !!!! ! ∗ !!!!! !
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!!!"! !
!" = !!"# ∗ !!"#! ! + !!" ∗ !!"! ! − !!"# ∗ !!"! ! + !!"# ! ∗ !! ! ! − !!"! !

∗ 1 − ! ∗ !! ∗ !!" ! + !! ∗ !!"# ! + ! ∗ !!" ! − ! ∗ !!"! ! − !! ∗ !!"! ! − !! !

∗ !!"! ! + !!!! ! ∗ !!"!!! !
 

!!!"! !
!" = !!"# ∗ !!"#! ! + !!" ∗ !!"! ! − !!"# ∗ !!"! ! + !!"# ! ∗ !! ! ! − !!"! !

∗ 1 − ! ∗ !! ∗ !!" ! + !! ∗ !!"# ! + ! ∗ !!" ! − ! ∗ !!"! ! − !! ∗ !!"! ! − !! !

∗ !!"! ! + !!!! ! ∗ !!"!!! !
 

!!!"#! !
!" = !! ∗ !!"# ! ∗ !!"! ! + !! ∗ !!"# ! ∗ !!"! ! − !!"# + !!"# ∗ !!"#! ! + ! ∗ !!"# ! − !

∗ !!"#! ! − !! ∗ !!"#! ! − !! ! ∗ !!"#! ! + !!!! ! ∗ !!"#!!! !
 

!!!"! !
!" = !! ∗ !!"# ! ∗ !! ! ! + 1 − ! ∗ !! ∗ !!" ! ∗ !!"! ! − !!"# + !!" ∗ !!"! ! + ! ∗ !!" !

− ! ∗ !!"! ! − !! ∗ !!"! ! − !! ! ∗ !!"! ! + !!!! ! ∗ !!"!!! !  

!!!"! !
!" = !! ∗ !!"# ! ∗ !! ! ! + 1 − ! ∗ !! ∗ !!" ! ∗ !!"! ! − !!"! + !!" ∗ !!"! ! + ! ∗ !!" !

− ! ∗ !!"! ! − !! ∗ !!"! ! − !! ! ∗ !!"! ! + !!!! ! ∗ !!"!!! !  

 

The forces of infection by VTs, weak NVTs, and strong NVTs are defined by equations 1, 2 

and 3 below:  

!!" ! = !!" ∗ !! ! + !!" ! + !!" ! + !! ! ! + !!"! ! + !!"! !                   (1)
!

 

!!"# ! = !!" ∗ !!" ! + !!"# ! + !!" ! + !!"! ! + !!"#! ! + !!"! !        (2)
!

 

!!"# ! = !!" ∗ !!" ! + !!"# ! + !!" ! + !!"! ! + !!"#! ! + !!"! !           (3)
!
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where the !!" is the per capita transmission rate between an individual (carrier) in age 

class j and a (susceptible) individual in age class i. These rates are expressed as a 

function of the social mixing matrix !!" as !!" =
!!∗!!"
!!

, where the age group specific 

proportionality factor !! scales the rate of social contacts into infectious contacts and 

represents the susceptibility to acquisition of carriage, given a contact1. The elements of 

the matrix !!" are the mean numbers of social contacts an individual in age class ! makes 

with individuals in age class ! per unit time and !! is the population size of the !!! age 

group. The unknown scaling factors !! were allowed differ across age groups, based on 

the initial observation that the pre-vaccination prevalence of carriage in the three first age 

groups was significantly different but the prevalence in each of the age groups above the 

age of 15 years were similar despite the varying average rates of social contacts. 

 

Chapter 4. Clearance rates  

To obtain the average age-group specific clearance rate for each serotype group, a 

weighted mean of the clearance rates of individual serotypes in the group was computed. 

The incidences of the individual serotypes were used as weights. For infants, the 

clearance rates were computed for the strong NVTs and weak NVTs. For 1-5 and ≥6 year 

olds, a single clearance rate was computed for the weak and strong NVTs by taking the 

weighted average of the clearance rates of all NVTs. 

 

1 Wallinga J, Teunis P, Kretzschmar M. Using data on social contacts to estimate age-specific transmission parameters for respiratory-

spread infectious agents. Am J Epidemiol 2006;164:936–44. doi:10.1093/aje/kwj317. 
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Table A.3: Clearance rates (per month) by age group and serotype group.     
 

 Serotype group 

Age group (years) VT Strong NVT Weak NVT 

<1 0.271 0.285 0.601 

1-5 0.546 0.662 0.662 

≥6 0.934 0.928 0.928 
 

 
 
 
Chapter 5. Estimation of the model parameters 
 
The model was calibrated to the age-specific prevalence and serotype distributions in the 

pre-vaccination era (Appendix chapter 1), assuming a steady-state distribution of carriage 

in the population. Since the calibration data recorded only one serotype for each carrying 

individual, there were only four carriage states (!! ,!! ,!!"  and  !!") on which to define the 

likelihood. The model output has three additional states !!"# ,!!" ,!!" . Therefore, for the 

age groups 6-14, 15-20, 21-49 and ≥50 years, the model output for the seven carriage 

states was collapsed into four states as follows: 

!!! = !! + 0.5 ∗ !!" + !!"  

!!"! = !!" + 0.5 ∗ !!" + !!"#  

!!"! = !!" + 0.5 ∗ !!" + !!"#  

This choice carries the assumption that in a doubly-colonised individual either of the two 

colonising serotypes was detected with 50% probability. 

For the two youngest age groups, <1 and 1-5 years, data on the proportion of doubly-

colonised individuals among pneumococcal carriers were available from a study in Kenya. 

Consequently, in the numerical estimation algorithm (see below), the proportion ! “of 

doubly-colonised individuals in <6 year olds was randomly generated from a normal 

distribution with mean 24% and standard deviation of 3.5%. For any realisation of the 
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proportion, the expected number of doubly-colonised individuals in the first two age groups 

is then !!"# =  ρ ∗ (V+  !! +  !!). The observed data for the two youngest age groups 

was adjusted to include five classes of carriage by 

!! = !! ,!! 1− ! ,!!" 1− ! ,!!" 1− ! ,!!"# !  

 

Accordingly, the model output for the carriage states was collapsed into 5 states by adding 

together the doubly-colonised states !! = !!" + !!" + !!"#  so that collapsed model 

output was !! ,!! ,!!" ,!!" ,!!  for <6 year olds. 

 

Denote the vectors containing the number of individuals in each !!! carriage status in the 

!!! age group in the empirical calibration data by !!". Denote the vectors containing the 

model output of the proportions of the carriage status in the !!!age group by !! ! . Vector 

! contains all model parameters that are estimated from the data. 

Denote the set of model parameters by ! = !!, !!, !!, !!, !!, !!, !!!, !!!, !!!, !!" , !! , where 

!!(! = 1,2,3,4,5,6) are the proportionality factors that scale the rate of social contacts into 

infectious contacts and !!!, !!!, !!!, !!" , !! are the competition parameters. The likelihood 

function of the model parameters is based on a multinomial distribution. In particular, the 

counts !! .  in the !!! age group follow a multinomial distribution, so that their log-likelihood 

based on the observations is  	

!!"!"# !!"(!)!!
!!!

!
!!! , 

where !! = 5 for the two youngest age groups and 4 otherwise. For any given set, !, the 

model equations (Appendix chapter 3) were solved to find the stationary numbers of 

individuals in each of the pre-vaccination compartments, from these numbers the age 

group specific carriage distribution in the four (or five for the first two age groups) 
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compartments was derived as the model output. The routine BBsolve in R1 was used to 

solve the system of equations for a stationary solution.  

The Metropolis-Hastings algorithm was used to draw samples from the posterior 

distributions of the parameters. A non-informative (uniform distribution in the range 0-1) 

prior was used for each parameter and the posterior distributions of the parameters were 

summarised to obtain point estimates (posterior mean) and probability (credibility) intervals 

for parameters included in !. 100,000 MCMC iterations were used. After a burn-in of 

40,000 the remaining samples, which were stationary, were thinned to 2000; the posterior 

means and 95% credible intervals of the parameters were calculated from these samples. 

1 Varadhan R, Gilbert PD. BB : An R Package for Solving a Large System of Nonlinear Equations and for Optimizing a High-Dimensional Nonlinear 

Objective Function. October 2009;32:1–26. 

Chapter 6. Population model 

Population under constant mortality across age groups 

Denote the age-specific mortality, i.e., the per capita rate of death by ! ! . The steady-

state age distribution is ! ! = !"# ! ! ! !"!
!
! , where the normalising constant ! =

!"# − ! ! !"!
! !"!

! . 

In case of constant mortality across age groups ! ! = ! and the steady state age 

distribution is exponential, i.e., ! ! = ! ∗ exp (−! ∗ !). Denote the age group boundaries 

! = !!,… , !! = (0,1,6,15,21,50,∞)  (years) and the observed numbers of individuals in 

each of the age groups in the KHDSS in the year before vaccine introduction as !! =

(!!,… ,!!). To estimate a constant rate !, the steady-state age distribution was fitted to 

the observed data based on a multinomial likelihood for !: 
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!"# (−!!!)− !"# (−!!!!!) !! .
!

!!!
 

The maximum likelihood estimate for ! was found to be 0.046 per year (or 1.25E-04 per 

day). Based on this estimate, the fitted proportion of individuals in each of the age groups 

is shown in Table A.4. 

 

Table A.4: Observed and model age distribution in the KDHSS before vaccine introduction. 

A constant birth and death rate was assumed. 

Age Group   
(years) 

Number of 
 individuals 

Observed  
Proportion 

Model  
Proportion  

<1 9,424 0.037 0.045 

1-5 45,727 0.180 0.195 

6-14 68,648 0.271 0.256 

15-20 32,815 0.129 0.121 

21-49 72,705 0.287 0.281 

≥50 24,288 0.096 0.102 

 

Under the assumptions of a constant death rate, in age group ! with upper bound 

!! = !!,… ,!! = (1,6,15,21,50) years, the per capita rate of aging is calculated as: 

!!(!) = ! ∗ exp (−! ∗ !!) for all !. 

Individuals in the age group ≥50 do not move from that age group due to aging. 

Population under age-specific mortality rates 

Predictions of pneumococcal prevalence and invasive disease were done under an 

alternative assumption of a growing population, based the crude birth rate (8.78E-05 per 
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day) and age-specific death rates (Table A.5) in the KHDSS population. This section 

summarises how the per capita rate of aging was derived under this model. 

 

Denote the age-specific per capita mortality rate as !(!) and the number of individuals of 

age ! at calendar time !  by (!, !) . The time evolution of !(!, !) is defined through the 

following equation: 

!"(!, !)
!" = −! !, ! ! !                                                                  (1) 

With boundary conditions (i)  ! 0, ! = !(!)! and (ii) ! !, 0 = ! 0 !(!), where ! is the 

per capita rate of birth, !(!) is the total population at time ! and !(!) is the probability 

density of age at time 0 estimated from the KHDSS data as an exponential distribution so 

that ! ! = ! ∗ exp (−! ∗ !). 

The rate of individuals of age !! (in the !!! age group) moving to the next age group at time 

! is given by the solution to equation (1) and its boundary conditions. For the solution, we 

write ! !! = !"# − ! ! !"!!
!  for survival up to age !!, ! ! − !! ! for the number of 

individuals (per time unit) born at time ! − !! (if ! > !!), and ! 0 ! !! − !  for the number 

of individuals (per time unit) of age !! − ! (if ! ≤ !!). The former deals with individuals born 

after the start of the simulation while the latter deals with individuals who belonged to the 

initial population at time ! = 0. The following numbers of individuals of age !! moving to 

the next age group at time ! are obtained: 

! ! − !! !" !! , ! > !! , 

! 0 ! !! − !
! !!

! !! − !
, ! ≤ !! 

The division of the second expression by ! !! − !  corresponds to the survival probability 

being conditioned on the individual(s) being alive at age !! − !. 
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The total numbers of individuals moved to the next age group were further divided 

according to the proportions of the 14 epidemiological states in the transmission model at 

time ! to move an appropriate number of individuals to the next age group at each of the 

states. 

In the discretized model, the per capita rate of aging is calculated as: 

!! ! =
! !!!! !" !!

!!(!)
 !" ! > !!

! 0 ! !! − ! ! !!
! !!!! !!(!)

 !" ! ≤ !!
, 

where !!(!) is the number of individuals in age group ! at time !. 

 

Table A.5: Age specific death rates (per capita per day) in the KHDSS population. These 

are the rates used for ! !  in the above equations. 

Age group <1 1-5 6-14 15-20 21-49 ≥50 

Death rate 7.18E-05 6.55E-06 2.73E-06 3.51E-06 1.21E-05 7.31E-05 
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Chapter 7. Sensitivity analysis 

Simulation under a growing population with a catch-up dose in <5 year olds 

Table A.6:  Prediction of carriage prevalence before and 10-years post vaccination by age group. The table presents the predicted 

mean levels and 95% predictive intervals. A growing population and vaccine introduction with a catch-up dose were assumed. 

 

 Pre-vaccination  10 years post-vaccination 

Age group Carriage  
prevalence 

VT Strong NVT Weak NVT  Carriage  
prevalence 

VT Strong NVT Weak NVT 

          

<1 80.8 (67.8-90.1) 32.6 (25.1-40.5) 37.5 (30.6-45.8) 9.9 (7.1-13.2)  82.9 (71.1-91.5) 10.5 (2.2-21.0) 53.6 (44.1-65.1) 17.6 (12.1-25.6) 

1-5 72.5 (65.2-78.5) 29.5 (23.9-35.2) 29.7 (24.6-35.2) 13.1 (9.6-17.0)  74.6 (67.5-80.5) 9.7 (2.1-19.2) 42.1 (34.6-51.6) 21.8 (16.1-28.7) 

6-14 54.0 (43.1-64.8) 17 (13.9-21.2) 26.8 (18.9-35.0) 9.9 (7.4-13.5)  45.9 (34.0-57.7) 4.4 (0.9-9.1) 28.8 (20.3-38.3) 12.2 (9.1-16.4) 

15-20 27.9 (17.0-41.7) 9.1 (5.7-13.9) 13.4 (7.6-20.7) 5.3 (3.1-8.6)  18.4 (10.9-29.1) 2.0 (0.4-4.8) 11.2 (6.5-18.2) 5.1 (3.0-8.3) 

21-49 25.5 (17.0-35.5) 8.6 (5.8-12.1) 12.0 (7.6-17.5) 4.8 (3.0-7.2)  16.9 (10.6-25.9) 2.0 (0.4-4.4) 10.0 (6.3-15.9) 4.7 (2.8-7.2) 

≥50 21.0 (14.0-30.0) 7.1 (4.7-10.1) 9.8 (6.2-14.6) 4.0 (2.6-6.0)  17.4 (11.5-25.3) 2.0 (0.4-4.2) 10.4 (6.8-15.6) 4.8 (3.1-7.3) 

          

Overall 44.4 (40.2-48.9) 15.9 (13.3-18.7) 20.4 (16.8-24.2) 44.4 (40.2-48.9)  34.9 (29.9-40.2) 4.0 (0.8-8.0) 21.1 (17.2-25.6) 9.6 (7.3-12.2) 
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Table A.7:  Predictions of invasive pneumococcal disease (IPD) incidence before and 10-years post vaccination by age group. The 

table presents the predicted mean levels and 95% predictive intervals (PI). A growing population and vaccine introduction with a 

catch-up dose were assumed. 

 

 
  

 

 

 

 
Pre-vaccination IPD incidence                             10 years post-vaccination IPD 

incidence (95% PI) 

 

Age 
groups 

VT Strong 
NVT 

Weak NVT VT Strong NVT Weak NVT IRR 

        

<1 67.0 21.0 7.1 8.6 (1.8, 18.3) 41.1 (32.2, 55.0) 14 (10.7, 19.0) 0.7 (0.6, 0.8) 

1-5 39.3 5.1 0.7 8.1 (1.6, 17.4) 8.8 (7.2, 11.2) 1.3 (1.0, 1.7) 0.4 (0.3, 0.6) 

6-14 7.3  1.0 0.0 1.5 (0.3, 3.1) 1.1 (0.9, 1.3) 0.0 (0.0, 0.0) 0.3 (0.2, 0.5) 

15-20 1.0 0.0 0.0 0.2 (0.0, 0.4) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.2 (0.0, 0.4) 

21-49 4.2 0.9 0.0 0.9 (0.2, 1.7) 0.8 (0.7, 0.9) 0.0 (0.0, 0.0) 0.3 (0.2, 0.5) 

≥50 9.2 2.8 4.1  2.5 (0.5, 4.7) 3.0 (2.7, 3.5) 4.9 (4.2, 6.0) 0.7 (0.5, 0.8) 

        

Overall  14.8 2.7  0.9 2.4 (0.5, 4.9) 3.3 (2.8, 4.2) 1.1 (0.9, 1.4) 0.4 (0.3, 0.5) 
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Chapter 8. Pre-vaccination IPD Incidence 

Table A.8: Pre-vaccination incidence of invasive pneumococcal disease (IPD) and case-to-carrier ratios by serotype group and age 
group. The IPD cases are from the KHDSS hospital surveillance data. 
 

 Cases IPD incidence* 
(per 100,000 per year) 

 Case-to-carrier ratio** 
(per 10,000) 

Age group 

(years) 

VT Strong  

NVT 

Weak  

NVT 

VT Strong  

NVT 

Weak  

NVT 

 VT Strong  

NVT 

Weak  

NVT 

<1 19 6 2 67.0 21.0 7.1  4.28 (3.03-6.16) 1.02 (0.73 -1.40) 0.90 (0.65-1.31) 

1-5 54 7 1 39.3 5.1 0.7  1.44 (1.11-1.91) 0.15 (0.12-0.20) 0.06 (0.04-0.09) 

6-14 15 2 0 7.3 1.0 0.0  0.32 (0.24-0.40) 0.02 (0.02-0.04) 0.00 (0.00-0.00) 

15-20 1 0 0 1.0 0.0 0.0  0.09 (0.06-0.15) 0.00 (0.00-0.00) 0.00 (0.00-0.00) 

21-49 9 2 0 4.2 0.9 0.0  0.40 (0.27-0.61) 0.06 (0.04-0.10) 0.00 (0.00-0.00) 

≥50 7 2 3 9.2 2.8 4.1  1.07 (0.73-1.65) 0.23 (0.15-0.38) 0.87 (0.57-1.37) 
(*) Average across 3 years (2008,2009,2010) to represent pre-vaccination IPD incidence.  

(**) These are estimated based on modelled carriage incidence and the observed IPD incidence. Figures in the brackets represent the 95% credible intervals 
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Abstract 

Background: Prior studies have demonstrated hyporesponsiveness to 

pneumococcal conjugate vaccines (PCVs) when administered in the presence 

of homologous carriage. This may be substantially more important in Africa 

where carriage prevalence is high. Deriving a correlate of protection (CoP) for 

carriage is important in guiding the future use of extended PCVs as population 

control of pneumococcal disease by vaccination is now focused principally on 

its indirect effect. We therefore explored the complex relationship between 

existing carriage and vaccine responsiveness, and between serum IgG levels 

and risk of acquisition. 

Methods: We undertook secondary analyses of data from two previously 

published clinical trials of the safety and immunogenicity of PCV in Kenya. We 

compared responses to vaccination between serotype-specific carriers and 

non-carriers at vaccination.  We assessed the risk of carriage acquisition in 

relation to PCV-induced serum IgG levels using either a step- or continuous-

risk function.    

Results: For newborns, the immune response among carriers was 51-82% 

lower than that among non-carriers, depending on serotype. Among toddlers, 

for serotypes 6B, 14 and 19F the post-vaccination response among carriers 

was lower by between 29 -70%.  The estimated CoP against acquisition 

ranged from 0.26 to 1.93 mg/mL across serotypes, however, these thresholds 
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could not be distinguished statistically from a model with constant probability 

of carriage independent of assay value. 

Conclusion: We have confirmed hyporesponsiveness in an equatorial African 

setting in both infants and toddlers. Population responses to vaccination are 

likely to improve with time as carriage prevalence of vaccine serotypes is 

reduced. We have not found clear correlates of protection against carriage 

acquisition among toddlers in this population. Assessing the potential of new 

vaccines through the use of CoP against carriage is still difficult as there are 

no clear-cut serotype specific correlates.  
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Introduction 
 

The first pneumococcal conjugate vaccine (PCV), which contained seven 

serotypes, reduced the incidence of pneumococcal disease and the 

prevalence of nasopharyngeal carriage in both vaccinated and unvaccinated 

children as well as adults when introduced into routine infant immunisation 

programme in the USA in 2000 [1]. The indirect protective effect of PCV is 

caused by a vaccine-induced reduction in the risk of acquiring colonisation by 

vaccine serotypes (VTs), which leads to a reduction in onward transmission 

from young children. 

 

Recently, data have emerged that highlight the complexity of interactions 

between pneumococci, the human immune system and the nasopharynx. 

Infants carrying serotypes 6B, 19F or 23F at the time of PCV immunisation 

have reduced primary IgG responses to those serotypes [2,3] and this effect 

persists through to post-booster responses [4]. Rodenburg and colleagues 

showed that, at 24 months of age, children’s responses to PCV against these 

three serotypes were reduced if they had carried them at any point in the 2 

years prior to vaccination [5].  

 

PCV responses in African children are generally thought to be higher than 

those seen in developed country settings [6–9]. For instance, the serotype-

specific geometric mean foldrise between the time of the first dose and one 

month after the third dose of PCV were lower in USA [7] and Finland [9] 

compared to South Africa [6] and The Gambia [8]. Nonetheless, in parts of 
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Africa like The Gambia [10] and Kenya [11,12], carriage rates from very early 

in life are extremely high. Given high responses to PCV it is possible that 

hyporesponsiveness does not occur, or is immunologically irrelevant, in 

equatorial Africa. 

The immunological mechanism that mediates vaccine-induced protection 

against colonisation at the mucosal level, or against disease, is not known. 

While circulating IgG may have a role in preventing colonisation, as 

demonstrated in a mouse model in which antibody blocked colonisation 

through agglutination [13], local B cells producing IgG and/or IgA in the 

nasopharynx may also be relevant and a role for T cells has also been 

suggested [14,15].  Nonetheless, to facilitate the licencing of new formulations 

of PCV, a single aggregate serological correlate of protection against invasive 

pneumococcal disease (IPD), has been derived based on circulating IgG 

[16,17]. However, a recent analysis that suggested correlates of protection 

(CoP) for IPD vary widely by serotype [18] has questioned the biological 

relevance of a single aggregate CoP common to all serotypes. It is likely that, 

as with IPD, the CoP against carriage also vary by serotype.   

Numerous assumptions were made during the development of the common 

serological CoP and there is equipoise in the scientific community about the 

relevance of the CoP to carriage and mucosal disease [19]. For some 

serotypes, greater concentrations of serum IgG were likely to be required to 

protect at mucosal surfaces (e.g. in the nasopharynx) than in blood [20].  

Subsequent analysis of vaccine-induced antibody and the prevention of 

carriage reinforced the notion that if circulating IgG is indeed a relevant 
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correlate for carriage, remarkably high concentrations are required to reduce 

carriage acquisition [21]. Deriving CoP for carriage would guide the future use 

of extended PCVs, as population control of pneumococcal disease by 

vaccination is now focused principally on its indirect effect mediated through 

carriage [22]. 

We therefore set out to explore both the relationship between existing 

carriage and vaccine responsiveness and between serum IgG levels and risk 

of acquisition by undertaking new analyses of two existing field studies of 

PCV in Kenya, with the following questions: (i) Does hyporesponsiveness 

occur in high carriage settings like Kenya? (ii) If so, can we detect this for 

serotypes other than the most common (e.g. 6B, 19F and 23F)? (iii) Is it 

possible to derive a serological correlate of protection against carriage 

acquisition using vaccine-induced IgG responses detected within randomized 

controlled trials of PCV in Kenya? 

Methods  

Data 
 

Data from two previously published clinical trials of the safety and 

immunogenicity of PCV conducted in Kenya [14, 15] were further analysed in 

the current study. The first study (“Newborn study”) recruited 300 newborns 

that were randomized to receive 7-valent PCV (PCV7) in one of two vaccine 

schedules; at 0-10-14 weeks or at 6-10-14 weeks. The subjects received a 

PCV7 or 23-valent Pneumococcal Polysaccharide Vaccine (PPV23) booster 

dose of at 36 weeks. Serological measurements were made at 0, 6, 10, 14, 
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18, 36 and 37 weeks and nasopharyngeal carriage ascertained at 18 and 36 

weeks. The objectives of this study were to examine the effect of a newborn 

vaccination schedule with PCV7 on the development of antibody and carriage 

prevalence. In the current analysis we used the carriage data at the time of 

the booster (week 36) and the serological measurements at week 36 and 

week 37. 

 

The second study (“Toddler study”) recruited 600 children aged 1-4 years to 

examine the effect of 0, 1 or 2 doses of a 10-valent PCV (PCV10), on 

capsular antibody concentrations and nasopharyngeal carriage. Children were 

given PCV10 in three different schedules: Group A received PCV10 at day 0 

and day 60; Group B received PCV10 at day 0 and day 180. Diphtheria-

tetanus-pertussis (DTaP) was given as a control vaccine to group A at day 

180 and to Group B at day 60. A third group, which is not considered in this 

analysis, received Hepatitis A virus (HAV) at day 0 and day 180 and DTaP at 

day 60. Antibody measurements were made at days 0, 30, 90 and 210 and 

nasopharyngeal carriage assessed at days 0, 30, 60, 90 and 180.  Details of 

the study have been published elsewhere [23]. In the current analysis we 

used carriage data from vaccinees in Groups A and B at day 0, 60 and 180 

(vaccination time points), and serological measurements 30 days post 

vaccination i.e. at 30, 90 and 210 days, respectively. 

Analysis 
 

For the newborn study, we calculated the fold-rise in serotype-specific 

geometric mean concentrations (GMC) between weeks 36 and 37, separately, 
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for carriers and non-carriers for each of the seven serotypes in PCV7. The 

differences between the two groups (homologous carriers vs. non-carriers) 

were quantified as ratios of the GMC fold-rises. These ratios were derived 

from log-linear regression models of the booster response taking account the 

vaccine schedule group (6-10-14 vs. 0-10-14), type of booster given (PCV7 

vs. PPV23) and the baseline log-concentration of IgG, at 36 weeks. Baseline 

IgG concentrations is adjusted for since individuals with lower concentrations 

have more room for greater fold-rise than individuals who already have high 

concentration at baseline. 

 

For the toddler study, we pooled paired carriage data and 30-day serological 

responses for each of the time points of PCV10 vaccination (0, 60 and 180 

days). We calculated serotype-specific fold-rises in IgG concentration 30 days 

later (at 30, 90 and 210 days). There were no blood samples at time 60 and 

180 by design therefore we used the IgG at time 30 to adjust for responses to 

vaccines given at 60 and 180 days. We would expect antibody concentrations 

to decay from day 30 to day 60 (and from day 30 to day 180) at the same rate 

for subjects in both Group A and Group B; therefore, the ranks in IgG baseline 

between time 30 days and the time of vaccination are likely to be highly 

correlated, provided that natural boosting is also distributed equally in both 

groups. To assess the impact of carriage at the time of vaccination, GMC fold-

rise ratios between homologous carriers vs. non-carriers were estimated from 

log-linear serotype-specific regression models of the individual level fold-rise 

on the carriage status, taking account of the vaccine group (Group A and B), 

age group (12-23, 24-35, 36-47 and 48-59 months), season (month of sample 
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collection) and pre-vaccine (day 0 or 30) log IgG. We used Generalized 

Estimating Equations (GEE) to account for the correlations between the 

repeated measures within an individual. Data for serotypes 6B, 9V, 14, 19F 

and 23F were selected for the analysis since they were the most frequently 

carried of the 10 vaccine-type serotypes. As a supplementary analysis, we 

also calculated the post-vaccination GMC by pre-vaccination carriage status 

for both the newborn and toddler studies. 

 

In order to derive the serotype-specific antibody threshold for vaccine efficacy 

against acquisition, we restricted our analysis to data from the toddler study 

and, in particular, to toddlers who were non-carriers at day zero.  We 

compared carriage status at day-30 against vaccine-induced IgG 

concentration measured at day 30. We fitted to these two variables a model 

that incorporates a threshold parameter that is estimated through a profile 

likelihood [24], the a:b model. The model is a step-shaped function where the 

step corresponds to the antibody threshold. Thus, in addition to the threshold 

parameter, the model also contains two parameters for constant but different 

acquisition probabilities below and above the threshold. A test for the 

presence of a threshold was achieved by comparing the a:b model to a model 

with constant probability of acquisition independent of assay value, using a 

likelihood ratio test. Confidence intervals around the threshold estimates were 

constructed through bootstrapping.  

 

The a:b model does not allow for adjustment of covariates, therefore, we also 

modelled the risk of serotype-specific acquisition as a continuous function of 
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log-IgG concentration in a Cox proportional hazards model that accounted for 

age group, carriage of a heterologous serotype at the point of vaccination, log 

IgG on the day of vaccination and season. Non-linear relationship between 

the acquisition incidence and log-IgG concentration was allowed through 

restricted cubic splines. Having no colonization by any serotype at day 0 

predisposes one to considerably higher risk of colonization by an index 

serotype relative to someone colonised by a different serotype to the index at 

day 0, due to serotype competition [25,26]. This was the rationale for including 

carriage of a heterologous serotype at the point of vaccination in the model. 

Results 

 
In the newborn study, 235 pairs of 36- and 37-week samples were analysed. 

In these subjects the prevalence of carriage of PCV7 serotypes at 36 weeks 

ranged from 0.9% for serotype 23F to 12.8% for serotype 19F. Compared to 

non-carriers, the GMC fold-rise between week 36 and week 37 among 

carriers was substantially lower by a factor of 51-82% (Table 1). The point 

estimates of the GMC at post-booster (37 weeks) were higher among non-

carriers at the point of vaccination, except of serotype 18C (Supplementary 

table S1). 

 

In the toddler study, between 460-480 samples were analysed depending on 

serotype. The carriage prevalence at the time of vaccination ranged from 

2.1% for serotype 9V to 8.0% for serotype 19F (Table 2). For serotypes 6B, 

14 and 19F the GMC fold-rise post vaccination among carriers was lower by 

between 29 -70%. For serotype 9V and 23F the GMC fold-rise were 53% and 
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1% higher among carriers (Table 2). Except for serotype 9V the point 

estimates of the GMC post-vaccination were higher among non-carriers at the 

time of vaccination (Supplementary table S2). 

 

We computed the serological threshold for vaccine efficacy against acquisition 

among serotype-specific non-carriers at the first vaccination time-point (day 0) 

by using their titres and carriage status 30 days later in the toddler study. The 

estimated thresholds ranged from 0.26 to 1.93 mg/mL across serotypes, 

however, a test for the presence of a threshold at these points suggested no 

significant difference from a model with constant probability of acquisition 

independent of assay value (Table 3).   

 

We analysed carriage acquisition as a continuous function of log IgG. There 

was no convincing monotonically decreasing rate of carriage with increasing 

log IgG for each of the five serotypes (Figure 1). In a situation where a higher 

level IgG had strong negative impact on carriage, the prevalence ratios below 

the average (mean/median) log IgG would be above 1 and the prevalence 

ratios above the average log IgG would be below 1, in the plots. 

Discussion 

 
While inferior quantitative antibody responses to the colonising serotypes 

have been reported amongst children vaccinated with PCV in Philippines [2], 

Israel [3] and South Africa [27], none have studied this phenomenon in high 

carriage settings such as Equatorial Africa. Using data from two clinical trials 
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in Kenya, we have confirmed hyporesponsiveness in equatorial Africa in both 

infants and toddlers, and for the first time described it in serotype 14.  

 

The reduced immune responses to PCV administered to an individual with 

prevailing carriage may reduce the vaccine’s efficacy. The clinical implication 

of this is an increased susceptibility to acquisition of homologous 

pneumococcal serotypes, particularly when the reduction in immune response 

results in lower than sufficient protection against carriage. Several strategies 

can be useful in high carriage settings to counter the effect of 

hyporesponsiveness. The use of a catch-up campaign at the time of PCV 

introduction can speed-up the reduction in vaccine-type carriage thus 

improving the immune responses in cohorts vaccinated in the subsequent 

period of reduced carriage. Using a booster dose in the second year of life 

can also be used to overcome hyporesponsiveness [3]. However, the cost-

effectiveness of such strategies needs to be evaluated to provide further 

evidence for or against their use. 

 

We assessed the association between IgG concentration and the incidence of 

carriage in two ways; using a step function, the a:b model, which explicitly 

models a threshold  and using a model with carriage incidence as a 

continuous function of IgG concentration, which does not explicitly model a 

threshold. The second approach allowed us to study the relation while 

accounting for potential confounding factors. The result from each of the 

approaches is mutually important and complementary in interpreting results 

from the alternative approach.   
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The CoP for carriage were generally higher than the recently derived 

serotype-specific CoP for IPD with the exception of serotype 14 (0.26 mg/ml 

for carriage acquisition vs. 0.46 mg/ml for IPD) [28]. It is expected that the 

CoP for carriage should be substantially higher than that for IPD; therefore, 

the result for serotype 14 is surprising. The evidence for the CoP for carriage 

being lower is, however, limited given the wide 95% confidence intervals of 

the CoP estimate of this serotype (Table 3) and the function of IgG that does 

not show drastic change around the estimated CoP (Figure 1).  

 

For serotype 9V, all the carriers were above the estimated CoP against 

acquisition. This scenario reflects one of the potential problems with the a:b 

model, that in the estimation process the incidence below a candidate 

threshold is not restricted to be higher than that above it. This requirement is, 

however, imposed post-estimation in the test for the existence of a threshold 

at the estimated value [24], such that the test statistic always yields a non-

significant result in such cases. Whether circulating IgG is the correct 

correlate of protection also needs to be considered. The exact mechanism by 

which pneumococci are prevented from colonising the nasopharynx is still 

unclear. 

 

The licensing of future PCVs will likely take into account the potential impact 

on carriage [29]. Therefore, defining the CoP for carriage would provide a way 

of assessing the non-inferiority of new vaccines as has been the case for CoP 

for IPD [16,17]. However, until a better understanding of existing CoP for IPD 
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exists this may be complex. For example, there is limited information to 

sufficiently explain why IPD correlates for some serotypes are high and others 

low. Consequently, predicting whether the CoP for a novel serotype will be 

higher or lower, and by what factor, than available CoP for other serotypes is 

difficult. New PCVs might incorporate serotypes that are carried relatively 

infrequently further complicating the use of CoP for carriage. Only one 

previous study that was conducted in the United Kingdom has reported on 

PCV CoP for carriage where a clear threshold against carriage for a single 

serotype, serotype 14, was identified [20]. A second study in the Navajo 

Nation and White Mountain Apache tribal lands, in USA, did not find 

identifiable IgG threshold level that was associated with prevention of carriage 

acquisition for all the eight serotypes studied [30].  

 

A limitation of the newborn study is that the period between booster dose and 

the assessment of its effect was one week. It generally takes about 4 weeks 

for a full immune response following vaccination. Therefore, what we show is 

that the impact of pre-existing carriage on immune response is notable as 

early as one week. It is possible that after 4 weeks the final concentrations 

between carriers and non-carriers are similar. If that is the case then the effect 

of pre-existing carriage is in delaying immune response. From the toddler 

study, in which there was sufficient time-lapse between vaccination and 

assessment of response, the final concentrations were still different between 

carriers and non-carriers. It is unlikely that the case is different for newborns, 

because the mechanism causing hypo-responsiveness should be similar 

between the two age groups. 
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In conclusion, we have confirmed hyporesponsiveness in an equatorial 

African setting in both infants and toddlers.  Pneumococcal conjugate 

vaccines have been introduced in many African countries where carriage is 

generally high. Hyporesponsiveness might reduce the vaccine’s effectiveness 

in the early years of introduction when the prevalence of vaccine serotypes is 

still high. If so, the speed with which vaccine-type carriage prevalence is 

reduced will determine how fast improved responses are realised in later 

years after vaccine introduction, when cohorts of children with reduced 

vaccine-type carriage rates replace the cohorts in high prevalence period. We 

did not identify clear correlates of protection against carriage acquisition 

among toddlers in this population. Given the limited information from the few 

studies that have reported on correlate of protection against carriage, 

assessing the potential of new vaccines through the use of correlate of 

protection against carriage remains difficult, as there are no clear-cut 

serotype-specific correlates. 
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Table 1: Newborn study. Geometric mean fold rise between 36 and 37 weeks (with 95% confidence limits) stratified by carrier 

status, as well as the difference in the response between carriers and non-carriers expressed as a ratio. These ratios, and 

associated p values were derived from log-linear regression models of the booster response taking account of the vaccine group 

(EPI vs. newborn), the type of booster given (Pneumococcal polysaccharide vaccine vs. Pneumococcal conjugate vaccine) and log 

IgG in week 36. 

Serotype Carriers at 36 weeks  Non-carriers at 36 weeks Ratio (95% CIs) 
for carrier/non-carrier 

P-value 

 n  GM fold-rise 37/36  

Weeks (95% CI) 

 n GM fold-rise 37/36 

Weeks (95% CI) 

  

        
4 0  -  235 4.92 (4.36 – 5.55) - - 

6B 6  2.85 (0.69 – 11.68)  229 13.52 (11.52 – 15.88) 0.18 (0.07 – 0.46) <0.001 

9V 4  1.62 (0.64 – 4.11)  231 5.32 (4.72 – 6.00) 0.31 (0.14 – 0.69) 0.005 

14 10 1.29 (0.86 – 1.92)  225 2.79 (2.47 – 3.15) 0.49 (0.30 – 0.80) 0.004 

18C 3  1.25 (0.87 – 1.79)  232 7.74 (6.87 – 8.73) 0.15 (0.05 – 0.40) <0.001 

19F 30  1.91 (1.34 – 2.73)  204 7.19 (6.11 – 8.45) 0.32 (0.21 – 0.48) <0.001 

23F 2  3.59 (0.02 – 663.49)  231 10.33 (8.80 – 12.14) 0.25 (0.06 – 1.09) 0.064 
n: number of individuals 
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Table 2: Toddler study. Geometric mean fold-rise between day 0 to 30 or day 30 to 90/210 stratified by carrier status at the time of 

vaccination (day 0, 60 or 180), as well as the difference in the response between carriers and non-carriers expressed as a ratio. 

The ratios and associated p-values were derived from log-linear serotype specific regression models, using GEE, of the individual 

level fold-rise on the carriage status, taking account of the vaccine group (Group A and B), age group (12-23, 24-35, 36-47 and 48-

59 months), season (month of swab) and pre-vaccine (day 0 or 30) log IgG. 

Serotype Carriers at point of vaccination  Non-carriers at point of 
vaccination 

Ratio (95% CIs)  

for carrier/non-carrier 

P-value 

 na  GM fold-rise (95% CI)  na GM fold-rise (95% CI)   

        
6B 23  1.65 (1.22 – 2.24)  457 2.35 (2.14 – 2.59) 0.70 (0.51 – 0.97) 0.034 

9V 10  1.88 (0.98 – 3.61)  466 3.06 (2.65 – 3.53) 1.53b (0.89 – 2.65) 0.119 

14 15  3.02 (1.99 – 4.58)  445 5.32 (4.65 – 6.10) 0.71 (0.50 – 1.02) 0.067 

19F 38  2.12 (1.57 – 2.87)  439 7.61 (6.50 – 8.90) 0.30 (0.19 – 0.46) <0.001 

23F 22  3.39 (1.35 – 8.47)  455 4.28 (3.66 – 5.00) 1.01 (0.63 – 1.63) 0.955 
aThere are two repeated measures for almost all participants. These numbers reflect the number of samples rather than individuals. 
bThe reason why the adjusted ratio is above 1 (instead of approx. 1.88/3.06=0.61, which is the unadjusted ratio) is because one of the factors adjusted for (pre-vaccine log IgG) was unevenly 
distributed among carriers vs. non-carriers; the GMC of pre-vaccine log IgG among carriers was significantly higher at 1.61 compared to 0.49 in non-carriers. Similar case for 23F.  
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Table 3: Toddler study. The serotype-specific serological thresholds for vaccine efficacy against acquisition for five most commonly 

carried serotypes at day 0. The thresholds are computed using a step-shaped function where the step corresponds to the threshold 

with different infection probabilities below and above the threshold. The threshold with the highest profile likelihood is chosen as the 

parameters estimate. Confidence intervals are constructed by bootstrapping.   

Serotype Threshold (95% CI) Carriage prevalence  
Ratioa (95% CI) 

 Test for presence  
of a thresholdb 

Goodness of fit  
p-valuec 

6B 0.48 (0.07 - 2.68) 0.21 (0.04-0.72) 0.079 0.048 

9Vd 1.86 (1.86 - 22.67) -- >0.999 0.219 

14 0.26 (0.16 - 14.34) 0.26 (0.04-0.87) 0.542 0.851 

19F 1.66 (0.85 - 6.60) 0.10 (0.00-0.60) 0.171 0.314 

23Fe 1.93 (0.09 - 1.94) 0.00 (0.00-0.00) 0.430 0.625 
 

a Carriage prevalence ratio is the carriage risk above the threshold divided by carriage risk below threshold, the confidence interval is obtained by bootstrapping 
b likelihood ratios test for the presence of a threshold. Achieved by comparing the a:b model to a model with constant probability of infection independent of assay value. Values above 0.05 indicate no sufficient evidence of a 
difference in the two models at % level of significance. 
cThis is the Hosmer and Lemeshow goodness of fit p-value testing the null hypothesis that there is no difference between observed and model predicted values. The test assesses whether the step function represented by the 
a:b model is an appropriate representation of infection or whether another relationship such as a gradual one between titre and infection might be more likely than a stepped relationship. All the p-values, except that for 
serotype 6B, which is borderline, are above 0.05 indicating insufficient evidence against the null hypothesis at the 5% level of significance. 
dThere were no carriers of serotype 9V below the threshold of 1.86 mcg/ml hence the risk ratio was undefined  
eThere were no carriers of serotype 23F above the threshold of 1.93 mcg/ml hence the risk ratio was zero 
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Figure 1: The incidence rate ratio (blue solid line) as a function of log IgG titre (x-
axis) for each serotype labelled above the graph. The ratios are between the values 
of log IgG on the x-axis relative to someone with the average log IgG. For instance, 
for serotype 6B, the rate ratio between individuals with log IgG of -3 relative to 
individuals with the mean log IgG is slightly below 1 (95% CI: ~ 0.5 to 2). The red 
dashed lines are the 95%CI bounds of the rate ratio. The three vertical (grey) lines 
mark the 2.5th, 50th and 97.5th percentiles of the distribution of log IgG whose density 
is shown in grey on the x-axis. The green line shows the CoP obtained by the a:b 
model while the light green shade around it shows the region covered by the 
bootstrapped 95%CI of that CoP. The likelihood ratio (LR) test p-value for the 
significance of log IgG in predicting carriage acquisition and the test for the presence 
of a threshold estimated by the a:b model is indicated in the plot.  
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Appendix 

Table S1: Newborn study. Geometric mean post-vaccination (at 37 weeks) stratified by carrier status, as well as the difference in 

the response between carriers and non-carriers expressed as a ratio. These ratios, and associated p values were derived from log-

linear regression models of the booster response taking account of the vaccine group (EPI vs. newborn), the type of booster given 

(Pneumococcal polysaccharide vaccine vs. Pneumococcal conjugate vaccine) and log IgG in week 36. 

Serotype Carriers at 36 weeks  Non-carriers at 36 weeks Ratioa (95% CIs) 
for carrier/non-carrier 

P-value 

 n  GM at 37 weeks (95% CI)  n GM at 37 weeks (95% CI)   

        
4 0  -  236 3.69 (3.21 – 4.24) - - 

6B 6  0.71 (0.06 – 8.01)  230 10.13 (8.44 – 12.16) 0.18 (0.07 – 0.46) <0.001 

9V 4  1.28 (0.06 – 26.16)  232 4.04 (3.48 – 4.69) 0.31 (0.14 – 0.69) 0.005 

14 10 4.23 (1.18 – 15.17)  226 7.61 (6.45 – 8.98) 0.49 (0.30 – 0.80) 0.004 

18C 3  14.98 (2.52 – 89.07)  233 3.49 (2.98 – 4.09) 0.15 (0.05 – 0.40) <0.001 

19F 30  2.25 (1.47 – 3.43)  206 6.45 (5.50 – 7.57) 0.32 (0.21 – 0.48) <0.001 

23F 2  2.58 (0.61 – 10.95)  232 5.49 (4.61 – 6.52) 0.25 (0.06 – 1.09) 0.064 
n: number of individuals 
a The ratio comparing carriers vs. non-carriers obtained by regressing the log-concentration post-vaccination against carriage status at the point of vaccination (adjusting for pre-vaccination log-
concentration, among other variables) is similar to that obtained when the response variable is instead  the log of fold-rise (post-vaccination IgG divided by pre-vaccination IgG) and adjustment is 
also made for pre-vaccination log-IgG (Table 1). This is because only the coefficient of the pre-vaccination log-IgG will be altered across the two models; the coefficients of the rest of the predictors 
remain equal across the models. 
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Table S2: Toddler study. Geometric mean post-vaccination (day 30, 90/210) stratified by carrier status at the time of vaccination 

(day 0, 60 or 180), as well as the difference in the response between carriers and non-carriers expressed as a ratio. The ratios and 

associated p-values were derived from log-linear serotype specific regression models, using GEE, of the individual level post-

vaccination log-IgG level on the carriage status, taking account of the vaccine group (Group A and B), age group (12-23, 24-35, 36-

47 and 48-59 months), season (month of swab) and pre-vaccine (day 0 or 30) log IgG. 

Serotype Carriers at point of vaccination  Non-carriers at point of vaccination Ratiob (95% CIs)  

for carrier/non-carrier 

P-value 

 na  GM post-vaccination (95% CI)  na GM post-vaccination (95% CI)   

        
6B 23  1.03 (0.66 – 1.62)  457 1.23 (1.12 – 1.36) 0.70 (0.51 – 0.97) 0.034 

9V 10  3.04 (1.36 – 6.77)  468 1.51 (1.40 – 1.64) 1.53 (0.89 – 2.65) 0.119 

14 15  2.24 (1.14 – 4.42)  449 3.18 (2.79 – 3.63) 0.71 (0.50 – 1.02) 0.067 

19F 39  0.58 (0.32 – 1.06)  442 7.18 (6.21 – 8.30) 0.30 (0.19 – 0.46) <0.001 

23F 22  0.74 (0.38 – 1.41)  457 0.80 (0.72 – 0.89) 1.01 (0.63 – 1.63) 0.955 
aThere are two repeated measures for almost all participants. These numbers reflect the number of samples rather than individuals. 
b The ratio comparing carriers vs. non-carriers obtained by regressing the log-concentration post-vaccination against carriage status at the point of vaccination (adjusting for pre-vaccination log-
concentration, among other variables) is similar to that obtained when the response variable is instead  the log of fold-rise (post-vaccination IgG divided by pre-vaccination IgG) (Table 2). This is 
because only the coefficient of the pre-vaccination log-IgG will be altered across the two models; the coefficients of the rest of the predictors remain equal across the models. 
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Abstract 

Background 

In developing countries, introduction of pneumococcal conjugate vaccine has 

not eliminated circulation of vaccine serotypes. Vaccinating pregnant mothers 

to increase antibody concentrations in their newborn infants may reduce the 

acquisition of pneumococcal carriage and subsequent risk of disease. We 

explored the efficacy of passive immunity, attributable to anti-protein and anti-

capsular pneumococcal antibodies, against acquisition of carriage. 

 

Methods 

We examined the rate of nasopharyngeal acquisition of pneumococci in the 

first 90 days of life associated with varying anti-capsular and anti-protein 

antibody concentrations in infant cord/maternal venous blood in Kilifi, Kenya. 

We used multivariable Cox proportional hazard models to estimate continuous 

functions relating acquisition of nasopharyngeal carriage to the concentration 

of maternally-derived antibody. 

 

Results 

Cord blood or maternal venous samples were collected from 976 mother-

infant pairs. Pneumococci were acquired 561 times during 33,905 person-

days of follow up. Increasing concentrations of anti-protein antibodies were 

associated with either a reduction (PhtD1, PspAFam2, Spr0096, StkP) or, 

paradoxically, an increase (CbpA, LytC, PcpA, PiaA, PspAFam1, RrgBT4) in 

acquisition rate. We observed a non-significant reduction in the incidence of 

homologous carriage acquisition with high concentrations of maternally-
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derived anti-capsular antibodies to five serotypes (6A, 6B, 14, 19F and 23F). 

 

Conclusion 

The protective efficacy of several anti-protein antibodies supports the strategy 

of maternal vaccination to protect young infants from carriage and invasive 

disease. We were not able to demonstrate that passive anti-capsular 

antibodies were protective against carriage acquisition at naturally occurring 

concentrations though it remains possible they may do so at the higher 

concentrations elicited by vaccination. 
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Introduction 

Among infants in low-income countries, pneumococcal carriage is acquired 

rapidly. In Kenya, in the pre-vaccination era, more than 80% of newborns 

acquired nasopharyngeal carriage by the age of 90 days [1]. The median time 

to colonization was 45 days in Thailand [2] while in India 54% of infants aged 

2 months carried pneumococci [3]. Colonization is an essential step in the 

pathway to invasive pneumococcal disease (IPD) [4]. In a pre-vaccine 

surveillance exercise in Kilifi, Kenya, 15% of IPD episodes occurred in the first 

two months of life [5].   

 

Pneumococcal Conjugate Vaccine (PCV) has been introduced in many low 

income countries in schedules where infants are first vaccinated at either 6 

weeks or two months of age [6]. In addition to direct protection of the 

vaccinated infant, the vaccine provides herd protection to unvaccinated 

individuals by interrupting transmission [7]. However, in contrast to developed 

countries [8], herd protection has not eliminated the circulation of vaccine 

serotypes in low-income countries and evidence from Kenya [9] and The 

Gambia [10] suggests that the prevalence of vaccine serotypes remains 

relatively high several years after vaccine introduction.  

 

This justifies the evaluation of maternal or newborn vaccination as strategies 

to protect young infants. Newborn vaccination with the 7-valent PCV was safe 

and immunogenic in Kenya and Papua New Guinea [11,12]. In a review of 

studies of maternal vaccination, no safety concerns were reported with the 23-

valent pneumococcal polysaccharide vaccine (PPV-23) or in the only study of 
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maternal vaccination with a 9-valent PCV [13,14]. Vaccination increased the 

passive transfer of antibodies to newborns, more so with the PCV [13]. 

Protein and whole cell pneumococcal vaccines, currently in clinical 

development, are designed to protect recipients against all serotypes of 

pneumococcus [15] and could be used, potentially, to protect young infants 

through newborn or maternal vaccination.  

 

The correlates of protection (CoP) against invasive pneumococcal disease 

(IPD) have been established [16]. Attempts to derive CoP for vaccine-induced 

protection against carriage have not provided a clear-cut threshold [17,18]. In 

addition, previous studies of this relationship have been constrained by 

several methodological limitations.  

 

Most studies, for example, relating newborn colonization to maternally-derived 

antibodies, with [19,20] or without maternal vaccination [21–23], have failed to 

account for the colonization status of the mother at birth. Children born to 

carrier mothers have a higher risk of infection by the mother and are also 

likely to receive higher antibody concentrations by passive transfer, thus 

confounding the relationship between antibody concentration and carriage.  

 

Secondly, the ascertainment of carriage acquisition in infants has been 

relatively insensitive. The earliest swabs were obtained at no younger than 1 

month of age [20–25] and the period between subsequent swabs was also at 

least a month in all of the studies. Thirdly, previous studies have been 

undermined by the relatively small sample sizes, which limits the power to 
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detect modest protective efficacies. Clinical trials of maternal vaccination 

studied samples of both vaccinated and control children ranging in size from 

46 to 437 infants [14] and studies without maternal vaccination had sample 

sizes in the range 51-310 [21–23,25]. Finally, only one previous study has 

measured both anti-capsular and anti-protein antibodies in the mother-infant 

pairs and, even here, they were assessed independently [25].  

 

Understanding the association between maternally-derived antibodies and the 

rate of carriage acquisition for a panel of pneumococcal proteins and capsular 

polysaccharides is likely to guide antigen selection in future maternal/newborn 

immunization strategies. We aimed to characterize this association using a 

study where the carriage status of the mother at birth is already known; the 

ascertainment of carriage in the infant begins early and recurs frequently; the 

study population is of sufficient size to detect moderate associations; and the 

effects of anti-protein and anti-capsular antibodies are analyzed 

simultaneously to determine the independent protective efficacies of each. 

 

Methods  

Data 

The study population and design have been described in detail elsewhere [1]. 

The study was conducted before the introduction of PCV vaccination in 

Kenya. Briefly, we collected nasopharyngeal swab specimens from 

participating newborns, aged at most 7 days, twice weekly for 2 weeks and 

weekly thereafter until a pneumococcus was cultured from an infant's swab or 

until 13 weeks after study entry, whichever was the sooner. Mothers were 
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swabbed at the time of birth and monthly thereafter. Cord blood was collected 

at the time of birth if the delivery took place at the hospital. Venous blood was 

collected from the mother if the child was born at home and reported to 

hospital within 7 days.  

 

The environmental risk factors for carriage ascertained were: sex, mother’s 

HIV status, history of cough, history of coryza, observed cough, observed 

coryza, observed runny nose and breastfeeding status. At the household level 

we ascertained: type of fuel used for cooking, number of siblings aged <10 

years, number of other children aged <10 years, number of adults, number of 

smokers and number of carers.  

 

Laboratory methods 

A direct binding electrochemiluminescence-based multiplex assay [26] was 

used to measure serum IgG antibodies to 27 pneumococcal protein antigens. 

Pneumococcal reference serum 007sp was used as a standard and assigned 

a value of 1000 arbitrary units for each antigen [27]. Antibody levels in serum 

samples were expressed as concentrations with reference to the amount in 

007sp. 

 

We used ELISA to assay serum samples for antibodies to 6A, 6B, 14, 19F 

and 23F capsular polysaccharides as described previously [28]. The assays 

were done at the WHO reference laboratory for pneumococcal serology, 

University College London Institute of Child Health, UK. These five serotypes 
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were chosen because they were the serotypes most frequently acquired in the 

study. 

 

Statistical analysis 

Univariable Cox proportional hazard (Cox PH) models were fitted to assess 

the relationship between the hazard of acquisition of carriage and anti-protein 

antibody concentrations for each of the 27 proteins. Non-linear effects of 

antibodies were modeled using restricted cubic splines [29]. The univariable 

Cox PH models were also fitted for homologous carriage against serotype-

specific anti-capsular antibody concentrations. Subjects were censored upon 

acquiring any pneumococcal serotype. For serotype-specific analyses this 

introduces a competing-risk scenario. Therefore, instead of estimating the 

standard hazard rates, we estimated the cause-specific hazard rates [30].  

 

The principal problem with serotype-specific analyses is power, since only a 

subset of all pneumococcal acquisitions are used. We replicated timespan 

records for each individual four times resulting in five copies. We then 

associated each replicate record with a standardized log IgG concentration, 

as well as an indicator for acquisition, for each of the five serotypes. The log 

IgG concentrations were standardized using serotype-specific means and 

standard deviations. This restructured dataset allowed us to estimate the 

impact of anti-capsular antibodies on the acquisition of any of the five 

serotypes in a single model. We calculated cluster robust standard errors to 

account for the correlation introduced by replication. 
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We used the Least Absolute Shrinkage and Selection Operator (lasso) 

penalty to select anti-protein antibodies and environmental risk factors to 

retain in multivariable Cox PH models. We assumed that these factors were 

independent of serotype and therefore examined their effect by fitting a 

penalized Cox PH model with acquisition of any pneumococcus as outcome. 

The lasso procedure shrinks the coefficients of the less relevant variables to 

zero and results in a set of variables that have optimal predictive value. 

Simulations indicate that the lasso procedure can be more accurate than 

stepwise selection [31]. In the presence of strong correlations between 

candidate predictors, the lasso may not be consistent in variable selection 

[32]. Consistency here refers to a higher ability to recover the correct model 

with growing number of observations. To achieve consistency we used an 

ensemble voting approach [33]. This involved fitting the penalized model to 

the observed dataset and across 200 bootstrap-resampled datasets, and 

using this pool of estimated coefficients to vote on which variables to include 

in the model. A variable was selected if its coefficient was not reduced to zero 

in more than 50% of the resampled datasets, a threshold that is a balance 

between being too restrictive or too lenient.   

 

We estimated non-linear effects on acquisition of any serotype of each 

selected anti-protein antibody adjusting for selected environmental variables 

and remaining selected protein variables. All the Cox PH models of the effect 

of anti-capsular IgG on the hazard of serotype-specific acquisition were 

adjusted for the selected environmental and protein variables. In these 

models, we entered the anti-capsular or anti-protein IgG coefficient of interest 
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unpenalized unlike the rest of the predictors used in adjustment. We also 

estimated non-linear effects on acquisition of the five serotypes of each 

selected protein antibody adjusting for selected environmental variables, the 

remaining selected protein variables and the standardized anti-capsular 

antibodies. Anti-capsular concentrations below the minimum detectable limit 

of 0.15 mcg/ml were imputed as half the value i.e. 0.15/2=0.075. All anti-

protein and anti-capsular concentrations were log-transformed before 

analysis.  

 

Results 

Acquisition rates 

Cord or venous blood samples were collected from 976 newborns; 342 (35%) 

of these were venous blood. The newborns were followed for a total of 33,905 

days resulting in 561 acquisitions of pneumococcus; 218 (39%) of these were 

for serotypes 6A, 6B, 14, 19F and 23F. The rate of acquisition per infant per 

1000 days ranged from 0.77 for serotype 14 to 2.18 for serotype 19F (Table 

1).  

 

Univariable analyses  

Higher levels of anti-protein IgG were associated with reduction in acquisition 

of any serotype for a number of proteins; nearly monotonic relations between 

acquisition hazard and IgG level were estimated for PhtD1, PhtD2, PhtE and 

StkP (p>0.15 for each). Higher anti-protein antibodies to PiaA, RrgBT4, 

RrgB6B and RrgB23F were associated with increased acquisition of carriage 

(p<0.033 for each) (Figure S1). 
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The serotype-specific hazard of acquisition as a function of homologous log 

IgG concentration did not show a monotonically decreasing trend with higher 

concentrations (Figure 1). For serotypes 14 and 19F, there was favorable 

reduction in acquisition hazard at higher IgG levels. In the joint analysis 

combining all five serotypes, higher anti-capsular IgG concentrations, on the 

extreme right of the distribution of IgG concentrations, were associated with a 

reduction in acquisition (Figure 2) however we did not find evidence of an 

association across the whole range of values (p=0.797). The point-wise 

confidence intervals (CIs) in the figures, at the upper bound descends below 

the hazard ratio (HR) of 1; this can be used to mark log IgG levels which 

result in a significant reduction in carriage rates compared to typical (mean) 

log IgG values. In the univariable analysis, the upper limits of the CIs are all 

above a HR of 1. 

 

Multivariable analyses 

Table 2 shows the set of environmental and anti-protein antibody variables 

selected by the lasso procedure. In the set of candidate environmental 

predictors, sex, history of cough, observed cough, observed runny nose and 

breastfeeding status were voted out of the model. Among the 27 candidate 

anti-protein antibody predictors, 17 were voted out. Except for antibodies to 

PhtD1, PspAFam2, StkP and Spr0096, in which higher concentrations were 

associated with reduction in carriage acquisition, higher IgG levels for the 

remaining proteins were associated with increased acquisition (Table 2). The 

group of newborns who were born in hospital, had a lower rate of 
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pneumococcal acquisition (18% lower) compared to newborns who were born 

at home (Table 2). 

 

Among the ten proteins in which adjusted non-linear effects on carriage 

acquisition were analysed, higher concentrations of PhtD1 and StkP were 

associated (p=0.020 and 0.036, respectively) with reduced acquisition. Higher 

concentrations of RrgBT4 were associated (p=0.003) with an increase in 

acquisition rate for the greater part of the distribution of anti-RrgBT4 

antibodies (Figure 3). The function for anti-RrgBT4 concentration was non-

monotonic; we also observed higher carriage rates in the lower tail of the 

distribution. The effects of the anti-protein concentration on acquisition of any 

of the five serotypes without adjusting for the anti-capsular concentrations 

(Figure S2) were similar with adjustment (Figure S3). 

 

Adjusting for environmental and anti-protein antibody variables in the models 

of the effect of serotype-specific anti-capsular antibodies only marginally 

influenced the shape of the hazard functions compared to the unadjusted 

analyses. In serotype 19F there was lower risk in the upper tail of the 

distribution of IgG concentration, however, there was no evidence an overall 

effect of serotype-specific IgG (p=0.13-0.97) (Figure 4). In the joint 

multivariable analysis of all the five serotypes, individuals with standardized 

log IgG concentration of about 2 and above had significant reduction in the 

rate of acquisition, by 50% or more, compared to individuals with the average 

standardized log IgG (Figure 2, right panel). A standardized log IgG 
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concentration of 2 is equivalent to an absolute IgG concentration of 11.1, 9.8, 

3.1, 5.5 and 19.0 mcg/ml for serotypes 6A, 6B, 14, 19F and 23F, respectively. 

 

Discussion 

We assessed the association between maternally-derived anti-protein and 

anti-capsular antibodies and the rate of carriage-acquisition in the first 90 

days of life among mother-infant pairs in the pre-vaccination period in Kenya. 

Among anti-protein antibodies, we found that higher concentrations of 

antibody to some proteins (PhtD1, PspAFam2, Spr0096 and StkP) were 

associated with a reduction in the acquisition rate while some (CbpA, LytC, 

PcpA, PiaA, PspAFam1 and RrgBT4) were associated with an increase in 

acquisition rate (Figure 3).  

 

Some of the associations are consistent with our understanding of the protein 

functions. For instance, higher anti-protein antibodies to histidine triad protein 

(PhtD) were significantly associated with a reduction in acquisition. PhtD is a 

pneumococcal cell surface protein that contributes to the adherence of S. 

pneumoniae to epithelial cells [34]. This protein has been used as a vaccine 

candidate [35].  

 

Several associations are apparently inconsistent with known functions of the 

proteins. The presence of pilus has been implicated in adhesion to epithelial 

cells in humans and mice [36], suggesting a role in colonization. RrgB is a 

backbone subunit of pneumococcus pilus-1, anti-RrgBT4 antibody binding to 

pilus might reduce its capacity to bind epithelial cells and thereby abrogate its 
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role in adhesion. Therefore, higher anti-RrgBT4 concentrations would result in 

lower carriage acquisition. The pneumococcal serine threonine protein kinase 

(StkP) has recently been shown to repress the expression of pilus and 

modulate bacterial adherence to human epithelial cells [37]. Thus, higher anti-

StkP antibodies imply impaired repression of the pilus in the pneumococcus 

enhancing the attachment capacity of the bacterium, leading to increased 

carriage acquisition. 

 

However, we observed a non-monotonic relation between carriage acquisition 

anti-RrgBT4 concentrations; the hazard was higher at the lower and upper 

extremes of the concentration scale. We also observed a significant reduction 

in acquisition rate with increasing anti-StkP concentrations (Figure 3). The 

pilus is only expressed in 30-50% of pneumococci [38], therefore any effect 

mediated through pilus is likely to be diluted, thus the observed effect of anti-

RrgBT4 and anti-StkP antibodies might not be entirely explained through their 

effect on the pilus. We did not determine pilus phenotypes of pneumococci 

isolated in this study, so we were unable to include the phenotype in our 

analysis. Nonetheless, StkP is a global kinase involved in regulating a number 

of pneumococcal functions that are critical for the resistance of 

pneumococcus to various stress conditions, one such function is cell wall 

biosynthesis [39]. Antibodies to StkP may inhibit the role it plays in cell wall 

development and that would lead to a decrease in pneumococcal viability and 

therefore reduced carriage. Some of these paradoxical associations may be 

due to the observational nature of the study, where it is difficult to control 

completely for confounding; the findings could be tested in an experimental 
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design using nasopharyngeal challenge studies in animal models. 

Understanding both the positive and negative impacts of antibodies on 

adhesion may be useful for vaccine design. 

 

Several prior studies have documented the limited role of maternally-derived 

antibodies in protecting infants from pneumococcal colonization [21,22,40]. 

Maternal vaccination in the third trimester of pregnancy increases the amount 

of antibody passed on to the newborn [20,41]. However, there is insufficient 

evidence that maternal vaccination during pregnancy could reduce infant 

carriage or infections [42].  

 

We observed a reduction in the rate of acquisition associated with high levels 

of maternally-derived anti-capsular antibodies to five serotypes even though 

none of the associations was statistically significant across the whole range of 

concentrations (Figure 2&4). The limited effect of anti-capsular antibodies on 

carriage acquisition rates in our study could suggest that these antibodies are 

not effective against carriage acquisition, at least in an environment such as 

Kilifi with a high force of infection. However, we did observe a steep reduction 

in acquisition of carriage at very high concentration of antibodies in the range 

of 3.1-19.0 mcg/ml across different serotypes, though concentrations this high 

were attained by only about 3% of the newborn population (Figure 2). In other 

settings the proportion attaining these concentrations at birth might be higher; 

about 25% of newborns had these level of antibodies for serotypes 14 and 

19F in a study of American children [43]. This provides some rationale for 

maternal vaccination, if the vaccine can raise the level of transferred 
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antibodies to very high concentrations above those observed as a 

consequence of repeated natural exposure.  

 

One limitation of the analysis is that the HIV status of the mothers was not 

considered. Immunosuppressed mothers are more likely to be colonized by 

pneumococcus and have reduced immunological responses following 

colonization [44]. Therefore, HIV positive mothers are more likely to transmit 

pneumococcal carriage to their newborns and transfer lower antibody 

concentrations to their newborns compared to HIV negative mothers. 

Consequently, the association between maternal antibodies and the risk of 

acquisition of carriage among children born to HIV positive mothers is likely to 

be stronger (large effect size) compared to the same association among 

children born to HIV negative mothers. Not accounting for mother’s HIV status 

might therefore bias upwards the estimate of the hazard of acquisition per unit 

increase in maternal antibodies. The magnitude of this bias in a study 

population would depend on the prevalence of HIV among women in the 

childbearing age, where a small prevalence of HIV would reduce the bias. The 

prevalence of HIV in women in coastal Kenya reduced from 11% 2007 to 4% 

in 2012 [45], the period between which data analysed in this study was 

collected. 

 

There are few analyses of CoP against carriage acquisition for anti-capsular 

antibodies. A value of 5mcg/ml was associated with protection against 

carriage of serotype 14 [17]. Our analysis suggests that the CoP is likely to be 

very high, in the range 3.1-19.0 mcg/ml. In the only reported study of maternal 
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vaccination with a PCV, the geometric mean concentrations (GMC) of anti-

capsular antibodies in cord-blood of newborns to vaccinated mothers were 

between 3 and 19 times higher, depending on serotype, compared to 

newborns to mothers who received a placebo. The GMC in cord-blood among 

newborns from vaccinated mothers ranged between 2.4 to 14.3 mcg/ml [13]. 

This increases the potential of PCVs for use in maternal vaccination. 

  

The serotype-specific rates of acquisition observed among the subset of 

newborns whose cord or maternal venous blood were collected were very 

similar to the total sample of 1400 newborns that constituted the original study 

[1] suggesting that the subset analysed was representative (Table 1). The 

newborns born in hospital, had lower rates of pneumococcal acquisition 

compared to those born at home. The blood type (cord or venous) provided 

was therefore a potential confounder in the relationship between antibodies 

and carriage acquisition. However, we adjusted for blood type in all 

multivariable models.  

 

In conclusion, we observed a significant association between carriage 

acquisition and several anti-protein antibodies but only a limited role for 

maternally-derived anti-capsular antibodies, at high concentrations, on 

serotype-specific acquisition of pneumococci. This disparity between anti-

protein and anti-capsular effects may be attributable to differential study 

power, as the anti-capsular analyses was restricted to homologous 

acquisitions but the anti-protein analysis included all acquisitions. 

Nonetheless, a strategy of maternal vaccination to improve the level of 
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transferred antibodies and thus protect newborns against acquisition of 

carriage may be successful if vaccine formulation is focused on enhancing 

specific anti-protein antibodies that are associated with reduced carriage, or if 

the strategy induces very high concentrations of anti-capsular antibodies, 

above those normally observed in physiological trans-placental transfer.  

 

  



	 130	

Funding 
 
The study was funded by the Wellcome Trust, through research fellowships 

[098532 to JAGS and 092767 to JO]. 

 

Conflicts of Interest 

DG Is funded by the NIHR and his laboratory undertakes collaborative and 

contract research for GSK who make PCV. DG attends occasional advisory 

boards convened by GSK. 

 

Ethics statement 

The study was approved by the Kenya Medical Research Institute (KEMRI) 

Ethical review committee (Protocol number, SCC 2273). This paper is 

published with the permission of the Director, Kenya Medical Research 

Institute. We thank Nicola Green for performing the pneumococcal serology.   



	 131	

References 

1.  Tigoi CC, Gatakaa H, Karani A, et al. Rates of acquisition of 

pneumococcal colonization and transmission probabilities, by serotype, 

among newborn infants in Kilifi District, Kenya. Clin. Infect. Dis. 2012; 

55:180–8.  

2.  Turner P, Turner C, Jankhot A, et al. A Longitudinal Study of 

Streptococcus pneumoniae Carriage in a Cohort of Infants and Their 

Mothers on the Thailand-Myanmar Border. PLoS One 2012; 7:e38271.  

3.  Coles CL, Rahmathullah L, Kanungo R, et al. Vitamin A 

supplementation at birth delays pneumococcal colonization in South 

Indian infants. J. Nutr. 2001; 131:255–261.  

4.  Simell B, Auranen K, Käyhty H, et al. The fundamental link between 

pneumococcal carriage and disease. Expert Rev. Vaccines 2012; 

11:841–55.  

5.  Ndiritu M, Karani A, Nyiro J, et.al. Epidemiology of invasive 

pneumococcal disease among children in Kilifi District, Kenya. In: Sixth 

International Symposium on Pneumococci and Pneumococcal 

Diseases. Rejkyavik, Iceland: 2008: [abstract P1-059].  

6.  Whitney CG, Goldblatt D, O’Brien KL. Dosing Schedules for 

Pneumococcal Conjugate Vaccine. Pediatr. Infect. Dis. J. 2014; 

33:S172–S181.  

7.  Shiri T, Datta S, Madan J, et al. Indirect effects of childhood 

pneumococcal conjugate vaccination on invasive pneumococcal 

disease: a systematic review and meta-analysis. Lancet Glob. Heal. 

2017; 5:e51–e59.  

8.  Davis SM, Deloria-Knoll M, Kassa HT, O’Brien KL. Impact of 

pneumococcal conjugate vaccines on nasopharyngeal carriage and 

invasive disease among unvaccinated people: Review of evidence on 

indirect effects. Vaccine 2013; 32:133–145.  

9.  Hammitt LL, Akech DO, Morpeth SC, et al. Population impact of 10-

valent pneumococcal conjugate vaccine (PCV) on nasopharyngeal 



	 132	

carriage of Streptococcus pneumoniae in Kilifi, Kenya. In: 10th 

International Symposium on Pneumococci & Pneumococcal Diseases. 

Glasgow, Scotland.: 2016.  

10.  Roca A, Bojang A, Bottomley C, et al. Effect on nasopharyngeal 

pneumococcal carriage of replacing PCV7 with PCV13 in the Expanded 

Programme of Immunization in The Gambia. Vaccine 2015; 33:7144–

7151.  

11.  Scott JAG, Ojal J, Ashton L, Muhoro A, Burbidge P, Goldblatt D. 

Pneumococcal Conjugate Vaccine Given Shortly After Birth Stimulates 

Effective Antibody Concentrations and Primes Immunological Memory 

for Sustained Infant Protection. Clin. Infect. Dis. 2011; :1–8.  

12.  Pomat WS, van den Biggelaar AHJ, Phuanukoonnon S, et al. Safety 

and Immunogenicity of Neonatal Pneumococcal Conjugate Vaccination 

in Papua New Guinean Children: A Randomised Controlled Trial. PLoS 

One 2013; 8:1–12.  

13.  Daly KA, Scott Giebink G, Lindgren BR, et al. Maternal immunization 

with pneumococcal 9-valent conjugate vaccine and early infant otitis 

media. Vaccine 2014; 32:6948–6955.  

14.  Clarke E, Kampmann B, Goldblatt D. Maternal and neonatal 

pneumococcal vaccination - where are we now? Expert Rev. Vaccines 

2016; 584.  

15.  Feldman C, Anderson R. Review: Current and new generation 

pneumococcal vaccines. J. Infect. 2014; 69:309–325.  

16.  Andrews NJ, Waight PA, Burbidge P, et al. Serotype-specific 

effectiveness and correlates of protection for the 13-valent 

pneumococcal conjugate vaccine: A postlicensure indirect cohort study. 

Lancet Infect. Dis. 2014; 14:839–846.  

17.  Goldblatt D, Hussain M, Andrews N, et al. Antibody responses to 

nasopharyngeal carriage of Streptococcus pneumoniae in adults: a 

longitudinal household study. J. Infect. Dis. 2005; 192:387–93.  

18.  Ojal J, Hammitt LL, Gaitho J, Scott JAG, Goldblatt D. Pneumococcal 



	 133	

conjugate vaccine induced IgG and nasopharyngeal carriage of 

pneumococci: Hyporesponsiveness and immune correlates of 

protection for carriage. Vaccine 2017; 35:4652–4657.  

19.  Lopes CRC, Berezin EN, Ching TH, Canuto JDS, Costa VO Da, Klering 

EM. Ineffectiveness for infants of immunization of mothers with 

pneumococcal capsular polysaccharide vaccine during pregnancy. 

Braz. J. Infect. Dis. 2009; 13:104–6.  

20.  Munoz FM, Englund J a, Cheesman CC, et al. Maternal immunization 

with pneumococcal polysaccharide vaccine in the third trimester of 

gestation. Vaccine 2001; 20:826–37.  

21.  Lebon A, Verkaik NJ, Labout J a M, et al. Natural antibodies against 

several pneumococcal virulence proteins in children during the pre-

pneumococcal-vaccine era: The generation R study. Infect. Immun. 

2011; 79:1680–1687.  

22.  Holmlund E, Quiambao B, Ollgren J, Nohynek H, Käyhty H. 

Development of natural antibodies to pneumococcal surface protein A, 

pneumococcal surface adhesin A and pneumolysin in Filipino pregnant 

women and their infants in relation to pneumococcal carriage. Vaccine 

2006; 24:57–65.  

23.  Rosen A, Håkansson A, Aniansson G, et al. Antibodies to 

pneumococcal polysaccharides in human milk: lack of relationship to 

colonization and acute otitis media. Pediatr. Infect. Dis. J. 1996; 

15:498–507.  

24.  Lopes CC, Berezin EN, Scheffer D, et al. Pneumococcal 

Nasopharyngeal Carriage in Infants of Mothers Immunized with 23V 

Non-conjugate Pneumococcal Polysaccharide Vaccine. J. Trop. Pediatr. 

2012; 58:348–352.  

25.  Turner P, Turner C, Green N, et al. Serum antibody responses to 

pneumococcal colonization in the first 2 years of life: results from an SE 

Asian longitudinal cohort study. Clin. Microbiol. Infect. 2013; 19:E551-8.  

26.  Marchese RD, Puchalski D, Miller P, et al. Optimization and validation 

of a multiplex, electrochemiluminescence-based detection assay for the 



	 134	

quantitation of immunoglobulin G serotype-specific antipneumococcal 

antibodies in human serum. Clin. Vaccine Immunol. 2009; 16:387–396.  

27.  Goldblatt D, Plikaytis BD, Akkoyunlu M, et al. Establishment of a new 

human pneumococcal standard reference serum, 007sp. Clin. Vaccine 

Immunol. 2011; 18:1728–1736.  

28.  Rose CE, Romero-Steiner S, Burton RL, et al. Multilaboratory 

comparison of Streptococcus pneumoniae opsonophagocytic killing 

assays and their level of agreement for the determination of functional 

antibody activity in human reference sera. Clin. Vaccine Immunol. 2011; 

18:135–142.  

29.  Desquilbet L, Mariotti F. Dose-response analyses using restricted cubic 

spline functions in public health research. Stat. Med. 2010; 29:1037–

1057.  

30.  Dignam JJ, Zhang Q, Kocherginsky MN. The Use and Interpretion of 

Competing Risks Regression Models. 2013; 18:2301–2308.  

31.  Tibshirani R. The lasso method for variable selection in the cox model. 

Stat. Med. 1997; 16:385–395.  

32.  Zhao P, Yu B. On model selection consistency of Lasso. J. Mach. 

Learn. Res. 2006; 7:2541–2563.  

33.  Sinnott JA, Cai T. Inference for survival prediction under the regularized 

Cox model. Biostatistics 2016; :kxw016.  

34.  Plumptre CD, Ogunniyi AD, Paton JC. Surface association of pht 

proteins of streptococcus pneumoniae. Infect. Immun. 2013; 81:3644–

3651.  

35.  Prymula R, Pazdiora P, Traskine M, Rüggeberg JU, Borys D. Safety 

and immunogenicity of an investigational vaccine containing two 

common pneumococcal proteins in toddlers: A phase II randomized 

clinical trial. Vaccine 2014; 32:3025–3034.  

36.  Barocchi MA, Ries J, Zogaj X, et al. A pneumococcal pilus influences 

virulence and host inflammatory responses. Proc Natl Acad Sci USA 

2006; 103:2857–2862.  



	 135	

37.  Herbert JA, Mitchell AM, Mitchell TJ. A Serine-Threonine Kinase (StkP) 

Regulates Expression of the Pneumococcal Pilus and Modulates 

Bacterial Adherence to Human Epithelial and Endothelial Cells In Vitro. 

PLoS One 2015; 10:e0127212.  

38.  Harfouche C, Filippini S, Gianfaldoni C, et al. RrgB321, a fusion protein 

of the three variants of the pneumococcal pilus backbone RrgB, is 

protective In Vivo and elicits opsonic antibodies. Infect. Immun. 2012; 

80:451–460.  

39.  Saskova L, Nova L, Basler M, Branny P. Eukaryotic-Type Serine / 

Threonine Protein Kinase StkP Is a Global Regulator of Gene 

Expression in Streptococcus pneumoniae. J. Bacteriol. 2007; 

189:4168–4179.  

40.  Francis JP, Richmond PC, Pomat WS, et al. Maternal antibodies to 

pneumolysin but not to pneumococcal surface protein a delay early 

pneumococcal carriage in high-risk Papua New Guinean infants. Clin. 

Vaccine Immunol. 2009; 16:1633–1638.  

41.  O’Dempsey TJ, McArdle T, Ceesay SJ, et al. Immunization with a 

pneumococcal capsular polysaccharide vaccine during pregnancy. 

Vaccine 1996; 14:963–70.  

42.  Chaithongwongwatthana S, Yamasmit W, Limpongsanurak S, et al. 

Pneumococcal vaccination during pregnancy for preventing infant 

infection. Cochrane Database Syst. Rev. 2006; :CD004903.  

43.  Becken ET, Daly KA, Lindgren BR, Meland MH, Giebink GS. Low Cord 

Blood Pneumococcal Antibody Concentrations Predict More Episodes 

of Otitis Media. Arch Otolaryngol Head Neck Surg. 2001; 127:517–522.  

44.  Palmeira P, Quinello C, Ana L, Zago A, Carneiro-sampaio M. IgG 

Placental Transfer in Healthy and Pathological Pregnancies Cl ´. Clin. 

Dev. Immunol. 2012; 2012.  

45.  Davies K, Samuel O, Mamo U, et al. Prevalence and Incidence of HIV 

Infection, Trends, and Risk Factors Among Persons Aged 15–64 Years 

in Kenya: Results From a Nationally Representative Study. J Acquir 

Immune Defic Syndr. 2014; 66.  



	 136	

 

Table 1: Acquisitions rates of serotypes 

 

Serotype Acquisitions Incidence  
(per 1000 days) 

95% CI Incidence in larger cohort*  
(per 1000 days) 

6A 45 1.33 0.97-1.77 1.49 
6B 38 1.12 0.79-1.54 1.26 
14 26 0.77 0.50-1.12 0.79 
19F 74 2.18 1.71-2.74 2.54 
23F 35 1.03 0.72-1.44 1.24 

The total time at risk was 33,905 person-days.  

*The incidence estimated from the cohort of 1400 that included all newborns; those 

who gave and those who did not give serum samples. 
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Table 2: Adjusted hazard ratios quantifying the association of acquisition of any 

pneumococcal serotypes with selected environmental and anti-protein antibody 

variables 

Variable Hazard Ratio* 95% CI 
Coryza observed at last visit 1.36 1.03-1.60 
History of coryza at last visit 1.20 0.87-1.63 
Runny nose at last visit 1.17 0.96-1.51  
Fuel used for cooking   
     Firewood Ref.  
     Charcoal 0.61 0.37-0.94 
     Paraffin 0.81 0.67-0.97 
     Gas 2.04 1.03-6.48 
No. of Siblings  1.06 1.01-1.13 
No. of carers in household 0.94 0.89-0.99 
No. of children aged <10 years in household 1.08 1.01-1.16 
No. of smokers in household 1.11 0.97-1.30 
Mother positive of carriage around time of birth 1.58 1.06-2.06 
Type of sample: Cord vs. Venous blood (Ref) 0.82 0.69-0.98 
Month of Swab   
     January Ref.  
     February 1.22 0.76-1.87 
     March 1.22 0.78-1.94 
     April 1.12 0.72-1.64 
     May 1.02 0.63-1.53 
     June 1.95 1.08-2.92 
     July 2.57 1.37-3.64 
     August 2.19 1.13-3.17 
     September 1.99 1.04-2.71 
     October 1.93 1.06-2.79 
     November 1.84 1.01-3.27 
     December 0.88 0.55-1.32 

CbpA 1.17 1.00-1.35 

LytC 1.17 1.01-1.32 

PcpA 1.13 1.00-1.24 

PhtD1 0.79 0.70-0.95 

PiaA 1.16 1.02-1.27 

PspAFam2 0.85 0.77-0.98 

PspAFam1 1.07 0.99-1.19 

RrgBT4 1.15 1.05-1.25 

Spr0096 0.92 0.85-1.00 

StkP 0.88 0.81-0.99 
 
*The hazard ratios for the anti-protein antibodies should be interpreted as the hazard 
ratio per unit increase in log IgG concentration. 
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Figure 1: Univariable analysis of the effect of anti-capsular IgG on serotype-
specific carriage acquisition rate. The figure shows the relative hazard of 
acquisition (blue solid line) as a function of log IgG concentration (x-axis) for each 
serotype labeled above the graph. The hazard at each level of log IgG is relative to 
the mean log IgG. The red dashed lines are the 95%CI bounds of the hazard ratio. 
The three vertical (grey) lines mark the 2.5th, 50th and 97.5th percentiles of the 
distribution of log IgG whose density is shown in grey on the x-axis. The likelihood 
ratio (LR) test p-value compares a model with and that without the log IgG 
concentration variable, thus indicating the overall significance of antibody 
concentration. The point-wise confidence intervals in the figures, at the point where 
the upper bound descends below the hazard ratio of 1, can be used to mark log IgG 
levels which results in significant reduction in carriage rates compared to typical 
(mean) log IgG values. 
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Figure 2: Univariable (left panel) and Multivariable (right panel) analysis of the 
effect of anti-capsular IgG concentration on carriage acquisition rates of any of 
the serotypes: 6A, 6B, 14, 19F and 23F. The figure follows the convention 
described in the legend for figure 1. The 95% CIs for the multivariable analysis are 
percentile-based and computed from 200 cluster bootstrap (clustered on 
subject/individual) resamples of the data. PLR stands for penalized likelihood ratio 
test, comparing a model with the log IgG concentration variable and one without. 
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Figure 3: Multivariable analysis of the effect of the selected anti-protein IgG on 
all pneumococcal carriage acquisition rates. The figure follows the convention 
described in the legend for figure 1. The 95% CIs are percentile-based and 
computed from 200 cluster bootstrap (clustered on subject/individual) resamples of 
the data. PLR stands for penalized likelihood ratio test, comparing a model with the 
log IgG concentration variable and one without. 
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Figure 4: Multivariable analysis of the effect of anti-capsular IgG on serotype-
specific carriage acquisition rate. The figure follows the convention described in 
the legend for figure 1. The 95% CIs are percentile-based and computed from 200 
cluster bootstrap (clustered on subject/individual) resamples of the data. PLR stands 
for penalized likelihood ratio test, comparing a model with the log IgG concentration 
variable and one without. 
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Supplementary Figure S1: Univariable analysis of the effect of anti-protein IgG 
concentration on all pneumococcal carriage acquisition rates. The figure follows 
the convention described in the legend for figure 1. 
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Supplementary Figure S2: Multivariable analysis of the effect of anti-protein 
IgG concentration on carriage acquisition rates of any of the serotypes: 6A, 6B, 
14, 19F and 23F not adjusting for anti-capsular antibodies. Adjustment variables 
for the functions presented in the plot include the environmental variables and rest of 
the selected anti-protein variables. The figure follows the convention described in the 
legend for figure 1.  
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Supplementary Figure S3: Multivariable analysis of the effect of anti-protein 
IgG concentration on carriage acquisition rates of any of the serotypes: 6A, 6B, 
14, 19F and 23F, adjusting for standardized anti-capsular antibodies. 
Adjustment variables included the environmental variables, the rest of the selected 
anti-protein variables and standardized log anti-capsular antibodies of the five 
serotypes. The figure follows the convention described in the legend for figure 1.  
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Abstract 

Introduction 

Most low-income counties have introduced pneumococcal conjugate vaccines 

(PCVs), all with substantial financial support from Gavi, the Vaccine Alliance. 

Within the next decade many of them will enter an accelerated transition 

phase and within the subsequent 5 years will need to either discontinue or 

gradually take over the full costs of their PCV programmes. Kenya introduced 

the ten valent PCV (PCV10) in 2011 and will enter Gavi transition in 2022. 

Using Kenya as a case study we assessed the cost-effectiveness of such 

strategies. 

 

Methods 

We fitted a dynamic compartmental model of pneumococcal carriage to 

annual carriage prevalence surveys and invasive pneumococcal disease 

(IPD) incidence in Kilifi obtained two years pre- and four years post- vaccine 

introduction and extrapolated this to the whole of Kenya. The incidence of 

pneumococcal sepsis, meningitis, bacteraemic pneumonia and non-

bacteraemic pneumonia was estimated as a proportion of IPD incidence. The 

treatment costs of predicted cases of these four syndromes and vaccination 

cost of birth cohorts over a decade were estimated and used to calculate the 

costs per disability-adjusted-life-year (DALY) averted and associated 

predictive intervals (PI). 

 

Results 
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We predict that overall IPD incidence will increase by 93% (PI: 72% - 114%) 

from 8.4 in 2022 to 16.3 per 100,000 per year in 2032, if vaccination is 

stopped. Continuing vaccination would prevent 15,355 (PI: 10,196–21,125) 

deaths and 112,050 (PI: 79,620–130,981) IPD and non-bacteraemic 

pneumonia cases during that time. The cost-effectiveness becomes more 

favourable as the effects of the current programme wane. The incremental 

cost per DALY averted of continuing PCV use versus discontinuing was 

predicted at $142 (PI: 85 - 252) in 2032. We estimate that continuing the PCV 

programme after 2022 will require an additional US$15.6 million annually 

compared to discontinuing vaccination. This is approximately triple Kenya’s 

current annual immunization expenditure of US$ 4.8 million. 

 

Conclusion 

Continuing PCV use is essential to sustain its health gains. Based on the 

Kenyan GDP per capita of $1445, and in comparison to other vaccines, 

continued PCV use at full costs is still cost-effective. This supports an 

expansion of the vaccine budget, however, affordability may be a concern.  
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Introduction 

The majority of African countries have introduced the pneumococcal 

conjugate vaccine (PCV) in their childhood immunization programmes which 

has led to a substantial reduction in pneumococcal disease [1,2]. In Kilifi, a 

coastal area in Kenya with enhanced surveillance for bacterial diseases, 

overall invasive pneumococcal disease (IPD) decreased by 68% in the post 

vaccination period (2012-2016) in children aged <5 years [3]. 

 

PCVs are among the most expensive vaccines available. However, most 

African countries did not undertake a cost-effectiveness analysis before 

deciding to introduce PCV as Gavi, the Vaccine Alliance, took over most 

vaccine costs. However, countries are expected to transition from Gavi 

support and subsequently take over the full cost once their average Gross 

National Income per capita over the past three years exceeds $1580. 

Currently four African countries (Angola, Congo Rep., Ghana and Nigeria) are 

in the accelerated transition phase [4] and five more (Ivory Coast, Lesotho, 

Sudan, Kenya and Zambia) are expected to join within the next five years. 

With the increase in PCV costs upon transition countries will need to 

independently assess the cost-effectiveness and the affordability of sustaining 

the PCV infant vaccination programme. 

 

Kenya introduced the 10 valent PCV (PCV10) in 2011 with Gavi’s support and 

has recently entered the preparatory transition phase, which will see their 

current contribution of $0.21 per dose increase by 15% every year. In 2022 

Kenya will enter the accelerated transition phase that gradually increases their 
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cost contribution to 100% by 2027 [5]. Before entering the accelerated 

transition-phase Kenya will need to decide whether to continue with PCV 

vaccination and or discontinue the programme. We here assess the impact 

and cost-effectiveness of those two policy options.   

Methods  

We used a dynamic pneumococcal transmission model in combination with a 

costing model to estimate the cost-effectiveness of the two major policy 

options for PCV use in Kenya from 2022; i.e. continuation of PCV use at 

Gavi’s scheduled prices or discontinuing the programme. The approach 

accounts for the uncertainty in both epidemiology and costing estimates and 

appropriately propagates it to the predicted outcomes. 

 

Disease model and incidence prediction 

The details of the transmission model are described elsewhere [6]. In brief, it 

is a compartmental, age-structured, dynamic model with 14 carriage states 

(Appendix, Supplementary Figure 3). The model has a Susceptible-Infected-

Susceptible (SIS) structure for three serotype groups: the vaccine serotypes 

(VT), strongly competitive non-vaccine serotypes (sNVT) and weakly 

competitive non-vaccine serotypes (wNVT). We fitted the model to age 

stratified pre-vaccination (2009-2010) and post-vaccination (2011-2016) 

pneumococcal carriage data. This also allowed estimation of the vaccine 

efficacy against carriage.  

 

In Kilifi, PCV vaccination was introduced together with a catch-up campaign in 

children <5 years old. To extrapolate findings to the rest of Kenya, where PCV 
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was introduced without a catch-up campaign, the fitted model was re-run 

under these conditions. We predicted carriage incidence for a 15-year period, 

from 2017 to 2032. We predicted IPD incidence by multiplying modelled 

carriage incidence with case-to-carrier ratios (CCR). For each model posterior 

the CCRs were calculated as the ratio of the observed pre-vaccination IPD 

incidence at Kilifi Country Hospital (KCH) [7] to modelled pre-vaccination 

carriage incidence. The CCR were assumed to remain unchanged post-

vaccination.  

 

IPD was defined as isolation of Streptococcus pneumoniae from a sterile site 

culture in an individual admitted to KCH. We split the predicted IPD incidence 

into the age dependent proportions that are pneumococcal meningitis, 

pneumococcal sepsis and bacteraemic pneumococcal pneumonia incidence 

based on the distribution observed in clinical data from KCH (Supplementary 

Table S1). We defined pneumococcal meningitis as isolation of Streptococcus 

pneumoniae from cerebrospinal fluid (CSF) or isolation of S. pneumoniae 

from blood, accompanied by a CSF white blood cell count of 50 x 106 cells/L 

or greater or a ratio of CSF glucose to plasma glucose less than 0.1. 

Bacteraemic pneumococcal pneumonia was defined as IPD with no 

pneumococcal meningitis but with WHO severe or very severe pneumonia. 

Pneumococcal sepsis was defined as IPD not meeting the definitions of 

pneumococcal meningitis or bacteraemic pneumococcal pneumonia. We 

further assume that for every prevented case of IPD one would prevent 5.3 

cases of clinically-defined pneumonia [3,8]. This ratio was estimated by 

dividing the vaccine preventable clinical pneumonia incidence (351 per 



	 152	

100,000 per year) [3] to vaccine preventable IPD incidence (66.3 per 100,000 

per year) [8] that were both estimated from surveillance at KCH. 

 

Vaccination program costs 

The program costs included vaccine costs, vaccine wastage, safety boxes, 

administering syringes for each dose, reconstitution syringes for each vial, 

syringe wastage and vaccine delivery cost (Table 1). The vaccine delivery 

cost included the vaccine supply chain cost and immunization service delivery 

cost. The initial investment in expanding the cold chain capacity in 2011 was 

not included.  A switch from 2-dose to 4-dose presentation is expected during 

2017. The 4-dose presentation has a preservative and once opened for the 

first time the vial can be kept for up to 28 days, therefore, Gavi expects no 

change in assumed vaccine wastage rates [9]. 

 

Treatment costs	

We adopted a societal perspective in our analyses, i.e. including direct 

medical costs, the opportunity cost of caretaker time and household out-of-

pocket costs. The hospital surveillance in KCH was found to underestimate 

the incidence of pneumonia and meningitis by 45% and 30% respectively [10]. 

We accounted for this age-independent under reporting in our analysis by 

inflating case numbers commensurately. 

 

To apply the appropriate treatment costs, we divided the cases into three 

groups depending on where they were treated: hospitalised cases, cases 

treated as outpatients and those that did not reach medical care (Table 1). All 
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costs not referring to 2016 were expressed in 2016 US dollars for our analysis 

by using the International Monetary Fund’s (IMF) GDP deflators for Kenya 

[11].   

 

Disability Adjusted Life Years (DALYs) 

The treatment costs for the predicted number of cases for the four syndromes 

considered and the vaccination cost of birth cohorts over a decade were 

estimated and used to calculate the costs per disability-adjusted-life-year 

(DALY) averted. Age weighting for the societal value of health loss was not 

considered in the analysis [12]. The years lost due to disability (YLD) were 

calculated as the product of disease incidence, duration of disease and 

disability weights. We used disability weights from the 2013 global burden of 

disease study [13] in calculating YLD component of DALYs. We used the 

disability weight of 0.133, assigned for infectious diseases with severe acute 

episodes, for both IPD and non-bacteraemic pneumonia episodes. For 

meningitis sequelae, we used a disability weight of 0.542 assigned for motor 

plus cognitive impairment. We assumed duration of 15 days for all IPD 

syndromes and 7 days for non-bacteraemic pneumonia. Meningitis sequelae 

were assumed to last a lifetime. We used the Kenyan age specific life 

expectancies [14] in calculating the Year of Life Lost (YLL) due to death. The 

discount rate on costs and DALYs was set at 3%.  

 

Sensitivity analysis of the cost inputs and disease model 

The full uncertainty of both epidemiological and costs parameters is 

propagated to the results as follows: for each posterior estimate of the 
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epidemiological model we sampled a set of cost parameters from the pre-set 

distributions, effectively combining probabilistic fitting of the epidemiological 

mode with a probabilistic sensitivity analysis of the costing model (Table 1).  

 

In Kenya, children who are carriers of VT pneumococci have been observed 

to respond less well to vaccine than non-carriers [15]. To assess structural 

uncertainty in our model we ran our analyses either with or without accounting 

for hyporesponsiveness. In the base case, we estimated a single vaccine 

efficacy independent of carrier status; in the sensitivity analysis, vaccine 

efficacy was estimated separately in vaccine-type carriers and in others. We 

also present two scenarios of discounting, i.e. discounting both costs and 

DALYs at 3% (base case) or discounting costs alone. 

 

Results 

Model fit and predicted IPD incidence 

There was good agreement between the observed and fitted age-group and 

serotype-group specific carriage prevalence (Supplementary Figure 1 & 

Appendix). If cohorts of children born after the start of year 2022 are no longer 

vaccinated with PCV, the model predicts that IPD incidence will bounce back 

from 8.4, in 2022 to 16.3 per 100,000 per year in 2032 equalling pre PCV 

levels (Figure 1). Continuing with the PCV programme is predicted to result in 

additional small reductions in IPD incidence to 7.8 per 100,000 per year in 

2032, and to avert 15,355 (PI: 10,196–21,125) deaths and 112,050 (PI: 

79,620–130,981) IPD and non-bacteraemic pneumonia cases during the 11 

years considered, if compared to discontinuing the PCV programme in 2022. 
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Estimated costs and cost effectiveness 

The average annual treatment and vaccination costs for continuing the PCV 

programme during 2022-2032 were estimated as $18,904,576. If vaccination 

was to be stopped in 2022 the estimated average annual treatment cost for 

pneumococcal disease in Kenya would be $3,275,143 (Table 2). 

Discontinuing the PCV programme was predicted to partially sustain direct 

and indirect protection from the vaccination of previous cohorts for much of 

the study period with only gradually declining impact on IPD incidence. As a 

result, we predict that continuation of the current PCV programme will not be 

cost effective initially. However, we show that within only one year after the 

decision to continue PCV vaccination the incremental cost-effectiveness ratio 

(ICER), in comparison to discontinuing the programme, rises substantially 

towards the threshold of the Kenyan GDP per capita ($1455 in 2016) and 

continues to improve throughout the study period (Figure 2). Compared to 

discontinuing PCV in 2022, we predicted that, in 2032, the cost per DALY 

averted is $142.7, the cost per case averted $878.4 and the cost per death 

averted $6386.8 (Table 2).  

 

Sensitivity analyses  

Using the Kenyan GDP per capita of $1455 in 2016 as a threshold to 

determine cost effectiveness, all posterior samples indicated that continuation 

of PCV vaccination is cost effective no more than six years after 2022. 

Compared to discounting both costs and DALYs, discounting costs alone 

resulted in an ICER that was twice as favourable (Table 2). 
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We estimate that the effect of hyporesponsiveness is relatively small. Vaccine 

serotype carriers had a vaccine efficacy estimate against carriage that was 4 

percentage points lower than that for other vaccinees (Appendix, table A1). 

Hence omitting this mechanism in the model structure led to similar results 

(Supplementary Figure 2). Therefore, we did not include hyporesponsiveness 

in our final model.  

 

Discussion 

In the near future Kenya, like many other low income countries, will be 

expected to take over the full cost of the national pneumococcal conjugate 

vaccination programme [16]. In this study, we have estimated the cost-

effectiveness of continuing with the vaccination programme using Gavi’s 

schedule of vaccine prices, which reach a peak at $3.05 per dose in 2027, at 

which point Kenya becomes fully self-financing. Our model projects that 

discontinuing the PCV vaccination programme would lead to an increase in 

IPD burden equivalent to pre-vaccination levels within ten years. Initially, 

however, continuing vaccination may not be cost-effective because of the 

benefits accrued through vaccination of previous cohorts. However, the cost-

effectiveness becomes more favourable within a few years and, by 2032, the 

cost (in 2016 US dollars) plateaus at $142.7 ($85.1-$252.4) per discounted 

DALY averted. 

 

The most commonly used threshold for judging the cost-effectiveness of an 

intervention is a country’s Gross Domestic Product (GDP) per capita. Using 
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this criterion, we find continuation of the PCV programme in Kenya after 

transition from Gavi support highly cost-effective. The GDP per capita 

threshold was initially supported by the Commission on Macroeconomics and 

Health [17]  and adopted by WHO’s Choosing Interventions that are Cost-

Effective project (WHO-CHOICE). The use of GDP-based thresholds has 

been criticized because it: (i) does not consider potential benefits of other 

competing interventions; (ii) does not adequately address the willingness to 

pay; (iii) does not address affordability and (iv) is easily attained [18]. 

Alternatives include benchmarking interventions and league tables. A 

benchmark approach is a way of assessing willingness to pay by comparing 

cost-effectiveness ratios of the intervention under consideration with those of 

other interventions that have already been introduced. In the league table 

approach interventions are lined up in order of increasing ICER, then 

implemented in that order until the available budget runs out. 

 

The cumulative costs per DALY averted of introducing the Rotarix or the 

RotaTeq rotavirus vaccines in Kenya have been estimated as $200.1 and 

$405.9 (2016 US Dollars) respectively, from a societal perspective [19]. The 

analysis was based on annual incidence of rotavirus associated diarrhoeal 

disease in children aged under 5 years estimated from national and sentinel 

surveillance data with 3% discounting on both cost and benefits, as in our 

current analysis. The Haemophilus influenzae type B (Hib) vaccine was 

introduced in 2001 Kenya as part of the pentavalent vaccine. In a static model 

developed to follow the Kenyan 2004 birth cohort until death, with and without 

Hib vaccine, it was estimated that the discounted (3% for both costs and 
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benefits) cost per DALY averted of introducing Hib vaccine was $85 (2016 US 

Dollars) from a health provider perspective [20]. These ICERs suggest that 

continuation of the PCV programme is higher in value to the Hib vaccine 

programme and superior to the rotavirus vaccine programme. However, these 

comparisons must be tempered by the fact that the rotavirus analysis ignored 

herd immunity, which increases the ICER, while the Hib analysis took a health 

provider perspective, which reduces ICER.   

 

Cost-effectiveness, however, does not necessarily imply affordability. The 

later depends on available resources in the health budget, or any other 

sources within the national accounts that can fill the gap in the health budget. 

Budgetary allocation to the health sector as a fraction of national government 

budget has slightly declined from 4% in financial year 2014/15 to 3.7% in 

financial year 2016/17 [21]. The Kenyan annual health budget for 2015 was 

$600 million [21]. Out of this $4.88 million (0.8%) [22] was spent on routine 

immunization. This has been possible because Kenya only needs to fund 10% 

of its routine immunization programme from its revenues, donors fund the rest 

of the budget [22]. We have estimated that continuing with the PCV 

vaccination after 2022 will require an additional $15.6 million annually 

compared to discontinuing vaccination; in other words, it will more than triple 

Kenya current expenditure on vaccines.   

 

Several initiatives indicate that the cost of the PCV programme may be 

reduced in future. For instance, the Serum Institute of India is developing of a 

10-valent PCV with a target per-dose price of $2.00 [23]. Also, in settings 
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where vaccine serotypes have been eliminated from circulation it may be 

possible to sustain control of transmission using a two-dose or even one-dose 

schedule[24]. If vaccine serotypes can be eliminated in Kenya, for example by 

additional efforts such as a catch-up campaign, then the shift to a reduced 

dose schedule may also be feasible. Most of these options will have a wider 

evidence base that may allow their formal consideration by 2022, however, 

currently there is insufficient support to include them in our analyses. 

 

There are some potential limitations in our study. The proportion of 

pneumococcal disease cases that are hospitalized, treated as outpatients or 

do not access care is a key determinant of both costs incurred as well as 

DALYs, by determining the case fatality rate. Overestimating the proportion of 

cases that get hospital treatment would mean that the overall costs of 

treatment were overestimated while the fatal cases, and therefore DALYs, 

were underestimated. The overall effect would be an overestimated ICER, 

which is conservative. In our analysis, we estimated the proportion of cases 

that were hospitalized using local surveillance data [10]. However, we did not 

have local information on what proportion among unhospitalised cases are 

treated as outpatients; this was obtained from a Ugandan verbal autopsy 

study among fatal pneumonia cases [25]. It is possible, therefore, that we 

have overestimated the number of patients among unhospitalised treated as 

outpatients, and, by extension, overestimated the ICER.  

 

Many low-income countries will soon be transitioning out of Gavi support and 

will need to decide whether to sustain their pneumococcal conjugate 
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vaccination programme. We demonstrate, using Kenya as an example, how 

ongoing detailed surveillance can be combined with mathematical modelling 

and health economics to inform an upcoming decision of a country’s National 

Immunization Technical Advisory Group (NITAG) on the cost-effectiveness of 

different policy options. We estimate that maintaining the PCV programme is 

essential to sustain the decreased burden of pneumococcal disease and that 

it is cost-effective against conventional criteria. However, to afford PCV 

vaccination in the post-Gavi era, Kenya will need to substantially increase the 

proportion of health spending on routine immunization. 
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Table 1: Economic and health parameters varied in sensitivity analysis  

Parameter  Point estimate Statistical  

distribution  

Source 

Access to care proportions for pneumococcal diseases    

    Hospitalised sepsis, bacteraemic and non-bacteraemic cases  55% Beta (55,45) [10] 

    Hospitalized meningitis cases  70% Beta (70,30) [10] 

    Unhospitalised IPD and non-bacteraemic cases treated as 

outpatient  

63% Beta (63,37) [25] 

Health outcomes     

    Proportion of meningitis cases developing sequelae 25% Beta (25,75) [26] 

    CFR with hospital care    

           Sepsis, bacteraemic and meningitis: Children (<15 years) 19% Beta (19,81) KCH  

           Sepsis, bacteraemic and meningitis: Adults (>=15 years) 46% Beta (46,54) KCH 

           Non-bacteraemic pneumonia 5.7% Beta (6,94) [27] 

    CFR without hospital care     

          Meningitis 97% Beta (97,3) [28] 

          Sepsis and bacteraemic pneumonia 50% Beta (4,4) [28] 

          Non-bacteraemic pneumonia 12% Beta (12,88) [28] 

Vaccination costs (US$)    

    Vaccine price per dose $0.21-$3.05 

(Table S2) 

Fixed [4,29,30] 

    Safety boxes $0.46 Fixed [31] 

    AD syringes $0.045 Fixed [31] 

    Reconstruction syringes $0.052 Fixed [31] 

    Vaccine delivery cost per dose $1.42 Gamma (4,0.4) [32] 

    Syringe wastage 5% Fixed   [28] 

    Vaccine wastage 15% Fixed [9,28,33] 

Treatment costs (US$)    

     With hospital care    

          Meningitis $357.74 Gamma (4,97) [34] 

          Sepsis, bacteraemic and non-bacteraemic pneumonia $74.64 Gamma (4,19) [34] 

     With outpatient care (All four syndromes) $2.74 Gamma(4,0.75) [35] 

     Without hospital care (All four syndromes)  $1.15 Gamma (4,0.3) [35] 
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Table 2: Estimated costs and cost-effectiveness ratios for different scenarios 

Scenario Average annual cost  
Over 2022-2032, millions of 

US$ 
 (95% PI) 

Cost per case  
averted in 2032, US$  

(95% PI)  

Cost per death  
averted in 2032, US$ 

(95% PI) 

Cost per DALY  
Averted in 2032, 

US$  
(95% PI) 

     

Stopping vaccination in year 2022  3.3 (1.3 – 7.1) Ref. Ref. Ref. 

Continuing vaccination 18.9 (13.2 – 29.4) 878.4 (566.9- 1446.3) 6386.8 (3819.0 – 11250.1) 142.7(85.1 – 252.4) 

Continuing vaccination (discounting costs only) 18.9 (13.2 – 29.4) 531.4 (343.0 – 875.0) 3864.1 (2310.6 – 6806.5) 67.5 (40.1 – 120.1) 
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Supplementary table S1: Invasive Pneumococcal disease (IPD) 

separation in to meningitis, pneumococcal bacteraemic pneumonia and 

sepsis. IPD cases are obtained from hospitalized cases at the Kilifi County 

hospital among residents of the Kilifi Health and Demographic Surveillance 

System for the period 1999-2016 (<15) for children and 2007-2016 for adults 

(>=15). 

 Pneumococcal 
Meningitisa 

Pneumococcal 
Bacteraemic  
Pneumoniab  

Pneumococcal 
Sepsisc   

Age category n % n  % n % 
       
<1 52 28.0 85 45.7 49 26.3 
1-5 32 11.3 126 44.4 126 44.4 
6-14 39 29.8 47 35.9 45 34.4 
15-20 1 33.3 0 0.0 2 66.7 
21-49 11 29.7 3 8.1 23 62.2 
50+ 3 11.5 2 7.7 21 80.8 
a Isolation of S. pneumoniae from cerebrospinal fluid (CSF) or isolation of S. pneumoniae from blood, accompanied 
by a CSF white blood cell count of 50 x 106 cells/L or greater or a ratio of CSF glucose to plasma glucose less than 
0.1 
bIPD with no pneumococcal meningitis but with WHO severe or very severe pneumonia.  
cIPD not meeting any of the above definitions of pneumococcal meningitis and bacteraemic pneumococcal 
pneumonia.  
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Supplementary table S2: Vaccine price per dose paid by Kenya in each year 

Gavi transition phase Year Vaccine 

price per 

dose (US$) 

Preparatory transition phase:  
Contribution to price per dose increases by 15% annually 

2017 0.21 

2018 0.24 

2019 0.28 

2020 0.31 

2021 0.37 

   

Accelerated transition phase:  
Contribution starts at an additional 20% of the difference between 
the projected price of the vaccine in the year a country enters fully 
self-financing phase and the co-financing amount per dose paid in 
the preceding year, and increases linearly over four years to 
reach the projected price. 

2022 0.91 

2023 1.34 

2024 1.77 

2025 2.20 

2026 2.63 

   

Fully self-financing: 
Country pays the full vaccine price 

2027 - 2032 3.05* 

*This is the price assumed when Kenya enters the fully self-financing phase. It is the current price of PCV10. The 
actual price then might be lower since prices are generally expected to go down, but there are currently no 
projections from Gavi.  
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Figure 1: Invasive pneumococcal disease (IPD) impact by age group  
Predicted incidence of IPD when vaccination is continued in 2022 (red line), 
its 95% prediction interval (light-red shade), and when vaccination is stopped 
(blue line, with 95% prediction interval shown in light-blue shade) over time 
since vaccine introduction in Kenya in 2010.  
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Figure 2: Costs, DALYs and incremental cost-effectiveness ratios 
(ICERs) by year 
The topmost panel shows the cost of treatment and vaccination in each year 
(blue line with light-blue shade for 95% PI) when vaccination is continued, and 
the cost of treatment in each year when vaccination (red line, with light-red 
shade for 95% PI) is discontinued in 2022. The middle panel shows the 
corresponding DALYs gained in each year. The bottom panel shows the ICER 
(y-axis), incremental (continuing vaccination over stopping vaccination) cost 
per DALY averted (green line) and its 95% prediction interval (light-green 
shade) in each year (x-axis). 
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Supplementary Figure 1: Model fit to carriage data  
Observed (circular dots with 95% credible intervals shown by spikes) and predicted (lines with 95% predictive intervals shown by 
shaded areas) carriage prevalence of vaccine-serotypes (VT), shown in red, strong non-vaccine serotypes (sNVT), shown in blue, 
and weak non-vaccine serotypes (wNVT), shown in lime green, over time. The age groups are labelled at the panel title.		
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Supplementary Figure 2: IPD projection with and without 
hyporesponsiveness by age group 
Predicted incidence of IPD when hyporesponsiveness is ignored in the 
carriage model (red line with 95% prediction interval shown in light-red shade, 
and when hyporesponsiveness is allowed for in the model structure (blue line, 
with 95% prediction interval shown in light-blue shade) over time since 
vaccine introduction in Kenya. Age groups are labelled on the panel titles. 
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Supplementary Figure 3:  Model structure flow diagram 
The epidemiological states include individuals that are susceptible (non-
carrying), !; carry a vaccine serotype, !; carry a weak non-vaccine serotype, 
!!; carry a strong non-vaccine serotype, !!; carry simultaneously a weak and 
a strong non-vaccine serotype, !!"; carry simultaneously a vaccine serotype 
and a weak non-vaccine serotype, !!; or carry simultaneously a vaccine 
serotype and a strong non-vaccine serotype, !! (see text). Once vaccinated, 
the individual moves to one of the corresponding 
states, !(!),  !(!),!!(!),!!(!),!!(!)!"# !!(!) . The acquisition rates from the 
single to multiple serotype carriage states are reduced by competition 
parameters denoted by ! with two subscripts; the first denoting the serotype 
group (!, ! !"# !, for VT, strong NVT and weak NVT respectively) of the 
resident serotypes and the second denoting the age-group. The competition 
parameters have two sets of values, one for age group <6 and another for 
age group ≥6 years (see Appendix). The age-group specific VT, weak NVT 
and strong NVT clearance rates are denoted by r!", r!"# and r!"#, 
respectively. In addition to the transitions between the 14 epidemiological 
states as shown in the Figure, individuals die from any states at age-specific 
death rates and new individuals are born into the completely susceptible 
state.  
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Supplementary Figure 4: Model structure flow diagram including 
hyporesponsiveness 
The epidemiological states include individuals that are susceptible (non-
carrying), !; carry a vaccine serotype, !; carry a weak non-vaccine serotype, 
!!; carry a strong non-vaccine serotype, !!; carry simultaneously a weak and 
a strong non-vaccine serotype, !!"; carry simultaneously a vaccine serotype 
and a weak non-vaccine serotype, !!; or carry simultaneously a vaccine 
serotype and a strong non-vaccine serotype, !! (see text). Once vaccinated, 
individuals not carrying vaccine serotypes move to the corresponding states 
(S(!),N!(!), N!(!), N!"(!)) while those carrying vaccine serotypes  (V,B!(!), B!(!)) 
move to the corresponding hyporesponse-associated states (ℎV, ℎB!(!), ℎB!(!)) 
The acquisition rates from the single to multiple serotype carriage states are 
reduced by competition parameters denoted by ! with two subscripts; the first 
denoting the serotype group (!, ! !"# !, for VT, strong NVT and weak NVT 
respectively) of the resident serotypes and the second denoting the age-
group. The competition parameters have two sets of values, one for age 
group <6 and another for age group ≥6 years (see Appendix). The age-group 
specific VT, weak NVT and strong NVT clearance rates are denoted by 
r!", r!"# and r!"#, respectively. In addition to the transitions between the 21 
epidemiological states as shown in the Figure, individuals die from any states 
at age-specific death rates and new individuals are born into the completely 
susceptible state.  
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Appendix: Model structure and parameters estimates 

Model structure  

A more detailed description of the model and the likelihood function is 

presented in1. The brief description provided in this appendix is to help in the 

understanding of the notation used, without necessarily referring to1. The 

model is compartmental, age-structured and dynamic. Compartments are 

defined according to pneumococcal carriage states (Supplementary Figure 3). 

It has a Susceptible-Infected-Susceptible (SIS) structure for three serotype 

groups: the PCV10 serotypes, strong NVT and weak NVT.  

At any point in time, an unvaccinated individual can be susceptible (non-

carrying) in state S; carry a VT, V; carry a weak NVT, N!; carry a strong NVT, 

N!; carry simultaneously a weak and strong NVT, N!"; carry simultaneously a 

VT and weak NVT, B!; or carry simultaneously a VT and a strong NVT, B!. 

Once vaccinated, the individual moves to one of the corresponding states 

(S(!), V(!),N!(!), N!(!), N!"(!), B!(!), B!(!)). We also fitted a model in which the 

efficacy of the vaccine on carriage acquisition is reduced due to prevailing 

carriage at the point of vaccination (hyporesponsiveness) is considered. 

Under this model, upon vaccination, individuals not carrying vaccine 

serotypes move to the corresponding states (S(!),N!(!), N!(!), N!"(!)) while those 

carrying vaccine serotypes  (V,B!(!), B!(!)) move to the corresponding 

hyporesponse-related states (ℎV, ℎB!(!), ℎB!(!)) (Supplementary Figure 4). 
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Parameterisation  

A susceptible unvaccinated individual in age group i becomes colonised with 

VTs, strong NVTs or weak NVTs at age-group-specific time-dependent rates 

(forces of infection) denoted by λ!"(t), λ!"#(t) and λ!"#(t), respectively. The 

forces of infection were expressed as functions of the social mixing matrix and 

age-group specific factors (q!) that scale the rate of social contacts into 

infectious contacts. Due to competition between serotypes in colonising the 

nasopharynx, the acquisition rate of a secondary serotype is lower than the 

acquisition rate of that serotype in a completely susceptible individual. Three 

competition parameters, c!", c!" and c!", represent the fraction by which 

acquisition rates of secondary serotypes are reduced in <6 year olds infected 

with VTs, weak NVTs and strong NVTs, respectively. Two competition 

parameters, c!" = c! = c! and c!, were used for individuals aged ≥ 6 years 

infected with VTs/weak NVTs and strong NVTs, respectively. In the 

vaccinated compartments the rate of acquisition of VTs are reduced by the 

vaccine efficacy against carriage acquisition denoted !, or !! according to 

whether the compartment is associated with hyporesponsiveness. 

The Metropolis-Hastings algorithm was used to draw samples from the 

posterior distributions of the parameters. Uniform priors in the range 0-1 were 

used for competition parameters and the social contact scaling parameters 

(q!). For the vaccine efficacy parameters we used a normal prior centered 

around 50% with 95% uncertainty interval of 40-60%. 50,000 adaptive MCMC 

iterations were used. After a burn-in of 25,000 was discarded the remaining 
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stationary samples were thinned to 5000 to estimate the posterior distribution. 

Convergence was assessed graphically, by observing was no negative or 

positive trend (zero gradient) in the chain, and by using Geweke diagnostic to 

check if a chain was stationary. The thinned posterior samples of the 

parameters were summarised to obtain point estimates (posterior mean) and 

probability (credibility) intervals. The parameter estimates are shown in Table 

A1. 

 

1 Ojal J, Flasche S, Hammitt LL, Akech D, Kiti MC, Kamau T, et al. Sustained reduction in vaccine-type invasive 

pneumococcal disease despite waning effects of a catch-up campaign in Kilifi, Kenya: a mathematical model based 

on pre-vaccination data. Vaccine. 2017;35:4561–8. 
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Table A1. Estimated parameters of the dynamic transmission models 
 
Parameter Estimate (95% Credible Interval)  Estimate accounting for  

hyporesponsiveness (95% Credible 

Interval) 

    
Competition parameters !!! = 0.42 (0.24, 0.62) 

 !!! = 0.73 (0.44, 0.97)  
!!! = 0.44 (0.25, 0.70) 
!! = 0.11 (0.01, 0.40) 

!!" = !! = !! = 0.70 (0.30, 0.98) 
 

 !!! = 0.41 (0.25, 0.59) 
 !!! = 0.70 (0.43, 0.97)  
!!! = 0.46 (0.27, 0.70) 
!! = 0.10 (0.01, 0.30) 

!!" = !! = !! = 0.66 (0.24, 0.98) 
 

Probability of infection per 100 contacts  !! = 0.14 (0.11, 0.19) 
!! = 0.45 (0.38, 0.55) 
!! = 0.30 (0.26, 0.35) 
!! = 0.08 (0.06, 0.11) 
!! = 0.16 (0.13, 0.19) 
!! = 0.06 (0.05, 0.07) 

 !! =0.14 (0.11, 0.19) 
!! =0.45 (0.39, 0.54) 
!! =0.30 (0.26, 0.35) 
!! =0.08 (0.06, 0.10) 
!! =0.16 (0.13, 0.19) 
!! =0.06 (0.05, 0.07) 

Vaccine efficacy against carriage ! = 0.59 (0.49, 0.68)   ! = 0.58 (0.47, 0.68) 
Vaccine efficacy against carriage for VT 
carriers (hyporesponsiveness) N/A 

 
!! = 0.54 (0.40, 0.68) 
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Chapter 6: General discussion 

 

Kenya introduced PCV10 in 2011 in a 3+0 schedule in which infants are 

vaccinated at 6, 10 and 14 weeks of age. In Kilifi, a town in coastal Kenya, the 

introduction was accompanied by a catch-up campaign among children <5 

years, which achieved coverage of 65%. Data from KHDSS, the demographic 

surveillance site in Kilifi, has shown a significant drop in both vaccine-serotype 

carriage and vaccine-serotype IPD. Carriage of vaccine serotypes was 

reduced by two-thirds both in children younger than 5 years and in older 

individuals [1,2]. In children <5 years, the incidence of vaccine-serotype IPD 

fell by 92% while the overall IPD decreased by 68% in the post vaccination 

period (2012-2016) [3].  

 

1.1 Summary of findings 

On top of this epidemiological background, I developed a transmission model 

fitted to pre-vaccination (2009-2010) carriage data. I validated the model 

predictions against post-vaccination carriage data (2011-2015) and showed 

that the model closely predicted the observed magnitude and timing of 

serotype replacement carriage. This illustrates the utility of transmission 

dynamic modelling in predicting disease changes from carriage data in the 

absence of disease data, as has been observed with several other models of 

pneumococcal transmission. However, most of the previous pneumococcal 

carriage models in literature have consolidated non-vaccine serotypes (NVT) 
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in to a single group. In the model I have developed, some of the heterogeneity 

in bacterial fitness parameters, such as susceptibility to the competition that 

exist across individual serotypes, has been accounted for by splitting NVT into 

weak and strong groups. Differentiating the non-vaccine serotypes into two 

groups led to different predictions for weak and strong NVT and these 

predictions matched well with the observed data. 

 

A concern of the rapid and substantial impact of PCV10 in Kilifi was its 

sustainability once the effects of the catch-up campaign have waned. In the 

model presented, the current schedule was predicted to be sufficient to limit 

vaccine-type pneumococcal carriage to current levels even after incorporating 

demographic change; however, it is unlikely to lead to the elimination of 

vaccine serotypes [4]. 

 

If newborn infants are protected naturally in the first few months of life by 

maternally-derived serotype-specific antibodies and if the levels of these 

antibodies in mothers are maintained by repeated re-infection, then one of the 

consequences of introducing PCV10 into a population will be a reduction in 

the protection afforded to young infants through passive maternal protection; 

this comes about simply because the PCV10 programme will reduce 

transmission in the population, and reduce re-stimulation of mothers.  

However, in most settings this effect is likely to be amply compensated for by 

the reduced exposure of young infants to the vaccine serotypes.  In Kilifi, 

unlike most developed country settings, transmission of vaccine types was not 

completely eliminated and so young infants remain at risk of infection and 
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disease. Also, a transmission model ignoring the effect serotype-specific 

maternal antibody protection would overestimate the impact of vaccination 

since that effect would be wholly, and wrongly, attributed to the herd 

protection from vaccination.  

 

In the analysis of the protective effect of maternally-derived antibodies against 

carriage acquisition I found a significant association between carriage 

acquisition and several anti-protein antibodies but only a limited protective 

effect of maternally-derived anti-capsular antibodies and only at high 

concentrations [5]. The effect of anti-protein antibodies to a particular 

pneumococcal protein, whether in decreasing or increasing the risk of 

carriage acquisition, is not serotype-specific. I observed a limited protective 

effect of maternally-derived anti-capsular antibodies to five common serotypes 

(6A, 6B, 14, 19F and 23F) in the pre-vaccination period in Kenya at high 

concentrations, but those concentrations were achieved by only 3% of the 

newborn population [5]. The limited applicability of these findings in the 

natural setting justifies our decision to omit protection from maternally-derived 

anti-capsular antibodies in transmission models. In addition, I predict that a 

resurgence of VT disease in young infants as a result of reduced capsular 

protection from maternally-derived antibodies is unlikely.   

  

Despite a significant reduction in VT carriage following PCV10 introduction we 

observed sustained transmission of VT serotypes within the surveillance 

population at KHDSS. If children are vaccinated while carrying a VT serotype 

the vaccine will have a reduced efficacy, designated as ‘hyporesponsiveness’. 
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One would predict that, as VT carriage prevalence is reduced by the 

maturation of the PCV10 programme there would be a positive feedback loop, 

with increasing vaccine efficacy caused by a declining probability that the 

vaccine is given to a VT serotype carrier. If the impact of this 

hyporesponsiveness turned out to be immunologically significant, then, with 

time there should be improved protection from VT carriage that cannot be 

attributed to direct and herd protection alone and hence the issue of residual 

VT carriage may resolve itself more quickly than expected.  

 

My analyses of the link between carriage and vaccine responses confirmed 

hyporesponsiveness in both infants and toddlers [6]. Hyporesponsiveness 

was quantified as the difference in geometric mean antibody concentrations, 

observed at a specific point after vaccination, between carriers and non-

carriers at the time of vaccination. As we found no valid estimate of the 

correlates of protection against carriage acquisition, the clinical implication of 

the observed hyporesponsiveness, i.e. the percentage reduction of vaccine 

efficacy against carriage acquisition, could not be quantified. Therefore, it was 

not possible to account for hyporesponsiveness by reducing vaccine efficacy 

among VT carriers in the transmission model. Instead, the reduction in 

efficacy was estimated by fitting a model that incorporated 

hyporesponsiveness in its structure to age and serotype group dependent 

carriage data (research paper 4). From the fit of this model, VT carriers were 

estimated to have a vaccine efficacy against carriage that was 4% lower than 

that among non-VT carriers. This very small reduction in efficacy may be a 

function of the relatively short period of observation post-vaccination, during 
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which the effect of hyporesponsiveness on carriage may not yet have had 

sufficient opportunity to accelerate carriage clearance in the population. 

Nonetheless, in comparison with a model structure that ignored 

hyporesponsiveness, the model that included hyporesponsiveness did not 

significantly improve on the predictions for carriage or disease (research 

paper 4). It is therefore unlikely that the effect of hyporesponsiveness is of 

epidemiological relevance for the vaccination programme in Kenya.  

 

Most countries have now introduced PCV in to their childhood immunisation 

programmes. Because PCVs are expensive, the majority of developing 

countries were only able to introduce these vaccines with substantial financial 

support from Gavi, the Vaccine Alliance. However, these countries will be 

expected to transition out of Gavi support and begin to pay the full cost of their 

PCV vaccination programmes as their economies grow. Countries 

approaching the ‘transition threshold’ in economic development will need to 

assess the cost-effectiveness and affordability of sustaining their PCV 

programmes to guide policy decisions concerning these programmes. 

Kenya’s contribution to the vaccine price will increase rapidly from US$0.91 to 

US$3.05 per dose over the five years from 2022-2027. I show that sustaining 

PCV10 vaccination is cost-effective by conventional criteria in Kenya but it will 

present major challenges to affordability for the Kenya Government. 
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1.2 Limitations 

Natural immunity can be acquired after exposure to pneumococcal carriage 

and can reduce the duration of carriage in subsequent episodes [7,8]. This 

means that those who are have more prior experience (and are therefore 

generally older) will be less susceptible to carriage acquisition. However, 

natural immunity was not explicitly incorporated in the structure of the 

transmission model. Some of the protection derived from natural exposure 

would be captured in the age-group dependent risk of pneumococcal 

acquisition estimated in the model. Nonetheless, not explicitly incorporating 

natural immunity in the model might lead to an overestimate of the impact of 

vaccination, especially in the early years of vaccine introduction.  

 

The model did not fully account for the heterogeneity in fitness characteristics 

across individual serotypes because it relied on broad serotypes groups. 

There was no formal validation of the optimal number of NVT groups. The 

decision to use two NVT groups was conservative in order to avoid potential 

difficulties in model fitting in a highly-compartmentalised model. A model 

comparison process with varying number of groups of VT and NVT could help 

in choosing the optimal number of serotype groupings. The grouping of 

serotypes may also artificially promote their co-existence in the model 

because it artificially reduces serotype-specific fitness differences.  

 

It is an assumption of the model process that the case-to-carrier ratios remain 

constant across the whole period of observation. These, were estimated using 

pre-vaccination data and used to translate changes in carriage into changes 
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in disease incidence. However, there is some evidence to suggest that 

vaccine driven selection pressure can result in genetic shifts in the 

pneumococcal population and this may bring about serotype switching [9–11]. 

In fact, serotype switching has been documented even in the absence of 

vaccination [12]. Because the capsule is a determinant of virulence including 

the invasive capacity, serotype switching may lead to a change in the case-to-

carrier ratio. For instance, it has been shown in the USA introduction of PCV7 

led to genetic shifts such that strains carrying vaccine serotype 4 adopted the 

capsular genes of a 19A strain – which was non-PCV7 serotype [10]. The 

original serotype 4 strain carried virulence proteins that were likely to give rise 

to invations, therefore, the case-to-carrier ratio for 19A probably increased 

across the vaccine eras as it incorporated strains of serotype 4 origin. If case-

to-carrier ratios of non-vaccine serotypes generally become higher due to 

vaccine escape recombinants, then the future incidence of non-vaccine 

serotype IPD would be under predicted by the model. In Kenya, pneumococci 

collected pre-PCV10 have been genotyped [13], genotyping post-vaccination 

isolates will determine whether there is capsular switching linked to 

vaccination.  

 

The model was fitted to data where only a single serotype was recorded per 

nasopharyngeal sample. Since the model had states in which individuals are 

carrying two serotypes simultaneously, fitting the model to the data was made 

possible through an assumption that in a doubly-colonised individual either of 

the two colonising serotypes was detected with equal probability. This implies 

that the relative abundance of the two serotypes were equal, which might not 
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be true. Genotypic laboratory methods that can measure the relative 

abundance of pneumococcal serotypes in a nasopharyngeal sample are now 

developed [14], and will be input in future transmission models. The 

mathematical model I developed can be fitted to multiple serotypes carriage 

data without structural modification, assuming that carriage of more than two 

serotypes is negligible. However, it is not yet clear if the density of carriage of 

serotypes is correlated with its ability to transmit, a dynamic that future 

pneumococcal transmission models might have to consider.      

 

The principal limitation of the study of the effect of maternally-derived 

antibodies on the rate of acquisition of carriage in newborns was its 

observational design; the absence of a randomised intervention means it is 

difficult to control completely for confounding. Environmental factors can 

predispose mothers to increased carriage and this can lead to higher antibody 

concentrations which will be passively transferred to their newborns. Since the 

newborn is also brought up in the same high transmission environment, it 

might be estimated that higher antibody concentrations are associated with 

carriage if confounding by environmental factors cannot be adequately 

controlled for in the analysis. My analysis adjusted for household level risk 

factors for carriage such as: type of fuel used for cooking, number of siblings 

aged <10 years, number of other children aged <10 years, number of adults, 

number of smokers and number of carers. However, there could be residual 

confounding attributable to additional environmental factors beyond those 

already adjusted for. For instance, a poor social-economic status has been 

associated with increased carriage [15]. Incomplete adjustment for 
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confounding in the analysis could be overcome by testing the phenomenon in 

an experimental design using nasopharyngeal challenge studies in animal or 

human models [16–18]. Our lack of understanding of the primary biological 

role of different proteins limited the interpretation of some associations 

between high levels of anti-protein antibody and high levels of acquisition.  

 

In the cost-effectiveness analysis, I focused on a single dichotomous decision 

- continuing with PCV10 vaccination versus discontinuing PCV in 2022. These 

are not the only options available for Kenya. For example, Kenya may choose 

to introduce a novel 10-valent PCV which is currently in clinical development 

by the Serum Institute of India and is aimed at a price of $2.00 per dose [19]. 

Alternative vaccination schedules, for example using a booster dose in the 

second year of life with a reduced number of doses in infancy, may enhance 

the cost-effectiveness of PCV10 by further reducing VT carriage and disease 

and/or vaccination costs. However, this was not assessed within the current 

scope of the PhD. Furthermore, future cost-effectiveness models that 

incorporate the impact of vaccines on economic development [20], and not 

just the health loss in form of DALYs, may be more persuasive to 

governments and societies. This approach has not been taken in the current 

work though it may lead to a revision of the affordability of vaccines by 

government – the principal challenge identified in the CEA study. 

 

Lastly, the predictions of the impact of PCV10 vaccination in this study can 

only be generalised to countries with similar pre-vaccination epidemiology as 

Kenya. This means that they should have similar carriage and IPD patterns, 
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similar transmission dynamics, similar vaccine serotype coverage and similar 

vaccination uptake. Nonetheless, the model can be re-parameterised with 

data from other settings and used to predict carriage and disease impact in 

those settings. 

 

1.3 Future work 

In African countries that have been using PCV for at least 5 years, vaccine 

serotypes continue to circulate at relatively higher levels [1,21] than in 

developed countries where carriage prevalence is now usually <2% [22]. 

Among infants and children aged <5 years in Kilifi, Kenya, the prevalence of 

PCV10 serotypes in carriage in 2016 is estimated from a cross-sectional 

carriage study at about 8% and 6%, respectively [3]. It is therefore necessary 

to maximise herd protection by eliminating VT circulation.  

 

There are a number of factors that could explain the high residual VT carriage 

in children in these African countries. The first factor is a higher force of 

infection in African children. The population density, the effective contact 

patterns and environmental factors such as poor hygienic conditions can 

influence the force of infection. A high population density increases the 

frequency of contacts between individuals and consequently intensifies the 

force of infection. The population density in Africa (40 persons/km2) countries 

is higher than in developed countries (25 persons/km2) [23]. In addition, 

families in rural and semi-urban areas are organised into households with 

sizes that are much larger on average than those in developed countries [24]; 
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this increases the frequency of close interactions. Poor hygienic conditions 

increase the transmission probability and therefore the force of infection. 

 

Given this higher force of infection, the coverage of routine vaccination may 

not be sufficient to eliminate VT transmission; one solution therefore, might be 

to raise vaccine coverage to almost 100%. In The Gambia, the coverage of at 

least two doses of PCV13 in children aged 2-23 months plateaued at 73% in 

2013 following replacement of PCV7 with PCV13 in 2011 [25]. Carriage 

prevalence of PCV13 serotypes in infants was 18.3% in 2013 [21], data on 

carriage in more recent years has not been published yet. In Kenya, the 

coverage of at least two doses of PCV10 in children aged 2-23 months was 

about 80% in 2011 and 85% in 2016 [3]. A modelling study in The Gambia 

projected that with 100% coverage the low to middle prevalence VT (i.e. 

vaccine serotypes with pre-vaccination prevalence <2%) would be eliminated, 

as a result the prevalence of all VT in the population would decline 

significantly from 20.1% before vaccination to 3.0% 10 years after [26]. Such 

an assessment of the impact of complete vaccine coverage has not yet been 

done for Kenya, which uses a difference formulation of PCV and the model 

results from The Gambia cannot be assumed to apply directly.  

 

The absence of a booster dose in the childhood immunisation schedule can 

be a factor too; most developed countries, which have achieved elimination of 

PCV7 serotypes, have incorporated a booster does following either a 2-dose 

or 3-dose primary series in infancy [27]. In a systematic review of dosing 

schedules, a booster dose in the second year of life following a 2-dose 
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primary series induces substantially higher concentrations of anti-capsular 

antibodies compared to a schedule with 3-dose primary series without a 

booster [28]. Theoretically, the higher antibody concentrations imply longer 

duration of protection as well as reduction in carriage the second year of life, 

when carriage transmission is still high. The impact of the booster dose on 

carriage in the second year of life might also lead to more rapid induction of  

herd immunity, which accelerates VT elimination. This herd immunity could 

compensate for the potential increased risk of acquisition, between the 

second and the booster doses, associated with not giving the third primary 

dose. 

 

Each of the above mechanisms through which VT circulation is hypothesised 

to be sustained in African populations could be incorporated in the baseline 

model to help inform related policy questions such as: (i) is there room for 

increasing vaccine coverage within current regime in the effort of eliminating 

of VT carriage in Kenya?; (ii) will a switch to a vaccination schedule that 

includes a booster dose bring about elimination?; (iii) will a mass campaign in 

age groups with high carriage prevalence bring about elimination?; (iv) what 

are the considerations of the optimal extent of campaigns to eliminate VT? 

 

Finally, there are also protein and whole cell vaccines in different stages of 

development and clinical trials [29]; it would be useful to project their impact 

on carriage and disease and whether they are cost-effective once information 

concerning their efficacy becomes available and mechanism of protection 

against carriage and disease is more clearly understood in humans.  
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1.4 Conclusion 

PCVs, introduced into the childhood immunisation programme, are highly 

effective in reducing the burden of disease caused by pneumococcus. 

Compared to older vaccines, PCVs are very expensive but there are ongoing 

efforts to lower the prices, and the development of lower cost PCV by the 

Serum Institute of India is one such example. Meanwhile, as other cost-

reducing options are developed and assessed, sustaining the PCV10 

programme beyond 2022 will depend upon Kenya’s financial resources.  

 

Kenya has not previously been in a position where it is required to pick up the 

full cost of a vaccine introduced in a subsidized way. The first vaccines 

introduced through Gavi subsidies in 2001 are the Pentavalent and Yellow 

fever vaccines, which continue to be almost fully funded by Gavi since Kenya 

currently pays 6.87% of the price per dose of US$1.24 and US$1.19 

respectively [30]. There is some impetuous from Angola, which has been fully 

self-financing Pentavalent Vaccine since 2016, and will support PCV in full 

from 2018 [31]. However, Angola’s GDP per capita of US$3110 is double that 

of Kenya. The Kenya National Immunization Technical Advisory Group 

(KENITAG) is mandated to issue recommendations to the Kenyan Ministry of 

Heath (MoH) on national vaccine policy. KENITAG is supposed to issue these 

recommendations based on the best available, ideally local, supporting 

evidence. This work provides KENITAG with the much-needed evidence 

base. The PCV10 vaccine programme is cost-effective based on acceptable 

thresholds. However, to afford PCV vaccination Kenya will need to 

substantially increase the budget for routine immunization. 



	 194	

References 
 
[1] Hammitt LL, Akech DO, Morpeth SC, Karani A, Nyongesa S, Ooko M, 

et al. Population impact of 10-valent pneumococcal conjugate vaccine 
(PCV) on nasopharyngeal carriage of Streptococcus pneumoniae in 
Kilifi, Kenya. 10th Int. Symp. Pneumococci Pneumococcal Dis., 
Glasgow, Scotland.: 2016. 

[2] Hammitt LL, Akech DO, Morpeth SC, Karani A, Kihuha N, Nyongesa S, 
et al. Population effect of 10-valent pneumococcal conjugate vaccine on 
nasopharyngeal carriage of Streptococcus pneumoniae and non-
typeable Haemophilus influenzae in Kilifi, Kenya: findings from cross-
sectional carriage studies. Lancet Glob Heal 2014:8–10. 
doi:10.1016/S2214-109X(14)70224-4. 

[3] Hammitt LL, Anthony E, Morpeth SC, Mutuku A, Ojal J, Mturi N, et al. 
Population effect of 10-valent pneumococcal conjugate vaccine on 
invasive pneumococcal disease and nasopharyngeal carriage in Kilifi, 
Kenya. Manuscr Prep 2017. 

[4] Ojal J, Flasche S, Hammitt LL, Akech D, Kiti MC, Kamau T, et al. 
Sustained reduction in vaccine-type invasive pneumococcal disease 
despite waning effects of a catch-up campaign in Kilifi, Kenya: a 
mathematical model based on pre-vaccination data. Vaccine 
2017;35:4561–8. 

[5] Ojal J, Goldblatt D, Tigoi C, Scott JAG. Effect of maternally-derived anti-
protein and anti-capsular IgG antibodies on the rate of acquisition of 
nasopharyngeal carriage of pneumococcus in newborns. Clin Infect Dis 
2017;Accepted M. doi:10.1093/cid/cix742. 

[6] Ojal J, Hammitt LL, Gaitho J, Scott JAG, Goldblatt D. Pneumococcal 
conjugate vaccine induced IgG and nasopharyngeal carriage of 
pneumococci: Hyporesponsiveness and immune correlates of 
protection for carriage. Vaccine 2017;35:4652–7. 

[7] Zhang Q, Leong SC, McNamara PS, Mubarak A, Malley R, Finn A. 
Characterisation of regulatory t cells in nasal associated lymphoid tissue 
in children: Relationships with pneumococcal colonization. PLoS Pathog 
2011;7. doi:10.1371/journal.ppat.1002175. 

[8] Lu Y-J, Gross J, Bogaert D, Finn A, Bagrade L, Zhang Q, et al. 
Interleukin-17A mediates acquired immunity to pneumococcal 
colonization. PLoS Pathog 2008;4:e1000159. 
doi:10.1371/journal.ppat.1000159. 

[9] Ansaldi F, Canepa P, De Florentiis D, Bandettini R, Durando P, Icardi 
G. Increasing incidence of Streptococcus pneumoniae serotype 19A 
and emergence of two vaccine escape recombinant ST695 strains in 
liguria, italy, 7 years after implementation of the 7-valent conjugated 
vaccine. Clin Vaccine Immunol 2011;18:343–5. doi:10.1128/CVI.00383-
10. 

[10] Brueggemann AB, Pai R, Crook DW, Beall B. Vaccine escape 
recombinants emerge after pneumococcal vaccination in the United 
States. PLoS Pathog 2007;3:1628–36. 
doi:10.1371/journal.ppat.0030168. 

[11] Andam CP, Hanage WP. Mechanisms of genome evolution of 
Streptococcus. Infect Genet Evol 2015;33:334–42. 



	 195	

doi:10.1016/j.meegid.2014.11.007. 
[12] Wyres KL, Lambertsen LM, Croucher NJ, McGee L, Von Gottberg A, 

Liñares J, et al. Pneumococcal capsular switching: A historical 
perspective. J Infect Dis 2013;207:439–49. doi:10.1093/infdis/jis703. 

[13] Brueggemann AB, Muroki BM, Kulohoma BW, Karani A, Wanjiru E, 
Morpeth S, et al. Population genetic structure of Streptococcus 
pneumoniae in Kilifi, Kenya, prior to the introduction of pneumococcal 
conjugate vaccine. PLoS One 2013;8:1–12. 
doi:10.1371/journal.pone.0081539. 

[14] Satzke C, Turner P, Virolainen-julkunen A, Adrian P V, Antonio M, Hare 
KM, et al. Standard method for detecting upper respiratory carriage of 
Streptococcus pneumoniae : Updated recommendations from the World 
Health Organization Pneumococcal Carriage Working Group. Vaccine 
2014;32:165–79. doi:10.1016/j.vaccine.2013.08.062. 

[15] Huang SS, Finkelstein JA, Rifas-Shiman SL, Kleinman K, Platt R. 
Community-Level Predictors of Pneumococcal Carriage and Resistance 
in Young Children. Am J Epidemiol 2004;159:645–54. 
doi:10.1093/aje/kwh088. 

[16] Ferreira DM, Neill DR, Bangert M, Gritzfeld JF, Green N, Wright AKA, et 
al. Controlled human infection and rechallenge with Streptococcus 
pneumoniae reveals the protective efficacy of carriage in healthy adults. 
Am J Respir Crit Care Med 2013;187:855–64. 
doi:10.1164/rccm.201212-2277OC. 

[17] Gordon SB, Rylance J, Luck A, Jambo K, Ferreira DM, Manda-Taylor L, 
et al. A framework for Controlled Human Infection Model (CHIM) studies 
in Malawi: Report of a Wellcome Trust workshop on CHIM in Low 
Income Countries held in Blantyre, Malawi. Wellcome Open Res 
2017;2:70. doi:10.12688/wellcomeopenres.12256.1. 

[18] Wright AKA, Ferreira DM, Gritzfeld JF, Wright AD, Armitage K, Jambo 
KC, et al. Human nasal challenge with streptococcus pneumoniae is 
immunising in the absence of carriage. PLoS Pathog 2012;8:16–9. 
doi:10.1371/journal.ppat.1002622. 

[19] Burki TK han. Pricing of pneumococcal conjugate vaccine challenged. 
Lancet Respir Med 2015;3:427. doi:10.1016/S2213-2600(15)00194-0. 

[20] Ozawa S, Clark S, Portnoy A, Grewal S, Meghan L, Sinha A, et al. 
Estimated economic impact of vaccinations in 73 low- and middle- 
income countries , 2001 – 2020 2010:1–18. 
doi:10.2471/BLT.16.178475. 

[21] Roca A, Bojang A, Bottomley C, Gladstone RA, Adetifa JU, Egere U, et 
al. Effect on nasopharyngeal pneumococcal carriage of replacing PCV7 
with PCV13 in the Expanded Programme of Immunization in The 
Gambia. Vaccine 2015;33:7144–51. doi:10.1016/j.vaccine.2015.11.012. 

[22] Davis SM, Deloria-Knoll M, Kassa HT, O’Brien KL. Impact of 
pneumococcal conjugate vaccines on nasopharyngeal carriage and 
invasive disease among unvaccinated people: Review of evidence on 
indirect effects. Vaccine 2013;32:133–45. 
doi:10.1016/j.vaccine.2013.05.005. 

[23] World Population Prospects - Population Division - United Nations 
2017. https://esa.un.org/unpd/wpp/DataQuery/ (accessed September 
20, 2017). 



	 196	

[24] Bongaarts J. Household size and composition in the developing world in 
the 1990s. Popul Stud (NY) 2001;55:263–79. 
doi:10.1080/00324720127697. 

[25] Mackenzie GA, Hill PC, Jeffries DJ, Hossain I, Uchendu U, Ameh D, et 
al. Effect of the introduction of pneumococcal conjugate vaccination on 
invasive pneumococcal disease in The Gambia: A population-based 
surveillance study. Lancet Infect Dis 2016:703–11. doi:10.1016/S1473-
3099(16)00054-2. 

[26] Bottomley C, Roca A, Hill PC, Greenwood B, Isham V. A mathematical 
model of serotype replacement in pneumococcal carriage following 
vaccination. J R Soc Interface 2013;10. 

[27] Whitney CG, Goldblatt D, O’Brien KL. Dosing Schedules for 
Pneumococcal Conjugate Vaccine. Pediatr Infect Dis J 2014;33:S172–
81. doi:10.1097/INF.0000000000000076. 

[28] Knoll MD, Park DE, Johnson TS, Chandir S, Loo JD, Goldblatt D, et al. 
Systematic Review of the Effect of Pneumococcal Conjugate Vaccine 
Dosing Schedules on Immunogenicity 2014;33. 
doi:10.1097/INF.0000000000000079. 

[29] Moffitt KL, Malley R. Next generation pneumococcal vaccines. Curr 
Opin Immunol 2011;23:407–13. doi:10.1016/j.coi.2011.04.002. 

[30] The Global Alliance for Vaccines and Immunisation. Country co-
financing information sheet, Kenya. 2017. 

[31] Immunisation TGA for V and. Country co-financing information sheet, 
Angola. 2018. 

 
	
	
	



	 197	

Appendix 1: Ethical approval for statistical analysis 

The secondary statistical data analysis was give local ethical approval under 

SSC 2273. 

	
	



	 198	

Appendix 2: Ethical approval for mathematical 
modelling work  

	
The modelling and cost-effectiveness work is covered under the protocol SSC 

1433 with matching approval from Oxford University and LSTHM under 

OXTREX 30-10 

 

 

 



	 199	

Appendix 3: Typeset published papers  

	
	
	
	



Sustained reduction in vaccine-type invasive pneumococcal disease
despite waning effects of a catch-up campaign in Kilifi, Kenya: A
mathematical model based on pre-vaccination data

John Ojal a,c,⇑, Stefan Flasche c, Laura L. Hammitt a,b, Donald Akech a, Moses C. Kiti a, Tatu Kamau d,
Ifedayo Adetifa a,c, Markku Nurhonen e, J. Anthony G. Scott a,c, Kari Auranen e,f

aKEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine-Coast, Kilifi, Kenya
bDepartment of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
cDepartment of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
dKenya Ministry of Health, Nairobi, Kenya
eDepartment of Public Health Solutions, National Institute for Health and Welfare (THL), Finland
fDepartment of Mathematics and Statistics, University of Turku, Finland

a r t i c l e i n f o

Article history:
Received 24 January 2017
Received in revised form 4 July 2017
Accepted 5 July 2017
Available online 17 July 2017

Keywords:
Pneumococcal conjugate vaccine
Nasopharyngeal carriage
Kenya
Mathematical model

a b s t r a c t

Background: In 2011, Kenya introduced the 10-valent pneumococcal conjugate vaccine together with a
catch-up campaign for children aged <5 years in Kilifi County. In a post-vaccination surveillance study
based in Kilifi, there was a substantial decline in invasive pneumococcal disease (IPD). However, given
the continued circulation of the vaccine serotypes it is possible that vaccine-serotype disease may
re-emerge once the effects of the catch-up campaign wear off.
Methods: We developed a compartmental, age-structured dynamic model of pneumococcal carriage and
invasive disease for three serotype groups: the 10-valent vaccine serotypes and two groups of non-
vaccine serotypes based on their susceptibility to mutual competition. The model was calibrated to
age- and serotype-specific data on carriage and IPD in the pre-vaccination era and used to predict carriage
prevalence and IPD up to ten years post-vaccination in Kilifi. The model was validated against the
observed carriage prevalence after vaccine introduction.
Results: The model predicts a sustained reduction in vaccine-type pneumococcal carriage prevalence
from 33% to 8% in infants and from 30% to 8% in 1–5 year olds over the 10-year period following vaccine
introduction. The incidence of IPD is predicted to decline across all age groups resulting in an overall
reduction of 56% in the population, corresponding to 10.4 cases per 100,000 per year. The vaccine-type
IPD incidence is estimated to decline by 83% while non-vaccine-type IPD incidence is predicted to
increase by 52%. The model’s predictions of carriage prevalence agrees well with the observed data in
the first five years post-vaccination.
Conclusion: We predict a sustained and substantial decline in IPD through PCV vaccination and that the
current regimen is insufficient to fully eliminate vaccine-serotype circulation in the model. We show that
the observed impact is likely to be sustained despite waning effects of the catch-up campaign.

! 2017 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Background

Reduction in nasopharyngeal carriage of vaccine-type pneumo-
cocci has been documented after vaccination with pneumococcal
conjugate vaccines (PCVs) [1–3]. Moreover, by reducing pneumo-
coccal acquisition, PCVs reduce pneumococcal transmission in
the community offering indirect protection to the unvaccinated

[4]. However, non-vaccine-type pneumococci rapidly colonise this
vacated ecological niche, which can result in serotype replacement
carriage [5] and replacement disease reducing the overall impact of
PCVs [6]. With support from Gavi, The Vaccine Alliance, African
countries have been introducing PCVs since 2009. Kenya intro-
duced a 10-valent PCV (PCV10) targeting serotypes 1, 4, 5, 6B, 7F,
9V, 14, 18C, 19F and 23F in 2011. In Kilifi, a coastal area with
enhanced surveillance for invasive pneumococcal disease (IPD)
and carriage prevalence, the introduction was supplemented by a
catch-up campaign in children <5 years old. At the same time
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annual carriage prevalence surveys have been conducted in the Kil-
ifi Health and Demographic Surveillance System (KHDSS) popula-
tion since 2009 [5].

Within a few months post-vaccination vaccine-type pneumo-
coccal carriage and disease had dropped substantially in all age
groups. However, vaccine serotypes (VTs) continue to circulate in
the community [7,5]. This raises the concern that, after the popu-
lation effects of the catch-up campaign have worn off, vaccine-
type pneumococcal disease will re-emerge.

We developed a dynamic compartmental model parameterized
with detailed data from the KHDSS population [8] to describe the
pre-vaccination pneumococcal epidemiology and predict the
long-term impact of PCV10 in Kilifi. We use post-vaccination data
on carriage and disease over the past five years for validation of the
model predictions.

2. Methods

2.1. Data

Kilifi County Hospital (KCH) is the main referral hospital in
KHDSS. At KCH, morbidity events linked with the population regis-
ter have been used to define the incidence of hospital presentation
with infectious diseases, including IPD [8,9]. Datasets on pneumo-
coccal carriage, IPD and contact patterns in KHDSS are described in
detail elsewhere [5,10,11]. Here we briefly describe them as used
in the current analysis.

2.1.1. Nasopharyngeal pneumococcal carriage surveys
Two cross-sectional surveys of pneumococcal carriage were

done pre-vaccination. Nasopharyngeal swabs were collected and
pneumococcal serotype-specific carriage ascertained [5] to obtain
the pre-vaccination age-specific prevalence and serotype distribu-
tion of carriage. The two datasets were combined since there were

no significant differences between them in the carriage prevalence
or serotype distribution (Appendix chapter 1).

The non-vaccine serotypes (NVTs) were classified as weak or
strong based on their susceptibility to competition and carriage
incidence, as estimated in a prior field study within KHDSS [12].
Strong NVTs (23B, 11A, 15A, 6A, 16F, 35B, 10A, 13, 23A 19A, 21;
ordered by increasing susceptibility to competition) were less sus-
ceptible to competition. Two NVTs (34, 15B/C) were classified as
strong for their higher carriage incidences compared to many of
the ones chosen on the basis of susceptibility. The remaining NVTs
were classified as weak (Appendix chapter 2).

2.1.2. Prospective diary survey
Selected residents from KHDSS filled in a diary on the ages of all

persons they physically contacted on one randomly assigned
weekday [10]. For children, the diary was completed by their guar-
dians. This information defined a social mixing matrix of contact
frequencies between age groups.

2.2. Carriage model structure

We developed a compartmental, age-structured dynamic model
with 14 pneumococcal carriage states (Fig. 1). The model has a Sus
ceptible-Infected-Susceptible (SIS) structure for three serotype
groups: the PCV10 serotypes, strong NVT and weak NVT.

At any point in time, an unvaccinated individual can be suscep-
tible (non-carrying) in state S; carry a VT, V; carry a weak NVT, Nw;
carry a strong NVT, Ns; carry simultaneously a weak and strong
NVT, Nsw; carry simultaneously a VT and weak NVT, Bw; or carry
simultaneously a VT and a strong NVT, Bs. Once vaccinated, the
individual moves to one of the corresponding states (SðvÞ, V ðvÞ,
NðvÞ

w , NðvÞ
s , NðvÞ

sw , BðvÞ
w , BðvÞ

s ). The equations of inter-state transitions
are presented in Appendix chapter 3.

Fig. 1. Model structure flow diagram. The epidemiological states include individuals that are susceptible (non-carrying), S; carry a vaccine serotype, V; carry a weak non-
vaccine serotype, Nw; carry a strong non-vaccine serotype, Ns; carry simultaneously a weak and a strong non-vaccine serotype, Nsw; carry simultaneously a vaccine serotype
and a weak non-vaccine serotype, Bw; or carry simultaneously a vaccine serotype and a strong non-vaccine serotype, Bs (see text). Once vaccinated, the individual moves to
one of the corresponding states, ðSðvÞ;V ðvÞ;NðvÞ

w ;NðvÞ
s ;BðvÞ

w andBðvÞ
s Þ. The acquisition rates from the single to multiple serotype carriage states are reduced by competition

parameters denoted by c with two subscripts; the first denoting the serotype group (v ; sandw, for VT, strong NVT and weak NVT respectively) of the resident serotypes and
the second denoting the age-group. The competition parameters have two sets of values, one for age group <6 and another for age group #6 years (see text). The age-group
specific VT, weak NVT and strong NVT clearance rates are denoted by rVi; rNwi and rNsi , respectively. In addition to the transitions between the 14 epidemiological states as
shown in the figure, individuals die from any states at age-specific death rates and new individuals are born into the completely susceptible state.
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2.3. Parameterisation

2.3.1. Population structure
The model population is stratified into six age groups (<1, 1–5,

6–14, 15–20, 21–49 and P50 years) corresponding to those in the
diary survey and reflecting the age structure in KHDSS as of 1st
January 2010. Individuals in the model are born completely sus-
ceptible to carriage according to prevailing birth rates and die
according to age-specific mortality rates from KHDSS (Table 1).

2.3.2. Acquisition of carriage
A susceptible unvaccinated individual in age group i becomes

colonised with VTs, strong NVTs or weak NVTs at age-group-
specific time-dependent rates (forces of infection) denoted by
kViðtÞ, kNsiðtÞ and kNwiðtÞ, respectively. The forces of infection were
expressed as functions of the social mixing matrix and age-group
specific factors (qi) that scale the rate of social contacts into infec-
tious contacts (Appendix chapter 3). Due to competition between
serotypes in colonising the nasopharynx, the acquisition rate of a
secondary serotype is lower than the acquisition rate of that sero-
type in a completely susceptible individual. Three competition
parameters, cv0, cw0 and cs0, represent the fraction by which acqui-
sition rates of secondary serotypes are reduced in <6 year olds
infected with VTs, weak NVTs and strong NVTs, respectively. Two
competition parameters, cvw ¼ cv ¼ cw and cs, were used for indi-
viduals aged P6 years infected with VTs/weak NVTs and strong
NVTs, respectively.

2.3.3. Clearance of carriage
The immune clearance rates of carriage (Appendix chapter 4)

depend on the serotype group and age (<1, 1–5 and >5 years)
and were obtained from a prior study in Kenyan children [12].

2.3.4. Disease
For each serotype group and age group, case-to-carrier ratios

were calculated as ratios of the observed IPD incidence at KCH
[11] to the respective model-predicted pre-vaccination carriage
incidence. The case-to-carrier ratios were assumed to remain
unchanged post-vaccination and were multiplied with the pre-
dicted carriage incidence to predict post-vaccination IPD incidence.

2.3.5. Vaccination
In Kenya, children receive PCV10 at age 6, 10 and 14 weeks. In

the model, g=80% of all newborns are considered vaccinated at
age 18 weeks, one month after the third dose of the 3-dose series
(Table 1). A catch-up programme is simulated by vaccinating 65%
of children younger than 5 years at the onset of the vaccination
programme. Upon vaccination, an individual moves to the corre-
sponding state in the vaccine-protected compartment based on
his/her prevailing carriage status.

The vaccine efficacy against carriage is modelled as a 50% reduc-
tion (e ¼ 0:50) in the acquisition rate of VTs in a vaccinated indi-
vidual relative to an unvaccinated individual (Table 1). The
vaccine efficacy against carriage progression to disease (VEprog)
was calculated as a function of e and the vaccine efficacy against
IPD (VEIPD = 85%) as:

VEprog ¼ 1$ 1$ VEIPD

1$ e ¼ 70%:

We assumed that a proportion u = 0.12 of the vaccinated popu-
lation loses their protection every year. This corresponds to an
average duration of protection for an individual of just over 8 years
(Table 1).

2.3.6. Implementation and model calibration
In the first stage, the stationary solution of the transmission

model was fitted to the age-stratified pre-vaccination carriage
prevalence and serotype distribution (Appendix chapter 1). Using
a multinomial likelihood function and uninformative priors in a
Bayesian framework, the five competition parameters (cvw, cv0, cs,
cs0 and cw0) and six scaling/infectivity parameters
ðq1; q2; q3; q4; q5; q6Þ were estimated (Appendix chapter 5). In each
iteration, bootstrapping the social contact data and reconstructing
the mixing matrix incorporated uncertainty in the social contact
rates. A stationary population with equal birth and mortality rates
was assumed.

In the second stage, the posterior samples of model parameters
obtained in the first stage were applied in a prediction model. Pro-
jections were made assuming a constant population. To measure
how fast the effect of the catch-up campaign wanes, we calculated
the additional cases of IPD the campaign prevents in the first
10 years and estimated the time required to achieve 90% of that
effect. Simulations were performed in R [13].

2.4. Sensitivity analysis

The sensitivity of the predicted IPD incidence averted, i.e., the
difference in the overall incidence of IPD before and at 10 years
post-vaccination, was assessed with respect to uncertainties in
the assumed levels of: (i) vaccine efficacy against carriage acquisi-
tion; (ii) vaccine efficacy against IPD; (iii) the waning rate of
vaccine-induced protection against carriage; (iv) vaccine coverage.

We performed additional simulations under a growing popula-
tion using birth and death rates corresponding to the local demo-

Table 1
Parameters of the dynamic transmission model and the sources of information. The
parameters are classified as those estimated (calibrated) in the context of the model
and those derived from external sources.

Parameter/input Estimate/value
(intervala)

Source

Calibrated
Competition parameters cs0 = 0.44 (0.13, 0.82)

cw0 = 0.59 (0.19, 0.96)
cv0 = 0.39 (0.15, 0.71)
cs = 0.11 (0.004, 0.49)
cvw ¼ cv ¼ cw = 0.77
(0.30, 0.99)

Estimated

Probability of infection per 100
contacts

q1 = 0.13 (0.07, 0.25)
q2 = 0.40 (0.30, 0.55)
q3 = 0.32 (0.24, 0.43)
q4 = 0.07 (0.04, 0.13)
q5 = 0.16 (0.11, 0.23)
q6 = 0.06 (0.04, 0.09)

Estimated

Case-to-carrier ratiosb Appendix chapter 7 [11]

From external sources
Clearance rates Appendix chapter 3 [12]
Birth rate 32.0 per 1000/year [8]
Age-specific mortality Appendix chapter 5 [8]
Contact rates [10]
Vaccine efficacy against carriage

acquisition (e)
50% (40–60) [3,25–27]

Vaccine efficacy against IPD 85% (80–90) [34]
Waning rate of protection against

carriage (u)
0.12 per year (0.09–0.20) [35]

Routine vaccination coverage (g) 80% (70–90) [9,11]
Catch-up coverage 65% (60–70) [9,11]

a The intervals indicated for the estimated parameters are 95% credible intervals.
The intervals indicated for the rest of the parameters are the ranges within which
they were sampled in the model to account for their uncertainty and assess the
model’s sensitivity.

b IPD incidence from Kilifi district hospital in KHDSS is divided by the carriage
incidence from the model to obtain case-to-carrier ratios (Appendix chapter 7).
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graphics [8]. The probabilities of contact per person per day were
recalculated for each time step according to the current population
(Appendix chapter 6).

2.5. Model validation

We visually assessed proximity of the base-case predictions of
the age-group specific carriage of VTs and NVTs to the correspond-
ing observed values over a five-year period post-vaccination
(2011–2015).

3. Results

3.1. Model fit to pre-vaccination epidemiology

There was a good agreement between the observed age-group
and serotype-group specific pre-vaccination carriage prevalence
and their posterior estimates (Fig. 2). Within each age group, the
95% credible intervals agreed with the data. Nonetheless, the dif-
ferences in the posterior mean estimates of the proportions of car-
riers of VTs and NVTs among pneumococcal carriers were in most
instances larger than observed in individuals !6 years old, com-
pared to the differences in individuals <6 years old.

3.2. Competition parameters

The probability of infection per contact was higher among 1–5
and 6–14 year olds as compared to other age groups (Table 1).
An individual <6 years carrying a vaccine-serotype had a 61%

(95% credible interval, CrI, 29–85%) protection against acquiring
NVTs, relative to an uninfected individual of the same age group.
In older age groups, the corresponding level of protection was
23% (95% CrI 1–70%).

3.3. Model projections on pneumococcal carriage

Under the base-case model, the overall prevalence of pneumo-
coccal carriage was estimated to remain essentially at its pre-
vaccination level, with only a slight reduction from 44% to 41%
within 10 years post-vaccination. The prevalence of VTs in the
overall population was estimated to reduce from 16% to 4%, with
a simultaneous increase in the prevalence of NVTs from 28% to
36%.

The prevalence of VTs was predicted to reduce in all age groups.
In the older, mostly unvaccinated population, the reduction was
estimated to be about two thirds of the pre-vaccination level
(Table 2), suggesting a benefit of herd immunity. Changes in the
prevalence of VTs and NVTs occur within the first 4–5 years post-
vaccination and little change was predicted thereafter (Fig. 3).

3.4. Model projections on IPD

The incidence of IPD from VTs was projected to decline in all age
groups. The changes in IPD and carriage were linked and over 50%
reduction in IPD occurs within the first 4–5 years after PCV intro-
duction. The overall reduction in the incidence of IPD ten years
post-vaccination is predicted to be 56% (Table 3). The overall
reduction in the incidence of IPD from year 5 to 10 was 7% (95%
predictive interval: "0.4% to 14%). As a result of waning direct

Fig. 2. Model fit. Observed prevalence (red points) of pneumococcal carriage across age groups (top-left panel) and the proportion of carriers of VT (top-right panel), strong
NVT (bottom-left panel) and weak NVT (bottom-right panel) among pneumococcal carriers prior to vaccine introduction. The black points show the corresponding estimated
values of the prevalence/proportion, based on data given in Appendix chapter 1. The capped bars represent the 95% credible intervals. The dotted lines in the top-left panel
(and the points they pass through) are the observed (red) and the predicted (black) proportions of double carriers among <1 and 1–5 year olds. For these two age groups, the
top-right, bottom-left and bottom-right panels present the proportions of single carriers of the respective types (VT, strong NVT, weak NVT) among all carriers in the age
group. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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effects of the catch-up campaign and increasing herd-effects of
routine immunisation with time, we estimated that the incremen-
tal benefit of a catch-up over routine vaccination alone would be
negligible from year 7 after introduction of PCV10.

3.5. Sensitivity analyses

Among the variables included in the sensitivity analysis, the
duration of protection had the largest effect on the predicted IPD
incidence averted in year 10, followed by the vaccine efficacy
against carriage. The vaccine efficacy against IPD had the least
influence (Fig. S1).

Assuming a growing population, the overall prevalence of car-
riage was projected to decline to a somewhat lower level of 35%
(95% prediction interval 30–40%) ten years post-vaccination
(Appendix chapter 7).

3.6. Model validation

The point predictions and corresponding 95% prediction inter-
vals (PI) of carriage prevalence cover most of the observed values,
showing good predictive ability (Fig. S2). Among <1 and 1–5 year
olds the model predicted much lower carriage prevalence of NVTs
in year 2015 (49% vs. 70% observed and 38% vs. 52% observed,
respectively).

4. Discussion

We used a model calibrated with local data to predict the
incidence of pneumococcal carriage and IPD in Kilifi, Kenya, over
a 10-year period post-vaccination to assess whether additional
measures have to be considered to prevent a resurgence of
vaccine-type pneumococci once the impact of the catch-up
campaign wanes. We validated the model against immediate
post-vaccination epidemiological data, a unique exercise in
pneumococcal carriage models, and found that such resurgence
is unlikely if the routine immunisation programme continues.

Most PCV introductions in African countries have occurred since
year 2011. Therefore, only a few years of observation are available
to assess impact. A meta-analysis of four randomized trials in
African children aged 9–24 months showed that carriage of VTs
decreased with vaccination but the overall carriage remained the
same [14]. In the United Kingdom, the overall prevalence of pneu-
mococcal carriage was stable four years post-vaccination [15]. In
our model predictions, the overall carriage prevalence remains
essentially unchanged due to serotype replacement in carriage.
Replacement carriage was most prominent in <6 year olds because
the pre-vaccination proportion of VTs among pneumococcal

carriers was highest in young children (Appendix chapter 1). We
predict that elimination of VTs in this community is unlikely. In
high-income countries that have almost eliminated circulation of
VTs, a reduced-dose schedule has been considered to improve
the cost-effectiveness of the programme [16]. The World Health
Organization (WHO) also recently convened a working group to
review the policy recommendations for the optimal use of PCVs
in low- and middle-income countries, which includes discussion
of reduced dose schedules [17]. Theoretically, where herd protec-
tion has been established, it may be possible to sustain it using,
for example, a single dose in infancy and a booster dose in the sec-
ond year of life. In the Kenyan setting, however, where vaccine-
type pneumococci continue to circulate several years post intro-
duction of PCV with a catch-up campaign, it would be difficult to
argue that disease prevention among infants is currently guaran-
teed by herd protection.

In the model presented, the incidence of IPD is predicted to
decline across all age groups. The non-vaccine-type IPD incidence
is expected to increase by 52%, which translates to an increase in
the annual incidence of 1.9 per 100,000, suggesting little replace-
ment disease relative to the reduction in the annual overall
vaccine-type IPD incidence of 12.3 per 100,000. This is explained
by the lower average case-to-carrier ratios (i.e., lower invasive-
ness) of the replacing non-vaccine serotypes (Appendix chapter 8).

South Africa and The Gambia introduced PCV7 in 2009 and
replaced it with PCV13 in 2011 [18,19]. The reduction in vaccine-
type and overall IPD reported in these countries are similar to
the predictions our model produces for Kilifi, Kenya, over the first
few years post-vaccination. This, however, does not validate the
model because of differences across the settings. The vaccination
coverage in Kenya is likely to differ from coverage in The Gambia
and South Africa, and Kenya introduced PCV10. We thus validated
our model predictions against observed carriage prevalence and
IPD incidence in Kilifi. The model predictions were generally con-
sistent with the observed data (Fig. S2). The model, however,
underestimated prevalence of carriage of NVTs in <6 year olds in
2014–15. Relaxing the assumption of a constant population size
only made minimal difference to the goodness of fit (Fig. S3).

Pneumococcal serotypes are heterogeneous in transmissibility
and mutual competition [12,20]. By splitting the NVTs into two
groups and allowing unequal mutual competition between these
groups, our model accounts for some of this heterogeneity. We
did not split VTs because we aimed to reproduce serotype replace-
ment with as small a number of parameters as possible, by limiting
the number of compartments. Splitting NVTs was preferred
because the group has a larger number of serotypes and hence
more heterogeneity. The model projected differing magnitudes of
change in the prevalence of the strong and weak NVTs. Given the
different case-to-carrier ratios of the two groups of NVTs

Table 2
The prevalence of nasopharyngeal carriage of pneumococci pre- and 10 years post-vaccination. The table presents the posterior predictive mean values with the 95% posterior
predictive intervals.

Age group
(years)

Pre-vaccination 10 years post-vaccination

Carriage prevalence VTa Strong NVTb Weak NVT Carriage prevalence VT Strong NVT Weak NVT

<1 80.8 (67.8–90.1) 32.6 (25.1–40.5) 37.5 (30.6–45.8) 9.9 (7.1–13.2) 75.7 (61.4–87.2) 8.3 (1.6–18.2) 50.9 (40.9–62.6) 15.2 (10.5–22.2)
1–5 72.5 (65.2–78.5) 29.5 (23.9–35.2) 29.7 (24.6–35.2) 13.1 (9.6–17.0) 67.2 (58.9–74.6) 8.0 (1.5–16.9) 39.2 (32.2–48.5) 19.3 (14.1–25.5)
6–14 54.0 (43.1–64.8) 17.0 (13.9–21.2) 26.8 (18.9–35.0) 9.9 (7.4–13.5) 49.7 (38.6–61.0) 4.4 (0.9–9.6) 32.0 (23.6–41.2) 12.8 (9.5–17.1)
15–20 27.9 (17.0–41.7) 9.1 (5.7–13.9) 13.4 (7.6–20.7) 5.3 (3.1–8.6) 25.3 (15.6–38.0) 2.5 (0.5–6.0) 15.8 (9.5–24.3) 6.8 (4.1–10.8)
21–49 25.5 (17.0–35.5) 8.6 (5.8–12.1) 12.0 (7.6–17.5) 4.8 (3.0–7.2) 23.2 (15.2–33.0) 2.5 (0.5–5.6) 14.2 (9.2–20.9) 6.2 (3.9–9.3)
50+ 21.0 (14.0–30.0) 7.1 (4.7–10.1) 9.8 (6.2–14.6) 4.0 (2.6–6.0) 19.1 (12.7–27.3) 2.0 (0.4–4.5) 11.7 (7.6–17.2) 5.2 (3.3–7.9)

Overall 44.4 (40.2–48.9) 15.9 (13.3–18.7) 20.4 (16.8–24.2) 8.0 (6.1–10.2) 40.8 (36.0–46.0) 4.3 (0.8–9.1) 25.4 (21.2–30.0) 10.9 (8.4–13.8)

a Vaccine serotypes.
b Non-vaccine serotypes.
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(Appendix chapter 8), the projected non-vaccine-type IPD inci-
dence is different from what would have been predicted using a
single group of NVTs. Nonetheless, grouping serotypes can create
some ‘super types’ that might have different characteristics, e.g.
higher acquisition rate of the VTs group compared to the individual
serotypes in the group. This might lead to conservative vaccine
effectiveness estimates. Grouping of serotypes may also result in
the estimated acquisition rate of NVTs being lower than that of
individual serotypes in the group. This would lead to an underesti-
mation of the indirect impact of vaccination on NVTs - lower than
the observed predicted prevalence of NVTs.

To limit the number of estimated parameters, age dependency
in competition was considered using two age classes (<6 and
P6 years). Some discrepancies between the fitted and observed
age-specific serotype distributions were present. The proportion
of carriers of VTs was overestimated among carriers aged
!15 years (Fig. 2); the susceptibility to competition of VTs against
NVTs is likely biased downwards in adults, thus underestimating
the reduction in prevalence of VTs. With our current specification,
the estimates of competition parameters in age group !6 years lar-
gely depends on data from the age groups 6–14 years. A model
including more groups of VTs and NVTs or individual serotypes

Fig. 3. Model projections on carriage prevalence over 10 years by age group. Projected cumulative prevalence of pneumococcal carriage of VT (red), strong NVT (blue) and
weak NVT (lime green) by age group over time since vaccine introduction. For each age group, the dotted lines show the 95% predictive intervals for the overall prevalence of
pneumococcal carriage. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

4566 J. Ojal et al. / Vaccine 35 (2017) 4561–4568



[21–23] would allow for even more heterogeneity. However, the
estimation of competition parameters from available carriage data
would become increasingly difficult in a highly compartmentalized
model.

We estimated case-to-carrier ratios using hospital-based data
on IPD incidence in KHDSS [8]. The access to care for IPD is
unknown in KHDSS, but meningitis incidence is underestimated
by over 30% by hospital-based surveillance [24]. Since IPD and
meningitis are severe syndromes, the underestimation of IPD inci-
dence could be similar implying case-to-carrier ratios are likely
underestimated. Nonetheless, since the ratios estimated pre-
vaccination are applied post-vaccination, the predicted reduction
in IPD is not affected.

We excluded partial protection from first and second doses. Our
estimates of the vaccine impact may thus be conservative if the
vaccines’ efficacy is substantial after fewer than three doses. We
treated vaccine efficacy against carriage and its waning as equal
for routine and catch-up vaccination. A Kenyan trial estimated vac-
cine efficacy against carriage of 40% among children aged 1–
4 years [3], lower than the 50% for infant vaccination [25–27].
The duration of protection of catch-up vaccination is not docu-
mented yet. One dose of PCV administered outside of infancy
may have a more enduring effect than 3 routine infant doses. If
so, our similar treatment of the duration of immunity means there
is no inflection on the carriage prevalence of VTs as the cohort of
highly immune <5 year olds who received a catch-up dose is
replaced by a new birth cohort of less immune children over time.

We assumed children are born completely susceptible to acqui-
sition of pneumococcus ignoring the influence of maternal anti-
bodies. Newborns in a Kenyan study had a very high rate of first
acquisition [20]. Early acquisition has also been reported in other
African settings [28–30]. In Netherlands and Papua New Guinea a
protective effect of maternal IgG antibodies against colonisation
in infancy was not observed [31,32]. Based on high early acquisi-
tion rates and insufficient evidence of protection from maternal
antibodies in some studies, this assumption is plausible.

A significant reduction in IPD caused by vaccine-related sero-
types 6A and 19A IPD has been observed in some PCV10-using set-
tings [33]. However, surveillance in Kilifi recorded no change in
carriage of serotype 6A and increased carriage of serotype 19A
after vaccine introduction [7]. We have not observed a change in
IPD caused by these serotypes. We therefore did not account for
6A and 19A as vaccine serotypes.

In conclusion, we predict a substantial and sustainable decline
in the carriage prevalence of VTs among vaccinated and unvacci-
nated individuals and consequently a reduction of about 56% in
overall IPD incidence ten years post-vaccination. While we show
that the current schedule is sufficient to limit vaccine-type pneu-
mococcal carriage to current levels, it is unlikely to achieve elimi-
nation of VTs. Strategies that heavily rely on protection from the

herd, including a reduced dose schedule, will need additional
efforts to stop circulation of VTs before their implementation.
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a b s t r a c t

Background: Prior studies have demonstrated hyporesponsiveness to pneumococcal conjugate vaccines
(PCVs) when administered in the presence of homologous carriage. This may be substantially more
important in Africa where carriage prevalence is high. Deriving a correlate of protection (CoP) for carriage
is important in guiding the future use of extended PCVs as population control of pneumococcal disease by
vaccination is now focused principally on its indirect effect. We therefore explored the complex relation-
ship between existing carriage and vaccine responsiveness, and between serum IgG levels and risk of
acquisition.
Methods: We undertook secondary analyses of data from two previously published clinical trials of the
safety and immunogenicity of PCV in Kenya. We compared responses to vaccination between
serotype-specific carriers and non-carriers at vaccination. We assessed the risk of carriage acquisition
in relation to PCV-induced serum IgG levels using either a step- or continuous-risk function.
Results: For newborns, the immune response among carriers was 51–82% lower than that among non-
carriers, depending on serotype. Among toddlers, for serotypes 6B, 14 and 19F the post-vaccination
response among carriers was lower by between 29 and 70%. The estimated CoP against acquisition ranged
from 0.26 to 1.93 lg/mL across serotypes, however, these thresholds could not be distinguished statisti-
cally from a model with constant probability of carriage independent of assay value.
Conclusion: We have confirmed hyporesponsiveness in an equatorial African setting in both infants and
toddlers. Population responses to vaccination are likely to improve with time as carriage prevalence of
vaccine serotypes is reduced. We have not found clear correlates of protection against carriage acquisi-
tion among toddlers in this population. Assessing the potential of new vaccines through the use of CoP
against carriage is still difficult as there are no clear-cut serotype specific correlates.

! 2017 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The first pneumococcal conjugate vaccine (PCV), which con-
tained seven serotypes, reduced the incidence of pneumococcal
disease and the prevalence of nasopharyngeal carriage in both vac-
cinated and unvaccinated children as well as adults when intro-
duced into routine infant immunisation programme in the USA
in 2000 [1]. The indirect protective effect of PCV is caused by a
vaccine-induced reduction in the risk of acquiring colonisation by

vaccine serotypes (VTs), which leads to a reduction in onward
transmission from young children.

Recently, data have emerged that highlight the complexity of
interactions between pneumococci, the human immune system
and the nasopharynx. Infants carrying serotypes 6B, 19F or 23F
at the time of PCV immunisation have reduced primary IgG
responses to those serotypes [2,3] and this effect persists through
to post-booster responses [4]. Rodenburg and colleagues showed
that, at 24 months of age, children’s responses to PCV against these
three serotypes were reduced if they had carried them at any point
in the 2 years prior to vaccination [5].

PCV responses in African children are generally thought to be
higher than those seen in developed country settings [6–9]. For
instance, the serotype-specific geometric mean fold-rise between

http://dx.doi.org/10.1016/j.vaccine.2017.05.088
0264-410X/! 2017 The Author(s). Published by Elsevier Ltd.
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the time of the first dose and one month after the third dose of PCV
were lower in USA [7] and Finland [9] compared to South Africa [6]
and The Gambia [8]. Nonetheless, in parts of Africa like The Gambia
[10] and Kenya [11,12], carriage rates from very early in life are
extremely high. Given high responses to PCV it is possible that
hyporesponsiveness does not occur, or is immunologically irrele-
vant, in equatorial Africa.

The immunological mechanism that mediates vaccine-induced
protection against colonisation at the mucosal level, or against dis-
ease, is not known. While circulating IgG may have a role in pre-
venting colonisation, as demonstrated in a mouse model in
which antibody blocked colonisation through agglutination [13],
local B cells producing IgG and/or IgA in the nasopharynx may also
be relevant and a role for T cells has also been suggested [14,15].
Nonetheless, to facilitate the licencing of new formulations of
PCV, a single aggregate serological correlate of protection against
invasive pneumococcal disease (IPD), has been derived based on
circulating IgG [16,17]. However, a recent analysis that suggested
correlates of protection (CoP) for IPD vary widely by serotype
[18] has questioned the biological relevance of a single aggregate
CoP common to all serotypes. It is likely that, as with IPD, the
CoP against carriage also vary by serotype.

Numerous assumptions were made during the development
of the common serological CoP and there is equipoise in the sci-
entific community about the relevance of the CoP to carriage and
mucosal disease [19]. For some serotypes, greater concentrations
of serum IgG were likely to be required to protect at mucosal
surfaces (e.g. in the nasopharynx) than in blood [20]. Subsequent
analysis of vaccine-induced antibody and the prevention of car-
riage reinforced the notion that if circulating IgG is indeed a rel-
evant correlate for carriage, remarkably high concentrations are
required to reduce carriage acquisition [21]. Deriving CoP for
carriage would guide the future use of extended PCVs, as popu-
lation control of pneumococcal disease by vaccination is now
focused principally on its indirect effect mediated through car-
riage [22].

We therefore set out to explore both the relationship between
existing carriage and vaccine responsiveness and between serum
IgG levels and risk of acquisition by undertaking new analyses of
two existing field studies of PCV in Kenya, with the following ques-
tions: (i) Does hyporesponsiveness occur in high carriage settings
like Kenya? (ii) If so, can we detect this for serotypes other than
the most common (e.g. 6B, 19F and 23F)? (iii) Is it possible to
derive a serological correlate of protection against carriage acquisi-
tion using vaccine-induced IgG responses detected within random-
ized controlled trials of PCV in Kenya?

2. Methods

2.1. Data

Data from two previously published clinical trials of the safety
and immunogenicity of PCV conducted in Kenya [14,15] were fur-
ther analysed in the current study. The first study (‘‘Newborn
study”) recruited 300 newborns that were randomized to receive
7-valent PCV (PCV7) in one of two vaccine schedules; at 0–10–
14 weeks or at 6–10–14 weeks. The subjects received a PCV7 or
23-valent Pneumococcal Polysaccharide Vaccine (PPV23) booster
dose of at 36 weeks. Serological measurements were made at 0,
6, 10, 14, 18, 36 and 37 weeks and nasopharyngeal carriage ascer-
tained at 18 and 36 weeks. The objectives of this study were to
examine the effect of a newborn vaccination schedule with PCV7
on the development of antibody and carriage prevalence. In the
current analysis we used the carriage data at the time of the boos-
ter (week 36) and the serological measurements at week 36 and
week 37.

The second study (‘‘Toddler study”) recruited 600 children aged
1–4 years to examine the effect of 0, 1 or 2 doses of a 10-valent PCV
(PCV10), on capsular antibody concentrations and nasopharyngeal
carriage. Children were given PCV10 in three different schedules:
Group A received PCV10 at day 0 and day 60; Group B received
PCV10 at day 0 and day 180. Diphtheria-tetanus-pertussis (DTaP)
was given as a control vaccine to group A at day 180 and to Group
B at day 60. A third group, which is not considered in this analysis,
received Hepatitis A virus (HAV) at day 0 and day 180 and DTaP at
day 60. Antibody measurements were made at days 0, 30, 90 and
210 and nasopharyngeal carriage assessed at days 0, 30, 60, 90
and 180. Details of the study have been published elsewhere
[23]. In the current analysis we used carriage data from vaccinees
in Groups A and B at day 0, 60 and 180 (vaccination time points),
and serological measurements 30 days post vaccination i.e. at 30,
90 and 210 days, respectively.

2.2. Analysis

For the newborn study, we calculated the fold-rise in serotype-
specific geometric mean concentrations (GMC) between weeks 36
and 37, separately, for carriers and non-carriers for each of the
seven serotypes in PCV7. The differences between the two groups
(homologous carriers vs. non-carriers) were quantified as ratios
of the GMC fold-rises. These ratios were derived from log-linear
regression models of the booster response taking account the vac-
cine schedule group (6–10–14 vs 0–10–14), type of booster given
(PCV7 vs PPV23) and the baseline log-concentration of IgG, at
36 weeks. Baseline IgG concentrations is adjusted for since individ-
uals with lower concentrations have more room for greater fold-
rise than individuals who already have high concentration at
baseline.

For the toddler study, we pooled paired carriage data and 30-
day serological responses for each of the time points of PCV10 vac-
cination (0, 60 and 180 days). We calculated serotype-specific fold-
rises in IgG concentration 30 days later (at 30, 90 and 210 days).
There were no blood samples at time 60 and 180 by design there-
fore we used the IgG at time 30 to adjust for responses to vaccines
given at 60 and 180 days. We would expect antibody concentra-
tions to decay from day 30 to day 60 (and from day 30 to day
180) at the same rate for subjects in both Group A and Group B;
therefore, the ranks in IgG baseline between time 30 days and
the time of vaccination are likely to be highly correlated, provided
that natural boosting is also distributed equally in both groups. To
assess the impact of carriage at the time of vaccination, GMC fold-
rise ratios between homologous carriers vs. non-carriers were esti-
mated from log-linear serotype-specific regression models of the
individual level fold-rise on the carriage status, taking account of
the vaccine group (Group A and B), age group (12–23, 24–35,
36–47 and 48–59 months), season (month of sample collection)
and pre-vaccine (day 0 or 30) log IgG. We used Generalized Esti-
mating Equations (GEE) to account for the correlations between
the repeated measures within an individual. Data for serotypes
6B, 9V, 14, 19F and 23F were selected for the analysis since they
were the most frequently carried of the 10 vaccine-type serotypes.
As a supplementary analysis, we also calculated the post-
vaccination GMC by pre-vaccination carriage status for both the
newborn and toddler studies.

In order to derive the serotype-specific antibody threshold for
vaccine efficacy against acquisition, we restricted our analysis to
data from the toddler study and, in particular, to toddlers who
were non-carriers at day zero. We compared carriage status at
day-30 against vaccine-induced IgG concentration measured at
day 30. We fitted to these two variables a model that incorporates
a threshold parameter that is estimated through a profile likeli-
hood [24], the a:b model. The model is a step-shaped function
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where the step corresponds to the antibody threshold. Thus, in
addition to the threshold parameter, the model also contains two
parameters for constant but different acquisition probabilities
below and above the threshold. A test for the presence of a thresh-
old was achieved by comparing the a:b model to a model with con-
stant probability of acquisition independent of assay value, using a
likelihood ratio test. Confidence intervals around the threshold
estimates were constructed through bootstrapping.

The a:b model does not allow for adjustment of covariates,
therefore, we also modelled the risk of serotype-specific acquisi-
tion as a continuous function of log-IgG concentration in a Cox pro-
portional hazards model that accounted for age group, carriage of a
heterologous serotype at the point of vaccination, log IgG on the
day of vaccination and season. Non-linear relationship between
the acquisition incidence and log-IgG concentration was allowed
through restricted cubic splines. Having no colonisation by any ser-
otype at day 0 predisposes one to considerably higher risk of
colonisation by an index serotype relative to someone colonised
by a different serotype to the index at day 0, due to serotype com-
petition [25,26]. This was the rationale for including carriage of a
heterologous serotype at the point of vaccination in the model.

3. Results

In the newborn study, 235 pairs of 36- and 37-week samples
were analysed. In these subjects the prevalence of carriage of
PCV7 serotypes at 36 weeks ranged from 0.9% for serotype 23F to
12.8% for serotype 19F. Compared to non-carriers, the GMC fold-
rise between week 36 and week 37 among carriers was substan-
tially lower by a factor of 51–82% (Table 1). The point estimates
of the GMC at post-booster (37 weeks) were higher among non-
carriers at the point of vaccination, except of serotype 18C (Supple-
mentary Table S1).

In the toddler study, between 460 and 480 samples were anal-
ysed depending on serotype. The carriage prevalence at the time of
vaccination ranged from 2.1% for serotype 9V to 8.0% for serotype
19F (Table 2). For serotypes 6B, 14 and 19F the GMC fold-rise post
vaccination among carriers was lower by between 29 and 70%. For
serotype 9V and 23F the GMC fold-rise were 53% and 1% higher
among carriers (Table 2). Except for serotype 9V the point esti-
mates of the GMC post-vaccination were higher among non-
carriers at the time of vaccination (Supplementary Table S2).

We computed the serological threshold for vaccine efficacy
against acquisition among serotype-specific non-carriers at the
first vaccination time-point (day 0) by using their titers and car-
riage status 30 days later in the toddler study. The estimated
thresholds ranged from 0.26 to 1.93 lg/mL across serotypes, how-
ever, a test for the presence of a threshold at these points sug-
gested no significant difference from a model with constant
probability of acquisition independent of assay value (Table 3).

We analysed carriage acquisition as a continuous function of log
IgG. There was no convincing monotonically decreasing rate of car-
riage with increasing log IgG for each of the five serotypes (Fig. 1).
In a situation where a higher level IgG had strong negative impact
on carriage, the prevalence ratios below the average (mean/me-
dian) log IgG would be above 1 and the prevalence ratios above
the average log IgG would be below 1, in the plots.

4. Discussion

While inferior quantitative antibody responses to the colonising
serotypes have been reported amongst children vaccinated with
PCV in Philipines [2], Israel [3] and South Africa [27], none have
studied this phenomenon in high carriage settings such as Equato-
rial Africa. Using data from two clinical trials in Kenya, we have

Table 1
Newborn study. Geometric mean fold rise between 36 and 37 weeks (with 95% confidence limits) stratified by carrier status, as well as the difference in the response between
carriers and non-carriers expressed as a ratio. These ratios, and associated p values were derived from log-linear regression models of the booster response taking account of the
vaccine group (EPI vs newborn), the type of booster given (Pneumococcal polysaccharide vaccine vs Pneumococcal conjugate vaccine) and log IgG in week 36.

Serotype Carriers at 36 weeks Non-carriers at 36 weeks Ratio (95% CIs) for carrier/non-carrier P-value

n GM fold-rise 37/36 Weeks (95% CI) n GM fold-rise 37/36 Weeks (95% CI)

4 0 – 235 4.92 (4.36–5.55) – –
6B 6 2.85 (0.69–11.68) 229 13.52 (11.52–15.88) 0.18 (0.07–0.46) <0.001
9V 4 1.62 (0.64–4.11) 231 5.32 (4.72–6.00) 0.31 (0.14–0.69) 0.005
14 10 1.29 (0.86–1.92) 225 2.79 (2.47–3.15) 0.49 (0.30–0.80) 0.004
18C 3 1.25 (0.87–1.79) 232 7.74 (6.87–8.73) 0.15 (0.05–0.40) <0.001
19F 30 1.91 (1.34–2.73) 204 7.19 (6.11–8.45) 0.32 (0.21–0.48) <0.001
23F 2 3.59 (0.02–663.49) 231 10.33 (8.80–12.14) 0.25 (0.06–1.09) 0.064

n: number of individuals.

Table 2
Toddler study. Geometric mean fold-rise between day 0 to 30 or day 30 to 90/210 stratified by carrier status at the time of vaccination (day 0, 60 or 180), as well as the difference
in the response between carriers and non-carriers expressed as a ratio. The ratios and associated p-values were derived from log-linear serotype specific regression models, using
GEE, of the individual level fold-rise on the carriage status, taking account of the vaccine group (Group A and B), age group (12–23, 24–35, 36–47 and 48–59 months), season
(month of swab) and pre-vaccine (day 0 or 30) log IgG.

Serotype Carriers at point of vaccination Non-carriers at point of vaccination Ratio (95% CIs) for carrier/non-carrier P-value

na GM fold-rise (95% CI) na GM fold-rise (95% CI)

6B 23 1.65 (1.22–2.24) 457 2.35 (2.14–2.59) 0.70 (0.51–0.97) 0.034
9V 10 1.88 (0.98–3.61) 466 3.06 (2.65–3.53) 1.53b (0.89–2.65) 0.119
14 15 3.02 (1.99–4.58) 445 5.32 (4.65–6.10) 0.71 (0.50–1.02) 0.067
19F 38 2.12 (1.57–2.87) 439 7.61 (6.50–8.90) 0.30 (0.19–0.46) <0.001
23F 22 3.39 (1.35–8.47) 455 4.28 (3.66–5.00) 1.01 (0.63–1.63) 0.955

a There are two repeated measures for almost all participants. These numbers reflect the number of samples rather than individuals.
b The reason why the adjusted ratio is above 1 (instead of approx. 1.88/3.06 = 0.61, which is the unadjusted ratio) is because one of the factors adjusted for (pre-vaccine log

IgG) was unevenly distributed among carriers vs. non-carriers; the GMC of pre-vaccine log IgG among carriers was significantly higher at 1.61 compared to 0.49 in non-
carriers. Similar case for 23F.
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confirmed hyporesponsiveness in equatorial Africa in both infants
and toddlers, and for the first time described it in serotype 14.

The reduced immune responses to PCV administered to an indi-
vidual with prevailing carriage may reduce the vaccine’s efficacy.
The clinical implication of this is an increased susceptibility to
acquisition of homologous pneumococcal serotypes, particularly
when the reduction in immune response results in lower than suf-
ficient protection against carriage. Several strategies can be useful
in high carriage settings to counter the effect of hyporesponsive-
ness. The use of a catch-up campaign at the time of PCV introduc-
tion can speed-up the reduction in vaccine-type carriage thus
improving the immune responses in cohorts vaccinated in the sub-
sequent period of reduced carriage. Using a booster dose in the sec-
ond year of life can also be used to overcome hyporesponsiveness
[3]. However, the cost-effectiveness of such strategies needs to be
evaluated to provide further evidence for or against their use.

We assessed the association between IgG concentration and the
incidence of carriage in two ways; using a step function, the a:b
model, which explicitly models a threshold and using a model with
carriage incidence as a continuous function of IgG concentration,
which does not explicitly model a threshold. The second approach
allowed us to study the relation while accounting for potential
confounding factors. The result from each of the approaches is
mutually important and complementary in interpreting results
from the alternative approach.

The CoP for carriage were generally higher than the recently
derived serotype-specific CoP for IPD with the exception of sero-
type 14 (0.26 lg/ml for carriage acquisition vs. 0.46 lg/ml for
IPD) [18]. It is expected that the CoP for carriage should be substan-
tially higher than that for IPD; therefore, the result for serotype 14
is surprising. The evidence for the CoP for carriage being lower is,
however, limited given the wide 95% confidence intervals of the
CoP estimate of this serotype (Table 3) and the function of IgG that
does not show drastic change around the estimated CoP (Fig. 1).

For serotype 9V, all the carriers were above the estimated CoP
against acquisition. This scenario reflects one of the potential prob-
lems with the a:b model, that in the estimation process the inci-
dence below a candidate threshold is not restricted to be higher
than that above it. This requirement is, however, imposed post-
estimation in the test for the existence of a threshold at the esti-
mated value [24], such that the test statistic always yields a non-
significant result in such cases. Whether circulating IgG is the cor-
rect correlate of protection also needs to be considered. The exact
mechanism by which pneumococci are prevented from colonising
the nasopharynx is still unclear.

The licensing of future PCVs will likely take into account the
potential impact on carriage [28]. Therefore, defining the CoP for

carriage would provide a way of assessing the non-inferiority of
new vaccines as has been the case for CoP for IPD [16,17]. However,
until a better understanding of existing CoP for IPD exists this may
be complex. For example, there is limited information to sufficiently
explain why IPD correlates for some serotypes are high and others
low. Consequently, predicting whether the CoP for a novel serotype
will be higher or lower, and by what factor, than available CoP for
other serotypes is difficult. New PCVs might incorporate serotypes
that are carried relatively infrequently further complicating the
use of CoP for carriage. Only one previous study that was conducted
in the United Kingdomhas reported on PCV CoP for carriagewhere a
clear threshold against carriage for a single serotype, serotype 14,
was identified [20]. A second study in the Navajo Nation andWhite
Mountain Apache tribal lands, in USA, did not find identifiable IgG
threshold level that was associated with prevention of carriage
acquisition for all the eight serotypes studied [29].

A limitation of the newborn study is that the period between
booster dose and the assessment of its effect was one week. It gen-
erally takes about 4 weeks for a full immune response following
vaccination. Therefore, what we show is that the impact of pre-
existing carriage on immune response is notable as early as one
week. It is possible that after 4 weeks the final concentrations
between carriers and non-carriers are similar. If that is the case
then the effect of pre-existing carriage is in delaying immune
response. From the toddler study, in which there was sufficient
time-lapse between vaccination and assessment of response, the
final concentrations were still different between carriers and
non-carriers. It is unlikely that the case is different for newborns,
because the mechanism causing hypo-responsiveness should be
similar between the two age groups.

In conclusion, we have confirmed hyporesponsiveness in an
equatorial African setting in both infants and toddlers. Pneumococ-
cal conjugate vaccines have been introduced in many African coun-
tries where carriage is generally high. Hyporesponsiveness might
reduce the vaccine’s effectiveness in the early years of introduction
when the prevalence of vaccine serotypes is still high. If so, the
speed with which vaccine-type carriage prevalence is reduced will
determine how fast improved responses are realised in later years
after vaccine introduction, when cohorts of children with reduced
vaccine-type carriage rates replace the cohorts in high prevalence
period. We did not identify clear correlates of protection against
carriage acquisition among toddlers in this population. Given the
limited information from the few studies that have reported on
correlate of protection against carriage, assessing the potential of
new vaccines through the use of correlate of protection against car-
riage remains difficult, as there are no clear-cut serotype-specific
correlates.

Table 3
Toddler study. The serotype-specific serological thresholds for vaccine efficacy against acquisition for five most commonly carried serotypes at day 0. The thresholds are
computed using a step-shaped function where the step corresponds to the threshold with different infection probabilities below and above the threshold. The threshold with the
highest profile likelihood is chosen as the parameters estimate. Confidence intervals are constructed by bootstrapping.

Serotype Threshold (95% CI) Carriage prevalence Ratioa (95% CI) Test for presence of a thresholdb Goodness of fit p-valuec

6B 0.48 (0.07–2.68) 0.21 (0.04–0.72) 0.079 0.048
9Vd 1.86 (1.86–22.67) – >0.999 0.219
14 0.26 (0.16–14.34) 0.26 (0.04–0.87) 0.542 0.851
19F 1.66 (0.85–6.60) 0.10 (0.00–0.60) 0.171 0.314
23Fe 1.93 (0.09–1.94) 0.00 (0.00–0.00) 0.430 0.625

a Carriage prevalence ratio is the carriage risk above the threshold divided by carriage risk below threshold, the confidence interval is obtained by bootstrapping
b A likelihood ratio test for the presence of a threshold. Achieved by comparing the a:b model to a model with constant probability of infection independent of assay value.

Values above 0.05 indicate no sufficient evidence of a difference in the two models at % level of significance.
c This is the Hosmer and Lemeshow goodness of fit p-value testing the null hypothesis that there is no difference between observed and model predicted values. The test

assesses whether the step function represented by the a:b model is an appropriate representation of infection or whether another relationship such as a gradual one between
titer and infection might be more likely than a stepped relationship. All the p-values, except that for serotype 6B, which is borderline, are above 0.05 indicating insufficient
evidence against the null hypothesis at the 5% level of significance.

d There were no carriers of serotype 9V below the threshold of 1.86 mcg/ml hence the risk ratio was undefined.
e There were no carriers of serotype 23F above the threshold of 1.93 mcg/ml hence the risk ratio was zero.
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Fig. 1. The incidence rate ratio (blue solid line) as a function of log IgG titre (x-axis) for each serotype labeled above the graph. The ratios are between the values of log IgG on
the x-axis relative to someone with the average log IgG. For instance, for serotype 6B, the rate ratio between individuals with log IgG of !3 relative to individuals with the
mean log IgG is slightly below 1 (95% CI: "0.5 to 2). The red dashed lines are the 95%CI bounds of the rate ratio. The three vertical (grey) lines mark the 2.5th, 50th and 97.5th
percentiles of the distribution of log IgG whose density is shown in grey on the x-axis. The green line shows the CoP obtained by the a:b model while the light green shade
around it shows the region covered by the bootstrapped 95%CI of that CoP. The likelihood ratio (LR) test p-value for the significance of log IgG in predicting carriage
acquisition and the test for the presence of a threshold estimated by the a:b model is indicated in the plot. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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