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ABSTRACT

In medical research, covariates (e.g. exposurecantbunder variables) are often measured
with error. While it is well accepted that thisrimduces bias and imprecision in exposure-
outcome relations, it is unclear to what extenhsissues are currently considered in research
practice. The objective was to study common prastregarding covariate measurement error
via a systematic review of general medicine andierpiology literature. Original research
published in 2016 in 12 high impact journals walk-tiext searched for phrases relating to
measurement error. Reporting of measurement encbmaethods to investigate or correct for
it were quantified and characterized. 247 (44%)haf 565 original research publications
reported on the presence of measurement error. @3¥%ese 247 did so with respect to the
exposure and/or confounder variables. Only 18 pabbns (7% of 247) used methods to
investigate or correct for measurement error. Coumeetly, it is difficult for readers to judge
the robustness of presented results to the existehmeasurement error in the majority of
publications in high impact journals. Our systemagiview highlights the need for increased
awareness about the possible impact of covariatsuanement error. Additionally, guidance

on the use of measurement error correction metisauscessary.

Key Words: bias; epidemiology; measurement error; medicinsctassification; review
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WHAT’'S NEW

About half of the reviewed original research frokhtap-ranked general medicine and

epidemiology journals mentioned the concept of mesament error in some form.

Investigations into the impact of covariate (expesand confounder) measurement
error on studied relations as well as the appbcatf measurement error correction

methods were rare.

This extensive systematic review confirms suspgi@ised over a decade ago by
many authors as well as another review on a sinafac: that the potential impact of

measurement error on studied relations is ofteargghand misunderstood.

Consequently, it is difficult for readers to juddpe robustness of presented results to
the existence of measurement error in the majofipublications in high impact

journals.

Our systematic review highlights the need for baticyeased awareness about the
possible impact of covariate measurement erronyvels as guidance on the use of

measurement error correction methods.
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1. Introduction

Measurement error is one of many key challengesdking valid inferences in biomedical
research [1]. Errors in measurements can arise tduénaccuracy or imprecision of
measurement instruments, data coding errors, egtfrting, or single measurements of
variable longitudinal processes, such as biomarkéfish the increased use of data not
originally intended for research, such as routiaeecdata, ‘claims’ databases and other
sources of ‘big data’, it is conceivable that measent error is becoming increasingly

prevalent in this field [2].

It is generally well accepted that measurementrearad classification error (hereinafter
collectively referred to as measurement error) ithee the dependent variable (hereinafter
outcome) or independent explanatory variables (hereinafteariates; e.g. exposure and

confounder variables) can introduce bias and imgigt to estimates of covariate-outcome
relations. Among others, several textbooks [3—&jthadological reviews [7,8] and a tool-kit
[9], have demonstrated how to examine, quantify] aarrect for measurement error in a
variety of settings encountered in epidemiology.sMof this work has been focused on
measurement error in covariates given its concegredter impact on studied relations than
measurement error in the outcome [4]. Despite threseurces, it is suspected that the

attention it receives in applied medical and epidérgical studies is insufficient [10,11].

Over a decade ago, a review of 57 randomly selgutddications from three high ranking
epidemiology journals reported that 61% of the eesd publications recognized the
potential influence of measurement error, but &8% made a qualitative assessment of its
impact on their results, and only one quantifisdpibtential impact on results [12]. In light of

the increasing prevalence of measurement erroreidical and epidemiological research and
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increasing availability of methods and softwaretcount for measurement error, a new and

more comprehensive investigation into current pcads necessary.

We conducted a systematic review to quantify thierxto which (possible) measurement
error in covariates is addressed in recent medindl epidemiologic research published in
high impact journals. To guide the understandinghaf results of the review, we briefly

introduce key concepts in the field of measurenaermr.

2. Measurement error

Many variables of interest in medical researchsaitgect to measurement error. Instead of an
error-free and unobservedrue value of a variable, researchers have to deal \aith
imperfectly measuredpbserved value. For the remainder of this section, we aarsithe
erroneous measurement and perfect measuremensiofle underlying entity as different
variables. Examples of variables prone to measunemor include the long-term average
level of a variable biological process (such a8lpressure) when the researcher may only
have access to a single measurement; average addyic intake measured using food
frequency questionnaires; diabetic status ascedaiusing electronic health record data; and

individual air pollution exposure based on meas@m@sfrom a fixed monitor.

In the context of multivariable statistical modedsich as regression models, measurement
error can be present in the outcome and/or coeati&e focus on error in covariates. In their
seminal text-book, Carroll et al. [5] describe #iect of measurement error in covariates as a
“triple whammy”: covariate-outcome relationshipshdae biased, power to detect clinically
meaningful relationships is diminished, and feadwethe data can be masked. Whether bias

is present, and if so its direction and magnitudiEpend on the form of the measurement

5
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error. It is therefore important to quantify anya®idue to measurement error and to obtain
corrected estimates where possible. Three importansiderations in this process are:
identification of the variables of interest thate ameasured with error, what type of
measurement error is present, and what additiof@mation is available to help characterize

the error.

2.1 Types of measurement error and their effects
Measurement error is characterized differentlydontinuous and categorical variables. For
continuous variables, four types of error can Istimjuished that describe how the observed

variable relates to the unobserved, true variable.

The simplest type of measurement erabassical error, occurs when the observed variable
can be expressed as the true variable plus a rasdorponent with zero mean and constant
variance. As a result, when measurements of aarodd variable (e.g. blood pressure) are
repeatedly taken from the same person, the averifeese measurements would approach
that person’s true variable value (e.g. the usuabd pressure level) as the number of
replicate measurements increases. In the contesttadbgic research, the estimated exposure-
outcome relation will be biased towards the nubdeknown as attenuation) when only the
exposure variable is measured with classical €®pr However, the estimated relations
between the confounders (provided that they aresamed without error) and the outcome in
the same model could be biased in either directi@pending on the form of the relation
between the main exposure and the confounderslldins that classical measurement error
in one or multiple confounders can result in bragither direction for the exposure-outcome

relation, even if the exposure is measured witleordr [13]. The direction and magnitude of
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this bias is thus unpredictable and this holdsdiffierent regression models of interest in

epidemiology, including logistic, Cox and lineagression models [5].

Two other types of error that are related to thessical error model arsystematic and
differential error. When the error is systematic, the observadiable is a biased
representation of the true variable and the aveofgepeated observed measurements would
no longer approach the true variable value. Measeng error is described as ‘differential’ if
the mismeasured covariate would help predict thdistl outcome even if the values on the
true covariate would have been observed (i.e., @hter is dependent on the outcome,
conditional on the values of the true covariatdjfebential error depending on the outcome
can arise when the outcome occurs prior to the uneasent of covariates, as in case-control
studies. Both systematic and differential error canse bias in the exposure-outcome, or

more generic, the covariate-outcome relation inegitlirection.

The last common type of measurement error is c@késon error, which arises when the
true variable is equal to the observed variables pluandom component with zero mean and
constant variance; i.e. the true and observed blarieeverse roles, compared to classical
error. Berkson error can occur when group averages used in place of individual
measurements. Examples of Berkson error are ofiendf in environmental epidemiology
where individual exposure to air pollutants is sgqual for individuals that live within a
certain radius of an air pollution monitor. WhileefBson error in covariates can diminish
precision, in many cases it does not cause bidbeanestimates of the exposure-outcome

relation [5,14].
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For categorical variables, measurement error isnconty referred to asnisclassification.
Misclassification can be summarized using sengjtiand specificity when the variable is
binary. In the situation where a single binary estqpe is related to an outcome, random non-
differential misclassification present in the expas will result in attenuation of this
exposure-outcome relation [1]. However, when tkgosure has more than two categories,
when the exposure is subject to systematic or reifittal misclassification, or when
confounders measured with error are added to thkysia model, it is once more difficult to

predict in which direction the estimate of the teposure-outcome relation will be biased

[4].

2.2 Measurement error correction methods

Several methods have been proposed that aim teatdar bias due to measurement error in
covariates. We highlight a few measurement errorection methods below that can be used
when continuous variables are measured with efitwe. methodological literature addressing

measurement error corrections is extensive, e,4,914].

Regression calibration was proposed by Rosner,eWidnd Spiegelman in 1989 [15]. The
essence of regression calibration is that the gbdeerror-prone covariate is replaced by a
prediction of the expected value of the true vdeiah the analysis. Regression calibration can
be used when there is non-differential classicalsgstematic measurement error. This
approach requires information on the degree of oreagent error, which is the error variance

in the case of classical error. We note how thigrmation can be obtained below.

Cook and Stefanski proposed the simulation-extetfmsi (SIMEX) method [16]. This

method works via a two-step procedure. First, da¢asimulated by adding additional error of
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different magnitudes to the observed exposure meamnts; the simulated data sets are used
to estimate the effect of this additional errortbe exposure-outcome relation. As a second
step, the estimate of the exposure-outcome rel&iertrapolated back to the situation where
there is no measurement error using an extrapalanodel which relates the estimated
exposure-outcome association parameter to the eefmaeasurement error. Like regression
calibration, this method requires information abdhe amount of measurement error
(variance) in the observed variable. SIMEX as dbedr above assumes non-differential
classical error, yet has also been extended to wighal misclassified categorical variables

[17].

Alternatively, a large range of so-called latentiallle models have been suggested to
account for measurement error during analysis. ntat@ariable models generally rely on
replicate measurements of error-prone measurestitoae a latent variable to represent the
true error-free variable [18]. This latent variabbn replace the observed error-prone variable
in the exposure-outcome analysis or can be moddifedtly in the exposure-outcome model,

for instance, using Structural Equation Modelin§,B].

We acknowledge that it can be very challenging étednine the structure and amount of
measurement error due to the plethora of underlgumgbserved) factors that may influence
it. While further guidance is required on how teess the amount and type of measurement
error in practice, it can generally be recommenttectollect additional data, whenever
feasible, either in a subset of the study samplgossibly in an external validation sample, to
compare observations on a covariate that is (stephed being) measured with error and an
error free representation of that covariate (ifrsac'gold standard’ exists). This information

can subsequently be used to study measurement sgrumtures, amount of measurement
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error, and to inform measurement error correctiogthmds (e.g. regression calibration or
SIMEX, among others), which allow for a measurenmanr corrected analysis on the whole
study sample. Alternatively, when available, repdaneasurements of a covariate measured
with error can be used to quantify measurementr eaoance and allow for measurement

error corrected analyses.

2.3 Availability of additional information for measurement error corrections
Additional information about the form of the measuent error is often required to quantify
its impact on the exposure-outcome relation anemgatlly correct for it. This information

can be obtained from validation data or, if the@eis classical, replicate measurements.

Validation data contains the error-prone variatbmgside the true variable. Typically, these
data are only available for a subset of the staahyme or the information may come from an
external source, such as another data set or peblieesults. For example, when participants
of a study have been requested to self-report Bidirvia an online questionnaire (the error-
prone variable), a subset may have had their BMasued according to a systematic

protocol by a research assistant (the ‘true’ véelab

Replicate measurements may consist of multiple oreasents with error from the same
instrument (e.g. multiple measurements of bloodssuee), or sometimes multiple
measurements from different instruments that ainme&asure the same true variable (e.qg.
multiple diagnostic tests for the same diseasepli€es may be observed for all or a subset

of study participants and is often collected whexasuring a variable biological process.

10
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When validation or replication data are acquirenirfrexternal sources, the similarity of these

research settings with the current setting, iransportability, needs to be assessed [5].

If there is little information available to inforrmeasurement error correction methods or to
assess the structure of the measurement error mib@epotential impact of measurement
error can still be explored through sensitivity lggas. Hypothetical scenarios can then be
assessed by rerunning the analysis assuming fixedusts of measurement error or
misclassification. A formal extension of sensitwianalysis, referred to as “probabilistic
sensitivity analysis” (thoroughly detailed by Gréserd & Lash in chapter 19 of [1]) can also
be used to assess many potential scenarios witlridg amounts of measurement error
simultaneously, and obtain an estimate of the axgesutcome relation adjusted for both

systematic and random errors.
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3. Methods

We performed a systematic review of original reskegoublished in 2016 in high-impact
medical and epidemiological journals. Our aims wkrei) quantify and characterize the
reporting of measurement error in a main exposm/oa confounder variables and their
possible impact on study results and ii) quantify aharacterize the use of available methods
for investigating or correcting for measurementoerin the exposure and/or confounder

variables.

Using the Thomson Reuters InCites rankings of 2@0%, the 6 highest-ranking journals in
the categories “General & Internal Medicine” (Newgdtand Journal of Medicine, Lancet,
JAMA, BMJ, Annals of Internal Medicine and JAMA #&rhal Medicine) and

“Epidemiology” (International Journal of Epidemiglp, European Journal of Epidemiology,
Epidemiology, American Journal of Epidemiology, @l of Clinical Epidemiology, Journal

of Epidemiology and Community Health) were ideetifi The journal Epidemiology Review
was excluded as it is an annual journal. All puddiens of the above-mentioned journals from
the period 01/01/2016 to 31/12/2016 were identifiming PubMed (see search string in

Appendix A).

Title and abstracts were screened by one revieW®). (Publications that were not original
research (e.g. brief reports, essays, cohort pgfdnd guidance papers) were excluded. Also
excluded were: methodological research, review areta-analysis research, qualitative
research, policy oriented studies, descriptive isgjdstudies that analyzed data on an
aggregated level, and publications that did noéssidividual health related exposures and

outcomes.

12
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After initial screening, a full-text search was foemed in the remaining manuscripts using a
Boolean search with stemming in Adobe Acrobat Xb.Pfhe search string contained the
term “measurement error” and synonyms such as tassification” or “mismeasured”, as
well as phrases relating to the validity of thelected data, including “information bias” or
“self-reported”. The exact search string can bentbun Appendix B. Manuscripts that
contained any of the terms included in the seatmiigswere screened to assess whether they:
a) discussed measurement error with respect taquestudies or the design of the current
study; b) discussed the potential of measurement @r one or more of the covariates; c)
discussed the potential effect of measurement emothe presented study results; or d)
described methodology to investigate or correctafty measurement error. Publications that

fulfilled at least one of these criteria were ird#d in the following data extraction step.

The included publications were reviewed indeperigidit two readers (TB and MM) using a
standardized data extraction form (see Appendix T®)js form was pilot tested by four
researchers (TB, MS, RG, MM). Disagreements weseusised until consensus was reached.
The elements extracted included: design of datéeaan, study characteristics, clinical
domain, characterization of variable(s) subjectn@asurement error (exposure/confounder),
sections of  the article  where measurement error  wasientioned
(abstract/introduction/methods/results/discussiomgporting of possible effects of
measurement error on study results (direction amgnmude of effect), reporting of the
assumed type of error, reporting of methods thatstigated the impact of, or attempted to

correct for, measurement error in exposure or aamder variables.

Articles that reported impact of measurement esrazorrections for measurement error were

included for additional review by four readers (TBS, RG, MM). For these publications,

13
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data were extracted from the main document andgupelementary materials. The methods
used were characterized, alongside how this wasrtexp and the type of additional

information used.

4. Results

Figure 1 depicts the number of included papersaah estep of the review process. Of the
1178 articles found in PubMed, 565 (337 from Epigdogy journals and 228 from General

& Internal Medicine journals) were judged as orainmesearch satisfying our inclusion

criteria. Of these, 247 (44%) directly addressedasueement error in some form.

Characteristics of these included studies are fannkhble 1. Eighteen of these publications
(3% of the 565) investigated the possible impactoofcorrected for, measurement error.
Thirteen of these eighteen publications were fropid&miology journals (4% of the 337

Epidemiology publications) and the remaining fiveres from General & Internal Medicine

Journals (2% of the 228 General & Internal Medicpblications). Table 2 shows from

which journals the publications that directly ads®d measurement error originated.

>> insert Fig. 1 Flow Diagram Detailing the Systematic Review Pesge
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>> insert Table 1 General Characteristics of the 247 Publicationast Bxplicitly Report on
Measurement Error (ME) in Some Form.<<

ME = Measurement error

8174 (70%) publications considered MAly in the discussion section

® Mentions made of ME pertained to previously pulgisihesearch and not to the study presented in the
published paper.

°ME in the presented study was prevented due tsides made during the design of the study.
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>> |nsert Table 2 In Which Journals the 247 Publications That Regzbdn Measurement
Error (ME) and That Investigated or Corrected foiVere Published.<<

ME=Measurement error

4.1 Measurement error in main exposure variables

A total of 195 (79%) of the 247 publications regolon (possible) measurement error in the
main exposure variable. Of these 195, 89 (46%)rteddhe presence of measurement error
in the exposure but did not mention, or were uncémut, its possible effect on the studied
relations; 66 (34%) reported that the measurenreot e the exposure did or could have led

to underestimation of the exposure—outcome rela@&n(13%) reported that measurement
error in the exposure was anticipated to have ldrma negligible effect on the estimated

exposure-outcome relation; three (2%) publicatisteted that measurement error in the
exposure could have led to both over- or underesitim of the studied effect; and one

publication reported a possible overestimation b e€xposure—outcome relation. 11 (6%)

publications explicitly reported that their expaswariable was measuredgthout error.

Information about the nature of measurement erras vweported by 59 (30%) of the 195
publications. For instance, these papers made ges&tements about the structure of the
measurement error (e.g. using terms such as “randoor” or “differential error”) or

provided details on possible dependence of the uneaent error on other variables in the
analysis. Four publications (3%) were specific dbthe assumed error model; one
publication assumed the error to be of the Berkgpa and the remaining three investigated

the form of the measurement error.

4.2 Measurement error in confounder variables

16
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Of the 44 publications that reported on measureneerdr in the confounders, 29 (66%)
reported the presence of measurement error withhautioning (or were unclear about) its
possible effect on the studied relations, six (14épprted that the measurement error in the
confounder did or could have led to underestimaidnthe relation between the main
exposure and the outcome, and four (9%) reportadnieasurement error in the confounder
was anticipated to have no or only a negligibleafbn the main exposure—outcome relation.
None of the publications reported on possible ateration of the main exposure-outcome
relation due to confounders measured with errore F11%) publications explicitly reported
that their confounder variable(s) were measuvigdout error.

Six (14%) of the 44 publications made general statds about the structure of the

measurement error. One discussed the assumedrardat.

4.3 Measurement error impact and correction
Of the 247 publications that directly reported oreasurement error, 18 (7%) either
investigated its impact on the studied relationsarrected the exposure-outcome relation for

measurement error (Table 3).

>> |nsert Table 3 Characteristics of the 18 Publications That Reggban Investigation of or
Correction for Measurement Error (ME).<<

ME=Measurement error
*Methods designed specifically for a field of amgliresearch

Seven publications (39%) of the 18, applied measarg error correction methods. Two
publications used regression calibration, relyingrdernal validation data. One of these [21]
used additional data gathered for a subset ofgyaatits to account for measurement error in

the exposure (daily coffee intake). The other [@@jrected for measurement error in several

17



382 anthropomorphic measurements using data from easdikdation studies conducted within
383 the same cohort. One publication [23] used a naarpatric method [24] to correct for
384 underestimation of the exposure-outcome relaticsabse of assumed random measurement
385 error in the exposure (plasma triglycerides valatelaseline). Another publication [25] used
386  external observed air quality monitoring data torect their estimates of individual air
387 pollutant exposure. Two publications used factoalygsis to define a latent exposure. One
388 [26] implemented a latent variable model to detaesreach individual’s disability score using
389 many different items of a conceptual framework d@scribing functioning and disability.
390 This score was then used in a regression anallysianother [27] the factor analysis was
391 embedded in a structural equation model where tlaBarSD status was estimated from
392  multiple clusters of symptoms suggestive of PTSiDalfy, Leslie et al. [28] used an ad-hoc
393 approach, coined ‘least significant change’, toetakto account inherent instrument
394 measurement error when ascertaining exposure sf@solute bone mineral density
395 difference).

396

397 The remaining 11 (61%) of the 18 publications inigeged the impact of measurement error
398 on the exposure-outcome relation using sensitatglyses. In five publications [29-33], an
399 assumption was made about the amount of possibdsurement error and its effect on the
400 exposure-outcome relation was quantified. Often wms achieved by looking at a subgroup
401  of the original sample for which the mismeasuredalde of interest was assumed to be
402 measured with less or no error. Four publicatio3%-B7] looked at multiple scenarios in
403  which they assumed different amounts of measureereot. The remaining two publications
404  [38,39] performed a probabilistic sensitivity arssy All authors reported that the results of

405 the sensitivity analyses were either similar tosthof the conventional analyses or did not

18
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influence their conclusions. No study investigatieel impact of measurement error on their

results using an external dataset.
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5. Discussion

This review provides an overview of the attentiameg to measurement error in recent
epidemiological and medical literature. We foundtth high proportion (44%) reported on
the (possible) presence of measurement error iroonere recorded variables. 70% of these
addressed measurement error in a qualitative maonlgr in the discussion section. In
contrast, few publications (7%) used some form ehsurement error analysis to investigate

or correct the exposure-outcome relation for thes@nce of measurement error in covariates.

The results of our review can be compared to tl@2@view by Jurek et al. [12]. In their
review of 57 papers published in 2001 in 3 high aetpepidemiology journals (American
Journal of Epidemiology, Epidemiology and the Intgronal Journal of Epidemiology), the
authors reported that 61% discussed measurememtierexposure variables in some form.
Based on the 565 original research publicationkidex in our review, we found the attention
given to exposure measurement error in 2016 t@werl (35%). In both studies, roughly half
of included papers did not report on the expeatgobict of measurement error on the studied
relations (2001: 51% vs 2016: 46%), and the apfptinaof measurement error correction
methods was found to be relatively rare (2001: 9862016: 3%). However, a marked
difference was found in the proportion of paperporéng possible attenuation of the
exposure-outcome relation due to measurement @001: 9% vs 2016: 34%). We note that
the comparison between the reviews should be irerg with some caution due to
differences in the designs of the reviews. Foraneg, our review was based on a larger
sample of publications, examined measurement arroonfounder variables, and considered

both “General & Internal Medicine” and “Epidemiolggournals.
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Half of the 565 included publications in our stugyported about measurement error being
present in any of the studied variables. In ournigm, this proportion is quite high
considering the denominator includes studies irclvimeasurement error may not be an issue
(e.g. clinical trials with objective endpoints suals mortality). As such, many authors

justifiably ignored the issue and did not reporitan the final publication.

As compared to the abundance of qualitative statesnenade about the presence of
measurement error, we found formal measurement ew@uations to be surprisingly rare.
About 4% of the papers that made a qualitativeestaht about measurement error quantified
its impact using sensitivity analyses. Only 2% us$eanal measurement error correction
methods. Several reasons for this low prevaleaoebe postulated. In practice it can be very
challenging to properly assess the structure anduatmnof measurement error. Obviously,
determining a strategy to account for measuremeat & the analysis is then very difficult.
But even when a suitable strategy can be determandddata are available to implement the
strategy, there may still be lack of familiarity tivithese methods and available software
among applied researchers, medical readers andajoeditors, which may frustrate the
adoption of these methods in the medical literatboe example, statistical software such as
R [40] can be used to implement regression caltmafsee supplementary material of [9]),
SIMEX [41] and latent variable modeling [42]. Theaklso seems to be a lack of educational
materials and courses that provide guidance foctigrag researchers, peer-reviewers and
editors on how to use, assess and interpret refults measurement error correction

methods.

A need for better understanding of measurement errmedical and epidemiologic research

is further supported by a noticeably high incide@leout one third of those that discussed
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exposure measurement error) of manuscripts whaimeld underestimation of the exposure-
outcome relation due to measurement error. Thislasion was supported by a claim that the
error was non-differential in about a third of gheblications. Besides the fact that the non-
differential measurement error assumption was eebuimade without proof and is easily

violated [14], non-differential measurement errsoadoes not guarantee attenuation of the
studied relation towards the null. As discussesdéction 2, even classical (random) error can
result in bias away from the null in several likslgenarios, e.g. when multiple variables in
the analysis model are measured with error or vdreexposure variable has more than two
categories. In recent decades, several authorsdierapted to dispel the myth that exposure

measurement error always leads to attenuationeadtiidied relation [43—45].

Of the 18 publications that investigated or comddbr measurement error, most manuscripts
reported both the original (‘naive’) and the measunt error corrected results.
Unfortunately, descriptions of the used methodsewsdten not provided. Indeed, half of the
publications that performed sensitivity analysgmreed the results using only a single line in
the results section claiming similarity of resuitsthe main analysis (e.g., [36]). A similar
proportion of these publications also only investisgl one possible measurement error

scenario.

Our review has some limitations. It cannot be rudetlthat our full-text search strategy may
have missed papers that mentioned measurement Alttoough our search string covered a
broad range of terminology related to measuremeant,egpapers using a-typical terms may
have been overlooked. This might have led to aneresfimation of the number of
publications that discussed measurement error.lifhistion is unlikely to have a substantial

impact on the estimated percentages and conclysijoren that the intention was to give a
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general impression of current practice of measunéragor reporting. Second, in our review
we ignored measurement error issues related toubsome variable. While measurement
error in outcome variables is often assumed to pesseproblems than measurement error in
covariates [4], we acknowledge that this choiceitinour findings. Finally, there are
measurement errors that influence analyses thahalostrictly fall in the multivariable
(exposure — outcome) classification. Specificallipgnostic test accuracy studies often suffer
from measurement error in the disease verificapiotedure, a problem known as “absence
of gold standard”, and were outside the scopeisfrdview. Reviews of methods [46,47] and

the use of methods [48] to account for diseasdiwation problems are found elsewhere.

Our systematic review also has strengths. By usioglern, automated full-text searching
capabilities in Adobe Reader, a comprehensive weweuld be conducted with about 10
times as many included publications as the eameiew conducted by Jurek et al. [12] . We
were able to consider all publications from 12 tapked journals for a full one-year period.
This full-text searching approach is likely to beich more sensitive than common search
strategies that are limited to wording in the tateabstract. In addition, the full-text procedure
allowed us to systematically pinpoint the articketson in which references to measurement

error were made.

In conclusion, we found that measurement erroftenadiscussed in high impact medical and
epidemiologic literature. However, only a small fomr proceeds to investigate or correct for
measurement error. Renewed efforts are requiredaise awareness among applied
researchers that measurement error can have aihapget on estimated exposure-outcome
relations and that tools are available to quarthkify impact. More guidance and tutorials seem

necessary to assist the applied researchers wetlagkessment of the type and amount of
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measurement error as well as the steps that carguéntly be taken to minimize its impact
on the studied relations. Given the unpredictalaltene of the impact of measurement error
on the studied results, we advise authors to repothe potential presence of measurement
error in recorded variables but exercise restraimén speculating about the magnitude and
direction of its impact unless the appropriate gsial steps are taken to substantiate such
claims. Also, we recommend authors to make moeeofisvailable correction methods and
probabilistic sensitivity analyses to correct asaly for variables that were measured with
error. Given the increasing use of data not oritynatended for medical or epidemiological
research, we anticipate that the use and understad measurement error analyses and

corrections will become increasingly importanthie near future.
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Table 1 General Characteristics of the 247 Publications That Explicitly Report on Measurement
Error (ME) in Some Form.

Characteristic No. of Studies % of 247
ME in which variable
Exposure 195 79
Confounder 44 18
Outcome 115 a7
Exposure & Confounder 35 14
ME discussed in which section
Abstract 8 3
Introduction 22 9
Methods 49 20
Results 9 4
Discussion® 219 89
ME in previous study” 88 36
ME prevented by design® 60 24

ME = Measurement error
8174 (70%) publications considered ME only in the discussion section
® Mentions made of ME pertained to previously published research and not to the study presented in the published

paper.
°ME in the presented study was prevented due to decisions made during the design of the study.



Table 2 In Which Journals the 247 Publications That Reported on Measurement Error (ME) and
That Investigated or Corrected for it Were Published.

Publications that Publications that

Journal Name reported on ME investigated/corrected for
No. % of 247  ME (n=18)

Am JEpidemiol 60 24 2

Ann Intern Med 7 3 1

BMJ 30 12 1

Epidemiology 17 7 4

Eur J Epidemiol 23 9 2

Int J Epidemiol 50 20 4

JClin Epidemiol 2 1 0

J Epidemiol Community Health 37 15 1

JAMA 2 1 1

JAMA Intern Med 16 6 2

Lancet 2 1 0

N Engl JMed 1 0.5 0

ME=M easurement error

Table 3 Characteristics of the 18 Publications That Reported on Investigation of or Correction
for Measurement Error (ME).

Characteristic No. of Studies % of 18
Study design
Cohort 14 78
Case-control 4 22
Exposure field
Lifestyle/Health (not nutrition) 9 50
Nutrition 1 6
Environment 3 17
Education 1 6
Medical intervention 4 22
ME in which variable
Exposure 15 83
Continuous 6
Categorica 9
Confounder 1 6
Continuous 1
Categorica 0
Exposure & confounder 2 11
Both categorica 1




Continuous & categorical 1

How was ME dealt with
Regression calibration
Latent variable analysis
Application specific methods*
Sensitivity analysis

P WNDN

11
11
17
61

ME=M easurement error
*Methods designed specifically for afield of applied research
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