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Abstract 

The aim of the study was to evaluate the temporal patterns of dengue incidence 

from 2001 to 2014 and forecast for 2015 in two Brazilian cities. We analysed 

dengue surveillance data (SINAN) from Recife, 1.6 million population, and 

Goiania, 1.4 million population. We used Auto-Regressive Integrated Moving 
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Average (ARIMA) modelling of monthly notified dengue incidence (2001 to 

2014). Forecasting models (95% prediction interval) were developed to predict 

numbers of dengue cases for 2015. During the study period, 73,479 dengue cases 

were reported in Recife varying from 11 cases/100,000 inhab (2004) to 2,418 

cases/100,000 inhab (2002). In Goiania, 253,008 dengue cases were reported 

and the yearly incidence varied from 293 cases/100,000 inhab (2004) to 3,927 

cases/100,000 inhab (2013). Trend was the most important component for 

Recife, while seasonality was the most important one in Goiania. For Recife, the 

best fitted model was ARIMA (1,1,3)12 and for Goiania Seasonal ARIMA 

(1,0,2) (1,1,2)12. The model predicted 4,254 dengue cases for Recife in 2015; 

SINAN registered 35,724 cases. For Goiania the model predicted 33,757 cases 

for 2015; the reported number of cases by SINAN was 74,095, within the 95% 

prediction interval. The difference between notified and forecasted dengue cases 

in Recife can be explained by the co-circulation of dengue and Zika virus in 

2015. In this year, all cases with rash were notified as "dengue-like" illness. The 

ARIMA models may be considered a baseline for the time series analysis of 

dengue incidence before the Zika epidemic. 

Keywords: Dengue, Time series analysis, ARIMA, Brazil, Forecasting, America region 

 

1. Introduction 

Dengue is an important vector-borne disease, transmitted by urban adapted Aedes 

mosquitoes and a major global public health threat. Four distinct serotypes (DENV-1 to 

DENV-4) cause both asymptomatic infections and a wide spectrum of clinical forms, 

ranging from mild to severe (Guzman and Harris, 2015; Messina et al., 2014; The Trung 

and Wills, 2014). The epidemiology of dengue is modulated by the susceptible 
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population of humans, mosquito density, the profile of circulating serotypes, and 

environmental conditions (Brady et al., 2015, 2012; Stanaway et al., 2016). There is no 

specific antiviral treatment for dengue. Control relies mainly on surveillance and 

integrated vector interventions in urban areas (Guzman and Harris, 2015; Wilder-Smith 

et al., 2016). A dengue vaccine (CYD-TDF) was recently tested and licensed in six 

countries (Asian and Latin America) (Ferguson et al., 2016) but not yet recommended 

by World Health Organization (WHO) (WHO, 2016a). Another new dengue vaccine 

(TetraVax-DV) is being evaluated in several Brazilian settings (ClinicalTrials.gov, 

2016). 

Worldwide, dengue cases increased from 2.2 million in 2010 to 3.2 million in 2015, 

with transmission detected in new areas and large outbreaks in 2015. Approximately 

half a million severe dengue cases are estimated to require hospitalization each year, 

with 2.5% resulting in death (WHO, 2016b). Other estimates indicated an even higher 

magnitude of dengue infection and disease worldwide, ranging from 60 million 

(Stanaway et al., 2016) to 96 million of symptomatic cases in 2010 (Bhatt et al., 2013). 

The Americas accounted for 2.35 million cases (~73.4%) of dengue; with more than 10 

thousand severe cases and 1,181 deaths being estimated (WHO, 2016b). Brazil and 

Mexico had the bulk of cases in the Americas (Bhatt et al., 2013). Reducing mortality 

and morbidity are among the goals of WHO global strategy for dengue prevention and 

control for the period 2012-2020 (WHO, 2012). In 2013, the global burden of dengue 

was estimated as 1.14 million disability-adjusted life-years, based on both fatal and non-

fatal outcomes (Stanaway et al., 2016). A multicentre study conducted in 2012-2013 in 

Brazil showed a high economic impact of dengue at societal level during epidemic and 

endemic periods (Martelli et al., 2015). 
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Surveillance of infectious disease is defined as the systematic reporting, monitoring and 

data analysis of cases, aimed at public health prevention and control (Porta, 2014). 

Brazil reported a dramatic increase in dengue incidence in 2015, with over 1.5 million 

cases, approximately three times higher than the previous year (Brasil, 2016; WHO, 

2016b). Brazil has one of the most comprehensive dengue surveillance systems (Brady 

et al., 2015), which has been widely used to describe the epidemiology of dengue 

(Coelho et al., 2016; Ruberto et al., 2015; Siqueira et al., 2005; Teixeira et al., 2013), 

define outbreaks (Brady et al., 2015; Runge-Ranzinger et al., 2008) and dynamics of 

dengue infection in different urban areas of the country (Amaku et al., 2016, 2015). 

Mathematical and statistical models are frequently used to describe dynamics of dengue 

transmission (Amaku et al., 2016, 2015; Chen et al., 2015; Silawan et al., 2008). Time 

series models can evaluate trend and seasonality patterns of dengue incidence and are 

useful for forecasting. Several time series analysis of dengue described patterns of 

dengue in Brazilian cities, such as: Rio de Janeiro (Luz et al., 2008), Campinas and 

Ribeirao Preto (Martinez et al., 2011; Martinez and Silva, 2011). The performance of 

infectious diseases forecasts was recently evaluated for Mexico showing that climate 

data did not significantly improve the seasonal autoregressive model (Johansson et al., 

2016). 

Recently, cocirculation of other arboviruses, in particular chikungunya (2014) and Zika 

(2015), was detected in Brazil. These vector-borne diseases have similar epidemiology 

and symptoms which might lead to misclassification of dengue cases and a possible 

overestimation of dengue notification (Faria et al., 2016; Musso and Gubler, 2016; Silva 

et al., 2016; Wilder-Smith et al., 2016). Cocirculation of dengue, Zika and/or 

chikungunya viruses might occur in areas infested with Aedes aegypti mosquitoes since 

this competent vector has a widespread distribution in Brazil (Musso and Gubler, 2016). 
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Zika cases were not a notifiable disease before 2016, therefore cases were registered as 

"dengue-like" disease in the previous year in Brazil (Brito et al., 2016; Pessôa et al., 

2016). 

Our study aimed to evaluate the temporal patterns of dengue incidence from 2001 to 

2014 in Recife in the Northeast region and Goiania in the Midwest region using 

Autoregressive Integrated Moving Average (ARIMA) models. We constructed time 

series models for dengue and forecasted the dengue incidence for 2015. This analysis is 

invaluable to evaluate temporal trend of dengue incidence before the introduction of 

these other arboviruses and any dengue vaccine. 

 

2. Material and methods 

2.1. Study areas 

We analysed dengue surveillance data from two Brazilian cities: Recife, capital of 

Pernambuco State, and Goiania, capital of Goias State. Recife is located in the 

Northeast region, on the Atlantic coast (08° 03′ South latitude and 34° 52′ West 

longitude), with annual average temperature of 25.8°C and 1,804 mm precipitation. The 

estimated 2015 population was approximately 1.6 million inhabitants, with a population 

density 7,040 inhabitants/km2 (Instituto Brasileiro de Geografia e Estatistica, 2015). 

Goiania, located in the Midwest region (16° 41' South latitude 49° 15' West longitude) 

at an altitude of 749 m, has annual average temperature of 23.1ºC and 1,414 mm 

precipitation. Its estimated 2015 population was approximately 1.4 million inhabitants, 

with a population density of 1,777 inhabitants/km2 (Instituto Brasileiro de Geografia e 

Estatistica, 2015). These cities are located in two distinct regions of Brazil and have 

distinct pattern of dengue disease. Although both cities present high dengue incidence, 

the DENV-1 serotype was introduced to Recife seven years before Goiania (1987 and 

ACCEPTED M
ANUSCRIP

T



6 
 

1994 respectively) (Amaku et al., 2016; Barcellos and Lowe, 2014; Siqueira et al., 

2005; Teixeira et al., 2013). These distinct epidemiological characteristics offer 

opportunity to assess the generalizability of modelling techniques. 

 

2.2. Data collection 

We used the dengue data extracted from the Brazilian National Notifiable Diseases 

Information System (SINAN) for Recife and Goiania, from 2001 to 2015. All suspected  

outpatient and inpatients dengue cases from public and private health services are 

included in the SINAN database (Teixeira et al., 2013). This electronic data is 

transmitted from municipal to state and national levels. The surveillance report include 

data on: demographic, days since onset of symptoms, clinical findings, serologic tests 

(IgM antibodies, NS1 detection), virus isolation, RT-PCR, DENV serotype, 

histopathology and imunohistochemistry, case classification according to disease 

severity and outcome. In this dataset, the laboratory results were rarely available since it 

is not a required data for dengue notification. According to the Brazilian Ministry of 

Health (MoH) and WHO, dengue case is defined as fever (2-7 days) and two of the 

following criteria: nausea/vomiting, rash, aches and pains, positive tourniquet test, 

leukopenia and any warning sign. Laboratory confirmation is done by virological, 

molecular and/or serological methods. (Brasil, 2013, 2009). During the period 2001-

2013, cases were classified as: dengue fever, dengue with complications, dengue 

haemorrhagic fever or dengue shock syndrome. Since 2014, Brazilian MoH adopted the 

revised 2009 WHO classification: dengue fever, dengue with warning signs and severe 

dengue (Brasil, 2013, 2009; WHO, 2009). We included all dengue cases confirmed by 

clinical/epidemiological and/or laboratorial, registered in Recife and Goiania.  
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2.3. Data standardization 

During the study period, the dataset for the years 2001-2006, 2007-2013 and 2014 had 

differences regarding number and variables names, requiring harmonization. After 

checking and cleaning the dataset was standardized for the entire period to perform time 

series analysis for Recife and Goiania. Duplicated and missing records were identified 

and deleted by SINAN automated routine (Coelho et al., 2016). We excluded dengue 

cases coded as discarded, i.e. an initial dengue diagnosis having superseded, using the 

dengue classification variable. 

 

2.4. Data management and statistical analysis 

We explored the temporal patterns of dengue cases for each city by plotting monthly 

incidence for the study period. We evaluated the overall features of the data using this 

graphical approach: trends (increase, decrease), seasonality, outliers, smooth changes in 

structure (Chatfield, 2000). 

We performed Seasonal Decomposition of Time Series by Loess (STL). Time series 

were decomposed into three components: trend, seasonal and remainder (residual). STL 

decomposition data were graphed on four panels: data (monthly dengue incidence), 

seasonal (variation in the data within a year), trend (variation in the data in the long-

term period) and remainder (variation that remains after removing seasonal and trend 

components) (Cleveland et al., 1990; Silawan et al., 2008). 

When seasonality was an important component we applied exploratory data analysis to 

display the variation of the monthly dengue incidence (2001-2014). The seasonal box-

plot allows to show the incidence of dengue distribution, including median values, the 

first and third quartile ranges, expected minimum and maximum values, outliers and 

extreme values (Tukey, 1977). 
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2.5. The ARIMA models 

Estimating parameters 

We used the Box-Jenkins approach to fit Auto-Regressive Integrated Moving Average 

(ARIMA) models, which are defined by three terms (p, d, q) and used for non-seasonal 

time series. The first step of the model identification was to evaluate the trend 

component (d). We explored the monthly incidence of dengue cases with 12 months 

periodicity (S=12 observations per year). We transformed the series by differencing the 

scores (months) to make it stationary, if appropriate. The number of differencing 

operations is the d parameter. Logarithmic transformation (logarithm natural, ln) was 

applied to stabilize the variance in one city (Goiania). As a second step, we identified 

the auto-regressive (AR) component (value of p). As a third step, we identified the 

moving average (MA) component, value of q (Box and Jenkins, 1976; Hyndman and 

Khandakar, 2008; Nobre et al., 2001). 

We included the seasonal component using Seasonal Auto-Regressive Integrated 

Moving Average (SARIMA) model if the previous analysis indicated evidence of 

seasonality. This component has three more parameters denoted P, D and Q (Hyndman 

and Athanasopoulos, 2013; Nobre et al., 2001). These parameters are similar to p, d 

and q but operate on the scale of the periodicity (12 months). For example, P=1 means 

an autoregressive term of order 1 on the annual scale, i.e. the value in any month 

depends, in part, on the value in the same month of the previous year. 

Analysis of the shape of the autocorrelation functions (ACF) and partial autocorrelation 

functions (PACF) allowed estimation of the AR and MA parameters and therefore 

identification of plausible models (Hamilton and Watts, 1978). 
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In order to identify the best model, we fitted several ARIMA models and carried out 

diagnostic validation considering the distribution of standardized residuals. We applied 

diagnosis checks (Ljung-Box test) to the residuals for each estimated model; residuals 

must be equivalent to white noise (Box and Pierce, 1970; Ljung and Box, 1978). We 

compared the models by the corrected Akaike Information Criterion (AICc) and 

selected the one with the lowest AICc value (Akaike, 1974). We used the final ARIMA 

models to predict monthly dengue cases for the year of 2015 (12 months), with 95% 

prediction interval (95% PI). We compared these predictions with the observed data 

(SINAN). 

 

The statistical analysis for STL decomposition, estimation of ARIMA models and 

figures were performed using the package stats, software R version 3.3.3 (The R 

Foundation for Statistical Computing, Vienna, Austria; http://www.r-project.org). 

 

3. Results 

In the city of Recife the yearly incidence of dengue varied from 139 cases in 2004 to 

35,044 cases in 2002, during the study period (2001-2014). The higher incidences were 

registered in the years: 2002 (n=35,044) considered epidemic year, 2010 (n=9,900) and 

2012 (n=10,146). During the study period, 73,479 dengue cases were reported in Recife. 

We pointed out the only peak of cases in 2002 with around 98% of cases between 

January and May followed by several years with lower occurence of dengue cases. 

(Figure 1A) 

In the city of Goiania the yearly incidence of dengue varied from 3,462 in 2004 to 

54,724 in 2013. The epidemic years were: 2002 (n=15,437), 2008 (n=22,088), 2009 
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(n=23,992), 2010 (n=43,360), 2013 (n=54,724) and 2014 (n=26,547). During the study 

period, 253,008 dengue cases were reported in Goiania (Figure 1B). 

 

Figure 1. Reported monthly dengue case data in Recife (A) and Goiania (B), Brazil 

(2001-2014) 

(A) 

 

(B) 
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Figure 2 presents the monthly cases (ln data for Goiania), trend, seasonal and residual 

(remainder) components derived from seasonal-trend decomposition for Recife (A) and 

Goiania (B). The STL decomposition based on loess showed that trend is the most 

important component for the city of Recife (Figure 2A), while seasonality is the most 

important one in Goiania (Figure 2B). 

 

Figure 2. Trend, seasonal and residual (remainder) components derived from STL 

decomposition of monthly dengue cases for the city of Recife (A) and Goiania (B) (ln 

data), during 2001 to 2014  

(A) 

 

(B) 
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Considering that seasonality was an important component for the city of Goiania we 

performed exploratory analysis of dengue incidence (ln data) for the period 2001-2014. 

The analysis showed that highest incidence was registered from December to May with 

one outlier of 13,985 dengue cases registered in January 2010; lowest incidence from 

July to September, and cases increased from October (Figure 3). 

 

Figure 3. Seasonal box-plot distribution of monthly dengue cases (ln data) in Goiania, 

Brazil (2001-2014) 
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Legend. The box encompasses 50% of the distribution, line within the box represents 

median values, border lines represent the first and the third quartile and dot represents 

outliers. 

 

We tested several models for the city of Recife; however, none was adequate according 

to the model diagnosis. We opted to exclude the peak year of 2002 due to its outlier 

value. This epidemiological pattern was also reported by Amaku et al, indicating 

different intensity of transmission after 2002 (Amaku et al., 2016). After the exclusion 

of 2002 and the previous year (2001), it was possible to build-up an adjusted model for 

the period 2003-2014 and forecasting for 2015. For Recife, the autocorrelation functions 

(ACFs) and partial autocorrelation functions (PACFs) suggested that the best fit model 

was ARIMA (1,1,3)12. Surveillance data registered 35,467 dengue cases between 2003 

and 2014; our model fitted 33,372 cases for the same period. After fitting the model for 

the period 2003-2014 we used the model to the forecast monthly dengue number of 

cases for the year 2015. (Figure 4A and Table 1) 
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For the city of Goiania, we used the natural logarithm of dengue incidence for 2001-

2014. Four ARIMA models were tested; three were excluded by model diagnosis. 

Analysis of ACFs and PACFs suggested that the best fit model was SARIMA (1,0,2) 

(1,1,2)12. In this time series, there was a strong seasonal component (1,1,2) together 

with the aseasonal component (1,0,2), considered mixed model. This final SARIMA 

model was auto-fitted with drift by R software. Between 2001 and 2014 SINAN 

registered 253,008 dengue cases; our model estimated 235,080 cases for this period. 

(Figure 4B and Table 1) 

 

Figure 4. Monthly time series 2003-2014 for Recife for observed and fitted dengue 

cases, and forecast dengue cases for 2015 (A); Monthly time series 2001-2014 for 

Goiania for observed and fitted dengue cases (ln data), and forecast monthly dengue 

cases for 2015 (B) 

(A) 

 

 

(B) 

ACCEPTED M
ANUSCRIP

T



15 
 

 

Blue line represents the observed monthly dengue cases; Red dotted line represents 

fitted monthly dengue cases; Black line and shaded area show forecast for 2015 with 

95% prediction interval. 

 

Table 1. ARIMA models, coefficients and corrected Akaike Information Criterion for 

Recife and Goiania, Brazil 

 ARIMA 

(p,d,q) (P,D,Q)S 

AR1 MA1 MA2 MA3 SAR1 SMA1 SMA2 Drift AICc 

Recife 

ARIMA 

(1,1,3)12 

0.566 -0.024 -0.535 -0.380     1,943.03 

Goiania 

SARIMA 

(1,0,2) (1,1,2)12 

0.666 0.422 0.184  -0.692 -0.080 -0.653 0.014 176.84 

AR: autoregressive; MA: moving average; SAR: seasonal autoregressive; SMA: seasonal 

moving average; AICc: corrected Akaike Information Criterion 

 

Table 2 shows the monthly forecast of dengue cases according to the model in 2015 

with 95% prediction interval (95% PI) for both cities. For Recife, the model predicted 
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total number of dengue cases for 2015 was 4,254 varying from 440 in January to 325 

cases in December. In 2015, the maximum predicted number of dengue cases was 

15,543. The surveillance system (SINAN) registered a total of 35,724 dengue cases 

and/or "dengue-like" illness for the city of Recife; the peak months were March (5,426 

cases) and April (6,138 cases), June-September 2015 has the lowest incidence recorded, 

from 1,302 to 1,948 cases. For Goiania, the forecasting model varied from 5,874 dengue 

cases in March 2015 to 737 cases in September 2015. For the entire year of 2015, the 

forecasted was 33,757 dengue cases, with a maximum of 127,191 cases. In 2015, a total 

of 74,095 dengue cases and/or "dengue-like" illness were registered by SINAN in 

Goiania. 

 

Table 2. Forecasted monthly dengue cases (95% prediction interval) for the cities of 

Recife and Goiania, 2015 

 

2015 

Recife Goiania 

Predicted cases Lower 95% PI Higher 95% PI Predicted cases Lower 95% PI Higher 95% PI 

January  440 29 851 3,744 1,732 8,095 

February 429 - 1,184 5,452 1,746 17,026 

March 384 - 1,312 5,874 1,543 22,360 

April 358 - 1,343 5,549 1,347 22,855 

May 344 - 1,352 4,030 946 17,168 

June 336 - 1,354 1,837 425 7,940 

July 331 - 1,355 896 206 3,897 

August 328 - 1,356 814 187 3,551 

September 327 - 1,357 737 169 3,218 

October 326 - 1,358 1,115 255 4,874 
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November 326 - 1,360 1,479 338 6,466 

December 325 - 1,361 2,229 510 9,741 

Total 4,254 

 

15,543 33,757 9,404 127,191 

 

 

4. Discussion 

In our study the time series analysis of dengue incidence (2001-2014) suggested that 

large variation of transmission patterns in two Brazilian cities. For Recife, Northeast 

region, the data showed one large peak in the year 2002 with more than 35 thousand 

cases, followed by two small peaks in 2010 and 2012. For Goiania, Midwest region, 

there was an increase in the incidence of dengue with several epidemic peaks years 

reaching more than 54 thousand cases in 2013. While the best fitted model for the city 

of Recife was non seasonal ARIMA (1,1,3)12; for the city of Goiania the seasonal 

component was strong and the best fitted model was SARIMA (1,0,2)(1,1,2)12. During 

the study period, December to May were the months with higher dengue incidence in 

Goiania, coinciding with the rainy season regionally. In contrast, the city of Recife has 

fairly constant climate values of high humidity and precipitation throughout the year 

(Siqueira et al., 2005; Teixeira et al., 2013). Therefore, the time series analysis allowed 

to describe different patterns of dengue distribution in two Brazilian settings. 

How to interpret such distinct patterns of dengue distribution during the same time 

period in two Brazilian cities? Brazil is a continental country and dengue virus was 

introduced in the late 80's in Recife (Atlantic coast) and in the 90´s, seven years later, 

DENV-1 was the first serotype to be detected in Goiania (Midwest). Interestingly, a 

previous study of the diffusion of dengue in Brazil used dengue incidence extracted 

from the surveillance data (SINAN), using the capital of Recife and Goiania as 

examples, as in our study. The authors described differences in the time period of 
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achieving high intensity of dengue transmission when taking into account the threshold 

over 300 cases per 100,000 inhabitants for intense dengue transmission (Barcellos and 

Lowe, 2014). In Recife, a high intensity of dengue transmission was detected earlier - 

before 2002 - while in Goiania this threshold was reached later: between 2002 and 

2005. In general, differences in the incidence of dengue reflect the time period of the 

intensity of dengue virus circulation in different urban areas, the vector density and the 

remaining susceptible population (Amaku et al., 2016; Barcellos and Lowe, 2014; 

Morato et al., 2015). 

In Rio de Janeiro, the time series analysis of dengue incidence from 1997 to 2004 using 

seasonal ARIMA was considered adequate to predict dengue incidence for the year 

2005, suggesting that this model could be expanded to other geographical areas and to 

monitoring dengue and other infectious diseases (Luz et al., 2008). In concordance with 

the previous study, the results from time series analysis in two Brazilian cities 

(Campinas and Ribeirao Preto) in Sao Paulo State, considered that seasonal ARIMA 

models were reliable for prediction of the dengue incidence one year ahead. However, 

the authors pointed out that sometimes forecasting dengue incidence in epidemic years 

could be more complex due to the possibility of the introduction or reintroduction of 

dengue serotypes and the lack of immunity of population (Martinez et al., 2011; 

Martinez and Silva, 2011). Amaku et al (2016) analysed the dynamics of dengue 

transmission using Ross-Macdonald model for the city of Recife in order to predict 

outbreaks of dengue fever, using surveillance data for the last decade (Amaku et al., 

2016). The authors also described the 2001-2002 outbreak followed by years with 

marginal dengue transmission. They explained this epidemiological context by the 

reduced number of susceptible individuals due to herd immunity since DENV serotypes 

(DENV1 to DENV4) circulated in the last the three decades in Recife (Amaku et al., 
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2016, 2015; Cordeiro et al., 2007). Seroprevalence studies for dengue antibodies 

assessment conducted in Recife in 2005-2006 showed that almost 90% of Recife 

population had immunity to one or more serotypes (Braga et al., 2010; Castanha et al., 

2013). 

In our study it was not possible to link the dengue outbreaks with the predominant 

serotype due to the paucity of serotype data in the surveillance system for the studied 

period (data not shown). A review of the epidemiological trend of dengue disease in 

Brazil 2000-2010 indicated that DENV-1 was the predominant serotype at the 

beginning of the decade; DENV-3 from 2003 and DENV-2 from 2007 (Teixeira et al., 

2013). 

The estimated ARIMA model for Goiania fitted adequately to the observed dengue 

incidence data for the 2001-2014 and the exclusion of the years 2001-2002 was 

necessary for model build for Recife. For Recife, the model predicted ~15.5 thousand 

dengue cases as the higher prediction interval in 2015. This forecasting indicated at least 

20,000 cases less than the total of 35,729 cases registered by SINAN. In fact, during the 

year 2015, a MoH recommendation led to all cases of exanthematic disease being 

notified as "dengue-like", hence overestimating dengue incidence. This disparity 

between observed and predicted cases may now be explained by the introduction of 

Zika virus in the city in 2015 (Brasil, 2016). Assuming that the model prediction is a 

reasonable reflection of dengue incidence, approximately 20 thousand of Zika cases 

could have been misdiagnosed as dengue virus infection during the first wave of Zika 

virus in Recife. A cross-sectional study, conducted a during the peak of 2015 outbreak 

in Recife showed that 86% of 1,046 suspected cases of arbovirus could be classified as 

Zika cases (Brito et al., 2016). Our results showed that the 2015 estimated dengue cases 

from the ARIMA model could be from 44% to 88% smaller than the registered cases by 
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SINAN. The cocirculation of Zika, chikungunya, and DENV-1 was also described in 

this study area in 2015 (Pessôa et al., 2016). Recent surveillance-based analysis (2015-

2016) showed that approximately 80% initially suspected dengue cases have been 

discarded after investigation and considered as possible Zika virus cases (de Oliveira et 

al., 2017). 

The present study has the inherent limitation of using secondary data from dengue 

surveillance. Such data are prone to underreporting or over-reporting during endemic or 

epidemic years, or bias to health units capacity in reporting dengue cases (Barcellos and 

Lowe, 2014; Morato et al., 2015; Runge-Ranzinger et al., 2008). Another drawback of 

dengue surveillance is the scarce data on serotypes, hampering the identification of the 

main serotypes causing outbreaks (Barcellos and Lowe, 2014). We tested several 

models for the city of Recife but the ARIMA model was considered appropriate only 

when we excluded the year 2002, the largest outbreak, and consequently 2001 from the 

time series. As noted in our study the introduction of Zika virus and/or other urban 

vector-borne diseases like chikungunya might distort the dengue notification as 

occurred in the last three years in Brazil (Brasil, 2016; Pessôa et al., 2016). Climate 

variables, vector density and spatial distribution of cases were out of the scope of the 

analysis; however, the seasonality patterns presented in Goiania may be due to climate 

variation. Including climate variables in the model could give a better fit but this has 

been a controversial issue in the literature, some studies indicated an improvement 

while others did not find significant change in the adjusted model (Johansson et al., 

2016). 
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Our findings showed evidence of the heterogeneity of dengue temporal patterns in two 

settings in Brazil during 2001-2014. The ARIMA models fitted adequately for the time 

series of dengue incidence for Recife and Goiania, the later with a seasonal component. 

The adequacy of prediction might be hampered due to the co-circulation of other 

arbovirus in the year of prediction. Differences between the models may be explained 

by the introduction of dengue virus in the late 80´s in Recife and in the 90´s in Goiania 

and important differences in the intensity of transmission. The time series models may 

be considered as a baseline for the time series analysis of dengue incidence before the 

Zika epidemic (2015), chikungunya virus introduction (2014) and before DENV 

vaccine implementation in Brazil. It was also an opportunity to estimate the number of 

Zika cases in 2015 previous to the implementation of the Zika notification. The time 

series analysis could be applied to other settings in order to provide early warning of the 

increase in arbovirus diseases. 
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