# An inventory of supranational antimicrobial resistance surveillance networks involving low- and middle-income countries since 2000

Elizabeth A. Ashley<sup>1,2\*</sup>, Judith Recht<sup>3</sup>, Arlene Chua<sup>4</sup>, David Dance<sup>2,5,6</sup>, Mehul Dhorda<sup>2,3,7</sup>, Nigel V. Thomas<sup>2,7</sup>, Nisha Ranganathan<sup>8</sup>, Paul Turner<sup>2,3,9</sup>, Philippe J. Guerin<sup>2,7,10</sup>, Nicholas J. White<sup>2,3</sup> and Nicholas P. Day<sup>2,3</sup>

<sup>1</sup>Myanmar-Oxford Clinical Research Unit (MOCRU), Yangon, Myanmar; <sup>2</sup>Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK; <sup>3</sup>Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; <sup>4</sup>Institute of Infectious Diseases and Epidemiology, Tan Tock Seng Hospital, Singapore; <sup>5</sup>Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Vientiane, Laos; <sup>6</sup>Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK; <sup>7</sup>WorldWide Antimicrobial Resistance Network (WWARN), Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK; <sup>8</sup>Imperial College, London, UK; <sup>9</sup>Cambodia-Oxford Medical Research Unit (COMRU), Angkor Hospital for Children, Siem Reap, Cambodia; <sup>10</sup>Infectious Diseases Data Observatory (IDDO), Centre for Tropical Medicine and Global Health, University of Oxford Medicine

\*Corresponding author. Myanmar-Oxford Clinical Research Unit (MOCRU), 32<sup>A1</sup> Kokkine Swimming Club Lane, Bahan Township, Yangon, Myanmar. E-mail: liz@tropmedres.ac

Low- and middle-income countries (LMICs) shoulder the bulk of the global burden of infectious diseases and drug resistance. We searched for supranational networks performing antimicrobial resistance (AMR) surveillance in LMICs and assessed their organization, methodology, impacts and challenges. Since 2000, 72 supranational networks for AMR surveillance in bacteria, fungi, HIV, TB and malaria have been created that have involved LMICs, of which 34 are onaoina. The median (range) duration of the networks was 6 years (1–70) and the number of LMICs included was 8 (1-67). Networks were categorized as WHO/governmental (n = 26), academic (n = 24) or pharma initiated (n = 22). Funding sources varied, with 30 networks receiving public or WHO funding, 25 corporate, 13 trust or foundation, and 4 funded from more than one source. The leading global programmes for drug resistance surveillance in TB, malaria and HIV gather data in LMICs through periodic active surveillance efforts or combined active and passive approaches. The biggest challenges faced by these networks has been achieving high coverage across LMICs and complying with the recommended frequency of reporting. Obtaining high quality, representative surveillance data in LMICs is challenging. Antibiotic resistance surveillance requires a level of laboratory infrastructure and training that is not widely available in LMICs. The nascent Global Antimicrobial Resistance Surveillance System (GLASS) aims to build up passive surveillance in all member states. Past experience suggests complementary active approaches may be needed in many LMICs if representative, clinically relevant, meaningful data are to be obtained. Maintaining an up-to-date registry of networks would promote a more coordinated approach to surveillance.

# Introduction

The burden of drug-resistant infections is increasing year on year. It has been predicted that the largest numbers of lives that will be lost as a result of these infections will be in low- and middle-income countries (LMICs).<sup>1</sup> A global action plan on antimicrobial resistance (AMR) was endorsed in May 2015 by the World Health Assembly and calls upon countries to strengthen AMR surveillance. It is generally accepted that we need good AMR surveillance data to be able to assess the scale of the problem accurately and to guide interventions. Many LMICs are already participating in surveillance initiatives for AMR in malaria, TB, HIV and influenza.

Attempts to kick-start global surveillance for resistance to commonly used antibacterial drugs have been made in the past but generally without success. The Global Antimicrobial Resistance Surveillance System (GLASS) was launched in 2015 with the goal of collecting comparable AMR data at country level for key bacterial pathogens.<sup>2</sup> At the same time, the recent catastrophic Ebola epidemic in West Africa has brought the need for surveillance for emerging or epidemic-prone diseases into sharp focus, as experience has shown the majority of these have their origins in LMICs. The interaction between different drivers in humans, animals and the environment argues for adopting a 'One Health' approach to surveillance for both AMR and emerging diseases.

© The Author(s) 2018. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/ by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. Here, we summarize the supranational surveillance networks for drug-resistant infections operating in LMICs since 2000 and discuss their impacts and challenges, and any implications for the implementation of GLASS.

# Methods

For the purposes of this analysis, AMR was defined as resistance to antimicrobial agents in bacteria, protozoa, fungi and viruses. Countries were categorized into income groups using the World Bank 2015 classification.<sup>3</sup>

### Search strategy

We searched for supranational networks performing AMR surveillance in LMICs from January 2000 to August 2017 in Embase, PubMed and Global Health databases. The search was performed first in May 2016 and updated in August 2017. Search terms were broad and included multiple alternative terms for AMR (e.g. drug resistance, antibiotic resistance, antifungal resistance, antimalarial drug resistance, antiviral resistance, cross resistance, multidrug resistance), as well as alternative terms for surveillance and for LMICs, which were also searched for individually by name (the complete list of search terms is available as Supplementary data at *JAC* Online). The titles and abstracts or full text of 20 558 (16 629 in 2016 plus 3929 in 2017) articles were screened to identify networks.

Networks did not have to collect primary samples to be included, i.e. they could collate resistance data collected by other groups. We excluded networks that occasionally reported drug resistance but did not have AMR surveillance as the major focus of their activity, e.g. a global travel-associated infection surveillance network, several One-Health networks and the Digital Disease Detection networks (e.g. ProMed). Networks were categorized by type (WHO/governmental, academic, pharmaceutical company/contract research organization-led or other), target pathogen grouping (bacteria, TB, malaria, HIV, other) and funding source. Networks performing AMR surveillance in bacteria were further characterized by pathogen sub-group (e.g. respiratory, enteric) and population under surveillance (e.g. community versus hospital-acquired infection, children). We noted the approaches to quality management taken and impacts or challenges of the networks when recorded.

# Results

We identified 72 supranational networks concerned with AMR surveillance since 2000, of which 26 were WHO/governmental (global or regional), 24 academic and 22 pharma initiated (Figure 1). Funding sources varied, with 30 networks receiving public or WHO funding, 25 corporate, 13 trust or foundation, and 4 funded from more than one type of source. The data-sharing models of the networks were open access (n = 3), closed (n = 38) and shared or unclear (n = 31).

In terms of the pathogens under surveillance, 45 networks were for AMR in bacteria or fungi (Table 1), 18 in malaria, 2 in TB, 6 in HIV and 1 for influenza (Table 2). The median (range) duration of the networks was 6 years (1–70). In the case of the discontinued malaria networks, inability to secure sustainable funding was an important reason for their collapse.<sup>4</sup> Coverage of LMICs by the networks varied greatly. The median (range) number of LMICs included in the AMR surveillance networks for which the information was available was 8 (1–67). The WHO Global Influenza Surveillance and Response System (WHO GISRS) was the longest running network, established in 1947, and included the greatest number of LMICs (67), although antiviral resistance was not under surveillance at the outset.

### Networks for AMR surveillance in bacterial pathogens

Of the 44 networks focused on AMR in bacteria, 6 reported data on the GLASS priority pathogens (with the exception of *Salmonella* spp. in 4), 2 networks were for *Staphylococcus aureus*, 10 were for respiratory pathogens (2 of these included *Neisseria meningitidis* and 1 enteric pathogens), 4 were for enteric pathogens only, 1 was for *Neisseria gonorrhoeae* and the remainder included a range of Gram-negative (5) or Gram-positive (2) bacteria or a mixture of the two. Seven networks collected or reported data on invasive isolates only, five non-invasive only and the remainder both. For those networks that specified the patient populations isolates came from, seven were community-acquired, five hospital-acquired, one was in women and four in children.

### Differences between network categories

The networks were a heterogeneous group with different approaches to surveillance reflecting different objectives. The greatest diversity was found in the antibacterial surveillance group. Most global networks initiated and sponsored by pharmaceutical companies had the objective of evaluating susceptibility to specific drugs (registered drugs or new compounds). A variety of bacterial or fungal pathogens were collected by the pharma networks including community- and hospital-acquired isolates from both sterile and non-sterile sites. Academic networks tended to focus AMR surveillance around a specific clinical question, e.g. one project of the Asian Network for Surveillance of Resistant Pathogens (ANSORP) evaluated susceptibility of ESBL-producing isolates collected in the region to different antimicrobials (Tables 1 and 2). Other academic networks such as the WorldWide Antimalarial Resistance Network (WWARN) part of the newly established Infectious Diseases Data Observatory (IDDO) and International Epidemiologic Databases to Evaluate AIDS (IEDEA) have led analyses of individual patient data collected by other research groups.

The approaches taken for drug resistance surveillance by the major global programmes (TB, malaria, HIV, bacteria, influenza) are summarized in Table 3. As shown, the TB, malaria and HIV networks take an active approach to AMR surveillance in LMICs while the antibacterial and influenza networks rely on case-based surveillance from sentinel sites.

### Networks for AMR surveillance in animals

There is one supranational European network for surveillance of food- and waterborne diseases and zoonoses that collects data on antimicrobial susceptibility in humans, animals and food. Larger networks that monitor foodborne infections [WHO Global Foodborne Infections network (GFN) and PulseNet International], including animal and environmental isolates, do not report AMR data although GFN does support an external quality assurance (EQA) programme for participating laboratories, which includes antimicrobial susceptibility testing (AST). No other supranational networks for AMR surveillance in animals were identified.

#### Quality management

The networks had different approaches to quality management (Table 4). The pharma-led networks typically did not involve LMIC laboratories in EQA programmes but sent all isolates to a central

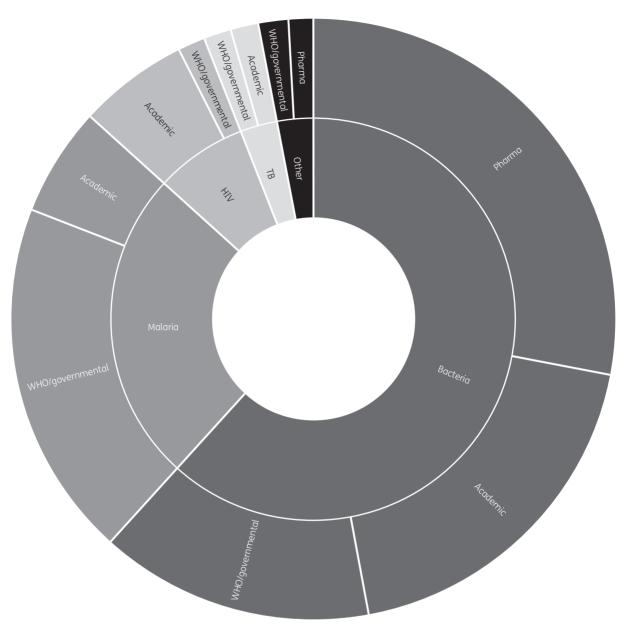



Figure 1. Sunburst chart of network types.

laboratory for confirmatory testing. The global surveillance programmes for AMR in TB, HIV, influenza and gonorrhoea all had proficiency testing programmes delivered via supranational networks of reference laboratories. Among the networks for AMR surveillance in bacteria, the Latin-American network, Red Latinoamericana de Vigilancia de la Resistencia a los Antimicrobianos (ReLAVRA) has been running an EQA scheme (LA-EQAS) since 2000 and provides proficiency testing services at no cost to participating laboratories. The Central Asian and Eastern European Surveillance of Antimicrobial Resistance (CAESAR), the non-EU European network, has used the UK National External Quality Assessment Service (UK-NEQAS) for EQA. WHO-sponsored EQA efforts for AST included the discontinued WHO EQAS AST (1998–2001)<sup>5</sup> and the WHO-AFRO/ NICD-SA EQAP for countries within the WHO-AFRO region.<sup>6</sup> Currently GLASS recommends national reference laboratories take responsibility for quality management.

### Impacts and challenges of the networks

Impacts and challenges of the networks were not recorded consistently. The main themes are summarized in Table 5 with examples. The biggest challenges faced by the global networks have been achieving high coverage across LMICs and complying with the recommended frequency of reporting. The Global Project on Anti-Tuberculosis Drug Resistance Surveillance has collected resistance data from 155/194 member states since its inception in 1994. For 72 countries without routine drug susceptibility testing of cases these data come from surveys, which are ideally performed

|    | Name (acronym), coordinating institution<br>(if different)                                                                                                               | Pathogen category,<br>network type,<br>funding type               | No. of LMICs/<br>no. of<br>countries | Years active     | Description                                                                                                                                  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | The Alexander Project, GlaxoSmithKline                                                                                                                                   | bacteria<br>pharma/CRO<br>corporate                               | 4/32                                 | 1992-2002        | longitudinal multicentre surveillance of<br>antimicrobial susceptibility of com-<br>munity-acquired respiratory<br>pathogens                 |
| 2  | Asian Network for Surveillance of Resistant<br>Pathogens (ANSORP), Sungkyunkwan<br>University, Korea                                                                     | bacteria<br>academic<br>corporate, public,<br>trust or foundation | 8/14                                 | 1996–<br>ongoing | academic regional network with varied<br>research portfolio; funding sought for<br>individual projects                                       |
| 3  | Antimicrobial Resistance Epidemiological<br>Survey on Cystitis (ARESC), European<br>Society for Infection in Urology                                                     | bacteria<br>academic<br>corporate                                 | 1/10                                 | 2003-06          | survey of women symptomatic of uri-<br>nary tract infection (predominantly in<br>Europe)                                                     |
| 4  | Antibiotic Resistance in the Mediterranean<br>Region (ARMed), Infection Control Unit,<br>Mater Dei Hospital, Msida, Malta                                                | bacteria<br>WHO/governmental<br>public                            | 7/9                                  | 2003–07          | multicentre hospital-based study of<br>AMR, antibiotic use and infection con-<br>trol practices                                              |
| 5  | ARTEMIS Global Antifungal Surveillance<br>Programme (ARTEMIS)                                                                                                            | fungi<br>pharma/CRO<br>corporate                                  | 9/34                                 | 1997–2005        | longitudinal multicentre surveillance of<br><i>Candida</i> spp. and non-candidal yeasts                                                      |
| 6  | Assessing Worldwide Antimicrobial<br>Resistance and Evaluation Programme<br>(AWARE), International Health<br>Management Associates, Inc. (IHMA)                          | bacteria<br>pharma/CRO<br>corporate                               | 3/7                                  | 2012–<br>ongoing | ceftaroline surveillance programme                                                                                                           |
| 7  | Bacterial Infections and Antibiotic-Resistant<br>Diseases Among Young Children in Low-<br>Income Countries (BIRDY), Institut<br>Pasteur International Network            | bacteria<br>academic<br>corporate, public,<br>trust or foundation | 3/3                                  | 2012–<br>ongoing | multinational, longitudinal cohort study<br>of community-acquired and nosoco-<br>mial infections and drug resistance in<br>children          |
| 8  | Central Asian and Eastern European<br>Surveillance of Antimicrobial Resistance<br>(CAESAR)                                                                               | bacteria<br>WHO/governmental<br>public                            | 17/20                                | 2013–<br>ongoing | European AMR surveillance network for<br>non-EU countries                                                                                    |
| 9  | Caribbean Public Health Agency (CARPHA)                                                                                                                                  | ,<br>bacteria<br>WHO/governmental<br>trust or foundation          | 10/25                                | 2013–<br>ongoing | AMR surveillance is one of the agency's core activities                                                                                      |
| 10 | Community-Acquired Respiratory Tract<br>Infection Pathogen Surveillance<br>(CARTIPS)                                                                                     | bacteria<br>pharma/CRO<br>corporate                               | 2/4                                  | 2009–10          | Asian multicentre AMR surveillance of<br>community-acquired respiratory<br>pathogens                                                         |
| 11 | Centre for Disease Dynamics, Economics<br>and Policy (CDDEP)/ResistanceMap                                                                                               | bacteria<br>academic<br>trust or foundation,<br>public            | NS                                   | 1999–<br>ongoing | ResistanceMap uses interactive maps<br>and charts to visualize AMR (and anti-<br>microbial use) data                                         |
| 12 | Community-Based Surveillance of<br>Antimicrobial Use and Resistance in<br>Resource-Constrained Settings, WHO                                                             | bacteria<br>academic<br>public                                    | 2/2                                  | 2002-05          | pilot AMR and AMU surveillance projects<br>at five sites in India and South Africa                                                           |
| 13 | Comparative Activity of Carbapenem<br>Testing (COMPACT and COMPACT II),<br>Janssen Asia-Pacific                                                                          | bacteria<br>pharma/CRO<br>corporate                               | 3/5                                  | 2008-10          | assessment of carbapenem susceptibil-<br>ity of Gram-negative bacteria isolated<br>from hospitalized patients in the Asia-<br>Pacific region |
| 14 | International Daptomycin Surveillance<br>Programmes, JMI Laboratories                                                                                                    | bacteria<br>pharma/CRO<br>corporate                               | 12/33                                | 2011–<br>ongoing | assessment of daptomycin susceptibility<br>of various Gram-positive clinical<br>isolates                                                     |
| 15 | Diseases of the Most Impoverished Typhoid<br>Study Group and Multicentre Shigellosis<br>Surveillance Study (DOMI), International<br>Vaccine Institute, Republic of Korea | bacteria<br>academic<br>trust or foundation                       | 5/5                                  | 2001-04          | population-based surveillance studies in<br>Asia with antimicrobial susceptibility<br>of isolates from confirmed cases                       |

### Table 1. AMR surveillance networks for bacteria and fungi in LMICs (arranged in alphabetical order)

#### Table 1. Continued

|    | Name (acronym), coordinating institution<br>(if different)                                                                                                                                                                           | Pathogen category,<br>network type,<br>funding type | No. of LMICs/<br>no. of<br>countries | Years active     | Description                                                                                                                                                                                                                                                |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16 | European Antimicrobial Resistance<br>Surveillance Network (EARS-Net), ECDC                                                                                                                                                           | bacteria<br>WHO/governmental<br>public              | 2/29                                 | 1999–<br>ongoing | European AMR surveillance network for<br>EU countries                                                                                                                                                                                                      |
| 17 | Enter-Net International Surveillance<br>Network, Health Protection Agency, UK                                                                                                                                                        | bacteria<br>WHO/governmental<br>public              | 1/28                                 | 1993-2007        | European foodborne infection/AMR sur-<br>veillance network; transferred to<br>ECDC (FWD-Net)                                                                                                                                                               |
| 18 | Food- and Waterborne Diseases and<br>Zoonoses Network (FWD-Net), ECDC                                                                                                                                                                | ,<br>bacteria<br>WHO/governmental<br>public         | 2/29                                 | 2007-<br>ongoing | European surveillance network for food-<br>and waterborne diseases (includes<br>AMR), for EU countries                                                                                                                                                     |
| 19 | Gonococcal Antimicrobial Surveillance<br>Programme (GASP), WHO                                                                                                                                                                       | ,<br>bacteria<br>WHO/governmental<br>public         | 32/70                                | 1992–<br>ongoing | global network for sentinel surveillance<br>of AMR (especially cephalosporins) in<br><i>N. gonorrhoeae</i>                                                                                                                                                 |
| 20 | Global Point Prevalence Survey of<br>Antimicrobial Consumption and<br>Resistance (Global-PPS), University of<br>Antwerp                                                                                                              | bacteria<br>academic<br>corporate                   | 24/63                                | 2015–<br>ongoing | multicentre point prevalence survey of<br>antimicrobial prescribing and resist-<br>ance in hospitalized patients                                                                                                                                           |
| 21 | International Network For Optimal<br>Resistance Monitoring (INFORM), IHMA                                                                                                                                                            | bacteria<br>pharma/CRO<br>corporate                 | NS                                   | 2012-14          | Asia-Pacific, Latin America, Middle East,<br>Africa, Europe                                                                                                                                                                                                |
| 22 | International Nosocomial Infection Control<br>Consortium (INICC)                                                                                                                                                                     | bacteria<br>academic<br>trust or foundation         | 32/43                                | 2002–<br>ongoing | main focus is on the reduction of health-<br>care-associated infections; collects<br>associated AMR data                                                                                                                                                   |
| 23 | International Network for the Study and<br>Prevention of Emerging Antimicrobial<br>Resistance (INSPEAR), US CDC                                                                                                                      | bacteria<br>academic<br>public                      | 9/30                                 | 1998-2010        | AMR early warning system with profi-<br>ciency testing for laboratories and<br>expedited reporting of drug-resistant<br>infections                                                                                                                         |
| 24 | In Vitro Activity of Oral Antimicrobial Agents<br>Against Pathogens Associated With<br>Community-Acquired Upper Respiratory<br>Tract and Urinary Tract Infections: A Five<br>Country Surveillance Study, IHMA                        | bacteria<br>pharma/CRO<br>corporate                 | 2/5                                  | 2012-13          | global surveillance of susceptibility of<br>community-acquired respiratory and<br>urinary tract pathogens                                                                                                                                                  |
| 25 | Multiyear, Multinational Survey of the<br>Incidence and Global Distribution of MBL-<br>Producing Enterobacteriaceae and<br><i>Pseudomonas aeruginosa</i> , IHMA                                                                      | bacteria<br>pharma/CRO<br>corporate                 | ~12/31                               | 2012-14          | global hospital-based surveillance of<br>MBL-producing Gram-negative<br>bacteria                                                                                                                                                                           |
| 26 | Minocycline activity tested against<br>Acinetobacter baumannii complex,<br>Stenotrophomonas maltophilia and<br>Burkholderia cepacia species complex iso-<br>lates from a global surveillance pro-<br>gramme (2013), JMI Laboratories | bacteria<br>pharma/CRO<br>corporate                 | NS/46                                | 2013             | AMR surveillance in Gram-negative<br>organisms focused on assessment of<br>minocycline activity                                                                                                                                                            |
| 27 | Meropenem Yearly Susceptibility Test<br>Information Collection (MYSTIC),<br>AstraZeneca                                                                                                                                              | bacteria<br>pharma/CRO<br>corporate                 | 8/21                                 | 1997–2008        | assessment of meropenem susceptibil-<br>ity of various clinical isolates from<br>patients with serious infections.                                                                                                                                         |
| 28 | Network for Surveillance of Pneumococcal<br>Disease in the East Africa Region<br>(netSPEAR)                                                                                                                                          | bacteria<br>academic<br>trust or foundation         | 4/4                                  | 2003-07          | East African network that strengthened<br>routine surveillance of <i>Streptococcus</i><br><i>pneumoniae</i> and <i>Haemophilus</i><br><i>influenzae</i> infections in children (labo-<br>ratory and data-management train-<br>ing, improved communication) |

Continued

#### Table 1. Continued

|    | Name (acronym), coordinating institution<br>(if different)                                                                             | Pathogen category,<br>network type,<br>funding type | No. of LMICs/<br>no. of<br>countries | Years active     | Description                                                                                                                                                          |
|----|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 29 | NosoMed Pilot Survey in the Eastern<br>Mediterranean Area, Université Claude<br>Bernard Lyon I                                         | bacteria<br>academic<br>public                      | 2/3                                  | 2003-04          | multicentre surveillance of drug-resist-<br>ant nosocomial bacterial isolates                                                                                        |
| 30 | Programme to Assess Ceftolozane/<br>Tazobactam Susceptibility (PACTS), Cubist<br>Pharmaceuticals                                       | bacteria<br>pharma/CRO<br>corporate                 | 2/16                                 | 2012–<br>ongoing | ceftolozane/tazobactam susceptibility<br>surveillance programme focused on<br>nosocomial infections                                                                  |
| 31 | Pan-European Antimicrobial Resistance<br>Using Local Surveillance (PEARLS), Wyeth<br>Pharmaceuticals                                   | bacteria<br>pharma/CRO<br>corporate                 | 4/17                                 | 2001-02          | AMR surveillance of nosocomial isolates<br>of Enterococcus faecium, Enterobacter<br>cloacae, Enterobacter aerogenes,<br>E. coli, Klebsiella pneumoniae,<br>S. aureus |
| 32 | Prospective Resistant Organism Tracking<br>and Epidemiology for the Ketolide<br>Telithromycin (PROTEKT), Sanofi-Aventis                | bacteria<br>pharma/CRO<br>corporate                 | 10/36                                | 1999-2004        | international AMR surveillance of com-<br>munity-acquired respiratory tract<br>pathogens                                                                             |
| 33 | Red Latinoamericana de Vigilancia de la<br>Resistencia a los Antimicrobianos<br>(ReLAVRA), PAHO                                        | bacteria<br>WHO/governmental<br>public              | 15/19                                | 1996–<br>ongoing | Latin-American AMR surveillance net-<br>work with a proficiency testing<br>programme                                                                                 |
| 34 | South Asian Pneumococcal Alliance<br>(SAPNA), GAVI Alliance                                                                            | bacteria<br>academic<br>public, corporate           | 3/3                                  | 2004-09          | AMR surveillance of infections caused by<br>S. pneumoniae, H. influenzae and<br>N. meningitidis in South Asian children                                              |
| 35 | Study on Antimicrobial Resistance in<br>Staphylococcus aureus (SARISA), LEO<br>Pharma (Copenhagen)                                     | bacteria<br>pharma/CRO<br>corporate                 | 2/18                                 | 1996–<br>ongoing | multicentre survey of AMR in S. aureus                                                                                                                               |
| 36 | SENTRY Antimicrobial Surveillance<br>Programme, JMI laboratories                                                                       | bacteria, fungi<br>pharma/CRO<br>corporate          | ~8/40                                | 1997–<br>ongoing | monitors antimicrobial susceptibility in a<br>wide variety of community-acquired<br>and nosocomial pathogens                                                         |
| 37 | Sistema de Redes de Vigilancia de los<br>Agentes Responsables de Neumonias y<br>Meningitis Bacterianas (SIREVA and<br>SIREVA II), PAHO | bacteria<br>WHO/governmental<br>public              | 15/19                                | 1993–<br>ongoing | Latin-American regional network for<br>surveillance of respiratory and menin-<br>gitis pathogens                                                                     |
| 38 | Study for Monitoring Antimicrobial<br>Resistance Trends (SMART), Merck & Co.<br>Inc.                                                   | bacteria<br>pharma/CRO<br>corporate                 | 23/53                                | 2002-11          | AMR surveillance of Gram-negative clini-<br>cal isolates from intra-abdominal<br>infections and urinary tract infections                                             |
| 39 | Survey of Antibiotic Resistance (SOAR),<br>GlaxoSmithKline                                                                             | bacteria<br>pharma/CRO<br>corporate                 | 34/48                                | 2002–<br>ongoing | a series of studies of antimicrobial sus-<br>ceptibility of pathogens causing com-<br>munity-acquired respiratory infection                                          |
| 40 | International Solithromycin Surveillance<br>Programmes, JMI Laboratories, USA                                                          | bacteria<br>pharma/CRO<br>corporate                 | 5/27                                 | 2011–<br>ongoing | AMR surveillance in Gram-positive<br>organisms focused on assessment of<br>solithromycin activity                                                                    |
| 41 | TARGETed Surveillance Study, GR Micro Ltd,<br>UK                                                                                       | bacteria<br>pharma/CRO<br>corporate                 | 2/7                                  | 2003-07          | AMR surveillance of community-<br>acquired respiratory tract pathogens<br>with a focus on fluoroquinolone<br>activity                                                |
| 42 | Tigecycline Evaluation and Surveillance Trial (TEST), IHMA                                                                             | bacteria<br>pharma/CRO<br>corporate                 | 25/65                                | 2004–<br>ongoing | global, hospital-based AMR surveillance<br>of a wide range of clinical isolates<br>with a focus on tigecycline<br>susceptibility                                     |
| 43 | Typhoid Fever Surveillance in Africa<br>Programme (TSAP), International Vaccine<br>Institute, Korea                                    | bacteria<br>academic<br>trust or foundation         | 10/10                                | 2009–<br>ongoing | multinational, population surveillance<br>study of typhoid incidence in Africa<br>(included AST of invasive isolates)                                                |

#### Table 1. Continued

|    | Name (acronym), coordinating institution<br>(if different)                                                  | Pathogen category,<br>network type,<br>funding type | No. of LMICs/<br>no. of<br>countries | Years active     | Description                                                               |
|----|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------|------------------|---------------------------------------------------------------------------|
| 44 | WHO Western Pacific Regional Programme<br>for Surveillance of Antimicrobial<br>Resistance                   | bacteria<br>WHO/governmental,<br>academic<br>public | 6/13                                 | 1991-98          | regional network for antimalarial thera-<br>peutic efficacy monitoring    |
| 45 | Zyvox <sup>®</sup> Annual Appraisal of Potency and<br>Spectrum (ZAAPS), JMI Laboratories, USA<br>and Pfizer | bacteria<br>pharma/CRO<br>corporate                 | 12/42                                | 2004–<br>ongoing | global monitoring of linezolid activity<br>against Gram-positive bacteria |

PAHO, Pan American Health Organization; CRO, contract research organization; NS, not specified.

every 5 years. The biggest gaps in surveillance in the most recent report were over West and central Africa. At an individual level it was estimated that 33% of new TB cases and 60% of cases treated previously underwent rifampicin susceptibility testing in 2016.<sup>7</sup> Only one-third of 106 malaria endemic countries were in compliance with the recommended targets for antimalarial drug efficacy surveillance (monitoring at three-yearly intervals) when last reported, although the Global Malaria Programme has recently updated its web site with aggregate data from more studies.<sup>8,9</sup> The Gonococcal Antimicrobial Surveillance Programme (GASP) has had no regional focal point in Africa since 2012. The WHO 2014 Global Report on Surveillance obtained data on antimicrobial susceptibility in N. gonorrhoeae from only 42/194 (22%) member states and noted that coverage was poorest from presumed high-burden countries. WHO GISRS reported resistance to the neuraminidase inhibitors of influenza viruses in 2016. Out of 13312 viruses collected by National Influenza Centres between May 2014 and May 2015, 94% were from three WHO regions: Western Pacific, the Americas and Europe, with only 3% from Africa and 2% from Southeast Asia.<sup>10</sup> WHO is in the process of developing a new Global Action Plan for HIV drug resistance. In July 2016 it was reported that 59/144 LMICs had monitored for the emergence of HIV drug resistance using the recommended early warning indicator system, which looks at antiretroviral treatment coverage, retention in care, treatment interruption and viral load suppression.<sup>11</sup> A meta-analysis in 2012 reported HIV-1 drug resistance surveillance data from 42 LMICs between 2001 and 2011, and 8 countries performed surveys for pre-treatment HIV DR between 2014 and May 2016.<sup>12,13</sup>

In a detailed account of the experience of setting up the Network for Surveillance of Pneumococcal Disease in the East Africa Region (netSPEAR), an East African network funded by the GAVI Alliance, in which routine surveillance for pneumococcal disease in public hospitals was strengthened, key challenges noted were difficulty in engaging the government of one of the participating countries in the network, poor performance of some sites despite training and problems with attracting funding.<sup>14</sup> The importance of national and institutional ownership of surveillance activity and of framing it as part of routine activity rather than extra work was stressed. The benefits of collaboration between policymakers, academics and service providers were highlighted, a sentiment echoed by the experience of the malaria regional networks, which re-energized surveillance and also played a role in

advocacy for policy change, acting as a bridge between research groups and national control programmes.<sup>4</sup> Individual patient data meta-analyses coordinated by WWARN have led to policy recommendations to change antimalarial drug dosing. Another impact of the academic malaria drug efficacy surveillance networks has been the establishment of successful North–South scientific partnerships. There are a few examples where the scientific leadership now comes from the South, e.g. *Plasmodium* Diversity Network Africa, a molecular surveillance network.<sup>15</sup>

Surveillance networks have a positive impact by connecting laboratories in different countries. The Antibiotic Resistance in the Mediterranean Region (ARMed) network, which ran between 2003 and 2007, reported improvement in participating laboratories' capacity to perform bacterial identification and AST, as a result of the EQA programme attached to the network.<sup>16</sup> The HIV, mycobacteria, influenza and gonorrhoea reference laboratory networks have been created thanks to global surveillance programmes.

# Discussion

Defining the global burden of AMR and monitoring the impact of interventions to counter it requires reliable surveillance data. LMICs shoulder the bulk of the global burden of infectious diseases and drug resistance but their surveillance systems tend to be weaker than those in high-income countries (HICs), because passive surveillance cannot be integrated with routine casemanagement of patients easily in many areas. This problem has been circumvented to an extent in TB, malaria and HIV AMR surveillance by using active approaches to surveillance in LMICs and gathering data intermittently to provide a snapshot of the situation. However, achieving high coverage of all LMICs and complying with the recommended frequency of surveillance has been difficult. A review of the HIV, TB and malaria surveillance systems in 2011 suggested that one risk of integrating surveillance into routine activities was that high-quality implementation was less likely.<sup>17</sup> By contrast, GLASS is based on building up or strengthening traditional models of passive case-based surveillance to generate data, as in HICs. Priority pathogens, drugs and specimens for surveillance are named but, unlike the other networks, GLASS does not specify minimum sample sizes or detailed selection criteria for target populations. Responsibility for quality management is devolved to national reference centres rather than a supranational body. Member states are requested to submit their AMR data to

|        | Name (acronym), coordinating insti-                                                                                   | Pathogen category, net-                            | No. of LMICs/<br>no. of |              |                                                                                                              |
|--------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------|--------------|--------------------------------------------------------------------------------------------------------------|
|        | tution if different                                                                                                   | work type, funding type                            | countries               | Years active | Description                                                                                                  |
| Malari | a                                                                                                                     |                                                    |                         |              |                                                                                                              |
| 1      | Amazon Malaria Initiative (AMI),<br>PAHO                                                                              | malaria<br>WHO/governmental<br>public              | 11/12                   | 2001-ongoing | Latin-American regional antimalaria<br>resistance surveillance network;<br>some overlap with RAVREDA         |
| 2      | Artemisinin Resistance Confirmation,<br>Characterization and Containment<br>Collaboration (ARC3), WHO                 | malaria<br>academic<br>trust or foundation, public | 3/3                     | 2009-10      | multicentre study of artemisinin<br>resistance in Southeast Asia                                             |
| 3      | Artemisinin Resistance Containment<br>and Elimination Collaboration<br>(ARCE), WHO                                    | malaria<br>academic<br>trust or foundation, public | 3/3                     | 2010-11      | multicentre artemisinin-resistant<br>malaria containment and elimina-<br>tion project                        |
| 4      | Bangladesh, Bhutan, India, Nepal, Sri<br>Lanka Malaria Drug Resistance<br>Network (BBINS)                             | malaria<br>WHO/governmental<br>public              | 5/5                     | 2011-ongoing | regional network for antimalarial therapeutic efficacy monitoring                                            |
| 5      | East African Network for Monitoring<br>Antimalarial Treatment (EANMAT)                                                | malaria<br>WHO/governmental,<br>academic<br>public | 5/5                     | 1997-2006    | regional network for antimalarial<br>therapeutic efficacy monitoring                                         |
| 6      | Greater Mekong Sub-region<br>Therapeutic Efficacy Studies (TES)<br>Network                                            | malaria<br>WHO/governmental<br>public              | 8/8                     | 2007-ongoing | regional network for antimalarial therapeutic efficacy monitoring                                            |
| 7      | Horn of Africa Network for Monitoring<br>Antimalarial Treatment (HANMAT)                                              | malaria<br>WHO/governmental<br>public              | 5/6                     | 2004-ongoing | regional network for antimalarial therapeutic efficacy monitoring                                            |
| 8      | K13 Artemisinin Resistance<br>Multicentre Assessment<br>Consortium (KARMA), Institut<br>Pasteur                       | malaria<br>academic<br>public                      | 56/59                   | 2014-ongoing | multinational molecular genotyping<br>trials to map the kelch 13<br>mutation                                 |
| 9      | MalariaGEN Genomic Epidemiology<br>Network, MalariaGEN Resource<br>Centre                                             | malaria<br>academic<br>trust or foundation         | ~36/36                  | 2005-ongoing | Global network focusing on analysis of genetic/genomic data                                                  |
| 10     | Plasmodium Diversity Network Africa<br>(PDNA), University of Science,<br>Techniques and Technologies,<br>Bamako, Mali | malaria<br>academic<br>public, trust or foundation | 15/15                   | 2012-ongoing | African network mapping malaria<br>parasite genetic diversity and<br>molecular markers of drug<br>resistance |
| 11     | Pacific Malaria Drug Resistance<br>Monitoring Network                                                                 | malaria<br>WHO/governmental<br>public              | 7/8                     | 2011-ongoing | regional network for antimalarial therapeutic efficacy monitoring                                            |
| 12     | Pakistan-Iran-Afghanistan Malaria<br>Network                                                                          | malaria<br>WHO/governmental<br>public              | 3/3                     | 2008-ongoing | regional network for antimalarial therapeutic efficacy monitoring                                            |
| 13     | Reseau d'Afrique Centrale pour<br>Traitement Anti-Paludisme<br>(RACTAP)                                               | malaria<br>WHO/governmental<br>public              | 8/8                     | 2003-09      | regional network for antimalarial therapeutic efficacy monitoring                                            |
| 14     | Amazon Network for the Surveillance<br>of Antimalarial Drug Resistance<br>(RAVREDA)                                   | malaria<br>WHO/governmental<br>public              | 12/13                   | 2001-ongoing | regional network for antimalarial therapeutic efficacy monitoring                                            |
| 15     | South African Network for the<br>Monitoring of Antimalarial Drug<br>Resistance (SANMAT)                               | malaria<br>WHO/governmental<br>academic<br>public  | 7/7                     | 2002-14      | regional network for antimalarial<br>therapeutic efficacy monitoring                                         |

Table 2. AMR surveillance networks for malaria, HIV, TB and influenza in LMICs (arranged by pathogen and in alphabetical order)

Continued

#### Table 2. Continued

|             | Name (acronym), coordinating insti-<br>tution if different                                                                                                                                  | Pathogen category, net-<br>work type, funding type            | No. of LMICs/<br>no. of<br>countries | Years active | Description                                                                                                                  |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------|--------------|------------------------------------------------------------------------------------------------------------------------------|
|             |                                                                                                                                                                                             | work type, furfulling type                                    |                                      |              | · · · · · · · · · · · · · · · · · · ·                                                                                        |
| 16          | Tracking Resistance to Artemisinin<br>Collaboration (TRAC and TRAC2),<br>Mahidol Oxford Tropical Medicine<br>Research Unit                                                                  | malaria<br>academic<br>public                                 | 10/10                                | 2011-ongoing | multinational clinical trials to map artemisinin resistance                                                                  |
| 17          | West African Network for Monitoring<br>Antimalarial Treatment<br>(WANMAT)                                                                                                                   | malaria<br>WHO/governmental,<br>academic<br>public            | 15/15                                | 2003–09      | regional network for antimalarial therapeutic efficacy monitoring                                                            |
| 18          | WorldWide Antimalarial Resistance<br>Network (WWARN)                                                                                                                                        | ,<br>malaria<br>academic<br>corporate, trust or<br>foundation | 37/70                                | 2009-ongoing | collates antimalarial resistance data<br>from other groups and performs<br>individual patient data meta-<br>analyses         |
| HIV         |                                                                                                                                                                                             |                                                               |                                      |              |                                                                                                                              |
| 1           | Europe Africa Research Network for<br>Evaluation of Second-Line Therapy<br>(EARNEST)                                                                                                        | HIV<br>academic<br>public                                     | 4/4                                  | 2010-11      | academic network focused on HIV<br>resistance to second-line thera-<br>pies in Africa                                        |
| 2           | Global HIV Drug Resistance Network<br>(HIVResNet), WHO                                                                                                                                      | HIV<br>WHO/governmental<br>public                             | 15/23                                | 2007–ongoing | global network of experts from aca-<br>demic institutions, laboratories<br>and international and non-profit<br>organizations |
| 3           | International Epidemiologic<br>Databases to Evaluate AIDS<br>(IeDEA), NIAID                                                                                                                 | HIV<br>academic<br>public                                     | 36/47                                | 2005-ongoing | platform for data sharing from differ-<br>ent sites, used to address research<br>questions                                   |
| 4           | PharmAccess African Studies to<br>Evaluate Resistance (PASER),<br>PharmAccess Foundation, AIGHD<br>and Virology Department at the<br>University Medical Centre, Utrecht,<br>The Netherlands | HIV<br>academic<br>public                                     | 6/6                                  | 2006-15      | multinational HIV DR surveillance in<br>Africa                                                                               |
| 5           | TREAT Asia Studies to Evaluate<br>Resistance (TASER)                                                                                                                                        | HIV<br>academic<br>public, trust or foundation                | 5/6                                  | 2007-11      | HIV DR surveillance programme linked to TREAT Asia studies                                                                   |
| 6           | Tenofovir Resistance Study Group<br>(TenoRES)                                                                                                                                               | HIV<br>academic<br>trust or foundation                        | 10/23                                | 2015-16      | pooled-data analysis of tenofovir<br>and other antiretroviral resistance<br>in HIV                                           |
| ТВ          |                                                                                                                                                                                             |                                                               |                                      |              | 111112                                                                                                                       |
| 1           | Comprehensive Resistance Prediction<br>for Tuberculosis International<br>Consortium (CRyPTIC), University<br>of Oxford                                                                      | TB<br>academic<br>trust or foundation                         | 5/10                                 | 2015-ongoing | WGS of isolates from multiple loca-<br>tions to investigate genomic varia-<br>tion associated with drug<br>resistance        |
| 2           | WHO/IUATLD Global Project on Anti-<br>Tuberculosis Drug Resistance<br>Surveillance (WHO/IUATLD)                                                                                             | TB<br>WHO/governmental<br>public                              | 39/89                                | 1994-ongoing | global surveillance programme with<br>associated supranational refer-<br>ence laboratory network                             |
| Influe<br>1 | nza<br>WHO Global Influenza Surveillance                                                                                                                                                    | influenza                                                     | 67/110                               | 10/7 000000  | alobal surveillance for succeptibility                                                                                       |
| 1           | and Response System (WHO<br>GISRS)                                                                                                                                                          | WHO/governmental<br>public                                    | 67/113                               | 1947–ongoing | global surveillance for susceptibility<br>of influenza viruses to neuramini-<br>dase inhibitors                              |

AIGHD, Amsterdam Institute for Global Health and Development; PAHO, Pan American Health Organization; DR, drug resistance.

the WHO global antimicrobial susceptibility database (WHONET). The experiences of ReLAVRA, the Latin-American network, and, to an extent, CAESAR, the newer European network, have shown that

case-based surveillance can be implemented in middle-income countries but obtaining representative data may take time. It is likely that it will be many more years before most low-income

#### Table 3. Approaches to AMR surveillance taken by global WHO programmes in LMICs

|                                                               | TB                                                                                                      | Malaria                                                                                                                           | HIV                                                                                                                                                                                                      | Bacteria<br>(GLASS + GASP)                                                                                                                                                 | Influenza (GISRS)                                                                                                            |
|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Type(s) of<br>surveillance                                    | epidemiological sur-<br>veys or case<br>notification                                                    | therapeutic efficacy<br>studies at sentinel<br>sites and molecular<br>marker surveys                                              | EWI <sup>a</sup> ; two types of<br>molecular marker<br>surveys (PDR and<br>ADR) <sup>b</sup>                                                                                                             | routine surveillance<br>of clinical isolates<br>at sentinel sites                                                                                                          | case-based surveil-<br>lance from sentinel<br>sites                                                                          |
| Technology/labora-<br>tory methods                            | culture and sus-<br>ceptibility testing;<br>GeneXpert <sup>®</sup> ;<br>other molecular<br>methods      | microscopy and PCR-<br>based technologies                                                                                         | PCR based                                                                                                                                                                                                | culture and suscepti-<br>bility testing                                                                                                                                    | RT-PCR based; HAI test;<br>virus isolation in cell<br>culture and suscepti-<br>bility testing at refer-<br>ence laboratories |
| Defined selection<br>criteria for popu-<br>lation of interest | yes                                                                                                     | yes                                                                                                                               | yes                                                                                                                                                                                                      | no                                                                                                                                                                         | yes - clinical case<br>definition                                                                                            |
| Recommended<br>sample size                                    | yes                                                                                                     | yes                                                                                                                               | yes                                                                                                                                                                                                      | no                                                                                                                                                                         | no                                                                                                                           |
| Recommended fre-<br>quency of<br>surveillance                 | every 5 years (sur-<br>vey-based meth-<br>odology); contin-<br>uous (if case-<br>based<br>surveillance) | every 3 years                                                                                                                     | every 3 years                                                                                                                                                                                            | annual                                                                                                                                                                     | continuous                                                                                                                   |
| Data sharing<br>mechanism                                     | WHO Global TB<br>Database                                                                               | WHO Global Malaria<br>Programme<br>Database                                                                                       | no                                                                                                                                                                                                       | WHONET                                                                                                                                                                     | FluNet                                                                                                                       |
| Regional surveil-<br>lance networks                           | no<br>surveillance data<br>consolidated in<br>WHO regional<br>offices                                   | yes<br>BBINS, MBDS network,<br>HANMAT, RAVREDA,<br>PDRMN (other<br>regional networks<br>have collapsed due<br>to lack of funding) | no<br>HIVResNet is a global<br>network of experts<br>from academic insti-<br>tutions, laboratories<br>and non-profit<br>organizations cre-<br>ated in 2007 to<br>develop strategies to<br>monitor HIV DR | yes<br>GLASS: Europe (EARS-<br>Net; CAESAR) and<br>Latin America<br>(ReLAVRA); GASP<br>data collated via<br>WHO Regional<br>Office/Reference<br>Centres (except<br>Africa) | no<br>GISRS is a network of<br>National Influenza<br>Centres (NICs) and<br>WHO Collaborating<br>Centres (WHOCCs)             |
| Reference labora-<br>tory network(s)                          | yes<br>WHO TB suprana-<br>tional reference<br>laboratory<br>network                                     | no                                                                                                                                | yes<br>global HIV drug resist-<br>ance laboratory<br>network                                                                                                                                             | –<br>GLASS—no; GASP—<br>yes                                                                                                                                                | yes<br>NICs; WHOCCs; WHO<br>H5 Reference<br>Laboratories                                                                     |
| Global proficiency<br>testing scheme                          | yes                                                                                                     | no                                                                                                                                | no<br>participation in an EQA<br>scheme is a prereq-<br>uisite to becoming a<br>WHO-designated<br>genotyping<br>laboratory                                                                               | no<br>no global scheme<br>proposed in GLASS;<br>ReLAVRA—LA-<br>EQAS; CAESAR—<br>UK-NEQAS; GASP -<br>EQAS                                                                   | yes<br>WHO-EQAP                                                                                                              |
| Guidance on use of<br>AMR surveillance<br>data                | individual case<br>management<br>and to guide<br>design of new<br>second-line<br>treatment<br>regimens  | defined cut-offs for<br>considering national<br>treatment policy<br>change                                                        | used to support choice<br>of nationally recom-<br>mended ART and<br>prophylaxis<br>regimens                                                                                                              | to inform treatment<br>guidelines                                                                                                                                          | to improve antiviral use<br>in treatment and for<br>pandemic<br>preparedness                                                 |

10 of 13 Downloaded from https://academic.oup.com/jac/advance-article-abstract/doi/10.1093/jac/dky026/4921008 by London School of Hygiene & Tropical Medicine user on 13 March 2018

### Table 3. Continued

|                        | ТВ     | Malaria                     | HIV                                                       | Bacteria<br>(GLASS + GASP)                                                       | Influenza (GISRS)                                                                      |
|------------------------|--------|-----------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Frequency of reporting | annual | every 5 years <sup>20</sup> | ad hoc; HIV DR global<br>action plan under<br>development | GLASS—first report<br>January 2018;<br>GASP—ad hoc<br>(every 3 years<br>approx.) | biennial (influenza virus<br>surveillance report-<br>ing is available in<br>real time) |

MBDS, Mekong Basin Disease Surveillance; PDRMN, Pacific Malaria Drug Resistance Monitoring Network; DR, drug resistance. <sup>a</sup>EWI = early warning indicator, e.g. antiretroviral coverage, retention in care, treatment interruption and viral load suppression. <sup>b</sup>ADR = acquired HIV drug resistance and PDR = pretreatment HIV drug resistance.

Table 4. AMR-related proficiency testing and quality management in the networks

|    | Name (acronym) of programme/country location of head office                                                        | Years active | Description                                                                                                                                                                                                                                                |
|----|--------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | Global Laboratory Initiative (GLI), for the Global TB<br>Programme/Switzerland                                     | 2008-ongoing | standards and/or policy setting, proficiency testing, training                                                                                                                                                                                             |
| 2  | WHO HIVResNet Laboratory Accreditation Scheme/<br>Switzerland                                                      | 2007-ongoing | accreditation body; national HIV drug resistance working<br>groups coordinating WHO-recommended surveys must<br>use a WHO-designated genotyping laboratory                                                                                                 |
| 3  | ReLAVRA Latin America External Quality Assessment (LA-<br>EQAS)/Argentina                                          | 2000-ongoing | proficiency testing for the ReLAVRA network                                                                                                                                                                                                                |
| 4  | TREAT Asia Quality Assessment Scheme(TAQAS)/<br>Australia                                                          | 2006-ongoing | TREAT Asia (an amfAR programme) aims to standardize HIV-<br>1 genotypic resistance testing among laboratories to per-<br>mit comparison of results from different centres                                                                                  |
| 5  | UK External Quality Assurance Scheme (UK NEQAS)/UK                                                                 | 1969–ongoing | offers proficiency testing in bacteriology and other laboratory disciplines; >8000 labs from over 140 countries participate                                                                                                                                |
| 6  | World Health Organization (WHO)/Switzerland                                                                        | 2003-ongoing | issues guidelines and sets policy                                                                                                                                                                                                                          |
| 7  | WHO African Region External Quality Assurance<br>Programme (WHO AFRO EQAP)/South Africa                            | 2002-ongoing | proficiency testing; 81 laboratories from 45 countries in the<br>WHO African Region participate in the programme; in<br>2012 it was reported that 20% of labs did not respond to<br>the surveys                                                            |
| 8  | WHO External Quality Assessment Project for the<br>Detection of Subtype Influenza A Viruses by PCR/<br>Switzerland | 2007-ongoing | the EQA Project is conducted jointly by WHO Headquarters,<br>WHO H5 Reference Laboratory and National Influenza<br>Centre, China Hong Kong SAR, with support from the WHO<br>Collaborating Centres on influenza and other WHO H5<br>Reference Laboratories |
| 9  | WHO Global Foodborne infections Network (WHO GFN)<br>EQAS/Denmark                                                  | 2000-ongoing | proficiency testing (pathogen identification, serotyping and AST) organized by the National Food Institute, Denmark                                                                                                                                        |
| 10 | WHO Gonococcal Surveillance Programme EQAS                                                                         | 1992-ongoing | WHO Collaborating Centre in Sydney manages SE Asia/Asia-<br>Pacific programmes                                                                                                                                                                             |
| 11 | WHO Mycobacterial Supranational Reference Laboratory<br>(SRL) Network/Switzerland                                  | 1991-ongoing | network of 33 laboratories providing reference laboratory services and proficiency testing                                                                                                                                                                 |
| 12 | WHO External Quality Assurance System for<br>Antimicrobial Susceptibility Testing (EQAS-AST)/<br>Switzerland       | 1998-2006    | proficiency testing programme in bacterial isolates (identifi-<br>cation and AST)                                                                                                                                                                          |

countries have a well-functioning system for routine bacteriological surveillance with high coverage. As a result, this approach risks generating non-representative data in the short- to mediumterm, as has happened so far, and making inter-country comparisons will be difficult. The long-established WHO/International Union Against Tuberculosis and Lung Disease (WHO/IUATLD) surveillance programme had been described as the 'pathfinder' for GLASS but is at a considerable advantage with the development of robust molecular detection methods, notably the roll-out of GeneXpert<sup>®</sup>, a PCR-based technology that can be performed

Table 5. Impacts and challenges of the AMR surveillance networks in LMICs with examples

| Impacts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Challenges                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Led to changes in treatment policy (malaria networks)</li> <li>Improved laboratory capacity by establishing networks of reference laboratories and quality management systems (ARMed, WHO/IUATLD, GASP, ReLAVRA, CAESAR)</li> <li>Standardization of surveillance methodologies and data analysis (WHO Global Malaria Programme, ReLAVRA, WHO/IUATLD, HIVResNet, WHONET, WWARN)</li> <li>Reduction in healthcare-associated infections in countries (INICC)<sup>21,22</sup></li> <li>Exchange of information, training and knowledge between countries (WHO, ReLAVRA, WWARN, netSPEAR)</li> <li>Data sharing with secondary benefits to inform treatment guidelines (WWARN, IeDEA)</li> <li>Created global repositories of bacterial isolates; these can be used to screen new drugs (SENTRY, ANSORP)</li> <li>Discovery of new resistance mechanisms (The Alexander Project)</li> </ul> | <ul> <li>Low coverage, particularly in sub-Saharan Africa and India (GASP GISRS)</li> <li>Lack of representativeness of data, e.g. due to selective sampling (HIV, GASP, some CAESAR sites)</li> <li>Difficulties of implementing routine blood culture/diagnostic microbiology in clinical practice (CAESAR)</li> <li>Difficulties in implementing complex surveillance methodologies, e.g. optimal <i>in vivo</i> methods for surveillance for artemisinin resist ance in malaria, second-line drug susceptibility testing for TB</li> <li>Lack of engagement by some partners (netSPEAR)</li> <li>Reporting delays</li> <li>Sustainability due to underfunding with consequent understaffing; surveillance has generally not been given high priority by external donors (EANMAT, netSPEAR)</li> </ul> |

directly on primary TB specimens without an intermediate culture step.<sup>18</sup> Molecular surveillance for drug resistance in other bacteria remains some way off but should be made a high priority in order to simplify surveillance in LMICs.

Assessing the representativeness of AMR surveillance data presents a particular challenge. This will be affected by the geographical location and number of sentinel sites, the number and characteristics of individuals sampled, prior treatment history, the incidence of the target pathogen and the methods of detection. WHO/IUATLD has developed its surveillance methodology to the point where it uses survey data to estimate MDR-TB incidence worldwide but this is exceptional for the global programmes. The global report on early warning indicators of HIV drug resistance states that data from most countries cannot be considered as representative due to the way in which the clinics sampled were selected.<sup>11</sup> In malaria therapeutic efficacy studies in hightransmission settings, children less than five years of age are studied since they have the lowest levels of acquired immunity to malaria to give a 'worst-case scenario' depiction of drug efficacy. AMR surveillance for the most commonly encountered bacteria, as it has been practised to date, presents more problems than for other pathogens because of the lack of agreed case definitions and standardized sampling methods. An analysis comparing trends in Escherichia coli resistance from 1997 to 2001 reported by the global Meropenem Yearly Susceptible Test Information Collection (MYSTIC) and SENTRY pharma networks showed that, despite collecting isolates from similar geographical areas, estimates of nonsusceptibility from MYSTIC were consistently higher than those from SENTRY. However, further analysis revealed this was due to a higher proportion of isolates from patients in ICUs in MYSTIC.<sup>19</sup>

AMR surveillance in animals is still in its infancy, with the exception of foodborne infections, but some strategies have been piloted in LMICs under the guidance of the WHO Advisory Group on Integrated Surveillance of Antimicrobial Resistance (AGISAR). The challenges are great, e.g. progress towards standardizing AST breakpoints in veterinary microbiology is far behind that made in humans.

Other networks deserving of a mention that were not included in this analysis are two Digital Disease Detection networks, ProMed and HealthMap, which publish sporadic AMR reports and have an advantage over other networks for the rapidity with which they disseminate information. There is potential for overlap between the activities of networks for AMR detection, foodborne infections and emerging disease detection.

The main limitation of our approach is that the heterogeneity of the data meant meta-analysis was not possible. There are no recognized standards for the composition and activities of AMR surveillance networks. Impacts and challenges of the networks were reported infrequently and our assessment is reliant on published information, which may be more likely to report challenges. In addition, our search was only performed in English with a supplementary search in Spanish to obtain more information about the Latin-American networks.

A successful AMR surveillance network should generate up-todate comparable, representative, high-quality data on pathogens of concern from the target population(s). It should be able to detect and track unexpected events including outbreaks in real time, have rapid, effective mechanisms for communication and reporting, and have a responsible data-sharing policy. A network needs strong leadership and coordination, and it should influence guidelines and policy and ultimately impact on human and animal health. Very few networks were instigated to specifically monitor intervention programmes, e.g. the International Nosocomial Infection Control Consortium. Linking surveillance activity to interventions to combat drug resistance has the potential to increase their impact.

Pharma networks produce high-quality data, but they may not be representative and these networks do not usually support laboratory capacity building in LMICs or influence policy and guidelines. Purely academic networks also produce high-quality data; they often target a clinical or policy question, but they too have limited influence on policy and their sustainability is reliant on external funding. Most of the networks are slow to report their findings and do not give unrestricted access to their data. The experience of the larger global programmes for AMR surveillance in TB, malaria and

Downloaded from https://academic.oup.com/jac/advance-article-abstract/doi/10.1093/jac/dky026/4921008 by London School of Hygiene & Tropical Medicine user on 13 March 2018

HIV suggests that options for more active surveillance may need to be considered in order to gather comparable useful data from low-income countries before reliable case-based surveillance can be established.

Maintaining an up-to-date registry of networks would promote a more coordinated approach to surveillance, reduce duplication of efforts, optimize funding investment and improve sustainability.

## Acknowledgements

Thanks go to Eli Harriss, who devised and performed the literature search, and to Jonathan Rushton, Pilar Ramon-Pardo, Alejandra Corso and Jaime Chang, for helpful discussions.

# Funding

This is an independent study commissioned by the Wellcome Trust and funded by the UK Department of Health. The full study report and database of networks is available on the website of the Infectious Diseases Data Observatory.<sup>23</sup> The funder had no role in the writing of the manuscript or decision to submit for publication.

# **Transparency declarations**

None to declare.

### Author contributions

E. A. A.: literature search, data analysis, data interpretation and writing the first draft of the manuscript. J. R. and M. D.: literature search (Spanish and quality management sections, respectively), data interpretation and editing the manuscript. N. V. T.: data analysis and data interpretation. A. C., D. D., N. R., M. D., P. T., P. J. G., N. J. W. and N. P. D.: data interpretation and editing the manuscript. All authors reviewed and approved the final manuscript.

# Supplementary data

Supplementary data are available as Supplementary data at JAC Online.

# References

**1** O'Neill J. Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations, 2014. https://amr-review.org/.

**2** WHO. Global Antimicrobial Resistance Surveillance System: Manual for Early Implementation. Geneva, Switzerland: WHO, 2015. http://www.who.int/anti microbial-resistance/publications/surveillance-system-manual/en/.

**3** The World Bank. *World Bank Country and Lending Groups*. 2016. https:// datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bankcountry-and-lending-groups.

**4** Talisuna AO, Karema C, Ogutu B *et al*. Mitigating the threat of artemisinin resistance in Africa: improvement of drug-resistance surveillance and response systems. *Lancet Infect Dis* 2012; **12**: 888–96.

**5** Chaitram JM, Jevitt LA, Lary S *et al.* The World Health Organization's External Quality Assurance System Proficiency Testing Program has improved the accuracy of antimicrobial susceptibility testing and reporting among participating laboratories using NCCLS methods. *J Clin Microbiol* 2003; **41**: 2372–7.

**6** WHO. Policy and Procedures of the WHO/NICD Microbiology External Quality Assessment Programme in Africa. Years 1 to 4 2002-2006. Geneva, Switzerland: WHO, 2007. http://www.who.int/ihr/publications/policy\_proce dures\_eqa/en/.

**7** WHO. *Global Tuberculosis Report 2017.* Geneva, Switzerland: WHO, 2017. http://www.who.int/tb/publications/global\_report/en/.

8 WHO. Global Plan for Artemisinin Resistance Containment (GPARC). Geneva, Switzerland: WHO, 2011. http://www.who.int/malaria/publications/atoz/ 9789241500838/en/.

**9** WHO Global Malaria Programme. *Global Database on Antimalarial Drug Efficacy and Resistance*. Geneva, Switzerland: WHO, 2017. http://www.who. int/malaria/areas/drug\_resistance/drug\_efficacy\_database/en/.

**10** Hurt AC, Besselaar TG, Daniels RS *et al.* Global update on the susceptibility of human influenza viruses to neuraminidase inhibitors, 2014-2015. *Antiviral Res* 2016; **132**: 178–85.

**11** WHO. Global Report on Early Warning Indicators of HIV Drug Resistance: *Technical Report.* Geneva, Switzerland: WHO, 2016. http://www.who.int/hiv/ pub/drugresistance/ewi-hivdr-2016/en/.

**12** Gupta RK, Jordan MR, Sultan BJ *et al.* Global trends in antiretroviral resistance in treatment-naive individuals with HIV after rollout of antiretroviral treatment in resource-limited settings: a global collaborative study and meta-regression analysis. *Lancet* 2012; **380**: 1250–8.

**13** WHO. Map of Countries Implementing WHO Surveys for Pretreatment Drug Resistance and Acquired Drug Resistance, 2014-2016. Geneva, Switzerland: WHO, 2016. http://www.who.int/hiv/topics/drugresistance/ hivdr-map-2014-16/en/.

**14** Amos B, Kisakye A, Makewa D *et al*. Behind the data: establishing the Network for Surveillance of Pneumococcal Disease in the East African Region. *Clin Infect Dis* 2009; **48** Suppl 2: S162–71.

**15** Ghansah A, Amenga-Etego L, Amambua-Ngwa A *et al*. Monitoring parasite diversity for malaria elimination in sub-Saharan Africa. *Science* 2014; **345**: 1297–8.

**16** Borg MA, Scicluna E, de Kraker M *et al.* Antibiotic resistance in the southeastern Mediterranean—preliminary results from the ARMed project. *Euro Surveill* 2006; **11**:164–7.

**17** Hedt BL, Laufer MK, Cohen T. Drug resistance surveillance in resourcepoor settings: current methods and considerations for TB, HIV, and malaria. *Am J Trop Med Hyg* 2011; **84**: 192–9.

**18** WHO. Drug-Resistant TB. Surveillance and Response: Supplement Global Tuberculosis Report. Geneva, Switzerland: WHO, 2014. http://apps.who.int/medicinedocs/documents/s21635en/s21635en.pdf.

**19** Stelling JM, Travers K, Jones RN *et al.* Integrating *Escherichia coli* antimicrobial susceptibility data from multiple surveillance programs. *Emerg Infect Dis* 2005; **11**: 873–82.

**20** WHO. Antimicrobial Resistance: Global Report on Surveillance 2014. Geneva, Switzerland: WHO, 2014. http://www.who.int/drugresistance/docu ments/surveillancereport/en/.

**21** Jaggi N, Rodrigues C, Rosenthal VD *et al*. Impact of an international nosocomial infection control consortium multidimensional approach on central line-associated bloodstream infection rates in adult intensive care units in eight cities in India. *Int J Infect Dis* 2013; **17**: e1218–24.

**22** Navoa-Ng JA, Berba R, Rosenthal VD *et al.* Impact of an International Nosocomial Infection Control Consortium multidimensional approach on catheter-associated urinary tract infections in adult intensive care units in the Philippines: International Nosocomial Infection Control Consortium (INICC) findings. *J Infect Public Health* 2013; **6**: 389–99.

**23** Ashley EA, Recht J, Chua A *et al.* Antimicrobial Resistance in Low and Middle Income Countries. An Analysis of Surveillance Networks. Report 2017. www.iddo.org/amr-networks.