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Abstract 

Vaccines are one of the most effective public health interventions, but factors influencing 

vaccine efficacy remain poorly understood. Natural killer (NK) cells contribute to adaptive 

immune responses following activation by IL-2 from memory T cells or crosslinking of CD16 by 

antigen-antibody complexes. Human cytomegalovirus (HCMV), a highly prevalent herpes virus, 

drives expansion of a mature CD56dimCD57+NKG2C+ NK cell subset, skewing the NK cell 

repertoire towards contact-dependent activation at the expense of cytokine sensitivity. I 

hypothesised that HCMV seropositivity would be associated with diminished NK cell activation 

during recall responses to vaccine antigens.  

 

To test this hypothesis, I first confirmed my ability to detect NK cell responses following re-

stimulation with vaccine antigens and described differential activation by CD57-defined NK cell 

subsets: mature CD56dimCD57+ NK cells produced less IFN-γ than CD56bright or 

CD56dimCD57- NK cells, consistent with their reduced responsiveness to IL-2. Next, in a cross-

sectional study of 152 UK adults (36% HCMV+), I found that NK cell IFN-γ and degranulation 

responses to pertussis or H1N1 influenza vaccines were lower among HCMV+ individuals as 

compared to HCMV- individuals. The higher proportion of CD56dimCD57+NKG2C+ NK cells in 

HCMV+ individuals did not fully explain these impaired responses, as cells from all 

CD57/NKG2C-defined subsets responded less well. Finally, as I had detected lower expression 

of IL-18Rα on NK cells in HCMV+ individuals, I characterised pro-inflammatory cytokine 

interactions driving early NK cell activation and identified a central role for IL-18, due to its 

ability to synergise with IgG-CD16 crosslinking and common γ chain cytokines, including IL-2. 

 

This work demonstrates, for the first time, that HCMV serostatus influences heterogeneity in 

NK cell contributions to adaptive immunity and raises important questions regarding the 
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impact of HCMV infection on vaccine efficacy. Furthermore, my work highlights that HCMV 

infection status is a major confounder of any study of human NK cell phenotype or function.  
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In this introductory chapter, I will start with a brief overview of the immune system and 

compare responses during primary and secondary pathogen exposure, before focusing in 

greater detail on natural killer (NK) cells. This will include an outline of the main characteristics 

of NK cells, the mechanisms and outcomes of NK cell activation, and the role of NK cells in 

adaptive immunity – particularly utilising the evidence from vaccination studies. I will then go 

on to discuss the epidemiology and health outcomes associated with human cytomegalovirus 

(HCMV) infection, with a focus on the impact of HCMV infection on cellular immunology and 

vaccine efficacy. Finally, I will summarise the main aims and research objectives of this PhD 

project.  

 

1.1 The human immune system  

The immune system is classically considered to be composed of the innate and the adaptive 

arms, each constituted of different types of leucocytes. For the innate system, this includes 

phagocytic cells and professional antigen-presenting cells (APCs) such as dendritic cells, 

monocytes and macrophages, as well as neutrophils, basophils, eosinophils, and NK cells. The 

adaptive side, by contrast, is comprised of only two major types of lymphocytes – B cell and T 

cells – though these can each be broken down into multiple, functionally distinct, subsets.  

 

The key differentiating feature between these innate and adaptive leucocytes is related to the 

capacity to generate immunological memory. Through use of genetic recombination to 

produce a vast array of cell surface antigen-specific receptors, T cells and B cells are able to 

recognise an infinite number of conformational protein structures (B cells, via B cell receptor 

[BCR]) or pathogen epitopes (T cells, via T cell receptor [TCR]); for stimulation through the TCR, 

this involves antigen-specific recognition of pathogen-derived peptides presented by self 

Major Histocompatibility Class (MHC) Class I or II molecules, encoded in humans by Human 

Leucocyte Antigen (HLA) genes. Antigen-specific cells then rapidly clonally expand the antigen-

specific population, before contracting to maintain a lower number of memory cells in 
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peripheral circulation. In contrast, innate immune cells do not have the capacity to genetically 

rearrange receptors and are not thought to form long-lived memory cells. Differentiation of T 

cells from naïve to central memory to effector memory phenotypes is discussed in section 

1.4.1 (HCMV impact on T cell repertoire).   

 

1.1.1 Primary infections 

Infection by a pathogen will be detected by the innate immune system, relying largely on 

recognition of conserved pathogen associated molecular patterns (PAMPs) by germline 

encoded Toll-like receptors (TLRs) or other pattern recognition receptors (PRRs). Activation of 

these innate cells drives production of a range of soluble mediators, such as cytokines and 

chemokines, driving inflammation through recruitment and activation of other immune cells. 

Moreover, the specific combinations of cytokines produced will strongly influence the quality 

of the subsequent immune response. There are multiple mechanisms through which innate 

cells may clear an infection, including engulfment and lysis of the pathogen through 

phagocytosis, direct killing of infected cells, or neutrophil extracellular traps which can kill 

bacteria extracellularly.  

 

If the innate immune system does not swiftly control the infection, the antigen load will 

increase and after several days the immune response will expand to include the adaptive arm. 

In the absence of primed, pre-existing memory T cells or B cells, the adaptive response is slow 

as antigen-specific naïve cells are very low frequency and must clonally expand to reach 

sufficient numbers for an effector response. Trafficking of antigen by dendritic cells and other 

APCs into lymph nodes may also delay clonal expansion of the effector cells. 

 

1.1.2 Secondary infections: the recall response 

The dogma for the kinetics of a secondary infection is that the response by innate cells will be 

essentially the same as during primary exposure, due to the lack of true immunological 
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memory by these cells. In contrast, the adaptive arm is now primed to respond more quickly 

and more robustly due to increased numbers of circulating differentiated, memory, antigen-

specific populations of both T cells and B cells. Additionally, antibodies specific to the pathogen 

will also be circulating in the plasma, capable of neutralising pathogens by marking them for 

opsonisation. Control of the infection should thus be faster during secondary exposure due to 

the increased frequencies of these primed and differentiated memory cells.  

 

Indeed, the purpose of vaccination is to make use of this phenomenon and to introduce the 

immune system to non-virulent forms of pathogens, in order to generate immunological 

memory without the disease symptoms associated with primary infection. Protection 

therefore relies on the capacity of these immune cells to subsequently orchestrate an effective 

recall response to the pathogen upon a secondary exposure.  

 

1.2 Natural killer (NK) cells  

NK cells develop in the bone marrow from common lymphoid progenitor cells and constitute 

5-20% of circulating leucocytes. While originally discovered in the context of their cytotoxic 

activity against tumour cells [3-6], NK cells are also important for early responses to infections 

(reviewed in [7]). In humans, NK cells are generally defined as innate CD3-CD56+ large granular 

lymphocytes: CD3 is the T cell co-receptor and not expressed on non-T cells, while CD56 (also 

known as Neural Cell Adhesion Molecule 1, NCAM1) is expressed on human NK cells but is of 

unknown function. CD56bright and CD56dim populations are functionally distinct, particularly 

in terms of ability to produce and be activated by cytokines [8]. CD56bright cells are generally 

more responsive to cytokine stimulation and robustly produce cytokines themselves, while 

CD56dim NK cells – representing 90% of all peripheral NK cells – are more mature, cytotoxic 

effectors and respond more robustly to direct stimulation [9], though still constitute the major 

proportion of cytokine-producing NK cells.  
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NK cells can be further divided into subsets based 

on expression of other cell surface markers, such 

as CD57 and CD16 [10-12]. CD57, a terminally 

sulphated carbohydrate epitope, remains of 

unknown function but acquisition is associated 

with maturation of NK cells and increasing 

functional skewing towards cytotoxic capacity 

rather than cytokine production [10,11]. Surface 

expression of CD16, a low affinity Fc receptor, is 

also associated with CD57 and a predisposition 

for direct contact activation [10,11]; indeed, 

CD56dimCD57+CD16+ NK cells are specialised for 

antibody-dependent cellular cytotoxicity (see 

section 1.2.1 Contact-dependent NK cell 

activation, [11]). Increased proportions of CD57+ NK cells are associated both with ageing and 

with persistent human cytomegalovirus (HCMV) infection, as reviewed by myself and 

colleagues ([13], Appendix I). 

 

NK cell responses include both cytotoxicity and also secretion of cytokines and chemokines, 

including IFN-γ. The production of IFN-γ, which is essential for control of viruses and 

intracellular bacteria, is one of the major functional outputs of NK cell activation. IFN-γ has 

wide-ranging effects in the context of infection including: polarisation of T cell responses 

towards at Th1 phenotype; potent activation of monocytes/macrophages to increase anti-

pathogen activities, antigen presentation and phagocytosis; and, contribution to driving B cell 

class switching to IgG isotypes effective for opsonisation [14-19]. Perhaps unsurprisingly, given 

this vast range of activities, over 300 genes are estimated to be upregulated following IFN-γ 

signalling [20]. Natural killer T cells and T cells also produce IFN-γ (indeed IFN-γ is a 

Figure 1. NK cell maturation from 

CD56bright to CD56dimCD57- to CD56dim 

CD57+. CD56bright NK cells have a high 

proliferative capacity and are very 

responsive to cytokine stimulation, while 

CD56dim NK cells are more sensitive to 

direct contact activation, e.g. through CD16, 

and have an enhanced cytolytic capacity 

due to the increased presence of pre-

formed cytotoxic granules. 
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characteristic of the Th1 response [17]) but the significance of the NK cell response lies 

partially in the rapidity of the production, which plays a key role in early control of infections 

(see section 1.1.3 NK cell contributions to adaptive immunity, [7]), and also in that a large 

percentage of NK cells can respond to any given pathogen in contrast to the much lower 

frequency of antigen-specific T cells.   

 

Cytotoxic NK cell responses, also referred to as cytolytic activity, involve killing of infected 

target cells or abnormal self cells. This is mediated through the secretion of lytic granules 

containing perforin, which punctures cell surface plasma membranes, and granzymes, which 

induce cell death through apoptosis (reviewed in [21]). These granules traffic to the cell 

surface membrane at the immunological synapse along microtubule filaments, orchestrated by 

the microtubule organising centre which has migrated to the synapse [21]. Deposition of 

CD107a (also known as LAMP-1) from these granules on the plasma membrane during fusion 

at the synapse can be used as a proxy measurement of degranulation and cytotoxic activity 

(discussed in more detail in Chapter 3 [22,23]). It is interesting to note that these perforin and 

granzyme pathways mediating cytotoxicity are conserved between NK cells and T cells, despite 

obvious differences in mechanisms of activation [21]. Specifically, in contrast to T cell 

stimulation via the TCR, activation of NK cells may be initiated, without prior sensitisation, by 

direct binding of activating receptors overcoming inhibitory signals, or by exogenous cytokines, 

as detailed below. 

 

1.2.1 Contact-dependent NK cell activation 

Following the discovery of NK cells as autonomous killers of tumour cells in the 1970s [5], it 

was observed that detection of transformed cells was associated with down-regulation of MHC 

Class I molecules [24]. This led to the development of the ‘missing self hypothesis’, which 

describes the phenomenon whereby NK cells identify and kill somatic cells with lowered 

expression of ‘self’ MHC Class I molecules [25]. 
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Direct, contact-dependent, stimulation of NK cells has therefore historically been considered 

the classical route of activation. NK cells vary at the single cell level in their expression of 

specific germline-encoded inhibitory and activating receptors (within and between 

individuals), and activation depends on the balance of engagement of these receptors 

(reviewed in [26]). In the missing self model, for example, it is the lack of an inhibitory signal 

(in the absence of ligation of an NK cell inhibitory receptor by MHC Class I molecules) that 

permits NK cell activation [25].  

 

The range of NK cell activatory and inhibitory receptors is staggering in its complexity, with one 

family in particular, KIRs (killer immunoglobulin-like receptors) showing extensive polygenic 

and polymorphic diversity (reviewed in [27]). KIRs are one of three major inhibitory receptor 

families that bind MHC Class I molecules, alongside immunoglobulin-like transcripts (ILTs), and 

CD94/NKG2 heterodimers (e.g. CD94/NKG2A, which recognises HLA-E). All of these inhibitory 

receptors contain an immunoreceptor tyrosine-based inhibition motif (ITIM) in the cytoplasmic 

tail which initiates signalling cascades during engagement of the receptor (reviewed in [28]). 

Engagement of inhibitory receptors on NK cells with self MHC molecules also serves the 

purpose of NK cell licensing (also known as education), which must occur before NK cells can 

be fully activated by other stimuli (reviewed in [29]).  

 

A minority of KIR and NKG2 molecules have an immunoreceptor tyrosine-based activatory 

motif (ITAM) on their cytoplasmic tails instead and function as activating receptors [30,31]. Of 

particular interest in the context of this thesis is the CD94/NKG2C heterodimer, which also 

recognises HLA-E as its ligand, discussed in detail below (see section 1.3.2 HCMV impact on NK 

cell repertoire). Other activatory receptors include 2B4, DNAM-1, NKG2D, and the natural 

cytotoxicity receptors (NCRs) NKp80, NKp30, NKp44 and NKp46 [32]. NKG2D, another member 

of the NKG2 family, recognises UL-16 binding proteins (ULBP) induced by DNA damage, and 

also MHC Class I chain-related proteins A/B (MICA/B) [33]. Ligands for NCRs are unknown in 
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many cases but include the tumour protein B7-H6 (NKp30 [34]), influenza haemagglutinin 

antigen (NKp46 [35]), and the poxvirus haemagglutinin (both NKp30 and NKp46 [36]). 2B4 and 

DNAM-1 bind CD48 and CD155/ nectin-2 as their natural ligands respectively. 

 

Also of relevance is the low affinity Fc receptor (FcRIII), CD16, which can be crosslinked by 

antigen-bound IgG, such as in immune complexes or antibody-coated infected cells, driving a 

process called antibody-dependent cellular cytotoxicity (ADCC) as well as the production of 

cytokines [37,38]. CD16 is a unique activating receptor in that its ligation can trigger activation 

of NK cells in the absence of other co-stimulation [39]. This represents an important interface 

of the innate and adaptive arms of the immune system (detailed further in section 1.1.3 NK cell 

contributions to adaptive immunity). 

 

Finally, accessory cells can also contribute to NK cell activation through contact-dependent 

mechanisms, for example through ligation of LFA-1 by ICAM-1 [40]. In the context of infection,  

upregulation of NK cell activating receptor ligands by accessory cells can function as sufficient 

co-stimulation to over-ride inhibitory signals provided by MHC Class I competent cells 

(reviewed in [2], see Figure 2 and section 1.2.2 Cytokine-mediated NK cell activation, below).  

  

1.2.2 Cytokine-mediated NK cell activation 

Alongside these direct routes of activation, it is also well-established that NK cells can be 

activated indirectly by soluble signalling molecules and indeed it has become increasingly clear 

that NK cells are often not fully functional during pathogen responses until triggered by pro-

inflammatory cytokines, released by accessory cells (reviewed in [2], see Figure 2). This does 

not contradict our classical understanding of NK cells as innate lymphocytes — that do not 

require co-stimulation or prior exposure to antigen to become activated — but, rather, 

indicates synergies between multiple pathways. 
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PRRs in accessory cells such as 

dendritic cells, monocytes, and 

macrophages detect PAMPs very early 

in infection and upregulate co-

stimulatory molecules and begin pro-

inflammatory cytokine production, 

which act to recruit and activate NK 

cells [41,42]. Strong, contact-

independent soluble signals can over-

ride the inhibitory contact-dependent 

signals from MHC Class I molecules, as 

signalling through soluble ligands is not 

subject to inhibition through MHC I 

[26], and lead to NK cell activation in the form of cytokine production or cytotoxicity. 

 

The main pro-inflammatory cytokines produced by accessory cells that can drive NK cell 

activation are IL-12, IL-18, and IL-15. Type I interferons (IFN-α and IFNβ) are also produced 

swiftly during infection and are another major early cytokine activator of NK cells, particularly 

during viral infections, and are associated with NK cell cytotoxicity rather than IFN-γ 

production [43]. This thesis does not focus on the role of type I IFNs in NK cell activation, 

although a study by our group does include a brief exploration of the role of IFN-α in the 

context of influenza vaccination (Goodier, Lusa, Rodríguez-Galán, Nielsen, et al., manuscript 

accepted) and further information on type I IFN activation of NK cells can be found in multiple 

reviews [2,7].   

 

IL-12 is produced primarily by monocytes and dendritic cells following PRR stimulation, or 

signals from activated T cells and NK cells. In the NK cell field, IL-12 is best recognised for its 

Figure 2. NK cell activation by accessory cells in 

response to infection. Accessory cells respond to 

pathogens following stimulation of pathogen 

recognition receptors (PRRs), such as TLRs. Accessory 

cells can then activate NK cells through secretion of 

soluble signals, including cytokines, alongside direct 

contact activation involving ligation of NK cell activating 

receptors. NK cells may then go on to produce 

inflammatory cytokines themselves, such as IFN-γ, or 

perform cytolytic killing. Adapted from [2]. 
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role as a powerful driver of IFN-γ production by NK cells, but IL-12 also skews antigen-specific T 

cells towards a Th1 phenotype (including IFN-γ production), and activated B cells towards 

production of Ig isotypes associated with Th1 responses and control of infections (reviewed in 

[44]). Similarly, IL-18 is secreted by myeloid cells, particularly macrophages, after 

inflammasome stimulation [45] and also plays a role in NK cell IFN-γ responses by synergising 

with IL-12. Indeed, IL-18 was initially identified as an ‘IFN-γ-inducing factor’ [46]. IFN-γ can act 

on myeloid cells to induce IL-12 and IL-18 production, thus generating a positive pro-

inflammatory feedback loop [17]. 

 

IL-15 has many cellular sources but is also produced predominantly by monocytes and 

dendritic cells in response to activation with stimuli such as type I interferons or TLR 

engagement. One of the mechanisms of action of IL-15 is to enhance cytotoxicity by inducing 

the upregulation of integrin LFA-1 during development, which enables adhesion to target cells 

through its ligand ICAM-1, thus stabilising the immune synapse [47]. Due to its essential role in 

NK cell development, maturation, and survival [48,49], IL-15 is required for long-term cell 

cultures to provide a survival signal [50,51].  

 

IL-2 is also a member of the common γ chain cytokine family (which includes IL-4, IL-7, IL-9, IL-

15, and IL-21) which share the common γ chain component of their respective cytokine 

receptors  (reviewed in [52]). IL-2 shares many structural and signalling similarities to IL-15 and 

the two cytokines have some overlapping functions with respect to NK cell activation, 

particularly as related to driving proliferation. The additional role of IL-2, as produced by CD4+ 

T cells upon TCR engagement, is discussed below (see section 1.1.3. NK cell contributions to 

adaptive immunity) and cytokine receptor expression is a key focus of Chapter 5.  
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1.2.3 NK cell contributions to adaptive immunity 

While NK cells have traditionally been classified as cells exclusively of the innate immune 

system, recent research has implicated them as potential mediators of adaptive responses 

through their activation by adaptive T cell responses, specifically vaccine antigen-specific CD4+ 

T cell-derived IL-2 [53-57]. The heightened IFN-γ response of NK cells in the context of a 

vaccine recall response suggest that NK cells may play a role in protection from vaccine-

preventable diseases, particularly as NK cells respond more quickly than T cells upon re-

exposure to vaccine antigens [54]. Dissecting the role of NK cells, both as a whole population 

and by subset, in different vaccination models is of interest in order to understand the overall 

contribution of NK cells to protective immunity post-immunisation. 

 

It is well established that different subsets within CD4+ and CD8+ T cells respond differently 

during responses to vaccine antigens, e.g. naïve vs. central memory subsets, and furthermore 

that long-term changes to the T cell repertoire may affect the responsiveness of this arm of the 

adaptive immune response (reviewed in [58]). However, the possibility that different NK cell 

subsets also respond differently to vaccine antigen stimulation has not been explored, despite 

evidence that responsiveness to cytokines decreases with CD57 expression [10]. As with T 

cells, factors that influence the relative proportions of NK cell subsets will likely also influence 

the capacity of the entire NK cell compartment to respond to vaccine antigens, e.g. ageing or 

certain infections.  

 

There is substantial evidence from numerous studies that CD4+ T-cell-derived IL-2 can activate 

NK cells, which can then contribute to the recall response, predominantly through production 

of IFN-γ. The first indication of this phenomenon in humans came from work by Fehniger et al 

who showed that CD56bright NK cells could be activated by T cell IL-2 in the lymph node, 

calling this ‘a potential new link between adaptive and innate immunity’ [59]. Later work by He 

et al demonstrated that NK cells produced IFN-γ when stimulated with influenza A (n = 26 
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[53]). Similar results were achieved using live or heat-inactivated whole virus. He et al went on 

to reveal, albeit with small sample sizes and no statistical analyses, that this NK cell IFN-γ 

response was dependent on the presence of T cells, as shown by an abrogation of the 

response with CD3-depletions (n = 8), thus removing T cells, and that it could be substantially 

suppressed in peripheral blood mononuclear cell (PBMC) cultures by a blocking antibody to IL-

2 (n = 6), or rescued in a CD3-depletion cultures by addition of exogenous IL-2 (n = 3). In 

addition, it was confirmed that T cell production of IL-2 in response to influenza A stimulation 

preceded the NK cell IFN-γ production, though only published for one subject. 

 

Long et al subsequently showed in a vaccine intervention study that NK cells are significant 

producers of IFN-γ in vitro following influenza vaccination; seven of eight vaccinees had an 

increase in IFN-γ-producing NK cells post-vaccination, defined as greater than two standard 

deviations from the pre-vaccination mean [55]. An enhanced post-vaccination response was 

seen only to thimerosal-inactivated whole influenza A virus, not to haemagglutinin and M1 

peptide pools. Furthermore, as no increased IFN-γ production was observed with CD4+ T cells 

and only two subjects had enhanced CD8+ T cell responses, the authors went on to show that 

the NK cells represented a major effector population during these re-stimulation responses. 

The proportion of the IFN-γ-producing cells that were NK cells increased from a mean of 16.4% 

pre-vaccination to 30.3% post-vaccination. To note, however, even including only the peak 

post-vaccination responses for each subject, the percentage of NK cells producing IFN-γ was 

still very low (0.05-2.00% for subjects considered to be ‘noteworthy’ responders). 

 

Previous work from our group built on this early work with a rabies vaccination study, 

demonstrating conclusively that enhanced IFN-γ and degranulation NK cell responses during 

re-stimulation with inactivated rabies virus, 21 days post-vaccination, were dependent on IL-2 

from CD45RO+ CD4+ T cells which peaked after six hours (n = 5, [54]). The effect was entirely 

dependent on T cell memory, as pre-vaccination NK cells were comparably activated when 
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cultured with post-vaccination T cells. This study also determined that IL-2 was necessary but 

not sufficient, as the NK cell responses to rabies virus were additionally dependent on IL-12 

and IL-18 from accessory cells. Of particular interest from this work was the novel appreciation 

of the extent of the NK cell contribution to these ‘recall’ responses: NK cells comprised over 

70% of IFN-γ-producing or degranulating cells in the first 18 hours. Even after seven days, the 

proportion of IFN-γ+ cells that were NK cells remained high at 30-50%. This finding 

underscored the key role NK cells play early in infection, prior to control and clearance by the 

adaptive immune system. This study also demonstrated that IL-2 drove NK cell proliferation, 

resulting in successive waves of NK cell responses.  

 

However, responding to IL-2 from T cells is not the only mechanism by which NK cells may be 

activated by the adaptive immune system during a memory response. As mentioned above 

(see Figure 3 and section 1.1.1 Contact-dependent NK cell activation), CD56dim NK cells 

express the low affinity IgG receptor CD16 at the cell surface. CD16 recognises the Fc portion 

of IgG, and thus NK cells can be activated by crosslinking of CD16 receptors through ligation by 

IgG molecules either bound to a pathogen, forming an immune complex, or on the surface of 

an infected cell. This CD16 crosslinking induces a signalling transduction pathway, leading to 

cytotoxicity — antibody-dependent cellular cytotoxicity (ADCC) — and cytokine production, 

including IFN-γ and TNF-α [37]. This signalling is mediated by intracellular adaptor proteins 

associated with CD16, CD3ζ or Fcε receptor I γ (FcεRIγ) [60,61], and involves a rapid increase in 

calcium ions (Ca2+), required for IFN-γ production in response to CD16 stimulation, and a 

subsequent signalling cascade with similarities to that of the T cell receptor [37,62,63]. 
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HIV vaccine studies have indicated antibody-driven immunity can be mediated through NK 

cells, and that ADCC activity by autologous NK cells is correlated with the quantity of IgG1 

bound to HIV-infected cells [64]. As reviewed by Kramski et al [65], HIV-specific antibodies 

capable of mediating ADCC have been associated with a range of positive outcomes including 

better disease prognosis, such as slower progression of infection. While the majority of 

evidence for a post-vaccination ADCC role for NK cells comes from these HIV trials, there is also 

consistent data from the influenza field showing, in mice, that ADCC mediates protection from 

disease at low challenge doses following vaccination with a conserved M2 protein vaccine, and 

that this was dependent on NK cells, but not complement [66].   

 

It is also possible for NK cells to be activated during vaccination through signals from other 

compartments of the innate immune system, as well as those from the adaptive arm. For 

example, Neves et al detected a correlation between upregulation of CD69 and TLR-3/ TLR-9 in 

NK cells following immunisation with the yellow fever vaccine (n = 8 [67]). Given the 

concurrent increase in plasma IFN-γ, they posited that TLRs may play a key role in NK cell 

activation during vaccination and NK cell contribution towards the establishment of immune 

memory. While NK cells were not confirmed to be the cellular source of this augmented IFN-γ, 

and CD69 and TLR expression are not functional read-outs in themselves, this data is 

Figure 3. NK cell activation in 

adaptive immunity. NK cells 

can be activated by accessory 

cytokines alone (see Figure 2), 

but during  secondary recall 

responses, NK cell responses 

can be further potentiated by 

IL-2 from antigen-specific CD4+ 

T cells, and also by antibody-

antigen complexes via Fc 

receptors on NK cell surfaces, 

e.g. CD16. This leads to 

enhanced activation.  
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consistent with the hypothesis that NK cells can be activated following immunisation with a 

range of vaccines and are an interesting example that in some instances NK cells may be 

directly activated by pathogens. 

 

To note, alongside this gradual increase in our understanding of NK cells as effectors of 

secondary immune response through signals from the adaptive immune system, there have 

also been high-profile publications reporting ‘true’ NK cell memory, i.e. long-lived, antigen-

specific, expanded NK cells that have a heightened response upon secondary exposure. The 

concept of NK cell immunological memory in humans remains contentious [68], but there are 

data from three different contexts suggesting this area warrants further work: cytokine-

induced memory-like NK cells (not antigen-specific), murine cytomegalovirus-induced NK 

memory (antigen-specific), and liver-restricted NK cell memory, e.g. to haptens (antigen-

specific; as reviewed in [39,69]). The latter two scenarios are yet to be demonstrated in 

humans, but several groups have shown cytokine-induced memory-like cells in humans 

([70,71], reviewed in [72]). Here, NK cells stimulated with IL-12, IL-15 and IL-18, then washed 

and cultured for three weeks, show higher IFN-γ upon re-stimulation. Given the significance of 

cytokine stimulation in NK cell responses to vaccine antigens, this is of particular interest in the 

context of this thesis work and indeed we have observed a similar cytokine-induced 

phenomenon in the context of influenza vaccination (Goodier, Lusa, Rodríguez-Galán, Nielsen, 

et al., manuscript accepted). A detailed discussion of this particular study is outside the scope 

of this thesis, but pertinent aspects are covered in Chapters 4-5. 

 

1.3 Human cytomegalovirus (HCMV) 

HCMV is the largest member of the herpesvirus family, with a double-stranded DNA genome of 

236kb in wild type strains [73]. HCMV is also known as herpesvirus-5 (HHV-5) and is part of the 

herpesvirus B subclass, which includes other herpesviruses that infect lymphocytes i.e. 

lymphotrophic virus (HHV-6) and HHV-7. Other well-known herpesviruses belong to subclass A, 
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which infect neurons (herpes simplex-1 [HSV-1], herpes-simplex-2 [HSV-1], and varicella zoster 

[VZV]), or subclass C, which also infect lymphocytes but additionally can cause 

lymphoproliferation (Epstein-Barr virus [EBV], and Kaposi’s sarcoma-associated herpesvirus 

[KSHV, or HHV-8]).  

 

As a herpesvirus, which has co-evolved with humans for millions of years [74], HCMV causes 

persistent infections and is extremely well-adapted to the human host. The molecular 

mechanisms for maintaining chronic and latent states remain poorly understood [75].  

 

1.3.1 HCMV epidemiology 

Transmission of HCMV can occur via infected body fluids (including saliva, breast milk, or 

urine), or  through blood transfusion and organ transplants [76]. Congenital infections can also 

take place during pregnancy, potentially through infection of trophoblasts progenitor cells, 

although the mechanism is unclear [77]. In developing countries, such as the Gambia, 

prevalence of HCMV is high with the majority of infants infected in the first year of life [78]. In 

contrast, the prevalence of HCMV infection in more developed countries is lower initially, 

though associated with socioeconomic status, and increases with age [79]. In the United 

Kingdom, 15% of 1-4-year old children are infected, rising to 30% by age 20-29, and to 

approximately 80% by 65-years [80]. Infections in childhood are predominantly via breast milk 

[81] during infancy or, later, through child-to-child transmission, e.g. in nurseries [82].   

 

During primary infection, HCMV-infected cells can be detected in mucosal tissues including the 

cervix, salivary glands, breast, or intestine. From here, following an initial lytic cycle, HCMV can 

spread into adjacent underlying tissues but also, importantly, into bodily secretions, 

perpetuating transmission. HCMV spread within the body is both through free virus particles in 

the blood, and through cellular trafficking. As reviewed by Sissons et al [83] and Stevenson et 

al [84], alongside haematopoetic stem cells, monocytes are key host cells of HCMV during 
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latency [85,86]. While monocytes are not permissive to viral replication themselves, HCMV 

infection of monocytes can drive myeloid cell differentiation to macrophages [87], which do 

support the full HCMV life cycle. Indeed, infected macrophages can be detected in HCMV-

seropositive individuals [88]. HCMV may also infect and be carried by epithelial and endothelial 

cells [89].  

 

Following primary infections, HCMV virions are shed for a substantial period of time before 

latency is established. In adults, viral shedding may persist for several months [90], whilst in 

children this may last several years (as reviewed in [91]). It is therefore unsurprising that one 

of the strongest predictors for seroconversion in an adult is having a shedding child (reviewed 

in [91]). Reactivation is also associated with a return of viral shedding [92], though in healthy 

adults this will ultimately be controlled once again through largely T cell and NK cell 

mechanisms, with potentially some assistance from antibody (reviewed in [93]). Reactivation is 

a normal part of the viral life cycle, which may be precipitated by stress or other disruption to 

the host immune system.  

 

1.3.2 Health outcomes in HCMV infections 

HCMV infections in adults are normally latent and asymptomatic, unless the individual is 

immunosuppressed [94]. As the immune system can effectively control latent infections, 

where cells may be infected but the virus has very low levels of replication or gene expression, 

there may be few or no clinical symptoms. Conversely, 10% of congenital infections cause 

‘CMV disease’ with symptoms such as jaundice, hepatomegaly, and neurological defects 

present from birth [76,95,96]. Indeed, HCMV remains the leading cause of non-hereditary 

childhood hearing loss or mental retardation [76,97]. The risk of transmission to the foetus is 

greatest when primary infection of the mother occurs during pregnancy; this results in 

congenital infection in 40% of cases [98]. Reactivation of latent infections during pregnancy is 

also associated with increased odds of infection in utero, albeit with much decreased risk of 
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sequelae [99]. Similarly, in the absence of antiviral treatment, HCMV can cause severe 

pathology during reactivation when hosts are immunocompromised [100].  

 

However, there is strong evidence to suggest that even in asymptomatic individuals HCMV 

infection has an effect on long-term health outcomes; HCMV has been linked with several 

chronic diseases including cardiovascular disease [101-103], cancers [104,105], vascular 

dementia [106,107] as well as functional impairment or frailty in the elderly [108-110]. 

Multiple studies have examined the relationship between HCMV infection and overall 

mortality, although usually in specific subsets of national populations [110-114]. An exception 

is a study using the recent US NHANES III (National Health and Nutrition Survey, 1988-1994) 

which included a nationally representative sample of 33,994 adults, aged 25-years and older 

[115]. Analysis of data from a 10-year follow-up of this cohort demonstrated that HCMV 

infection was associated with a significantly increased risk for all-cause mortality (Hazards 

Ratio: 1.19, 95% CI: 1.01, 1.41 [103]). Furthermore, high anti-HCMV antibody titres, not just 

HCMV seropositivity, have also been strongly correlated with frailty, functional impairment of 

the immune response, all-cause mortality, and cardiovascular mortality [102,110,114,116-

119]. There has also been a report from Zambia that HCMV infection during infancy can 

negatively impact early childhood growth, development, and overall health [120], though it is 

not certain how generalisable this is to other countries.  

 

It is therefore clear that HCMV infection negatively impacts a variety of measures of health 

outcomes. To understand the mechanisms behind this phenomenon it is useful to evaluate the 

components of the immune system that HCMV infection affects.   

 

1.4 Intersection of HCMV and immunology 

At the cellular level, HCMV infection has an impact on both T cell and NK cell populations. The 

initial immune response during acute infection directs these long-term effects as the 
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responding subsets of cells undergo sustained maturation and expansion; indeed, HCMV 

infection drives one of the largest cellular immune responses in humans [121]. In contrast, 

little is known about the effect of chronic HCMV infection on B cell populations.  

 

1.4.1 HCMV impact on T cell repertoire  

 In HCMV-seropositive (HCMV+) individuals, a very large proportion of both CD4+ and CD8+ 

memory T cells is directed against HCMV [121]. Van de Berg et al. demonstrated that within 

the CD4+ T cell compartment there is an accumulation of CD28- T cells which are HCMV-

specific as they proliferate and produce IFN-γ in response to HCMV antigen [122]. This work 

corroborates earlier 

studies that identified 

the CD28- phenotype 

as the most common 

for CD4+ T cells in 

HCMV+ donors [123, 

124]. CD28, the CD80 

and CD86 ligand, is 

the co-stimulatory receptor required for signalling through the TCR and is central to IL-2 

production [125]. Absence of CD28 expression could potentially result in reduced T cell activity 

and, particularly relevant for this project, reduced IL-2 production could putatively diminish 

the NK cell response to vaccine antigens. However, this would only be true if HCMV infection 

affected the entire T cell repertoire in this manner, not just the HCMV-specific populations. In 

reality, it is not entirely clear to what extent HCMV infection impacts the development and 

maintenance of CD4+ or CD8+ T cell responses to other antigens (discussed in more detail in 

Chapter 6). 

 

Figure 4. Phenotypic changes associated with T cell maturation. The 

markers CCR7 (a chemokine receptor), CD45RA (a protein tyrosine 

phosphatase isoform), CD28 (the CD80 and CD86 ligand), and CD27 (a co-

stimulating receptor of the TNF family) can be used to define four main T 

cell differentiation subsets: naïve, central memory, effector memory and 

terminally differentiated effector memory (TEMRA) cells [1].  
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In terms of the CD8+ T cell compartment, a review of nine papers in 2003 suggested that the 

dominant phenotype for T cells in the latency or memory stage of a HCMV infection was CCR7-

CD27-CD28-CD45RA+ as the presence of this subset correlates with HCMV seropositivity but 

not with previous exposure to other viruses including measles, EBV or VZV [126,127]. A more 

recent study looked specifically at CD27-CD45RA+ CD8+ T cells, and indeed found that 

accumulation of this subset appears specific for HCMV as no association was seen with HIV, 

hepatitis C, EBV or herpes simplex virus (HSV) infections [122]. The expansion of this 

differentiated — and potentially exhausted — subset alongside a simultaneous reduction in 

the relative number of naïve T cells has implicated HCMV as a driver of age-associated 

immunological changes [128]. Indeed, the gradual loss of CD28, CD27, CD45RA and CCR7 on 

large proportions of T cells seen in chronic HCMV infections is classically used to define the 

maturation/ exhaustion process for both CD4+ and CD8+ T cells (see Figure 4, [1]). 

 

The impact of these shifts towards mature T cell phenotypes, including in the context of 

vaccine responses, has not been resolved but it has been suggested by several groups to be 

indicative of a degree of immunosenescence (e.g. [103,129-134]). The number of functional 

HCMV-specific CD8+ T cells is similar in young and old donors, but the phenotypes of these 

cells differ with the age group [135]; cells from older donors express more KLRG1 (an inhibitory 

receptor), while cells from younger donors express more CD28 [135]. There therefore appears 

to be a simultaneous effect of age, or perhaps duration of HCMV infection, alongside HCMV 

serostatus itself. However, it is interesting to also note that recent work has demonstrated 

that HCMV-specific T cells remain functional in the elderly and there is no evidence of 

telomere erosion, which would be indicative of terminal differentiation and exhaustion [136]. 

Additionally, the rarity of HCMV disease from reactivation or de novo infection in elderly 

populations strongly suggests that anti-HCMV immunity functions remarkably well in these 

populations, despite indicators of immunosenescence [137]. 
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1.4.2 HCMV impact on NK cell repertoire  

HCMV infection is also known to drive changes in the NK cell population. In particular, HCMV 

infection is strongly associated with expansion of expansion of NKG2C+ NK cells [138-140]. 

While the murine cytomegalovirus (MCMV) peptide m157 directly binds NK cells via Ly49H and 

can induce proliferation and activation of this Ly49+ subset, an equivalent molecular 

interaction has yet to be as clearly identified in humans; although CD94/NKG2C can bind the 

HCMV peptide UL18 with low affinity, UL18 is not required for the NKG2C+ NK cell expansion 

[141]. More recently, it was demonstrated that the mechanism for HCMV-infected fibroblast-

driven expansion of NKG2C+ NK cells in vitro was dependent on CD14+ monoycte-derived IL-

12, as well as the interaction of NKG2C with its HLA-E ligand on HCMV-infected cells, stabilised 

by the UL40 HCMV peptide [142]. 

 

As noted previously, NKG2C is a C-type lectin activating receptor that forms heterodimers with 

CD94 at the NK cell surface to recognise its ligand HLA-E. NKG2A, an inhibitory receptor, also 

forms heterodimers with CD94 and binds HLA-E. Although NKG2C and NKG2A can be co-

expressed, HCMV-driven expansion of NKG2C+ NK cells is generally associated with loss of 

NKG2A [138,143].  In addition to being NKG2A-, NKG2C+ NK cells driven by HCMV infection 

express lower levels of NCRs including NKp30 and NKp46, and are more likely to be KIR+ than 

NKG2A+ NK cells [138]. The expansion of these NKG2C+ NK cells expressing self-specific KIRs 

results in a permanent change in the type and frequency of KIR+ NK cells [139,144]. Other 

groups have shown that NKG2C+ NK cells preferentially acquire CD57 [11,145]. Lopez-Vergès 

et al. demonstrated that the preferential expansion of NKG2C+CD57+ NK cells in HCMV+ 

patients was achieved first by NKG2C+ NK cells proliferating, then becoming NKG2Chi, and 

then by finally acquiring CD57 [140]. NKG2C+ NK cells degranulate and secrete cytokines such 

as IFN-γ and TNF-α in response to direct contact stimulation, e.g. crosslinking antibodies or 

HLA-E binding, but do not respond well to IL-12 and IL-18 stimulation [139,146].  
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It has therefore been hypothesised that HCMV shapes the NK cell repertoire in otherwise 

healthy individuals in such a way as to potentially affect their ability to control future 

infections, particularly in the context of cytokine stimulation [138,145]. Both CD57+ and 

NKG2C+ expression are associated with a reduced ability to respond to cytokine stimulation 

but, to our knowledge, the relative contributions of these two markers to this functional 

profile have not yet been dissected, e.g. do NKG2C-CD57+ NK cells respond to IL-12 and IL-18 

better than NKG2C+CD57+ NK cells? Understanding this potential synergy may help illuminate 

the relative importance of HCMV infection (driving expansion of CD57+NKG2C+) and ageing 

(driving CD57+ expansion alone) in shaping NK cell responses. 

 

1.4.3 Associations between HCMV serostatus and vaccine responses 

The work discussed above suggests that HCMV may drive the differentiation of NK cell subsets 

that are less functional during vaccine responses, i.e. less responsive to antigen-specific CD4+ T 

cell IL-2. However, these studies have generally been done in the context of organ transplants, 

while studies on the effect of HCMV infection on immune responses to vaccination have thus 

far been broadly restricted to work in two populations: elderly European cohorts receiving 

seasonal vaccination against influenza, and infants in the Gambia receiving the routine measles 

childhood vaccine. In both cases, analysis focused on antibody and T cell responses and there 

was no evaluation of NK cells. 

 

With respect to the effect of HCMV in the elderly demographic, there is contradictory evidence 

from different studies. Trzonkowski et al. demonstrated an association between HCMV 

infection and lower antibody titres against influenza haemagglutinin post-immunisation in 

elderly care-home residents (aged 65-99 years; n = 91 [119]). Indeed, there was a strong 

reciprocal correlation between anti-HCMV and anti-haemagglutinin antibody titres, showing 

the humoral response to the influenza vaccine was lower in those with HCMV infection, 

especially in those with high anti-HCMV antibody titres. Similarly Moro-García et al detected a 
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negative correlation between anti-influenza and anti-HCMV antibody titres, with the titres 

adjusted for time since immunisation (n = 100 [117]). Derhovanessian et al also reported an 

association between HCMV seropositivity and lower humoral responses in adults >60-years 

old, though not in younger adults (n = 30 [147]). 

 

In contrast, den Elzen et al. observed no difference between the anti-haemagglutinin 

responses of HCMV- and HCMV+ care home residents after seasonal influenza vaccination 

[148]. To note, den Elzen et al. only analysed the response to H3N2, which is the 

haemagglutinin antigen with which Trzonkowski et al. saw the weakest association [119,148]. 

However, supporting the conclusions of den Elzen et al, Wald et al similarly detected no 

significant difference in seroconversion rate or titre in a haemagglutinin inhibition assay to the 

pandemic 2009 H1N1 influenza vaccine between HCMV- and HCMV+ adults aged above 65-

years (n = 55 [149]). Similarly, O’Connor et al. saw no effect of HCMV serostatus on IgG 

response to pneumococcal vaccination in 50-70-year old adults (n = 331 [150]). 

 

Further studies are certainly needed to better understand this interaction of HCMV infection 

and the immune response to influenza vaccination, however, as McElhaney et al. observed in 

their 2012 review, post-vaccination antibody titres alone are generally not sufficient to predict 

vaccine failure in adults [151,152]. It is therefore important to include analyses of cellular 

responses when evaluating the impact of HCMV on vaccine immunogenicity, particularly given 

our knowledge of the effect of HCMV chronic infections on NK and T cell repertoires. Similarly, 

HCMV serostatus is a crude measure and HCMV reactivation/ shedding may be a more 

biologically relevant parameter for characterising HCMV infection. 

 

Cellular responses were briefly addressed in the first paper of the Gambian infant studies. In 

2008, Miles et al. demonstrated that the absolute number of naïve undifferentiated T cells 

(CCR7+CD27+CD28+) in peripheral blood remained constant with HCMV infection while there 
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was a large increase in differentiated CD8+ T cells (CD28-CD57+) and smaller increase in CD4+ 

T cells as compared to blood samples obtained prior to HCMV infection [153]. Despite this, 

there was no difference in cytokine production or proliferative response of T cells to re-

stimulation with measles vaccine antigen between HCMV-/+ infants. In fact, antibody titres 

against measles correlated with the IFN-γ response to HCMV, suggesting HCMV infection may 

in fact be enhancing the humoral response to the measles vaccine. The authors thus concluded 

that HCMV infection induces T cell differentiation without impairing antigen-specific 

responses, which would be consistent with the changes to the T cell repertoire being limited to 

the HCMV-specific cells. McElhaney et al. indeed comment in their review that a direct link is 

yet to be established between changes in CD8+ T cell populations by HCMV infection and 

vaccine failure [152]. However, duration of HCMV infection was one year at most in this study, 

and we know ageing and possibly duration of HCMV infection can also affect responses 

[119,135]. 

 

The next paper, in 2010, went on to examine the effect of HCMV infection on responses to a 

polysaccharide vaccine in addition to measles, and also looked at the impact of EBV infection 

[154]. They observed no difference in antibody response between HCMV-/+ infants [154]. 

However, infection with EBV did result in a reduced antibody response to the measles vaccine 

antigen and, interestingly, co-infection with HCMV seemed to rescue this response [154]. As 

the previous paper had shown that HCMV drives CD4+ T cell differentiation, it was 

hypothesised that HCMV infection may enhance anti-measles antibody production through 

non-specific upregulation of CD4+ T cell-mediated help [153,154]. The authors therefore once 

again concluded that HCMV did not affect vaccine antibody responses, but conceded that the 

interaction of HCMV infection and vaccination needs to be studied on a larger scale [154].  

 

The two populations discussed above — the elderly and infants — represent demographic 

extremes, and the robustness of recall responses to vaccine antigens are clearly relevant for 
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public health in healthy adults as well. Bosch et al. reported a lower response to influenza 

vaccination in HCMV+ university students (Third International Workshop on CMV and 

Immunosenescence [155]), but at the time of commencing this doctoral work, there was 

limited published literature in young adults. Specifically, Trzonkowski et al found significantly 

higher titres of anti-HCMV IgG in non-responders to the influenza vaccine (aged 19-40 years; n 

= 63) while Wald et al had demonstrated higher anti-haemagglutinin titres in HCMV- subjects 

(aged 18-64 years; n = 52). Over the last two years, more studies have been published that 

include younger vaccinees [156,157]; the significance of these publications is discussed in the 

final chapter of this thesis.  

 

More importantly perhaps for the justification of this study, there as yet has been no research 

— in any age group — on the relative NK cell responses to vaccine antigens in HCMV-/+ 

individuals. As with T cells, the significance of the NK cell phenotypes driven by HCMV infection 

are poorly understood, but it is hypothesised that they may affect the ability of NK cells to 

respond to vaccine antigens during a recall response, or during initial vaccination. Specifically, 

with respect to CD57+NKG2C+ NK cells, these cells may not lose the ability to mediate ADCC in 

response to crosslinking by vaccine antigen-specific IgG, which binds CD16, but their responses 

to cytokines produced by antigen-specific CD4+ T cells and activated APCs, such as 

macrophages, may be reduced.   
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1.5 Aims and research objectives 

Although the data are clear on the effect of HCMV on NK cell phenotype, there remain many 

gaps in our knowledge as to the functional consequences of such NK cell changes, particularly 

in the context of vaccination and infection. Given the evidence cited above, my central 

hypothesis was that I would observe an increased proportion of CD56dimCD57+NKG2C+ NK 

cells in HCMV+ individuals and, due to the decreased responsiveness of these cells to 

exogenous cytokine stimulation, I would detect reduced NK cell activation to vaccine 

stimulation in the HCMV+ group. Conversely, I expected to see a retained capacity to mediate 

ADCC in the HCMV+ individuals, as there is no evidence to suggest the HCMV-driven 

CD56dimCD57+NKG2C+ subset should respond less robustly to CD16 crosslinking. 

 

The overall aim of this PhD project was therefore to investigate the effect of HCMV serostatus 

on NK cell responses upon re-exposure to antigens from previously administered vaccines. 

 

The main research objectives were to: 

a) Determine whether NK cell response to vaccines are determined by their maturation 

status, as defined by CD56/CD57 expression (Chapter 3) 

b) Characterise and compare the response of NK cells to stimulation with previously 

encountered vaccines between HCMV- and HCMV+ individuals (Chapter 4) 

c) Identify the key synergies between innate and adaptive signals early in NK cell 

activation that may influence the magnitude of these NK cells responses (Chapter 5)  

 

  



39 
 

1.6 References 

1. Koch, S., A. Larbi, E. Derhovanessian, D. Ozcelik, E. Naumova, and G. Pawelec (2008) Multiparameter 
flow cytometric analysis of CD4 and CD8 T cell subsets in young and old people. Immun Ageing 
5: 6. 

2. Newman, K.C., and E.M. Riley (2007) Whatever turns you on: accessory-cell-dependent activation of 
NK cells by pathogens. Nat Rev Immunol 7: 279-291. 

3. Herberman, R.B., M.E. Nunn, H.T. Holden, and D.H. Lavrin (1975) Natural cytotoxic reactivity of mouse 
lymphoid cells against syngeneic and allogeneic tumors. II. Characterization of effector cells. Int 
J Cancer 16: 230-239. 

4. Herberman, R.B., M.E. Nunn, and D.H. Lavrin (1975) Natural cytotoxic reactivity of mouse lymphoid 
cells against syngeneic acid allogeneic tumors. I. Distribution of reactivity and specificity. Int J 
Cancer 16: 216-229. 

5. Kiessling, R., E. Klein, H. Pross, and H. Wigzell (1975) "Natural" killer cells in the mouse. II. Cytotoxic 
cells with specificity for mouse Moloney leukemia cells. Characteristics of the killer cell. Eur J 
Immunol 5: 117-121. 

6. Kiessling, R., E. Klein, and H. Wigzell (1975) "Natural" killer cells in the mouse. I. Cytotoxic cells with 
specificity for mouse Moloney leukemia cells. Specificity and distribution according to 
genotype. Eur J Immunol 5: 112-117. 

7. Biron, C.A., K.B. Nguyen, G.C. Pien, L.P. Cousens, and T.P. Salazar-Mather (1999) Natural killer cells in 
antiviral defense: function and regulation by innate cytokines. Annu Rev Immunol 17: 189-220. 

8. Poli, A., T. Michel, M. Theresine, E. Andres, F. Hentges, and J. Zimmer (2009) CD56bright natural killer 
(NK) cells: an important NK cell subset. Immunology 126: 458-465. 

9. Jacobs, R., G. Hintzen, A. Kemper, K. Beul, S. Kempf, G. Behrens, K.W. Sykora, and R.E. Schmidt (2001) 
CD56bright cells differ in their KIR repertoire and cytotoxic features from CD56dim NK cells. Eur 
J Immunol 31: 3121-3127. 

10. Bjorkstrom, N.K., P. Riese, F. Heuts, S. Andersson, C. Fauriat, M.A. Ivarsson, A.T. Bjorklund, M. 
Flodstrom-Tullberg, J. Michaelsson, M.E. Rottenberg, C.A. Guzman, H.G. Ljunggren, and K.J. 
Malmberg (2010) Expression patterns of NKG2A, KIR, and CD57 define a process of CD56dim 
NK-cell differentiation uncoupled from NK-cell education. Blood 116: 3853-3864. 

11. Lopez-Verges, S., J.M. Milush, S. Pandey, V.A. York, J. Arakawa-Hoyt, H. Pircher, P.J. Norris, D.F. 
Nixon, and L.L. Lanier (2010) CD57 defines a functionally distinct population of mature NK cells 
in the human CD56dimCD16+ NK-cell subset. Blood 116: 3865-3874. 

12. Cooper, M.A., T.A. Fehniger, and M.A. Caligiuri (2001) The biology of human natural killer-cell 
subsets. Trends Immunol 22: 633-640. 

13. Nielsen, C.M., M.J. White, M.R. Goodier, and E.M. Riley (2013) Functional Significance of CD57 
Expression on Human NK Cells and Relevance to Disease. Front Immunol 4: 422. 

14. Biron, C.A., and L. Brossay (2001) NK cells and NKT cells in innate defense against viral infections. 
Curr Opin Immunol 13: 458-464. 

15. Schroder, K., P.J. Hertzog, T. Ravasi, and D.A. Hume (2004) Interferon-gamma: an overview of 
signals, mechanisms and functions. J Leukoc Biol 75: 163-189. 

16. Romagnani, S. (2006) Regulation of the T cell response. Clin Exp Allergy 36: 1357-1366. 
17. Schoenborn, J.R., and C.B. Wilson (2007) Regulation of interferon-gamma during innate and adaptive 

immune responses. Adv Immunol 96: 41-101. 
18. Gregoire, C., L. Chasson, C. Luci, E. Tomasello, F. Geissmann, E. Vivier, and T. Walzer (2007) The 

trafficking of natural killer cells. Immunol Rev 220: 169-182. 
19. Lanier, L.L. (2008) Evolutionary struggles between NK cells and viruses. Nat Rev Immunol 8: 259-268. 
20. de Veer, M.J., M. Holko, M. Frevel, E. Walker, S. Der, J.M. Paranjape, R.H. Silverman, and B.R. 

Williams (2001) Functional classification of interferon-stimulated genes identified using 
microarrays. J Leukoc Biol 69: 912-920. 

21. Voskoboinik, I., J.C. Whisstock, and J.A. Trapani (2015) Perforin and granzymes: function, dysfunction 
and human pathology. Nat Rev Immunol 15: 388-400. 

22. Aktas, E., U.C. Kucuksezer, S. Bilgic, G. Erten, and G. Deniz (2009) Relationship between CD107a 
expression and cytotoxic activity. Cell Immunol 254: 149-154. 

23. Al-Hubeshy, Z.B., A. Coleman, M. Nelson, and M.R. Goodier (2011) A rapid method for assessment of 
natural killer cell function after multiple receptor crosslinking. J Immunol Methods 366: 52-59. 

24. Karre, K., H.G. Ljunggren, G. Piontek, and R. Kiessling (1986) Selective rejection of H-2-deficient 
lymphoma variants suggests alternative immune defence strategy. Nature 319: 675-678. 



40 
 

25. Ljunggren, H.G., and K. Karre (1990) In search of the 'missing self': MHC molecules and NK cell 
recognition. Immunol Today 11: 237-244. 

26. Long, E.O., H.S. Kim, D. Liu, M.E. Peterson, and S. Rajagopalan (2013) Controlling natural killer cell 
responses: integration of signals for activation and inhibition. Annu Rev Immunol 31: 227-258. 

27. Manser, A.R., S. Weinhold, and M. Uhrberg (2015) Human KIR repertoires: shaped by genetic 
diversity and evolution. Immunol Rev 267: 178-196. 

28. Long, E.O. (2008) Negative signaling by inhibitory receptors: the NK cell paradigm. Immunol Rev 224: 
70-84. 

29. Hoglund, P., and P. Brodin (2010) Current perspectives of natural killer cell education by MHC class I 
molecules. Nat Rev Immunol 10: 724-734. 

30. Lanier, L.L., B. Corliss, J. Wu, and J.H. Phillips (1998) Association of DAP12 with activating 
CD94/NKG2C NK cell receptors. Immunity 8: 693-701. 

31. Lanier, L.L., B.C. Corliss, J. Wu, C. Leong, and J.H. Phillips (1998) Immunoreceptor DAP12 bearing a 
tyrosine-based activation motif is involved in activating NK cells. Nature 391: 703-707. 

32. Moretta, A., C. Bottino, M. Vitale, D. Pende, C. Cantoni, M.C. Mingari, R. Biassoni, and L. Moretta 
(2001) Activating receptors and coreceptors involved in human natural killer cell-mediated 
cytolysis. Annu Rev Immunol 19: 197-223. 

33. Raulet, D.H. (2003) Roles of the NKG2D immunoreceptor and its ligands. Nat Rev Immunol 3: 781-
790. 

34. Brandt, C.S., M. Baratin, E.C. Yi, J. Kennedy, Z. Gao, B. Fox, B. Haldeman, C.D. Ostrander, T. Kaifu, C. 
Chabannon, A. Moretta, R. West, W. Xu, E. Vivier, and S.D. Levin (2009) The B7 family member 
B7-H6 is a tumor cell ligand for the activating natural killer cell receptor NKp30 in humans. J Exp 
Med 206: 1495-1503. 

35. Mandelboim, O., N. Lieberman, M. Lev, L. Paul, T.I. Arnon, Y. Bushkin, D.M. Davis, J.L. Strominger, 
J.W. Yewdell, and A. Porgador (2001) Recognition of haemagglutinins on virus-infected cells by 
NKp46 activates lysis by human NK cells. Nature 409: 1055-1060. 

36. Jarahian, M., M. Fiedler, A. Cohnen, D. Djandji, G.J. Hammerling, C. Gati, A. Cerwenka, P.C. Turner, 
R.W. Moyer, C. Watzl, H. Hengel, and F. Momburg (2011) Modulation of NKp30- and NKp46-
mediated natural killer cell responses by poxviral hemagglutinin. PLoS Pathog 7: e1002195. 

37. Anegon, I., M.C. Cuturi, G. Trinchieri, and B. Perussia (1988) Interaction of Fc receptor (CD16) ligands 
induces transcription of interleukin 2 receptor (CD25) and lymphokine genes and expression of 
their products in human natural killer cells. J Exp Med 167: 452-472. 

38. Trinchieri, G. (2003) Interleukin-12 and the regulation of innate resistance and adaptive immunity. 
Nat Rev Immunol 3: 133-146. 

39. Watzl, C. (2014) How to trigger a killer: modulation of natural killer cell reactivity on many levels. Adv 
Immunol 124: 137-170. 

40. Baratin, M., S. Roetynck, B. Pouvelle, C. Lemmers, N.K. Viebig, S. Johansson, P. Bierling, A. Scherf, J. 
Gysin, E. Vivier, and S. Ugolini (2007) Dissection of the role of PfEMP1 and ICAM-1 in the 
sensing of Plasmodium-falciparum-infected erythrocytes by natural killer cells. PLoS One 2: 
e228. 

41. Akira, S., K. Takeda, and T. Kaisho (2001) Toll-like receptors: critical proteins linking innate and 
acquired immunity. Nat Immunol 2: 675-680. 

42. Krug, A., A.R. French, W. Barchet, J.A. Fischer, A. Dzionek, J.T. Pingel, M.M. Orihuela, S. Akira, W.M. 
Yokoyama, and M. Colonna (2004) TLR9-dependent recognition of MCMV by IPC and DC 
generates coordinated cytokine responses that activate antiviral NK cell function. Immunity 21: 
107-119. 

43. Gerosa, F., A. Gobbi, P. Zorzi, S. Burg, F. Briere, G. Carra, and G. Trinchieri (2005) The reciprocal 
interaction of NK cells with plasmacytoid or myeloid dendritic cells profoundly affects innate 
resistance functions. J Immunol 174: 727-734. 

44. Teng, M.W., E.P. Bowman, J.J. McElwee, M.J. Smyth, J.L. Casanova, A.M. Cooper, and D.J. Cua (2015) 
IL-12 and IL-23 cytokines: from discovery to targeted therapies for immune-mediated 
inflammatory diseases. Nat Med 21: 719-729. 

45. Martinon, F., A. Mayor, and J. Tschopp (2009) The inflammasomes: guardians of the body. Annu Rev 
Immunol 27: 229-265. 

46. Nakamura, K., H. Okamura, M. Wada, K. Nagata, and T. Tamura (1989) Endotoxin-induced serum 
factor that stimulates gamma interferon production. Infect Immun 57: 590-595. 

47. Barao, I., D. Hudig, and J.L. Ascensao (2003) IL-15-mediated induction of LFA-1 is a late step required 
for cytotoxic differentiation of human NK cells from CD34+Lin- bone marrow cells. J Immunol 
171: 683-690. 



41 
 

48. Carson, W.E., T.A. Fehniger, S. Haldar, K. Eckhert, M.J. Lindemann, C.F. Lai, C.M. Croce, H. Baumann, 
and M.A. Caligiuri (1997) A potential role for interleukin-15 in the regulation of human natural 
killer cell survival. J Clin Invest 99: 937-943. 

49. Cooper, M.A., J.E. Bush, T.A. Fehniger, J.B. VanDeusen, R.E. Waite, Y. Liu, H.L. Aguila, and M.A. 
Caligiuri (2002) In vivo evidence for a dependence on interleukin 15 for survival of natural killer 
cells. Blood 100: 3633-3638. 

50. Huntington, N.D. (2014) The unconventional expression of IL-15 and its role in NK cell homeostasis. 
Immunol Cell Biol 92: 210-213. 

51. Mortier, E., R. Advincula, L. Kim, S. Chmura, J. Barrera, B. Reizis, B.A. Malynn, and A. Ma (2009) 
Macrophage- and dendritic-cell-derived interleukin-15 receptor alpha supports homeostasis of 
distinct CD8+ T cell subsets. Immunity 31: 811-822. 

52. Ma, A., R. Koka, and P. Burkett (2006) Diverse functions of IL-2, IL-15, and IL-7 in lymphoid 
homeostasis. Annu Rev Immunol 24: 657-679. 

53. He, X.S., M. Draghi, K. Mahmood, T.H. Holmes, G.W. Kemble, C.L. Dekker, A.M. Arvin, P. Parham, and 
H.B. Greenberg (2004) T cell-dependent production of IFN-gamma by NK cells in response to 
influenza A virus. J Clin Invest 114: 1812-1819. 

54. Horowitz, A., R.H. Behrens, L. Okell, A.R. Fooks, and E.M. Riley (2010) NK cells as effectors of 
acquired immune responses: effector CD4+ T cell-dependent activation of NK cells following 
vaccination. J Immunol 185: 2808-2818. 

55. Long, B.R., J. Michaelsson, C.P. Loo, W.M. Ballan, B.A. Vu, F.M. Hecht, L.L. Lanier, J.M. Chapman, and 
D.F. Nixon (2008) Elevated frequency of gamma interferon-producing NK cells in healthy adults 
vaccinated against influenza virus. Clin Vaccine Immunol 15: 120-130. 

56. Evans, J.H., A. Horowitz, M. Mehrabi, E.L. Wise, J.E. Pease, E.M. Riley, and D.M. Davis (2011) A 
distinct subset of human NK cells expressing HLA-DR expand in response to IL-2 and can aid 
immune responses to BCG. Eur J Immunol 41: 1924-1933. 

57. Horowitz, A., J.C. Hafalla, E. King, J. Lusingu, D. Dekker, A. Leach, P. Moris, J. Cohen, J. Vekemans, T. 
Villafana, P.H. Corran, P. Bejon, C.J. Drakeley, L. von Seidlein, and E.M. Riley (2012) Antigen-
specific IL-2 secretion correlates with NK cell responses after immunization of Tanzanian 
children with the RTS,S/AS01 malaria vaccine. J Immunol 188: 5054-5062. 

58. McElhaney, J.E., and R.B. Effros (2009) Immunosenescence: what does it mean to health outcomes 
in older adults? Curr Opin Immunol 21: 418-424. 

59. Fehniger, T.A., M.A. Cooper, G.J. Nuovo, M. Cella, F. Facchetti, M. Colonna, and M.A. Caligiuri (2003) 
CD56bright natural killer cells are present in human lymph nodes and are activated by T cell-
derived IL-2: a potential new link between adaptive and innate immunity. Blood 101: 3052-
3057. 

60. Lanier, L.L., G. Yu, and J.H. Phillips (1991) Analysis of Fc gamma RIII (CD16) membrane expression 
and association with CD3 zeta and Fc epsilon RI-gamma by site-directed mutation. J Immunol 
146: 1571-1576. 

61. Vivier, E., P. Morin, C. O'Brien, B. Druker, S.F. Schlossman, and P. Anderson (1991) Tyrosine 
phosphorylation of the Fc gamma RIII(CD16): zeta complex in human natural killer cells. 
Induction by antibody-dependent cytotoxicity but not by natural killing. J Immunol 146: 206-
210. 

62. Cassatella, M.A., I. Anegon, M.C. Cuturi, P. Griskey, G. Trinchieri, and B. Perussia (1989) Fc gamma 
R(CD16) interaction with ligand induces Ca2+ mobilization and phosphoinositide turnover in 
human natural killer cells. Role of Ca2+ in Fc gamma R(CD16)-induced transcription and 
expression of lymphokine genes. J Exp Med 169: 549-567. 

63. Aramburu, J., L. Azzoni, A. Rao, and B. Perussia (1995) Activation and expression of the nuclear 
factors of activated T cells, NFATp and NFATc, in human natural killer cells: regulation upon 
CD16 ligand binding. J Exp Med 182: 801-810. 

64. Smalls-Mantey, A., N. Doria-Rose, R. Klein, A. Patamawenu, S.A. Migueles, S.Y. Ko, C.W. Hallahan, H. 
Wong, B. Liu, L. You, J. Scheid, J.C. Kappes, C. Ochsenbauer, G.J. Nabel, J.R. Mascola, and M. 
Connors (2012) Antibody-dependent cellular cytotoxicity against primary HIV-infected CD4+ T 
cells is directly associated with the magnitude of surface IgG binding. J Virol 86: 8672-8680. 

65. Kramski, M., M.S. Parsons, I. Stratov, and S.J. Kent (2013) HIV-specific antibody immunity mediated 
through NK cells and monocytes. Curr HIV Res 11: 388-406. 

66. Jegerlehner, A., N. Schmitz, T. Storni, and M.F. Bachmann (2004) Influenza A vaccine based on the 
extracellular domain of M2: weak protection mediated via antibody-dependent NK cell activity. 
J Immunol 172: 5598-5605. 



42 
 

67. Neves, P.C., D.C. Matos, R. Marcovistz, and R. Galler (2009) TLR expression and NK cell activation 
after human yellow fever vaccination. Vaccine 27: 5543-5549. 

68. Malmberg, K.J. (2012) Toward a prime-boost regime for NK cells? Blood 120: 4663-4664. 
69. O'Sullivan, T.E., J.C. Sun, and L.L. Lanier (2015) Natural Killer Cell Memory. Immunity 43: 634-645. 
70. Ni, J., M. Miller, A. Stojanovic, N. Garbi, and A. Cerwenka (2012) Sustained effector function of IL-

12/15/18-preactivated NK cells against established tumors. J Exp Med 209: 2351-2365. 
71. Romee, R., S.E. Schneider, J.W. Leong, J.M. Chase, C.R. Keppel, R.P. Sullivan, M.A. Cooper, and T.A. 

Fehniger (2012) Cytokine activation induces human memory-like NK cells. Blood 120: 4751-
4760. 

72. Berrien-Elliott, M.M., J.A. Wagner, and T.A. Fehniger (2015) Human Cytokine-Induced Memory-Like 
Natural Killer Cells. J Innate Immun 7: 563-571. 

73. Gibson, W. (2008) Structure and formation of the cytomegalovirus virion. Curr Top Microbiol 
Immunol 325: 187-204. 

74. McGeoch, D.J., S. Cook, A. Dolan, F.E. Jamieson, and E.A. Telford (1995) Molecular phylogeny and 
evolutionary timescale for the family of mammalian herpesviruses. J Mol Biol 247: 443-458. 

75. Goodrum, F., K. Caviness, and P. Zagallo (2012) Human cytomegalovirus persistence. Cell Microbiol 
14: 644-655. 

76. Dollard, S.C., S.D. Grosse, and D.S. Ross (2007) New estimates of the prevalence of neurological and 
sensory sequelae and mortality associated with congenital cytomegalovirus infection. Rev Med 
Virol 17: 355-363. 

77. Tabata, T., M. Petitt, M. Zydek, J. Fang-Hoover, N. Larocque, M. Tsuge, M. Gormley, L.M. Kauvar, and 
L. Pereira (2015) Human cytomegalovirus infection interferes with the maintenance and 
differentiation of trophoblast progenitor cells of the human placenta. J Virol 89: 5134-5147. 

78. Miles, D.J., M. van der Sande, D. Jeffries, S. Kaye, J. Ismaili, O. Ojuola, M. Sanneh, E.S. Touray, P. 
Waight, S. Rowland-Jones, H. Whittle, and A. Marchant (2007) Cytomegalovirus infection in 
Gambian infants leads to profound CD8 T-cell differentiation. J Virol 81: 5766-5776. 

79. Dowd, J.B., A.E. Aiello, and D.E. Alley (2009) Socioeconomic disparities in the seroprevalence of 
cytomegalovirus infection in the US population: NHANES III. Epidemiol Infect 137: 58-65. 

80. Vyse, A.J., L.M. Hesketh, and R.G. Pebody (2009) The burden of infection with cytomegalovirus in 
England and Wales: how many women are infected in pregnancy? Epidemiol Infect 137: 526-
533. 

81. Minamishima, I., K. Ueda, T. Minematsu, Y. Minamishima, M. Umemoto, H. Take, and K. Kuraya 
(1994) Role of breast milk in acquisition of cytomegalovirus infection. Microbiol Immunol 38: 
549-552. 

82. Grillner, L., and K. Strangert (1986) Restriction endonuclease analysis of cytomegalovirus DNA from 
strains isolated in day care centers. Pediatr Infect Dis 5: 184-187. 

83. Sissons, J.G., M. Bain, and M.R. Wills (2002) Latency and reactivation of human cytomegalovirus. J 
Infect 44: 73-77. 

84. Stevenson, E.V., D. Collins-McMillen, J.H. Kim, S.J. Cieply, G.L. Bentz, and A.D. Yurochko (2014) HCMV 
reprogramming of infected monocyte survival and differentiation: a Goldilocks phenomenon. 
Viruses 6: 782-807. 

85. Taylor-Wiedeman, J., J.G. Sissons, L.K. Borysiewicz, and J.H. Sinclair (1991) Monocytes are a major 
site of persistence of human cytomegalovirus in peripheral blood mononuclear cells. J Gen Virol 
72 ( Pt 9): 2059-2064. 

86. Taylor-Wiedeman, J., G.P. Hayhurst, J.G. Sissons, and J.H. Sinclair (1993) Polymorphonuclear cells are 
not sites of persistence of human cytomegalovirus in healthy individuals. J Gen Virol 74 ( Pt 2): 
265-268. 

87. Smith, M.S., G.L. Bentz, J.S. Alexander, and A.D. Yurochko (2004) Human cytomegalovirus induces 
monocyte differentiation and migration as a strategy for dissemination and persistence. J Virol 
78: 4444-4453. 

88. Sinzger, C., B. Plachter, A. Grefte, T.H. The, and G. Jahn (1996) Tissue macrophages are infected by 
human cytomegalovirus in vivo. J Infect Dis 173: 240-245. 

89. Sinzger, C., A. Grefte, B. Plachter, A.S. Gouw, T.H. The, and G. Jahn (1995) Fibroblasts, epithelial cells, 
endothelial cells and smooth muscle cells are major targets of human cytomegalovirus infection 
in lung and gastrointestinal tissues. J Gen Virol 76 ( Pt 4): 741-750. 

90. Zanghellini, F., S.B. Boppana, V.C. Emery, P.D. Griffiths, and R.F. Pass (1999) Asymptomatic primary 
cytomegalovirus infection: virologic and immunologic features. J Infect Dis 180: 702-707. 

91. Cannon, M.J., T.B. Hyde, and D.S. Schmid (2011) Review of cytomegalovirus shedding in bodily fluids 
and relevance to congenital cytomegalovirus infection. Rev Med Virol 21: 240-255. 



43 
 

92. Mocarski ES, J., Shenk T, Griffiths PD, Pass RF (2013) Cytomegaloviruses. In: Fields BN KD, editor. 
Fields' Virology. Philadelphia: Lippincott Williams & Wilkins. 

93. Jackson, S.E., G.M. Mason, and M.R. Wills (2011) Human cytomegalovirus immunity and immune 
evasion. Virus Res 157: 151-160. 

94. Bravender, T. (2010) Epstein-Barr virus, cytomegalovirus, and infectious mononucleosis. Adolesc 
Med State Art Rev 21: 251-264, ix. 

95. Kenneson, A., and M.J. Cannon (2007) Review and meta-analysis of the epidemiology of congenital 
cytomegalovirus (CMV) infection. Rev Med Virol 17: 253-276. 

96. Townsend, C.L., M. Forsgren, K. Ahlfors, S.A. Ivarsson, P.A. Tookey, and C.S. Peckham (2013) Long-
term outcomes of congenital cytomegalovirus infection in Sweden and the United Kingdom. 
Clin Infect Dis. 

97. Goderis, J., E. De Leenheer, K. Smets, H. Van Hoecke, A. Keymeulen, and I. Dhooge (2014) Hearing 
loss and congenital CMV infection: a systematic review. Pediatrics 134: 972-982. 

98. Stagno, S., R.F. Pass, G. Cloud, W.J. Britt, R.E. Henderson, P.D. Walton, D.A. Veren, F. Page, and C.A. 
Alford (1986) Primary cytomegalovirus infection in pregnancy. Incidence, transmission to fetus, 
and clinical outcome. JAMA 256: 1904-1908. 

99. Fowler, K.B., S. Stagno, R.F. Pass, W.J. Britt, T.J. Boll, and C.A. Alford (1992) The outcome of 
congenital cytomegalovirus infection in relation to maternal antibody status. N Engl J Med 326: 
663-667. 

100. Hodson, E.M., C.A. Jones, A.C. Webster, G.F. Strippoli, P.G. Barclay, K. Kable, D. Vimalachandra, and 
J.C. Craig (2005) Antiviral medications to prevent cytomegalovirus disease and early death in 
recipients of solid-organ transplants: a systematic review of randomised controlled trials. 
Lancet 365: 2105-2115. 

101. Nieto, F.J., E. Adam, P. Sorlie, H. Farzadegan, J.L. Melnick, G.W. Comstock, and M. Szklo (1996) 
Cohort study of cytomegalovirus infection as a risk factor for carotid intimal-medial thickening, 
a measure of subclinical atherosclerosis. Circulation 94: 922-927. 

102. Sorlie, P.D., F.J. Nieto, E. Adam, A.R. Folsom, E. Shahar, and M. Massing (2000) A prospective study 
of cytomegalovirus, herpes simplex virus 1, and coronary heart disease: the atherosclerosis risk 
in communities (ARIC) study. Arch Intern Med 160: 2027-2032. 

103. Simanek, A.M., J.B. Dowd, G. Pawelec, D. Melzer, A. Dutta, and A.E. Aiello (2011) Seropositivity to 
cytomegalovirus, inflammation, all-cause and cardiovascular disease-related mortality in the 
United States. PLoS One 6: e16103. 

104. Harkins, L., A.L. Volk, M. Samanta, I. Mikolaenko, W.J. Britt, K.I. Bland, and C.S. Cobbs (2002) 
Specific localisation of human cytomegalovirus nucleic acids and proteins in human colorectal 
cancer. Lancet 360: 1557-1563. 

105. Samanta, M., L. Harkins, K. Klemm, W.J. Britt, and C.S. Cobbs (2003) High prevalence of human 
cytomegalovirus in prostatic intraepithelial neoplasia and prostatic carcinoma. J Urol 170: 998-
1002. 

106. Lin, W.R., M.A. Wozniak, G.K. Wilcock, and R.F. Itzhaki (2002) Cytomegalovirus is present in a very 
high proportion of brains from vascular dementia patients. Neurobiol Dis 9: 82-87. 

107. Aiello, A.E., M. Haan, L. Blythe, K. Moore, J.M. Gonzalez, and W. Jagust (2006) The influence of 
latent viral infection on rate of cognitive decline over 4 years. J Am Geriatr Soc 54: 1046-1054. 

108. Schmaltz, H.N., L.P. Fried, Q.L. Xue, J. Walston, S.X. Leng, and R.D. Semba (2005) Chronic 
cytomegalovirus infection and inflammation are associated with prevalent frailty in community-
dwelling older women. J Am Geriatr Soc 53: 747-754. 

109. Aiello, A.E., M.N. Haan, C.M. Pierce, A.M. Simanek, and J. Liang (2008) Persistent infection, 
inflammation, and functional impairment in older Latinos. J Gerontol A Biol Sci Med Sci 63: 610-
618. 

110. Wang, G.C., W.H. Kao, P. Murakami, Q.L. Xue, R.B. Chiou, B. Detrick, J.F. McDyer, R.D. Semba, V. 
Casolaro, J.D. Walston, and L.P. Fried (2010) Cytomegalovirus infection and the risk of mortality 
and frailty in older women: a prospective observational cohort study. Am J Epidemiol 171: 
1144-1152. 

111. Muhlestein, J.B., B.D. Horne, J.F. Carlquist, T.E. Madsen, T.L. Bair, R.R. Pearson, and J.L. Anderson 
(2000) Cytomegalovirus seropositivity and C-reactive protein have independent and combined 
predictive value for mortality in patients with angiographically demonstrated coronary artery 
disease. Circulation 102: 1917-1923. 

112. Blankenberg, S., H.J. Rupprecht, C. Bickel, C. Espinola-Klein, G. Rippin, G. Hafner, M. Ossendorf, K. 
Steinhagen, and J. Meyer (2001) Cytomegalovirus infection with interleukin-6 response predicts 
cardiac mortality in patients with coronary artery disease. Circulation 103: 2915-2921. 



44 
 

113. Strandberg, T.E., K.H. Pitkala, and R.S. Tilvis (2009) Cytomegalovirus antibody level and mortality 
among community-dwelling older adults with stable cardiovascular disease. JAMA 301: 380-
382. 

114. Roberts, E.T., M.N. Haan, J.B. Dowd, and A.E. Aiello (2010) Cytomegalovirus antibody levels, 
inflammation, and mortality among elderly Latinos over 9 years of follow-up. Am J Epidemiol 
172: 363-371. 

115. Epidemiology, N.C.f.H.S.O.o.A.a. (2009) The Third National Health and Nutrition Examination Survey 
(NHANES III) Linked Mortality File, Mortality follow-up through 2006: Matching Methodology. 

116. Blum, A., M. Giladi, M. Weinberg, G. Kaplan, H. Pasternack, S. Laniado, and H. Miller (1998) High 
anti-cytomegalovirus (CMV) IgG antibody titer is associated with coronary artery disease and 
may predict post-coronary balloon angioplasty restenosis. Am J Cardiol 81: 866-868. 

117. Moro-Garcia, M.A., R. Alonso-Arias, A. Lopez-Vazquez, F.M. Suarez-Garcia, J.J. Solano-Jaurrieta, J. 
Baltar, and C. Lopez-Larrea (2012) Relationship between functional ability in older people, 
immune system status, and intensity of response to CMV. Age (Dordr) 34: 479-495. 

118. Mathei, C., B. Vaes, P. Wallemacq, and J. Degryse (2011) Associations between cytomegalovirus 
infection and functional impairment and frailty in the BELFRAIL Cohort. J Am Geriatr Soc 59: 
2201-2208. 

119. Trzonkowski, P., J. Mysliwska, E. Szmit, J. Wieckiewicz, K. Lukaszuk, L.B. Brydak, M. Machala, and A. 
Mysliwski (2003) Association between cytomegalovirus infection, enhanced proinflammatory 
response and low level of anti-hemagglutinins during the anti-influenza vaccination--an impact 
of immunosenescence. Vaccine 21: 3826-3836. 

120. Gompels, U.A., N. Larke, M. Sanz-Ramos, M. Bates, K. Musonda, D. Manno, J. Siame, M. Monze, S. 
Filteau, and C.S. Group (2012) Human cytomegalovirus infant infection adversely affects growth 
and development in maternally HIV-exposed and unexposed infants in Zambia. Clin Infect Dis 
54: 434-442. 

121. Sylwester, A.W., B.L. Mitchell, J.B. Edgar, C. Taormina, C. Pelte, F. Ruchti, P.R. Sleath, K.H. 
Grabstein, N.A. Hosken, F. Kern, J.A. Nelson, and L.J. Picker (2005) Broadly targeted human 
cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of 
exposed subjects. J Exp Med 202: 673-685. 

122. van de Berg, P.J., A. van Stijn, I.J. Ten Berge, and R.A. van Lier (2008) A fingerprint left by 
cytomegalovirus infection in the human T cell compartment. J Clin Virol 41: 213-217. 

123. Appay, V., P.R. Dunbar, M. Callan, P. Klenerman, G.M. Gillespie, L. Papagno, G.S. Ogg, A. King, F. 
Lechner, C.A. Spina, S. Little, D.V. Havlir, D.D. Richman, N. Gruener, G. Pape, A. Waters, P. 
Easterbrook, M. Salio, V. Cerundolo, A.J. McMichael, and S.L. Rowland-Jones (2002) Memory 
CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nat Med 
8: 379-385. 

124. van Leeuwen, E.M., E.B. Remmerswaal, M.T. Vossen, A.T. Rowshani, P.M. Wertheim-van Dillen, R.A. 
van Lier, and I.J. ten Berge (2004) Emergence of a CD4+CD28- granzyme B+, cytomegalovirus-
specific T cell subset after recovery of primary cytomegalovirus infection. J Immunol 173: 1834-
1841. 

125. Antoine, P., V. Olislagers, A. Huygens, S. Lecomte, C. Liesnard, C. Donner, and A. Marchant (2012) 
Functional exhaustion of CD4+ T lymphocytes during primary cytomegalovirus infection. J 
Immunol 189: 2665-2672. 

126. Kuijpers, T.W., M.T. Vossen, M.R. Gent, J.C. Davin, M.T. Roos, P.M. Wertheim-van Dillen, J.F. Weel, 
P.A. Baars, and R.A. van Lier (2003) Frequencies of circulating cytolytic, CD45RA+CD27-, CD8+ T 
lymphocytes depend on infection with CMV. J Immunol 170: 4342-4348. 

127. van Lier, R.A., I.J. ten Berge, and L.E. Gamadia (2003) Human CD8(+) T-cell differentiation in 
response to viruses. Nat Rev Immunol 3: 931-939. 

128. Pawelec, G. (2014) Immunosenenescence: role of cytomegalovirus. Exp Gerontol 54: 1-5. 
129. Chidrawar, S., N. Khan, W. Wei, A. McLarnon, N. Smith, L. Nayak, and P. Moss (2009) 

Cytomegalovirus-seropositivity has a profound influence on the magnitude of major lymphoid 
subsets within healthy individuals. Clin Exp Immunol 155: 423-432. 

130. Libri, V., R.I. Azevedo, S.E. Jackson, D. Di Mitri, R. Lachmann, S. Fuhrmann, M. Vukmanovic-Stejic, K. 
Yong, L. Battistini, F. Kern, M.V. Soares, and A.N. Akbar (2011) Cytomegalovirus infection 
induces the accumulation of short-lived, multifunctional CD4+CD45RA+CD27+ T cells: the 
potential involvement of interleukin-7 in this process. Immunology 132: 326-339. 

131. Derhovanessian, E., A.B. Maier, K. Hahnel, R. Beck, A.J. de Craen, E.P. Slagboom, R.G. Westendorp, 
and G. Pawelec (2011) Infection with cytomegalovirus but not herpes simplex virus induces the 



45 
 

accumulation of late-differentiated CD4+ and CD8+ T-cells in humans. J Gen Virol 92: 2746-
2756. 

132. Hadrup, S.R., J. Strindhall, T. Kollgaard, T. Seremet, B. Johansson, G. Pawelec, P. thor Straten, and A. 
Wikby (2006) Longitudinal studies of clonally expanded CD8 T cells reveal a repertoire 
shrinkage predicting mortality and an increased number of dysfunctional cytomegalovirus-
specific T cells in the very elderly. J Immunol 176: 2645-2653. 

133. Pawelec, G., E. Derhovanessian, A. Larbi, J. Strindhall, and A. Wikby (2009) Cytomegalovirus and 
human immunosenescence. Rev Med Virol 19: 47-56. 

134. Looney, R.J., A. Falsey, D. Campbell, A. Torres, J. Kolassa, C. Brower, R. McCann, M. Menegus, K. 
McCormick, M. Frampton, W. Hall, and G.N. Abraham (1999) Role of cytomegalovirus in the T 
cell changes seen in elderly individuals. Clin Immunol 90: 213-219. 

135. Ouyang, Q., W.M. Wagner, D. Voehringer, A. Wikby, T. Klatt, S. Walter, C.A. Muller, H. Pircher, and 
G. Pawelec (2003) Age-associated accumulation of CMV-specific CD8+ T cells expressing the 
inhibitory killer cell lectin-like receptor G1 (KLRG1). Exp Gerontol 38: 911-920. 

136. Riddell, N.E., S.J. Griffiths, L. Rivino, D.C. King, G.H. Teo, S.M. Henson, S. Cantisan, R. Solana, D.M. 
Kemeny, P.A. MacAry, A. Larbi, and A.N. Akbar (2015) Multifunctional cytomegalovirus (CMV)-
specific CD8(+) T cells are not restricted by telomere-related senescence in young or old adults. 
Immunology 144: 549-560. 

137. Arens, R., E.B. Remmerswaal, J.A. Bosch, and R.A. van Lier (2015) 5(th) International Workshop on 
CMV and Immunosenescence - A shadow of cytomegalovirus infection on immunological 
memory. Eur J Immunol 45: 954-957. 

138. Guma, M., A. Angulo, C. Vilches, N. Gomez-Lozano, N. Malats, and M. Lopez-Botet (2004) Imprint of 
human cytomegalovirus infection on the NK cell receptor repertoire. Blood 104: 3664-3671. 

139. Beziat, V., O. Dalgard, T. Asselah, P. Halfon, P. Bedossa, A. Boudifa, B. Hervier, I. Theodorou, M. 
Martinot, P. Debre, N.K. Bjorkstrom, K.J. Malmberg, P. Marcellin, and V. Vieillard (2012) CMV 
drives clonal expansion of NKG2C+ NK cells expressing self-specific KIRs in chronic hepatitis 
patients. Eur J Immunol 42: 447-457. 

140. Lopez-Verges, S., J.M. Milush, B.S. Schwartz, M.J. Pando, J. Jarjoura, V.A. York, J.P. Houchins, S. 
Miller, S.M. Kang, P.J. Norris, D.F. Nixon, and L.L. Lanier (2011) Expansion of a unique 
CD57(+)NKG2Chi natural killer cell subset during acute human cytomegalovirus infection. Proc 
Natl Acad Sci U S A 108: 14725-14732. 

141. Guma, M., M. Budt, A. Saez, T. Brckalo, H. Hengel, A. Angulo, and M. Lopez-Botet (2006) Expansion 
of CD94/NKG2C+ NK cells in response to human cytomegalovirus-infected fibroblasts. Blood 
107: 3624-3631. 

142. Rolle, A., J. Pollmann, E.M. Ewen, V.T. Le, A. Halenius, H. Hengel, and A. Cerwenka (2014) IL-12-
producing monocytes and HLA-E control HCMV-driven NKG2C+ NK cell expansion. J Clin Invest 
124: 5305-5316. 

143. Beziat, V., B. Descours, C. Parizot, P. Debre, and V. Vieillard (2010) NK cell terminal differentiation: 
correlated stepwise decrease of NKG2A and acquisition of KIRs. PLoS One 5: e11966. 

144. Beziat, V., L.L. Liu, J.A. Malmberg, M.A. Ivarsson, E. Sohlberg, A.T. Bjorklund, C. Retiere, E. 
Sverremark-Ekstrom, J. Traherne, P. Ljungman, M. Schaffer, D.A. Price, J. Trowsdale, J. 
Michaelsson, H.G. Ljunggren, and K.J. Malmberg (2013) NK cell responses to cytomegalovirus 
infection lead to stable imprints in the human KIR repertoire and involve activating KIRs. Blood 
121: 2678-2688. 

145. Foley, B., S. Cooley, M.R. Verneris, M. Pitt, J. Curtsinger, X. Luo, S. Lopez-Verges, L.L. Lanier, D. 
Weisdorf, and J.S. Miller (2012) Cytomegalovirus reactivation after allogeneic transplantation 
promotes a lasting increase in educated NKG2C+ natural killer cells with potent function. Blood 
119: 2665-2674. 

146. Wu, Z., C. Sinzger, G. Frascaroli, J. Reichel, C. Bayer, L. Wang, R. Schirmbeck, and T. Mertens (2013) 
Human Cytomegalovirus-Induced NKG2Chi CD57hi Natural Killer Cells Are Effectors Dependent 
on Humoral Antiviral Immunity. J Virol 87: 7717-7725. 

147. Derhovanessian, E., H. Theeten, K. Hahnel, P. Van Damme, N. Cools, and G. Pawelec (2013) 
Cytomegalovirus-associated accumulation of late-differentiated CD4 T-cells correlates with 
poor humoral response to influenza vaccination. Vaccine 31: 685-690. 

148. den Elzen, W.P., A.C. Vossen, H.J. Cools, R.G. Westendorp, A.C. Kroes, and J. Gussekloo (2011) 
Cytomegalovirus infection and responsiveness to influenza vaccination in elderly residents of 
long-term care facilities. Vaccine 29: 4869-4874. 



46 
 

149. Wald, A., S. Selke, A. Magaret, and M. Boeckh (2013) Impact of human cytomegalovirus (CMV) 
infection on immune response to pandemic 2009 H1N1 influenza vaccine in healthy adults. J 
Med Virol 85: 1557-1560. 

150. O'Connor, D., J. Truck, R. Lazarus, E.A. Clutterbuck, M. Voysey, K. Jeffery, and A.J. Pollard (2014) The 
effect of chronic cytomegalovirus infection on pneumococcal vaccine responses. J Infect Dis 
209: 1635-1641. 

151. Ohmit, S.E., J.G. Petrie, R.T. Cross, E. Johnson, and A.S. Monto (2011) Influenza hemagglutination-
inhibition antibody titer as a correlate of vaccine-induced protection. J Infect Dis 204: 1879-
1885. 

152. McElhaney, J.E., X. Zhou, H.K. Talbot, E. Soethout, R.C. Bleackley, D.J. Granville, and G. Pawelec 
(2012) The unmet need in the elderly: how immunosenescence, CMV infection, co-morbidities 
and frailty are a challenge for the development of more effective influenza vaccines. Vaccine 
30: 2060-2067. 

153. Miles, D.J., M. Sanneh, B. Holder, S. Crozier, S. Nyamweya, E.S. Touray, M.S. Palmero, S.M. Zaman, 
S. Rowland-Jones, M. van der Sande, and H. Whittle (2008) Cytomegalovirus infection induces 
T-cell differentiation without impairing antigen-specific responses in Gambian infants. 
Immunology 124: 388-400. 

154. Holder, B., D.J. Miles, S. Kaye, S. Crozier, N.I. Mohammed, N.O. Duah, E. Roberts, O. Ojuola, M.S. 
Palmero, E.S. Touray, P. Waight, M. Cotten, S. Rowland-Jones, M. van der Sande, and H. Whittle 
(2010) Epstein-Barr virus but not cytomegalovirus is associated with reduced vaccine antibody 
responses in Gambian infants. PLoS One 5: e14013. 

155. Solana, R., R. Tarazona, A.E. Aiello, A.N. Akbar, V. Appay, M. Beswick, J.A. Bosch, C. Campos, S. 
Cantisan, L. Cicin-Sain, E. Derhovanessian, S. Ferrando-Martinez, D. Frasca, T. Fulop, S. Govind, 
B. Grubeck-Loebenstein, A. Hill, M. Hurme, F. Kern, A. Larbi, M. Lopez-Botet, A.B. Maier, J.E. 
McElhaney, P. Moss, E. Naumova, J. Nikolich-Zugich, A. Pera, J.L. Rector, N. Riddell, B. Sanchez-
Correa, P. Sansoni, D. Sauce, R. van Lier, G.C. Wang, M.R. Wills, M. Zielinski, and G. Pawelec 
(2012) CMV and Immunosenescence: from basics to clinics. Immun Ageing 9: 23. 

156. Turner, J.E., J.P. Campbell, K.M. Edwards, L.J. Howarth, G. Pawelec, S. Aldred, P. Moss, M.T. 
Drayson, V.E. Burns, and J.A. Bosch (2014) Rudimentary signs of immunosenescence in 
Cytomegalovirus-seropositive healthy young adults. Age (Dordr) 36: 287-297. 

157. Furman, D., V. Jojic, S. Sharma, S.S. Shen-Orr, C.J. Angel, S. Onengut-Gumuscu, B.A. Kidd, H.T. 
Maecker, P. Concannon, C.L. Dekker, P.G. Thomas, and M.M. Davis (2015) Cytomegalovirus 
infection enhances the immune response to influenza. Sci Transl Med 7: 281ra243. 

 



47 
 

Chapter 2  

 

Methods 

 

 

   



48 
 

For completeness, all methods corresponding to the data presented in this thesis are listed 

here. Methods used in more than one chapter are described in detail, while protocols 

exclusive to individual chapters have been cross-referenced to the respective chapters’, more 

relevant, Methods sections [1-3].  

 

2.1 Preparation of buffers  

Table I describes the buffers prepared for use in the experiments outlined below. 

Table I. Preparation of buffers. 

Buffer 
 

Composition 
 

Relevant Experiments 

freezing medium 80% FBS* (Gibco)  
20% DMSO-Hybri-Max™ (Sigma) 

PBMC cryopreservation 

FACS buffer PBS (Gibco) 
5mM EDTA (Invitrogen) 

0.05% sodium azide (Sigma) 
1% FBS* (Gibco) 

flow cytometry 

MACS buffer PBS (Gibco) 
0.5% FBS (Gibco) 

5mM EDTA (Invitrogen) 

CD4+ T cell depletion 

coating buffer 1.59g Na2CO3  
2.93g NaHCO3 

made up to one litre with distilled 
water, pH 9.3-9.7 

Total IgG and  
anti-pertussis toxin (PT) 

IgG ELISAs 

* foetal bovine serum 

 

2.2 Isolation of PBMC 

Up to 50ml of venous blood was collected in 50ml tubes (CellStar) containing 100μl heparin 

(1000IU/ml; Wockhardt). Heparanised blood was carefully layered onto Histopaque (Sigma) at 

a 2:1 ratio then spun at 524g for 30 minutes, without the use of the centrifuge brake. PBMC 

were then collected from the buffy coat layer which forms at the plasma and histopaque 

interface using 3ml transfer pipettes (Fisher Scientific). PBMC were washed twice in complete 

medium (RPMI 1640 supplemented with 100IU/ml penicillin/streptomycin and 20mM L-

glutamine [Gibco, Lifesciences]) by spinning at 754g for 10 minutes. PBMC were then filtered 

through a 70μm cell strainer (BD Falconer; or EASYstrainer™ Cell Strainer, Greiner Bio-One) to 
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exclude cell clumps and counted using trypan blue (Sigma) exclusion  at a 1:1 dilution on a 

haematocytometer (FastRead slides, Immune Systems). PBMC were resuspended at 2x107 

cells/ml in complete medium. 

 

2.3 Cryopreservation of PBMC 

PBMC at 2x107 cells/ml were aliquoted into 500μl cryotubes aliquots (Thermo Scientific) then 

mixed with 500μl chilled freezing medium (Table I). The PBMC cryovials were placed 

immediately in 100% isopropanol baths (Mr Frosty™, Thermo Scientific) and kept at -80°C at 

least overnight until transfer to liquid nitrogen for longer term storage. 

 

Prior to use, PBMC were thawed in complete medium pre-warmed to 37°C, washed, and 

rested in complete medium supplemented with 10% AB plasma (Sigma) for at least 30 minutes 

before use. Thawing of cells was performed by quickly pipette mixing the pre-warmed medium 

into the cryopreserved cells and transferring to 50ml tubes containing 25ml pre-warmed 

medium. This rapidly diluted the DMSO as cells thawed to prevent toxicity. Cells waiting to be 

thawed were kept on dry ice and only removed from liquid nitrogen storage on the day of use.  

 

For some assays, where 10% AB plasma was not used in cell culture, PBMC were resuspended 

in medium supplemented with FBS, autologous plasma, or IgG-depleted AB plasma (Chapter 

4), as appropriate. Preparation of these alternatives is described in individual chapters as 

relevant. To note, all FCS, AB and autologous plasma used in in vitro assays were heat-

inactivated either by the manufacturer (FCS), or in-house by incubation at 56°C for 30 minutes 

(AB and autologous). 
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2.4 Cell culture 

All cell culture experiments were performed in a total volume of 100μl/well. Culture conditions 

are described in detail in individual chapters. Complete cell culture medium was supplemented 

10% pooled AB plasma unless otherwise stated. 

 

2.4.1 Standard 18 hour in vitro assay 

The main in vitro assay used in this thesis work involved culture of approximately 2x105 

PBMC/well in 96-well U-bottom plates (Nunc) in complete medium supplemented with 10% AB 

plasma for 18 hours in 5% CO2 at 37°C. A high concentration of cytokines IL-12 (5ng/ml) and IL-

18 (50ng/ml) was routinely used as a positive control (see Chapter 3 for validation work). For 

assays where upregulation of CD107a was a read-out, 2 μl/well sterile anti-CD107a antibody 

(A488-conjugated; BD Biosciences) was included for the entirety of cell culture. When IFN-γ 

production was a read-out, GolgiStop (containing Monensin, 1/1500 concentration; BD 

Biosciences) and GolgiPlug (containing brefeldin A, 1/1000 concentration; BD Biosciences) 

were added three hours before the end of cell culture, i.e. after 15 hours.  

 

2.4.2 Crosslinking assays 

For activation via crosslinking of NK cell surface receptors, 96-well flat-bottom plates (Nunc) 

were coated with 20μg/ml antibody to NK cell receptors, e.g. anti-human CD16 (BD 

Biosciences), or isotype-matched control antibodies, e.g. mIgG1k (BD Biosciences), overnight at 

4°C. Wells were rinsed with PBS before addition of approximately 4×105 PBMCs/well. In some 

instances these cells had had been incubated overnight at 37°C in 10% AB plasma, with or 

without IL-2, in 5ml polypropylene round-bottomed tubes (Falcon). Two μl/well sterile anti–

CD107a-A488 antibody was always added at the beginning of culture, and all assays were 

performed in complete medium supplemented with 10% AB plasma. Cells were not routinely 
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assessed for IFN-γ production but, in these instances, GolgiStop and GologiPlug were used as 

described above.  

 

Cells were harvested after five or 18 hours by transfer to 96-well U-bottom plate. The 96-well 

flat-bottom plate used for crosslinking was then incubated at 37°C for a further 15 minutes 

with 100μl/well pre-warmed PBS (5mM EDTA) to remove remaining any plate-bound cells. 

After vigorous pipette mixing, this volume was then transferred to the 96-well U-bottom plate.  

 

2.5 Flow cytometry 

Prior to staining of cells with fluorophore-conjugated antibodies for flow cytometry, 96-well U-

bottom plates were centrifuged at 754g for five minutes, either directly from the incubator 

(e.g. standard 18 hour assay), or after a two-step transfer from flat-bottom to U-bottom plates 

(i.e. all crosslinking assays). Supernatants were then flicked off before vortexing the plates to 

resuspend the cells. Cells were washed with 200μl/well FACS buffer (Table I) and centrifuged at 

754g for five minutes. FACS buffer was then flicked off and the plate was vortexed. The cells 

were then stained with fluorophore-conjugated antibodies to cell surface markers (10μl 

master mix/ well) for 20 minutes in the dark at 4°C, then washed again with 200μl FACS buffer 

as described above, and fixed with 75μl/well Cytofix/Cytoperm (BD Biosciences) for 30 minutes 

in the dark at room temperature. Cells were washed with 175μl/well Perm/Wash (diluted 1:10 

in de-ionised water; BD Biosciences) and centrifuged at 931g for five minutes, then 

Perm/Wash was flicked off and the plate was vortexed. Cells were stained for intracellular 

molecules (10μl master mix/ well) for 15 minutes in the dark at room temperature, then 

washed once more in FACS buffer as described above but centrifuging at 931g. Cells were then 

transferred from the plate to microtubes (Alpha Laboratories) by vigorously pipette-mixing 

100μl of FACS buffer in the wells, twice. Microtubes, containing samples suspended in 200μl 

FACS buffer, were placed in 5ml polystyrene round-bottomed tubes (Falcon) for acquisition on 

an LSRII flow cytometer (BD Biosciences) using FACSDiva® software.  
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Compensation controls were prepared at the same time as cell staining to accurately model 

any antibody decay or bleaching between staining and acquisition. Either Compbeads (BD; 

anti-mouse IgGΚ and negative control from the same lot) or OneComp (eBioscience) beads 

were used for compensation controls and were vortexed in 500μl FACS buffer. One μl of 

antibody was added to 50μl bead solution in 5ml polystyrene tubes (Falcon) and incubated for 

15 minutes at room temperature in the dark. Controls were washed by adding 500μl FACS 

buffer per tube and centrifuging at 754g for five minutes. FACS buffer was then discarded and 

400μl fresh FACS buffer was added to the beads. Compensation controls were stored with the 

samples in the dark at 4°C until acquisition on the LSRII flow cytometer (BD Biosciences), a 

maximum of three days after staining. 

 

Data analysis was performed using FlowJo V10 (Tree Star). FACS gates to define cell 

populations (e.g. NK cells) were applied in a standard format, and then adjusted per sample as 

necessary. FACS gates to measure responses (e.g. CD107a+) were set on unstimulated cells 

(medium alone or isotype controls) and were applied in standard format across all conditions 

per donor. Gating strategies were developed during preliminary experiments, as detailed in 

Chapter 3.   

 

2.6 Enzyme-linked immunosorbent assays (ELISAs) 

ELISAs were used to determine the HCMV serostatus of donors (Chapters 4 and 6), to confirm 

depletion of IgG from plasma passed over a protein G Sepharose column (Chapter 4), and to 

calculate anti-H1N1 and anti-pertussis toxin (PT) IgG titres in autologous plasma (Chapter 4). 

Detailed methods for these ELISAs are described in Chapter 4, (section 4.2.3), as is the method 

used for IgG depletion of AB plasma for cell culture (section 4.2.2).  
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2.7 ELISPOTs 

HCMV- and HCMV+ donor IL-2 responses to pertussis were compared using an IL-2 ELISPOT 

(Mabtech) as outlined in Chapter 4, section 4.2.4. 

 

2.8 NKG2C genotyping 

Donor were genotyped for NKG2C by PCR to allow comparison of NK cell responses between  

NKG2C -/-, NKG2C -/+ and NKG2C +/+ HCMV- or HCMV+ donors. Details of this PCR are given in 

Chapter 4, section 4.2.5.    

 

2.9 Statistical analyses 

Statistical analyses were performed in Prism 6 (GraphPad Software) or STATA (Stata/IC 14) as 

detailed in individual chapters. For flow cytometry analyses, samples where the cell population 

being analysed had fewer than 100 events were excluded. For trend analyses, all samples from 

a given donor were excluded if any contained fewer than 100 events. Sample sizes and number 

of experiments represented in each figure are described in legends.   

 

Statistical tests were routinely two-sided (exceptions to this are noted in individual chapters’ 

methods sections, e.g. Chapter 4) and nonparametric tests were always used for samples 

where n ≤ 30.  
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Chapter 3  

 

Differential activation of CD57-defined 
natural killer cell subsets during recall 
responses to vaccine antigens  

 

 

The work presented in this chapter is adapted and extended from White*, Nielsen* et al 2014 
([1], Appendix II). 

 

  



56 
 

3.1 Introduction 

Natural killer (NK) cells are classically regarded as a stable population of innate immune 

effectors that, by cytokine production or cytotoxicity, target tumour cells or help to contain 

infection until an effective adaptive response is mounted. However, evidence now suggests 

that NK cells can exhibit augmented responses in the context of secondary pathogen exposure, 

despite their lack of germline encoded receptors with which to generate true antigen-specific 

memory.  

 

These enhanced NK cell responses therefore rely on signals from the adaptive immune system 

and there are two main routes by which this NK cell activation occurs: stimulation by antigen-

specific T cell-derived IL-2, or crosslinking of the low affinity Fc receptor, CD16, by antigen-

antibody (IgG) complexes. IL-2 secreted by memory CD4+ T cells promotes NK cell function and 

proliferation, while CD16 crosslinking initiates the process of antibody dependent cellular 

cytotoxicity (ADCC) [2-6]. IL-2 and IgG do not act on NK cells in isolation, but rather in the 

context of the ongoing inflammatory response following detection of infection by the innate 

arm of the immune system, such as production of pro-inflammatory cytokines. 

 

The NK cell repertoire in an individual comprises a 

heterogeneous group of cells (see Chapter 1) and 

thus there is substantial variation in their capacity 

to respond to both cytokine signalling and direct 

contact activation, such as CD16 crosslinking. A 

number of NK cell subsets with different functional 

potential have now been described in humans. The 

least mature circulating NK cells are 

CD56brightCD57− and are assumed to give rise to CD56dimCD57- cells which, in turn, mature  

Figure 5. Changes in the NK cell repertoire 
associated with ageing. During healthy 
ageing there is a gradual accumulation of 
mature CD56dimCD57+ NK cells and 
proportional decrease in immature 
CD56bright NK cells.   
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into CD56dimCD57+ cells, the latter subset increasing in frequency with increasing age (Figure 

5 [7,8]). Despite the well-described associations with NK cell maturation, CD57 itself, a 

terminally-sulphated carbohydrate epitope (glucuronic acid-3-sulphate), remains of unknown 

function or molecular location on NK cells [8-11]. Regardless, there are many clear 

demonstrations of associations between CD57 expression on NK cells and ageing or various 

disease states, as reviewed by myself and colleagues [8]. 

 

The three-step maturation (from CD56bright, to CD56dimCD57- to CD56dimCD57+) is 

associated with acquisition of CD16, CX3CR1 (a chemokine receptor), granzyme and KIR, 

gradual loss of proliferative capacity, reduced responsiveness to cytokines such as IL-12 and IL-

18, and increasing cytotoxic function  [12,13]. CD56dimCD57+ NK cells express lower levels of 

IL-18Rα [13] as well as lower levels of mRNA for the inducible chain of the IL-12R (IL-12Rβ2) 

[14] suggesting that these NK cells may respond less well than other subsets to IL-12 and IL-18 

due to decreased expression of the respective receptors. Conversely, CD56dimCD57+ cells 

express higher levels of CD16, explaining why they are particularly good mediators of ADCC 

[14]. 

 

The potential for NK cells to respond to exogenous cytokines is central to their ability to 

control infections [4,15,16], particularly where ligands for other NK cell activating receptors 

are lacking. Moreover, NK cells responding to CD4+ T-cell-derived IL-2 have the potential to 

contribute to secondary immune responses, including those induced by vaccination [4,5]. I 

wondered, therefore, whether NK cell subsets would differ in their ability to mount ‘recall’ 

responses to vaccine antigens. If so, this would have consequences for the ability of NK cells to 

contribute to secondary responses in any individual where the distribution of NK cells is 

skewed towards the CD56dimCD57+ phenotype, such as in the elderly or cytomegalovirus 

infected (HCMV+) individuals, as explored in Chapter 4. 
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To test this hypothesis, I have assessed the capacity of various NK cell subsets, defined 

principally by their expression of CD56 and CD57, to contribute to recall responses to various 

vaccines, focusing on responses to components of the diphtheria–tetanus–pertussis (DTP) 

among previously-vaccinated adults.  
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3.2 Methods 

3.2.1 Study subjects 

For preliminary work (Section A of Results), volunteers were recruited from among staff and 

students at the LSHTM. All subjects gave fully informed, written consent under a protocol for 

recruitment of blood donors approved by the LSHTM ethics committee (reference # 5520, 

Appendix III) to provide ≤ 50ml venous blood. For the work adapted from White et al, 2014 

(Section B of Results), subjects ranged in age from 21-73 years and all donors reported 

diphtheria, tetanus and pertussis vaccination status (n ≤ 33). All subjects gave fully informed, 

written consent and the study was approved by the LSHTM Ethics Committee (reference # 

6237, Appendix IV).  

 

3.2.2 PBMC preparation and cell culture 

Peripheral blood mononuclear cells (PBMC) were isolated, cryopreserved, and thawed as 

described in Chapter 2.   

 

PBMC (approximately 2 × 105 cells in 200 μl) were cultured in 96-well U-bottom plates in 

complete medium (see Chapter 2) with or without low concentration of cytokines (LCC; 

12·5 pg/ml recombinant human (rh) IL-12 [PeproTech] plus 10 ng/ml rhIL-18 [MBL]); high 

concentration of cytokines (HCC; 5 ng/ml rhIL-12 plus 50 ng/ml rhIL-18); or 7·5 μg/ml tetanus 

toxoid (NIBSC: 02/232, Appendix V), 1 μg/ml diphtheria toxoid (NIBSC: 69/017, Appendix VI),  

or 1 IU/ml killed whole cell pertussis (NIBSC: 88/522, Appendix VII) for 18 hours at 37°C. 

GolgiPlug and GolgiStop (BD Biosciences) were added as described in Chapter 2. Additional 

time series experiments were performed, without the addition of GolgiPlug and GolgiStop, 

harvesting cells between 4-18 hours, every two hours. 
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The following stimuli were also used in preliminary experiments at varying concentrations (see 

Table II): live attenuated measles (NIBSC: 92/648), live attenuated mumps (NIBSC: 90/534), live 

attenuated rubella (NIBSC: 91/668), live attenuated yellow fever (NIBSC: 99/616), inactivated 

whole virus hepatitis A (NIBSC: 95/500), inactivated whole virus rabies (NIBSC: 07/162), 

meningococcal C polysaccharide (NIBSC: 07/318), pertussis toxin (NIBSC: JNIH-5), and killed 

whole cell typhoid vaccines (NIBSC: TYVL).  

 
Table II. Vaccines included in pilot studies. Vaccines selected for further studies are shaded 
grey. Note that for measles, mumps and rubella, IU refers to ‘infectious units’, whereas for 
hepatitis A and yellow fever, IU denotes ‘international units’. The data sheet for rabies does 
not specify. 

Type of Vaccine 
 

Pathogen Working Concentration (see Figures 4-6) 

Low Medium High 

virus whole-  
live 

measles 4x102 IU/ml 8x102 IU/ml 1.6x103 IU/ml 

mumps 8x102 IU/ml 1.6x103 IU/ml 3.2x103 IU/ml 

rubella 1.6x102 IU/ml 3.2x102 IU/ml 6.4x102 IU/ml 

yellow fever 2x102.5IU/ml 4x102.5IU/ml 8x102.5IU/ml 

whole- 
inactivated 

hepatitis A 1IU/ml 2IU/ml 4IU/ml 

rabies* 0.0066IU/ml 0.033IU/ml 0.066IU/ml 

H1N1 influenza~ 7.5μg/ml 

bacteria whole –  
killed 

typhoid ɫ 1x105 orgs 5x105 orgs 1x106 orgs 

pertussis - 0.1IU/ml 1IU/ml 

subunit 
 

meningococcal C 
(polysaccharide) 

20μg/ml 40μg/ml 80μg/ml 

tetanus (toxoid)~ 4μg/ml 

diphtheria (toxoid) 5μg/ml 10μg/ml 20μg/ml 

pertussis (toxin) 2ng/ml 20ng/ml 100ng/ml 

* Units refer to Pitman Moore rabies virus glycoprotein antigen content.  
~ Previously titrated by other members of the group; titrations not shown. 
ɫ Data from further studies not shown. Units refer to number of whole organisms (orgs) of 
Salmonella enteric subsp. typhi. 
 

For receptor crosslinking experiments, assays were set up as outlined in Chapter 2 using mouse 

monoclonal antibodies to human CD16 (working concentration of 20 μg/ml; BD Biosciences), 

or a cocktail of monoclonal antibodies to human NK receptors ([NKG2D, NKp30, NKp46, 2B4 

(all from R&D Systems)] and CD2 (BD Biosciences) at an overall combined concentration of 

20 μg/ml, i.e. 4 μg/ml each], or an equivalent concentration of mouse IgG1 κ isotype control  
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antibody (BD Biosciences) as a negative control.   

 

3.2.3 Flow cytometry 

Responses of NK cells and T cells were assessed as described previously and outlined in 

Chapter 2 [17]. The following reagents were used: anti-CD56-phycoerythrin (PE)-Cy7, anti-

CD16-allophycocyanin (APC)-H7, anti-IFN-γ-e780, anti-IFN-γ-APC, anti-CD3-V500 (all BD); anti-

CD25-PE, anti-IL-18Rα-PE, and anti-CD57-e450 (all e-Biosciences). Anti-IL-12Rβ2 monoclonal 

antibody was obtained from R&D Systems and conjugated to PE-Cy5 using an Easylink PE/Cy5® 

Conjugation Kit (Abcam). Compensation controls were prepared at the time of cell staining 

using OneComp beads (eBioscience). 

 

3.2.4 Statistical analyses 

Unless otherwise stated, figures in Section A show data from single experiments while figures 

from Section B show data from 18 experiments (2-3 donors per experiment); sample sizes and 

number of experiments represented in each figure are described in legends. Flow cytometry 

and statistical analyses were performed as described in Chapter 2 and also as detailed in figure 

legends. Individual gated cell populations were excluded from analyses if they contained fewer 

than 100 cells.  ****p ≤ 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05. 
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3.3 Results 

For clarity, this Chapter has been divided into two sections: unpublished preliminary work 

(Section A) and published work (Section B) adapted from White*, Nielsen* et al 2014 ([1], 

Appendix II).   

 

Section A 

3.3.1 Identifying the NK cell population 

The first step of flow cytometry data analysis is to restrict analysis to single cells (‘singlets’) 

using the forward scatter height (FSC-H) against forward scatter area (FSC-A) to exclude events 

that are too large to be a single cell (Figure 6A). This is important to prevent confounding the 

analysis of specific cell subsets, as aggregates of cells will have markers for multiple different 

cell types or activation states. Following exclusion of such clumped cells, the next stage in 

analysis of NK cells within PBMC populations is to identify the lymphocytes. This gate is 

selected based on FSC-A and side scatter area (SSC-A), which indicate size and cell granularity 

(or internal complexity), respectively (Figure 6B). The FSC-A vs SSC-A gating also allows 

exclusion of dead cells as the change in morphology during cell death results in lower forward 

scatter and higher side scatter as compared to live cells, and thus different FSC-A and SSC-A 

profiles. While it was not possible to include a live/dead fluorophore-conjugated marker 

(which is detectable only in dead cells due to loss of membrane integrity leading to 

internalisation of the marker) as the fluorescent channel was already occupied by other 

antibodies,  work by other members of my group had previously demonstrated that the above 

strategy was sufficient to exclude dead cells from the analyses.  

 

In humans, NK cells are defined as CD3-CD56+ granular lymphocytes (Figure 6C). While 

expression of CD16 is also often used to identify the NK cell population, or subsets of NK cells, 

it is not a stable marker and is therefore not appropriate for use in in vitro assays involving NK  
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Figure 6. Gating strategy for analysing NK cells. PBMC were cultured for 18 hours with 
medium alone, a low concentration of cytokines (LCC; 12.5pg/ml IL-12 and 10ng/ml IL-18), and 
a high concentration of cytokines (HCC; 5ng/ml IL-12, 50ng/ml IL-18). The gating strategy for 
singlets (A), lymphoyctes (B), NK cells (C), Brights/Dims (D) is shown for a single donor, while 
the gating of CD56dim NK cells into CD57- (left), CD57int (middle) and CD57+ (right) is shown 
for five representative donors (I-V). Functional gating is shown as upregulation of CD25/IFN-γ 
(F) and CD107a (G) when cultured with medium alone, LCC, or HCC. Cell clumps can be seen as 
dots outside the gate in A, while many of the ungated cells in B are likely dead cells. 
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cell stimulation; kinetics of CD16 expression in relation to NK cell activation are explored 

further in Chapter 5.  

 

Finally, within the CD3-CD56+ NK cell population there are two main – functionally distinct – 

subsets: CD56brights and CD56dims. These two populations can be easily be differentiated 

during flow cytometry analysis based on CD56 expression (Figure 6D). The CD56dim population 

can then be further defined based on CD57 expression, which is a marker of unknown function 

associated with maturation. Previous work has generally split CD56dims into CD56dimCD57- 

and CD56dimCD57+ [12,14], but observation of the CD57 FACS profiles suggested to us that 

there may be an intermediate population (Figure 6E); this is one of the focuses of this chapter 

(specifically, see sections 3.3.6-3.3.7).     

 

3.3.2 Improving sensitivity of NK cell activation read-outs  

To measure NK cell responses in vitro, I am interested in upregulation of expression of CD25, 

IFN-γ, and CD107a.  

 

CD25 is the high affinity receptor for IL-2 (IL-2Rα) and is expressed at negligible levels on 

resting NK cells. The other components of the IL-2R, the common γ chain (CD132) and β chain 

(CD122), are constitutively expressed. Upregulation of surface expression of CD25 therefore 

indicates both NK cell activation and sensitisation to IL-2 signalling. The synergies between IL-2 

and the stimuli that upregulate CD25 are explored in detail in Chapter 5.  

 

Production of IFN-γ is one of the key functions of NK cells early during infection due to its 

central role in guiding a Th1 response, activating phagocytes, and synergising with other pro-

inflammatory cytokines. Measuring an NK cell IFN-γ response involves detecting an increase in 

intracellular IFN-γ, which accumulates prior to secretion. This necessitates fixing and 

permeabilising the PBMC population during staining (to allow intracellular access of 
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fluorescently-conjugated-anti-IFN-γ) and also inclusion of brefeldin A and monensin during cell 

culture to prevent trafficking of proteins from the endoplasmic reticulum to the Golgi, leading 

to a detectable accumulation of intracellular IFN-γ in lieu of secretion.  

 

As previous work from our group had indicated IL-2 was essential for NK cell IFN-γ responses to 

vaccine antigens [4], I opted to identify activated NK cells as cells co-expressing CD25/IFN-γ, 

i.e. CD25+IFN-γ+ (Figure 6F, see also Figure 11). The rationale for this was that NK cells would 

only produce IFN-γ (i.e. IFN-γ+) in the presence of optimal IL-2 signalling, which requires 

expression of CD25 (i.e. CD25+). Any NK cell detected as CD25-IFN-γ+ was therefore likely 

background activation and defining IFN-γ-producing NK cells as CD25+IFN-γ+ would therefore 

improve my sensitivity. Furthermore, CD25 upregulation in itself is not a functional marker and 

thus I was less interested in CD25+IFN-γ- NK cells which, although activated, would not be truly 

(yet) responding to the in vitro stimulus.  

 

For this reason, when selecting a low concentration of the pro-inflammatory cytokines IL-12 

and IL-18 (LCC) to use in NK cell activation cultures, concentrations were chosen to be below 

those which are required to drive a CD25+IFN-γ+ response on their own (IL-12: 12.5pg/ml and 

IL-18: 10ng/ml; Figure 6F). Addition of LCC to culture is particularly useful when assessing NK 

cell activation to subunit vaccines, e.g. tetanus toxoid, which are purified proteins and do not 

contain the pathogen-associated molecular patterns (PAMPs) that would naturally stimulate 

accessory cells. LCC therefore mimics this production of IL-12 and IL-18 to co-stimulate NK 

cells. These concentrations were determined by titration prior to the commencement of this 

project, but further studies elucidating the mechanisms of interaction between IL-12, IL-18, IL-

2 and other cytokines are the focus of Chapter 5, and the data presented therein confirm that 

these concentrations are appropriate.      
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Lastly, I am interested in NK cell cytotoxicity, involving release of granules containing perforin 

and granzymes. CD107a (LAMP-1) is an endosomal marker that fuses to the cell surface 

membrane during exocytosis and is an established proxy for measuring degranulation [18,19]. 

Inclusion of anti-CD107a in cell culture media allows capture of CD107a at the cell surface, 

preventing recycling, and thus measurement of the cumulative degranulation response over 

the entirety of cell culture [20]. Gating of CD107a+ NK cells is straightforward (Figure 6G). 

 

To note, use of brefeldin/monensin blocks movement of vesicles to the cell surface and the 

timing of their addition to culture is therefore a compromise between capturing peak IFN-γ 

and maximal CD107a (degranulation) responses. For this reason, I habitually add brefeldin/ 

monensin three hours before the end of culture, i.e. after 15 hours in an 18 hours culture, or 

after three hours in a five hour culture. This strategy allows us to measure both the peak IFN-γ 

response (after 15-18 hours, see below) and the peak CD107a response (by 4-5 hours, see 

below). The selection of culture time points is discussed further below. 

 

3.3.3 NK cell activation times series 

An in vitro culture duration of 18 hours had previously been used in this lab and elsewhere for 

measuring NK cell responses to various stimuli. An earlier publication by our group had 

established that this was an optimal time point for measuring IFN-γ [4], but a thorough time 

series analysis of CD25 expression had not yet been performed. Due to my interest in the 

CD25+IFN-γ+ response, understanding the kinetics of CD25 expression following NK cell 

activation was also important.  

 

PBMC were therefore stimulated with medium alone, or high concentrations of IL-12 and IL-18 

(HCC) and harvested over an 18 hour time series. Surface expression of CD25 on the NK cell 

surface was measured at multiple time points, and also ex vivo. We observed culturing PBMC 

in medium alone was sufficient to upregulate CD25 to the surface of a small percentage of NK 
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cells, but that this remained low in the absence of further in vitro stimulation (Figure 7A). 

When cultured in the presence of HCC, a significant proportion of NK cells upregulated CD25 to 

the cell surface, which reached a peak after 16 hours. This gives us confidence that while the 

peak of CD25 upregulation in response to pro-inflammatory cytokine stimulation may not be at 

precisely 18 hours, expression is still high enough at this point to permit detection. Indeed, 

there was no significant difference between 16 and 18 hours (Wilcoxon signed rank test, p = 

0.0625), although we should note this test is not powered to detect small differences given the 

interdonor variation and relatively small sample size (n = 5). 

 

I am also interested in the kinetics of the NK cell CD107a response as a proxy for 

degranulation, particularly of relevance for later investigations into the ADCC pathways of NK 

cell activation by the adaptive immune response. Surface expression of CD107a was therefore 

also measured during this time series, by adding anti-CD107a to culture medium for the 

entirety of cell culture (see Chapter 2). In contrast to CD25 expression, CD107a did not 

continue to increase after 4 hours and remains at a comparable level through at least 18 hours 

of culture (Figure 7B). This indicates that we can also measure CD107a upregulation after 18 

hours, despite it also not being a true peak of expression. This is consistent with the mechanics 

of including anti-CD107a in the culture medium; CD107a is captured by the anti-CD107a at the 

cell surface when trafficked to the plasma membrane during degranulation. Thus the CD107a 

read-out represents the total percentage of CD107a-expressing cells during culture up until the 

time of cell harvest [20], rather than a cross-sectional snap-shot as with CD25.  

 

It should be acknowledged that HCC is not the optimal positive control for measuring 

degranulation responses, which are better induced by direct contact through ligation of 

activating receptors rather than exogenous cytokines. It is therefore possible that the kinetics 

of   the  degranulation   response  may   be  different   with   another  route  of   activation,  e.g.  
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Figure 7. Time series of CD25 and CD107a expression by NK cells following stimulation with 
high concentrations of IL-12 and IL-18. PBMC were cultured for 18 hours in medium alone or 
in the presence of a high concentration of cytokines (HCC: 5ng/ml IL-12, 50ng/ml IL-18). Bars 
represent means with error bars corresponding to SEM (standard error of mean). n = 5. Data 
are from a single experiment.          
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crosslinking of NK cell activating receptors, such as CD16. Evaluation of NK cell responses to 

CD16 crosslinking after 6 hours and 18 hours is included in Chapter 5.  

 

3.3.4 Selecting vaccine antigens 

To investigate the capacity of heterogeneous NK cells to contribute to secondary responses to 

vaccine antigens, it was necessary to select specific vaccines to use as models in our in vitro 

assays. Previous work in our group had used tetanus toxoid, which had induced low NK cell 

responses (data not shown). As a subunit vaccine, we postulated that the poor activation in 

culture may be related to the relative lack of PAMPs and consequent paucity of accessory cell 

stimulation. We therefore decided to conduct pilot experiments with a wide range of vaccines, 

including viral and bacterial whole pathogen vaccines, as summarised in Table II.  

 

Cryopreserved PBMC from three donors were thawed, rested, and stimulated for 18 hours 

with titrations of each of the ten vaccines, with or without LCC. Upregulation and co-

expression of surface CD25 and intracellular IFN-γ was used to detect functional NK cell 

activation, as discussed above, and HCC was used as a positive control.  

 

Two main observations were made from this pilot experiment. Firstly, the majority of the live 

vaccines (measles, mumps, rubella) appeared to negatively affect the lymphocyte population 

― particularly the NK cells ― during culture in a dose-dependent manner, as illustrated by the 

FACS plots in Figure 8. Although we cannot be certain this is due to cell death in the absence of 

a live/dead marker in our staining panel, this seems a reasonable conclusion given the same 

trend is observed with pertussis toxin. It is also possible that a contaminant from the vaccine 

preparation is adversely affecting the PBMC population rather than the viruses themselves, 

and further investigation of this hypothesis would be warranted if studies with these specific 

vaccines were pursued in the future. Of the remaining vaccines, responses were higher to the 

whole  pathogen  formulations (Figure 9).  Specifically,  NK  cell  activation was  most  robust  in 
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Figure 8. Culture with live measles vaccine or pertussis toxin (PT) adversely affects PBMC 
population. Flow cytometry plots showing gating of NK cells from total lymphocyte 
populations after 18 hours culture with increasing concentrations of live measles virus vaccine 
(400IU/ml, 800IU/ml, 1600IU/ml) or pertussis toxin (2ng/ml, 20ng/ml, 40mg/ml) for one 
donor. Similar trends were observed with other donors and live mumps or rubella vaccines.  
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Figure 9. CD56dimCD57- NK cell responses to titration of vaccines. PBMC were cultured for 18 
hours in (A) medium alone, and increasing concentrations (low, medium, high; see Table II) of 
DT (diphtheria toxoid), meas. (lives measles virus), mum. (live mumps virus), rub. (live rubella 
virus), HepA (inactivated whole virus hepatitis A), MenC (meningococcal C polysaccharide), YF 
(live yellow fever virus), typh (killed whole cell typhoid), rab. (killed whole virus rabies), or (B) 
with a low concentration of cytokines (LCC: 12.5pg/ml IL-12 and 10ng/ml IL-18) and these 
same vaccine antigens. A high concentration of cytokines (HCC; 5ng/ml IL-12 and 50ng/ml IL-
18) was used as positive control. CD56dimCD57- NK cells were analysed by flow cytometry for 
co-expression of CD25/IFN-γ. Bars represent means with error bars corresponding to SEM 
(standard error of mean). n = 3. Data are from a single experiment but similar titrations were 
performed on other occasions.  
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response to inactivated whole virus rabies, inactivated whole H1N1 influenza virus (not 

shown), and killed whole cell typhoid. Subsequent experiments with killed whole cell pertussis, 

which contains inactivated pertussis toxoid rather than the toxin, were consistent with this. As 

ongoing work in our group was already optimising working concentrations of H1N1 influenza 

(ultimately selected to be 1μg/ml) and to be consistent with previous experiments with 

tetanus toxoid (7.5μg/ml), further titration work was only performed with whole cell pertussis 

and diphtheria toxoid (Figure 10). Despite low responses in early pilot work, diphtheria toxoid 

was included to allow comparison of all components of the ubiquitous childhood vaccine DTP 

(diphtheria-tetanus-pertussis). Although responses to meningococcal C polysaccharide were 

among the most robust, this was not included for further experiments to limit the size of the 

assays. NK cells were thus analysed and responses were detectable to both diphtheria toxoid 

and killed whole cell pertussis. The higher concentrations (diphtheria toxoid- 1μg/ml; whole 

cell pertussis- 1IU/ml) gave marginally higher responses and were thus selected for further 

work. 

 

Section B 

The following work is adapted from White*, Nielsen* et al ([1], Appendix II), with the 

exception of section 3.3.9 Autologous plasma enhances NK cell responses to vaccine antigens 

(unpublished data). 

 

3.3.5 DTP vaccination induces durable vaccine antigen-driven NK cell responses  

To validate DTP vaccination as a suitable model for evaluating NK cell recall responses, PBMC 

were incubated overnight with tetanus toxoid, diphtheria toxoid, or killed whole cell pertussis 

with or without low concentrations of the cytokines IL-12 and IL-18 (LCC) or, as a positive 

control, with a high concentration of cytokines IL-12 and IL-18 (HCC), stained for NK cell 

phenotypic and functional markers, and examined by flow cytometry (Figure 11). HCC induces  
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Figure 10. NK cell responses to diphtheria toxoid or killed whole cell pertussis. PBMC were 
incubated for 18 hours in medium alone (Med), low concentration of cytokines (LCC: 
12.5pg/ml IL-12 and 10ng/ml IL-18), 0.1, 0.5 or 1μg/ml diphtheria toxoid with or without LCC 
(A), or 0.1 or 1IU/ml killed whole cell pertussis with or without LCC (B). NK cell responses were 
measured as the percentage of cells co-expressing CD25/IFN-γ. Bars represent means with 
errors bars corresponding to SEM (standard error of mean). n = 3. Data are from a single 
experiment but similar titrations were performed on other occasions. 
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Figure 11. NK cell responses to diphtheria toxoid, tetanus toxoid and killed whole cell 
pertussis. PBMC were cultured for 18 hours in  medium alone (Med), low concentrations of IL-
12 and IL-18 (LCC; 12.5pg/ml IL-12, 10ng/ml IL-18), tetanus toxoid (TT), diphtheria toxoid (DT), 
killed whole cell pertussis (Per), TT and LCC, DT and LCC, Per and LCC, or high concentrations of 
IL-12 and IL-18 (HCC; 5ng/ml IL-12, 50ng/ml IL-18). Representative flow cytometry plots show 
gating of CD3+CD56+ NK cells, co-expression of CD25 and IFN-γ, and upregulation of CD107a 
(A). NK cell responses were measured following 18 hours culture as percentage of cells co-
expressing CD25/IFN-γ following stimulation with vaccine alone (B), vaccine with LCC (C), or 
upregulation of CD107a to vaccine alone (D), or vaccine with LCC (E). Note that in (B) and (C) 
the HCC responses are shown on the right-hand axis. Each data point represents one donor, n 
= 22. Lines represent median values. Data were analysed with paired, one-tailed, non-
parametric Wilcoxon signed rank tests. **** p ≤ 0.0001, *** p < 0.001, ** p < 0.01, * p < 0.05.  
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up to 60% of CD3-CD56+ NK cells to express cell surface CD25 and intracellular IFN-γ (Figure 

11A-C) and has a significant, but much less marked, effect on CD107a expression (Figure 

11A,D-E). By contrast, LCC alone induces a small, though significant, proportion of NK cells to 

express CD25, but few, if any, of these cells also produce IFN-γ or express CD107a on their 

surface (Figure 11A). This is consistent with use of LCC as a booster for antigen-driven IFN-γ or 

CD107a NK cell responses.  

 

Among PBMC stimulated with vaccine antigen alone (i.e. without LCC) there is highly 

significant upregulation of both CD25 and IFN-γ by NK cells in response to pertussis, a lesser 

(but still significant) response to diphtheria toxoid and no significant response to tetanus 

toxoid (Figure 11B). However, responses to all three antigens were significantly enhanced in 

the presence of LCC (Figure 11C). These data are fully consistent with a scenario in which a 

whole cell antigen such as pertussis contains ligands for toll-like receptors (TLRs) [21] and thus 

induces accessory cells to secrete cytokines such as IL-12 and IL-18, whereas purified proteins 

such as tetanus and diphtheria toxoids do not; exogenous LCC induces expression of CD25 (and 

thus the high affinity IL-2R) on NK cells allowing them to respond to IL-2 from vaccine-specific 

CD4+ T cells. By contrast, a statistically significant increase in CD107a expression on NK cells 

was seen response to all three vaccine components (Figure 11D) and this was not sunstantially 

enhanced by LCC (Figure 11E).  

 

3.3.6 CD56 and CD57 define multiple distinct NK cell subsets  

Despite very robust NK cell responses to some of the DTP vaccine antigens, not all NK cells 

responded and there is considerable heterogeneity in the magnitude of the NK cell response 

between donors (Figure 11B-E). Whilst heterogeneity between individuals might be explained 

by variation in the strength of the T cell IL-2 response that drives the NK responses [4,22,23] 

this is unlikely to explain heterogeneity of responses within the NK cell population of an 

individual donor. We therefore considered whether within-donor variation might be due to 
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differences between subsets of NK cells in their intrinsic sensitivity to activation by monokines 

and T cell derived IL-2.  

 

CD57 is a marker of highly differentiated, highly cytotoxic NK cells [14,24,25]. Expression of 

CD56 and CD57 has been used to identify three subsets of NK cells. Functional analysis of these 

subsets suggests that NK cells differentiate from relatively immature CD56brightCD57- cells 

which respond to cytokine stimulation by producing IFN-γ but have limited cytotoxic potential, 

to CD56dimCD57- cells which are also poorly cytotoxic but retain IL-2Rα (CD25) expression and 

thus the ability the secrete IFN-γ in response to cytokine stimulation and, eventually, to 

CD56dimCD57+ cells which no longer respond to exogenous cytokines but are skewed towards 

a cytotoxic phenotype following crosslinking of CD16 or other activatory receptors or exposure 

to target cells [12,14,24]. However, CD57 expression is not simply ‘off’ or ‘on’ but is gradually 

upregulated in a stepwise fashion (Figure 12 [1]). While we have demonstrated the stability of 

CD57 in an 18 hour culture [1], the stimuli involved in upregulating CD57 over the longterm 

and thus involved in driving this stepwise maturation remain of interest. This is the focus of a 

separate paper by our group (White et al, manuscript in preparation). 

 

Most importantly, the functional remodelling of NK cells in terms of loss of cytokine-induced 

upregulation of CD25 and IFN-γ expression, is extremely gradual with complete 

unresponsiveness to HCC not being seen until CD57 expression reaches its maximal level [1]. 

By contrast, little or no difference was observed in the ability of NK cells with different levels of 

CD57 expression to degranulate in the presence of cytokines [1]. This is in contrast to data 

from more traditional degranulation assays that stimulate NK cells by crosslinking activatory 

receptors [14], where acquisition of CD57 is associated with increased – not merely 

maintained – cytotoxic potential. This data is not inconsistent, but rather points to a significant 

role for cytokine co-stimulation, and thus cytokine sensitivity, in degranulation response to 

vaccine antigens. 
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(See page 78 for figure legend) 
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(continued from page 77) 
Figure 12. CD57 defines a continuum of functionally distinct NK cells. PBMC were cultured for 
18 hours in medium alone, or with crosslinking antibodies to monoclonal IgG1 (isotype 
control), CD16, a combination of NK cell receptors (NKR: NKG2D, NKp30, NKp46, 2B4), or high 
concentrations of IL-12 and IL-18 (HCC; 5ng/ml IL-12, 50ng/ml IL-18). Representative flow 
cytometry plots show gating of CD56bright (Br) and CD56dim NK cells, and subsequent gating 
of the CD56dim subset into CD56dimCD57- (-), CD56dimCD57intermediate (int) and 
CD56dimCD57+ (+) populations are shown in Figure 2. NK cell responses were measured as the 
percentage of cells expressing CD25 (A), IFN-γ (B), or CD107a (C). Note that in (B) the HCC 
responses are shown on the right-hand axis. Each data point represents one donor, n = 33. 
Lines represent mean values. CD56dim subsets were analysed for linear trend with a repeated 
measures ANOVA. **** p ≤ 0.0001, * p < 0.05. 
 

 

Our data also suggest that NK cells with intermediate levels of CD57 expression (CD57int), 

which represent a significant fraction (~30%) of circulating NK cells, are also intermediate in  

terms of their functional maturation. To formally test this hypothesis, we analysed responses 

of the four NK cell subsets (CD56bright; CD56dimCD57-; CD56dimCD57int and CD56dimCD57+, 

Figure 12) to HCC, crosslinking of CD16 and crosslinking of NK receptors, by expression of 

CD25, IFN-γ, or CD107a (Figure 12). As expected, high proportions of CD56bright cells 

expressed CD25, IFN-γ or CD107a in response to HCC; crosslinking of CD16 or other activatory 

receptors upregulated CD25 and CD107a but not IFN-γ in this subset (Figure 12). Among 

CD56dim NK cells, CD25, CD107a and IFN-γ responses to HCC declined with increasing levels of 

CD57 expression with a statistically significant negative trend from CD56dimCD57- cells, 

through CD56dimCD57int cells to CD56dimCD57+ cells (ANOVA for all linear trends, p ≤ 

0.0001; Figure 12).  

 

Interestingly, although no significant differences were observed between the three CD56dim 

populations in their ability to degranulate or produce IFN-γ in response to CD16 or NKR 

crosslinking, crosslinking of CD16 or NKRs led to increasing levels of CD25 expression with 

increasing expression of CD57 (linear trend; p ≤ 0.0001 in both cases), suggesting that 

responsiveness to T cell IL-2 may be retained in CD56dimCD57+ NK cells in the presence of 

antibodies able to induce ADCC. In summary therefore, the transition from CD56bright to 
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CD56dim correlates with an immediate switch from cytokine secretion to cytotoxicity in 

response to crosslinking of NKRs or CD16 receptors whereas increasing CD57 expression 

correlates with a gradual loss of responsiveness to IL-12 and IL-18. 

 

3.3.7 Vaccine-driven, cytokine-mediated NK IFN-γ responses are dominated by the 

CD56dimCD57- and CD56dimCD57int NK cell subsets 

Accessory cytokines (including IL-12 and IL-18) and T-cell-derived IL-2 are known to be 

essential to drive NK cell IFN-γ responses during re-stimulation with vaccine antigens [4]. Given 

that increasing CD57 expression correlates with loss of responsiveness to HCC, we predicted 

that CD56dimCD57- or CD56dimCD57int NK cell populations would show stronger ‘recall’ 

responses to whole cell pertussis than would CD56dimCD57+ NK cells. To test this hypothesis, 

responses to pertussis (Figure 11) were analysed for each of the four NK cell subsets defined 

by CD56 and CD57 expression (Figure 13). There was a clear hierarchy of responses with a 

significantly higher proportion of CD56dimCD57- NK cells than CD56dimCD57int or 

CD56dimCD57+ NK cells co-expressing CD25 and IFN-γ (p < 0.001 for linear trends; Figure 13A). 

On the other hand, CD107a expression was similar among all three CD57-defined NK cell 

subsets (Figure 13C,D). When considering the proportion of all NK cells belonging to each 

subset together with the responsiveness of each individual subset, it becomes evident that 

vaccine antigen-driven NK cell IFN-γ recall responses occur almost entirely within the 

CD56bright and CD56dimCD57- NK cell subsets with minimal contribution from the 

CD56dimCD57int and CD56dimCD57+ subsets (Figure 13B). 

 

It is therefore clear that interdonor variation in NK cell vaccine responsiveness will be greatly 

impacted by the distribution of CD56/CD57-defined subsets in individuals. We therefore 

anticipate that all factors that influence this distribution (as I review in [8]), such as ageing 

[7,26-32] or HCMV infection [33-36], will affect NK cell vaccine responsiveness at the level of 

the total NK cell population. This hypothesis is explored further for cytomegalovirus in the  
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Figure 13. NK cell IFN-γ responses to pertussis are dominated by the CD56dimCD57- NK cell 
subset. PBMC were cultured with killed whole cell pertussis for 18 hours. The percentage of 
cells in CD56/CD57-defined subsets responding are defined as CD25+IFN-γ+ (A-B) or CD107a+ 
(C-D). Pie charts illustrate the mean percentage of the total responding NK cells attributable to 
each subset for CD25+IFN-γ+ (B) and CD107a+ (D). Each data point represents one donor, n = 
15. Lines represent median values. CD56dim subsets were analysed for linear trend with a 
repeated measures ANOVA. ****p < 0.001. 
 

  



81 
 

following chapter. Work by our group on the contribution of ageing to NK cell heterogeneity 

has also been published and is discussed further in Chapter 4, and included as Appendix VIII to 

this thesis [37].     

 

3.3.8 NK cell acquisition is associated with reduced expression of cytokine receptors 

IL-12Rβ2 and IL-18Rα 

CD57 acquisition on NK cells is associated with a reduced ability to respond to accessory 

cytokines (Figure 12) leading to a progressive decline in their ability to respond to vaccine-

driven cellular responses by production of IFN-γ (Figure 13A). To determine whether this is due 

to altered cytokine receptor expression and/or altered downstream signalling we assessed the 

resting (ex vivo) expression of IL-18Rα and IL-12Rβ2 (Figures 14). These receptor components 

were selected as the specific binding subunit or inducible signalling subunit of the IL-18R and 

IL-12R respectively (further discussion of cytokine receptor subunit kinetics is presented in 

Chapter 5). In the absence of a commercially available fluorescently-labelled IL-12Rβ2 

antibody, the anti-IL-12Rβ2-antibody was PerCP-Cy5.5 conjugated in house. The isotype 

control staining and titrations for this antibody and were performed by Martin Goodier 

(Appendix IX). 

 

The proportion of IL-12Rβ2 expressing cells was highest among the CD56bright NK cells with a 

progressive decrease in expression across the CD57 defined NK cell subsets (Figure 14B) but IL-

12Rβ2 expression density did not vary across subsets (Figure 14C). Although IL-18Rα was 

expressed at a much higher frequency than IL-12Rβ2 within all NK cell subsets, the same trend 

was seen, with declining IL-18Rα expression with increasing CD57 expression (Figure 14D). In 

contrast to IL-12Rβ2, however, IL-18Rα mean fluorescence intensity also declined with 

increasing CD57 expression (Figure 14E). This suggests fewer cells in CD57+ subset express 

IL18Rα and — of those that do —  the expression of IL18Rα is lower, whereas while fewer cells  
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Figure 14. IL-12Rβ2 and IL-18Rα expression decrease with CD57 expression. PBMC were 
analysed ex vivo for IL-12Rβ2 and IL-18Rα expression. Representative flow cytometry plots 
show gating for IL-12Rβ2 and IL-18Rα: gates were set from CD3+ (T cell) population (left) and 
copied to NK cell populations (right)  (A). Frequency (B) and mean fluorescence intensity (MFI) 
(C) of IL-12Rβ2expression, and frequency (D) and MFI (E) of IL-18Rα expression, were assessed 
by subset. Each data point represents one donor, n = 19. Lines indicate median values. 
CD56dim subsets were analysed for linear trend with a repeated measures ANOVA. **** p ≤ 
0.0001, ** p < 0.01. The in vitro cell culture and staining for this experiment were performed 
by Matt White and Scarlett Turner. 
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in CD57+ subset express IL-12Rβ2, the expression on a per cell basis is similar to on the less 

mature subsets. 

 

3.3.9 Autologous plasma enhances NK cell responses to vaccine antigens 

The data reported above all come from cell culture experiments where the RPMI medium was 

supplemented with 10% pooled human AB plasma. This is a standard cell culture system, 

although some groups use foetal bovine/ calf serum (FBS/ FCS) to support cell culture instead. 

The use of AB plasma means there is a consistent level of antibody, and other plasma 

components, across all of the assays. Antibody levels, particularly IgG, are clearly of 

importance in the context of evaluating ADCC responses; indeed no ADCC would be possible in 

FCS-supplemented plasma, due to the lack of IgG to form antigen-antibody complexes with 

which to crosslink CD16. However, the use of pooled plasma does obscure true differences in 

responses between donors in the context of their own plasma. For example, if a subject has 

particularly high titres of anti-pertussis IgG, then we would anticipate more robust ADCC 

responses if cells are cultured in autologous plasma as compared to low-titre plasma or pooled 

AB. We therefore simultaneously performed the vaccine antigen stimulation experiments in 

autologous plasma, alongside the assays in AB plasma, to evaluate the effect of autologous 

plasma on NK cell responses and whether there was correlation with antibody titres. 

 

PBMC from a total of 52 healthy adults (i.e. 19 additional donors to the experiments presented 

above) were stimulated for 18 hours with killed whole cell pertussis with or without LCC, in 

either 10% pooled AB plasma or 10% autologous plasma. IgG titres to pertussis toxin (PT) were 

measured in AB plasma (6IU/ml) and autologous plasma for each donor (range 1.4-81.4IU/ml, 

mean = 11.4IU/ml); see Chapter 4 for detailed ELISA methods. NK cell responses in terms of 

CD107a and CD25+IFN-γ+ upregulation were assessed using flow cytometry (Figure 15). It is 

immediately obvious that use of autologous instead of AB plasma greatly boosts both CD107a 

and CD25+IFN-γ+ NK cell responses; for example, the mean CD107a responses to pertussis in  
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Figure 15. Correlation between NK cell responses to pertussis in autologous plasma and anti-
PT IgG titre. PBMC were cultured for 18 hours in  medium alone, low concentrations of IL-12 
and IL-18 (LCC; 12.5pg/ml IL-12, 10ng/ml IL-18), tetanus toxoid (TT), diphtheria toxoid (DT), 
killed whole cell pertussis (Per), TT and LCC, DT and LCC, Per and LCC, or high concentrations of 
IL-12 and IL-18 (HCC; 5ng/ml IL-12, 50ng/ml IL-18), in pooled human AB or autologous (Auto.) 
plasma. IgG titres to pertussis toxin (PT) were measured in AB and autologous plasma using an 
in-house ELISA (see Methods in Chapter 4). The percentage of NK cells expressing CD107a 
(A,C,E) or co-expressing CD25/IFN-γ (B,D,F) were compared between cultures in AB and 
autologous plasma following stimulation with vaccine alone (A,B) or vaccine with LCC (C,D). 
Anti-PT IgG titres in autologous plasma were correlated against the percentage of NK cells 
expressing CD107a (E) or co-expressing CD25/IFN-γ (F) after culture with pertussis alone in 
autologous plasma. The anti-PT IgG titre of AB plasma is annotated for reference (E, F)… 
(Figure legend continued page 85). 
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(continued from page 84)  
Each point represents a single donor, n = 52. Bars represent means with errors bars 
corresponding to SEM (standard error of mean). NK cell responses in AB and autologous 
plasma were compared using paired t-tests. Correlation of NK cell responses with anti-PT IgG 
titres was assessed using linear regression; R2 and p values are as annotated on graphs. **** p 
≤ 0.0001, *** p < 0.001, ** p < 0.01, * p < 0.05. 
 

 
 
AB plasma were 5.7% and 15.8% in autologous plasma (p < 0.0001, paired t test, Figure 15A), 

while the mean CD25+IFN-γ responses were 1.6% and 13.6% respectively (p < 0.0001, paired t 

test, Figure 15D).  

 

While there is weak correlation between CD107a responses and anti-PT titres in autologous 

plasma (R2 = 0.080, p = 0.042; Figure 15C), there is no correlation between CD25+IFN-γ+ 

upregulation and anti-PT IgG titre (R2 = 0.003, p = 0.704; Figure 15F). This is consistent with a 

greater role for IgG in driving ADCC or degranulation, as measured by CD107a, than IFN-γ 

production (see Chapter 4 for further discussion of this dichotomy), but the weak correlation 

between the CD107a response and anti-PT titres also implies that little antibody is required to 

drive optimal degranulation. In the absence of strong associations between IgG titres and NK 

cell functionality, these data suggest there is a difference between autologous and AB plasma 

other than higher anti-PT antibody levels that is driving the enhanced NK cell responses to 

killed whole cell pertussis in autologous plasma. Indeed, the anti-PT titre of AB plasma is 

6IU/ml which is a mid-range titre as compared to the autologous plasma titres (as would be 

expected from pooled plasma), but results in NK cell responses significantly lower than in 

autologous plasma for all donors. 

 

This capacity of autologous plasma to boost NK cell responses or, perhaps more accurately, the 

dampening of NK cell responses in AB plasma is intriguing. Unfortunately, a thorough analysis 

of the components of AB plasma preparations and the differences with autologous plasma was 

not feasible at the time, but would make an interesting future project. In the absence of a clear 
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mechanism by which autologous plasma improves NK cell responses in autologous plasma, it 

was decided to proceed using only AB plasma-supplemented media to standardise assays. 
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3.4. Discussion 

Vaccination typically provides long-lasting protection against infectious diseases by inducing 

the expansion and differentiation of small populations of naïve, antigen-specific, T and B cells 

into much larger populations of long-lived memory cells with enhanced effector function. In 

particular, antigen-specific memory CD4+ T cells augment B cell, CD8+ T cell and macrophage-

mediated effector functions [38]. Although circulating antibody may persist for many years 

after vaccination, frequencies of antigen-specific memory T cells are typically extremely low in 

peripheral blood (approximately 1 in 10,000 [39]) and can be difficult to detect in the absence 

of recent boosting. However, the observation that IL-2 produced in an antigen-specific manner 

by CD4+ T cells can activate a substantial proportion (varying from ≈1% up to 60% in some 

cases) of all circulating NK cells [3,4,15,22,40], and that these responses can be detected for 

more than 20 years after vaccination in the case of DTP, suggests that NK cell responsiveness 

might represent a more sensitive biomarker of T cell induction and maintenance and might 

thus have a role to play in evaluation of new vaccines or new vaccine formulations. Whether 

NK cells – activated by T cell IL-2 or by crosslinking of Fc Receptors (CD16) by immune 

complexes – play an important role as effectors of vaccine induced immunity is as yet 

unknown but the speed with which they are activated (within six hours of exposure to the 

pathogen [4]) and the large number of potentially responding cells suggests that their role 

should be investigated.  

 

We observed that NK cell responses to pertussis were significantly greater in magnitude than 

responses to diphtheria toxoid or tetanus toxoid, even though all three antigens would have 

been administered together during vaccination. A likely explanation for this is that the 

pertussis antigen is a whole cell preparation containing numerous ligands for pattern 

recognition receptors on macrophages and dendritic cells, leading to their secretion of IL-12 

and IL-18, which is necessary to induce NK cells to secrete IFN-γ and become cytotoxic [5,15]. 

Purified toxoids such as diphtheria toxoid and tetanus toxoid lack such ligands and thus, in 
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vitro at least, NK cells can only be induced to respond in the presence of exogenous IL-12 and 

IL-18. In vivo however, infection by live tetanus and diphtheria bacteria would presumably 

induce a strong accessory cell cytokine response. On the other hand, much stronger NK 

responses to pertussis than diphtheria toxoid or tetanus toxoid were seen even in the 

presence of low concentrations of IL-12 and IL-18, suggesting that whole cell pertussis may 

also induce a stronger T cell response than does a toxoid antigen. 

 

Despite an overall tendency for NK cells to respond to vaccine antigens, there was 

considerable heterogeneity between individuals which may in part be explained by inter-

individual variation in T cell IL-2 responses. However, we also observed heterogeneity between 

NK cell subsets in their responsiveness to vaccine-driven signals, with responses being 

dominated by CD56bright and CD56dimCD57- NK cells. This correlated with higher levels of 

CD25 expression on IL-12/IL-18 activated CD57- cells compared to CD57+ cells and a higher 

resting level expression of IL-12Rβ2 and IL-18Rα on these cells. These findings are in line with 

previous reports that CD57+ NK cells are less able to respond to cytokines [12,14], and express 

lower levels of IL-18Rα and lower amounts of mRNA for IL-12Rβ2, compared to CD57- NK cells. 

The established model is that IL-18 induces expression of the high affinity IL-2Rα (CD25) on NK 

cells [41] whilst IL-12 is necessary, but not sufficient for their production of IFN-γ [42]. 

Moreover, IL-2 induces expression of the inducible chain of the IL-12R (IL-12β2) [43]. Thus, as 

shown here, synergy between these three cytokine signals, IL-2, IL-12 and IL-18, results in NK 

cells producing high levels of IFN-γ during the first 18-24 hours following re-exposure to 

vaccine antigens. Further work on the relationship between IL-2, IL-12 and IL-18 in the context 

of NK cell activation by vaccine antigens is presented in Chapter 5.  

 

Of interest, we have observed that the maturation of NK cells from CD56brightCD57- to 

CD56dimCD57+ is a gradual process with functional changes being highly correlated with CD56 

and CD57 expression. This is particularly apparent for the cytokine driven pathway of NK cell 
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activation where expression of IL-12R and IL-18R as well as IL-12/IL-18-induced CD25 

expression and IFN-γ synthesis are all very tightly negatively associated with CD57 expression. 

We find that CD57int NK cells make significant amounts of IFN-γ after stimulation with high 

dose IL-12/IL-18 but respond less robustly to low concentration cytokines and vaccine 

antigens, suggesting that they may fail to compete effectively with CD57- NK cells when 

cytokines are limiting.  

 

An area of increasing concern in industrialised countries is the burden of infectious disease and 

poor response to vaccination in the elderly population [44]. Whilst ageing in the innate 

immune system, including age-associated changes in the composition, phenotype and function 

of circulating NK cells, is being linked to increased susceptibility to de novo viral and bacterial 

infections [45], deterioration of antigen-specific memory responses and reduced 

responsiveness to vaccination with increasing age tends to be attributed to narrowing of the T 

cell repertoire and functional senescence of the T cell pool [46,47]. Our data suggest, however, 

that these two components of immune ageing may interact; deteriorating CD4+ T cell 

responses will limit the availability of IL-2 to drive NK cell responses whilst, at the same time, 

the proportion of CD57- NK cells able to respond to IL-2 will decrease. We predict, therefore, 

that vaccination-induced NK cell IFN-γ responses could decline with increasing age, potentially 

contributing to reduced vaccine efficacy in elderly populations.  

 

In addition, subclinical human cytomegalovirus (HCMV) infections may potentiate the 

functional differentiation and senescence of NK cells [33-36]. Given that at least 40% of the 

world population is HCMV seropositive (HCMV+), and prevalence can exceed 95% in some 

African and Asian populations [48], HCMV exposure may contribute significantly to poor 

vaccine efficacy at a population level. This hypothesis is the focus of this thesis and is explored 

explicitly in the following chapter. Other disease states associated with acquisition or loss of 
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CD57 expression by NK cell populations, and the functional or clinical significance of these 

changes, have been reviewed by us and are included as Appendix I [8]. 

 

In light of my interest in comparing NK cell responses during vaccine recall responses between 

HCMV uninfected (HCMV-) and HCMV+, it was decided that all future analyses should be 

performed on the total NK cell population in the first instance (as in Section B and published in 

White et al) rather than the CD56dimCD57- subset (as in some preliminary work in Section A). 

While focusing on CD56dimCD57- NK cells does indeed improve sensitivity for the detection of 

NK cell IFN-γ responses, as they are the major responders (Figure 13A-B) , doing so limits the 

ability to detect differences in NK cell responses between individuals that may due to a re-

distribution of CD56/CD57-defined NK cell subsets.   
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Chapter 4  

 

Impaired NK cell responses to pertussis 
and H1N1 influenza vaccine antigens in 
human cytomegalovirus-infected 
individuals 
 

 

The work presented in this chapter is adapted and extended from Nielsen et al 2015 ([1], 
Appendix X). 
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4.1 Introduction 

The natural killer (NK) cell population comprises of a heterogeneous group of cells and the 

data presented in Chapter 3 (adapted from [2]) clearly illustrates that this heterogeneity has 

functional consequences during recall responses to vaccines. As CD56dim NK cells gain CD57, 

maturing from CD56bright to CD56dimCD57- to CD56dimCD57int to CD56dimCD57+, they 

show decreased responsiveness to exogenous cytokine stimulation (reviewed in [3]). As 

discussed in Chapter 3, this acquisition of CD57 is associated with both lower CD25 

upregulation (the high affinity IL-2 receptor) and IFN-γ production during re-stimulation with 

vaccine antigens [2]. The major contributors to the IFN-γ response are therefore the 

CD56bright and CD56dimCD57- subsets. In contrast, degranulation responses are maintained, 

regardless of CD57 expression.  

 

I would therefore anticipate that factors that influence the proportion of NK cells expressing 

CD57 would also affect the ability of the total NK cell population to participate in recall 

responses to vaccine antigens. Ageing is one process associated with a skewing towards the 

CD56dimCD57+ phenotype, but human cytomegalovirus (HCMV) infection also drives 

profound changes in the NK cell repertoire (reviewed in [3]).    

 

HCMV infection is strongly associated with a preferential expansion of the 

CD56dimCD57+NKG2C+ NK cell subset (see Chapter 1 [4-6]). These CD56dimCD57+NKG2C+ NK 

cells respond poorly to stimulation with pro-inflammatory cytokines such as IL-12 and IL-18. 

Despite this, these cells are not functionally exhausted as they can respond robustly to direct 

contact activation, through crosslinking CD16 crosslinking (e.g. by IgG) or natural cytotoxicity 

receptors (NCRs), to degranulate and secrete cytokines such as IFN-γ and TNF-α [6,7]. 

 

These observations imply that, in the context of secondary exposure to a vaccine antigen, NK 

cells from HCMV-seropositive (HCMV+) individuals may be able to effectively mediate 
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antibody-dependent cellular cytotoxicity (ADCC) after crosslinking of CD16 by antigen-bound 

IgG [5,7,8], but may respond poorly to inflammatory cytokines (reviewed in [3]). Specifically, 

the expanded CD56dimCD57+NKG2C+ subset may be less sensitive to IL-12 and IL-18 from 

dendritic cells and macrophages, but also to cytokine signals from the adaptive arm of the 

immune response such as IL-2 from antigen-specific memory CD4+ T cells [2,9]. 

 

The characterisation of HCMV-driven changes to the NK cell repertoire has been largely based 

on studies of haematopoietic stem cell or solid organ transplantation [5,10,11], and follow-up 

of these patients over time is lacking, in terms of susceptibility to infection or response to 

vaccination. Additionally, these patients likely represent outliers following the biological 

trauma of transplantation, and it would be of interest to confirm findings from these studies in 

HCMV+ healthy adults.  

 

Consequently, the true functional significance of HCMV-driven phenotypic changes to the 

immune system is poorly understood. Even in the T cell or humoral immunity fields, where the 

interaction between HCMV serostatus and vaccination outcomes have been more explicitly 

investigated, the conclusions have been inconsistent. Some studies have reported impaired 

vaccine responses in HCMV+ donors [12-17], whereas others have found no differences 

between HCMV+ and HCMV-seronegative (HCMV-) donors ([18-21],  as detailed in Chapter 1). 

More recently, it has even been proposed that HCMV infection may play a beneficial role, by 

inducing low levels of immune activation that may help to prime responses to heterologous 

infections (see extended discussion in Chapter 6, [22,23]). The impact of HCMV-driven immune 

differentiation thus remains unclear.  

 

The aim of this body of work is therefore to compare NK cell responses to vaccine antigens 

previously encountered during immunisation (Bordetella pertussis) or during natural infection 

(H1N1 influenza virus) in HCMV- and HCMV+ individuals. B pertussis is a gram-negative 



97 
 

bacterium that causes whooping cough, a highly contagious respiratory disease. Pertussis 

immunisation has been included in childhood vaccination programmes in the UK since the 

1950s, first with a whole cell preparation before changing to acellular vaccines in 2004. The 

H1N1 influenza strain used in this study was isolated in 2009 and had been in circulation since 

then. Both pathogens are of public health concern worldwide [24,25].    
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4.2 Methods 

4.2.1 Study subjects 

Volunteers (n = 152) were recruited from among staff and students at LSHTM during 2013 (n = 

52) and 2014 (n = 100). All subjects gave fully informed, written consent and the study was 

approved by the LSHTM Ethics Committee (references # 6237 and # 6324, Appendices IV and 

XI, respectively). Each subject provided a single 50ml venous blood sample and their reported 

vaccination history was recorded.  

 

4.2.2 Plasma dialysis and IgG depletion 

For experiments that included cell stimulation in the absence of antibody, pooled human AB 

plasma was IgG-depleted using a protein G Sepharose column (GE Life Sciences). Briefly, AB 

plasma was diluted 1:1 in complete medium and dialysed in sterile PBS using 10KMWCO 

(10,000 kD molecular weight cut-off) Slide-a-Lyzer dialysis cassettes (Thermo Scientific) on a 

stirrer at 4°C, first for four hours and then with fresh PBS overnight. Plasma requiring IgG 

depletion was then passed through the protein G Sepharose column (GE LifeSciences), as per 

manufacturer’s instructions, twice, using PBS as the buffer solution. Absence of IgG in the 

column exudate was confirmed using a total IgG ELISA, as described below (Figure 16). 

Dialysed non-IgG-depleted plasma and dialysed IgG-depleted plasma were then stored in 

aliquots at -80°C until use.       

 

4.2.3 ELISAs 

Total IgG ELISAs were performed with dialysed IgG-depleted and dialysed non-IgG-depleted AB 

plasma to confirm IgG depletion. AB plasma was also tested IgG antibodies to pertussis toxin 

(PT; NIBSC: JNIH-5) and to formalin-inactivated whole H1N1 influenza virus (influenza 

A/California/7/2009(H1N1)v(NYMC-X179A); H1N1; NIBSC: 09/146, Appendix XII). Plates were 

read at 492nm (Dynex Technologies, MRX TC Revelation Microtiter Plate Reader). 
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Figure 16. Confirmation of IgG depletion from pooled AB plasma. Pooled AB plasma was 
dialysed and passed twice over a protein G sepharose column. A total IgG ELISA was used to 
confirm >95% reduction in IgG from the pooled AB plasma after the first (x1) and second (x2) 
depletions in comparison to the dialysed but non-depleted pooled AB plasma using 
interpolation from a standard curve constructed with use of commercial IgG. Dialysed plasma 
was diluted 1:100,000 for the ELISA. Data are from a single experiment but similar results were 
obtained with pilot IgG depletions.  
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For autologous plasma, samples were collected from heparinised whole blood and stored at  

-80°C until use. Autologous plasma was tested for anti-HCMV IgG, to determine HCMV 

serostatus, as well as anti-pertussis toxin (PT) and anti-H1N1 IgG.  

 

4.2.3.1 Total IgG ELISA 

Total IgG ELISAs were performed to compare dialysed non-IgG-depleted AB plasma and 

dialysed IgG-depleted AB plasma, using a standardised and validated in-house protocol 

developed by the Drakeley group at LSHTM (SOP: Detection of Total IgG, edition 003, 

01/11/2013). Briefly, this ELISA uses anti-human IgG Fab (Sigma, 15260) as the coating antigen, 

with goat anti-human IgG (whole molecule) peroxidise (Sigma A8667) as the secondary 

antibody, and SigmaFast OPD (Sigma) as the substrate. Dialysed plasma was diluted 1:100,000 

for the ELISA. The standard curve was produced using commercial IgG (Sigma, I2511) and used 

to verify IgG-depletion had resulted in a >95% reduction in AB plasma IgG titres (Figure 16). 

 

4.2.3.2 Anti-PT IgG ELISA 

The following in-house anti-PT ELISA was adapted from the above protocol for measuring total 

IgG.  

 

Pertussis toxin was resuspended in 500μl RPMI PSG to give a concentration of 20,000IU/ml and 

stored in aliquots at -80°C prior to use. Stocks were then diluted 1:100 in coating buffer (Table 

I, Chapter 2). 96-well flat-bottomed Nunc Immunlon Maxisorp plates were coated overnight 

with 50μl/well PT coating solution at 4°C. Plates were then washed with PBS/Tween wash 

solution (0.05%), blotted dry, and blocked with 150μl/well blocking solution (1% skimmed milk 

powder in PBS/Tween wash solution) for one hour at room temperature. Plates were washed 

and blotted again before adding 50μl/well of AB or autologous sample plasma (diluted 1:100 in 

blocking solution) or positive control pertussis antiserum (NIBSC, 06/140) of known anti-PT IgG 

titre (titrated in blocking solution to give standard curve). All samples and standards were run 
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in duplicate. Plates were incubated for two hours at 37°C, then washed and dried. A goat HRP-

conjugated anti-human IgG (Sigma, A8667) was used as a secondary antibody, diluted 1:5000 

in wash solution, with a one-hour incubation at room temperature. Plates were washed and 

blotted again before adding 100μl/well SigmaFast OPD and incubated for 15 minutes in the 

dark at room temperature. Reactions were stopped by adding 25μl/well 2M H2SO4.  

 

Standard curves were generated using the pertussis reference antiserum titration by plotting 

dilution against OD on a semi-log curve and calculating the equation of the straight section of 

the curve. This equation was then rearranged to allow calculation of IgG titres of samples (x) 

based on OD (y): x = 10^((y-intercept)/slope). If the mean OD of the duplicates of an 

autologous sample plasma did not fall within the straight line of the standard curve, the ELISA 

was repeated at a higher or lower dilution, as appropriate, to allow interpolation from the 

standard curve. The pooled AB plasma used for in vitro assays contained 6.8 IU/ml anti-PT IgG.  

 

4.2.3.3 Anti-H1N1 IgG ELISA 

An in-house anti-H1N1 IgG ELISA was developed by Martin Goodier, based on my anti-PT IgG 

ELISA protocol. ELISAs were performed by Martin Goodier and Chiara Lusa. 

 

Briefly, inactivated whole virus H1N1 was used as the coating antigen, with goat anti-human 

IgG (whole molecule) peroxidase (Sigma A8667) as the secondary antibody, and SigmaFast 

OPD (Sigma) as the substrate. IgG concentrations were calculated by interpolation from a 

standard curve which was produced using plasma from a donor with high titres of antibodies 

to H1N1 influenza (IgG concentration expressed in Arbitrary ELISA Units, AEU; [26]). The 

pooled AB plasma used for in vitro assays contained 273.8 AEU/ml anti-H1N1 IgG.  
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4.2.3.4 Anti-HCMV IgG ELISA 

HCMV infection status was determined by HCMV IgG ELISA (BioKit) using donor plasma diluted 

1:100, as per manufacturer’s instructions. Donors were consequently determined to be either 

HCMV-seronegative (HCMV-) or HCMV-seropositive (HCMV+) based on a threshold of 

0.25IU/ml anti-HCMV IgG, interpolating from the kit’s standard curve. For HCMV+ donors with 

anti-HCMV IgG titres outside the standard curve, the ELISA was repeated diluting 1:500, 

1:1000, or 1:2000 as necessary. In contrast to our in-house ELISAs, this kit uses rabbit anti-

human IgG as a secondary antibody and TMB (3,3’,5,5’-tetramethylbenzidine) dissolved in 

DMSO as a substrate. Plates were therefore read at 450nm.  

 

4.2.3.5 Anti-EBV IgG ELISA 

Epstein Barr virus (EBV) serostatus was determined by anti-Epstein Barr virus nuclear antigen 1 

(EBNA-1) IgG ELISA (Euroimmun) using donor plasma diluted 1:100, as per manufacturer’s 

instructions. TMB/ hydrogen peroxide was used as a substrate and plates were read at 450nm. 

 

4.2.4 IL-2 ELISPOTs 

Production of IL-2 in response to killed whole cell pertussis was analysed using an ELISPOT for 

human IL-2 (Mabtech), as per manufacturer instructions. Briefly, PVDF-membrane plates 

(MAIPSWU, Millipore) were coated with anti-IL-2 capture antibody overnight at 4°C. After 

washing plates in PBS, peripheral blood mononuclear cells (PBMC, 2.5x105/well) were 

incubated with complete medium alone or 0.1IU/ml killed whole cell pertussis (NIBSC: 88/522, 

Appendix VII), supplemented with 10% FCS, for 18 hours at 37°C. During pilot experiments, 

anti-CD3 was used as a positive control (2μg/ml, Mabtech), consistently resulting in responses 

‘too numerous to count’ (TNTC; data not shown). Plates were then washed with PBS, 

incubated with the biotinylated monoclonal detection antibody for two hours, washed with 

PBS, incubated with streptavidin-ALP (alkaline phosphastase) for two hours, washed again with 

PBS, and incubated with BCIP/NBT (Mabtech) as a substrate until distinct spots appeared 
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(routinely 10 minutes), all at room temperature. After drying, plates were imaged and counted 

with an AID ELISpot Reader. Count settings were standardised across plates and days, using a 

threshold of 100 pixels as the minimum size for a spot to be counted; this increased the 

sensitivity of the assay above the default setting (50 pixels). The number of spots was reported 

per million cells. Measurements of cytokine activity were also taken, as indicated by the size of 

the spot (arbitrary units). All samples were analysed in triplicate and a mean value was used 

for analysis.  

 

4.2.5 NKG2C genotyping 

DNA was extracted from whole blood using a Wizard genomic DNA extraction kit (Promega). 

Donors were then genotyped for NKG2C using touch-down PCR (Phusion High Fidelity PCR kits; 

New England Biolabs) as optimised in-house by Adriana Goncalves and described previously 

[27,28]. Two sets of primers (Table III) were used to generate a 200bp fragment for the wild 

type gene and/ or a 411bp fragment for a NKG2C deletion. One hundred ng of DNA was 

routinely used per sample for the PCR reaction with the following conditions: initial 

denaturation at 95°C for three minutes; ten cycles of denaturation at 94°C for 30 seconds then 

annealing starting at 65°C for 30 seconds (then decreasing to 55°C, dropping 1°C per cycle) and 

extension at 72°C for 30 seconds; followed by 26 cycles of denaturation at 94°C for 30 seconds, 

then annealing at 55°C for 30 seconds, and extension at 72°C for 30 seconds. PCR products 

were separated and identified using agarose gel electrophoresis on a 1.5% agarose TBE 

(Tris/Borate/EDTA) gel, running at 90V for one hour. 

 

Table III. Primers for NKG2C PCR. _F denotes forward primers and _R denotes reverse primers. 

Allele Primer Primer Sequence 

Wild type NKG2C NKG2C200_F 5'- AGTGTGGATCTTCAATGATA-3 

NKG2C200_R 5’-TTTAGTAATTGTGTGCATCCT-3’ 

NKG2C deletion BREAK411_F 5'ACTCGGATTTCTATTTGATGC3' 

BREAK411_R 5'ACAAGTGATGTATAAGAAAAAG3' 
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4.2.6 PBMC preparation and cell culture 

PBMC were isolated, cryopreserved, and thawed as described in Chapter 2.   

 

PBMCs were cultured for 18 hours at 37°C at approximately 2×105/well in 96-well U-bottom 

plates (Nunc) in complete medium with or without low concentration of cytokines (LCC; 12.5 

pg/ml recombinant human [rh] IL-12 [PeproTech] plus 10 ng/ml rhIL-18 [MBL]); high 

concentration of cytokines (HCC; 5 ng/ml rhIL-12 plus 50 ng/ml rhIL-18); rat anti-IL-2 (3 μg/ml; 

BD Biosciences); rat IgG2A isotype control (3 μg/ml; BD Biosciences); 1 μg/ml formalin-

inactivated whole H1N1 influenza virus; 1 IU/ml killed whole-cell B. pertussis (pertussis, as 

above; NIBSC: 88/522, Appendix VII); or MHC class I–deficient K562 target cells (effector:target 

[E:T] ratio 2:1). GolgiStop (containing Monensin, 1/1500 concentration; BD Biosciences) and 

GolgiPlug (containing brefeldin A, 1/1000 final concentration; BD Biosciences) were added 

after 15 hours. Anti-CD107a antibody (A488-conjugated; BD Biosciences) was included in the 

medium for the entirety of cell culture. Dialysed plasma samples were used for all cell culture 

assays where read-outs were being compared to IgG-depleted plasma conditions. K562 cell 

line cultures were maintained in complete medium (see Chapter 2) supplemented with 10% 

FCS, splitting 1:10 every 2-3 days. 

 

For activation via crosslinking, as outlined in Chapter 2, 96-well flat-bottom plates (Nunc) were 

coated with 20μg/ml anti-human CD16 (BD Biosciences), anti-NKp30 and anti-NKp46 (R&D 

Systems), or isotype-matched control antibodies (mIgG1k, BD Biosciences; or IgGA and IgG2B; 

R&D Systems) overnight at 4°C. Cells were plated out at approximately 4×105 PBMCs/well, 

which had been incubated overnight at 37°C in 10% AB plasma with or without 50-100 IU/ml 

IL-2 (PeproTech). Anti–CD107a-A488 was added at the beginning of culture, and all assays 

were  performed   in  complete  medium   supplemented  with  10%   AB  plasma.   Cells   were  
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harvested after 5  hours  and  then centrifuged  at 754g for  five minutes  and  washed prior to 

Staining as per standard protocol (Chapter 2). 

 

T cell assays were synchronised with crosslinking experiments and PBMC were therefore 

incubated overnight at 37°C in 10% AB plasma in 5ml polypropylene round-bottom tubes 

(Falcon). Cells were then transferred to 96-well round-bottomed plates, approximately 

4×105 PBMCs/well, and stimulated for 5 hours in medium alone, 1 μg/ml formalin-inactivated 

whole H1N1 influenza virus, or 1 IU/ml killed whole-cell B. Pertussis, or PMA/ ionomycin as a 

positive control. GolgiStop and GolgiPlug were added after one hour, as described above. Cells 

were harvested and stained as per standard protocol. 

 

4.2.6 Flow cytometry 

Responses of NK cells and T cells were assessed as described previously and outlined in 

Chapter 2. The following reagents were used: anti-CD3-V500, anti-CD56-phycoerythrin (PE)-

Cy7,  anti-IFN-γ-APC, anti-IFN-γ-PE, anti-CD4-PE, anti-IL-2-APC, anti-CD45RA-APC-H7, anti-

CD107a-FITC (all BD Biosciences); anti-CD25-PerCP-Cy5.5, anti-IFN-γ-e780, anti-CD16-APC, anti-

CD16-e780, anti-CD8-PECy5, anti-ILT2-PE, anti-CD161-PerCP-Cy5.5, anti-CD4-e450, anti-CCR7-

APC, anti-IL-18Rα-PE, and anti-CD57-e450 (all e-Biosciences); anti-NKG2C-PE, anti-NKG2C-APC 

(both R&D Systems), and anti-NKG2A-FITC (Miltenyi). Anti-IL-12Rβ2 monoclonal antibody was 

obtained from R&D Systems and conjugated to PE-Cy5 using an Easylink PE/Cy5® Conjugation 

Kit (Abcam). Compensation controls were prepared at the time of cell staining using BD 

Biosciences CompBeads. 

 

4.2.7 Statistical analyses 

Figures showing 52 donors represent data from 18 experiments (2-3 donors per experiment) 

and figures showing 152 donors represent data from 24 experiments (16-20 donors per 

experiment for additional 100 donors); sample sizes and number of experiments represented 
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in each figure are described in legends. Flow cytometry and statistical analyses were 

performed as described in Chapter 2 and also as detailed in figure legends.  

 

For flow cytometry experiments, cell populations with fewer than 100 cells were excluded 

from the analyses and thus the number of samples included varies between figures, depending 

on the cell population being analysed. This is incorporated in the statistics, though note that 

the sample sizes stated in figure legends refer to the total number of donors included in the 

assay prior to exclusions. 

 

Mann–Whitney tests were used to compare responses between HCMV- and HCMV+ donors, 

and linear regression (STATA) was used to adjust for sex and age. Unless otherwise stated, 

statistical tests were one-sided. ****p ≤ 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05. 
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4.3 Results 

4.3.1 Donor characterisation 

Subject characteristics are summarised in Table IV. Subjects (n = 152) ranged in age from 20-

77-years (median = 33-years). Fifty-five subjects (36%) were found to be HCMV+, consistent 

with what has previously been published on UK populations for the age range sampled (Figure 

17A). As seroprevalence was consistent between the two recruitment cohorts (2013- 37%; 

2014- 36%), all analyses were pooled. Anti-HCMV IgG titre increased significantly with 

increasing age (R2 = 0.248, p = 0.0001; Figure 17B) but age did not differ significantly between 

HCMV+ and HCMV- donors (two-tailed Mann-Whitney test, p = 0.561; Table IV). As the 

proportion of female and male donors differed between the HCMV- and HCMV+ groups 

subsequent analyses were adjusted for sex (Tables IV-V). 

  

Table IV. Donor characteristics. Donors were classified as human cytomegalovirus 
seronegative (HCMV-) and seropositive (HCMV+) by anti-HCMV IgG ELISA, using 0.25IU/ml as 
the cut-off as per manufacturer’s instructions. NKG2C genotype (NKG2C+/+, NKG2C+/-, NKG2C-/-) 
was determined by PCR. IgG antibody titres against pertussis toxin (PT) and H1N1 were 
calculated with in-house ELISAs from interpolation of a reference serum or high titre donor 
standard curve, respectively. Epstein Barr (EBV) serostatus was determined using an anti-
EBNA-1 IgG ELISA, as per manufacturer’s instructions. 

 HCMV- 
(n = 97) 

HCMV+ 
(n = 55) 

Median Age, Years  
(range) 

32 
(20-70)                         

35 
(21-77) 

Female n  
(%) 

73 
(75) 

32 
(58) 

NKG2C Genotype 
+/+, +/-, -/- n (%) 

67/24/2 
(72/26/2) 

35/17/2 
(65/31/4) 

NKG2C - Haplotype 
Frequency (%) 

15.0 19.4 

anti-HCMV IgG titre IU/ml 
median (range) 

< 0.25 394.2 
(31.1-4411.6) 

anti-PT IgG titre IU/ml 
median (range) 

6.7 
(0.5-139.3) 

5.0 
(0.8-179.9) 

anti-H1N1 IgG titre AEU*/ml 
median (range) 

214.6 
(80.7-953.2) 

190.1 
(90.2-522.7) 

EBV-seropositive n  
(%) 

82 
(85) 

52 
(95) 

* arbitrary ELISA units, see Methods. 
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Figure 17. HCMV prevalence is consistent with previous UK observations and anti-HCMV IgG 
titres increase with age in HCMV+ donors. HCMV prevalence in study blood donors is 
consistent with previously published data from the UK, adapted from Vyse et al 2009 [29]: the 
orange dashed line indicates HCMV seroprevalence in my study cohort (36%), while the blue 
dashed line indicates median age (33 years), and the blue box corresponds to the age range 
(20-77 years) (A). Within the HCMV+ donors, there is a significant association between age and 
anti-HCMV IgG titre calculated by ELISA, as determined by bivariate nonlinear regression. Each 
data point represents one donor, n = 55. Data are from two experiments (B). The majority of 
study donors were born in Europe (C), although the proportion is potentially higher in the 
HCMV- (D) than HCMV+ (E) group.  
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There was some evidence to suggest that HCMV+ donors were less likely to have been born in 

the Europe or North America than HCMV- donors (Figures 17C-E), but data on country of birth 

was not available for a substantial proportion of donors, precluding more detailed further 

analyses. Similarly, no data on ethnicity was available.  

 

Cells from all 152 subjects were analysed for responses to pertussis. One hundred and 

fourteen donors (75.0%) confirmed that they had been vaccinated against pertussis but a 

minority of donors reported that they had not been vaccinated against pertussis (n = 13; 8.6%) 

or were unsure of their vaccination status (n = 25; 16.4%). However, the proportions of these 

individuals did not differ between the HCMV+ and HCMV- groups (Chi square test, p = 0.640; 

Figure 18A). Furthermore, their antibody titres did not suggest a difference in vaccination 

history: vaccinated individuals had a median anti-PT IgG titre of 6.5IU/ml as compared to 

4.8IU/ml in unvaccinated or unsure individuals (two-tailed Mann-Whitney test, p = 0.215). The 

median anti-PT IgG titre was higher among HCMV- donors than among HCMV+ donors, but this 

difference was not statistically significant either (6.7 IU/ml vs 5.0 IU/ml, two-tailed Mann-

Whitney, p = 0.078; Figure 18B).  

 

All donors analysed for responses to vaccine H1N1 influenza (n = 52) confirmed no previous 

seasonal influenza vaccination to H1N1, i.e. only natural environmental exposure. Median anti-

H1N1 IgG titres were higher among HCMV- donors (204.1 AEU/ml) than among HCMV+ donors 

(187.2 AEU/ml), although again this difference was not statistically significant (two-tailed 

Mann-Whitney, p = 0.135; Figure 18C).  

 

All donors were also tested for Epstein Barr virus (EBV) infection, using an anti-Epstein Barr 

virus nuclear antigen 1 (EBNA-1) IgG ELISA. Although the proportion of EBV+ individuals was 

higher in the HCMV+ group as compared to HCMV- (95% and 85%, respectively), this 

difference was not significant (two-tailed Fisher’s exact test, p = 0.073; Table IV). 
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Figure 18. No difference in self-reported DTP vaccination history between HCMV- and 
HCMV+ donors. Self-reported vaccination history with DTP (diphtheria-tetanus-pertussis) was 
not significantly different between HCMV- (n = 97) and HCMV+ (n = 55) donors (A), nor were 
anti-pertussis toxin (PT) (B) or anti-H1N1 (C) IgG titres as determined by in-house ELISAs. Each 
data point represents one donor and bars denote medians (B-C). Comparisons were performed 
with two-tailed Mann Whitney tests; no differences were significant (B-C). Data are from 4 
experiments (B) or 5 experiments (C). 
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4.3.2 Antibody and antigen-specific IL-2 drive NK cell responses to pertussis and 

H1N1 influenza virus 

PBMC from 100 donors were stimulated overnight with pertussis (Figure 19B-D) and NK cell 

responses were measured by flow cytometry (Figure 19A). Significant induction of CD25 and 

IFN-γ (Figure 19B-C) and degranulation (as measured by cell surface expression of lysosomal 

marker CD107a [30]; Figure 19D) was observed in response to pertussis. Analysis of this 

response by CD56bright and CD56dim subsets reveals that the CD56dim cells respond more 

robustly to pertussis than do the CD56bright NK cells and are thus the major contributors to 

the vaccine response, since they are also more numerous than CD56bright cells (Figure 20A-C).   

 

Co-expression of CD25/IFN-γ was markedly attenuated in the presence of a blocking antibody 

to IL-2 and after depletion of IgG from the plasma used to supplement the culture medium, 

indicating a role for both memory T cell-derived IL-2 and antigen-antibody complexes in the NK 

cell IFN-γ response (Figure 19C). By contrast, the degranulation response (CD107a) was 

dependent upon IgG but not IL-2 (Figure 19D). The observation that neither anti-IL-2 nor IgG 

depletion completely abrogated the NK cell IFN-γ response suggests that these two signals 

may synergise for optimal IFN-γ production.  

 

Cells from a subset of subjects (n = 16) were also analysed for responses to H1N1 influenza in 

the context of IL-2 blockade or IgG depletion (Figure 19E-G). As observed with pertussis, 

statistically significant induction of CD25 (Figure 19E), CD25/IFN-γ (Figure 19F) and CD107a 

(Figure 19G) was observed in response to re-stimulation with H1N1 antigen, and IL-2 blocking 

significantly decreased CD25/IFN-γ expression (Figure 19F) whilst IgG depletion inhibited the 

degranulation (CD107a) response (Figure 19G). Interestingly, and in contrast to the response 

to pertussis, IgG depletion enhanced IFN-γ production in response to H1N1 and IL-2 blockade 

slightly decreased degranulation, perhaps indicating competition between these pathways for 

NK cell activation during influenza responses (Figure 19F).  
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Figure 19. NK cell responses to pertussis and H1N1 are inhibited by IL-2 neutralisation and 
IgG depletion. PBMC were cultured in vitro for 18 hours with medium alone (Med), killed 
whole cell pertussis (Per), inactivated whole H1N1 influenza virus (H1N1), pertussis or H1N1 
with blocking antibody to IL-2 (Per α-IL-2, H1N1 α-IL-2) or pertussis or H1N1 in IgG-depleted 
plasma (Per IgG depl., H1N1 IgG depl.). The isotype control antibody (IgG2A) for the IL-2 
blocking antibody was included in the medium, pertussis, and H1N1 wells. Representative flow 
cytometry plots show gating of CD3-CD56+ NK cells and expression of CD25, IFN-γ, and CD107a 
(A). Responses to pertussis (B-D) and H1N1 (E-G) were measured by the percentage of NK cells 
expressing CD25 (B, E), co-expressing CD25/IFN-γ (C, F), and expressing CD107a (D, G). Data 
were analysed using paired, one-tailed Wilcoxon signed-rank tests. **** p ≤ 0.0001, *** p < 
0.001, ** p < 0.01, * p < 0.05. Each data point represents one donor, n = 100 (B-D) or n = 16 (E-
G), and bar graphs denote medians. Data are either from 6 experiments (B-D) or 3 experiments 
(E-G). 
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Figure 20. CD56bright and CD56dim NK cell responses are inhibited by IL-2 neutralisation and 
IgG depletion. PBMC were cultured in vitro for 18 hours with medium alone (Med), killed 
whole cell pertussis (Per), pertussis with blocking antibody to IL-2 (Per α-IL2) or pertussis in 
IgG-depleted plasma (Per IgG depl.). The isotype control antibody (IgG2A) for the IL-2 blocking 
antibody was included in the medium and pertussis wells. Responses were measured by the 
percentage of CD56bright (Br) or CD56dim (Dim) NK cells expressing CD25 (A), co-expressing 
CD25/IFN-γ (B), and expressing CD107a (C). CD56bright and CD56dim responses were 
compared to each other for each condition, then to pertussis alone for the IL-2 blocking and 
IgG depletion conditions. Data were analysed using paired, one-tailed Wilcoxon signed-rank 
tests. **** p ≤ 0.0001, *** p < 0.001. Each data point represents one donor, n = 100, and bar 
graphs denote medians. Data are from 6 experiments. 
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4.3.3 HCMV infection is associated with impaired NK cell responses to pertussis and 

H1N1 influenza virus 

NK cell responses to pertussis (n = 152) and H1N1 (n = 52) were compared between HCMV- 

and HCMV+ donors (Figure 21). Consistent with prior observations [2,9], responses to pertussis 

and H1N1 were significantly augmented by low concentrations of  cytokines IL-12 and IL-18  

(LCC; p ≤ 0.0001 for all parameters) indicating that in vitro accessory cell activation and 

production of IL-12 and IL-18 (which is essential for IL-2-mediated NK cell activation [9,31,32]) 

were suboptimal.  

 

Interestingly, in the absence of LCC, pertussis induces stronger NK cell responses than H1N1 

whereas in the presence of LCC, H1N1 induces the more robust responses. This may indicate 

that pertussis induces some IL-12 and IL-18 secretion (such that LCC is redundant in these 

assays) whereas H1N1 may be a poor inducer of IL-12 and IL-18 but a better inducer of IL-2 or 

other accessory cytokines. This would be consistent with differences in Toll-like receptor (TLR) 

signalling by RNA viruses such as influenza (TLR3) and gram-negative bacteria such as pertussis 

(TLR4) [33-36].  

 

NK cells from both HCMV+ and HCMV- donors responded to pertussis and H1N1 (with or 

without LCC; Figure 21), however NK cell responses to these two vaccines (whether defined as 

CD25+, CD25+IFN-γ+, or CD107a+) were significantly lower among HCMV+ donors than among 

HCMV- donors (Figure 21A,C,E). This was true for both vaccines and all parameters when cells 

were cultured with LCC, and was also true for the CD25+ responses to H1N1 and all responses 

to pertussis in the absence of LCC. Additionally, NK cell CD25+, CD25+IFN-γ+ and CD107a+ 

expression in response to HCC (high concentrations of IL-12 and IL-18) were all significantly 

higher in HCMV- compared to HCMV+ donors (Figure 21A,C,E).  
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Figure 21. NK cell responses to vaccine antigen are affected by HCMV infection. PBMC were 
cultured in vitro for 18 hours with medium alone (Med), low concentration of cytokines (LCC: 
12.5 pg/ml IL-12 and 10ng/ml IL-18), killed whole cell pertussis (Per), inactivated whole H1N1 
influenza virus (H1N1), Per + LCC, H1N1 + LCC, or high … (continued on page 116) 
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(continued from page 115) 
… concentration of cytokines (HCC: 5ng/ml IL-12, 50ng/ml IL-18). Donors were stratified into 
HCMV- and HCMV+ groups. Responses were measured as the percentage of NK cells 
expressing CD25 (A-B), co-expressing CD25/IFN-γ (C-D), or CD107a (E-F). Data were analysed 
using, one-tailed Mann-Whitney tests. **** p ≤ 0.0001, *** p < 0.001, ** p < 0.01, * p < 0.05. 
Bivariate regression of age against responses to Per + LCC was performed for the percentage of 
NK cells expressing CD25 (B) CD25/IFN-γ (D), and CD107a (F). Each data point represents one 
donor, n = 152 (24 experiments), except for H1N1 and H1N1 + LCC where n = 52 (18 
experiments). Bar graphs denote medians.  
 
NB, all antigen stimulations induced statistically significant increases in expression of CD25, 
CD25/IFN-γ, and CD107a over background (medium alone for pertussis/ H1N1, or LCC for 
pertussis+LCC /H1N1+LCC; p < 0.05 in all cases), except that H1N1 did not induce a significant 
increase in CD25+IFN-γ+ NK cells in HCMV+ donors (p = 0.416).  
 
 

Analysis of this response by CD56bright and CD56dim subsets reveals that the effect of HCMV 

status is due almost entirely to an effect within the CD56dim subset (Figure 22). Importantly, 

ex vivo (data not shown) and resting levels of CD25 expression in vitro did not differ 

significantly between HCMV+ and HCMV- donors (Figure 21A), and although there were 

significant differences in the T cell populations (Figure 23), there was no difference in the 

potential of T cells from HCMV- and HCMV+ donors to produce IL-2 in response to pertussis 

antigen (Figure 24). Specifically, HCMV- donors have higher proportions of naïve CD4+ T cells 

(CD45RA+CCR7+) and lower proportions of effector memory CD4+ T cells (CD45RA-CCR7-), 

consistent with published reports (Figure 23A; see Chapter 1 [16,37]). While the trend was the 

same for CD8+ T cells, the differences were not statistically significant (Figure 23B). HCMV- 

donors also had a substantially higher ratio of CD4+:CD8+ T cells, another illustration of 

profound changes in the T cell repertoire attributable to HCMV infection (Figure 23C). 

 

Due to cell limitations from the 2013 cohort (used for H1N1 assays, n = 52) I was unable to 

similarly compare H1N1 responses by ELISPOT, but the IL-2 blocking data suggests a 

comparable role for T cell-derived IL-2 as in the pertussis responses (Figure 19). There was also 

no indication from preliminary flow cytometry T cell data that there were any differences in 

CD4+  T cell  IL-2 or  T cell IFN-γ responses  to pertussis or H1N1, although  these analyses were  
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(see page 118 for figure legend) 
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(continued from page 117) 
Figure 22. CD56bright and CD56dim NK cells respond more poorly to vaccine antigens in 
HCMV+ donors as compared to HCMV- donors. PBMC were cultured in vitro for 18 hours with 
medium alone (Med), low concentration of cytokines (LCC: 12.5pg/ml IL-12 and 10ng/ml IL-
18), killed whole cell pertussis (Per), inactivated whole H1N1 influenza virus (H1N1), Per + LCC, 
H1N1 + LCC, or high concentration of cytokines (HCC: 5ng/ml IL-12, 50ng/ml IL-18). Donors 
were stratified into HCMV- and HCMV+ groups. Responses were measured as the percentage 
of CD56bright or CD56dim NK cells expressing CD25 (A), co-expressing CD25/IFN-γ (B), or  
CD107a  (C).  Data  were  analysed  using,  one-tailed  Mann-Whitney  tests.   **** p  ≤  0.0001,  
*** p < 0.001, ** p < 0.01, * p < 0.05. Each data point represents one donor, n = 152 (24 
experiments), except for H1N1 and H1N1 + LCC where n = 52 (18 experiments). Bar graphs 
denote medians. 
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Figure 23. Changes to CD4+ and CD8+ T cell populations in HCMV+ donors. PBMC were 
analysed ex vivo for surface expression of CD3, CD4, CD8, CD45RA and CCR7, as shown by 
representative flow cytometry plots (A). Proportions of CD4+ (B) or CD8+ (C) T cells expressing 
CD45RA/CCR7 [corresponding to central memory (CM), naïve, terminally differentiated 
effector memory (TEMRA), or effector memory (EM) subsets], or the ratio of CD4:CD8 T cells 
were compared between HCMV- and HCMV+ donors (D) using two-tailed Mann-Whitney tests. 
*** p < 0.001, ** p < 0.01, * p < 0.05. n = 152 (24 experiments). Bars represent medians and 
lines denote interquartile ranges.   
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Figure 24. IL-2 production in response to pertussis is equally robust in HCMV- and HCMV+ 
donors. PBMC were cultured in vitro for 18 hours with killed whole cell pertussis (Per) or 
without (Med; medium) and assessed for IL-2 production using a human IL-2 ELISPOT (ALP) kit 
(Mabtech), as per manufacturer’s instructions. Responses were visualised and analysed on an 
AID ELISPOT plate reader; an example photograph is shown for two donors (A). Responses 
were measured in terms of the number of cells producing IL-2 (spots/million, B) and the 
amount of IL-2 produced (activity, C). Delta (Δ) values were calculated by subtracting the 
background response (Med) from the response to pertussis (Per). Responses to pertussis for 
each donor were compared to medium alone using two-tailed Wilcoxon tests, and responses 
were compared between HCMV- (-) and HCMV+ (+) donors using two-tailed Mann-Whitney 
tests. **** p ≤ 0.0001, *** p < 0.001. Each data point represents the mean of three technical 
replicates for a single donor (n = 48) and bar graphs denote medians. Data are from 3 
experiments. 
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constrained due to high background responses with medium alone (Figure 25). However, 

analysis of assays I performed with post-vaccination PBMC samples from an influenza 

vaccination intervention study with these same donors also showed no differences in IL-2 

responses to H1N1 between HCMV- and HCMV+ donors (Goodier, Rodríguez-Galán, Lusa, 

Nielsen et al, manuscript accepted). This supports the conclusion by van Leeuwen et al that 

there is no evidence of an association between HCMV-specific T cell expansions and the 

capacity of an individual to respond to heterologous antigens [38].     

 

In addition to consistently lower NK cell responses to vaccine antigens in HCMV+ individuals, 

there was a trend for CD25 and CD25/IFN-γ responses to pertussis (with or without LCC) to 

decline with increasing age (Figure 21B, 21D). This was statistically significant for the cohort as 

a whole, but not when analysed separately for HCMV- and HCMV+ donors due to decreased 

power. There was no effect of age on CD107a upregulation, which is consistent with  

decreased sensitivity to exogenous cytokines but maintained cytotoxicity during normal ageing 

(reviewed in [39]) and increasing NK cell differentiation [40,41]. Importantly, the effect of 

HCMV infection on impaired NK cell responses to pertussis and H1N1 is entirely independent 

of the association between age and NK cell function. In line with this conclusion, adjusting for 

age by parametric regression did not alter the conclusions of the study (Table V). 

 

Overall, NK cell responses did not differ significantly between males and females although 

there was a trend for median responses to be higher in women than in men and this reached 

statistical significance (p < 0.05) for the IFN-γ response to pertussis + LCC in HCMV+ donors 

(Figure 26). As the proportion of female subjects differed between the HCMV- and HCMV+ 

groups (Table IV), the data in Figure 21 were reanalysed, adjusting for sex as well as age using 

parametric regression (Table V). After adjustment for sex and age, CD25/IFN-γ and CD107a 

expression in response to vaccine alone (i.e. without LCC) are no longer significantly different  
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Figure 25. T cell responses as measured by flow cytometry indicate no difference between 
HCMV- and HCMV+ donor responses to pertussis or H1N1. PBMC were cultured in vitro for 
five hours with medium alone (Med), inactivated whole H1N1 influenza virus (H1N1), killed 
whole cell pertussis (Per), or PMA and ionomycin (PMA/I) as a positive control. Representative 
flow cytometry plots from a sample stimulated with H1N1 show gating of CD3+ T cells from the 
total lymphocyte population, gating of CD4+ and CD8+ T cells, and expression of intracellular 
IL-2 by the CD4+ T cells, or intracellular IFN-γ by the total T cell population (A). IL-2 responses 
by CD4+ T cells to Med, H1N1, Per, and PMA/I were compared between HCMV- and HCMV+ 
donors (B), as were IFN-γ responses by all CD3+ T cells (C). Note that PMA/I responses are 
plotted on the right-hand axes (B-C). Data were analysed using two-tailed Mann Whitney tests; 
no differences were significant. Bars represent medians and lines denote interquartile ranges. 
n = 52 (18 experiments).    
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Table V. NK cell responses to vaccine antigens by HCMV status after adjusting for sex and 
age. A regression analysis was performed in STATA to adjust for sex and age when comparing 
NK cell responses to pertussis (-/+low concentration of cytokines [LCC: 12.5pg/ml IL-12 and 
10ng/ml IL-18]), H1N1 (-/+ LCC), and high concentration of cytokines (HCC: 5ng/ml IL-12, 
50ng/ml IL-18) between HCMV- and HCMV+ donors. The response was quantified by the 
percentage of total NK cells expressing CD25, CD25/IFN-γ (CD25+IFN-γ+), and CD107a.   

Stimulus Parameter 
(Total NK cells) 

Adjusted for sex and age 

Effect (95% CI)1 p value2 

Pertussis CD25+ -4.4 (-8.3, -0.5) 0.014 

CD25+IFNγ+ -0.5 (-1.2, 0.3) 0.125 

CD107a+ -1.5 (-3.4, 0.5) 0.071 

Pertussis + LCC CD25+ -8.5 (-13.7, -3.4) 0.001 

CD25+IFNγ+ -1.5 (-2.8, -0.1) 0.020 

CD107a+ -2.9 (-5.5, -0.3) 0.016 

H1N1 CD25+ -5.4 (-9.5, -1.3) 0.005 

CD25+IFNγ+ -0.4 (-1.1, 0.4) 0.158 

CD107a+ -1.8 (-3.9, 0.3) 0.049 

H1N1 + LCC CD25+ -12.2 (-22.6, -1.8) 0.011 

CD25+IFNγ+ -5.1 (-10.4, 0.1) 0.027 

CD107a+ -5.1 (-8.9, -1.5) 0.004 

HCC CD25+ -11.3 (-16.7, -6.0) <0.0001 

CD25+IFNγ+ -6.5 (-11.4, -1.7) 0.005 

CD107a+ -2.1 (-3.5, -0.6) 0.004 
1 Effect (coefficient), with 95% confidence interval, represents the change in the mean 
percentage of NK cells responding in HCMV+ donors as compared to HCMV- donors.  
2 The p value refers to the significance of the difference in response between HCMV- and 
HCMV+ donors after adjusting for sex and age. Underlined p values < 0.05. 
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Figure 26. Female donors may have higher NK cell responses to vaccine antigens than male 
donors. PBMC were cultured in vitro for 18 hours with killed whole cell pertussis with a low 
concentration of cytokines (LCC: 12.5pg/ml IL-12 and 10ng/ml IL-18) (A-B), or inactivated 
whole H1N1 influenza virus (H1N1 with LCC) (C-D). Responses were measured as the 
percentage of NK cells expressing CD25, CD25/IFN-γ, and CD107a, and compared between 
female (F) and male (M) donors for all donors (A, C), or stratified into HCMV- (-) and HCMV+ 
(+) donors (B, D). Data were analysed using two-tailed Mann-Whitney tests. * p < 0.05. Each 
data point represents one donor, n = 152 (24 experiments) (A-B), n = 52 (18 experiments) (C-
D). Bars represent medians. 
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between HCMV- and HCMV+ donors, but all CD25+ responses, responses to vaccine with LCC, 

and responses to HCC, remain significantly lower in HCMV+ compared to HCMV- donors.  

 

Finally, no associations were observed between anti-HCMV IgG titre and any NK cell responses 

among the HCMV+ subjects (data not shown), and there was no consistent effect of NKG2C 

genotype (which may affect NK cell differentiation [28,42,43]) on NK cell responses (Figure 27). 

For example, while there was a gene dosage effect between the number of copies of NKG2C 

and the percentage of NKG2C+ cells (Figure 27C, D), the heterozygous NKG2C +/- genotype was 

only statistically significantly associated with lower responses as compared to the homozygous 

NKG2C +/+ genotype for some read-outs in HCMV- donors (Figure 27E). Although there were 

insufficient donors with the NKG2C -/- genotype to include in the comparisons, the allele 

frequency was comparable here between HCMV- and HCMV+ groups (Table IV) and thus I do 

not anticipate genotype to have a significant confounding impact on the analyses presented 

here. The effect of NKG2C genotype on the functional differentiation of NK cells in a 

population with near 100% HCMV seroprevalence is the subject of another publication by our 

group (Appendix VIII; [28]). 
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Figure 27. Stratification of NK cell responses by NKG2C genotype and potential gene dosage 
effect. Donors were genotyped for NKG2C using a nested PCR, as described in Methods. Gel 
electrophoresis was used to detect wild type NKG2C (201 kb … (continued on page 127)  
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(continued from page 126) 
 … [kilo-base pair] fragment) and NKG2C deletions (411 kb fragment), and thus determine the 
genotype of donors as NKG2C -/-, NKG2C -/+, or NKG2C +/+ (A-B). PBMC were analysed ex vivo for 
surface expression of CD57/NKG2C (see Figure 25 for gating strategy), and proportions of 
CD56dim NK cells in each of the four subsets were compared between NKG2C -/-, NKG2C -/+ and 
NKG2C +/+ individuals in HCMV- donors (C) and HCMV+ donors (D). Due to the small sample size 
of the NKG2C -/- group, statistical comparisons were restricted to the NKG2C -/+ and NKG2C +/+ 
groups. CD56dim in vitro CD25/IFN-γ (E) and CD107a (F) responses in NKG2C -/+ and NKG2C +/+ 
individuals to killed  whole  cell  pertussis or inactivated whole virus H1N1 were  also compared 
 -/+ a low concentration of cytokines (LCC: 12.5pg/ml IL-12 and 10ng/ml IL-18), stratifying by 
HCMV serostatus. Note that CD25/IFN-γ responses to pertussis or H1N1 with LCC (Ag+LCC) are 
plotted on the right-hand axis (E). Statistical analyses were performed using two-tailed Mann-
Whitney tests. *** p < 0.001, ** p < 0.01, * p < 0.05. Each data point represents one donor, n = 
147 (C-D) or n = 143 (E-F), and bar graphs denote medians. Genotyping data are from 5 
different PCR experiments. Ex vivo and in vitro data are each from 24 experiments.   
 

 

4.3.4 NK cell differentiation only partially explains reduced responses to vaccines in 

HCMV+ donors 

I hypothesised that reduced cytokine-mediated NK cell responses among HCMV+ donors 

would reflect expansion of the highly differentiated CD56dimCD57+NKG2C+ NK cell subset 

which is known to be hyporesponsive to cytokines [6]. Indeed, ex vivo analysis confirmed 

observations from previous studies that HCMV+ donors had lower proportions of 

CD56dimCD57- NK cells and higher proportions of CD56dimCD57+ NK cells than did HCMV- 

donors (Figure 28A-B); there was no difference between the groups in the proportion of cells 

with intermediate CD57 expression (CD56dimCD57int, gating shown in Figure 28A). Consistent 

with previous work [4-6,10,11], HCMV seropositivity was also associated with a higher 

proportion of CD16+ (Figure 28C) and NKG2C+ (Figure 28D) cells, and a lower proportion of 

NKG2A+ cells (Figure 28E), within the total NK cell population. Moreover, HCMV seropositivity 

was correlated with a lower proportion of CD57-NKG2C- cells and a higher proportion of 

CD57+NKG2C+ cells within the CD56dim NK cell population (Figure 28F). HCMV+ donors also 

had lower expression of CD161 (associated with high NK cell IFN-γ production [44]) and higher 

expression of ILT2 (an inhibitory receptor, also known as LIR1, LILRB1, CD85j) on NK cells 

(Figure 29). This HCMV association with  ILT2, though not significant with a two-tailed test, is in 
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(see page 129 for figure legend) 
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(continued from page 128) 
Figure 28. Comparison of ex vivo expression of NK cell markers and receptors in HCMV- and 
HCMV+ donors. PBMC were analysed ex vivo for surface expression of CD56, CD57, CD16, 
NKG2C, and NKG2A, as shown by representative flow cytometry plots (A). Proportions of total 
NK cells in the CD56bright, CD56dimCD57-, CD56dimCD57int, and CD56dimCD57+ subsets 
were compared between HCMV-and HCMV+ donors (B), as was expression of CD16 (C), NKG2C 
(D), NKG2A (E), and CD57/NKG2C (F, CD56dim only) The percentages of cells expressing each 
marker in HCMV- (-) and HCMV+ (+) donors were compared using two-tailed Mann-Whitney 
tests. **** p ≤ 0.0001, *** p < 0.001, ** p < 0.01, * p < 0.05. Each data point represents one 
donor, n = 152 (24 experiments), and bar graphs denote medians.   
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Figure 29. Comparison of ex vivo expression of CD161 and ILT2 on HCMV- and HCMV+ 
donors. PBMC were analysed ex vivo for surface expression of CD56, CD57, CD161 and ILT2. 
Gating of CD161 and ILT2 on total NK cells is shown by representative flow cytometry plots (A). 
Proportions of total NK cells, and NK cells in the CD56bright, CD56dimCD57-, CD56dimCD57int, 
and CD56dimCD57+ subsets expressing CD161 (B), and ILT2 (C) were compared between 
HCMV- (-) and HCMV+ (+) donors were compared using two-tailed Mann-Whitney tests. **** p 
≤ 0.0001, *** p < 0.001, ** p < 0.01, * p < 0.05. Each data point represents one donor, n = 152 
(24 experiments), and bar graphs denote medians.    
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agreement with previous publications, whereas published data is more inconsistent regarding 

the relationship between HCMV serostatus and CD161 expression [4,42,45-48]. No 

correlations were observed between ILT2 or CD161 and any functional read-outs (data not 

shown). 

 

Whilst the increased proportion of CD56dimCD57+ NK cells among HCMV+ donors likely 

contributes to their reduced responsiveness to cytokines, I also observed significantly reduced 

CD25, CD25/IFN-γ, and CD107a expression in response to both pertussis and H1N1 within 

individual NK cell subsets. This was especially evident among CD56dimCD57+ cells and for 

cultures containing LCC (Figure 30A-F), but was also the case for cultures stimulated with 

vaccine alone (Figure 31G-I, M-O). Similarly, when cells were grouped by expression of CD57 

and NKG2C, I found that responses to pertussis with LCC were lower among NKG2C+ NK cells 

than among NKG2C- cells (Figure 30G-I). This association was statistically significant for CD57+ 

NK cells of HCMV+ donors, but evaluation of the HCMV- cohort lacked statistical power as too 

few donors had sufficient NKG2C+ cells to allow a robust analysis. Interestingly, however, 

responses of all four subsets were significantly lower among HCMV+ donors than among 

HCMV- donors (Figure 30G-I), despite minimal differences in responses to LCC alone (Figure 

31A-F). These data indicate that the reduced response of HCMV+ donors reflects differences in 

the intrinsic responsiveness of NK cells within a subset as well as differences in the distribution 

of these subsets. Although the level of expression (MFI) of both CD57 and NKG2C was higher 

on CD56dimCD57+ NK cells in HCMV+ donors compared to HCMV- donors (median MFI CD57 

8901 vs 7245, p = 0.0008; median MFI NKG2C 137 vs 73, p < 0.0001), there was no significant 

association between CD57 and NKG2C expression levels and NK cell responsiveness in HCMV+ 

donors (Figure 32).  
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Figure 30. HCMV infection affects vaccine antigen responses of all NK cells, irrespective of 
their differentiation status. PBMC were cultured in vitro for 18 hours with killed whole cell 
pertussis with a low concentration of cytokines [(LCC: 12.5pg/ml IL-12 and 10ng/ml IL-18), 
pertussis + LCC] (A-C, G-I) or inactivated whole H1N1 influenza virus (H1N1 + LCC) (D-F). 
Responses were measured as the percentage of cells expressing CD25 (A, D, G), CD25/IFN-γ (B, 
E, H), and CD107a (C, F, I) by CD56/CD57-defined subsets (A-F), or CD56dim CD57/NKG2C-
defined subsets (G-I) and compared between HCMV- (-) and HCMV+ (+) donors. Data were 
analysed using one-tailed Mann-Whitney tests. **** p ≤ 0.0001, *** p < 0.001, ** p < 0.01, * p 
< 0.05. Each data point represents one donor, n = 152 (24 experiments) (A-C, G-I), or n = 52 (18 
experiments) (D-F), and bar graphs denote medians.   
 
NB, for CD57/NKG2C-defined subsets, CD57int cells were grouped together with CD57- cells.  
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Figure 31. NK cell subset responses to LCC or vaccine antigen alone by HCMV status. PBMC 
were cultured in vitro for 18 hours with a low concentration of cytokines (LCC: 12.5pg/ml IL-12 
and 10ng/ml IL-18)(A-F), killed whole cell pertussis (G-L) or inactivated whole H1N1 influenza 
virus (M-O). Responses were measured as the percentage of CD57-defined (A-C, G-I, M-O) or 
CD57/NKG2C-defined (D-F, J-L) NK cells expressing CD25 (A, D, G, J, M), CD25/IFN-γ (B, E, H, K, 
N), and CD107a (C, F, I, L, O) and were compared between HCMV- (-) and HCMV+ (+) donors. … 
(continued on page 134)   
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(continued from page 133) 
… Data were analysed using one-tailed Mann-Whitney tests. **** p ≤ 0.0001, *** p < 0.001, ** 
p < 0.01, * p < 0.05. Each data point represents one donor, n = 152 (24 experiments) (A-L) or n 
= 52 (18 experiments) (M-O), and bar graphs denote medians.  
 

 
 

  
Figure 32. Higher expression of CD57 and NKG2C on CD56dimCD57+ subset in HCMV+ donors 
does not correlate with reduced NK cell responsiveness to pertussis. PBMC were cultured in 
vitro for 18 hours with killed whole cell pertussis and a low concentration of cytokines 
(12.5pg/ml IL12, 10ng/ml IL-18; LCC). CD56dimCD57+ NK cell expression of CD57 was 
measured as the geometric mean fluorescence intensity (MFI; A) and compared between 
HCMV- (-) and HCMV+ (+) donors. CD56dimCD57+ MFI of CD57 was correlated against 
CD56dimCD57+ responses to pertussis with LCC in terms of co-expression of CD25/IFN-γ (B) or 
CD107a (C). CD56dimCD57+ NK cell expression of NKG2C was also measured as MFI (D) and 
compared between HCMV- and HCMV+ donors (D), then correlated against CD56dimCD57+ 
CD25/IFN-γ (E) or CD107a (F) responses to pertussis with LCC. Comparisons between HCMV- 
and HCMV+ donors were done using unpaired, two-tailed Mann-Whitney tests and 
correlations analyses with all donors were performed using bivariate regression. *** p < 0.001. 
Each data point represents one donor, n = 152 (24 experiments). Bar graphs denote medians.   
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Since only some HCMV+ individuals have obvious expansion of the CD56dimCD57+NKG2C+ 

subset I considered whether NK responses might differ between HCMV+ individuals with and 

without this expanded population. Sixteen of 55 (29%) HCMV+ donors demonstrated 

expansion of the CD56dimCD57+NKG2C+ subset (defined here as % CD56dimCD57+NKG2C+ 

cells greater than the mean + 3 standard deivations of that in HCMV- donors) and NK cells 

from these donors tended to respond less robustly than did cells from HCMV+ donors without 

this expansion (Figure 33). Importantly, there was evidence by trend analysis for decreasing NK 

cell responsiveness with HCMV infection, and then with HCMV infection plus expansion of the 

CD56dimCD57+NKG2C+ subset (Figure 33). This confirms that whilst  expansion of the 

CD56dimCD57+NKG2C+ subset is associated with loss of NK cell responsiveness in vaccine 

recall assays, cells of HCMV+ donors respond less well than do cells of HCMV- donors, 

irrespective of NKG2C expression, i.e. even in the absence of the characteristic 

CD56dimCD57+NKG2C+ NK cell expansion..  

 

4.3.5 HCMV+ donors retain capacity to respond to antibody-antigen complexes 

Although there was a clear role for specific IgG in induction of CD25, CD25/IFN-γ, and CD107a 

expression (Figure 19), impairment of CD16-mediated signalling seemed an unlikely 

explanation for reduced NK cell responsiveness since HCMV+ individuals have a higher 

frequency of CD16+ NK cells (Figure 28C), cells from HCMV+ and HCMV- donors responded 

equally well to CD16 crosslinking (Figure 34B) — demonstrating no intrinsic difference in the 

ability of NK cells from HCMV- and HCMV+ donors to degranulate — and, use of pooled AB 

plasma for in vitro assays ensured that specific IgG concentrations were consistent in all 

assays. Indeed, using pre-incubation with IL-2 to improve ability to detect responses to 

crosslinking (Figure 34A), I demonstrated that cells from HCMV- and HCMV+ subjects respond 

equally well to NKp30/NK46 crosslinking or K562 stimulation,  as well as CD16 crosslinking 

(Figure 34B-D). This clearly indicates that HCMV+ donors’ NK cells have the capacity to 

degranulate.   Furthermore,   there   were   no   consistent   differences   in   the   degranulation  
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(Figure continued page 137) 
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Figure 33. NK cell responses to vaccine antigen by HCMV+ donors without the characteristic 
CD56dimCD57+NKG2C+ expansion may reflect an intermediate phenotype between HCMV- 
and HCMV+ donors. PBMC were cultured in vitro for 18 hours with medium alone (Med), low 
concentration of cytokines (LCC: 12.5pg/ml IL-12 and 10ng/ml IL-18), killed whole cell pertussis 
(Per), inactivated whole H1N1 influenza virus (H1N1), Per + LCC, H1N1 + LCC, or high 
concentration of cytokines (HCC: 5ng/ml IL-12, 50ng/ml IL-18). Donors were stratified into 
HCMV- (-), HCMV+ without a CD56dimCD57+NKG2C+ expansion (+), and HCMV+ with a 
CD56dimCD57+NKG2C+ expansion (++). Responses were measured as the percentage of total 
NK cells expressing CD25 (A), co-expressing CD25/IFN-γ (B), or CD107a (C). CD57-defined (D-F) 
or CD57/NKG2C-defined subsets (G-I) were analysed for responses to pertussis with LCC for 
CD25 (D, G), CD25/IFN-γ (E, H), and CD107a (F, I). Data were analysed using, one-tailed Mann-
Whitney tests to compare responses between HCMV+ donors and either HCMV- donors or 
HCMV++ donors. Analysis of variance for linear trend (from - to + to ++) was also performed 
for each functional readout (uncapped lines). **** p ≤ 0.0001, *** p < 0.001, ** p < 0.01, * p  
< 0.05.  Each data point represents one donor, n = 152 (24 experiments), except for H1N1 and 
H1N1 + LCC where n = 52 (18 experiments). Bar graphs denote medians.  
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Figure 34. Degranulation responses after CD16, NKp30/NKp46 crosslinking or K562 
stimulation are equally robust in HCMV- and HCMV+ donors. In preliminary experiments, 
PBMC were cultured in vitro for 5 hours in a 96-well flat-bottomed plate coated with medium 
alone (Med), IgG1 isotype control, anti-CD16, IgG2A/ IgG2B isotype controls, or anti-
NKp30/NKp46 after overnight incubation with or without 100IU/ml IL-2. Total NK cell 
responses were measured the percentage expressing CD107a (A). Subsequently, PBMC were 
cultured in vitro for 5 hours in a 96-well flat-bottomed plate coated with IgG1 isotype control, 
anti-CD16, IgG2A/ IgG2B isotype controls, or anti-NKp30/NKp46 after overnight incubation 
with 50IU/ml IL-2. PBMC were also cultured in vitro for 18 hours in a 96-well round-bottom 
plate with medium alone (Med) or K562 cells, at an … (continued on page 139)   
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(continued from page 138) 
… effector:target (E:T) ratio of 2:1. Total NK cell CD107a responses were compared between 
HCMV- and HCMV+ donors (A). Responses were then stratified based on CD57-defined subsets 
(C) or CD57/NKG2C-defined subsets (D). Comparisons between HCMV- and HCMV+ were 
performed using two-tailed Mann-Whitney tests. ANOVA test for linear trend for responses to 
CD16 crosslinking with acquisition of CD57 was also performed for HCMV- and HCMV+ donors. 
. **** p ≤ 0.0001* p < 0.05.  n = 4, data is from a single experiment (A), n = 48 (17 
experiments) (B-D), or n = 100 (6 experiments) (B-D, Med and K562). Note that activating 
receptor crosslinking and K562 experiments were performed with different donors. Bars 
represent medians and lines denotes interquartile ranges. 
 

 

responses across CD57- or CD57/NKG2C-defined subsets between HCMV- and HCMV+ donors 

(Figure 34C-D) and both groups showed a trend to increasing responsiveness to CD16 with 

acquisition of CD57 (p < 0.0001; Figure 34C). The exception to this is the superior CD16 

crosslinking response of CD56dimCD57+NKG2C+ in HCMV+, as compared to the same subset in 

HCMV- donors, which is in line with published reports of enhanced responses of this subset to 

HCMV-infected target cells only in the context of HCMV-specific antibody [7,10,49]. 

 

4.3.6 HCMV infection is associated with altered expression of cytokine receptors by 

NK cells 

On the other hand, differences between HCMV+ and HCMV- donors were most marked in 

cultures containing LCC (e.g. Figures 21, 30), and in cultures with high concentrations of the 

cytokines IL-12 and IL-18 (HCC; Figure 35A-C), suggesting that differences in expression of 

cytokine receptors might explain our observations. Although there was no difference in resting 

(ex vivo) expression of IL-12Rβ2 on any NK cell subset (Figure 35E), IL-12Rβ2 was significantly 

upregulated on the total NK cell population in HCMV- but not from HCMV+ donors after 

culture with HCC (Figure 35F). Moreover, and consistent with data showing associations 

between acquisition of CD57 and increased IL-18Rα expression [2,40,41], resting NK cells from 

HCMV+ donors were significantly less likely than cells from HCMV- donors to express IL-18Rα 

and this difference was especially marked in the (expanded) CD56dimCD57+ NK cell subset 

(Figure 3H). Nonetheless, ex vivo expression of IL-18Rα cannot be solely responsible for the  
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Figure 35. Decreased cytokine responsiveness and decreased cytokine receptor expression 
by NK cells from HCMV+ donors. PBMC were cultured in vitro for 18 hours with a high 
concentration of cytokines (HCC: 5ng/ml IL-12, 50ng/ml IL-18)(A-C). Responses were measured 
as the percentage of CD56dim CD57/NKG2C-defined cells expressing CD25 (A), CD25/IFN-γ (B), 
and CD107a (C) and compared between HCMV- (-) and HCMV+ (+) donors (D-F). NK cells were 
analysed for surface expression of IL-12Rβ2 using a mIgG1 PECy5-conjugated isotype control to 
set the gate, as performed by Martin Goodier (D). Total NK cells (E-F) and CD56/CD57-defined 
subsets (E) were analysed ex vivo (E) and after 18 hours culture in vitro with low concentration 
of cytokines (LCC: 12.5pg/ml IL-12 and 10ng/ml IL-18) or HCC (F)… (continued on page 141)   
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(continued from page 140) 
… NK cells were also analysed for IL-18Rα surface expression using the T cell population to set 
the IL-18Rα gate (G), for total NK cells and CD56/CD57-defined subsets ex vivo (H). Correlation 
between ex vivo expression of IL-18Rα by total NK cells and HCMV- or HCMV+ CD25/IFN-γ (I) 
or CD107a (J) responses to pertussis with LCC in vitro were analysed by bivariate regression. 
HCMV- and HCMV+ donors were compared using one-tailed (A-C) or two-tailed (E-F, H) Mann-
Whitney tests. **** p ≤ 0.0001, ** p < 0.01, * p < 0.05. Each point represents one donor, n = 
152 (24 experiments) (A-C, E, H-J), or n = 16 (one experiment, performed by Matt White and 
Scarlett Turner) (F), and bar graphs denote medians. 
 

 

differences observed in vaccine responses between HCMV- and HCMV+ donors as no 

significant correlation between IL-18Rα and in vitro responses to pertussis with LCC were 

observed (Figure 35I, 35J).   
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4.4. Discussion 

During secondary immune responses, both CD4+ T cell-derived IL-2 and antigen-antibody 

immune complexes induce ‘antigen-specific’ NK cell activation, allowing  NK cells to act as 

effectors of the adaptive immune response and to contribute to post-vaccination immunity by 

secretion of IFN-γ and/or by cytotoxicity [2,8,9,32,50]. Here I demonstrate, for the first time, 

that the contribution of NK cells to adaptive immune responses is affected by HCMV infection: 

NK cells from HCMV+ donors respond significantly less well than cells from HCMV- donors to 

killed whole cell pertussis or inactivated whole H1N1 influenza virus. The effect of HCMV 

infection on NK cell responsiveness is independent of age, sex, or anti-HCMV IgG titre.  

 

My data also demonstrate, for the first time, that there is an additive effect between the 

cytokine and the IgG pathways driving NK cell IFN-γ production, as both IgG depletion and IL-2 

blockade reduced NK cell IFN-γ responses in response to stimulation of PBMCs with pertussis 

vaccine. Of particular interest, IgG depletion markedly reduced antigen-induced CD25 

expression on NK cells. I propose that CD16 crosslinking by immune complexes upregulates 

CD25 expression, increasing sensitivity to T cell-derived IL-2 and thereby enhancing IFN-γ 

production. However, CD16 crosslinking is not essential for upregulation of CD25, as this can 

be induced by antigen alone, presumably in response to IL-12 and IL-18 produced by APCs 

[2,51-53]. Release of cytotoxic granules, as measured by upregulation of CD107a on the cell 

surface, is also inhibited by IgG depletion but is unaffected by IL-2 blockade, suggesting that NK 

cells could act as effectors of the adaptive response through ADCC in the absence of memory T 

cells, providing there was sufficient circulating antibody. These interactions are further 

explored in Chapter 5. 

 

However, while IgG depletion also decreased H1N1-induced CD25 expression on NK cells, 

H1N1 induction of IFN-γ was significantly enhanced in the absence of IgG. I have observed that 

individual NK cells tend to either produce IFN-γ or degranulate (but not both; unpublished 
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data) suggesting that inhibiting the degranulation response to H1N1 by removing IgG skews 

the response towards IFN-γ production. However, given the limited effect of IgG depletion on 

H1N1-induced degranulation, it is unclear why this should be the case. Indeed, expression of 

CD107a in response to H1N1 seems to be relatively unaffected by either IL-2 blockade or IgG 

depletion. This suggests that H1N1-driven degranulation may be affected by other stimuli, 

such as type I interferons [54,55]. Since the start of this PhD work, Jegaskanda et al have also 

published on NK cell ADCC in response to influenza antigen-antibody complexes [56]. The 

authors commented that IgG depletion resulted in negligible NK cell degranulation or IFN-γ 

production in response to H3N2, but they did not include these IgG depletion results in the 

manuscript, precluding an evaluation alongside my data.  

 

I had hypothesised that decreased responses to vaccines in HCMV+ donors would be 

attributable to a redistribution of the NK cell repertoire. HCMV infection drives the expansion 

of a CD56dimCD57+NKG2C+ subset of NK cells [5,10,11,57], which display a highly 

differentiated phenotype, including reduced responsiveness to exogenous cytokine stimulation 

[40,41]. These phenotypic and functional changes are similar to those observed during ageing 

[3,58] and comparisons have been drawn between the effects of HCMV and 

immunosenescence [59]. As our previous work has indicated that NK cell IFN-γ production 

after re-stimulation with vaccine antigens is cytokine-dependent [9], I predicted that fewer NK 

cells from HCMV+ donors would produce IFN-γ in response to pertussis or influenza antigens 

due to the reduced capacity of the expanded CD56dimCD57+NKG2C+ subset to respond to 

cytokines.  

 

Ex vivo analyses confirmed that HCMV+ donors had higher proportions of CD56dimCD57+ and 

CD56dimCD57+NKG2C+ NK cells than did HCMV- donors and functional analysis confirmed 

that very few of the highly differentiated CD57+ NK cells produced IFN-γ after antigen 

stimulation. Interestingly, however, my data also show that — irrespective of their 
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CD57/NKG2C surface phenotype — NK cells from HCMV+ are less likely to produce IFN-γ in 

response to vaccine antigens than are cells from HCMV- donors. In other words, there are 

pronounced functional differences between HCMV+ and HCMV- donors within NK cell subsets. 

The reduced NK cell IFN-γ response to vaccine antigens in HCMV+ donors is therefore not 

simply due to expansion of the CD56dimCD57+NKG2C+ subset. Although acquisition of NKG2C 

was functionally relevant (associated with reduced IFN-γ and degranulation responses), it was 

not sufficient to explain the reduced responsiveness of cells from HCMV+ donors.  

 

Whilst further studies are required to define the ‘within subset’ effects of HCMV infection, our 

data suggest that reduced expression of IL-18Rα or reduced ability to upregulate IL-12Rβ2 

among NK cells from HCMV-infected individuals may partially explain their failure to produce 

IFN-γ. Although decreasing expression of IL-12Rβ2 and IL-18Rα expression have been 

associated with CD57 expression, this is the first demonstration that there are differences in 

cytokine receptor expression between HCMV+ and HCMV- donors and it is possible to see how 

each of these might affect NK cell responses. Higher resting levels of IL-18Rα expression would 

increase the sensitivity of NK cells to low concentrations of IL-18 being produced by APCs in 

response to innate receptor ligands in whole cell pertussis or inactivated influenza virus. IL-18 

signalling upregulates CD25 [60] thereby increasing sensitivity to IL-2. IL-2 signalling might then 

upregulate IL-12R2β [61,62] allowing IL-12 to synergise with IL-2 to drive IFN-γ production 

[9,51,63], whilst also generating a positive feedback loop in which IL-12 signalling upregulates 

IL-18Rα [64,65], IL-18 signalling and CD25. These hypothesised feedback loops and synergies 

are explored in more detail in Chapter 5.  

 

However, while cytokine receptor expression is likely to play a role in determining NK cell 

responsiveness to vaccine antigens in HCMV- and HCMV+ donors, the biological relevance of 

small changes in surface expression on IL-12Rβ2 needs to be demonstrated. Moreover, while I 

have no evidence to suggest that T cell IL-2 production in response to vaccine antigens is 
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affected by HCMV infection, future studies will need to determine the extent to which 

concomitant changes in APC function during HCMV infection also affect NK cell responses.   

 

I had initially considered NK cell degranulation during vaccine re-stimulation to be a result of 

CD16 crosslinking by IgG immune complexes, as suggested by the IgG depletion data and the 

assumption that soluble signals broadly drive cytokine production rather than cytotoxicity (as 

illustrated in [66]). The expectation was, therefore, that although IFN-γ responses might be 

impaired, NK cell degranulation responses would be sustained in HCMV+ donors. Indeed, 

crosslinking with anti-CD16 antibody induced equivalent levels of CD107a upregulation. It was, 

therefore, somewhat surprising that degranulation responses to vaccine were lower in HCMV+ 

donors than in HCMV- donors. However, degranulation responses to HCC were also lower in 

HCMV+ donors, supporting the notion of synergy between the cytokine and CD16 pathways 

and adding weight to the suggestion that HCMV infection may affect cytokine receptor 

expression. This was an area of particular interest and is the focus of Chapter 5.    

 

My findings have potentially important implications. HCMV infection is a known risk factor for 

all-cause mortality in adults [67] and perinatal HCMV infection is associated with slower 

growth and increased rates of hospitalisation in African children [68]. The underlying biology of 

these relationships is unknown but reduced responsiveness to vaccination or reduced 

resilience in the face of infection are plausible explanations. Distorted T cell and NK cell 

phenotypes in HCMV+ individuals have been widely reported (see Chapter 1 [3,69-71]) giving 

credence to the possibility that adaptive immune responses may be less effective in infected 

individuals. Further work will need to address the clinical consequences of altered NK cell 

responses to infection and vaccination in HCMV-infected individuals.  

 

To my knowledge, this is the first published study of the effect of HCMV infection on NK cell 

responses to vaccine antigens. Our group have previously shown in an African population that, 
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with near universal infant HCMV infection, the characteristic ‘adult HCMV’ NK cell profile is 

reached by late childhood [28], which raises the intriguing question as to whether the duration 

of HCMV infection affects vaccine responses. The majority of the donors in this study are of 

European or North American origin suggesting that they may have been infected in 

adolescence or adulthood [72,73], potentially explaining some of the heterogeneity in the 

responses I see within the HCMV+ group. This uncertainty regarding age at infection and time 

since infection is in contrast to HCMV epidemiology in developing countries in sub-Saharan 

Africa, where seroprevalence reaches may near 100% in early childhood [28]. Indeed, there are 

clear differences between HCMV+ donors from my study in the UK, and age-matched HCMV+ 

donors in our study in the Gambia (Figure 36). Although there are certainly many other 

confounding variables between HCMV+ adults in the UK and the Gambia, average number of 

years since primary HCMV infection will clearly be one of these. Future studies will need to 

assess whether the duration of HCMV infection is a risk factor for altered NK responses and 

whether this manifests itself as reduced responsiveness to vaccination, recall responses to 

vaccine antigens, and reduced vaccine efficacy.  

 

Similarly, there will also be variation among my donors in time since vaccination (pertussis) or 

infection (H1N1), and it is likely that the relatively low IFN-γ responses I observe (in 

comparison to earlier studies [9]) is due to the much longer interval between primary and 

secondary exposures to antigen. Longitudinal studies controlling for HCMV serostatus in 

vaccine intervention studies will provide insight into the impact of HCMV infection at the time 

of vaccination; an influenza vaccine intervention study conducted with 52 donors from this 

cohort indeed found a profound impact of HCMV on post-vaccination NK cell functionality over 

many months (Goodier, Lusa, Rodríguez-Galán, Nielsen et al, manuscript accepted). To note, it 

is possible that a small minority of donors had not been previously naturally exposed to H1N1, 

or that some of donors really had not received pertussis vaccination in childhood. Such 
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differences in true primary exposure would also contribute to the variation we observe in the 

NK vaccine response data. 

    

Finally, it is of particular interest that HCMV+ donors without an expanded 

CD56dimCD57+NKG2C+ subset appear to represent an intermediate phenotype between 

HCMV- subjects and HCMV+ subjects with expanded NKG2C+ subset of NK cells (‘HCMV++’ 

donors). The cause of these differences between HCMV+ and HCMV++ donors are unclear, but 

may reflect time since HCMV infection, frequency of HCMV reactivation events, the genotype 

of HCMV, and host genetics. Clearly individuals with the NKG2C -/- genotype will be unable to 

expand a CD56dimCD57+NKG2C+ subset, and thus NKG2C genotype may will be another 

confounding factor contributing to donor heterogeneity. The very small numbers of NKG2C -/- 

donors in this study homologous precluded further investigation in this cohort, but the role of 

NKG2C deletions in NK cell functional biology continues to be of particular interest and a focus 

of work led by others in our group (Appendix VIII, [28]).   
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Figure 36. Elevated frequencies of NKG2C+ NK cell subsets and reduced NK cell functional 
capacity in HCMV+ Gambian compared to HCMV+ UK adults. The frequencies of NKG2A+ (A), 
NKG2C+ (B) and CD57+ (C) within CD56dim NK cells are compared Gambian adults (n = 65) and 
HCMV- ( n=  78) and HCMV+ UK adults (n = 43) aged between 20-49 years. Frequencies of cells 

expressing CD107a (D), CD25 (E) and IFN- (F) were determined within total NK cells following 
stimulation with a high concentration of cytokines (HCC: 5ng/ml IL-12, 50ng/ml IL-18). ** p < 
0.0001. The central lines represent the medians, while the upper and lower limits of the box 
indicate the 25th and 75th percentiles. The whiskers denote the 5 and 95th percentiles while 
points are individual donors who are outliers outside the 5th and 95th percentiles. Adapted 
from [28].  
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Chapter 5  

 

Synergy between common γ chain 
family cytokines and IL-18 potentiates 
innate and adaptive pathways of NK 
cell activation 
 

 

The work presented in thus chapter is adapted and extended from: 
 
Nielsen*, Wolf*, Goodier, Riley. Synergy between common gamma chain family cytokines and 
IL-18 potentiates innate and adaptive pathways of NK cell activation. Manuscript accepted. 
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5.1. Introduction 

The data presented in Chapters 3 and 4 indicate a central role for NK cell sensitivity to 

exogenous cytokines, as influenced by CD57-defined maturation status [1] and HCMV infection 

[2], in determining NK cell ‘recall responses’ to vaccine antigens [1,2]. Given the importance of 

pro-inflammatory cytokines IL-12 and IL-18 in activating NK cells during recall responses [3], 

and the decreased expression of IL-18Rα in HCMV+ individuals across all CD57-defined subsets 

[2], it seems plasuible that defects in cytokine receptor expression contribute to impaired 

vaccine responses in HCMV+ individuals. I have therefore sought to characterise the effects of 

pro-inflammatory cytokines, alone or in combination, on NK cell function in order to 

understand how this guides the key NK cell responses in the first hours following primary or 

secondary exposure to pathogens. Specifically, I was particularly interested to understand 

synergies involving IL-18 signalling, which could indicate whether the small differences in IL-

18Rα expression detected in HCMV+ individuals are functionally relevant.  

 

Additionally, while IL-12Rβ2 expression ex vivo was not significantly different between HCMV- 

and HCMV+ individuals, it is possible that cytokine receptor upregulation following activation 

during culture with either H1N1 or Bordetella pertussis did vary between HCMV- and HCMV+ 

groups (Chapter 4, [2]). The IL-12R has two chains, of which IL-12Rβ2 is the inducible 

component. I hypothesised therefore that NK cells from HCMV- donors are more sensitive to 

IL-2 signalling and, as IL-2 is reported to drive upregulation of IL-12Rβ2 [4,5], that IL-12Rβ2 

kinetics may differ with HCMV serostatus. Similar relationships have been published between 

IL-18 and either IL-12 or IL-15, with the latter cytokines driving IL-18Rα upregulation [6,7].       

 

However, while functional synergies between IL-2, IL-12, IL-15 and IL-18 are very likely partially 

attributable to feedback mechanisms on cytokine receptor expression at the NK cell surface in 

vitro, previously published data do not provide convincing evidence that this occurs in a 

physiological context. Most studies that have investigated these interactions use very high 
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concentrations of cytokines that would be unattainable in vivo, and/ or use isolated NK cells 

[6,7]. While purified cell populations have advantages, it is difficult to achieve 100% purity. Any 

contaminating T cells are likely highly activated due to the use of anti-CD3 beads in the NK 

isolation method, and may be producing cytokines that could affect the assay. Additionally, 

many studies use relatively long time courses, e.g. 24 hours [6,8], 72 hours [7], or 3 days [5]. 

The data from these experiments may reflect real changes in the NK cell population, but 

cytokine receptor expression at these later time points is unlikely to explain differences in 

responses after only 18 hours (i.e. as described in Chapter 4, [2]). More importantly perhaps, 

by these later time points the NK cell response will no longer dominate due to the increased 

contribution from T cells.    

 

We chose to focus primarily on IL-12, IL-15, and IL-18, based on their key roles in pro-

inflammatory responses and common use, by our lab and others, in NK cell stimulation assays. 

These cytokines vary in their function and cellular source. IL-15 is widely produced, including 

by dendritic cells, and is known for its role in NK and T cell homeostasis and maturation; it is an 

established survival signal in the bone marrow and is required for long-term culture of NK cells 

[9,10]. IL-18 is generated by macrophages and, alongside IL-12, can effectively activate both 

NK and T cells. IL-12 is thought to be secreted primarily by monocytes and be essential for IFN-

γ production by NK and T cells (as reviewed in [11,12]).  

 

Interestingly, IL-12 alone cannot drive significant IFN-γ production but robustly induces an IFN-

γ response in the presence of IL-15 or IL-18 [6]. The importance of co-stimulation for IL-12 

functionality is strong evidence for synergy between these cytokines. IL-12 is not normally 

detectable in healthy serum due to tight homeostatic regulation, which is beneficial given its 

highly pro-inflammatory nature. Furthermore, over-exposure to IL-12 can induce IL-12 

hyporesponsiveness and downregulation of IFN-γ production by NK cells [13]. Therefore, use 
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of high concentrations of IL-12 in vitro may over-ride normal NK cell regulatory pathways, and 

the subsequent activation will not be representative of infection in vivo.  

 

Similarly, the true synergies between combinations of cytokines will be obscured at high 

concentrations. For example, 10ng/ml of IL-12 [7] has been shown to drive IL-18Rα surface 

expression. This now needs to demonstrated with lower concentrations of IL-12 to provide 

stronger evidence for a role of IL-12-driven IL-18Rα upregulation in physiological IL-12/ IL-18 

synergy. Likewise, 100ng/ml of IL-15 can also upregulate IL-18Rα [6], while 100IU/ml of IL-12 

or IL-2 [4] can drive expression of the inducible IL-12R component (IL-12Rβ2), but these 

concentrations are unlikely ever achieved in vivo.  

 

While titrating and combining IL-12, IL-15 and IL-18 was of interest to understand the basic 

kinetics of NK cell cytokine-driven activation very early in infection, I was more specifically 

concerned with how these innate cytokines interact with the adaptive arm of the immune 

response, as would occur during a recall response to a vaccine antigen. We therefore also 

investigated low concentrations of IL-12, IL-15 and IL-18 with increasing concentrations of IL-2 

(as would be produced by CD4+ memory T cells) or CD16 crosslinking (as would occur in the 

context of IgG immune complexes).  

 

The putative synergies with the antibody-dependent cellular cytotoxicity (ADCC) pathway, as 

modelled by CD16 crosslinking, were of particular interest since our data indicate that HCMV+ 

individuals have impaired CD107a upregulation in response to vaccine antigens as compared 

to HCMV- individuals (Chapter 4, [2]). I have previously considered the degranulation 

response, as indicated by CD107a upregulation, to be almost exclusively driven by IgG-CD16 

crosslinking. It was therefore surprising that HCMV+ donors had reduced CD107a responses, 

given that they responded equally well to CD16 crosslinking with immobilised anti-CD16 

(Chapter 4, [2]). This suggested that accessory cell cytokine signalling was synergising with the 
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IgG-CD16 pathway to drive degranulation. Additionally, while the IL-2 blocking data suggested 

degranulation was not dependent on IL-2, it remained unclear to what extent this pathway of 

NK cell activation was entirely T cell independent.          
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5.2 Methods 

Apart from the CD4+ T cell depletions, the majority of the CD16 crosslinking assays and the 

H3N2 stimulations, which I performed alone, the work described in this chapter was jointly 

carried out with Asia-Sophia Wolf. 

 

5.2.1 Study subjects 

Volunteers were recruited from among staff and students at the London School of Hygiene and 

Tropical Medicine. All subjects gave written consent under a protocol for recruitment of blood 

donors approved by the LSHTM Ethics Committee (reference # 5520, Appendix III) to provide ≤ 

50ml venous blood. 

 

5.2.2 CD4+ T cell depletion 

For assays that investigated the capacity of NK cells to respond to vaccine antigens in the 

absence of CD4+ T cells, peripheral blood mononuclear cells (PBMCs) were depleted of CD4+ 

cells prior to cell culture using CD4+ MACS microbeads (Miltenyi Biotec) and LS MACS 

Separation Columns (Miltenyi Biotec) according to the manufacturer’s instructions. Briefly, 

thawed PBMC were incubated with CD4+ microbeads at 4°C for 15 minutes, then washed in 

MACS buffer (Table I, Chapter 2) before passing through an LS column in a QuadroMACS 

Separator magnet (Miltenyi Biotec), twice. Columns were rinsed with MACS buffer and the 

flow through was centrifuged to retrieve the CD4-depleted PBMC. CD4+ T cell depletion was 

confirmed by comparing CD3/CD4 profiles of undepleted and depleted PBMC from each 

donor. The average depletion efficiency was >99%, as illustrated in Figure 37. 
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Figure 37. Confirmation of CD4+ T cell depletion with MACS microbeads. PBMC were 
depleted of CD4+ cells using anti-CD4 microbeads (Miltenyi) as per manufacturer’s 
instructions. PBMC were stained for CD3 and CD4 expression to confirm removal of CD4+ T 
cells from the total lymphocyte population. Representative flow cytometry plots show 
CD3+CD4+ cells within the total lymphocyte population before (A) and after (B) depletion. This 
was consistent between all donors (C). Bars represent medians and lines denote interquartile 
ranges. n = 4, data are from a single experiment. 
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5.2.3 PBMC preparation and culture 

PBMC were isolated, cryopreserved, and thawed as described in Chapter 2.   

 

PBMC (2 x 105/well) were cultured for 6 or 18 hours at 37°C at in 96-well U-bottom plates 

(Nunc) in complete medium with or without varying concentrations and combinations of 

recombinant human (rh) IL-2, rhIL-12, rhIL-15, rhIFN-α, rhIL-21 (all from PeproTech), rhIL-18 

(R&D Biosystems) or inactivated influenza virus H3N2 (1μg/ml, NIBSC). GolgiStop (containing 

Monensin, 1/1500 concentration, BD Biosciences) and GolgiPlug (containing brefeldin A, 

1/1000 final concentration, BD Biosciences) were added after 3 or 15 hours (in 6 or 18 hours 

cultures, respectively) in experiments where intracellular IFN-γ was a read-out. Similarly, anti-

CD107a antibody (A488-conjugated, BD Biosciences) was included in the medium for the 

entirety of cell culture when CD107a upregulation was a read-out. 

 

For activation via CD16 crosslinking, 96-well flat-bottom plates (Nunc) were coated with anti-

human CD16 (BD Biosciences) or an isotype-matched control antibody (mIgG1κ, BD 

Biosciences) overnight at 4°C, as described in Chapter 3. Cells were harvested after 6 hours or 

18 hours. GolgiStop, GolgiPlug and anti-CD107a were used as described above.    

 

For experiments including CD4+ T cell-depleted PBMC, cells were cultured for 18 hours in 

complete medium supplemented with 10% FCS, rather than 10% AB plasma. GolgiStop, 

GolgiPlug and anti-CD107a were used as described above. Some conditions included 

stimulation with serum of known high-titre anti-pertussis toxin (PT) IgG titre (06/140, the WHO 

International Standard for Pertussis Antiserum [Human]; NIBSC). This serum, henceforth 

referred to as pertussis antiserum or anti-PT, was prepared from pooled re-calcified human 

serum and was reconstituted in sterile water in-house. To note, this is the same product that 

was used as the positive control for the anti-PT ELISAs described in Chapter 4.  
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5.2.4 Flow cytometry 

PBMCs were stained in 96-well U-bottom plates as described in Chapter 2. The following 

monoclonal antibodies were used: anti-CD3-V500, anti-CD57-e450, anti-CD56-

phycoerythrin(PE)-Cy7, anti-IFN-γ-allophycocyanin (APC), anti-CD107a-A488 (all BD 

Biosciences), anti-CD16-APC-H7, anti-CD16-APC, anti-CD25-PerCPCy5.5, anti-IL-18Rα-PE, anti-

IL-18Rα-FITC, (all e-Biosciences). Anti-IL-12Rβ2 (R&D Systems) was conjugated to PerCP/Cy5.5 

in-house (EasyLink PerCP/Cy5.5® Abcam).  

 

5.2.5 Statistical analyses 

Unless otherwise states, figures represent data from multiple experiments; sample sizes and 

number of experiments represented in each figure are described in legends. Flow cytometry 

and statistical analyses were performed as described in Chapter 2 and also as detailed in figure 

legends. Individual gated cell populations were excluded from analyses if they contained fewer 

than 100 cells. Paired Wilcoxon signed rank tests were used to compare responses between 

stimulation conditions and ANOVA tests for linear trend were used to analyse cytokine 

titrations. Formal tests for synergy using regression analysis with an interaction term, and 

linear regression adjusting for confounding factors were performed in STATA. All statistical 

tests were two-sided. **** p ≤ 0.0001; *** p < 0.001; ** p < 0.01; * p < 0.05. 

  



162 
 

5.3 Results 

The data and analyses presented here are adapted and extended from Nielsen et al, 

manuscript submitted (Synergy between common γ chain family cytokines and IL-18 

potentiates innate and adaptive pathways of NK cell activation, manuscript accepted).  

 

5.3.1 Common γ chain family cytokines synergise with IL-18 to drive CD25 expression 

on NK cells 

PBMC were stimulated with increasing concentrations of IL-2, IL-12, IL-15, IL-18, or IL-21, and 

NK cell surface expression of CD25 was measured after 6 or 18 hours (Figure 38B,C). 

Upregulation of CD25 is of interest as a marker of NK cell activation and, more specifically, 

increased sensitivity to IL-2; indeed, NK cell production of IFN-γ in response to picomolar levels 

of IL-2 has been shown to be CD25-dependent [14]. The highest cytokine concentrations 

tested reflect those widely used as positive controls by ourselves [1,2,15] and others; cytokines 

were then titrated to concentrations at least five-fold lower than the lowest previously 

described effective concentration.   

 

IL-15 and IL-18 each, independently, drive CD25 expression in a dose- and time-dependent 

manner. Significant CD25 expression could be detected within 6 hours among cells cultured 

with cytokine concentrations as low as 0.75ng/ml IL-15 and 10ng/ml IL-18 (Figure 38B) but 

CD25 expression was markedly higher after 18 hours (consistent with time series data shown 

in Chapter 3) for both cytokines and evident at the lowest cytokine concentrations tested 

(0.75ng/ml IL-15 and 5ng/ml IL-18; Figure 38C). For IL-15, this is six-fold lower than the 

previously described minimal concentration [16,17] for upregulation of CD25, and ten- to 

1000-fold lower than previously used concentrations of IL-18 [14,18]. Incubation of PBMC with 

IL-2, IL-12, and IL-21 induced minimal, albeit statistically significant, expression of CD25 on NK 

cells at 18 hours, but not at 6 hours.  
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Figure 38. IL-18 and IL-15 both independently drive CD25 but interact differently with IL-2. 
PBMC were stimulated for 6 or 18 hours in vitro and upregulation of NK cell surface expression 
of CD25 was measured in response to medium alone (Med), IL-2, IL-12, IL-15, IL-18, or IL-21. 
Representative flow cytometry plots show gating of CD3-CD56+ NK cells and surface 
expression of CD25 on unstimulated and IL-15-stimulated NK cells (50ng/ml) (A). CD25 
expression on NK cells was measured after stimulation with Med, IL-2, IL-12, IL-15, IL-18, or IL-
21 (concentrations ng/ml as labelled) for 6 hours (B) or 18 hours (C) n = 6-22, data from 2-6 
experiments. Concentrations in boxes indicate those used in following graphs. CD25 expression 
on NK cells was also measured after stimulation with a titration of IL-2 (0, 5, 50ng/ml) in 
combination with IL-12 (12.5pg/ml), IL-15 (0.75ng/ml), and/or IL-18 (10ng/ml) for 6 hours (D) 
or 18 hours (E) n = 7-8, data from two experiments. CD25 expression on NK cells was also 
measured following stimulation with 5ng/ml IL-21 in combination with 5ng/ml IL-2, 0.75ng/ml 
IL-15, or 10ng/ml IL-18 after 18 hours (F) n = 8, data from a single experiment. CD25 expression 
after stimulation for 18 hours … (continued on page 164) 
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 (continued from page 163) 
… with a combination of IL-18 (10ng/ml) and common γ chain cytokines was summarised to 
facilitate comparison between IL-2 (5ng/ml), IL-15 (0.75ng/ml; both from D) and IL-21 (5ng/ml; 
from F) (G) n = 7-8, data from 1-2 experiments. Box plot whiskers show the 5-95th percentile 
range. Data were analysed using paired Wilcoxon signed-rank tests (B-C: asterisks without 
lines; lowest concentration compared to Med; F: capped lines) or ANOVA tests for linear trend 
for trend analysis across increasing cytokine concentrations including Med (B-E, uncapped 
lines). ****p ≤ 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05.  
 

 

To investigate potential synergies between cytokines in driving CD25 expression on NK cells, 

PBMC were stimulated with combinations of IL-12, IL-15 and IL-18, with or without varying 

concentrations of IL-2, to model early NK cell activation in response to primary pathogen 

infection  (innate cytokines only, no IL-2) and secondary infection (innate cytokines plus IL-2 

from memory CD4+ T cells). We selected the lowest concentrations of IL-12 and IL-15 that had 

been tested singly (12.5pg/ml and 0.75ng/ml, respectively) and, for consistency with our own 

previously published work [1,2,15], we used the middle concentration of IL-18 (10ng/ml). The 

middle concentration of IL-21 (5ng/ml), an adaptive common γ chain (γc) cytokine, was 

selected to permit later comparisons with IL-2.  

 

Consistent with the data presented in Figure 38B, CD25 expression was very low after 6 hours 

and there was no significant evidence of synergism between cytokines (35D). However, after 

18 hours, the data clearly showed synergy between IL-18 and IL-2 in driving NK cell CD25 

expression (trend analysis p < 0.0001 for IL-18 in combination with increasing concentrations 

of IL-2) with 5ng/ml IL-2 in combination with 10ng/ml IL-18 giving CD25 expression levels 

equivalent to those seen with 50ng/ml IL-18 alone (Figure 38C,E). Although adding IL-12 to a 

cocktail of IL-2 plus IL-18 did not further enhance CD25 expression, including a low 

concentration of IL-12 (0.0125ng/ml) in the cultures did permit detection of a modest IL-2 

dose-response (Figure 38E) and much higher, though less physiological, concentrations of IL-12 

(1-10ng/ml) do synergise with IL-18 to drive CD25 expression (Figure 39) [14,19].  There was  
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Figure 39. IL-12 and IL-18 synergised to drive enhanced NK cell CD25 and IFN-γ responses in 
dose-dependent manner. PBMC were stimulated for 18 hours with medium alone, or 
increasing concentrations of IL-12 and/or IL-18 (as labelled on graphs). NK cell surface 
expression of CD25 (A) and IFN-γ (B) was measured after 18 hours. n = 2, data from a single 
experiment. 
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also strong evidence that IL-15 synergises with IL-18 to enhance NK cell CD25 expression 

(Figure 38G, test for interaction IL-15 and IL-18, p = 0.009).   

 

By contrast, IL-15-driven CD25 upregulation was partially inhibited by IL-2: there was a trend 

for the proportion of NK cells expressing CD25 to decrease with increasing concentrations of 

IL-2 in all cytokine combinations that included IL-15, with a statistically significant impact 

observed in NK cells stimulated with IL-15 plus IL-18 (median without IL-2 = 38.1%, vs. median 

with high concentration IL-2 = 29.0%; linear test for trend, p = 0.040; Figure 38E).  

 
In a separate set of experiments, we also tested IL-21 and IFN-α for their ability to synergise 

with IL-2, IL-15 and IL-18 to drive CD25 expression on NK cells. There was no evidence that IFN-

α alone induced CD25 expression, nor did it enhance CD25 expression in combination with 

other cytokines (Figure 40A-C). However, IL-21 in combination with IL-2, IL-15 or, in particular, 

IL-18 significantly enhanced CD25 expression compared to these cytokines alone (Figure 38F).  

Indeed, there was clear evidence of synergy between IL-21 and IL-18 driving CD25 expression 

(Figure 38G, test for interaction IL-21 and IL-18, p < 0.0001). 

 

In summary, these data indicate that at least three different cytokines (IL-15, IL-2, IL-21) that 

signal via the common gamma chain (γc; CD132) can individually synergise with the IL-18 

pathway leading to rapid upregulation of CD25 expression on NK cells, and at much lower 

cytokine concentrations than previously appreciated (Figure 38G). As IL-15 and IL-18 are 

produced primarily by dendritic cells, monocytes and macrophages, and as IL-2 and IL-21 are 

primarily T cell-derived, these combinations of cytokines allow for very early NK cell activation 

– when cytokine concentrations are still extremely low – via both innate and adaptive immune 

pathways.  Moreover, there is evidence of homeostatic regulation of NK cell activation via γc 

cytokines, as illustrated by inhibition of IL-15-driven CD25 upregulation by IL-2.  

  



167 
 

 
 
Figure 40. IFN-α or IL-21 alone have minimal effects on NK cell responses. PBMC were 
stimulated with increasing concentrations of IFN-α or IL-21. NK cell surface expression of CD25 
was measured in response to medium alone (Med), 10pg, 100pg or 1000pg/ml IFN-α alone, or 
high concentration of cytokines (HCC: 5ng/ml IL-12, 50ng/ml IL-18), at 6 hours (A) and 18 hours 
(B), and to combinations of IFN-α (10pg/ml) and IL-2 (5ng/ml), IL-12 (12.5pg/ml), IL-15 
(0.75ng/ml) or IL-18 (10ng/ml) after 18 hours (C) n = 8, data from two experiments. Likewise, 
intracellular production of IFN-γ was measured after 18 hours in response to medium alone, 
IFN-α alone, or HCC (D) or in combination with IL-2, IL-12, IL-15 or IL-18 as previously 
mentioned (E) n = 4, data from a single experiment. Expression of IL-18Rα was also measured 
at 6 hours and 18 hours in response to IFN-α titration (F) and IL-21 titration (G) at the cytokine 
concentrations indicated on the graphs n = 4, data from a single experiment. Finally, CD16 MFI 
of CD56dimCD16+ NK cells was measured after 6 or 18 hours (H) n = 4, data from a single 
experiment. 
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5.3.2 Common γ chain cytokines synergise with IL-18 to drive rapid and extensive 

IFN-γ production by NK cells  

Upregulation of CD25 primes NK cells for enhanced subsequent responses to IL-2 but is not, in 

itself, a read-out of NK cell effector function. We have therefore characterised the effect of 

combining low concentrations of different cytokines on IFN-γ production, assessed by 

intracellular staining after incubation of PBMC with increasing concentrations of individual 

cytokines or cytokine combinations (Figure 41).  

 

Increasing concentrations of IL-2, IL-12, IL-15 or IL-18 (but not IL-21) each, individually, induced 

significant IFN-γ production by NK cells at 18 hours, although the proportions of IFN-γ+ cells 

rarely exceeded 10% even at the highest cytokine concentrations (Figure 41B). However, 

combining IL-18 (at a concentration of 10ng/ml), with as little as 5ng/ml IL-2 (which alone did 

not drive IFN-γ) not only induced IFN-γ in much higher proportions of NK cells (>20%) but did 

so within 6 hours of incubation (Figure 41C). Whilst this interaction appears additive at 6 hours 

(test for interaction, p = 0.220) by 18 hours the interaction is highly synergistic (test for 

interaction, p = 0.006), possibly as a result of IL-18 induced upregulation of the high affinity IL-

2R (CD25, as shown in Figure 38).   

 

In contrast to what we observed for CD25 expression, there was no evidence of antagonism or 

competition between γc cytokines in their induction of NK cell IFN-γ. On the contrary, there 

was evidence of additive or synergistic interactions between γc cytokines with increasing 

concentrations of IL-2 modestly but significantly enhancing NK cell IFN-γ responses to IL-15 

with IL-18 (Figure 41C-D). Low concentrations of IL-15 (Figure 41C-D) and IL-21 (Figure 41E) 

also enhanced IL-18-induced NK cell IFN-γ production, but to a lesser extent than IL-2 (Figure 

41C,D,F). Although IL-15 plus IL-18 has previously been shown to enhance NK cell IFN-γ, as 

measured by ELISA, the effects described here were apparent at an IL-15 concentration 

(0.75ng/ml) markedly lower than previously described (5ng/ml) [16].  



169 
 

 
 
Figure 41. IL-15 and IL-18 can synergise to drive IFN-γ in absence of IL-12 or IL-2. PBMC were 
stimulated for 6 or 18 hours in vitro and production of intracellular IFN-γ by NK cells was 
measured in response to Med (medium alone), IL-2, IL-12, IL-15, IL-18, or IL-21. Representative 
flow cytometry plots show gating of CD3-CD56+ NK cells and percentage positive for 
intracellular IFN-γ on unstimulated and IL-12-stimulated NK cells (5ng/ml) (A). IFN-γ production 
by NK cells was measured after stimulation with Med, IL-2, IL-12, IL-15, IL-18, or IL-21 
(concentrations ng/ml as labelled) for 18 hours (B) n = 4-9, data from 1-3 experiments. 
Concentrations in boxes indicate those used in following graphs. IFN-γ production by NK cells 
was also measured after stimulation with a titration of IL-2 (0, 5, 50ng/ml) in combination with 
IL-12 (12.5pg/ml), IL-15 (0.75ng/ml), and/or IL-18 (10ng/ml) for 6 hours (C) or 18 hours (D) n = 
7-8, data from two experiments. IFN-γ production by NK cells was also measured following 
stimulation with 5ng/ml IL-21 in combination with 5ng/ml IL-2, 0.75ng/ml IL-15, or 10ng/ml IL-
18 after 18 hours (E) n = 8, data from a single experiment. IFN-γ expression after stimulation 
for 18 hours with a combination of IL-18 (10ng/ml) and common γ chain  cytokines was re-
plotted to facilitate comparison between IL-2 (5ng/ml), IL-15 (0.75ng/ml; both from D), and IL-
21 (5ng/ml; from E) for 18 hours (F) n = 7-8, data from 1-2 experiments. Box plot whiskers 
show the 5-95th percentile range. Data were analysed using paired Wilcoxon signed-rank tests 
(B: asterisks without lines; lowest concentration compared to Med; E: capped lines) or ANOVA 
tests for linear trend for trend analysis across increasing cytokine concentrations including 
Med (B-D, uncapped lines). ****p ≤ 0.0001, *** p < 0.001, **p < 0.01, *p < 0.05. n ≥ 8, other 
than for IL-21 titration (B) where n = 4. 
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Again, as for CD25 expression, we found no evidence of a role for IFN-α in NK cell IFN-γ 

production (Figure 40D-E); this is in contrast to published data [5]. Low concentrations of IL-12 

(0.0125ng/ml) — alone or in combination with IL-2 or IL-21 — had minimal effects on IFN-γ 

production (Figure 41C-E), but did enhance IFN-γ production in combination with IL-15 and IL-

18 at later time points. High concentrations of IL-12 (≥ 1ng/ml) synergised strongly with IL-18 

to drive both IFN-γ and CD25, although we suggest that these do not reflect physiological 

conditions (Figure 39) [6-8,14,18]. Overall, however, as little as 5ng/ml IL-2 in combination 

with low concentrations of IL-18 (10ng/ml) and IL-12 (12.5pg/ml) was the optimal combination 

for NK cell IFN-γ induction at 18 hours. 

 

In summary therefore, γc cytokines (IL-2, IL-15 and IL-21) in combination with IL-18 induce very 

rapid and extensive IFN-γ production by NK cells (Figure 41F). Although IL-2 seems to be the 

most potent of these, at least at the cytokine concentrations tested, the ability of IL-15 to 

augment IFN-γ production offers a route for rapid, innate activation of NK cells prior to the 

differentiation of IL-2 secreting T cells. Of interest, given the very large body of work describing 

IFN-γ induction by combinations of IL-12 and IL-18, γc cytokines synergise with IL-18 at 

extremely low concentrations. It is possible therefore that, in vivo, IL-12 may contribute to NK 

cell IFN-γ production when γc cytokines are lacking, such as during primary exposure (when IL-

2 from antigen-specific T cells may be limiting) or later in infection when IL-15 signalling is 

reduced by changes in receptor expression [20,21].   

 

5.3.3 IL-18 signalling sustains IL-18Rα expression on NK cells 

As IL-18 alone is able to induce both CD25 and IFN-γ expression within 6 hours (Figures 38B, 

41C), we hypothesised that maintaining the capacity for IL-18 signalling might be required for 

optimal NK cell activation. Thus the sustained or enhanced expression of the IL-18R may 

contribute to the synergy between IL-18 and γc cytokines. To determine whether, and if so 

which, cytokines regulate IL-18R expression, NK cell surface expression of IL-18Rα (CD218a, the 
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receptor component required for signalling [22]) was measured after 6 hours or 18 hours of 

PBMC culture with IL-2, IL-12, IL-15, IL-18, IL-21 or IFN-α, alone and in combination (Figures 40 

and 42). It was immediately obvious that resting levels of IL-18Rα expression are extremely 

variable between donors with the proportion of resting NK cells expressing the receptor 

varying from approximately 20% to greater than 80% (Figure 42B-C).  

 

Polymorphisms affecting DNA methylation within the promoter region of IL18R1, the gene 

encoding IL-18Rα, and subsequent transcription of the gene have been reported and may in 

part explain this variation [23,24] and we have previously observed lower levels of IL-18Rα 

expression in human cytomegalovirus seropositive (HCMV+) than in HCMV seronegative 

(HCMV-) individuals (Chapter 4, [2]). Despite this inter-individual variation, resting levels of IL-

18Rα expression are very high in comparison to resting levels of the high affinity IL-2R (as 

defined by expression of the IL-2Rα chain, CD25; see Figure 38B-C) and fully functional IL-12R 

(as defined by expression of IL-12R-β2; Figure 43) and may explain the very rapid (within 6 

hours) NK cell response to exogenous IL-18 (Figures 38B, 41C).  Indeed, we observed a weak 

but statistically significant correlation between resting levels of NK cell IL-18Rα expression and 

upregulation of CD25 following IL-18 stimulation (n = 18, 50ng/ml IL-18, linear regression in 

STATA [adjusting for use of PE- and FITC-conjugated anti-IL-18Rα)] R2 = 0.241, p = 0.046).    

 

Contrary to previously published data indicating that IFN-α [25] and IL-12 [6-8,25] can 

individually induce IL-18R mRNA [6,25], IL-18Rα protein expression [7], or IL-18R expression [8] 

in human NK cells, and that IL-12/STAT4 signalling induces IL-18Rα expression in mice [26,27], 

we found no increase in surface expression of IL-18Rα in response to increasing concentrations 

of either IFN-α (Figure 40F) or IL-12 (Figure 42B) with or without IL-2 (Figure 42C). There are 

several likely explanations for this discrepancy. For example, in previous studies exogenous IL-

2 was routinely added to NK cell cultures and IFN-α was used at much higher concentrations 

[25]; NK cells were stimulated with very high concentrations of IL-12 [6,7]; IL-18R mRNA was 
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Figure 42. Positive feedback from IL-18 induces IL-18Rα. PBMC were stimulated for 6 or 18 
hours in vitro and changes in NK cell surface expression of IL-18Rα was measured in response 
to medium alone (Med), IL-2, IL-12, IL-15, IL-18, or IL-21. Representative flow cytometry plots 
show gating of CD3+ T cells, CD3-CD56+ NK cells, and surface expression of IL-18Rα on 
unstimulated T cells and NK cells for IL-18Rα-FITC (N.B. as used in D; IL-18Rα-PE used in B-C) 
(A). IL-18Rα expression on NK cells was measured after stimulation with Med, IL-2, IL-12, IL-15, 
IL-18, or IL-21 (concentrations ng/ml as labelled) for 6 (B) or 18 hours (C), n = 7-11 data from 1-
2 experiments. Concentrations in boxes indicate those used in following graphs. IL-18Rα 
expression on NK cells was also measured after stimulation with a titration of IL-2 (0, 5, 
50ng/ml) in combination with IL-12 (12.5pg/ml), IL-15 (0.75ng/ml), and/or IL-18 (10ng/ml) 
after 18 hours (D), n = 8, data from two experiments. Box plot whiskers show the 5-95th 
percentile range. Data were analysed using paired Wilcoxon signed-rank tests (B-D: asterisks 
without lines; compared to Med) or ANOVA tests for linear trend for trend analysis across 
increasing cytokine concentrations including Med (B-D, uncapped lines).  
****p ≤ 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05.  
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assessed rather than IL-18R protein [6,25]; NK cells were purified by positive selection which 

may, in itself, contribute to subsequent activation [6,7]; or components of the IL-18R other 

than IL-18Rα were measured, such as AcPL [6,8,25]. Nevertheless, our data suggest that at 

physiological concentrations, IL-2, IL-12 and IFN-α have little, if any, effect on IL-18Rα 

expression. We also observed no effect of IL-21 on IL-18Rα expression (Figure 40G). 

 

By contrast, we found clear evidence of concentration-dependent upregulation of NK cell IL-

18Rα expression in response to IL-15 alone and IL-18 alone (Figure 42B,C). We observed 10 

ng/ml of IL-18 was sufficient to upregulate IL-18Rα within 6 hours (Figure 42B, p=0.001) and 

this effect was sustained at 18 hours (Figure 42C, p = 0.0003). IL-15 had no effect on IL-18Rα 

expression at 6 hours, but as little as 0.75ng/ml IL-15 was sufficient to upregulate IL-18Rα 

expression by 18 hours (Figure 42B-C, p = 0.019). Overall, IL-15 and IL-18 each increased the 

proportion of NK cells expressing IL-18Rα by approximately 15% (median percentage of IL-

18Rα+ NK cells: 50.1% medium only; 64.6% with 50ng IL-18; 66.8% with 50ng IL-15). The ability 

of IL-18 to rapidly augment expression of its own receptor is suggestive of a positive feedback 

loop, allowing for enhanced IL-18 signalling, continued synergism with other signalling 

pathways, and efficient induction of NK cell effector functions in the first few hours of 

infection. 

 

We next considered whether other cytokines might synergise with IL-18 to further enhance IL-

18Rα expression. Increasing concentrations of IL-2, either alone or in combination with IL-12 or 

IL-15 had no significant effect on IL-18Rα expression at either 6 hours (not shown) or 18 hours 

(Figure 42D). However, IL-2 modestly but significantly enhanced the effects of IL-18 in a dose 

dependent manner and there was an additive effect of combining IL-15 and IL-18 in the 

absence of IL-2 (Figure 42D). Addition of other cytokines to the IL-18/ IL-2 combination did not 

further enhance IL-18Rα expression. Although, at the low cytokine concentrations used in 

these experiments (0.0125ng/ml IL-12, 10ng/ml IL-18), we saw no additive or synergistic effect 
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of adding IL-12 to IL-18, at much higher concentrations (5ng/ml IL-12 and 50ng/ml IL-18) we 

did observe a significant (p < 0.0001) additive effect of these two cytokines increasing IL-18Rα 

expression (data not shown).  

 

These data support my assertion  that IL-18 is a key cytokine in initiating and sustaining NK cell 

responses under physiologically relevant conditions such as very early infection and that NK 

cell responses that can be induced with very high (non-physiological) cytokine concentrations 

in vitro may not be relevant in vivo.   

 

In summary therefore, low concentrations of IL-18 rapidly and significantly upregulate the IL-

18Rα subunit and this effect is augmented by low concentrations of IL-15 and (more 

substantially) by IL-2.  Given that IL-18 alone is sufficient to induce expression of the high 

affinity IL-2R (Figure 38B-C), it seems that IL-18 and IL-2 synergistically and reciprocally 

upregulate their own and each other’s receptors in a potent positive feedback loop. The 

minimal role of low concentrations of IL-12 in this process may explain the limited synergies of 

exogenous IL-12 in the early NK cell IFN-γ response (Figure 41). 

 

For completeness, we also examined expression of IL-12Rβ2 in response to single cytokines or 

cytokine combinations (Figure 43). The proportion of NK cells expressing IL-12Rβ2 was 

transiently (seen at 6 hours but not at 18 hours) and very modestly enhanced by 10-50ng/ml 

IL-18 and, in a slightly more sustained fashion, by 50ng/ml IL-15, but the biological relevance of 

such small effects is unclear. There was no effect of exogenous cytokines on IL-12Rβ2 

expression at the level of individual cells (as measured by MFI). 

 

  



175 
 

 
 
 
Figure 43. Low level IL-12Rβ2 upregulation following IL-15 or IL-18 stimulation. PBMC were 
stimulated for 6 or 18 hours in vitro and changes in NK cell surface expression of IL-12Rβ2 was 
measured in response to medium alone (Med), IL-2, IL-12, IL-15, or IL-18. Representative flow 
cytometry plots show gating of CD3-CD56+ NK cells and surface expression of IL-12Rβ2 on 
unstimulated cells (A). IL-12Rβ2 expression on NK cells was measured after stimulation with 
Med, IL-2, IL-12, IL-15, IL-18 (concentrations in ng/ml as labelled) after 6 hours (B) n = 7-16, 
data from 1-3 experiments or 18 hours (C) n = 8-18, data from 2-3 experiments, with mean 
fluorescence intensity (MFI) of IL-12Rβ2 expression on NK cells for the same experiments at 6 
hours (D) and 18 hours (E). NB: IL-2 titrations were performed using a different batch of anti-
IL-12Rβ2-PerCP/Cy5.5 conjugated antibody. Data were analysed using paired Wilcoxon signed-
rank tests (B-C: asterisks without lines; compared to Med) or ANOVA tests for linear trend for 
trend analysis across increasing cytokine concentrations including Med (B-C, uncapped lines). 
***p ≤ 0.001, **p < 0.01, *p < 0.05.  
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5.3.4 IL-18 synergises with FcγRIII (CD16) signalling to augment NK cell mediated 

antibody-dependent cellular cytotoxicity  

After vaccination, or upon secondary infection, circulating antigen-antibody complexes binding 

to FcγRIII (CD16) on NK cells can mediate killing of infected cells via ADCC.  As our data suggest 

that IL-18, in concert with γc cytokines, enhances adaptive as well as innate pathways of NK cell 

activation, we wanted to test whether ADCC could be augmented by very low levels of NK cell 

activating cytokines, as would be present at the site of infection (Figure 44).  

 
We found that IL-18, but not IL-12, IL-15, or IL-21, induced rapid (within 6 hours) and sustained 

(persists at 18 hours), concentration-dependent downregulation of CD16 expression at the NK 

cell surface; cells substantially lost CD16 expression within 6 hours in the presence of 10ng/ml 

IL-18 (Figure 44A-B, Figure 40H). We have previously observed that crosslinking of CD16 with 

plate-bound anti-CD16 antibody leads to loss of CD16 from the NK cell surface (Goodier et al, 

unpublished data), and this is consistent with previous reports of CD16 downregulation 

following CD16 ligation [28]. Here we observe that the inherent capacity of IL-18 to reduce 

CD16 expression synergises with the effects of CD16 crosslinking such that after 6 and 18 

hours, residual CD16 expression is lower when NK cells are cultured with 10ng/ml IL-18 plus 

plate bound anti-CD16 than when they are cultured with either anti-CD16 or IL-18 alone 

(Figure 44C). This is true whether cells are cultured in 10% pooled human AB plasma (as per 

my standard assay protocol) or 10% FCS (Figure 45).  

 

Taken together with published data indicating that downregulation of CD16 on CD56dim NK 

cells in response to either CD16 crosslinking or to very high concentrations of IL-12 (10ng/ml) 

plus IL-18 (100ng/ml) can be blocked with a specific inhibitor specific of the metalloprotease 

(MMP) ADAM-17 [28], these data raise the interesting hypothesis that the IL-18 and the CD16 

signalling pathways may converge to induce metalloprotease (MMP)-mediated cleavage of 

CD16 from  
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Figure 44. IL-18 enhances responses to CD16 crosslinking, while simultaneously driving CD16 
downregulation. PBMC were stimulated for 6 or 18 hours in vitro and changes in CD16 MFI 
(mean fluorescence intensity) of CD16+ NK cells were measured in response to medium alone 
(Med), IL-12, IL-15, or IL-18. Representative flow cytometry plots show gating of CD3-CD56+ 
NK cells, and surface expression of CD107a or CD16 on unstimulated cells, or CD107a on NK 
cells activated with CD16 crosslinking and 10ng/ml IL-18 (A). … (continued on page 178) 
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(continued from page 177) 
… CD16 MFI on CD56dimCD16+ NK cells was measured after stimulation with Med, IL-12, IL-15, 
or IL-18 (concentrations ng/ml as labelled) for 6 or 18 hours (B) n = 9-13, data from 2-3 
experiments. For the crosslinking assays, PBMC were stimulated for 6 or 18 hours in vitro with 
Med, α-CD16 or its IgG1 isotype control, with (+) or without (-) 10ng/ml IL-18. CD16 MFI of 
CD56dimCD16+ NK cells was measured after 6 or 18 hours (C), n = 7-16, data from 1-2 
experiments. Surface expression of CD107a (D), intracellular IFN-γ (E), and CD25 (F) was 
measured on NK cells after 6 or 18 hours, n = 7-16, data from 1-2 experiments. Box plots show 
the 5-95th percentile range. Data were analysed using paired Wilcoxon signed-rank tests (C-F: 
capped lines) or ANOVA tests for linear trend for trend analysis across increasing cytokine 
concentrations including Med (B, uncapped lines). ****p ≤ 0.0001, ***p < 0.001, **p < 0.01, 
*p < 0.05.  
 

 
 
 

 
 
Figure 45. IL-18 drives downregulation of CD16 in the absence of IgG. PBMC were stimulated 
for 18 hours with medium alone, 5/10/50ng/ml IL-18 or a high high concentration of cytokines 
(HCC: 5ng/ml IL-12, 50ng/ml IL-18) in medium supplemented with 10% pooled human AB 
plasma or 10% FCS. Dose-dependent NK cell activation in AB and FCS was confirmed by 
upregulation of surface CD25 (A) alongside downregulation of CD16 on CD16+ NK cells, as 
measured by MFI (B). Bars represent medians and lines denote interquartile ranges. n = 2, data 
from a single experiment. 
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the cell surface. The reciprocal impact of CD16-driven activation on surface IL-18Rα was much 

less clear, with only a slight trend towards negative feedback of CD16 crosslinking on IL-18Rα 

expression (Figure 46).  

 

Using crosslinking of cell surface CD16 with plate-bound anti-CD16 antibody as a model of 

ADCC [28], we next determined the effects of low concentrations of IL-18 on NK cell 

cytotoxicity (assessed using the CD107a degranulation assay [29,30]) as well as on CD25 and 

IFN-γ responses. Despite the very rapid downregulation of CD16 by IL-18 and CD16 crosslinking 

(Figure 44B-C), we observed that as little as 10ng/ml IL-18 markedly and very rapidly (within 6 

hours) augmented NK cell degranulation and IFN-γ production in the presence of anti-CD16 

antibody (Figure 44D-E).  

 

Furthermore, IL-18 synergised with anti-CD16 to enhance CD25 expression at 18 hours (Figure 

44F; test for interaction, p = 0.005). These data demonstrate that IL-18 can substantially 

enhance NK cell ADCC responses and also support the idea that downregulation of CD16 

expression is a consequence of activation of signalling pathways downstream of CD16.  

 

To validate this apparent interaction between IL-18 and CD16, PBMC were incubated for 18 

hours with or without whole, inactivated H3N2 influenza virus in the presence of plasma that 

had previously been shown to contain anti-H3N2 IgG. NK cell degranulation, CD25, and IFN-γ 

responses to H3N2 immune complexes were compared in the presence or absence of 

exogenous IL-18 (Figure 47). As reported above, IL-18 alone induced modest increases in 

CD107a, CD25 and IFN-γ expression.  
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Figure 46. CD16 crosslinking may minimally downregulate IL-18Rα surface expression. PBMC 
were stimulated for 6 or 18 hours in vitro and changes to total NK cell IL-18Rα surface 
expression were measured in response to CD16 crosslinking, or IgG isotype control in three 
separate experiments: A, B (18 hours only), and C. Experiments were analysed separately (A) 
or together (B) using paired Wilcoxon signed-rank tests. Bars denote medians and lines 
indicate interquartile ranges. *p < 0.05. Sample sizes are annotated below  axis. 
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Figure 47. Antibody and IL-18 synergism in response to H3N2. PBMC were stimulated for 18 
hours in vitro medium alone (Med), 5, 10, 50ng/ml IL-18 with or without 1 μg/ml inactivated 
influenza virus H3N2. Responses were measured as the percentage of NK cells expressing 
surface CD107a (A), surface CD25 (B), or intracellular IFN-γ (C) n = 7-8, data from a single 
experiment. Box plot whiskers show the 5-95th percentile range. Data were analysed with 
paired Wilcoxon signed rank tests. ****p ≤ 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05.  
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Furthermore, as previously reported for H1N1 virus [2], incubation of NK cells with H3N2 virus 

and plasma containing anti-H3N2 antibodies induced significant degranulation (CD107a 

expression, Figure 47A), upregulation of CD25 (Figure 47B), and production of IFN-γ (Figure 

47C). However, as little as 5ng/ml IL-18 in combination with H3N2 and anti-H3N2 was 

sufficient to markedly augment CD107a, CD25 and IFN-γ expression; the effects of the 

combination of IL-18 plus H3N2/anti-H3N2 were additive for CD107a expression, but 

synergistic for CD25 and IFN-γ (Figure 47A-C, tests for interaction, 5ng/ml IL-18 and H3N2 for 

CD107a p = 0.269; CD25 p = 0.002; and IFN-γ p = 0.038).  

 

Conversely, in another experiment CD4+ T cells appear to have no effect on the degranulation 

response to CD16 crosslinking, but contribute substantially to CD25 upregulation and IFN-γ 

production (Figure 48). This is consistent with the data presented in Chapter 4 showing that IL-

2 blocking does not affect CD107a responses, but extends our understanding of the antigen-

antibody-driven NK cell activation to suggest this pathway may be entirely CD4+ T cell 

independent. 

 

In summary, therefore, IL-18 synergises with CD16-mediated signals to augment NK cell ADCC 

activity suggesting that IL-18 may play an important role in driving NK cell cytotoxicity as well 

as cytokine production.   
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Figure 48. Degranulation responses following CD16 crosslinking are CD4+ T cell-independent. 
Total PBMC or PBMC depleted of CD4+ cells were stimulated for 18 hours with medium alone, 
1, 5, or 10 IU/ml pertussis antiserum, and/or 1 IU/ml killed whole cell pertussis. A high 
concentration of cytokines (HCC: 5ng/ml IL-12, 50ng/ml IL-18) was used as a positive control. 
Total NK cell responses were measured in terms of upregulation of CD25 (A), intracellular IFN-γ 
(B), or CD107a (C). Note that responses to HCC in (B) are plotted on the right-hand y axis. Bars 
represent medians and lines denote interquartile ranges. n = 4, data from a single experiment 
but similar results were obtained with a separate titration in total PBMC only. 
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5.4 Discussion 

The capacity of NK cells to be activated, within minutes or hours, by very low concentrations of 

innate cytokines is integral to their role as early responders during infection. While pathogens 

may, ultimately, be cleared by components of the adaptive immune system, NK cells and other 

innate leucocytes are critical for initial containment of infection and orchestration of the 

subsequent adaptive response [31].  

 

The role of exogenous cytokines in driving NK cell responses has been studied extensively in 

different contexts, including infection and cancer immunotherapy. However, these in vitro 

experiments have, almost exclusively, been carried out with purified NK cells stimulated with 

very high concentrations of cytokines that do not reflect the in vivo response, may over-ride 

natural homeostatic mechanisms that regulate the extent and duration of NK cell activation, 

and ignore interactions with other immune cells and with components of the adaptive immune 

system. Importantly, few studies have evaluated combinations of more than two cytokines and 

none have carefully titrated cytokine concentrations within these combinations. Thus, 

although we have abundant information about which cytokines and other signals can (under 

certain conditions) activate NK cells we have a much less clear picture of which signals, and 

which combinations of signals, most efficiently activate NK cells in physiologically relevant 

conditions.  

 

In an attempt to conduct a more physiologically relevant analysis of NK cell-cytokine 

interactions, Asia and I have conducted a systematic analysis of the roles of different cytokines 

and cytokine combinations in NK cell activation and their interaction with adaptive immune 

responses. We have demonstrated that NK cells can respond, within hours, to concentrations 

of cytokines that are orders of magnitude lower than previously appreciated and that NK cells 

can integrate signals, synergistically, from multiple cytokine receptors and CD16, enabling 
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them to respond quickly and effectively to extremely low concentrations of pro-inflammatory 

stimuli. 

 

Our study differs from published work not only in the very low concentrations of stimuli used, 

and the use of multiple cytokines in combination, but also in that we have analysed NK cell 

responses within whole PBMCs (containing other lymphocyte populations as well as 

monocytes, macrophages and dendritic cells) rather than using purified NK cells. Whilst the 

use of purified NK cells removes extraneous signals and allows the effects of precisely 

controlled cytokine concentrations to be evaluated, this approach negates the potential role of 

secondary cytokine responses and cell-cell contact-mediated signals which may potentiate the 

effect of the test stimulus [32]. I fully accept that, in our assays, exogenous cytokines might 

induce other cells in the PBMC population to express accessory molecules or produce 

cytokines that augment NK cell responses, and indeed this may explain the rather limited 

contribution of exogenous IL-12 in our assays, but I would argue that this better reflects the in 

vivo situation and the true potential of NK cells.  

 

Removing accessory cells from culture abrogates many important cell-cell signals; for example, 

contact between NK cells and dendritic cells is required for optimal presentation of IL-15 via IL-

15-IL-15Rα complexes, reducing the minimally effective IL-15 concentration from the 

nanomolar to picomolar range [33,34]. Similarly, interactions between NK cells and 

macrophages mediated, for example, by NKG2D and ICAM-LFA-1, are required for NK cell 

activation in numerous infection models [11,32,35,36]. In the absence of these co-stimulatory 

signals, responses of isolated NK cells to rather high concentrations of exogenous cytokines 

represent only a very incomplete picture of their true potential. Moreover, NK cell isolation 

may, in itself, introduce artefacts. Negative selection with agonistic anti-CD3 antibodies risks 

leaving behind a residue of highly activated, cytokine-producing T cells which may confound 

analysis of responses to other cytokines, and positive selection of NK cells requires crosslinking 
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of surface receptors which may positively or negatively affect the subsequent NK cell response. 

On balance therefore, I suggest that the experiments reported here better reflect physiological 

conditions during early infection and provide novel insights into NK cell activation in this 

context.  

 

Our data point to IL-18 as key component of the initial inflammatory response that ‘primes’ NK 

cells to respond to other cytokines and to CD16-mediated signals. In accordance with 

published data [14] we show that 50ng/ml IL-18 is sufficient to induce CD25 expression on 

>40% of NK cells within 18 hours, however we extend these data to reveal significant 

upregulation of CD25 within 6 hours at IL-18 concentrations as low as 10ng/ml. Rapid IL-18-

induced upregulation of CD25 explains the synergistic interaction we observed between IL-18 

and IL-2; this has been reported previously but only at IL-18 concentrations that are 100-fold 

[37] higher than the concentration used here. Moreover, our data extend these findings to 

demonstrate that synergism between IL-18 and IL-2 enhances IFN-γ production (irrespective of 

the presence of IL-12 or IL-15) and we confirmed the importance of IL-18 in enhancing ADCC 

responses to influenza virus via naturally occurring anti-H3N2 antibodies in normal human 

plasma. Taken together, these data place IL-18 at the interface of innate and adaptive 

activation of NK cells.  

 

Our data reveal that γc cytokines are key partners of IL-18 in this process. IL-2, IL-15 and IL-21 

all signal via the common γ chain receptor, CD132, whilst receptors for IL-2 and IL-15 also 

share the β subunit, CD122 [20,38,39]. Although IL-2 and IL-15 are often considered 

functionally interchangeable as a consequence of their shared STAT5 signalling pathway 

(reviewed in [39]), we find that resting NK cells are much more sensitive to IL-15 than to IL-2. 

This likely reflects the very low levels of expression of the high affinity IL-2Rα (CD25) on resting 

NK cells; once CD25 is upregulated, IL-2 is not only an extremely potent inducer of NK cell IFN-γ 

production but also further upregulates its own receptor in an autocrine, positive feedback 
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loop. Importantly, however, although IL-15 and IL-18 both individually and synergistically 

upregulate CD25 expression, and IL-18 subsequently synergises with IL-2 to increase IFN-γ 

production, there is no such synergy between IL-15 and IL-2. Rather, adding IL-2 to any 

cytokine cocktail containing IL-15 reduces CD25 expression and has little if any beneficial effect 

on IFN-γ production. This is consistent with evidence that IL-2 reduces transcription of IL15RA 

[21], thereby limiting further signalling by IL-15, and may represent an important homeostatic 

mechanism to constrain innately driven NK cell responses once an effective adaptive immune 

response is underway.  



Sequential activation through shared receptor components, initially by an innate cytokine (IL-

15) and thence by an adaptive cytokine (IL-2), would provide a mechanism of NK cell activation 

that is both efficient and self-limiting, and indeed there is evidence suggesting that sequential 

activation of human NK cells with IL-15 and then with IL-2 potentiates STAT5 expression 

[14,20]. Moreover, downregulation of IL-15Rα expression by IL-2 [21] may reduce competition 

between IL-15Rα and IL-2Rα for the β and γ chains, facilitating formation of high affinity IL-2R 

and thus potentiating IL-2 signaling. Competition between IL-2 and IL-15 may extend to the 

shared STAT5 pathway and may explain the lack of competition with IL-21 which, although 

sharing the common γ chain receptor, signals via STAT3 [39].  

 

We show that IL-18 also synergises with IgG/CD16, with as little as 10ng/ml IL-18 enhancing NK 

cell degranulation and IFN-γ production within 6 hours. IL-18 has previously been reported to 

enhance IFN-γ production and ADCC following CD16 ligation, albeit only at a 10-fold higher IL-

18 concentration than employed here [40]. The discrepancy between these two studies may 

be explained by the much longer (overnight) incubation times used by Srivastava et al [40] as 

we found that IL-18/anti-CD16-induced responses were well past their peak after 18 hours, 

possibly as a result of the very rapid downregulation of CD16 expression by IL-18 that we also 

observed. Although downregulation of CD16 by IL-18 has been observed previously [18,40] it 

http://europepmc.org/abstract/MED/21925225/?whatizit_url_gene_protein=http://www.uniprot.org/uniprot/?query=IL-2&sort=score
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was reported only at high IL-18 concentration (100ng/ml or 1µg/ml) after periods of 1-5 days 

and the effect was not fully quantified. The speed with which CD16 is downregulated, the very 

low concentrations of IL-18 required to induce it, and the synergy with CD16 crosslinking have 

not previously been appreciated and may, again, represent a homeostatic control mechanism 

to prevent excessive NK cell cytolytic activity and associated tissue damage.   

 

Taken together, our data lead us to propose the following model of early NK cell activation 

(Figure 49). At the start of a primary infection, the initial colonising pathogens induce the 

release of constitutively expressed IL-15, activation of constitutively expressed IL-18 precursor 

and secretion of bioactive IL-18, and transcription and translation of IL15 and IL18 by dendritic 

cells and macrophages (reviewed in [41-43]). The synergistic interaction of IL-15 and IL-18 

rapidly induces NK cells to produce IFN-γ (within 6 hours); this response may be further 

augmented by IL-12 and is sustained (for at least 18 hours) by a positive feedback loop in 

which IL-18 sustains expression of IL-18Rα. At the same time, induced expression of CD25 

allows formation of the high affinity IL-2R, priming the NK cells to take part in T cell-mediated 

adaptive immune responses. Later in infection, or during re-infection, after the differentiation 

of antigen-specific T helper cells and production of antibodies, IL-18 synergises with IL-2 and 

with antibody-antigen  complexes to enhance ADCC and IFN-γ production. The immediate 

availability of IgG antibodies allows ADCC reactions to occur within 5 hours [28], and 

subsequent rapid downregulation of CD16 by IL-18 and/or CD16 crosslinking brings the 

reaction to a close, thereby preventing immune pathology. T cell help is not required for this 

antibody-driven NK cell activation. As IL-2 signalling commences, downregulation of IL-15Rα 

and/or competition for β and γ chain receptor components inhibits further IL-15 signalling. IL-

2Rα expression is now sustained by IL-18 and IL-2, further enhancing NK cell sensitivity to IL-2 

and, in synergy with IL-12, maximising IFN-γ production [14].  
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Figure 49. Rapid activation of NK cells during primary and secondary immune responses. The 
schematic shows our proposed model of NK cell activation. (A) During a primary infection, 
accessory cells produce IL-18 and IL-15 upon contact with the pathogen, which, within 6 hours, 
drives upregulation of IL-18Rα, downregulation of CD16, and low levels of CD25 expression 
and IFN-γ production.  Subsequently, IL-18Rα expression continues to increase to at least 18 
hours and CD25 expression is significantly enhanced. IL-15 and IL-18 may also synergise with 
IL-12 to drive a more sustained IFN-γ response. (B) During a secondary infection with the same 
pathogen, IL-2 from pathogen-specific T cells signals via CD25 and synergises with IL-18 to 
drive substantial IFN-γ secretion; IL-18Rα expression is further enhanced, creating a positive 
feedback loop. Additionally, antigen-antibody complexes crosslink CD16; this synergises with 
IL-18 to drive both the ADCC pathway (degranulation) and further IFN-γ production after 6 and 
18 hours. 
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We have therefore shown that IL-18 synergises with components of both the innate (IL-15, IL-

12) and the adaptive immune response (IL-2, antibody) to very rapidly induce antimicrobial NK  

cell responses (IFN-γ and ADCC). The extremely low concentrations of cytokines that are 

required for this process, and the speed with which it happens, identify IL-18 as a key ‘first 

responder’ at the intersection of innate and adaptive immune responses to infection. We have 

shown that IL-18Rα expression is lower across all CD56/CD57-defined subsets in HCMV+ 

donors, and that NK cell responses to high concentrations of IL-12/IL-18 were reduced in 

HCMV+ donors (Chapters 4, [2]). This strongly suggests that the fine-tuning of cytokine 

synergies and sensitivities, particularly those involving IL-18, could play a role in the impaired 

vaccine responses in HCMV+ individuals. More specifically, although NK cells in HCMV+ 

individuals may only have slightly lower IL-18Rα expression than HCMV-, this may ultimately 

lead to significant differences in cytokine and IgG responsiveness due to the ability of IL-18 to 

drive CD25 (high affinity IL-2R), IL-18Rα, maintain IL-15Rα, and synergise functionally with IgG-

CD16 crosslinking (Chapter 4). 

 

The working hypothesis has thus been that changes to the NK cell population are solely 

responsible for mediating impairment of the NK cell contribution to vaccine recall responses in 

HCMV+ donors, as simulated by in vitro stimulations with both pertussis and H1N1 (Chapter 4, 

[2]), although the mechanisms for this remain uncertain. This conclusion was supported by 

ELISPOT data demonstrating that there was no difference in IL-2 production between HCMV- 

and HCMV+ individuals in response to pertussis (Chapter 4, [2]). However, IL-2 is not the only 

cytokine involved in driving NK cell responses, and we have subsequently shown in this chapter 

that IL-18 is a key mediator of the synergy between innate and adaptive pathways of NK 

activation. Taken together, the data from Chapters 3-5 strongly suggest that sensitivity to IL-18 

signalling likely plays a key role in vaccine responsiveness and heterogeneity between donors, 

and the impact of HCMV infection. 
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Conversely, it is feasible that innate cytokine availability rather than responsiveness may play 

more of a role if cytokine production by accessory cells in response to vaccine stimulation is 

not comparable between HCMV- and HCMV+ individuals. We have not explored the possibility 

that reduced NK cell activation in HCMV+ donors could be partially attributable to poor pro-

inflammatory cytokine production. While accessory cell cytokine production of IL-12/ IL-18 in 

response to vaccine antigens is unlikely to explain the differences in NK cell activation between 

HCMV- and HCMV+ donors, limited production of these two cytokines could clearly be 

detrimental. Interestingly, comparison of HCMV- and HCMV+ individuals in response to H1N1 

as part of an influenza vaccine intervention study (Goodier, Rodríguez-Galán, Lusa, Nielsen et 

al, manuscript accepted) did indicate a modest reduction in the median concentration of IFN-α 

in HCMV+ individuals (HCMV-, 401pg/ml; HCMV+, 194.3pg/ml). Furthermore, blocking IFN-αβR 

impaired CD25 upregulation on CD56dim NK cells in response to H1N1. It is therefore feasible 

that the extent to which IFN-α synergises with other cytokines in the context of antigen 

responses is underappreciated by the interpretation of data in this chapter. 

 

Additionally, it is possible that differences in other cytokines or contact-dependent signals 

from accessory cells could also drive significantly different NK cell responses in HCMV- and 

HCMV+ individuals; as discussed more broadly in Chapter 1, we know that NK cell activation by 

dendritic cells or monocytes can occur through a variety of mechanisms (reviewed in [11,32]). 

Indeed, there is evidence to suggest that HCMV can affect accessory cells, which should not be 

surprising given that the HCMV life cycle makes extensive use of myeloid cells, both for initial 

infection but also for latency and subsequent viral replication [44]. Of interest in the context of 

infection, ex vivo data from two-year old children has suggested an association between 

reduced frequencies of CD14+CD16+ monocytes (potent secretors of IL-12) in Epstein Barr 

virus (EBV)/ HCMV-seropositive children and decreased NK cell responses to peptidoglycan 

and IL-15 [45]. 
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To note, while our flow cytometry experiments did not include staining panels with antibodies 

against both CD14 and CD16, thus precluding comparison of CD14++CD16- and CD14+CD16+ 

monocytes between HCMV- and HCMV+ donors, I performed a crude analysis comparing 

proportions of CD14+ and CD14++ cells from 52 donors (HCMV-,  n = 33; HCMV+, n = 19)1. 

There were no significant differences in the percentage of either subset between HCMV- and 

HCMV+, including when I statistically adjusted for EBV serostatus in STATA (as determined by 

ELISA, see Chapter 4). 

 

This specific study with the two-year old children is difficult to interpret conclusively, in terms 

of the impact of HCMV, due to the confounding EBV infection status. Nonetheless, there was a 

significant trend to decreasing IFN-γ production by NK cells in response to IL-15 with 

peptidoglycan from EBV-HCMV- donors to EBV+HCMV- to EBV+HCMV+, indicating an impact of 

HCMV independent of EBV serostatus. These results are consistent with many studies 

demonstrating the impact of HCMV infection on accessory cell activity, differentiation and 

longevity. For example, HCMV infection of monocytes also blocks apoptosis to allow 

continuation of the viral life cycle and prolonged circulation of HCMV-infected monocytes [46]. 

Furthermore, to our knowledge, HCMV remains the only pathogen known to directly induce 

monocyte differentiation into macrophages, which is essential to support viral replication 

([47], reviewed in [48]). It has also been shown that monocyte-derived dendritic cells release 

less pro-inflammatory cytokines in response to lipopolysaccharide (LPS), including IL-12, when 

infected with HCMV [49]. In contrast, however, transcriptome analysis suggests that HCMV 

infection of monocytes skews development towards the pro-inflammatory macrophage 

phenotype (M1, as opposed to the M2 anti-inflammatory macrophage) [50].  

 

While further work is needed to confirm these apparently contradictory results, it is very 

possible that HCMV may have different effects on different cell types at various points in 

                                                           
1
 CD14 ex vivo staining performed by Martin Goodier. 
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infection or the viral life cycle. Given the central role of cytokine stimulation (particularly IL-18) 

in NK cell responses to vaccine antigens, a better appreciation of HCMV-driven changes to 

accessory cells would improve our understanding of the impact of HCMV infection on NK cell 

contributions to adaptive immunity. 
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Chapter 6 

 

Discussion 
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6.1 Summary and significance of findings 

Taken together, the data presented in this thesis further our understanding of the capacity of 

NK cells to act as effectors of adaptive immune responses and demonstrate that HCMV 

infection is a significant confounding factor for analysis of NK cell phenotype or function. 

Specifically within the context of recall responses to vaccine antigens, I have shown in Chapter 

3 that decreased IFN-γ production by NK cells in response to diphtheria toxoid, tetanus toxoid 

or killed whole cell pertussis is associated with acquisition of CD57 in a step-wise manner from 

CD56dimCD57- to CD56dimCD57int to CD56dimCD57+. Consistent with the central role of pro-

inflammatory cytokines IL-12 and IL-18 in driving this response, I demonstrated that surface 

expression of IL-12Rβ2 and IL-18Rα was lowest on these CD56dimCD57+ NK cells, suggesting 

that decreased sensitivity to cytokine stimulation during vaccine antigen co-culture may be 

contributing to these impaired NK responses. Conversely, the degranulation response (a proxy 

for cytotoxic activation) was maintained across all subsets. 

 

Given that the maturation status of the NK cells was highly relevant to their ability to 

contribute to adaptive responses, I hypothesised that HCMV infection — which drives the 

expansion of a mature CD56dimCD57+NKG2C+ NK cell subset — would be associated with 

poorer responses to vaccine antigens. I therefore next investigated, in Chapter 4, the impact of 

HCMV-driven functional differentiation on NK activation to vaccine antigens. Here I found that, 

compared to HCMV- individuals, HCMV+ individuals had lower NK cell responses to killed 

whole cell pertussis or inactivated whole virus H1N1, interestingly both in terms of IFN-γ 

production and degranulation. Furthermore, differences persisted even when controlling for 

age and sex.  

 

These total NK cell population data supported my hypothesis, but when I proceeded to 

compare the responses of specific CD57/NKG2C-defined NK cell subsets, I discovered that the 

impaired responses to vaccine antigens in HCMV+ individuals were not restricted to the 
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mature CD56dimCD57+NKG2C+ population. This suggested that HCMV infection was driving 

intrinsic NK cell changes across the entire NK cell population, in addition to the specific 

expansion of the CD56dimCD57+NKG2C+ cells that is strongly linked with HCMV seropositivity 

and reduced sensitivity to exogenous cytokine stimulation. Interestingly, HCMV+ individuals 

had lower ex vivo surface expression of IL-18Rα than HCMV- individuals, across all NK cell 

subsets. 

 

Although there was no significant correlation between ex vivo cytokine receptor expression 

and the in vitro functional read-outs, I still suspected that the differences between HCMV- and 

HCMV+ individuals were likely linked to cytokine sensitivity or downstream signalling. In 

Chapter 5, I thus decided to more thoroughly investigate the early events in NK cell activation 

with combinations of very low concentrations of innate and adaptive cytokines. In conjunction 

with Asia-Sophia Wolf, I demonstrated a central role for IL-18 alongside common γ chain family 

cytokines, such as IL-15 and IL-2, in inducing production of IFN-γ as well as degranulation 

responses. I also found that IL-18 synergised with CD16 crosslinking, simulating a putative in 

vivo synergy between innate cytokines and antibody-antigen complexes driving antibody-

dependent cellular cytotoxicity (ADCC) during a recall response. Given the decreased IL-18Rα 

expression on HCMV+ individuals, this cytokine work supports a model where HCMV infection 

influences cytokine sensitivity or downstream signalling, resulting in impaired responses to 

pathogens or vaccine antigens that depend on cytokine stimulation for full activation of NK cell 

responses. 

 

Finally, it is important to emphasise that perhaps one of the most important contributions of 

this thesis work is the demonstration that HCMV is a major confounder of any study of human 

NK cell phenotype or function, even in healthy adults. While there is certainly a genetic 

component to the variation between NK cell responses, the differences between HCMV- and 

HCMV+ donors clearly show that much NK cell variation is attributable to environmental 
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factors, including HCMV infection. Data interpretation in future studies would therefore be 

substantially strengthened by controlling for the HCMV serostatus of study blood donors. 

 

6.2 Opportunities for future work 

6.2.1 FcεRIγ-deficient NK cells and gene expression analyses 

One of the most striking findings of this thesis is that the functional impact of HCMV infection 

on NK cell responses to vaccine antigens is not restricted to the CD56dimCD57+NKG2C+ 

subset. This therefore raises mechanistic questions, and I would hypothesise that HCMV-driven 

changes in gene expression across all NK cell subsets are implicated in this impaired activation. 

One possibility is that there are deficiencies in key proteins involved in downstream signalling 

pathways shared between CD16 crosslinking (i.e. ADCC) and cytokine-driven activation. For 

example, does HCMV infection affect expression of transcription factors or other key 

molecules related to IL-18 signalling?  

 

Recent investigations have identified an interesting subset of NK cells that lack expression of 

FcεRIγ, an adaptor protein associated with Fc receptors including CD16. HCMV+ individuals 

have an increased proportion of FcεRIγ-deficient NK cells, so-called ‘g- NK cells’, which is not 

entirely restricted to the CD56dimCD57+NKG2C+ subset [1,2]. These g- NK cells do not respond 

as well to target cells, as measured by degranulation or IFN-γ production, though there are no 

data available for exogenous cytokine stimulation. Further investigation of FcεRIγ deficiencies 

alongside functional NK cell data is therefore warranted, as it is possible that FcεRIγ-deficient 

NK cells in each of the NK cell subsets are responsible for the reduced responsiveness in 

HCMV+ individuals to vaccine antigens.  

 

Gene expression profiling by Lee et al [3], comparing ‘memory-like’ NK cells that are deficient 

in FcεRIγ expression (g- NK cells) and associated with HCMV infection, to NK cells in the same 

donor with ‘normal’ FcεRIγ expression, alludes to a possible mechanism for this decreased 
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responsiveness in g- NK cells. Proxy markers were used to sort NK cells from two donors into 

populations enriched or not for g- NK cells, and microarray analysis revealed 407 differentially 

expressed transcripts between these two populations. The g- NK cells had 189 upregulated and 

218 downregulated genes as compared to NK cells with normal FcεRIγ expression [3]. Lee et al 

were interested in understanding enhanced responsiveness to CD16 crosslinking in g- NK cells 

and thus focused on expression of genes encoding signalling molecules downstream from 

CD16. No differences in signalling proteins could be observed between g- and normal NK cells 

in one of the two donors, but SYK (a tyrosine kinase) expression was substantially decreased in 

g- NK cells in the other. The authors went on to screen a larger group (n = 62) and 

demonstrated that a SYK deficiency is strongly associated with HCMV infection (p < 0.005), but 

not with herpes simplex virus (HSV)-1 or HSV-2. These SYK deficiencies were associated with 

hypermethylation of a region of the SYK promoter, an epigenetic modification which is 

generally associated with downregulation of gene transcription. 

 

Epigenetic studies that characterise these differences in methylation patterns may therefore 

provide further useful information to discriminate between NK cells from HCMV- and HCMV+ 

subjects. It would be particularly interesting to extend the work of Luetke-Eversloh et al who 

reported epigenetic demethylation at the IFNG locus in NKG2Chi NK cells in HCMV+ 

individuals, permitting enhanced IFN-γ production and overall changes in the global 

methylation profile to resemble memory CD8+ or Th1 T cells [4]. While this is consistent with 

robust IFN-γ responses by these cells to HCMV-infected target cells in the presence of anti-

HCMV antibodies [5-7], it is not intuitively consistent with the reduced IFN-γ responses I 

observed in all CD57/NKG2C-defined subsets to vaccine antigens, suggesting that these HCMV-

driven differences may be due to effects upstream of IFN-γ production. 

 

Microarray work was also reported in the same issue of Immunity as Lee et al by Schlums et al 

[8] who compared ‘adaptive’ (CD56dimCD57+NKG2A-NKG2C+) and ‘mature’ (CD56dimCD57+ 
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NKG2A-NKG2C-) NK cells between four donors and characterised transcriptional changes 

associated with HCMV seropositivity (CD57+NKG2C+) and with ageing (CD57+NKG2C-). They 

identified 89 genes that were upregulated and 102 that were downregulated genes in 

‘adaptive’ NK cells compared to ‘mature’ NK cells. Transcripts for signalling/ transmembrane 

proteins (including FCER1G) and cytokine receptors (including IL12RB2, IL18RAP, IL2RB) were 

among those downregulated in the ‘adaptive’ cells. Similarly to the work with g- NK cells, the 

authors also detected downregulation of SYK on ‘adaptive’ NK cells. However, the most 

strongly downregulated transcription factor was ZBTB16, encoding PLZF, which was 77% lower 

in ‘adaptive’ as compared to ‘mature’ NK cells. The results from these two studies [3,8] remain 

broadly consistent with each other though, as Lee et al also established that essentially all g- 

NK cells were deficient in PLZF; this suggests the ‘adaptive’ NK cells described by Schlums et al 

have substantial overlap with these ‘memory-like’ g- NK cells of Lee et al.  

 

Schlums et al went on to show using flow cytometry (n = 196) that a PLZF deficiency was 

strongly associated with HCMV infection and reduced IFN-γ responses to stimulation with 

innate cytokines (IL-12, IL-18); this is consistent with PLZF regulation of IL12RB2, IL18RAP, and 

also FcεRIγ [8,9]. However, Schlums et al concluded there was no absolute defect in cytokine 

production in PLZF-deficient NK cells because IFN-γ and degranulation responses were equally 

robust in response to PMA/ ionomycin stimulation. While this is supported by our data in 

Chapter 4 demonstrating that HCMV+ donors upregulate CD107a as well as HCMV- donors in 

response to K562 stimulation or crosslinking with anti-CD16, PMA/ ionomycin is a very potent 

stimulus and may compensate for any difference in activation threshold between NK cells. 

Again, these data are also consistent with HCMV-driven impairment of shared signalling 

pathways.  

 

While neither study [3,8] specifies the HCMV serostatus of the donors selected for microarray 

analysis, the presence of ‘adaptive’ or ‘memory-like’ NK cell subsets indicates all donors were 
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almost certainly infected. Therefore rather than a true exploration of transcriptomic 

differences between NK cells in HCMV- and HCMV+ individuals, both papers provide a 

comparison of subsets within HCMV+ donors. This provides many useful clues into potential 

signalling deficits in the expanded subset of NK cells associated with HCMV infection, but 

cannot explain differences that I have observed between HCMV- and HCMV+ subjects across 

all CD57/NKG2C-defined subsets (Chapter 4). It would therefore be of interest to compare 

whole genome microarrays of unstimulated NK cells between HCMV- and HCMV+ individuals. 

This would provide us with an insight into differences in protein expression that can guide 

interpretation of our functional data presented in Chapter 4.  

 

6.2.2 Characterising HCMV infection 

In light of the heterogeneity I observed in Chapter 4 among the HCMV+ individuals, we must 

consider which parameters of HCMV infection may act as confounding factors. Firstly, as noted 

in the Discussion of that chapter, I do not know for how long the HCMV+ participants in this 

study have been infected; I am therefore unable to control for duration of infection, which 

possibly affects the degree of impact of HCMV on NK cell functional differentiation. There is 

also increasing speculation that the initial viral inoculum and immediate immunocompetence 

in controlling HCMV infection may also affect the extent of long-term immunomodulation that 

HCMV exerts on the immune system [10]. Indeed, while there are no strong data to link viral 

load or duration of infection with anti-HCMV IgG titres  [11], there is evidence of a positive 

correlation between size of viral inoculum (mice [12]) or reactivation events (humans [13,14]) 

and greater expansions of HCMV-specific T cells.  

 

It would therefore be interesting to characterise the extent of the T cell response to HCMV 

peptides in the HCMV+ individuals from Chapter 4, and establish whether there is any 

association between larger expansions in the HCMV-specific T cell populations and poorer NK 

cell responses to vaccine antigens. Similar to the heterogeneity in CD56dimCD57+NKG2C+ NK 
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cell expansions in HCMV+ individuals (Chapter 4), it is well-documented that there is extensive 

variation in the T cell response to HCMV. While the average proportion of CD4+ and CD8+ 

memory T cells that are HCMV-specific is 10%, making HCMV the most immunogenic pathogen 

yet described, this can range from 0.1-40% [15]. A significant correlation between the 

proportion of HCMV-specific T cells and NK cell degranulation or IFN-γ production to vaccine 

antigens would not indicate causation — I do not necessarily anticipate HCMV-specific T cells 

are directly influencing T or NK cell responses to pertussis or influenza — but rather act as a 

proxy for a link between HCMV infection kinetics and immune responses to heterologous 

infections. Such experiments to quantify HCMV-specific T cell responses would be relatively 

straightforward using HCMV-specific tetramers (e.g. [16]).  

 

Alongside data on T cell expansions, it would also clearly be of significant value to be able to 

detect HCMV and obtain data on viral load itself. This is quite difficult in healthy adult donors, 

as the viral load is manifestly very low in latent infections. By developing a highly sensitive 

digital droplet PCR (ddPCR) protocol, colleagues have had some success in detecting HCMV in 

Gambian blood donors (predominantly children <2-years old), but these individuals will 

presumably have largely had more recent infections and higher viral loads (Roberts et al, 

unpublished data). However, my preliminary data (not shown) suggests HCMV can be detected 

in peripheral blood samples from healthy, latently-infected adult donors using this ddPCR 

approach, and the sensitivity of this can potentially be improved by extracting DNA from PBMC 

or monocytes. Indeed, several other groups have had success with PCR-based detection of 

latent HCMV in monocytes [17-20], total peripheral white blood cells [21], or urine [22]; 

reliable detection of HCMV in plasma samples may be limited to immunocompromised 

individuals or during acute infection (e.g. [23]). 

 

Finally, while the number of individuals in my study with NKG2C deletions was too low to 

thoroughly analyse the effect of allele frequency on NK cell responsiveness to vaccine 
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antigens, our group’s work with a Gambian population suggests a central role for NKG2C in 

control of HCMV infections [11]. It would therefore be very interesting to further investigate 

the impact of NKG2C genotype on NK cell contributions to adaptive immunity, and likewise to 

gain a better understanding of the factors that drive the profound expansion of the 

CD56dimCD57+NKG2C+ NK cell subset. This expansion is only observed in one third of HCMV+ 

individuals but is associated with even poorer NK cell responses than in HCMV+ individuals 

without this phenotypic skewing of the NK cell repertoire (see Chapter 4), and with global 

changes to methylation patterns [4]. It is very possible that expansion of this mature NK cell 

subset is linked to viral load, as with HCMV-specific T cells, or other parameters related to the 

interaction between HCMV and the immune system. For example, a recent study by Chen et al 

demonstrated that the ability of in vitro expanded NK cells to control HCMV viral dissemination 

was dependent on the amino acid sequence of UL18, which varied between different strains of 

HCMV [24]. Similarly, Rölle et al suggested that as polymoprhisms in UL40 can affect the 

interaction between HLA-E and NKG2A/NKG2C [25], these could also potentially impact the 

extent to which different HCMV strains drive CD56dimCD57+NKG2C+ expansions [26]. These 

data indicate that we need further information not only on the influence of host genetics on 

the impact of HCMV infection on NK cell functionality, but also on the role of viral genetics. 

The ability to detect and isolate HCMV from HCMV+ individuals will necessarily be central to 

this approach.  

 

6.3 Putative positive effects of HCMV infection 

The main implication of this thesis work is that HCMV infection may have a negative effect on 

vaccine efficacy due to impaired contributions of NK cells during secondary exposure to 

vaccine pathogens. Any public health impact of reduced functionality of NK cells in HCMV+ 

populations would require that the contribution of NK cells to adaptive responses is clinically 

relevant. While this remains to be demonstrated in a longitudinal study or in a clinical setting, 
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the indication has clearly been that any impact of HCMV infection is likely to be detrimental in 

the context of adaptive memory responses to vaccine antigens. While my data supports this 

phenomenon in healthy adults (median age 33-years), it is consistent with reported links 

between HCMV-accelerated immunosenescence and consequent compromised ability to 

respond to heterologous infections or vaccines in the elderly (see Chapter 1, reviewed in [27]).  

 

Conversely, within the last few years, there has been an increasing recognition in the HCMV 

field of the potential benefits of HCMV infection in younger immunocompetent hosts [10,28]. 

Evidence of advantages from the mouse model, where latent murine CMV was associated with 

protection from Listeria monocytogenes, has long been used as an example of such a scenario 

[29]. However, a subsequent study indicated that this type of herpes-mediated protection is 

transient [30], and thus that the activated macrophages and increased IFN-γ serum levels 

implicated in bacterial resistance are likely a short-term phenomenon.  

 

While no comparable CMV study has been conducted in humans, there has been a recent 

report linking higher frequencies of polyfunctional (CD107a+IFN-γ+TNFα+) CD8+ T cell 

responding to Staphylococcal Enterotoxin B (SEB) in young or middle-aged HCMV+ individuals, 

as compared to HCMV- individuals [31]. Noting that polyfunctionality of responding T cells may 

be better associated than frequency with protection from pathogens (e.g. [32]), the authors 

suggest that latent infection may thus confer an immunological advantage in 

immunocompetent adults, while potentially contributing to immunosenescence in old age 

through prolonged immune activation. This is consistent with earlier reports of enhanced CD8+ 

T cell proliferative responses to SEB and enhanced antibody responses to measles vaccination 

in HCMV+ infants [33], as discussed in Chapter 1, and also with production of IFN-γ by HCMV-

specific T cells during effector responses to heterologous acute viral infections including 

hepatitis B virus [34]. More general positive immunomodulative effects associated with 
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herpesvirus infections, including protection from both infection or atopy [35], have also been 

proposed [28,36] and continue to be a topic of interest in the HCMV field.  

 

Most relevant to this thesis work, there have also been influenza vaccine studies comparing 

HCMV- and HCMV+ individuals (published since the start of this thesis project) that have had 

access to much larger samples than the vaccine studies reported in Chapter 1. In contrast to 

the studies described earlier, two groups have detected a positive association between HCMV 

seropositivity and influenza vaccine responses. Firstly, Furman et al used a systems biology 

approach to evaluate the effect of HCMV on the immune systems of healthy individuals, 

including responsiveness to seasonal influenza vaccination. To their surprise, the authors 

found that, in young adults, HCMV infection was associated with enhanced antibody responses 

[37]. Likewise, McElhaney et al detected superior antibody responses in HCMV+ subjects, as 

measured by  the ratio of post-vaccination to pre-vaccination antibody titres, in adults aged 

above 65 years (p = 0.0251, n = 221 [38]).  

 

It was suggested at the 5th International Workshop on CMV and Immunosenescence that the 

inconsistencies between data supporting negative, neutral or positive health outcomes  with 

HCMV infection may relate to the magnitude of the host response to HCMV itself [10]. Further 

work in this area, as detailed above, may help to resolve these questions. The longstanding 

hygiene hypothesis, which posits that pathogen exposure early in life modulates the immune 

system to prevent later development of allergy, clearly can apply to herpesviruses including 

HCMV. Understanding the impact of HCMV, and indeed the entire microbiome, is highly 

relevant to our understanding of the interaction of our immune systems and the environment 

at the highest level. Indeed, as White et al state in their 2012 review [28], the societal trends 

associated with improved hygiene in developed countries that have delayed herpesvirus 

acquisition could potentially reduce herpesvirus heterologous immunity and cross-protection 

from development of allergy in early childhood. While the public health risks from congenital 
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HCMV or infection in immunosuppressed individuals are patently serious, we should perhaps 

reconsider the role of HCMV earlier in life and in immunocompetent individuals. It would 

therefore be very interesting to complement the work presented in this thesis with similar 

vaccine studies in populations that can be studied longitudinally, in order determine how the 

effect of HCMV on NK cell vaccine responses is associated with age of HCMV acquisition, 

intensity, and strain of infection, and how this ties in with the broader picture of the effect of 

HCMV on public health.  

 

 

 

  



 

209 
 

References 
 
1. Hwang, I., T. Zhang, J.M. Scott, A.R. Kim, T. Lee, T. Kakarla, A. Kim, J.B. Sunwoo, and S. Kim (2012) 

Identification of human NK cells that are deficient for signaling adaptor FcRgamma and 
specialized for antibody-dependent immune functions. Int Immunol 24: 793-802. 

2. Zhang, T., J.M. Scott, I. Hwang, and S. Kim (2013) Cutting edge: antibody-dependent memory-like NK 
cells distinguished by FcRgamma deficiency. J Immunol 190: 1402-1406. 

3. Lee, J., T. Zhang, I. Hwang, A. Kim, L. Nitschke, M. Kim, J.M. Scott, Y. Kamimura, L.L. Lanier, and S. Kim 
(2015) Epigenetic modification and antibody-dependent expansion of memory-like NK cells in 
human cytomegalovirus-infected individuals. Immunity 42: 431-442. 

4. Luetke-Eversloh, M., Q. Hammer, P. Durek, K. Nordstrom, G. Gasparoni, M. Pink, A. Hamann, J. 
Walter, H.D. Chang, J. Dong, and C. Romagnani (2014) Human cytomegalovirus drives 
epigenetic imprinting of the IFNG locus in NKG2Chi natural killer cells. PLoS Pathog 10: 
e1004441. 

5. Foley, B., S. Cooley, M.R. Verneris, J. Curtsinger, X. Luo, E.K. Waller, C. Anasetti, D. Weisdorf, and J.S. 
Miller (2012) Human cytomegalovirus (CMV)-induced memory-like NKG2C(+) NK cells are 
transplantable and expand in vivo in response to recipient CMV antigen. J Immunol 189: 5082-
5088. 

6. Wu, Z., C. Sinzger, G. Frascaroli, J. Reichel, C. Bayer, L. Wang, R. Schirmbeck, and T. Mertens (2013) 
Human Cytomegalovirus-Induced NKG2Chi CD57hi Natural Killer Cells Are Effectors Dependent 
on Humoral Antiviral Immunity. J Virol 87: 7717-7725. 

7. Costa-Garcia, M., A. Vera, M. Moraru, C. Vilches, M. Lopez-Botet, and A. Muntasell (2015) Antibody-
mediated response of NKG2Cbright NK cells against human cytomegalovirus. J Immunol 194: 
2715-2724. 

8. Schlums, H., F. Cichocki, B. Tesi, J. Theorell, V. Beziat, T.D. Holmes, H. Han, S.C. Chiang, B. Foley, K. 
Mattsson, S. Larsson, M. Schaffer, K.J. Malmberg, H.G. Ljunggren, J.S. Miller, and Y.T. Bryceson 
(2015) Cytomegalovirus infection drives adaptive epigenetic diversification of NK cells with 
altered signaling and effector function. Immunity 42: 443-456. 

9. Gleimer, M., H. von Boehmer, and T. Kreslavsky (2012) PLZF Controls the Expression of a Limited 
Number of Genes Essential for NKT Cell Function. Front Immunol 3: 374. 

10. Arens, R., E.B. Remmerswaal, J.A. Bosch, and R.A. van Lier (2015) 5(th) International Workshop on 
CMV and Immunosenescence - A shadow of cytomegalovirus infection on immunological 
memory. Eur J Immunol 45: 954-957. 

11. Goodier, M.R., M.J. White, A. Darboe, C.M. Nielsen, A. Goncalves, C. Bottomley, S.E. Moore, and 
E.M. Riley (2014) Rapid natural killer cell differentiation in a population with near universal 
human cytomegalovirus infection is attenuated by NKG2C deletions. Blood. 

12. Redeker, A., S.P. Welten, and R. Arens (2014) Viral inoculum dose impacts memory T-cell inflation. 
Eur J Immunol 44: 1046-1057. 

13. Gamadia, L.E., E.M. van Leeuwen, E.B. Remmerswaal, S.L. Yong, S. Surachno, P.M. Wertheim-van 
Dillen, I.J. Ten Berge, and R.A. Van Lier (2004) The size and phenotype of virus-specific T cell 
populations is determined by repetitive antigenic stimulation and environmental cytokines. J 
Immunol 172: 6107-6114. 

14. Alonso Arias, R., M.A. Moro-Garcia, A. Echeverria, J.J. Solano-Jaurrieta, F.M. Suarez-Garcia, and C. 
Lopez-Larrea (2013) Intensity of the humoral response to cytomegalovirus is associated with 
the phenotypic and functional status of the immune system. J Virol 87: 4486-4495. 

15. Sylwester, A.W., B.L. Mitchell, J.B. Edgar, C. Taormina, C. Pelte, F. Ruchti, P.R. Sleath, K.H. Grabstein, 
N.A. Hosken, F. Kern, J.A. Nelson, and L.J. Picker (2005) Broadly targeted human 
cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of 
exposed subjects. J Exp Med 202: 673-685. 

16. Riddell, N.E., S.J. Griffiths, L. Rivino, D.C. King, G.H. Teo, S.M. Henson, S. Cantisan, R. Solana, D.M. 
Kemeny, P.A. MacAry, A. Larbi, and A.N. Akbar (2015) Multifunctional cytomegalovirus (CMV)-
specific CD8(+) T cells are not restricted by telomere-related senescence in young or old adults. 
Immunology 144: 549-560. 

17. Stanier, P., D.L. Taylor, A.D. Kitchen, N. Wales, Y. Tryhorn, and A.S. Tyms (1989) Persistence of 
cytomegalovirus in mononuclear cells in peripheral blood from blood donors. BMJ 299: 897-
898. 



 

210 
 

18. Taylor-Wiedeman, J., J.G. Sissons, L.K. Borysiewicz, and J.H. Sinclair (1991) Monocytes are a major 
site of persistence of human cytomegalovirus in peripheral blood mononuclear cells. J Gen Virol 
72 ( Pt 9): 2059-2064. 

19. Bolovan-Fritts, C.A., E.S. Mocarski, and J.A. Wiedeman (1999) Peripheral blood CD14(+) cells from 
healthy subjects carry a circular conformation of latent cytomegalovirus genome. Blood 93: 
394-398. 

20. Leng, S.X., H. Li, Q.L. Xue, J. Tian, X. Yang, L. Ferrucci, N. Fedarko, L.P. Fried, and R.D. Semba (2011) 
Association of detectable cytomegalovirus (CMV) DNA in monocytes rather than positive CMV 
IgG serology with elevated neopterin levels in community-dwelling older adults. Exp Gerontol 
46: 679-684. 

21. Roback, J.D., C.D. Hillyer, W.L. Drew, M.E. Laycock, J. Luka, E.S. Mocarski, B. Slobedman, J.W. Smith, 
C. Soderberg-Naucler, D.S. Todd, S. Woxenius, and M.P. Busch (2001) Multicenter evaluation of 
PCR methods for detecting CMV DNA in blood donors. Transfusion 41: 1249-1257. 

22. Ling, P.D., J.A. Lednicky, W.A. Keitel, D.G. Poston, Z.S. White, R. Peng, Z. Liu, S.K. Mehta, D.L. Pierson, 
C.M. Rooney, R.A. Vilchez, E.O. Smith, and J.S. Butel (2003) The dynamics of herpesvirus and 
polyomavirus reactivation and shedding in healthy adults: a 14-month longitudinal study. J 
Infect Dis 187: 1571-1580. 

23. Boeckh, M., M. Huang, J. Ferrenberg, T. Stevens-Ayers, L. Stensland, W.G. Nichols, and L. Corey 
(2004) Optimization of quantitative detection of cytomegalovirus DNA in plasma by real-time 
PCR. J Clin Microbiol 42: 1142-1148. 

24. Chen, K.C., R.J. Stanton, J.J. Banat, and M.R. Wills (2016) LIR1 expressing human Natural Killer cell 
subsets differentially recognize isolates of human cytomegalovirus through the viral MHC Class 
I homolog UL18. J Virol. 

25. Heatley, S.L., G. Pietra, J. Lin, J.M. Widjaja, C.M. Harpur, S. Lester, J. Rossjohn, J. Szer, A. Schwarer, K. 
Bradstock, P.G. Bardy, M.C. Mingari, L. Moretta, L.C. Sullivan, and A.G. Brooks (2013) 
Polymorphism in human cytomegalovirus UL40 impacts on recognition of human leukocyte 
antigen-E (HLA-E) by natural killer cells. J Biol Chem 288: 8679-8690. 

26. Rolle, A., J. Pollmann, E.M. Ewen, V.T. Le, A. Halenius, H. Hengel, and A. Cerwenka (2014) IL-12-
producing monocytes and HLA-E control HCMV-driven NKG2C+ NK cell expansion. J Clin Invest 
124: 5305-5316. 

27. Pawelec, G. (2014) Immunosenenescence: role of cytomegalovirus. Exp Gerontol 54: 1-5. 
28. White, D.W., R. Suzanne Beard, and E.S. Barton (2012) Immune modulation during latent herpesvirus 

infection. Immunol Rev 245: 189-208. 
29. Barton, E.S., D.W. White, J.S. Cathelyn, K.A. Brett-McClellan, M. Engle, M.S. Diamond, V.L. Miller, and 

H.W.t. Virgin (2007) Herpesvirus latency confers symbiotic protection from bacterial infection. 
Nature 447: 326-329. 

30. Yager, E.J., F.M. Szaba, L.W. Kummer, K.G. Lanzer, C.E. Burkum, S.T. Smiley, and M.A. Blackman 
(2009) gamma-Herpesvirus-induced protection against bacterial infection is transient. Viral 
Immunol 22: 67-72. 

31. Pera, A., C. Campos, A. Corona, B. Sanchez-Correa, R. Tarazona, A. Larbi, and R. Solana (2014) CMV 
latent infection improves CD8+ T response to SEB due to expansion of polyfunctional CD57+ 
cells in young individuals. PLoS One 9: e88538. 

32. Boyd, A., J.R. Almeida, P.A. Darrah, D. Sauce, R.A. Seder, V. Appay, G. Gorochov, and M. Larsen 
(2015) Pathogen-Specific T Cell Polyfunctionality Is a Correlate of T Cell Efficacy and Immune 
Protection. PLoS One 10: e0128714. 

33. Miles, D.J., M. Sanneh, B. Holder, S. Crozier, S. Nyamweya, E.S. Touray, M.S. Palmero, S.M. Zaman, S. 
Rowland-Jones, M. van der Sande, and H. Whittle (2008) Cytomegalovirus infection induces T-
cell differentiation without impairing antigen-specific responses in Gambian infants. 
Immunology 124: 388-400. 

34. Sandalova, E., D. Laccabue, C. Boni, A.T. Tan, K. Fink, E.E. Ooi, R. Chua, B. Shafaeddin Schreve, C. 
Ferrari, and A. Bertoletti (2010) Contribution of herpesvirus specific CD8 T cells to anti-viral T 
cell response in humans. PLoS Pathog 6: e1001051. 

35. Nilsson, C., A. Linde, S.M. Montgomery, L. Gustafsson, P. Nasman, M.T. Blomberg, and G. Lilja (2005) 
Does early EBV infection protect against IgE sensitization? J Allergy Clin Immunol 116: 438-444. 

36. Welsh, R.M., J.W. Che, M.A. Brehm, and L.K. Selin (2010) Heterologous immunity between viruses. 
Immunol Rev 235: 244-266. 

37. Furman, D., V. Jojic, S. Sharma, S.S. Shen-Orr, C.J. Angel, S. Onengut-Gumuscu, B.A. Kidd, H.T. 
Maecker, P. Concannon, C.L. Dekker, P.G. Thomas, and M.M. Davis (2015) Cytomegalovirus 
infection enhances the immune response to influenza. Sci Transl Med 7: 281ra243. 



 

211 
 

38. McElhaney, J.E., H. Garneau, X. Camous, G. Dupuis, G. Pawelec, S. Baehl, D. Tessier, E.H. Frost, D. 
Frasca, A. Larbi, and T. Fulop (2015) Predictors of the antibody response to influenza 
vaccination in older adults with type 2 diabetes. BMJ Open Diabetes Res Care 3: e000140. 

 



212 
 

 

 

Appendices 

 

 



MINI REVIEW ARTICLE
published: 09 December 2013

doi: 10.3389/fimmu.2013.00422

Functional significance of CD57 expression on human NK
cells and relevance to disease
Carolyn M. Nielsen, Matthew J. White, Martin R. Goodier and Eleanor M. Riley*

Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK

Edited by:
Yenan Bryceson, Karolinska Institutet,
Sweden

Reviewed by:
William Garrow Kerr, SUNY Upstate
Medical University, USA
Björn Önfelt, Karolinska Institutet,
Sweden

*Correspondence:
Eleanor M. Riley , Department of
Immunology and Infection, London
School of Hygiene and Tropical
Medicine, Room 236, Keppel Street,
London WC1E 7HT, UK
e-mail: eleanor.riley@lshtm.ac.uk

Historically, human NK cells have been identified as CD3−CD56+CD16± lymphocytes.
More recently it has been established that CD57 expression defines functionally dis-
crete sub-populations of NK cells. On T cells, CD57 expression has been regarded as a
marker of terminal differentiation and (perhaps wrongly) of anergy and senescence. Simi-
larly, CD57 expression seems to identify the final stages of peripheral NK cell maturation;
its expression increases with age and is associated with chronic infections, particularly
human cytomegalovirus infection. However, CD57+ NK cells are highly cytotoxic and their
presence seems to be beneficial in a number of non-communicable diseases.The purpose
of this article is to review our current understanding of CD57 expression as a marker of NK
cell function and disease prognosis, as well as to outline areas for further research.

Keywords: CD57, NK cells, HCMV infection, ageing, chronic infection, cancer, autoimmune diseases,T cells

CD57 IS A MARKER OF NK CELL DIFFERENTIATION
CD57 was first identified on cells with natural killer activity using
the mouse monoclonal antibodies Human Natural Killer-1 (HNK-
1) (1) and Leu-7 (2) and was subsequently assigned the cluster of
differentiation (CD) designation, CD57, at the fourth Interna-
tional Workshop of Human Leukocyte Antigens in 1989. HNK-
1/Leu-7/CD57 was initially believed to be uniquely expressed on
NK cells – and was used to define this population (1, 3) – although
it was soon apparent that CD57 was expressed only on a subset of
functionally distinct NK cells (4). CD57 was subsequently identi-
fied on CD8+ T cells (5–7) as well as cells of neural crest origin (1,
8–13). Indeed, it was the neuroscience community that ultimately
defined CD57 as a terminally sulfated carbohydrate epitope (glu-
curonic acid 3-sulfate) (14–16). In neural cells, the CD57 epitope
is predominantly restricted to adhesion molecules (17) but little
attention has been paid to the precise identity of the molecules
expressing the CD57 epitope on NK cells and T cells, precluding
a full understanding of the relationship between CD57 expres-
sion and lymphocyte function. Although one study identified the
CD57 epitope on the IL-6 receptor gp130 of resting lymphocytes
(18), the cells expressing CD57/gp130 were not identified and no
comprehensive analysis of CD57-expressing molecules on T cells
or NK cells has been reported.

While first characterized as an NK cell marker, CD57 has been
most widely explored as a marker of replicative senescence on T
cells (19). Under conditions of persistent immune stimulation,
memory T cells convert from CD28+CD57− to CD28−CD57+

(20); CD57+ cells have short telomeres, low telomerase activity,
low expression of cell-cycle associated genes and limited prolifer-
ative capacity (20, 21). However, CD57+CD28−CD8+ T cells can
proliferate given an appropriate cytokine milieu (22), their sensi-
tivity to apoptosis is disputed (23,24), they are highly cytotoxic (25,
26) and express natural killer receptors (27). CD57+CD8+ T cells
should thus be regarded as terminally differentiated, oligoclonal

populations of cytotoxic cells generated in response to chronic
antigen stimulation.

In light of the T cell data it was suggested that CD57 may
also be a marker of NK cells with poor proliferative capacity
and, perhaps, a degree of immunosenescence (21, 23, 28). Indeed,
acquisition of CD57 on NK cells – following stimulation with IL-2
or coculture with target cells – correlates with maturation of the
CD56dim NK cell subset, with lower expression of NKp46, NKp30,
NKG2D, and NKG2A, and higher expression of CD16, LIR-1, and
killer cell immunoglobulin-like receptors (KIRs) (29). Similarly, in
hematopoietic stem cell transplant recipients exposed to human
cytomegalovirus (HCMV) infection, differentiation of CD56dim

NK cells involves acquisition of CD57, loss of NKG2A, gain of
KIRs, and changing expression of homing molecules (30). These
studies, together with experiments in Rag2−/− γcR−/−mice recon-
stituted with human hematopoietic stem cells and treated with
IL-15 (30), and the observation that fetal and newborn NK cells
lack CD57 (31), indicate that CD57+ NK cells differentiate from
CD56dimCD57− NK cells in an irreversible process with highly
stable expression of CD57 likely being the final step in maturation
(30, 32). This differentiation is accompanied by functional changes
(29, 30): compared with CD57− cells, CD57+ NK cells proliferate
less well in response to IL-2 and IL-15 and produce less IFN-γ
in response to IL-12 and IL-18, consistent with their lower levels
of IL-12Rβ mRNA (29) and reduced surface expression of IL-2Rβ

and IL-18Rα (30). On the other hand, CD57+ NK cells retain their
cytolytic potential (30) and a proportion of CD57+ NK cells are
able to produce IFN-γ after crosslinking of CD16 [Ref. (29); White
et al. submitted] indicating that CD57+ NK cells are intrinsically
able to produce IFN-γ but that they may have different activation
requirements.

In summary, therefore, progression from CD56bright to
CD56dimCD57− to CD56dimCD57+ reflects a maturation pathway
for NK cells (33, 34) and rather than being a marker of anergy or
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immunosenescence, acquisition of CD57 represents a shift toward
a higher cytotoxic capacity, greater responsiveness to signaling via
CD16 and natural cytotoxicity receptors (NCRs) and decreased
responsiveness to cytokines (29, 35). The extent to which CD57
expression per se drives these changes in function, as opposed to
being a marker for cells with altered expression of other attributes
of a mature NK cell, is not entirely clear and may represent a fertile
area for further research. In addition, a much better characteriza-
tion is required of the cell surface molecules that express the CD57
epitope, the mechanisms by which CD57 is induced on them, and
its functional consequences.

CD57 EXPRESSION AND CANCER
Both CD8+ T cells and NK cells are able to kill tumor
cells through mechanisms including perforin/granzyme-mediated
cytolysis and TRAIL- or FAS-mediated apoptosis (36). Accumula-
tion of CD57+CD8+ T cells is seen frequently in individuals with
various forms of cancer (37) and has been associated with reduced
survival in those with renal cell carcinoma (38), melanoma (39),
gastric carcinoma (40), multiple myeloma (41), lymphomas, acute
and chronic myeloid, and lymphocytic leukemias (42), among
many other examples. CD57 expression on CD4+ T cells has also
been associated with Hodgkin’s lymphoma (43) and chronic lym-
phocytic leukemia (44). This association between malignancy and
expanded populations of CD57+ T cells is likely explained by per-
sistent stimulation of these cells by tumor-associated antigens in
the absence of effective tumor clearance (45).

NK cells were initially identified by their ability to kill malig-
nant cells (46–48) and a large body of clinical and experimental
evidence now supports their crucial role in cancer immunosur-
veillance (49). Reduced MHC Class I expression (50) and de novo
expression of stress related molecules (such as B7-H6, MICA,
MICB, RAE-1, MULT1, and members of the ULBP family) in
malignant cells alter the balance of inhibitory (via KIRs and
NKG2-CD94 heterodimers) and activating (via NCRs and NKG2D
homodimers) signals for NK cells (51), leading to their activation.
High frequencies of peripheral or tumor-associated CD57+ NK
cells are reported in cancer patients and – in sharp contrast to
what has been seen for CD8+ T cells – have frequently been linked
to less severe disease and better outcomes (Table 1). This would
be consistent with enhanced tumor surveillance/cytotoxicity of
the mature, CD57+ NK cell subset (29); whether these associa-
tions are confounded by HCMV infection status (see below) is
currently unclear. In the case of advanced gastrointestinal stromal
tumors treated with the chemotherapeutic agent imatinib mesy-
late, NK cell secretion of IFN-γ after IL-12/IL-2 stimulation was
correlated with improved long-term survival (52). Since CD57−

NK cells are the major subset producing IFN-γ in response to
cytokines, this suggests that a heterogeneous NK cell population
comprising both CD57− and CD57+ subsets may be optimal for
combating neoplasia. Clearly further studies, ideally longitudinal
in nature and accompanied by data on potentially confounding
factors, are needed to determine the roles of different NK cell
subsets in combating different types of malignancies.

CD57 EXPRESSION AND AUTOIMMUNITY
Autoimmune diseases tend to be highly antigen-specific and medi-
ated by autoantibodies or autoreactive T cells. In general, expanded

populations of autoreactive CD57+ T cells are associated with
more severe disease – Wegener’s granulomatosis (65), pars plani-
tis (25), multiple sclerosis (MS) (66), type I diabetes mellitus
(67), Graves’ disease (68), and rheumatoid arthritis (RA) (69),
amongst others. This likely reflects killing of vital host cells by
these highly cytotoxic lymphocytes (68), although the loss of T
cells with immunosuppressive potential may also play a role (67).

Perhaps surprisingly, autoimmune disease is consistently asso-
ciated with reduced frequencies or absolute numbers of circulating
CD57+ NK cells and/or impaired NK cell cytotoxicity (Table 2)
(70–78), suggesting that cytotoxic CD57+ NK cells may play a
regulatory role, preventing or suppressing autoimmune disease.
In MS, peripheral NK cells lose expression of FAS during relapse
and regain it during remission (70) and FAS+ NK cells can inhibit
myelin basic protein-specific T cell IFN-γ responses (79), suggest-
ing that NK cells may regulate autoreactive T cells. On the other
hand, chronic NK cell lymphocytosis (which is associated with
peripheral neuropathy, arthritis, and vasculitis) is characterized by
increased absolute numbers of circulating immature NK cells with
low cytotoxicity (80, 81). Similarly, NK cells have been found in the
inflammatory infiltrates of psoriatic skin lesions (82), in synovial
fluid of joints affected by RA (83), and in pancreatic islets of type
I diabetes patients (84). NK cells in the synovial fluid of patients
with RA, and those infiltrating psoriatic skin lesions, are immature
CD56bright or CD57− and able to secrete IFN-γ and TNF (85, 86),
suggesting that they may contribute to the inflammation rather
than suppress it (84).

Taken together, these data are consistent with the hypothesis
that immature CD57− NK cells may contribute to autoimmune
inflammation and tissue damage whereas more highly differenti-
ated, cytotoxic, CD57+ NK cells may fulfill an immunoregulatory
role, possibly deleting chronically activated T cells, as in viral
hepatitis (103).

CD57 EXPRESSION DURING INFECTION
Chronic viral infections such as HCMV (104), human immuno-
deficiency virus (HIV) (105), hepatitis C virus (106), and Epstein–
Barr virus (EBV) (107) infections offer some of the clearest exam-
ples of expansion of CD57+CD8+ T cells, presumably as a result
of persistent antigenic stimulation, and increased proportions of
CD57+CD8+ T cells have also been reported in those infected with
human parvovirus (108), measles (109), pulmonary tuberculosis
(92), and toxoplasmosis (93). The majority of these CD57+CD8+

T cells, at least in HCMV infection, appear to be antigen-specific
and their presence is associated with a low incidence of reactivation
(94, 95). Similar skewing of NK cells toward the CD57+ phenotype
is now reported in a variety of viral infections (Table 2).

Increased frequencies of CD57+CD16+ NK cells were first
reported in HCMV-infected individuals by Gratama et al. (110)
and have been repeatedly confirmed (99, 111, 112). Studies of
hematopoietic stem cell transplantation (HSCT) have been par-
ticularly informative, allowing detailed comparison of stem cell
differentiation into NK cells in HCMV-infected and uninfected
transplant recipients (111, 112) with rapid and persistent expan-
sion of CD57+ NK cells that are also NKG2C+, KIR+, CD158b+,
and potent producers of IFN-γ after stimulation with MHC Class
I-deficient target cells, only in the HCMV-infected group (111). We
now know that HCMV drives expansion of NKG2C+ NK cells and
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Table 1 | Associations between cancer prognosis and CD57 expression by NK cells.

Cancer type Observations Reference

Acute lymphoblastic

leukemia

Increased NK cell activity and increased numbers of CD57+ and CD16+ NK cells in bone marrow

associated with complete remission

Sorskaar et al. (57)

Hodgkin’s disease Absence/low number of CD57+ NK cells in tumor tissue (by immunohistochemistry) associated

with relapse

Ortaç et al. (58)

Non-Hodgkin’s lymphoma Higher numbers of intratumoral CD57+ NK cells are associated with relapse free survival in

pediatric cases

Ortaç et al. (58)

Metastatic tumors in the

brain

CD57+ NK cells infiltrate brain metastases of various origins (lung, breast, and renal carcinomas;

melanoma) but no correlation between numbers of infiltrating CD57+ NK cells and apoptosis of

malignant cells

Vaquero et al. (59)

Colorectal cancer Increased CD57+ NK cells in germinal centers of draining lymph nodes, but rarely in primary or

metastatic lesions; CD57+ NK cells may prevent establishment of tumor in lymph nodes?

Adachi et al. (60)

Bladder carcinoma Lower frequency of CD56+ and CD57+ PBMC in patients with invasive and non-invasive tumors

is correlated with reduced cytotoxicity against T24 bladder cancer cell line

Hermann et al. (61)

Breast carcinoma Survival is positively correlated with the number of tumor infiltrating CD57+ NK cells and with

expression of CX3CL1 (a known NK cell chemoattractant) by the tumor cells

Park et al. (62)

Gastric carcinoma CD57+ NK cell infiltration associated with a lower clinical grade tumor, reduced venous invasion,

fewer lymph node metastases, less lymphocytic invasion, and increased 5 year survival outcome

Ishigami et al. (63)

Oral squamous cell

carcinoma

Low density of tumor infiltrating CD57+ NK cells and high numbers of TNF+ cells associated

with higher clinical staging

Turkseven and Oygur

(64)

Esophageal squamous cell

carcinoma

Tumor infiltrating CD57+ NK cells positively associated with increased survival over 80 months Lv et al. (87)

Squamous cell lung

carcinoma

Tumor infiltrating CD57+ NK cells positively correlated with increased survival 2 years after

surgery

Villegas et al. (88)

Pulmonary adenocarcinoma Higher absolute numbers of tumor infiltrating CD57+ NK cells correlated with tumor regression Takanami et al. (89)

Various Low numbers of CD57+ NK cells in peripheral blood are associated with carcinomas of colon,

lung, breast, and neck; no association was with melanoma or sarcoma

Balch et al. (90)

that these cells preferentially acquire CD57 (97–99, 111, 112). In
HCMV-uninfected donors, there are roughly equal proportions of
CD57+NKG2C+ and CD57−NKG2C+ NK cells whereas the ratio
of CD57+NKG2C+ to CD57−NKG2C+ NK cells ranges from <1
to >60 in HCMV-infected donors (99); whether this variation
reflects varying duration of HCMV infection is not known. HCMV
reactivation after HSCT is associated with a threefold increase in
the ratio of CD57+NKG2C+ to CD57−NKG2C+ NK cells within
one year (111). Yet, in the absence of HCMV infection, NKG2C+

NK cells are no more likely to acquire CD57 than are NKG2C−

NK cells (112), suggesting that either binding of NKG2C to spe-
cific HCMV ligands or chronic viral infection per se drives NK
cell differentiation. Importantly, CD57+CD16+ NK cells can kill
HCMV-infected target cells (96) and this may be dependent upon,
or enhanced by, α-HCMV antibodies (113).

While HCMV remains the clearest example of infection dri-
ving NK cell differentiation, other viral infections may cause a
similar effect. For example, there is a three to fourfold expansion
of the NK cell pool during acute hantavirus infection; NK cell
numbers peak approximately 10 days after the onset of symptoms

and remain above baseline for at least 60 days (114). This expan-
sion is restricted to the NKG2C+ NK cell subset and the majority
of these cells are CD57+, KIR+ and highly responsive to MHC
Class I-deficient target cells. Hantavirus-infected endothelial cells
express high levels of the NKG2C ligand HLA-E and expansion of
the NKG2C+ NK cell subset is seen only in HCMV seropositive
hantavirus patients, suggesting that hantavirus-induced HLA-E
expression and/or inflammatory cytokines released during infec-
tion may drive the expansion and subsequent maturation of
NKG2C+ NK cells that have been induced or “primed” by HCMV
infection (114). Similarly, transient expansion of the CD57+

NKG2C+ NK cell population during acute chikungunya virus
infection is also associated with HCMV seropositivity (115).

Expansion of the NKG2C+CD57+ NK cell subset has also
been reported in HCMV+ individuals with chronic hepatitis B
and hepatitis C infections, although the proportions of these cells
did not differ markedly from previous reports in HCMV-infected
but hepatitis virus-uninfected donors, leading the investigators to
conclude that HCMV, rather than viral hepatitis, is the underly-
ing driver of NK cell differentiation (97). In line with this, no
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Table 2 | Associations between autoimmune diseases or infections and CD57 expression by NK cells.

Observations Reference

AUTOIMMUNE DISEASE

Alopecia areata CD57+ NK cells are significantly reduced in peripheral blood of patients with multiple foci

of alopecia

Imai et al. (91)

Atopic dermatitis Reduced frequencies of CD57+ NK cells in peripheral blood of patients compared to

healthy controls, with greatest reduction in the most severe cases

Wehrmann et al. (126) and

Matsumura (127)

Sjögren’s syndrome Decreased numbers of CD57+ NK cells observed in peripheral blood of patients compared

to controls

Struyf et al. (128)

IgA nephropathy Decreased proportion of CD57+ CD16+ lymphocytes in the peripheral blood of patients

compared to healthy controls

Antonaci et al.(129)

Psoriasis NK cells infiltrating skin lesions – but also unaffected skin – are predominantly CD57low Batista et al. (85)

INFECTION

HCMV Increased proportions of CD57+ NK cells in infected individuals; CD57 expression limited

to the NKG2C+ subset

Gratama et al. (110),

Lopez-Vergès et al. (99) and

Foley et al. (111, 112)

HIV In chronic infections, there is a loss of CD57-/dim NK cells, but the absolute number of

CD57+ NK cells remains constant

Hong et al. (100)

Chikungunya virus Increased proportions of CD57+ NK cells after infection in HCMV+ patients Petitdemange et al. (115)

Hantavirus NKG2C+ NK cell subset expanded during infection in HCMV+ patients and the majority of

these cells are CD57+
Björkström et al. (114)

Hepatitis B and

Hepatitis C

NKG2C+ NK cell population is expanded in chronic infections, and these are predominantly

CD57+, but co-infection with HCMV appears to be the driver of this effect

Béziat et al. (97)

Lyme disease Conflicting evidence on whether chronic disease leads to a reduced proportion of CD57+

NK cells in peripheral blood

Stricker et al. (117), Stricker and

Winger (118), and Marques et al.

(119)

association was found between expansion of the NKG2C+CD57+

NK cell subset and clinical indicators of hepatitis such as viral load
or liver enzyme concentrations (97).

In HIV-infected individuals, the absolute number of CD57+

NK cells is stable and comparable to HIV-negative individuals but
the ratio of CD57+ to CD57− NK cells is higher than in unin-
fected individuals due to a gradual loss of CD57− cells (which are
highly dependent on monocyte and T cell-derived cytokines for
their survival) (100). Unfortunately, the HCMV status of these
subjects was not reported and may confound the comparison
between the HIV+ and HIV− individuals. Indeed, in another
study, the positive association between frequency of NKG2C+ NK
cells and HIV-1 infection disappears when adjusted for HCMV
status (101). Nonetheless, it is also the case that the frequency
of NKG2C+(CD57+) NK cells is higher in HCMV seroposi-
tive donors with HIV-1 infection than in HCMV seropositive
donors without HIV-1 infection (102), suggesting either that –
as for hantavirus or chikungunya virus – HIV-1 infection drives
expansion of the HCMV-induced NKG2C+ population or that
HIV-1 infected individuals experience more frequent reactivation
of HCMV which then expands the NKG2C+ population. Signif-
icantly, CD57+ NK cells of HIV+ individuals retain a highly dif-
ferentiated phenotype (CD16+KIR+perforin+) but have defects

in degranulation (100) suggesting that they may have reduced
cytotoxic potential. Finally, although no association was seen
between accumulation of CD57+ NK cells and recurrence of gen-
ital herpes lesions due to herpes simplex virus 2 (HSV-2) infection
(116), interpretation of this study is hindered by the lack of an
HSV-2-uninfected control group.

There have been very few studies of NK cell subsets in the con-
text of bacterial or parasitic infections. Patients with chronic Lyme
Disease (Borrelia burgdorferi) have lower proportions of periph-
eral blood CD57+ NK cells compared to those with acute disease
and uninfected controls and this phenotype was maintained for
over 10 years in one person with persistent infection (117, 118). In
contrast, no significant differences in numbers of peripheral blood
CD3−CD57+ cells were noted between patients with post-Lyme
disease syndrome, individuals recovered from Lyme disease and
healthy controls (119). The suggestion (118) that high frequencies
of CD57+ NK cells may be a biomarker of Lyme disease progres-
sion thus seems premature, especially given the potential impact
on NK cell phenotype of HCMV and other infections.

In summary, viral infections are important drivers of NK cell
differentiation with HCMV playing a primary role in selecting for
NKG2C+CD57+ cells and other viruses driving their expansion
and differentiation.
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CD57 EXPRESSION AND AGING
Given the enormous impact of infection on NK cell maturation
and differentiation, it is not surprising that NK cell populations
change with age, which is a proxy for cumulative exposure to infec-
tion and other physiological insults. At birth virtually no T cells
express CD57 (120) but the proportion rises with age, reaching
20–30% in young adults (20); by 80 years of age 50–60% of CD8+

T cells are CD28− (and thus likely CD57+) (20, 121). Similarly,
with increasing age, increasing numbers of circulating NK cells
are achieved by an expansion of the CD56dim and CD57+ subsets
and an absolute, as well as a proportional, decline in CD56bright

cells (35, 53–55, 122–125). At birth, all CD56dim NK cells are
CD57−; among European adults (18–60 years of age) 25–60%
of CD56dim NK cells are CD57+ and this continues to increase
slightly, but significantly, after the age of 80 years (124). Inter-
estingly, CD56dimCD57+ NK cells accumulate very rapidly in an
African (Gambian) population reaching adult levels (20–70%) by
the age of 5 years (Goodier et al. unpublished); this may reflect
very high HCMV seroprevalence rates in this age group in this
community.

The increased proportion of CD56dimCD57+ NK cells in
the elderly likely explains the maintenance of NK cell cytotoxic
responses despite reduced responsiveness to cytokine stimulation
[reviewed in Ref. (56)], however, the significance of these changes
in terms of overall immune competence is poorly understood. The
gradual loss of the CD56bright NK cell population, and the conse-
quent decline in NK-derived cytokines that activate dendritic cells
and monocytes, has been assumed to contribute to age-associated
declines in immune competence but the potential counterbalanc-
ing effect of an increased proportion of highly cytotoxic CD57+

NK cells has received little attention (123). Comprehensive stud-
ies are now needed to assess the cytokine-producing and cytotoxic
function of individual NK cell subsets in response to cytokine stim-
ulation as well as activation via CD16 and NCRs and the extent to
which this changes with age and HCMV status.

CONCLUSION AND FUTURE DIRECTIONS
CD57 is a very useful marker of NK cell maturation, identify-
ing cells with potent cytotoxic potential but decreased sensitivity
to cytokines and reduced replicative potential. CD57+ NK cells
appear to be a stable sub-population, increasing with age and
exposure to pathogens (especially, but not exclusively, HCMV)
and their presence is consistently associated with better outcomes
in cancer and autoimmune disease. However, the majority of clin-
ical studies have been cross-sectional, with limited follow up and
data on crucial confounding factors such as HCMV infection are
typically lacking. Recent studies of HSCT (111, 112) demonstrate
the power of prospective and longer term studies in beginning
to assign causality in terms of NK cell phenotype, function, and
disease. Nevertheless, precise understanding of the role of CD57
expression on NK cells requires a detailed dissection of the under-
lying biology of CD57, about which very little is known. Given that
there is no evidence that CD57 is expressed on murine NK cells,
this is not a simple task. Possible approaches in human NK cells
might include conducting a comprehensive analysis of NK cell
molecules expressing CD57, blocking CD57 in in vitro functional
NK cell assays, or manipulating expression or enzymatic activity

of B3GAT1 (the key enzyme in the biosynthesis of CD57) using
RNA interference or specific inhibitors.
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Summary

Natural killer (NK) cells contribute to the effector phase of vaccine-

induced adaptive immune responses, secreting cytokines and releasing

cytotoxic granules. The proportion of responding NK cells varies between

individuals and by vaccine, suggesting that functionally discrete subsets of

NK cells with different activation requirements may be involved. Here, we

have used responses to individual components of the DTP vaccine [teta-

nus toxoid (TT), diphtheria toxoid (DT), whole cell inactivated pertussis]

to characterize the NK cell subsets involved in interleukin-2-dependent

recall responses. Culture with TT, DT or pertussis induced NK cell CD25

expression and interferon-c production in previously vaccinated individu-

als. Responses were the most robust against whole cell pertussis, with

responses to TT being particularly low. Functional analysis of discrete NK

cell subsets revealed that transition from CD56bright to CD56dim correlated

with increased responsiveness to CD16 cross-linking, whereas increasing

CD57 expression correlated with a loss of responsiveness to cytokines. A

higher frequency of CD56dim CD57� NK cells expressed CD25 and inter-

feron-c following stimulation with vaccine antigen compared with

CD56dim CD57+ NK cells and made the largest overall contribution to

this response. CD56dim CD57int NK cells represent an intermediate func-

tional phenotype in response to vaccine-induced and receptor-mediated

stimuli. These findings have implications for the ability of NK cells to

contribute to the effector response after vaccination and for vaccine-

induced immunity in older individuals.

Keywords: CD57; diphtheria–tetanus–pertussis vaccine; natural killer cells.

Introduction

Natural killer (NK) cells are classically regarded as a stable

population of innate immune effectors that, by cytokine

production or cytotoxicity, help to contain an infection or

limit tumour growth until an effective adaptive response is

mounted. However, numerous lines of evidence now sug-

gest that NK cells adapt functionally after stimulation by

viruses, cytokines and hapten antigens; this phenomenon

has been termed ‘NK memory’ but may also reflect func-

tional NK cell maturation.1 There are several routes by

which NK cell function may be enhanced during re-exposure

to a pathogen. Antigen-specific memory T cells secreting

interleukin-2 (IL-2) promote NK cell function and prolif-

eration, while pathogen-specific antibodies initiate anti-

body-dependent cellular cytotoxicity by cross-linking

CD16 or other Fc receptors for immunoglobulins.2–6

Alternatively, cytokines released during primary infection

may induce NK cells to proliferate and/or differentiate to

a more highly responsive state; subsets of NK cells express-

ing activating receptors able to bind specific pathogen

ligands may be particularly responsive (as described for

the Ly49H+ subset of mouse NK cells which bind the

murine cytomegalovirus m157 protein7).

Abbreviations: APC, allophycocyanin; DT, diphtheria toxoid; DTP, diphtheria–tetanus–pertussis; HCC, high concentration of
cytokines; HCMV, human cytomegalovirus; IFN-c, interferon-c; IL-2, interleukin-2; LCC, low concentration of cytokines; NK,
natural killer; PBMC, peripheral blood mononuclear cells; PE, phycoerythrin; rh, recombinant human; TT, tetanus toxoid
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A number of NK cell subsets with different functional

potential have now been described in humans. The least

mature circulating NK cells are CD56bright CD57� and

are assumed to give rise to CD56dim CD57� cells which,

in turn, mature into CD56dim CD57+ cells, the latter sub-

set increasing in frequency with increasing age.8,9 This

three-step maturation is associated with acquisition of

CD16, CX3CR1, granzyme and KIR, gradual loss of pro-

liferative capacity, reduced responsiveness to cytokines

such as IL-12 and IL-18, and increasing cytotoxic func-

tion.10,11 CD56dim CD57+ NK cells express lower levels of

IL-18Ra10,11 as well as lower levels of mRNA for the

inducible chain of the IL-12R (IL-12Rb2)12 suggesting

that these NK cells may respond less well than other sub-

sets to IL-12 and IL-18. Conversely, CD56dim CD57+ cells

express higher levels of CD16, suggesting that they may

be particularly good mediators of antibody-dependent

cellular cytotoxicity.12

The potential for NK cells to respond to exogenous

cytokines is central to their ability to control infec-

tions,4,13,14 particularly where ligands for other NK-acti-

vating receptors are lacking. Moreover, NK cells

responding to CD4+ T-cell-derived IL-2 have the poten-

tial to contribute to secondary immune responses, includ-

ing those induced by vaccination.3,4 We wondered,

therefore, whether NK cell subsets would differ in their

ability to mount ‘recall’ responses to vaccine antigens. To

test this hypothesis, we have assessed the capacity of vari-

ous NK cell subsets, defined principally by their expres-

sion of CD56 and CD57, to contribute to a recall

response to the components of diphtheria–tetanus–per-
tussis (DTP) vaccine. We find that vaccine-induced NK

cell interferon-c (IFN-c) and degranulation (CD107a)

responses differ between NK cell subsets. Importantly,

our studies reveal that CD57 expression is gained in a

gradual stepwise fashion and that changes in NK cell

function mirror this progressive maturation.

Materials and methods

Donors and peripheral blood mononuclear cell prepara-
tion

Volunteers were recruited from among staff and students

at the London School of Hygiene and Tropical Medicine.

All subjects gave fully informed, written consent and the

study was approved by the London School of Hygiene

and Tropical Medicine Ethics Committee. Subjects ranged

in age from 21 to 73 years and all donors confirmed that

they had been vaccinated against diphtheria, tetanus and

pertussis in childhood. Peripheral blood mononuclear

cells (PBMC) were separated by fractionation on a

Ficoll–Hypaque gradient and cryopreserved in liquid

nitrogen. Frozen PBMC were thawed with pre-warmed

complete medium [RPMI-1640 supplemented with

100 U/ml penicillin/streptomycin and 20 mM L-glutamine

(Gibco, Lifesciences, Paisley, UK) and 10% pooled human

AB serum (Sigma, Poole, UK)] (at 37°), washed several

times and rested for 30 min before use.

NK cell assay culture

Peripheral blood mononuclear cells (2 9 105 cells in

200 ll) were cultured in 96-well U-bottom plates in com-

plete medium with or without low concentration of cyto-

kines [LCC; 12�5 pg/ml recombinant human (rh) IL-12

(PeproTech, Rocky Hill, NJ) plus 10 ng/ml rhIL-18 (MBL,

Woburn, MA)]; high concentration of cytokines (HCC;

5 ng/ml rhIL-12 plus 50 ng/ml rhIL-18); or 7�5 lg/ml tet-

anus toxoid (TT), 1 lg/ml diphtheria toxoid (DT) or

1 IU/ml whole cell pertussis (all from the National

Institute for Biological Standards and Control, London,

UK) for 18 hr at 37°. GolgiPlug (containing Brefeldin A,

1/1000 final concentration; BD Biosciences, Oxford, UK)

and GolgiStop (containing Monensin, 1/1500 concentra-

tion; BD Biosciences) were added after 15 hr.

Receptor cross-linking

Flat-bottomed 96-well plates were coated (overnight at

4°) with 50 ll of mouse monoclonal antibody to human

CD16 (final concentration of 20 lg/ml; BD Biosciences)

or a cocktail of monoclonal antibodies to human NK

receptors [NKG2D, NKp30, NKp46, 2B4 (all from R&D

Systems, Abingdon, UK)] and CD2 (BD Biosciences) at an

overall combined concentration of 20 lg/ml, i.e. 4 lg/ml

each. An equivalent concentration of mouse IgG1 j iso-

type control antibody (BD Biosciences) was used as a

negative control. After washing (three times in sterile

PBS), 2 9 105 PBMC were added to each well and incu-

bated for 18 hr. GolgiPlug and GolgiStop were added

after 15 hr. Cells were then transferred to 96-well U-bot-

tomed plates for washing and staining.

Flow cytometry

Responses of NK cells and T cells were assessed as

described previously.15 Briefly, cells were stained with flu-

orophore-labelled monoclonal antibodies to cell surface

molecules, fixed, permeabilized and stained for intracellu-

lar molecules using a Cytofix/Cytoperm kit (BD Bioscienc-

es). Cells were analysed by flow cytometry on an LSR II

(BD Biosciences). Samples with fewer than 100 NK cells in

each subset were excluded. The following reagents were

used: anti-CD56-phycoerythrin (PE) -Cy7, anti-CD16-

allophycocyanin (APC) -H7, anti-CD4-Pacific Blue,

anti-IFN-c-e780, anti-IFN-c-APC, anti-CD3-V500 and

anti-CD69-phycoerythrin-cyanine5 (PE-Cy5) (all BD);

anti-CD8-PE-Cy5, anti-CD25-PE, anti-IL-18Ra-PE, anti-

CD62L-PE-Cy5, anti-CD57-e450 and anti-IL-2-APC (all
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e-Biosciences/Affimetrix, Hatfield, UK). Anti-IL-12Rb2
monoclonal antibody was obtained from R&D Systems

(Oxford, UK) and conjugated to PE-Cy5 using an Easylink

PE/Cy5� Conjugation Kit (Abcam, Cambridge, UK).

Data and statistics

Unless stated to the contrary, all figures show data from at

least three replicate experiments. Flow cytometry data were

analysed using FLOW JO (Tree Star, Ashland, OR) and data

were analysed using PRISM6 (GraphPad, San Diego, CA)

software. Statistical comparisons were performed by paired

analysis of variance or t-tests. Correlation between param-

eters was by bivariate regression analysis. ****P ≤ 0�0001,
***P < 0�001, **P < 0�01, *P < 0�05.

Results

DTP vaccination induces durable vaccine antigen-
driven NK cell responses

To validate DTP vaccination as a suitable model for eval-

uating NK cell recall responses, PBMC were incubated

overnight with TT, DT or inactivated whole cell pertussis

with or without low concentrations of the cytokines IL-12

and IL-18 (LCC) or, as a positive control, with a high

concentration of cytokines IL-12 and IL-18 (HCC),

stained for NK cell phenotypic and functional markers,

and examined by flow cytometry (Fig. 1). HCC induces

over 50% of CD3� CD56+ NK cells to express cell surface

CD25 and intracellular IFN-c (median 19�9%, range 1�6–
57�5, Fig. 1a–c) and has a significant, but much less

marked, effect on CD107a expression (median 2�5%,

range 0�001–9�0, Fig. 1a,d,e). By contrast, LCC alone

induces a small, but significant, proportion of NK cells to

express CD25 (median 6�4%, range 0�6–25�4), but few, if
any, of these cells also produce IFN-c (median 0�0%,

range 0�0–1�68) or express CD107a (median 0�4%, range

0�1–2�4) on their surface (Fig. 1a).

Among PBMC stimulated with vaccine antigen alone

(i.e. without LCC) there is highly significant up-regula-

tion of both CD25 and IFN-c by NK cells in response to

pertussis (median 1�3%, range 0�0–4�6), a lesser (but still

significant) response to DT (median 0�1%, range 0�0–1�3)
and no significant response to TT (median 0�1%, range

0�0–1�3) (Fig. 1b). However, responses to all three anti-

gens were significantly enhanced in the presence of LCC

(pertussis: median 3�9%, range 0�9–17�6; DT: median

0�5%, range 0�0–13�5; TT: median 0�3%, range 0�0–2�13)
(Fig. 1c) and were ablated in the presence of neutralizing

antibody to IL-2 (data not shown). These data are fully

consistent with a scenario in which a whole cell antigen

such as pertussis contains ligands for Toll-like receptors16

and so induces accessory cells to secrete cytokines such as

IL-12 and IL-18, whereas purified proteins such as TT

and DT do not; exogenous LCC induces expression of

CD25 (and so the high-affinity IL-2R) on NK cells allow-

ing them to respond to IL-2 from vaccine-specific CD4+

T cells. By contrast, a statistically significant increase in

CD107a expression on NK cells was seen in response to

all three vaccine components (pertussis: median 2�2%,

range 0�2–22�2; DT: median 0�5%, range 0�0–2�6; TT:

median 0�5%, range 0�0–4�3) (Fig. 1d) and this was not

significantly enhanced by LCC (pertussis: median 4�5%,

range 0�9–20�0; DT: median 0�9%, range 0�0–3�0; TT:

median 0�6%, range 0�1–2�5) (Fig. 1e).

CD57 is a stable marker of human NK cell subsets

Despite very robust NK cell responses to some of the vac-

cine antigens, not all NK cells responded and there is

considerable heterogeneity in the magnitude of the NK

cell response between donors (Fig. 1b–e). Although heter-

ogeneity between individuals might be explained by varia-

tion in the strength of the T-cell IL-2 response that drives

the NK responses,3,17,18 this is unlikely to explain hetero-

geneity of responses within the NK cell population of an

individual donor. We therefore considered whether

within-donor variation might be the result of differences

between subsets of NK cells in their intrinsic sensitivity to

activation by monokines and T-cell-derived IL-2.

CD57 is a marker of highly differentiated, highly cyto-

toxic NK cells12,19,20 and CD62L (L-selectin) is a marker of

cells able to proliferate and secrete IFN-c after high-dose

cytokine stimulation.21 However, to use these as markers

of NK cell subsets in mixed PBMC assays, it was impor-

tant to know whether they were stable phenotypic markers

or whether their expression was altered after activation. To

this end, expression of CD62L and CD57 were examined

on PBMC after overnight stimulation with LCC or HCC,

or with cross-linking antibody to the NK cell activating

receptor CD16, or a cocktail of antibodies to NK cell acti-

vating receptors (NKp30, NKp46, NKG2D and CD2)

(Fig. 2). Consistent with previous reports,12 CD62L and

CD57 tended to define mutually exclusive subsets of NK

cells (Fig. 2a). However, although CD57 expression

appeared very stable after overnight activation by cyto-

kines or receptor cross-linking (Fig. 2b), CD62L expres-

sion was markedly reduced after activation (Fig. 2c).

Given the significant activation-induced down-regulation

of CD62L, subsequent functional analysis of NK subsets

was based on CD57 expression but not CD62L.

CD56 and CD57 define multiple distinct NK cell
subsets

Expression of CD56 and CD57 has been used to identify

three subsets of NK cells. Functional analysis of these

subsets suggests that NK cells differentiate from relatively

immature CD56bright CD57� cells, which respond to
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cytokine stimulation by producing IFN-c but have limited

cytotoxic potential, to CD56dim CD57� cells which are

also poorly cytotoxic but retain IL-12R expression and so

the ability the secrete IFN-c in response to cytokine

stimulation and, eventually, to CD56dim CD57+ cells,

which no longer respond to exogenous cytokines but are

skewed towards a cytotoxic phenotype following cross-

linking of CD16 or NK receptors or exposure to target
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Figure 1. Natural killer (NK) cell responses to diphtheria toxoid (DT), tetanus toxoid (TT) and whole cell pertussis. Peripheral blood mononu-

clear cells (PBMC) from previously vaccinated donors were cultured in vitro for 18 hr with medium alone, low concentration of cytokines

(LCC), DT, TT, pertussis (Per), DT + LCC, TT + LCC, Per + LCC, or high concentration of cytokines (HCC). (a) Representative flow cytometry

plots showing gating of CD56+ CD3� NK cells and expression of CD25, CD107a and interferon-c (IFN-c). (b, c) Percentage of NK cells co-

expressing CD25+ and IFN-c+ after stimulation in the absence (b) or presence (c) of LCC. (d, e) Percentage of NK cells expressing CD107a after

stimulation in the absence (d) or presence (e) of LCC. Note: in (b) and (c) HCC data are shown on a different axis (see right hand side of plot).

Each data point represents one donor, n = 22. Lines represent median values. Data were analysed with paired, non-parametric t-tests.

**** P ≤ 0�0001, *** P < 0�001, ** P < 0�01, * P < 0�05.
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cells.10,12,20 However, CD57 expression is not simply ‘off’

or ‘on’ but is gradually up-regulated in a stepwise fashion

(Fig. 3). It was possible to identify seven distinct peaks of

CD57 expression (Fig. 3b,c) with each peak accounting

for ~5% to ~35% of all CD56dim NK cells (Fig. 3d).

CD62L expression is lost as soon as cells begin to express

CD57 (Fig. 3e) but CD16 expression is gradually up-reg-

ulated, with maximal CD16 expression not being reached

until the third peak of CD57 expression (Fig. 3f). Most

importantly, the functional remodelling of NK cells, in

terms of loss of cytokine-induced up-regulation of CD25

and IFN-c expression, is extremely gradual with complete

unresponsiveness to HCC not being seen until CD57

expression reaches its maximal level (Fig. 3g,h). By con-

trast, little or no difference was observed in the ability of

NK cells with different levels of CD57 expression to

degranulate in the presence of cytokines (Fig. 3i).

These data suggest that NK cells with intermediate levels

of CD57 expression (CD57int), which represent a signifi-

cant fraction (~30%) of circulating NK cells, are also inter-

mediate in terms of their functional maturation. To

formally test this hypothesis, we analysed responses of the

four NK cell subsets (CD56bright; CD56dim CD57�;
CD56dim CD57int and CD56dim CD57+, Fig. 4a) to HCC,

cross-linking of CD16 and cross-linking of NK receptors,

by expression of CD25, IFN-c or CD107a (Fig. 4b–d). As
expected, high proportions of CD56bright cells expressed

CD25, IFN-c or CD107a in response to HCC; cross-link-

ing of CD16 or NK cell receptors up-regulated CD25 and

CD107a but not IFN-c in this subset (Fig. 4b–d). Among

CD56dim NK cells, CD25, CD107a and IFN-c responses to

HCC declined with increasing levels of CD57 expression

with a statistically significant negative trend from

CD56dim CD57� cells, through CD56dim CD57int cells to

CD56dim CD57+ cells (analysis of variance for all linear

trends, P ≤ 0�0001) (Fig. 4b–d). Interestingly, although no

significant differences were observed between the three

CD56dim populations in their ability to degranulate or

produce IFN-c in response to CD16 or NK cell receptor

cross-linking, the cross-linking of CD16 or NK cell recep-

tors led to increasing levels of CD25 expression with

increasing expression of CD57 (linear trend; P ≤ 0�0001 in

both cases), suggesting that responsiveness to T-cell IL-2

may be retained in CD57+ NK cells in the presence of

antibodies able to induce antibody-dependent cellular

cytotoxicity. In summary therefore, the transition from

CD56bright to CD56dim (irrespective of CD57 expression) is

coincident with a marked reduction in cytokine secretion,
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Figure 2. CD57 is a stable marker of human natural killer (NK) cell subsets. Peripheral blood mononuclear cells (PBMC) were cultured in vitro

for 18 hr with plate-bound mouse IgG1 isotype control (mIgG1), anti-human CD16, anti-human NK cell receptor (NKR) cocktail (a–CD2,
a–NKG2D, a–NKp30, a–NKp46) (all to a final concentration of 20 lg/ml), low concentration of cytokines (LCC) or high concentration of cyto-

kines (HCC). (a) Representative flow cytometry plots showing expression of CD62L and CD57 on gated (CD56+ CD3�) NK cells. (b) Percentage

of NK cells that were CD57+ after PBMC culture under different conditions. (c) Percentage of NK cells that were CD62L+ after PBMC culture

under different conditions. P-values are derived from repeated measures analysis of variance (c). Each data point represents one donor, n = 31.

Lines represent mean values. ****P ≤ 0�0001, **P < 0�01, *P < 0�05.
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but no overall change in degranulation, in response to

cross-linking of NK cell receptors or CD16 receptors. By

contrast, increasing CD57 expression correlates with a

gradual loss of responsiveness (in terms of CD25 expres-

sion, IFN-c release and degranulation) to exogenous

IL-12 + IL-18.

Vaccine-driven, cytokine-mediated NK cell IFN-c
responses are dominated by the CD56dim CD57� and
CD56dim CD57int NK cell subsets

Accessory cytokines (including IL-12 and IL-18) and

T-cell-derived IL-2 are known to be essential to drive NK

cell IFN-c responses during re-stimulation with vaccine

antigens.3 Given that increasing CD57 expression corre-

lates with loss of responsiveness to HCC, we predicted

that CD56dim CD57� or CD56dim CD57int NK cell popu-

lations would show stronger ‘recall’ responses to whole

cell pertussis than would CD56dim CD57+ NK cells. To

test this hypothesis, responses to pertussis (Fig. 1) were

analysed for each of the four NK cell subsets defined by

CD56 and CD57 expression (Fig. 5). There was a clear

hierarchy of responses with a significantly higher propor-

tion of CD56dim CD57� NK cells than CD56dim CD57int

or CD56dim CD57+ NK cells co-expressing CD25 and

IFN-c (P < 0�001 for linear trends) (Fig. 5a). On the
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CD56dim CD57+ cells). (d–f) Ex vivo analysis of each subpopulation of NK cells (as defined in c) among NK cells from 32 donors: (d) mean
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other hand, CD107a expression was similar among all

three CD57-defined NK cell subsets (Fig. 5b). When con-

sidering the proportion of all NK cells belonging to each

subset together with the responsiveness of each individual

subset, it became evident that vaccine antigen-driven NK

cell IFN-c recall responses occur almost entirely within

the CD56bright and CD56dim CD57� NK cell subsets with

minimal contributions from the CD56dim CD57int and

CD56dim CD57+ subsets (Fig. 5c).

CD57 acquisition is associated with reduced
expression of cytokine receptors IL-12Rb2 and
IL-18Ra

CD57 acquisition on NK cells is associated with a reduced

ability to respond to accessory cytokines (Fig. 4) leading

to a progressive decline in their ability to respond to vac-

cine-driven cellular responses by production of IFN-c
(Fig. 5a). To determine whether this is due to altered cyto-

kine receptor expression and altered downstream signal-

ling we assessed the resting (ex vivo) expression of

IL-18Ra and IL-12Rb2 (Fig. 6). The proportion of

IL-12Rb2-expressing cells was highest among the

CD56bright NK cells with a progressive decrease in expression

across the CD57-defined NK cell subsets (Fig. 6b) but

IL-12Rb2 expression density did not vary across subsets

(Fig. 6c). Although IL-18Ra was expressed at a much

higher frequency than IL-12Rb2 within all NK cell subsets,

the same trend was seen, with declining IL-18Ra expres-

sion, with increasing CD57 expression (Fig. 6d). In contrast

to IL-12Rb2, however, IL-18Ra mean fluorescence intensity

also declined with increasing CD57 expression (Fig. 6e).
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Discussion

Vaccination typically provides long-lasting protection

against infectious diseases by inducing the expansion and

differentiation of small populations of naive, antigen-spe-

cific, T and B cells into much larger populations of long-

lived memory cells with enhanced effector function. In

particular, antigen-specific memory CD4+ T cells augment

B-cell, CD8+ T-cell and macrophage-mediated effector

functions.22 Although circulating antibody may persist for

many years after vaccination, frequencies of antigen-spe-

cific memory T cells are typically extremely low in

peripheral blood (approximately 1 in 10 00023) and can

be difficult to detect in the absence of recent boosting.

However, the observation that IL-2 produced in an anti-

gen-specific manner by CD4+ T cells can activate a sub-

stantial proportion (varying from ~ 1% up to 60% in

some cases) of all circulating NK cells,2,3,13,18,24 and that

these responses can be detected for more than 20 years

after vaccination in the case of DTP, suggests that NK cell

responsiveness might represent a more sensitive biomar-

ker of T-cell induction and maintenance and might there-

fore have a role to play in evaluation of new vaccines or

new vaccine formulations. Whether NK cells – activated

by T-cell IL-2 or by cross-linking of Fc receptors (CD16)

by immune complexes – play an important role as effec-

tors of vaccine-induced immunity is as yet unknown but

the speed with which they are activated (within 6 hr of

exposure to the pathogen3) and the large number of

potentially responding cells suggest that their role should

be investigated.

Here, we observed that NK cell responses to pertussis

were significantly greater in magnitude than responses to

DT or TT, even though all three antigens would have

been administered together during vaccination. A likely

explanation for this is that the pertussis antigen is a

whole cell preparation containing numerous ligands for

pattern recognition receptors on macrophages and den-

dritic cells, leading to their secretion of IL-12 and IL-18,

which is necessary to induce NK cells to secrete IFN-c
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and become cytotoxic.4,13 Purified toxoids such as DT

and TT lack such ligands and so, in vitro at least, NK cells

can only be induced to respond in the presence of exoge-

nous IL-12 and IL-18. In vivo. however, infection by live

tetanus and diphtheria bacteria would presumably induce

a strong accessory cell cytokine response. On the other

hand, much stronger NK responses to pertussis than DT

or TT were seen even in the presence of LCC, suggesting

that whole cell pertussis may also induce a stronger T-cell

response than does a toxoid antigen.

Despite an overall tendency for NK cells to respond to

vaccine antigens, there was considerable heterogeneity

between individuals, which may in part be explained by

inter-individual variation in T-cell IL-2 responses. How-

ever, we also observed heterogeneity between NK cell

subsets in their responsiveness to vaccine-driven signals,

with responses being dominated by CD56bright CD57�

and CD56dim CD57� NK cells. This correlated with

higher levels of CD25 expression on IL-12/IL-18-activated

CD57� cells compared with CD57+ cells and a higher

resting level expression of IL-12Rb2 and IL-18Ra on these

cells. The relationship between NK cell phenotype and

responsiveness to exogenous cytokines is summarized in

Fig. 7. These findings are in line with previous reports

that CD57+ NK cells are less able to respond to cyto-

kines,10,12 and express lower levels of IL-18Ra and lower

amounts of mRNA for IL-12Rb2, compared with CD57�

NK cells. IL-18 is known to induce expression of the

high-affinity IL-2Ra (CD25) on NK cells25 whereas IL-12

is necessary, but not sufficient, for their production of
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Figure 6. Interleukin-12 receptor b2 (IL-12Rb2) and IL-18Ra expression decrease with CD57 expression. Peripheral blood mononuclear cells

were analysed ex vivo for IL-12Rb2 and IL-18Ra expression. (a) Representative flow cytometry plots for IL-12Rb2 and IL-18Ra. Frequency (b)

and mean fluorescence intensity (MFI) (c) of IL-12Rb2 expression, and frequency (d) and MFI (e) of IL-18Ra expression, were assessed by sub-

set. Each data point represents one donor, n = 19. Lines indicate median values. CD56dim subsets were analysed for linear trend with a repeated

measures analysis of variance. ****P ≤ 0�0001.
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IFN-c.26 Moreover, IL-2 induces expression of the induc-

ible chain of the IL-12R (IL-12b2).27 Thus, as shown

here, synergy between these three cytokine signals, IL-2,

IL-12 and IL-18, results in NK cells producing high levels

of IFN-c during the first 18–24 hr following re-exposure

to vaccine antigens.

Interestingly, we have observed that the maturation of

NK cells from CD56bright CD57� to CD56dim CD57+ is a

gradual process with functional changes being highly cor-

related with CD56 and CD57 expression. This is particu-

larly apparent for the cytokine-driven pathway of NK cell

activation where expression of IL-12R and IL-18R as well

as IL-12/IL-18-induced CD25 expression and IFN-c syn-

thesis are all very tightly negatively associated with CD57

expression. We find that CD57int NK cells make signifi-

cant amounts of IFN-c after stimulation with high-dose

IL-12/IL-18 but respond less robustly to low concentra-

tion cytokines and vaccine antigens, suggesting that they

may fail to compete effectively with CD57� NK cells

when cytokines are limiting.

An area of increasing concern in industrialized countries

is the burden of infectious disease and poor response to

vaccination in the elderly population.28 Although ageing in

the innate immune system, including age-associated

changes in the composition, phenotype and function of

circulating NK cells, is being linked to increased suscepti-

bility to de novo viral and bacterial infections,29 deteriora-

tion of antigen-specific memory responses and reduced

responsiveness to vaccination with increasing age tend to

be attributed to narrowing of the T-cell repertoire and

functional senescence of the T-cell pool.30,31 Our data sug-

gest, however, that these two components of immune age-

ing may interact; deteriorating CD4+ T-cell responses will

limit the availability of IL-2 to drive NK cell responses

while, at the same time, the proportion of CD57� NK cells

able to respond to IL-2 will decrease. We predict, therefore,

that vaccination-induced NK cell IFN-c responses could

decline with increasing age, potentially contributing to

reduced vaccine efficacy in elderly populations. In addi-

tion, subclinical human cytomegalovirus (HCMV) infec-

tions may potentiate the functional differentiation and

senescence of NK cells.9,32–35 Given that at least 40% of the

world population is HCMV seropositive, and prevalence

can exceed 95% in some African and Asian populations,36

HCMV exposure may contribute significantly to poor vac-

cine efficacy at a population level. Studies to test these vari-

ous predictions are currently underway in our laboratory.
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Non WHO Reference Material 
Tetanus Toxoid (Non-Adsorbed) 

NIBSC code: 02/232 
Instructions for use 

(Version 9.0, Dated 20/01/2014) 
 

This material is not for in vitro diagnostic use.   
 

1.    INTENDED USE  
Tetanus toxoid was provided to NIBSC by Aventis Pasteur MSD, France.  
The product was freeze-dried in a medium containing glycine in 
November 2002.  It is been confirmed as suitable for use as a control 
antigen in immunodiffusion identity assays. 
 
2.    CAUTION 
This preparation is not for administration to humans. 
 
The material is not of human or bovine origin.  As with all materials of 
biological origin, this preparation should be regarded as potentially 
hazardous to health.  It should be used and discarded according to 
your own laboratory's safety procedures.  Such safety procedures 
should include the wearing of protective gloves and avoiding the 
generation of aerosols.  Care should be exercised in opening 
ampoules or vials, to avoid cuts. 
 
3.    UNITAGE 
Each ampoule contains 900 Lf units of tetanus toxoid, non-adsorbed. 
 
4.    CONTENTS 
Country of origin of biological material: France. 
The material is purified tetanus toxoid, of purity >1000 Lf/mg pN, stabilized 
with glycine.  The material was provided by Aventis Pasteur MSD in one 
glass bottle containing 800 ml of toxoid with an internal code number 
FA082448, with specifications of 5000 Lf/ml (4.42 mg protein Nitrogen (25 
mg/ml protein by BCA assay).  The product fully meets PhEur 
specifications for purity, safety and toxicity/toxicity reversal for use in 
manufacturing of adsorbed vaccines.  Material (750 ml) was diluted 1/5 
with 400 ml of 1M sodium chloride (0.1 M final concentration), 2000 ml of 
10% glycine (5% final concentration) and 850 ml distilled water, and 1.0 
ml was filled into ampoules for freeze-drying.  The average weight of the 
ampoule content was determined as 0.0631 g of dry weight ± 0.38%.  The 
residual moisture is less than 1% and samples measured were in the 
range 0.07% to 0.6%. 
 
5.    STORAGE 
Unopened ampoules should be stored at -20°C. 
Please note: because of the inherent stability of lyophilized 
material, NIBSC may ship these materials at ambient temperature. 
 
6.    DIRECTIONS FOR OPENING 
DIN ampoules have an „easy-open‟ coloured stress point, where the 
narrow ampoule stem joins the wider ampoule body. 
Tap the ampoule gently to collect the material at the bottom (labeled) 
end. Ensure that the disposable ampoule safety breaker provided is 
pushed down on the stem of the ampoule and against the shoulder of 
the ampoule body. Hold the body of the ampoule in one hand and the 
disposable ampoule breaker covering the ampoule stem between the 
thumb and first finger of the other hand. Apply a bending force to open 
the ampoule at the coloured stress point, primarily using the hand 
holding the plastic collar.  
Care should be taken to avoid cuts and projectile glass fragments that 
might enter the eyes, for example, by the use of suitable gloves and an 
eye shield. Take care that no material is lost from the ampoule and no 
glass falls into the ampoule. Within the ampoule is dry nitrogen gas at 
slightly less than atmospheric pressure. A new disposable ampoule 
breaker is provided with each DIN ampoule.  
 
 

7.    USE OF MATERIAL 
No attempt should be made to weigh out any portion of the freeze-dried 
material prior to reconstitution  
The entire contents of each ampoule should be completely resuspended in 
an accurately measured amount of a suitable solution (e.g. saline).  A 
suspension of the total content of an ampoule will contain 900 Lf in the total 
volume.  The suspension should kept at 4°C and should not be frozen. 
 
8.    STABILITY  
Reference materials are held at NIBSC within assured, temperature-
controlled storage facilities.  Reference Materials should be stored on 
receipt as indicated on the label. 
      
When stored unopened at the recommended temperature (-20°C), the 
freeze-dried material is highly stable with a predicted degradation rate of 
0.003% loss of activity per year [2]. 
 
Once reconstituted, 02/232 has been confirmed to be stable for up to 12 
months in in vitro assays at NIBSC following storage at +4°C. However, 
users are encouraged to determine the stability of the material according 
to their own methods of preparation, storage and use. 
 
Users who have data supporting any changes in the characteristics of 
this material are encouraged to contact NIBSC. 
 
9.    REFERENCES 
1. Preneta-Blanc, R., Rigsby, P., Sloth Wilhelmsen, E., Tierney, R., Brierley, 
M. and Sesardic, D. 2007. Collaborative Study: Calibration of Replacement 
International Standard of Tetanus Toxoid for use in Flocculation Test. WHO 
Expert Committee on Biological Standardization. WHO/BS/07.2061. 
2. Preneta-Blanc, R., Rigsby, P., Sloth-Wilhelmsen, E., Tierney, R., Brierley, 
M. and Sesardic, D. Calibration of replacement international standards of 
diphtheria and tetanus for use in flocculation test. Biologicals, 36 (2008), 
315-326. 
 
10.    ACKNOWLEDGEMENTS 
N/A 
 
11.    FURTHER INFORMATION 
Further information can be obtained as follows; 
This material: enquiries@nibsc.org 
WHO Biological Standards:  
http://www.who.int/biologicals/en/ 
JCTLM Higher order reference materials: 
http://www.bipm.org/en/committees/jc/jctlm/ 
Derivation of International Units: 
http://www.nibsc.org/products/biological_reference_materials/frequently_
asked_questions/how_are_international_units.aspx  
Ordering standards from NIBSC: 
http://www.nibsc.org/products/ordering_information/frequently_asked_qu
estions.aspx 
NIBSC Terms & Conditions: 
http://www.nibsc.org/terms_and_conditions.aspx 
 
 
12.    CUSTOMER FEEDBACK 
Customers are encouraged to provide feedback on the suitability or use 
of the material provided or other aspects of our service. Please send any 
comments to enquiries@nibsc.org  
 
 
13.    CITATION  
In all publications, including data sheets, in which this material is 
referenced, it is important that the preparation's title, its status, the NIBSC 
code number, and the name and address of NIBSC are cited and cited 
correctly. 
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14.    MATERIAL SAFETY SHEET   

Physical and Chemical properties 

Physical 
appearance: 
Freeze-dried 
powder 

Corrosive: No 

Stable: 
 Yes 

Oxidising:  No 

Hygroscopic:
 No 

Irritant: No 

Flammable:
 No 

Handling: See caution, Section 2 

Other (specify): Chemically inactivated tetanus toxin.  Tested and 
found to be free of active toxin and free from ability to reverse to toxin. 

Toxicological properties 

Effects of inhalation: Not established, avoid inhalation 

Effects of ingestion: Not established, avoid ingestion 

Effects of skin absorption: Not established, avoid contact with skin 

Suggested First Aid 

Inhalation: Seek medical advice 

Ingestion: Seek medical advice 

Contact with eyes: Wash with copious amounts of water.  Seek 
medical advice 

Contact with skin: Wash thoroughly with water. 

Action on Spillage and Method of Disposal 

Spillage of ampoule contents should be taken up with absorbent 
material wetted with an appropriate disinfectant. Rinse area with an 
appropriate disinfectant followed by water. 
Absorbent materials used to treat spillage should be treated as 
biological waste. 

 
15.    LIABILITY AND  LOSS 
In the event that this document is translated into another language, the 
English language version shall prevail in the event of any 
inconsistencies between the documents. 

Unless expressly stated otherwise by NIBSC, NIBSC‟s Standard 
Terms and Conditions for the Supply of Materials (available at 
http://www.nibsc.org/About_Us/Terms_and_Conditions.aspx or upon 
request by the Recipient) (“Conditions”) apply to the exclusion of all 
other terms and are hereby incorporated into this document by 
reference. The Recipient's attention is drawn in particular to the 
provisions of clause 11 of the Conditions. 

 
16.    INFORMATION FOR CUSTOMS USE ONLY 

Country of origin for customs purposes*:  United Kingdom 
* Defined as the country where the goods have been produced and/or 
sufficiently processed to be classed as originating from the country of 
supply, for example a change of state such as freeze-drying.  

Net weight:  1.0 ml 

Toxicity Statement: Non-toxic 

Veterinary certificate or other statement if applicable. 
Attached: No    
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Non WHO Reference Material 
Diphtheria Toxoid, Non-adsorbed 

NIBSC code: 69/017 
Instructions for use 

(Version 8.0, Dated 29/11/2012) 
 

This material is not for in vitro diagnostic use.   
 

1.    INTENDED USE  
This material has been prepared by NIBSC in 1969 as a freeze dried 
preparation containing diphtheria toxoid without adjuvant (non-adsorbed). 
The toxoid was provided by Glaxo Laboratories in May 1968 with the 
intention of making a European reference standard. However this 
standard was never established and this material has not been calibrated 
in a collaborative study. This material is not calibrated in International 
Units and is therefore not suitable for use as a standard for determining 
the potency of non-adsorbed diphtheria vaccines.  
 
2.    CAUTION 
This preparation is not for administration to humans. 
 
The material is not of human or bovine origin.  As with all materials of 
biological origin, this preparation should be regarded as potentially 
hazardous to health.  It should be used and discarded according to 
your own laboratory's safety procedures.  Such safety procedures 
should include the wearing of protective gloves and avoiding the 
generation of aerosols.  Care should be exercised in opening 
ampoules or vials, to avoid cuts. 
 
3.    UNITAGE 
The Lf content was determined at NIBSC by quantitative Immunodiffusion 
assay against the International Standard of Diphtheria Toxoid for use in 
Flocculation Test (02/176). The diphtheria toxoid content of each ampoule 
was determined as 445 Lf. Total protein content was determined as 1 
mg/ampoule by BCA protein assay. 
 
4.    CONTENTS 
Country of origin of biological material: United Kingdom. 
The purified diphtheria toxoid contained 1500 Lf/mg pN on arrival. Glycine 
was added at 22.5 g/L before freeze drying 1.0 ml of liquid per ampoule. 
The average weight of the ampoule content was determined as 1.014 g of 
dry wt. +/- 0.7%. 
 
 
5.    STORAGE 
Unopened ampoules should be stored at -20°C 
Please note: because of the inherent stability of lyophilized 
material, NIBSC may ship these materials at ambient temperature. 
 
6.    DIRECTIONS FOR OPENING 
Tap the ampoule gently to collect the material at the bottom (labelled) 
end.   Ensure ampoule is scored all round at the narrow part of the 
neck, with a diamond or tungsten carbide tipped glass knife file or 
other suitable implement before attempting to open.  Place the 
ampoule in the ampoule opener, positioning the score at position 'A'; 
shown in the diagram below.  Surround the ampoule with cloth or 
layers of tissue paper.  Grip the ampoule and holder in the hand and 
squeeze at point 'B'.  The ampoule will snap open.  Take care to avoid 
cuts and projectile glass fragments that enter eyes.  Take care that no 
material is lost from the ampoule and that no glass falls into the 
ampoule. 

 

Side view of ampoule opening device containing an ampoule positioned 
ready to open.  'A' is the score mark and 'B' the point of applied pressure. 
 
7.    USE OF MATERIAL 
No attempt should be made to weigh out any portion of the freeze-dried 
material prior to reconstitution  
 
The entire contents of each  ampoule should be completely dissolved with 1 
ml of distilled water prior to use. The resulting concentrate may be diluted 
further as required. The ampoule contents contain no bacteriostat but have 
been tested and found sterile after freeze drying. 
 
This preparation can be used in assays designed to detect diphtheria toxoid 
in vaccines using immunodetection methods. It is the responsibility of the 
recipient to establish the usefulness of this preparation for the purposes they 
wish to use it for. NIBSC takes no responsibility for the use of this 
preparation for any purpose as the preparation has not been calibrated in a 
collaborative study and has no official status. 
 
8.    STABILITY  
Reference materials are held at NIBSC within assured, temperature-
controlled storage facilities. Reference Materials should be stored on 
receipt as indicated on the label.  
 
There is no data available on long term stability.  However dried toxoid 
standards are expected to undergo negligible loss of potency during long 
term storage at the indicated storage temperature [1]. 
 
Once reconstituted, users should determine the stability of the material 
according to their own method of preparation, storage and use. Users 
who have data supporting any deterioration in the characteristics of any 
reference preparation are encouraged to contact NIBSC. 
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13.    CITATION  
In all publications, including data sheets, in which this material is 
referenced, it is important that the preparation's title, its status, the 
NIBSC code number, and the name and address of NIBSC are cited 
and cited correctly. 
 
14.    MATERIAL SAFETY SHEET   

Physical and Chemical properties 

Physical 
appearance: 
Freeze-dried 
powder 

Corrosive: No 

Stable: 
 Yes 

Oxidising:  No 

Hygroscopic:
 Yes 

Irritant: No 

Flammable:
 No 

Handling: See caution, Section 2 

Other (specify): Contains material of bacterial origin 

Toxicological properties 

Effects of inhalation: Not established, avoid inhalation 

Effects of ingestion: Not established, avoid ingestion 

Effects of skin absorption: Not established, avoid contact with skin 

Suggested First Aid 

Inhalation: Seek medical advice 

Ingestion: Seek medical advice 

Contact with eyes: Wash with copious amounts of water.  Seek 
medical advice 

Contact with skin: Wash thoroughly with water. 

Action on Spillage and Method of Disposal 

Spillage of ampoule contents should be taken up with absorbent 
material wetted with an appropriate disinfectant. Rinse area with an 
appropriate disinfectant followed by water. 
Absorbent materials used to treat spillage should be treated as 
biological waste. 

 
15.    LIABILITY AND  LOSS 
In the event that this document is translated into another language, the 
English language version shall prevail in the event of any 
inconsistencies between the documents. 

Unless expressly stated otherwise by NIBSC, NIBSC’s Standard 
Terms and Conditions for the Supply of Materials (available at 
http://www.nibsc.org/About_Us/Terms_and_Conditions.aspx or upon 
request by the Recipient) (“Conditions”) apply to the exclusion of all 
other terms and are hereby incorporated into this document by 
reference. The Recipient's attention is drawn in particular to the 
provisions of clause 11 of the Conditions. 

 
16.    INFORMATION FOR CUSTOMS USE ONLY 

Country of origin for customs purposes*:  United Kingdom 
* Defined as the country where the goods have been produced and/or 
sufficiently processed to be classed as originating from the country of 
supply, for example a change of state such as freeze-drying.  

Net weight:  1 g 

Toxicity Statement: Non-toxic 

Veterinary certificate or other statement if applicable. 
Attached: No    

 

http://www.nibsc.org/About_Us/Terms_and_Conditions.aspx
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Non WHO Reference Material 
Bordetella pertussis ( Whole cell vaccine)  3 BRP 

NIBSC code: 88/522 
Instructions for use 

(Version 6.0, Dated 09/04/2013) 
 

This material is not for in vitro diagnostic use.   
 

1.    INTENDED USE  
This Bordetella pertussis preparation, coded 88/522, has been 
established as the third British Reference Preparation for Pertussis (whole 
cell) Vaccine potency. 
 
2.    CAUTION 
This preparation is not for administration to humans. 
 
The material is not of human or bovine origin. 
 
3.    UNITAGE 

50 International Units per ampoule.      
 
4.    CONTENTS 
Country of origin of biological material:United Kingdom. 
Each ampoule contains the freeze dried residue of 1.0 ml of an aqueous 
solution which contained :- 
Dextran  (90kD)          80mg 
Glucose                      50mg 
B. pertussis                 20 x 10

10
 organisms 

 
5.    STORAGE 

Unopened ampoules should be stored at -20°C.       
Please note: because of the inherent stability of lyophilized 
material, NIBSC may ship these materials at ambient temperature. 
 
6.    DIRECTIONS FOR OPENINGTap the ampoule gently to collect 
the material at the bottom (labelled) end.   Ensure ampoule is scored 
all round at the narrow part of the neck, with a diamond or tungsten 
carbide tipped glass knife file or other suitable implement before 
attempting to open.  Place the ampoule in the ampoule opener, 
positioning the score at position 'A'; shown in the diagram below.  
Surround the ampoule with cloth or layers of tissue paper.  Grip the 
ampoule and holder in the hand and squeeze at point 'B'.  The 
ampoule will snap open.  Take care to avoid cuts and projectile glass 
fragments that enter eyes.  Take care that no material is lost from the 
ampoule and that no glass falls into the ampoule. 

 
Side view of ampoule opening device containing an ampoule 
positioned ready to open.  'A' is the score mark and 'B' the point of 
applied pressure. 
 
7.USE OF MATERIAL 
The B. pertussis suspension was generously donated by Wellcome 
Biotech, Beckenham, UK through the good offices of Mr P. Knight. 
The bacteria were grown and killed using standard methods and 
contained agglutinogens1 ,2 and 3. 
Ampoules coded 88/522 were prepared according to the procedures used 
for International Standards (29

th
 ECBS Report 1978). The bacteria were 

suspended at 20 x 10
10

 cells/ml in a solution of 8% dextran (90kD) and 
5% glucose. The suspension was distributed in 1.0ml aliquots into 
ampoules. The ampouled suspension was lyophilised and the ampoules 
sealed under nitrogen by heat fusion of the glass and stored at -20°C in 
the dark. 

 
Collaborative Study 
Nine laboratories in seven countries participated in a collaborative study to 
evaluate 88/522 as a reference preparation for pertussis vaccine potency.  
The study showed that :- 
1.The intra and inter-laboratory variability with respect to the potency assay 
was in agreement with that shown in previous studies. 
2.Similar estimates of potency were obtained for 88/522 interms of both the 
2

nd
 British Reference Preparation and the 2

nd
 International Standard. 

3 That 88/522 was suitable for establishment and that it be assigned the 
potency of 50 IU / ampoule. 
 
 
8.    STABILITY 
Reference materials are held at NIBSC within assured, temperature-
controlled storage facilities.  Reference Materials should be stored on 
receipt as indicated on the label. 
      
Users who have data supporting any deterioration in the characteristics of 
any reference preparation are encouraged to contact NIBSC.  
 
9.    REFERENCES 
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This material: enquiries@nibsc.org 
WHO Biological Standards:  
http://www.who.int/biologicals/en/ 
JCTLM Higher order reference materials: 
http://www.bipm.org/en/committees/jc/jctlm/ 
Derivation of International Units: 
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asked_questions/how_are_international_units.aspx  
Ordering standards from NIBSC: 
http://www.nibsc.org/products/ordering_information/frequently_asked_qu
estions.aspx 
NIBSC Terms & Conditions: 
http://www.nibsc.org/terms_and_conditions.aspx 
 
 
12.    CUSTOMER FEEDBACK 
Customers are encouraged to provide feedback on the suitability or use 
of the material provided or other aspects of our service. Please send any 
comments to enquiries@nibsc.org  
 
 
13.    CITATION 
In all publications, including data sheets, in which this material is 
referenced, it is important that the preparation's title, its status, the NIBSC 
code number, and the name and address of NIBSC are cited and cited 
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14.    MATERIAL SAFETY SHEET   

mailto:enquiries@nibsc.hpa.org.uk
http://www.who.int/biologicals/en/
http://www.bipm.org/en/committees/jc/jctlm/
http://www.nibsc.ac.uk/products/biological_reference_materials/frequently_asked_questions/how_are_international_units.aspx
http://www.nibsc.ac.uk/products/biological_reference_materials/frequently_asked_questions/how_are_international_units.aspx
http://www.nibsc.ac.uk/products/ordering_information/frequently_asked_questions.aspx
http://www.nibsc.ac.uk/products/ordering_information/frequently_asked_questions.aspx
http://www.nibsc.ac.uk/terms_and_conditions.aspx
mailto:enquiries@nibsc.org


 
 

  
 
National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, EN6 3QG T +44 (0)1707 641000 
WHO International Laboratory for Biological Standards, UK Official Medicines Control Laboratory  nibsc.org  

 
 Page 2 of 2 

 

Physical and Chemical properties 

Physical 
appearance:Freeze 
dried powder 

Corrosive: No 

Stable: 
 Yes 

Oxidising:  No 

Hygroscopic:
 No 

Irritant: No 

Flammable:
 No 

Handling: See caution, Section 2 

Other (specify): Contains material of biological  origin 

Toxicological properties 

Effects of inhalation: Not established, avoid inhalation 

Effects of ingestion: Not established, avoid ingestion 

Effects of skin absorption: Not established, avoid contact with skin 

Suggested First Aid 

Inhalation: Seek medical advice 

Ingestion: Seek medical advice 

Contact with eyes: Wash with copious amounts of water.  Seek 
medical advice 

Contact with skin: Wash thoroughly with water. 

Action on Spillage and Method of Disposal 

Spillage of ampoule contents should be taken up with absorbent 
material wetted with an appropriate disinfectant. Rinse area with an 
appropriate disinfectant followed by water. 
Absorbent materials used to treat spillage should be treated as 
biological waste. 

 
15.    LIABILITY AND  LOSS 
In the event that this document is translated into another language, the 
English language version shall prevail in the event of any 
inconsistencies between the documents. 

Unless expressly stated otherwise by NIBSC, NIBSC’s Standard 
Terms and Conditions for the Supply of Materials (available at 
http://www.nibsc.org/About_Us/Terms_and_Conditions.aspx or upon 
request by the Recipient) (“Conditions”) apply to the exclusion of all 
other terms and are hereby incorporated into this document by 
reference. The Recipient's attention is drawn in particular to the 
provisions of clause 11 of the Conditions. 

 
16.    INFORMATION FOR CUSTOMS USE ONLY 

Country of origin for customs purposes*:United Kingdom 
* Defined as the country where the goods have been produced and/or 
sufficiently processed to be classed as originating from the country of 
supply, for example a change of state such as freeze-drying.  

Net weight:  1.0 - 2.0 g 

Toxicity Statement: Non-toxic 

Veterinary certificate or other statement if applicable. 
Attached:No  
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Rapid NK cell differentiation in a population with near-universal human
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Key Points

• HCMV infection in early life
is associated with rapid
phenotypic and functional
differentiation of NK cells.

• Emergence of CD571 NK
cells is attenuated in children
lacking NKG2C.

Natural killer (NK) cells differentiate and mature during the human life course; human

cytomegalovirus (HCMV) infection is a known driver of this process. We have explored

human NK cell phenotypic and functional maturation in a rural African (Gambian)

populationwith a high prevalence of HCMV. The effect of age on the frequency, absolute

number, phenotype, and functional capacity of NK cells was monitored in 191 individuals

aged from 1 to 49 years. Increasing frequencies of NK cells with age were associated

with increased proportions of CD56dim cells expressing the differentiation marker CD57

and expansion of the NKG2C1 subset. Frequencies of NK cells responding to exogenous

cytokines declined with age in line with a decreased proportion of CD572 cells. These

changes coincided with a highly significant drop in anti-HCMV IgG titers by the age of

10years,suggesting thatHCMV infection isbroughtundercontrol asNKcellsdifferentiate (or viceversa).Deletionat theNKG2C locus

wasassociatedwith a genedose-dependent reduction in proportionsofCD941 andCD571NKcells. Importantly, anti-HCMV IgG titers

weresignificantlyelevated inNKG2C2/2children,suggesting that lackof expressionofNKG2Cmaybeassociatedwithalteredcontrol

of HCMV in childhood. (Blood. 2014;124(14):2213-2222)

Introduction

Natural killer (NK) cells play essential roles in controlling infection
and surveillance for damaged, dysfunctional, or neoplastic cells.1 NK
cells differentiate during the human life course. CD56bright cells are the
least-differentiated population of peripheral blood NK cells, express-
ing c-kit and high levels of the c-type lectin-like receptor CD94/
NKG2A, CD62L, and natural cytotoxicity receptors (NCRs) NKp30
andNKp46, and lacking expression of killer cell immunoglobulin-like
receptors (KIR), CD16, and CD57.2-5 CD56bright NK cells express
cytokine receptors and produce interferon (IFN)-g in response to
cytokines. In contrast, CD56dim cells express FcgRIII(CD16); express
varying levels of CD94/NKG2A, KIR, NCRs, and perforin; retain
their ability to secrete IFN-g; and have higher cytotoxic capacity.3

Heterogeneity within the CD56dim subset is associated with acquisi-
tion of CD57.2,4,5 CD56dimCD572 NK cells are phenotypically and
functionally similar to CD56bright cells, whereas CD56dimCD571 cells
produce little IFN-g and have shorter telomeres and lower proliferative
capacity,5,6 but degranulate extensively after crosslinking of CD16.2,5

Acquisition of CD57 is associated with onset of expression of NKG2C,
although the codependence of these events and their implications for
function are not understood.7,8

Although the external drivers of NK cell differentiation are
incompletely understood, inflammation, associated with infection or

loss of immune homeostasis, plays a key role.9 This view is
supported by evidence that the late differentiation marker, CD57,
can be induced on NK cells by high concentrations of IL-2,5 that
NKG2C1 NK cells can be expanded by coculture with human
cytomegalovirus (HCMV)-infected fibroblasts,10 that HCMV-
seropositive individuals have increased frequencies of NKG2C1

NK cells,10-13 and that there is rapid expansion of CD571NKG2Chi

NK cells during acute HCMV infection14 and in individuals infected
with Epstein Barr virus (EBV),7 hantavirus,15 hepatitis viruses,16 and
chikungunya virus.17

Among Caucasians, NK cell maturation is highly age-dependent.
Marked phenotypic and functional differences are observed between
NK populations in cord blood, in young children, in adults, and in
elderly individuals.18-22 Young children have higher frequencies of
CD56brightCD162 and NKG2A1NKG2C2NK cells compared with
adults, and younger adults have higher frequencies of these cells
comparedwith the elderly.18-22Moreover, NCR1 andNKG2D1NK
cells decrease in frequency with increasing age, concomitant with
loss of CD62L and acquisition of CD57.2,4,18,22 NK cell cytokine
production decreases with increasing age, but cytotoxic responses
are conserved.9,20,23 There is, however, a lack of data from older
children and teenagers.
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The extent to which NK cell differentiation is explained by either
aging, per se, or by cumulative exposure to infection is unclear.
Among allogeneic hematopoietic stem cell transplant recipients,
the first wave of repopulating NK cells comprises predominantly
CD56bright or CD56dimCD941cells; KIR1 and CD571 cells can take
up to 1 year to emerge.2,24 However, among patients who reactivate
HCMV after transplantation, NKG2C1CD571 NK cells can be de-
tected within 3 months, and the host’s pretransplantation repertoire
is fully reconstituted within 6 months, suggesting that exposure to
infection is a significant determinant ofNKcellmaturation rates.24-26

Together, these data suggest that age-related changes in NK cell
phenotype and function may be modified by the infection status of
the host and that rates of change across populations may depend
on the prevalence of particular infections. If so, the prevalence
of infections such as HCMV may have far-reaching implications
for risk for other infections, cancers, or autoimmune disease. To
begin to address this important aspect of NK cell biology, we
have characterized NK cell phenotype and function in an African
population that is itself characterized by a high burden of infectious
disease, including near-universal HCMV infection.

Materials and methods

Study subjects

This study was approved by the ethical review committees of the Gambia
Government/Medical Research Council and the London School of Hygiene
andTropicalMedicine. Participantswere recruited from the villages ofKeneba,
Manduar, and Kantong Kunda in the West Kiang district, The Gambia. After
fully informed consent was obtained in accordance with the Declaration
of Helsinki, including parental/guardian consent for minors, venous
blood samples were collected from 191 individuals aged 1 to 49 years.
Individuals with signs or symptoms of current disease or whowere known to
be pregnant or infected with HIV were excluded. Plasma was screened for
IgG against HCMV(BioKit), tetanus toxoid (Holzel Diagnostica), hepatitis B
surface antigen (Diasorin), and EBV nuclear antigen (Euroimmun). Subject
characteristics are shown in Table 1.

Peripheral blood mononuclear cell preparation and culture

Peripheral blood mononuclear cells (PBMCs) were isolated by density
gradient centrifugation (Histopaque, Sigma) and analyzed ex vivo and after
18-hour culture with cytokines (5 ng/mL rhIL-12; Peprotec) plus 50 ng/mL
rhIL-18 (R&D Systems) or with K562 cells (an Effector:Target ratio of 2:1).

Fluorescein isothiocyanate (FITC)-conjugated anti-CD107a (BD Biosci-
ences) was added throughout the culture. Brefeldin A and Monensin (BD
Biosciences) were added after 15 hours.

Flow cytometry

PBMCs were incubated with combinations of the following monoclonal
antibodies: anti-CD3-V500, anti-CD56-PeCy7 and anti-CD94-FITC, anti-
NKG2C-PE and anti-NKG2A-APC, anti-CD8-PeCy7, anti-CD57-e450 and
anti-CD16-APC-e780 or APC, anti-CD4-PE and anti-CD45RA-APC-H7,
anti-CD8-PeCy7, anti-CD27-FITC, anti-CD28-PeCy7 and anti-CCR7-APC,
anti-CD45-FITC, anti-CD11c-PE, anti-CD19-PeCy5, anti-CD123-efluor450
and anti-CD14-APCe780, anti-CD107a-FITC, anti-CD25PE, and anti-IFN-
g-APC-efluor780 (supplemental Methods, available on the BloodWeb site).
Cells were acquired on a LSRII� flow cytometer using FacsDiva� software.
Data analysis was performed using FlowJo� (TreeStar).

NKG2C genotyping

DNAwas extracted from whole blood (Wizard genomic DNA extraction kit,
Promega), and the NKG2C genotype was determined by touchdown PCR
(Phusion� High Fidelity PCR kits, New England Biolabs).27 PCR primers
and conditions are described in the supplemental Methods.

Statistical analysis

Statistical analysis was performed using Statview and Stata version 13.1.
Nonlinear effects of age were modeled using natural cubic splines in linear
regression models; P values (F-test) and R2 values were obtained from these
models. One-way analysis of variance was used to compare responses of
individuals of different genotypes. Differences betweenNK cell subsets were
compared using Wilcoxon signed rank tests.

Results

High rates of HCMV and EBV infection in the study population

HCMV infection rates are high in Africa, and thus, as expected, only
4 of the 191 individuals were HCMV-seronegative; seronegative
patients were aged between 1 and 3 years, suggesting universal
HCMV infection within the first 3 years of life (Table 1). In-
terestingly, anti-HCMV antibody titers were significantly higher
among those younger than 10 years than in older individuals,
suggesting that optimal control of HCMV infection takes some years
to develop (Table 1). EBV infection was also common, with 75% of
the cohort being seropositive for EBV nuclear antigen. EBV nuclear

Table 1. Cohort characteristics

Age group,
years n (male/female)

HCMV IgG1,
n (%)

HCMV IgG titer, IU/mL,
median (range)

EBV nuclear antigen
IgG1, n (%)

EBV nuclear antigen IgG titer,
IU/mL, median (range)

NKG2C genotype, n (%)*

1/1 1/2 2/2

1-2 23 (9/14) 20 (86.9) 487.5 (81.8-845.2)† 12 (52.2) 107.0 (48.5-178.6) 11 (47.8) 10 (43.4) 2 (8.7)

3-5 19 (6/13) 18 (94.7) 288.4 (80.9-1681.8) 13 (68.4) 134.0‡ (32.5-328.7) 7 (37.8) 10 (52.6) 2 (10.5)

6-9 18 (11/7) 18 (100) 361.1 (89.2-2200.2){ 16 (88.9) 103.6 (33.1-219.7) 8 (47.0) 7 (41.2) 2 (11.8)

10-12 20 (10/10) 20 (100) 215.4 (43.4-1693.6) 18 (90.0) 119.3§ (37.2-359.5) 8 (44.4) 8 (44.4) 2 (11.1)

13-15 23 (10/13) 23 (100) 252.6 (51.5 21057.9) 16 (70.0) 114.6 (29.7-193.4) 11 (47.8) 10 (43.4) 2 (8.7)

16-19 23 (11/12) 23 (100) 177.6 (61.2-678.1) 18 (78.2) 99.9 (23.9-195.2) 10 (47.6) 8 (38.1) 3 (14.3)

20-25 22 (11/11) 22 (100) 252.5 (81.5-828.4) 19 (86.4) 93.9 (27.6-171.7) 11 (52.4) 8 (38.1) 2 (9.5)

26-39 22 (13/9) 22 (100) 165.9 (39.0-968.4) 19 (86.4) 88.8 (24.9-272.7) 14 (73.7) 3 (15.7) 2 (10.5)

40-49 21 (10/11) 21 (100) 191.2 (53.5-735.2) 13 (61.9) 73.4 (24.0-183.2) 14 (70.0) 4 (20.0) 2 (10.0)

Total 191 (91/100) 187 (97.9) 252.6 (39-2200.1) 145 (75.9) 101.8 (23.9-359.5) 94 (51.9) 68 (37.6) 19 (10.5)

*NKG2C genotypes were obtained from a total of 181 individuals.

†Significantly higher anti-HCMV IgG titers compared with 16- to 19-year-olds and all groups older than 26 years; P , .05, analysis of variance.

‡Significantly elevated anti-EBV nuclear antigen IgG titers compared with all groups older than 16 years.

{Significantly higher anti-HCMV IgG titers compared with all groups older than 16 years; P , 0.01, analysis of variance.

§Significantly elevated anti-EBV nuclear antigen IgG titers compared with all groups older than 20 years.
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antigen seropositivity rates were lowest in children 2 years old or
younger, and anti-EBV nuclear antigen titers tended to be higher in
those younger than 15 years than in older individuals (Table 1).

NK cell numbers and frequencies change with age

NK cell numbers and frequencies and the distribution of CD56bright and
CD56dim subsets (Figure 1A) were analyzed by age group (Figure 1).
Consistent with previous observations,18-22 the proportion of NK cells
among peripheral blood lymphocytes increased significantly with age,
reaching a plateau at approximately 15 years (Figure 1B). Within the
total NK cell population, the proportion ofCD56bright NK cells declined
significantly with increasing age (Figure 1C), and the proportion of
CD56dim cells increased (Figure 1D), with subset distribution stabiliz-
ing at approximately 10 to 12 years (supplemental Figure 1). The ab-
solute number of peripheral blood CD56bright and CD56dim NK cells
declined with age, indicating that the increased frequency of CD56dim

cells in older individuals was not sufficient to offset the overall decline
in NK cell numbers (supplemental Figure 1; supplemental Table 1).

These early and very marked changes in NK cell phenotype
contrasted with more gradual changes in T-cell phenotype (supplemen-
tal Figure 2).Consistentwith previous studies,28,29weobserved a steady
decline in naive CD41 and CD81 T-cell frequencies, with a parallel
increase in frequencies of effector memory and central memory T cells.
However, in contrast to published data,28,29 the frequency of terminally
differentiated effector memory (TEMRA) cells was already high in
young children and did not increase further with age, possibly reflecting
high levels of antigen exposure in early life. A decline in absolute
numbers of all myeloid and lymphoid cell populations was observed
throughout life (supplemental Tables 2 and 3A-B).

Phenotypic differentiation of NK cells is biphasic and is most

rapid during the first 5 years of life

We identified 3 distinct populations of CD56dim NK cells: CD572,
CD571, and those with intermediate CD57 expression (CD57int)6

(Figure 2A). The proportion of CD572 CD56dim NK cells declined
significantly with age, mirrored by increasing proportions of CD571

NK cells; the proportion of CD57int cells was stable, consistent with
this being a transitional population (Figure 2B). Strikingly, this was
a biphasic rather than a linear process, with the most marked changes
in CD57 subset distribution occurring in children aged 5 years or
younger, with very little change in subset distribution after the age of
10 years (supplemental Figure 3A-C).

The frequency of NK cells expressing CD94, which partners both
NKG2A and NKG2C at the cell surface, remained stable throughout
life, suggesting that the proportion of NK cells expressing either
NKG2A or NKG2C also remains stable (Figure 2C-F; supplemental
Figure 3D). However, within the CD941 population, the proportion
ofNKG2A1 cells decreasedwith increasing age (Figure 2E;P5 .03,
analysis of variance), whereas the proportion of NKG2C1 cells
increased (Figure 2F; P 5 .02, analysis of variance). Increasing
proportions of NKG2C1NK cells were offset by decreasing NK cell
numbers, such that the absolute number of NKG2C1 cells remained
stable throughout life (supplemental Table 1).

We then assessed whether changes in CD57 expression mirrored
changes in NKG2A/NKG2C expression (Figure 3). The proportion
of CD572 cells within the NKG2A1 subset decreased significantly
with increasing age, with a reciprocal enrichment of CD57int and
CD571 NK cells (Figure 3A). Nevertheless, the majority of
NKG2A1 NK cells remained CD572, even in older individuals
(Figure 3A). In contrast, NKG2C1 NK cells are frequently CD571

even in children younger than 2 years, and the majority of
NKG2C1NKcells are CD571 by the age of 5 years (Figure 3B). The
mean fluorescence intensity (MFI) of CD57 expressionwas very low
on NKG2A1 NK cells (at all ages) but increased significantly
with increasing age on NKG2C1 cells (Figure 3C; supplemental
Figure 3G-H), suggesting that NKG2C1 NK cells differentiate
rapidly in this cohort (gaining full CD57 expression very early in
life), whereas NKG2A1 NK cells differentiate only very slowly.
This rapid expansion and differentiation of the NKG2C1 NK cell
population is likely a consequence of perinatal HCMV infection.
Moreover, anti-HCMV IgG titer was negatively correlated with
the frequency of CD571 NK cells (supplemental Figure 4), sug-
gesting that advanced NK cell differentiation may be associated
with control of HCMV or vice versa. EBV serostatus, which has
been associated with altered NK cell phenotype in HCMV-exposed
Europeans,7 had no significant effect on NK cell subset distri-
bution, other than a minor increase in CD56dim cell frequency
(supplemental Figure 5A-G), supporting a recent paper suggesting
that acute EBV coinfection has nomajor effect on NKG2C1CD571

NK cells.30

Rapid functional maturation of NK cells during childhood in

The Gambia

To assess the functional consequences of these phenotypic
changes, PBMCs were cultured in vitro with K562 target cells or
with high concentrations of cytokines (IL-12 and IL-18; HCC);
NK cell degranulation (CD107a), CD25, and IFN-g expression
were assessed by flow cytometry (Figure 4). Spontaneous low-
level degranulation and IFN-g production was observed among
unstimulated cells from children younger than 10 years, perhaps
indicating in vivo NK cell activation (Figure 4C,I). Incubation
with K562 cells increased NK cell degranulation, but this did
not differ with age (Figure 4D). Conversely, degranulation and
upregulation of CD25 and IFN-g production in response to
HCC (Figure 4E,H,K) were both strongly age-related, being

Figure 1. Age-related changes in NK cell frequencies (A). NK cells were

identified within PBMC after gating on singlets and viable lymphocytes. CD561CD32

NK cells were then subsequently gated into CD56bright and CD56dim subsets.

Frequencies of (B) all NK cells, (C) CD56bright, and (D) CD56dim NK cells are shown

for each age group. Horizontal bars represent median values, boxes extend from the

25th to the 75th percentile, and whiskers represent the 95th percentiles. Asterisks

represent significant trends across the entire cohort (*P , .05, ***P , .001, F-test).
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significantly higher in children younger than 10 years than in older
individuals (supplemental Figure 6).

Spontaneous NK cell degranulation could be attributed to
CD56dimCD572 cells (Figure 5A), whereas spontaneous expression
of CD25 and IFN-g production were restricted to the CD56bright

subset (Figure 5B-C). CD107a and CD25 expression were ob-
served in all NK cell subsets after incubation with K562 cells.
Although this did not vary with age, it was higher in CD572 cells
than in CD57int and CD571 cells (Figure 5D-E), consistent
with patterns of expression of the NKp30 activating receptor
(which binds B7-H6 on K562 cells).31,32 As expected, K562
cells induced little IFN-g secretion from any NK cell subset
(Figure 5F).

CD572 NK cells (but not CD57int or CD571 cells) degranu-
lated extensively in response to cytokine stimulation (Figure 5G),
and cytokine-induced CD25 expression and IFN-g production
declined with progressive NK cell differentiation, being highest in
the CD56bright subset and lowest in the CD56dim CD571 subset
(Figure 5H-I). Although there was a trend for increasing CD107a
and CD25 expression with increasing age in CD57int and CD571

NK cells after cytokine stimulation (Figure 5G-H), this was only
significant when comparing the very youngest and very oldest age
groups (P , .01, analysis of variance).

Thus, although subtle age-associated changes in NK cell func-
tion may be evident within subsets, changing NK cell function with

age is primarily a result of the changing proportion of cells within
subsets.

Effect of NKG2C genotype on NK cell numbers and phenotype

Lack of NKG2C expression because of deletion of theNKG2C locus
has been reported in several populations.27,33-35 Nineteen of 181
individuals tested here (10.5%) were NKG2C2/2 (and lacked
surface expression of NKG2C), whereas 68 individuals (37.6%)
were heterozygotes, giving a haplotype frequency of 29.3%.
NKG2C2/2 individuals were distributed evenly across age groups
and between the sexes (Table 1).

NKG2C genotype did not affect frequencies of total, CD56bright,
or CD56dim NK cells, although, consistent with published data,34

NKG2C2/2 children younger than 10 years had lower absolute
numbers of NK cells when compared with NKG2C1/2 children
(supplemental Figure 7). However, NKG2C2/2 individuals had
significantly lower frequencies of CD56dim CD941 NK cells than
did NKG2C1/2 and NKG2C1/1 individuals (Figure 6A). Absolute
numbers of NKG2A1 cells were unaffected by genotype (supple-
mental Figure 8B), whereas absolute numbers of CD941 cells
were significantly lower among NKG2C2/2 individuals (supple-
mental Figure 8A). This is consistent with CD941NKG2A1 to
CD941NKG2C1 ratios being determined by expansion within the
CD941NKG2C1 subset, rather than by conversion of NKG2A1

Figure 2. Age-related changes in frequencies of

CD57- and c-type lectin-like receptor- expressing

NK cell subsets (A). CD56dim cells were gated into

CD572, CD57intermediate, and CD571 subsets. The

CD572 population was gated using an isotype-

matched control reagent, and the CD571 gate was set

at an MFI of 3000. (B) Frequency distribution by age

group of CD572, CD57int, and CD571 subsets within

the CD56dim NK cell population. Asterisks denote

statistically significant trends for changes in NK cell

subset frequency by age (***P , .001, F-test). (C)

Gating strategy for CD941 cells and (E) CD94

NKG2A1 and CD941NKG2C1 cells within the CD56dim

NK cell subset. (D) Frequencies of CD941 and (F)

NKG2A1, and NKG2C1 NK cells by age group.

Asterisks denote statistically significant differences

in frequencies of NKG2A1 and NKG2C1 cells by age

group (*P , .05, analysis of variance). Horizontal

bars represent median values, boxes extend from the

25th to the 75th percentile, and whiskers represent the

95th percentiles. Age groups are as shown in Figure 1.
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cells to NKG2C1 cells. A significant gene dosage effect was
observed, with NKG2C1/2 individuals having intermediate
frequencies (Figure 6B) and numbers (supplemental Figure 8)
of CD941NKG2A1 and CD941NKG2C1 cells. A modest
decrease in the MFI for NKG2C expression was observed in
NKG2C1/2 compared with NKG2C1/1 individuals, although this
did not reach statistical significance (supplemental Figure 9).
NKG2C2/2 children (younger than 10 years) had significantly lower
frequencies ofCD571NKcells than did heterozygous andhomozygous
NKG2C1 children, with a reciprocal increase in both CD572 and
CD57intNKcells (Figure6C).This effectwas absent in individuals older
than 10 years.

Finally, to explore whether the NKG2C genotype might affect
control of HCMV, we examined the relationships among age,
genotype, and anti-HCMV antibody titer (Figure 6D). Anti-HCMV
antibody titers weremarkedly and significantly higher inNKG2C2/2

than in NKG2C1/1 children (younger than 10 years) (Figure 6D),
suggesting that inferior control of HCMV infections in these children
may lead to more frequent reactivation and boosting of antibody
responses. This effect was not observed in older individuals and
appeared to be specific for HCMV, as no effect of NKG2C genotype
was observed on titers of antibodies to childhood vaccine antigens or
EBV (supplemental Figure 10). One explanation for this is that lack
of NKG2C1 NK cells may hinder control of HCMV, such that the
ability to control HCMV viral load (as reflected by anti-HCMV titer)
develops more slowly in children who lack NKG2C.

Discussion

It is increasingly appreciated that NK cells are genetically, phenotyp-
ically, and functionally diverse, both at the human population level36

and within individuals.37 Moreover, NK cells differentiate through
the life course, reflecting the interplay of genes and environment.
These adaptations substantially modify NK cell function20,38,39

and are beginning to be associated with health outcomes.9 Age is
a major determinant of NK cell phenotype and function,18-22 but
it is not yet clear whether this is a result of primary, age-intrinsic
processes or whether age is simply a marker for cumulative en-
vironmental exposures. HCMV infection is a major confounder
of the association between age and NK cell function,11,26,40 but
HCMV status is not reported in many published studies, hindering
data interpretation. To unpick these issues, detailed phenotypic and
functional studies are required across the entire age span and among
genetically diverse populations in different environments. The data
presented here represent the most comprehensive study to date of
NK cell phenotype and function from infancy to mature adulthood
and thefirst such study in anAfrican community and in a population
where confounding by HCMV infection status is minimized because
of near-universal HCMV infection in infancy.

We previously identified an apparently transitional population of
CD56dim NK cells with intermediate CD57 expression (CD57int),
expressing intermediate levels of CD16, CD62L, IL-12R, and
IL-18R and with a capacity for degranulation, CD25 expression,
and IFN-g production between CD572 and CD571NK cells.6 Here
we observe that although frequencies of CD572 cells decrease and
frequencies of CD571 cells increase with age, a small but persistent
population of CD57int NK cells is present at all ages, suggesting that
differentiation of CD572 to CD571NK cells occurs at a similar rate
throughout the life course. If so, age-related changes in CD572 and
CD571 NK cell frequencies must reflect differential rates of loss or
proliferation of these 2 subsets, rather than changing rates of cell
conversion. Rates of both apoptosis and proliferation are report-
edly very high in human NK cells,41 but whether these rates differ
between CD572 and CD571 NK cells is unknown.

One striking observation in this population is the very high
frequency of fully differentiated CD56dimNKG2C1CD571NKcells
in very young children; these cells represent up to 50%of all NKcells
in 1- to 2-year-olds and up 80% of cells in 6- to 9-year-olds, with
the mature adult range (;30% to 70%) being reached by the age of
10 years. In Europeans, proportions of CD571 NK cells range from
zero at birth (cord blood) to median values of ;50% in adults,20

with values being higher in HCMV1 individuals (30%-70%) than in

Figure 3. CD57 is preferentially expressed on NKG2C1 NK cells. CD56dim NK

cells were gated as in Figure 1A, and the frequency of CD572, CD57int, and CD571

cells is shown within (A) CD94/NKG2A1 or (B) CD94/NKG2C1 NK cells, by age

group. (C) MFI for CD57 expression on NKG2A1 and NKG2C1 NK cells by age

group. Horizontal bars represent median values, boxes extend from the 25th to the

75th percentile, and whiskers represent the 95th percentiles. Asterisks denote

statistically significant trends by age within each subset (**P , .01; ***P , .001,

F-test). Age groups are as shown in Figure 1.

BLOOD, 2 OCTOBER 2014 x VOLUME 124, NUMBER 14 NK CELL DIFFERENTIATION IN HEALTHY AGING 2217

For personal use only.on January 26, 2016. by guest  www.bloodjournal.orgFrom 

http://www.bloodjournal.org/
http://www.bloodjournal.org/site/subscriptions/ToS.xhtml


HCMV2 subjects (25%-50%).42 Although we could not compare
our data with a fully age-matched, low-HCMV prevalence cohort,
the frequency of CD571 NK cells in HCMV-seropositive adult
Gambians is significantly higher than in an age-matched HCMV-
seropositive UK cohort, confirming more rapid or extensive NK cell
differentiation amongGambians (supplemental Figure 11). Thismay
reflect either HCMV infection much earlier in life in The Gambia or
a higher prevalence of other infections that further expand the
NKG2C1CD571 NK cell population in HCMV1 individuals.43

Data on HCMV1 and HCMV2 European children are needed to
confirm this.

Interestingly, HCMV and EBV coinfection did not affect NK cell
phenotype or function. EBV coinfection has been associated with
more extensive NK cell differentiation compared with HCMV alone
in someEuropean studies,7 but not in a recent US study,30 suggesting
that perinatal HCMV infection alone is sufficient to drive NK cell
differentiation or that infections other than EBV may also have an
effect in thisGambian cohort. Of note, the biphasic kinetic ofNK cell

differentiation is not accompanied by a similar biphasic differenti-
ation of T-cell populations, which is consistent with the suggestion
that HCMV infection independently affects T-cell and NK cell
populations.44

Age-related differences in NK cell function were entirely a result
of differences in the proportions of CD572 and CD571NK cells. In
Caucasian adults, cytokine-induced degranulation, CD25 expres-
sion, and IFN-g production all decline with increasing levels of
CD57 expression,2,4-6 in parallel with reduced expression of IL-12
and IL-18 receptors,6 whereas CD57 expression has much less effect
on responses receptor crosslinking.6 This association between CD57
expression andNKcell function also holds true in TheGambia and in
children as young as 3 to 5 years of age. Because CD57 expression is,
to a large extent, driven by HCMV, it appears that infection with
HCMV very early in life rapidly skews the entire NK cell population
to missing/altered-self/antibody-dependent cytotoxicity at the ex-
pense of cytokine-driven responses.6,45 This skewing of NK cell
function is much more marked among Gambian adults than among

Figure 4. Age-associated changes in NK cell function. Example flow cytometry plots are shown for CD32 lymphocytes from a 1-year-old (A) and a 22-year-old (B),

cultured in medium alone (top) or stimulated with high concentrations of IL-121 IL-18 (HCC, bottom) and assayed for degranulation (CD107a), CD25, and IFN-g expression.

(C-K) NK cells were assayed for degranulation (C-E), CD25 (F-H), or IFN-g (I-K) expression after in vitro culture in medium alone (C,F,I) or with K562 target cells (D,G,J) or

IL-12 1 IL-18 (HCC; E,H,K). Horizontal bars represent median values, boxes extend from the 25th to the 75th percentile, and whiskers represent the 95th percentiles.

Asterisks denote significant age-related trends for frequencies of NK cells expressing CD107a, CD25, or IFN-g (**P , .01;*** P, .001, F-test).
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age-matched HCMV seropositive UK adults, again presumably
reflecting an earlier age of HCMV infection or increased prevalence
of coinfections in The Gambia (supplemental Figure 11). Altered NK
cell function so early in life could contribute to associations among
perinatal HCMV infection, slower growth, and increased rates of
hospitalization, as observed in Zambian children.46

In line with the near-universal HCMV infection in infancy in our
cohort and the well-documented expansion of CD571NKG2C1NK
cells in HCMV1 individuals,11 frequencies of NKG2C1 cells were
high in all age groups. Frequencies ofNKG2C1NKcells were lower
in very young children than in older age groups, but adult frequencies
were achieved by the age of 6 to 9 years, suggesting that expansion
of the NKG2C1 subset begins very quickly after HCMV infection
and may continue for some years. This is consistent with data
from transplant recipients with acute HCMV infection or HCMV
reactivation, where frequencies of NKG2C1 NK cells increase
within a month of infection/reactivation and continue to increase
for at least 12 months,14,26,40 and with reports of significantly
higher frequencies of NKG2C1 NK cells in HCMV1 compared
with HCMV2 children younger than 2 years.47

In Caucasian adults, the NKG2C1 NK cells induced by HCMV
infection tend to coexpress CD57.14 This was also the case here,

although both the frequency of NKG2C1 cells expressing CD57 and
the medianMFI of CD57 expression were lower in children younger
than 2 years than in older individuals. In contrast, CD57 is expressed
only at low intensity on NKG2A1 NK cells at all ages. These
observations are consistent with a model in which peptides from
HCMVUL40 bind to HLA-E, stabilizing it at the surface of infected
cells, where it drives activation, proliferation, and differentiation
(including expression of CD57) of NK cells expressing NKG2C
(the activating receptor on NK cells for HLA-E) while simulta-
neously inhibiting proliferation and differentiation of cells express-
ing NKG2A (the inhibitory HLA-E receptor).10,48-50

Although CD94/NKG2C and CD94/NKG2A are not the only
NK cell receptors for HCMV,51-53 lack ofNKG2Cwas clearly linked
to delayed NK cell differentiation and maturation. NKG2C1/2

heterozygotes had lower frequencies of NKG2C1 NK cells than
didNKG2C1/1 individuals (consistent with a previous report33), and
the frequency and absolute number of CD941 cells was positively
associatedwithNKG2C copy number, consistentwith the hypothesis
that NKG2C1NK cell numbers expand by proliferation, rather than
by transformation from NKG2A1 cells. Importantly, however, a
high proportion of CD56dim NK cells inNKG2C2/2 individuals lack
expression of CD94/ NKG2A, as well as CD94/NKG2C, raising

Figure 5. NK cell function reflects CD57 expression, irrespective of age. Bright (CD56brightCD572), CD572 (CD56dimCD572),CD57int (CD56dimCD57int) and CD571

(CD56dimCD571) NK cell subsets were analyzed for CD107a (A,D,G), CD25 (B,E,H), or IFN-g (C,F,I) after in vitro culture in medium alone (A-C), with K562 target cells

(D-F) or with IL-12 1 IL-18 (HCC; G-I). Horizontal bars represent median values, boxes extend from the 25th to the 75th percentile, and whiskers represent the 95th

percentiles. There were no significant age-related trends in response within any of the subsets. Asterisks denote statistically significant differences between CD572,

CD57int, and CD571subsets (P , .001 for all comparisons, Wilcoxon-signed rank).
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questions about which other receptors might be expressed on these
cells to maintain NK cell homeostasis and HCMV latency. HCMV
reactivation in recipients of NKG2C2/2 stem cells drives differen-
tiation of functional KIR1NKG2A- NK cells,53 suggesting that
activating KIR may compensate for lack of CD94/NKG2C. Stable
expansions of KIR1 NKG2A2NKG2C2 NK cells have also been
observed in HCMV-seropositive adults.54

Consistent with activation and expansion of NKG2C1 cells
before their acquisition of CD57, proportions of CD571 NK cells
were significantly lower in NKG2C2/2 subjects than in those with 1
or more copies of NKG2C, and in particular for children younger
than 10 years. The magnitude of this effect is remarkable, achiev-
ing statistical significance despite the rather small number of
NKG2C2/2 subjects, and is likely to be highly biologically rel-
evant. It would be interesting to know whether delayed NK cell
differentiation in HCMV-infected NKG2C2/2 subjects is seen in
other populations and whether it confers any survival advantage
or whether this is offset by impaired control of HCMV (as implied
by the significantly higher anti-HCMV antibody titers). These
studies will need to be large enough to achieve statistical power,
which will depend on both the prevalence of the NKG2C-null
haplotype and of HCMV. The 29.3% haplotype frequency of the
NKG2C deletion in our African cohort is higher than that recorded
elsewhere.33,35,55 Whether the frequency of this haplotype is
linked to current or historic intensities of HCMV infection might
also merit further investigation.

Despite our study cohort being almost uniformly HCMV-
seropositive, considerable heterogeneity is observed in NK cell
phenotype and function within each age group. Although some
of this is heterogeneity may be genetically determined and/or

stochastic,37 exposure to infections in addition to HCMV may also
affect NK cell maturation.7,15,17,56 Further studies are needed to
determine whether this is simply a cytokine-driven expansion, and
thus likely to occur in response to many acute inflammatory stimuli,
or whether some pathogens express specific ligands for CD571

NKG2C1 NK cells.
In summary, our study has revealed rapid phenotypic and func-

tional differentiation of peripheral NK cells in a population with
extremely high rates of perinatal HCMV infection. Intriguingly, NK
cell phenotype seems to be highly dependent on the expression of
NKG2C, reaffirming the notion that signaling viaNKG2C is causally
linked to NK cell differentiation. Further studies are now warranted
to evaluate the effect of early HCMV infection on the ability of NK
cells to contribute to protection from other infections throughout the
life course.
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Appendix IX. Titration and isotype control staining of PerCPCy5.5-conjugated anti-IL-12Rβ21. 
Purified NK cells (>95%) were cultured for 18 hours with a high concentration of IL-12 
(5mg/ml) and IL-18 (50ng/ml) and stained with increasing concentrations of PerCPCy5.5-
conjugated IL-12Rβ2, or a monoclonal IgG isotype control (mIgG1; mouse anti-human CD19), 
as labelled. The percentage of NK cells positive for PerCPCy5.5 (A) and the MFI of these 
PerCPCy5.5+ cells (B) were compared between NK cell stained with anti-IL-12Rβ2 and mIgG1 
antibodies. Resting PBMC were then stained ex vivo with anti-IL-12Rβ2 or mIgG1 isotype 
control and expression on NK and T cells were analysed (C).   
 

                                                           
1
 Conjugation and titration of IL-12Rβ2 antibody were performed by Martin Goodier. 
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Impaired NK Cell Responses to Pertussis and H1N1 Influenza
Vaccine Antigens in Human Cytomegalovirus-Infected
Individuals

Carolyn M. Nielsen,* Matthew J. White,* Christian Bottomley,† Chiara Lusa,*

Ana Rodrı́guez-Galán,* Scarlett E. G. Turner,* Martin R. Goodier,* and Eleanor M. Riley*

NK cells contribute to postvaccination immune responses after activation by IL-2 from Ag-specific memory T cells or by cross-

linking of the low-affinity IgG receptor, CD16, by Ag–Ab immune complexes. Sensitivity of NK cells to these signals from the

adaptive immune system is heterogeneous and influenced by their stage of differentiation. CD56dimCD57+ NK cells are less

responsive to IL-2 and produce less IFN-g in response to T cell–mediated activation than do CD56bright or CD56dimCD572 NK

cells. Conversely, NK cell cytotoxicity, as measured by degranulation, is maintained across the CD56dim subsets. Human CMV

(HCMV), a highly prevalent herpes virus causing lifelong, usually latent, infections, drives the expansion of the CD56dimCD57+

NKG2C+ NK cell population, skewing the NK cell repertoire in favor of cytotoxic responses at the expense of cytokine-driven

responses. We hypothesized, therefore, that HCMV seropositivity would be associated with altered NK cell responses to vaccine

Ags. In a cross-sectional study of 152 U.K. adults, with HCMV seroprevalence rate of 36%, we find that HCMV seropositivity is

associated with lower NK cell IFN-g production and degranulation after in vitro restimulation with pertussis or H1N1 influenza

vaccine Ags. Higher expression of CD57/NKG2C and lower expression of IL-18Ra on NK cells from HCMV seropositive subjects

do not fully explain these impaired responses, which are likely the result of multiple receptor–ligand interactions. This study

demonstrates for the first time, to our knowledge, that HCMV serostatus influences NK cell contributions to adaptive immunity

and raises important questions regarding the impact of HCMV infection on vaccine efficacy. The Journal of Immunology, 2015,

194: 4657–4667.

N
atural killer cells are traditionally classified as cells
of the innate immune system but can also act as media-
tors of adaptive immunity. In addition to their well-

recognized role in Ab-dependent cytotoxicity (ADCC), recent
research has demonstrated a potential contribution to adaptive
responses through their activation by Ag-specific CD4+ T cell–
derived IL-2 (1–7). The heightened IFN-g response of NK cells in
the context of a vaccine recall response suggests that NK cells
may play a role in protection from vaccine-preventable diseases,
particularly as NK cells respond more quickly than T cells and
comprise as much as 70% of all IFN-g–producing cells in the first
12–24 h of the recall response (3).

We have shown, using the individual components of the diph-
theria toxoid/tetanus toxoid/whole-cell pertussis vaccine, that

activation of NK cells after restimulation with vaccine Ags is

heterogeneous, with CD56bright and CD56dimCD572 NK cells

being most responsive as measured by surface expression of the

high-affinity IL-2 receptor (CD25) and accumulation of intracel-

lular IFN-g (CD25+IFN-g+) (6). Expression of CD57 by CD56dim

NK cells was associated with a reduced capacity to produce IFN-g,

although degranulation responses were maintained (6). These

data are consistent with the accepted model of NK cell maturation

whereby acquisition of CD57 is a marker of decreased sensitivity

to exogenous cytokine stimulation (8, 9).
Human CMV (HCMV) infection drives profound changes in

the NK cell repertoire. In particular, HCMV infection is strongly

associated with preferential expansion of the CD56dimCD57+

NKG2C+ NK cell subset (10–12). This has direct implications for

NK cell function as CD56dimCD57+NKG2C+ NK cells degranu-

late and secrete cytokines such as IFN-g and TNF-a in response to

cross-linking of CD16 (by IgG) or natural cytotoxicity receptors

(by infected, stressed, or transformed cells) but respond poorly to

proinflammatory cytokines such as IL-12 and IL-18 (12, 13).
These observations imply that, in the context of infection or

vaccination, NK cells from HCMV-seropositive (HCMV+) indi-

viduals may effectively mediate ADCC after cross-linking of

CD16 by IgG in immune complexes (11, 13, 14), but may respond

poorly to inflammatory cytokines (reviewed in Ref. 15). Specifi-

cally, the expanded CD56dimCD57+NKG2C+ NK cell subset may

be less sensitive to IL-2 produced by Ag-specific CD4+ T cells and

IL-12/IL-18 from accessory cells, such as dendritic cells and

macrophages (3, 6). However, much of the data on skewing of the

NK cell repertoire in HCMV+ individuals comes from studies of
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hematopoietic stem cell or solid organ transplantation (11, 16, 17),
and follow-up of these patients over time, in terms of susceptibility
to infection or response to vaccination, is lacking. As a result, the
true functional significance of HCMV-driven NK cell phenotypic
changes is poorly understood. Moreover, previous investigations of
the impact of HCMV infection on vaccination have produced rather
inconsistent results, with some studies reporting impaired vaccine
responses in HCMV+ donors (18–23), whereas others find no im-
pact of HCMV infection (24–27). The impact of HCMV-driven
immune differentiation on vaccine responsiveness and efficacy is
therefore still unclear.
The aim of this study, therefore, is to compare NK cell responses

to Ags previously encountered during immunization (Bordetella
pertussis) or during natural infection (H1N1 influenza virus) in
HCMV2 and HCMV+ individuals.

Materials and Methods
Study subjects

Volunteers (n = 152) were recruited from staff and students at the London
School of Hygiene and Tropical Medicine. All subjects gave written
consent and the study was approved by the London School of Hygiene and
Tropical Medicine Ethics Committee. Each subject provided a 50-ml ve-
nous blood sample, and reported vaccination history was recorded. Subject
characteristics are summarized in Table I.

Ab detection by ELISA

Plasma was collected from heparinized whole blood and stored at 280˚C
until use. HCMV infection status was determined by HCMV IgG ELISA
(BioKit). IgG Abs to pertussis toxin (PT; NIBSC) and to formalin-
inactivated whole H1N1 influenza virus (influenza A/California/7/2006
(H1N1)v(NYMC-X179A); H1N1; NIBSC) were determined using in-
house ELISA assays with goat anti-human IgG-peroxidase (Sigma-
Aldrich) as the secondary Ab and SIGMAFAST OPD (Sigma-Aldrich)
as the substrate. IgG concentrations were calculated by interpolation
from a standard curve, which was produced using anti-pertussis reference
serum (NIBSC; IU/ml) or using plasma from a donor with high titers of
Abs to H1N1 influenza (IgG concentration expressed in arbitrary ELISA
units [AEU]) (28). The pooled AB plasma used for in vitro assays con-
tained 6.8 IU/ml IgG to PT and had an H1N1 IgG titer of 273.8 AEU.

PBMC preparation and culture

PBMCs were isolated from heparinized venous blood on a Ficoll–Hypaque
gradient and cryopreserved in liquid nitrogen. Before use, PBMCs were
thawed into complete medium (RPMI 1640 supplemented with 100 U/ml
penicillin/streptomycin and 20 mM L-glutamine [Life Technologies,
Lifesciences] and 10% pooled human AB plasma), washed, and rested for
30 min before use. For some experiments, AB plasma was IgG-depleted
using a protein G-Sepharose column (GE Life Sciences).

PBMCs were cultured for 18 h at 37˚C at 2 3 105/well in 96-well
U-bottom plates (Nunc) in complete medium with or without low concen-
tration of cytokines (LCC; 12.5 pg/ml rhIL-12 [PeproTech] plus 10 ng/ml
rhIL-18 [MBL, Woburn, MA]); high concentration of cytokines (HCC;
5 ng/ml rhIL-12 plus 50 ng/ml rhIL-18); rat anti-IL-2 (3 mg/ml; BD Bio-
sciences); rat IgG2A isotype control (3 mg/ml; BD Biosciences; this was
included in wells with medium alone, as well as Ag alone); 1 mg/ml
formalin-inactivated whole H1N1 influenza virus (NIBSC, as described
earlier); 1 IU/ml killed whole-cell B. pertussis (pertussis; NIBSC); or
MHC class I–deficient K562 target cells (E:T ratio 2:1). GolgiStop (con-
taining Monensin, 1/1500 concentration; BD Biosciences) and GolgiPlug
(containing brefeldin A, 1/1000 final concentration; BD Biosciences) were
added after 15 h. Anti-CD107a Ab (A488-conjugated; BD Biosciences)
was included in the medium for the entirety of cell culture.

For activation via CD16 cross-linking, 96-well flat-bottom plates (Nunc)
were coated with anti-human CD16 (BD Biosciences) or an isotype-matched
control Ab (mIgG1k; BD Biosciences) overnight at 4˚C. Wells were rinsed
with PBS before addition of 23 105 PBMCs/well, which had been incubated
overnight at 37˚C with 50 IU/ml IL-2 (PeproTech). Anti–CD107a-A488 Ab
was added at the beginning of culture, and cells were harvested after 5 h.

Flow cytometry

PBMCs were stained in 96-well U-bottom plates as described previously
(6). In brief, cells were stained with fluorophore-labeled Abs to cell-surface

markers, fixed, permeabilized (Cytofix/Cytoperm; BD Biosciences), and
stained for intracellular molecules. The following mAbs were used: anti–
CD3-V500, anti–CD56-PECy7, anti–IFN-g–allophycocyanin, anti–CD107a-
A488, anti–CD16-allophycocyanin-H7, anti–CD25-allophycocyanin-H7 (all
BD Biosciences), anti–CD57-e450, anti–CD25-PerCPCy5.5, anti–CD16-
allophycocyanin, anti–CD25-PE, anti–IL-18Ra–PE, anti–IL-18Ra–FITC,
anti–IFN-g–allophycocyanin-e780, anti–CD16–allophycocyanin-e780 (all
e-Biosciences), anti–NKG2C-allophycocyanin, anti–NKG2C-PE (both R&D
Systems), and anti–NKG2A-FITC (Miltenyi). IL-12Rb2 Ab was conjugated
using EasyLink PE-Cy5 (Abcam). Cells were acquired on an LSRII flow
cytometer (BD Biosciences) using FACSDiva software. Data analysis was
performed using FlowJo V10 (Tree Star). FACS gates set on unstimulated
cells (medium alone or isotype controls) were applied in standard format
across all samples and all conditions.

NKG2C genotyping

DNA was extracted from whole blood using a Wizard genomic DNA ex-
traction kit (Promega). Donors were then genotyped for NKG2C using
touch-down PCR (Phusion High Fidelity PCR kits; New England Biolabs)
as described previously (29, 30).

Statistical analyses

Statistical analysis of flow cytometry data was performed using Prism 6
(GraphPad), or STATA/IC 13 (StataCorp), as detailed in the figure legends.
Responses where the gated cell subset contained,100 cells were excluded.
Mann–Whitney U tests were used to compare responses between HCMV2

and HCMV+ donors, and linear regression was used to adjust for sex and
age. Unless otherwise stated, statistical tests were one-sided: ****p #
0.0001, ***p , 0.001, **p , 0.01, *p , 0.05.

Results
Donor characterization

Subject characteristics are summarized in Table I. Subjects (n =
152) ranged in age from 20 to 77 y (median = 33 y). Fifty-five
subjects (36.2%) were found to be HCMV seropositive. Anti-
HCMV IgG titer increased significantly with increasing age (R2 =
0.248, p = 0.0001; Supplemental Fig. 1A), but age did not differ
significantly between HCMV+ and HCMV2 donors (two-tailed
Mann–Whitney U test, p = 0.561). Because the proportion of fe-
male and male donors differed between the HCMV2 and HCMV+

groups, subsequent analyses were adjusted for sex.
Cells from all 152 subjects were analyzed for responses to

pertussis. The median anti-PT IgG titer was higher among HCMV2

donors than among HCMV+ donors, but this difference was not
statistically significant (6.7 versus 5.0 IU/ml, two-tailed Mann-
Whitney U test, p = 0.078). One hundred and fourteen donors
(75.0%) confirmed that they had been vaccinated against pertussis,
but a minority of donors reported that they had not been vacci-
nated against pertussis (n = 13; 8.6%) or were unsure of their
vaccination status (n = 25; 16.4%). However, the proportions of
these individuals did not differ between the HCMV+ and HCMV2

groups, and their Ab titers did not suggest a difference in vacci-
nation history (data not shown).
All donors analyzed for responses to vaccine H1N1 influenza

(n = 52) confirmed only natural exposure to H1N1, that is, no pre-
vious seasonal influenza vaccination. Median anti-H1N1 IgG titers
were higher among HCMV2 donors (204.1 AEU/ml) than among
HCMV+ donors (187.2 AEU/ml), although this difference was
not statistically significant (two-tailed Mann–Whitney U test,
p = 0.135).

Ab and Ag-specific IL-2 drive NK cell responses to pertussis
and H1N1 influenza virus

PBMCs from 100 donors were stimulated overnight with pertussis
(Fig. 1B–D), and NK cell responses were measured by flow
cytometry (Fig. 1A). Significant induction of CD25 and IFN-g
(Fig. 1B and 1C) and degranulation (CD107a; Fig. 1D) was ob-
served in response to pertussis. Analysis of this response by
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CD56bright and CD56dim subsets reveals that the CD56dim cells
respond more robustly to pertussis than do the CD56bright NK cells
(and are thus the major contributors to the vaccine response;
Supplemental Fig. 2A–C).
Coexpression of CD25/IFN-g was markedly attenuated in the

presence of a blocking Ab to IL-2 and after depletion of IgG from

the plasma used to supplement the culture medium, indicating
a role for both memory T cell–derived IL-2 and Ag-specific Ab in
the NK cell IFN-g response. By contrast, the degranulation re-
sponse (as measured by cell-surface expression of the lysosomal
marker LAMP-1/CD107a) (31) was dependent upon IgG, but not
IL-2. The observation that neither anti–IL-2 nor IgG depletion

Table I. Donor characteristics

HCMV2 (n = 97) HCMV+ (n = 55)

Median age, y (range) 32 (20–70) 35 (21–77)
Female sex, n (%) 73 (75) 32 (58)
NKG2C genotype +/+, +/2, 2/2, n (%) 67/24/2 (72/26/2) 35/17/2 (65/31/4)
NKG2C2 haplotype frequency (%) 15.0 19.4
Median anti-HCMV IgG titer, IU/ml (range) ,0.25 394.2 (31.1–4411.6)
Median anti-PT IgG titer, IU/ml (range) 6.7 (0.5–139.3) 5.0 (0.8–179.9)
Median anti-H1N1 IgG titer, AEUs (range) 214.6 (80.7–953.2) 190.1 (90.2–522.7)

Donors were classified as HCMV2 and HCMV+ by anti-HCMV IgG ELISA, using 0.25 IU/ml as the cutoff per manufacturer’s instructions. NKG2
genotype (NKG2C+/+, NKG2C+/2, NKG2C2/2) was determined by PCR. IgG Ab titers against PT and H1N1 were calculated from interpolation of
a reference serum or high-titer donor standard curve, respectively.

FIGURE 1. NK cell responses to pertussis and H1N1 are inhibited by IL-2 neutralization and IgG depletion. PBMCs were cultured in vitro for 18 h with

medium alone, killed whole-cell pertussis (Per), and inactivated whole H1N1 influenza virus (H1N1), pertussis or H1N1 with blocking Ab to IL-2 (Per

a-IL-2, H1N1 a-IL-2), or pertussis or H1N1 in IgG-depleted plasma (Per IgG depl., H1N1 IgG depl.). The isotype control Ab (IgG2A) for the IL-2

blocking Ab was included in the medium, pertussis, and H1N1 wells. Representative flow cytometry plots show gating of CD32CD56+ NK cells and

expression of CD25, IFN-g, and CD107a (A). Responses to pertussis (B–D) and H1N1 (E–G) were measured by the percentage of NK cells expressing

CD25 (B and E), coexpressing CD25/IFN-g (C and F), and expressing CD107a (D and G). Data were analyzed in Prism using paired, one-tailed Wilcoxon

signed-rank tests. Each data point represents one donor, n = 100 (B–D) or n = 16 (E–G), and bar graphs denote medians. ****p # 0.0001, ***p , 0.001,

**p , 0.01, *p , 0.05.
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completely abrogated the NK cell IFN-g response suggests that
these two signals may synergize for optimal IFN-g production.
Cells from a subset of subjects (n = 16) were also analyzed for

responses to H1N1 influenza in the context of IL-2 blockade or
IgG depletion (Fig. 1E–G). As observed with pertussis, statisti-
cally significant induction of CD25 (Fig. 1E), CD25/IFN-g (Fig. 1F),
and CD107a (Fig. 1G) was observed in response to restimulation
with H1N1 Ag, and IL-2 blocking significantly decreased CD25/
IFN-g expression (Fig. 1F), whereas IgG depletion inhibited the
degranulation (CD107a) response (Fig. 1G). Interestingly, and
in contrast with the response to pertussis, IgG depletion enhanced
IFN-g production in response to H1N1, and IL-2 blockade slightly
decreased degranulation, indicating competition between these
pathways for NK cell activation during influenza responses
(Fig. 1F).

HCMV infection is associated with impaired NK cell responses
to pertussis and H1N1 influenza virus

NK cell responses to pertussis (n = 152) and H1N1 (n = 52) were
compared between HCMV2 and HCMV+ donors (Fig. 2). Con-
sistent with prior observations (3, 6), responses to pertussis and
H1N1 were significantly augmented by LCC IL-12 and IL-18 (p #
0.0001 for all parameters), indicating that in vitro accessory cell
activation and production of IL-12 and IL-18 (which is essential
for IL-2–mediated NK cell activation) (3, 5, 32) were suboptimal.
Interestingly, in the absence of LCC, pertussis induces stronger

NK cell responses than H1NI, whereas in the presence of LCC,

H1N1 induces the most robust responses. This may indicate that
pertussis induces some IL-12 and IL-18 (such that LCC is re-
dundant in these assays), whereas H1N1 may be a poor inducer of
IL-12 and IL-18 but a better inducer of IL-2 or other accessory
cytokines. This would be consistent with differences in TLR
signaling by RNA viruses such as influenza (TLR3) and Gram-
negative bacteria such as pertussis (TLR4) (33–36).
NK cells from both HCMV+ and HCMV2 donors responded to

pertussis and H1N1 (with or without LCC; Fig. 2); however, NK
cell responses to these two vaccines (whether defined as CD25+,
CD25+IFN-g+, or CD107a+) were significantly lower among
HCMV+ donors than among HCMV2 donors (Fig. 2A and 2B).
This was true for both vaccines and all parameters when cells
were cultured with LCC, and was also true for the CD25+ and
CD25+IFN-g+ responses to H1N1 and the CD25+ and CD107a+

responses to pertussis in the absence of LCC. Importantly, resting
levels of CD25 expression did not differ significantly between
HCMV+ and HCMV2 donors (Fig. 2A), and there was no dif-
ference in the potential of T cells from HCMV2 and HCMV+

donors to produce IL-2 in response to pertussis Ag (Supplemental
Fig. 1B and 1C). Furthermore, there is no intrinsic difference in
the ability of NK cells from HCMV+ and HCMV2 donors to
degranulate in response to CD16 cross-linking or K562 stimula-
tion (Supplemental Fig. 1D and 1E). However, NK cell CD25+,
CD25+IFN-g+, and CD107a+ expression in response to HCC (high
concentrations of IL-12 and IL-18) were all significantly higher in
HCMV2 compared with HCMV+ donors (Fig. 2A–C). Analysis of

FIGURE 2. NK cell responses to vaccine Ag are affected by HCMV infection. PBMCs were cultured in vitro for 18 h with medium alone, LCC, killed

whole-cell pertussis (Per), inactivated whole H1N1 influenza virus (H1N1), Per + LCC, H1N1 + LCC, or HCC. Donors were stratified into HCMV2 (2)

and HCMV+ (+) groups. Responses were measured as the percentage of NK cells expressing CD25 (A), coexpressing CD25/IFN-g (B) or CD107a (C).

Bivariate regression of age against responses to Per + LCC was performed for the percentage of NK cells expressing CD25 (D), CD25/IFN-g (E), and

CD107a (F). Each data point represents one donor, n = 152, except for H1N1 and H1N1 + LCC where n = 52. Bar graphs denote medians. NB, all Ag

stimulations induced statistically significant increases in expression of CD25, CD25/IFN-g, and CD107a over background (medium alone for pertussis/

H1N1, or LCC for pertussis+LCC/H1N1+LCC; p , 0.05 in all cases), except that H1N1 did not induce a significant increase in CD25+IFN-g+ NK cells in

HCMV+ donors (p = 0.416). Data were analyzed in Prism using, one-tailed Mann–Whitney U tests. ****p# 0.0001, ***p, 0.001, **p, 0.01, *p, 0.05.
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this response by CD56bright and CD56dim subsets reveals that the
effect of HCMV status is due entirely to an effect within the
CD56dim subset (Supplemental Fig. 2D–F).
In addition to consistently lower NK cell responses to vaccine

Ags in HCMV+ individuals, there was a trend for CD25 and CD25/
IFN-g responses to pertussis (with or without LCC) to decline
with increasing age (Fig. 2D and 2E). This was statistically sig-
nificant for the cohort as a whole (CD25+ pertussis: R2 = 0.0549,
p = 0.0052; CD25+ pertussis + LCC: R2 = 0.0453, p = 0.0122;
CD25+IFN-g+ pertussis: R2 = 0.0379, p = 0.0203; CD25+IFN-g+

pertussis + LCC: R2 = 0.0478, p = 0.0095), but not when analyzed
separately for HCMV2 and HCMV+ donors due to decreased
power. There was no effect of age on CD107a expression (per-
tussis: R2 = 0.00491, p = 0.4089; pertussis + LCC: R2 = 0.00879,
p = 0.272; Fig. 2F), which is consistent with maturation of the
NK cell repertoire, and therefore decreased sensitivity to exoge-
nous cytokines, but maintained cytotoxicity, during normal aging
(reviewed in Ref. 37) and increasing NK cell differentiation (8, 9).
Importantly, the effect of HCMV infection on impaired NK cell
responses to pertussis and H1N1 is entirely independent of the
association between age and NK cell function. In line with this
conclusion, adjusting for age by parametric regression did not
alter the conclusions of the study (Table II).
Overall, NK cell responses did not differ significantly between

males and females, although there was a trend for median responses
to be higher in women than in men, and this reached statistical
significance (p , 0.05) for the IFN-g response to pertussis + LCC
in HCMV+ donors (data not shown). Because the proportion of
female subjects differed between the HCMV2 and HCMV+

groups (Table I), the data in Fig. 2 were reanalyzed, adjusting for
sex, as well as age, using parametric regression (Table II). After
adjustment, CD25/IFN-g and CD107a expression in response to
vaccine alone (i.e., without LCC) are no longer significantly dif-
ferent between HCMV2 and HCMV+ donors, but responses to
vaccine with LCC, and responses to HCC, remain significantly
lower in HCMV+ compared with HCMV2 donors.
Finally, no associations were observed between anti-HCMV

titer and any NK cell responses among the HCMV+ subjects, and
there was no effect of NKG2C genotype (which may affect NK

cell differentiation) (30, 38, 39) on NK cell responses (data not
shown).

NK cell differentiation only partially explains reduced
responses to vaccines in HCMV+ donors

We hypothesized that reduced cytokine-mediated NK cell re-
sponses among HCMV+ donors would reflect expansion of the
highly differentiated CD56dimCD57+NKG2C+ NK cell subset,
which is known to be hyporesponsive to cytokines (12). Indeed, ex
vivo analysis confirmed observations from previous studies that
HCMV+ donors had lower proportions of CD56dimCD572 NK
cells and higher proportions of CD56dimCD57+ NK cells than did
HCMV2 donors (Fig. 3A and 3B); there was no difference be-
tween the groups in the proportion of cells with intermediate
CD57 expression (CD56dimCD57int, gating shown in Fig. 3A).
Consistent with previous work (10–12, 16, 17), HCMV seropos-
itivity was also associated with a higher proportion of CD16+

(Fig. 3C) and NKG2C+ (Fig. 3D) cells, and a lower proportion of
NKG2A+ cells (Fig. 3E), within the total NK cell population.
Moreover, HCMV seropositivity was correlated with a lower
proportion of CD572NKG2C2 cells and a higher proportion of
CD57+NKG2C+ cells within the CD56dim NK cell population
(Fig. 3F).
Although the increased proportion of CD56dimCD57+ NK cells

among HCMV+ donors likely contributes to their reduced re-
sponsiveness to cytokines, we also observed significantly reduced
CD25, CD25/IFN-g, and CD107a expression in response to both
pertussis and H1N1 within individual NK cell subsets. This was
especially evident among CD56dimCD57+ cells and for cultures
containing LCC (Fig. 4A–F), but this was also the case for cul-
tures stimulated with vaccine alone (Supplemental Fig. 3G–I and
3M–O).
Similarly, when cells were grouped by expression of CD57 and

NKG2C, we found that responses to pertussis with LCC were lower
among NKG2C+ NK cells than among NKG2C2 cells (Fig. 4G–I).
This association was statistically significant for CD57+ NK cells
of HCMV+ donors, but evaluation of the HCMV2 cohort lacked
statistical power as too few donors had sufficient NKG2C+ cells to
allow a robust analysis. Interestingly, however, responses of all

Table II. NK cell responses to vaccine Ags by HCMV status after adjusting for sex and age

Adjusted for Sex and Age

Stimulus Parameter (Total NK Cells) Effect (95% CI)a pb

Pertussis CD25+ 24.4 (28.3, 20.5) 0.014
CD25+IFN-g+ 20.5 (21.2, 0.3) 0.125
CD107a+ 21.5 (23.4, 0.5) 0.071

Pertussis + LCC CD25+ 28.5 (213.7, 23.4) 0.001
CD25+IFN-g+ 21.5 (22.8, 20.1) 0.020
CD107a+ 22.9 (25.5, 20.3) 0.016

H1N1 CD25+ 25.4 (29.5, 21.3) 0.005
CD25+IFN-g+ 20.4 (21.1, 0.4) 0.158
CD107a+ 21.8 (23.9, 0.3) 0.049

H1N1 + LCC CD25+ 212.2 (222.6, 21.8) 0.011
CD25+IFN-g+ 25.1 (210.4, 0.1) 0.027
CD107a+ 25.1 (28.9, 21.5) 0.004

HCC CD25+ 211.3 (216.7, 26.0) ,0.0001
CD25+IFN-g+ 26.5 (211.4, 21.7) 0.005
CD107a+ 22.1 (23.5, 20.6) 0.004

A regression analysis was performed in STATA to adjust for sex and age when comparing NK cell responses to pertussis (2/+ LCC), H1N1 (2/+ LCC),
and HCC between HCMV2 and HCMV+ donors. The response was quantified by the percentage of total NK cells expressing CD25, CD25/IFN-g
(CD25+IFN-g+), and CD107a.

aEffect (coefficient), with 95% confidence interval (CI), represents the change in the mean percentage of NK cells responding in HCMV+ donors as
compared with HCMV2 donors.

bThe p value refers to the significance of the difference in response between HCMV2 and HCMV+ donors after adjusting for sex and age. The
p values , 0.05 are underlined.
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four subsets were significantly lower among HCMV+ donors than
among HCMV2 donors (Fig. 4G–I), despite minimal differences
in responses to LCC alone (Supplemental Fig. 3A–F). These data
indicate that the reduced response of HCMV+ donors reflects
differences in the intrinsic responsiveness of NK cells within
a subset, as well as differences in the distribution of these subsets.
Although the level of expression (median fluorescence intensity
[MFI]) of both CD57 and NKG2C was higher on CD56dimCD57+

NK cells in HCMV+ donors compared with HCMV2 donors
(median MFI CD57: 13,526 versus 10,575, p = 0.0032; median
MFI NKG2C: 141 versus 80.9, p , 0.0001, data not shown), there
was no significant association between CD57 and NKG2C ex-
pression levels and NK cell responsiveness in HCMV+ donors
(data not shown).
Because only some HCMV+ individuals have obvious expansion

of the CD56dimCD57+NKG2C+ subset, we considered whether
NK responses might differ between HCMV+ individuals with and
without this expanded population. Sixteen of 55 (29%) HCMV+

donors demonstrated expansion of the CD56dimCD57+NKG2C+

subset (defined as % CD56dimCD57+NKG2C+ cells greater than
the mean + 3 SD of that in HCMV2 donors), and NK cells from
these donors tended to respond less robustly than did cells from
HCMV+ donors without this expansion (Fig. 5). Importantly, there
was evidence by trend analysis for decreasing NK cell respon-

siveness with HCMV infection and then with HCMV infection
plus expansion of the CD56dimCD57+NKG2C+ subset (Fig. 5).
This confirms that although expansion of the CD56dimCD57+

NKG2C+ subset is associated with loss of NK cell responsiveness
in vaccine recall assays, cells of HCMV+ donors respond less well
than do cells of HCMV2 donors, irrespective of NKG2C ex-
pression.

HCMV infection is associated with altered expression of
cytokine receptors by NK cells

Although there was a clear role for specific IgG in induction of
CD25, CD25/IFN-g, and CD107a expression (Fig. 1), impairment
of CD16-mediated signaling seemed an unlikely explanation for
reduced NK cell responsiveness because HCMV+ individuals have
a higher frequency of CD16+ NK cells (Fig. 3C), cells from
HCMV+ and HCMV2 donors responded equally well to CD16
cross-linking (Supplemental Fig. 1D), and use of pooled AB
plasma for in vitro assays ensured that specific IgG concentrations
were consistent in all assays.
In contrast, differences between HCMV+ and HCMV2 donors

were most marked in cultures containing LCC (Fig. 2) and in
cultures with high concentrations of the cytokines IL-12 and IL-18
(HCC; Fig. 6A–C), suggesting that differences in expression of
cytokine receptors might explain our observations. Although there

FIGURE 3. Comparison of ex vivo expression of NK cell markers and receptors in HCMV2 and HCMV+ donors. PBMCs were analyzed ex vivo for

surface expression of CD56, CD57, CD16, NKG2C, and NKG2A, as shown by representative flow cytometry plots (A). Proportions of total NK cells in the

CD56bright, CD56dimCD572, CD56dimCD57int, and CD56dimCD57+ subsets were compared between HCMV2 and HCMV+ donors (B), as was expression of

CD16 (C), NKG2C (D), NKG2A (E), and CD57/NKG2C (F, CD56dim only). The percentages of cells expressing each marker in HCMV2 (2) and HCMV+

(+) donors were compared using two-tailed Mann–Whitney U tests. Each data point represents one donor, n = 152; bar graphs denote medians. ****p #

0.0001, ***p , 0.001, **p , 0.01, *p , 0.05.
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was no difference in resting (ex vivo) expression of IL-12Rb2 on
any NK cell subset (Fig. 6D and 6E), IL-12Rb2 was significantly
upregulated on the total NK cell population in HCMV2 but not
from HCMV+ donors after culture with HCC (Fig. 6F). Moreover,
and consistent with data showing associations between acquisition
of CD57 and decreased IL-18Ra expression (6, 8, 9), resting NK
cells from HCMV+ donors were significantly less likely than cells
from HCMV2 donors to express IL-18Ra, and this difference was
especially marked in the (expanded) CD56dimCD57+ NK cell
subset (Fig. 6G and 6H).

Discussion
During secondary immune responses, both CD4+ T cell–derived
IL-2 and Ag–Ab immune complexes induce “Ag-specific” NK cell
activation, allowing NK cells to act as effectors of the adaptive
immune response and to contribute to postvaccination immunity
by secretion of IFN-g and/or by cytotoxicity (3–6, 14). In this
study, we demonstrate for the first time, to our knowledge, that the
contribution of NK cells to adaptive immune responses is affected
by HCMV infection: NK cells from HCMV+ donors respond
significantly less well than cells from HCMV2 donors to killed
whole-cell pertussis or inactivated whole H1N1 influenza virus.

The effect of HCMV infection on NK cell responsiveness is in-
dependent of age, sex, or anti-HCMV IgG titer.
Our data also demonstrate for the first time, to our knowledge,

that there is an additive effect between the cytokine and the IgG
pathways driving NK cell IFN-g production, because both IgG
depletion and IL-2 blockade reduced NK cell IFN-g responses in
response to stimulation of PBMCs with pertussis vaccine. Of
particular interest, IgG depletion markedly reduced Ag-induced
CD25 expression on NK cells. We propose that CD16 cross-
linking by immune complexes upregulates CD25 expression, in-
creasing sensitivity to T cell–derived IL-2, and thereby enhancing
IFN-g production. However, CD16 cross-linking is not essential
for upregulation of CD25, because this can be induced by Ag
alone, presumably in response to IL-12 and IL-18 produced by
APCs (6, 40–42). Release of cytotoxic granules, as measured
by upregulation of CD107a on the cell surface, is also inhibited by
IgG depletion but is unaffected by IL-2 blockade, suggesting that
NK cells could act as effectors of the adaptive response through
ADCC in the absence of memory T cells, providing there is suf-
ficient circulating Ab.
However, whereas IgG depletion also decreased H1N1-induced

CD25 expression on NK cells, H1N1 induction of IFN-g was

FIGURE 4. HCMV infection affects vaccine Ag responses of all NK cells, irrespective of their differentiation status. PBMCs were cultured in vitro for

18 h with killed whole-cell pertussis with LCC (pertussis + LCC) (A–C and G–I) or inactivated whole H1N1 influenza virus with LCC (H1N1 + LCC) (D–

F). Responses were measured as the percentage of cells expressing CD25 (A, D, and G), CD25/IFN-g (B, E, and H), and CD107a (C, F, and I) by CD56/

CD57-defined subsets (A–F) or CD56dim CD57/NKG2C-defined subsets (G–I) and compared between HCMV2 (2) and HCMV+ donors (+). Data were

analyzed using one-tailed Mann–Whitney U tests. Each data point represents one donor, n = 152 (A–C and G–I) or n = 52 (D–F); bar graphs denote medians.

NB, for CD57/NKG2C-defined subsets, CD57int cells were grouped together with CD572 cells. ****p # 0.0001, ***p , 0.001, **p , 0.01, *p , 0.05.
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significantly enhanced in the absence of IgG. We have observed that
individual NK cells tend to either produce IFN-g or degranulate
(but not both; unpublished data), suggesting that inhibiting the de-
granulation response to H1N1 by removing IgG skews the response
toward IFN-g production. However, given the limited effect of IgG
depletion on H1N1-induced degranulation, it is unclear why this
should be the case. Indeed, expression of CD107a in response to
H1N1 seems to be relatively unaffected by either IL-2 blockade or
IgG depletion. This suggests that H1N1-driven degranulation may
be affected by other stimuli, such as type I IFNs (43, 44).
We had hypothesized that decreased responses to vaccines in

HCMV+ donors would be attributable to a redistribution of the
NK cell repertoire. HCMV infection drives the expansion of a
CD56dimCD57+NKG2C+ subset of NK cells (11, 16, 17, 45),
which display a highly differentiated phenotype, including re-
duced responsiveness to exogenous cytokine stimulation (8, 9) and
epigenetic changes at the IFNG locus (46). These phenotypic and
functional changes are similar to those observed during aging (15,
47), and comparisons have been drawn between the effects of
HCMV and immunosenescence (48). Because our previous work
has indicated that NK cell IFN-g production after restimulation

with vaccine Ags is cytokine dependent (3), we predicted that
fewer NK cells from HCMV+ donors would produce IFN-g in
response to pertussis or influenza Ags because of the reduced
capacity of the expanded CD56dimCD57+NKG2C+ subset to re-
spond to cytokines. Ex vivo analyses confirmed that HCMV+

donors had higher proportions of CD56dimCD57+ and CD56dim

CD57+NKG2C+ NK cells than did HCMV2 donors, and func-
tional analysis confirmed that few of the highly differentiated
CD57+ NK cells produced IFN-g after Ag stimulation. Interest-
ingly, however, our data also show that, irrespective of their CD57/
NKG2C surface phenotype, NK cells from HCMV+ donors are
less likely to produce IFN-g in response to vaccines than are cells
from HCMV2 donors. In other words, there are pronounced
functional differences between HCMV+ and HCMV2 donors
within NK cell subsets. The reduced NK cell IFN-g response to
vaccine Ags in HCMV+ donors is therefore not simply due to
expansion of the CD56dimCD57+NKG2C+ subset. Although ac-
quisition of NKG2C was functionally relevant (associated with
reduced IFN-g and degranulation responses), it was not sufficient
to explain the reduced responsiveness of cells from HCMV+

donors.

FIGURE 5. NK cell responses of HCMV+ donors with or without the characteristic CD56dimCD57+NKG2C+ expansion. PBMCs were cultured in vitro

for 18 h with medium alone, LCC, killed whole-cell pertussis (Per), inactivated whole H1N1 influenza virus (H1N1), Per + LCC, H1N1 + LCC, or HCC.

Donors were stratified into HCMV2 (2), HCMV+ without expansion of CD56dimCD57+NKG2C+ cells (+), and HCMV+ with expansion of CD56dimCD57+

NKG2C+ cells (++). Responses are expressed as the percentage of total NK cells expressing CD25 (A), coexpressing CD25/IFN-g (B), or expressing

CD107a (C). CD57-defined (D–F) or CD57/NKG2C-defined subsets (G–I) were analyzed for responses to pertussis with LCC for CD25 (D and G), CD25/

IFN-g (E and H), and CD107a (F and I). Data were analyzed in Prism using one-tailed Mann–Whitney U tests to compare responses between HCMV+

donors and either HCMV2 donors or HCMV++ donors. ANOVA for linear trend (from 2 to + to ++) was also performed for each functional readout. Each

data point represents one donor, n = 152, except for H1N1 and H1N1 + LCC where n = 52. Bar graphs denote medians. ****p # 0.0001, ***p , 0.001,

**p , 0.01, *p , 0.05.
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Although further studies are required to define the “within
subset” effects of HCMV infection, our data suggest that reduced
expression of IL-18Ra or reduced ability to upregulate IL-12Rb2
among NK cells from HCMV-infected individuals may partially
explain their failure to produce IFN-g. Although decreasing ex-
pression of IL-12Rb2 and IL-18Ra has been associated with
CD57 expression, this is the first demonstration, to our knowledge,
that there are differences in cytokine receptor expression between
HCMV+ and HCMV2 donors and it is possible to see how each of
these might affect NK cell responses. Higher resting levels of IL-
18Ra expression would increase the sensitivity of NK cells to low
concentrations of IL-18 being produced by APCs in response to
innate receptor ligands in whole-cell pertussis or inactivated in-
fluenza virus. IL-18 signaling upregulates CD25 (49), thereby
increasing sensitivity to IL-2. IL-2 signaling might then upregulate
IL-12R2b (50, 51), allowing IL-12 to synergize with IL-2 to drive
IFN-g production (3, 40, 52), while also generating a positive
feedback loop in which IL-12 signaling upregulates IL-18Ra (53,
54), IL-18 signaling, and CD25. However, although cytokine re-
ceptor expression is likely to play a role in determining NK cell

responsiveness to vaccine Ags in HCMV2 and HCMV+ donors,
the biological relevance of small changes in surface expression on
IL-12Rb2 needs to be demonstrated. Moreover, although we have
no evidence to suggest that T cell IL-2 production in response to
vaccine Ags is affected by HCMV infection, future studies will
need to determine the extent to which concomitant changes in
APC function during HCMV infection also affect NK cell re-
sponses.
We had initially considered NK cell degranulation during vac-

cine restimulation to be a result of CD16 cross-linking by IgG
immune complexes, as suggested by the IgG depletion data and
accepted models of ADCC. The expectation was, therefore, that
although IFN-g responses might be impaired, NK cell degranu-
lation responses would be sustained in HCMV+ donors. Indeed,
cross-linking with anti-CD16 Ab induced equivalent levels of
CD107a upregulation. It was, therefore, somewhat surprising that
degranulation responses to vaccine were lower in HCMV+ donors
than in HCMV2 donors. However, degranulation responses to
HCC were also lower in HCMV+ donors, supporting the notion of
synergy between the cytokine and CD16 pathways, and adding

FIGURE 6. Decreased cytokine responsiveness and decreased cytokine receptor expression by NK cells from HCMV+ donors. (A–C) PBMCs were

cultured in vitro for 18 h with an HCC. Responses were measured as the percentage of CD56dim CD57/NKG2C-defined cells expressing CD25 (A), CD25/

IFN-g (B), and CD107a (C), and compared between HCMV2 (2) and HCMV+ donors (+). (D–F) NK cells were analyzed for surface expression of IL-

12Rb2 using an mIgG1 PECy5-conjugated isotype control to set the gate (D). Total NK cells (E and F) and CD56/CD57-defined subsets (E) were analyzed

ex vivo (E) and after 18 h culture in vitro with LCC or HCC (F). (G and H) NK cells were also analyzed for IL-18Ra surface expression using the T cell

population to set the IL-18Ra gate (G), for total NK cells and CD56/CD57-defined subsets ex vivo (H). HCMV2 and HCMV+ donors were compared using

one-tailed (A–C) or two-tailed (E, F, and H) Mann–Whitney U tests. Each point represents one donor, n = 152 (A–C, E, and H) or n = 16 (F); bar graphs

denote medians. ****p # 0.0001, **p , 0.01, *p , 0.05.
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weight to the suggestion that HCMV infection may affect cytokine
receptor expression.
Our findings have potentially important implications. HCMV

infection is a known risk factor for all-cause mortality in adults
(55), and perinatal HCMV infection is associated with slower
growth and increased rates of hospitalization in African children
(56). The underlying biology of these relationships is unknown,
but reduced responsiveness to vaccination or reduced resilience in
the face of infection are plausible explanations. Distorted T cell
and NK cell phenotypes in HCMV+ individuals have been widely
reported (15, 57–59), giving credence to the possibility that
adaptive immune responses may be less effective in infected
individuals. Further work will need to address the clinical con-
sequences of altered NK cell responses to infection and vaccina-
tion in HCMV-infected individuals.
To our knowledge, this is the first published study of the effect

of HCMV infection on NK cell responses to vaccine Ags. When
compared with the marked effect of HCMVon cellular immune
responses in our adult cohort, the modest phenotype seen in the
infant studies (24, 25) raises the intriguing question whether the
duration of HCMV infection affects vaccine responses. We have
previously shown in an African population that, with near-universal
infant HCMV infection, the characteristic “adult HCMV” NK
cell profile is reached by early adolescence (30). The majority of
our donors are of European or North American origin (data not
shown), suggesting that they may have been infected in ado-
lescence or adulthood (60, 61), potentially explaining some of
the heterogeneity in the responses we see within the HCMV+ group.
Similarly, there will be variation among our donors in time since
vaccination (pertussis) or infection (H1N1), and it is likely that
relatively low IFN-g responses we observe in comparison with
earlier studies (3) is due to the much longer interval between pri-
mary and secondary exposures to Ag. Future studies will need
to assess whether the duration of HCMV infection is a risk factor
for altered NK responses and whether this manifests itself as re-
duced responsiveness to active vaccination and reduced vaccine
efficacy.
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completed for all staff before fieldwork commences. 
 
 
 
  

mailto:ethics@lshtm.ac.uk
http://intra.lshtm.ac.uk/safety/


1.  Give an outline of the proposed project.  Sufficient detail of the protocol must be given to 
allow the Committee to make an informed decision without reference to other documents.   
(Additional material should only be attached if considered absolutely necessary).  
                                                                                                                         Max 300 words 
ATTACH FULL PROTOCOL TO THE ELECTRONIC SUBMISSION     
 

Answer: 
Expand 
box to fit 

Objective: 

We wish to test the hypothesis that persistent infection with human cytomegalovirus (HCMV) 
drives phenotypic and functional differentiation of natural killer (NK cells) and may contribute 
to declining NK cell function and reduced responsiveness to vaccination. 
 
Summary of the study: 
100 healthy adult volunteers, from among LSHTM staff and students, will be asked to provide 
50ml of blood on a single occasion.  Some donors may be asked to provide a subsequent 
sample in order to follow up any particularly interesting observations. Approximately 2ml of 
serum (in two 1ml aliquots) will be taken and frozen for subsequent anti-CMV antibody 
assays. Biological assays will be performed on enriched lymphocytes by flow cytometry to 
derive the phenotype of NK cells and their subsequent functional potential.  This will also 
include measuring antigen-driven NK cell responses to known vaccine antigens such as 
tetanus toxoid, diphtheria toxin etc.  HCMV status (seropositive or not) will be correlated with 
NK cell phenotype and function.  
 

2.  State the intended value of the project. If this project or a similar one has been done before 
what is the value of repeating it?   Give details of overviews and/or information on the 
Cochrane database.                                                                                         Max 300 words 
This area is of increasing importance – please ensure you give a full response. 
 

 This is a novel piece of research. The potential for human CMV to affect NK cell phenotype is 
a known concept. However, to our knowledge, no one has performed functional assays to 
define the role of HCMV infection in functional differentiation of NK cells.  
Our preliminary data (from a study in The Gambia (Ref 1269)) indicate that a particular subset 
of NK cells (CD57hi, CD56Dim, NKG2A-, NKG2C+) accumulates with increasing age and that 
this NK subset is functionally impaired. We suspect that this population is enriched in 
Gambians due to HCMV infection. However, since HCMV seroprevalence in the Gambia is 
very high (only 4 of 467 donors were seronegative for HCMV), we cannot perform a robust 
comparison of HCMV infected and uninfected individuals in The Gambia.   
HCMV seroprevalence globally is around 40% and in adult Europeans is closer to 50% 
allowing us to assess the role of this persistent infection in NK cell responses in UK resident 
donors.  
 
HCMV is a member of the herpesviridae family and is generally passed vertically (during 
pregnancy or in the perinatal period) or horizontally through child-child contact.  Infection goes 
un-noticed in most healthy individuals but can cause serious illness in immune-compromised 
patients (HIV positive, transplant recipients etc).  HCMV infection is also known to affect long 
term health outcomes, but the mechanism is unknown.  NK cells are however known to be the 
primary cell type responsible for killing CMV infected target cells.  Moreover, NK cells are 
being increasingly recognised as mediators of vaccine induced immunity to a range of 
diseases (Rabies, TB and Tetanus). If NK cell function deteriorates with age in HCMV+ 
donors, this might explain declining vaccine efficacy in older individuals.   
 
 

3.  Specify numbers, with scientific justification for sample size, age, gender, source and method 
of recruiting participants for the study.                                                Max 300 words 
 

  
We will recruit up to a total of 100 individuals.  All will be members of LSHTM or Birkbeck 
College (staff or students). Volunteers can be of any age (>18), equal numbers of male and 
female and should be in good health. Individuals on long term medication for any immune-
related disorders will be excluded.  
 
Donors will be recruited by Carolynne Stanley (Immunology and Infection Department 



research co-ordinator) by email advertisement and posters/flyers on notice boards. 
Volunteers will also be recruited from among previously registered LSHTM donors. 
 
  
 

4.  State the personal experience of the applicant and of senior collaborators in the study in the 
field concerned, and their contribution to the study. 
 

 Professor Riley has more than 25 years research experience on immunity to malaria in 
humans. 
Dr Matthew White is an immunologist with experience in human and murine T cell and NK cell 
biology. 
Dr Goodier has more than 20 years research experience in human immunology and infectious 
disease. 
Carolyn Neilsen is a PhD student with more than 1 year laboratory experience in human 
immunology. 
Carolynne Stanley has managed the anonymous blood donor register at LSHTM for the last 
10 years and is a qualified phlebotomist. 

5.  State the likely duration of the project, and where it will be undertaken. 
 

 Up to 3 years. Volunteers will be consented and bled at LSHTM (First Aid Room, Ground 
floor, Keppel St). All lab work and data analysis will be undertaken in the Immunology and 
Infection Department, LSHTM. 
 
 
 
 
 
  

6.  Specify the procedures, including interviews, involving human participants with brief details of 
actual methods.                                                                                         Max 500 words 
 

  
Informed Consent. 
Brief questionnaire (age, sex, vaccination history). 
Venous blood sample (50ml) 
 
 

7.  State the potential discomfort, distress or hazards that research participants may be exposed 
to (these may be physical, biological and/or psychological).  What precautions are being 
taken to control and modify these?  Include information on hazardous substances that will be 
used or produced, and the steps being taken to reduce risks.   
 

 Potential discomfort, distress or hazards are limited to those associated with blood sampling. 
Pain associated with venesection is minimal; there is a risk of minor (and reversible) damage 
to the vein leading to bruising; a minority of subjects may experience transient dizziness, 
nausea or fainting.  
 
Blood donors at LSHTM are routinely asked to donate 50mls blood and we have not 
experienced any problems either medically or in terms of acceptability. 
 

8.   
a) 

Does the  project involve pre-marketing use of a drug/appliance or a new use for a  
marketed product?         
 

 NO 
 
 

b) Does the company producing or providing any drug/appliance (whether pre-marketed, new 
use for marketed product or licensed use of marketed product) agree to abide by the 
guidelines on compensation for non-negligent injury of the Association of the British 
Pharmaceutical Industry (ABPI)?  



 
If YES, a written statement from the company to this effect should be attached. 

 NO 
 

9.  Will payments be made to participants?  These should usually not be for more than 
travelling expenses and/or loss of earnings and must not represent an inducement to take  
part.    
 

If YES give details and justification. 
 
Please supply copies of information about payments/compensation that will be provided to 
participants 

 NO 
 

10.  Specify how confidentiality will be maintained with respect to the data collected.  When small 
numbers are involved, indicate how possible identification of individuals will be avoided.   
 

  
A system of anonymous recruitment of blood donors for medical research has been running 
at LSHTM for over 10 years, co-ordinated by Ms Stanley. This system will be adopted for the 
proposed study. 
 
Identifying data on all volunteers will be entered into a secure database maintained by 
Carolynne Stanley and they will be given a unique study number which will be used to identify 
their questionnaires and samples. Only Ms Stanley will be aware of the identity of the 
individuals. Ms Stanley will co-ordinate recruitment and recall of volunteers. 
 
 
 

11.  
a) 

 
 
 
 
 
 
 
 
 
 
 
 

State the manner in which consent will be obtained. (Note the information sheet and consent 
form must be electronically appended and submitted with this application).   
 
Written consent is normally required.   When this is not possible, a detailed explanation of the 
reasons should be given and a record of those agreeing kept.  (see LSHTM SOP on Informed 
Consent for Research - LSHTM/SOP/014 
http://intra.lshtm.ac.uk/trials/sops/sopsinpdf/sop_014_consent.pdf - although aimed at clinical 
trials the principles apply to all studies)   
 
If research is on human tissue samples, investigators must refer to guidance notes at 
http://intra.lshtm.ac.uk/support/research/humantissueact.html   
 
If any photographs are to be taken, whether for teaching or research purposes, ensure that 
the participant’s consent to their use has been given in line with the provisions in British 
Medical Journal, 1998, 316, 1009-1011. 
 

  
Written consent will be obtained, please see attached Participant Information Sheet and 
Consent form. 
 

b) Specify whether any subjects will be recruited from vulnerable groups? Please give details 
(This includes pregnant women, foetuses and neonates, children, prisoners, individuals with 
mental disability, individuals with learning difficulties, unconscious or severely ill, staff or 
students of LSHTM, other) 

  
No 
 

c) State the manner in which consent will be obtained from subjects recruited from vulnerable 
groups if this is not clear from 11a above (i.e. additional measures being put in place for these 
subjects?). (Note the information sheet and consent form must be electronically appended 

and submitted with this application)  
  

http://intra.lshtm.ac.uk/trials/sops/sopsinpdf/sop_014_consent.pdf
http://intra.lshtm.ac.uk/support/research/humantissueact.html


Not Applicable 
 

12.  State what medical supervision is available and its location in relation to the participants. 
 

 Ms Stanley is a trained first aider familiar with all the relevant procedures involved with 
phlebotomy at LSHTM. 
 
 

13.  Will equivalent service or support to participants be available after the study ends?  
 
If NO, give details and describe steps to minimise loss of service or support. 

 No. Participants will be expected to obtain medical services from their GP. 

14.  
 
a) 
 
 

 

For interventional trials (see definition on cover)  

 
Has, or will, the study be registered before the enrolment of the first participant on a publically 
accessible database?  See http://www.who.int/ictrp/en/ for further information. 
 
(A non-compulsory registry for observational studies in pharmacoepidemiology is available at 
http://www.encepp.eu/encepp_studies/index.html).   

 N/A 
 

b) Does the trial comply with Good Clinical Practice (GCP)?  If no, explain why. 

 N/A 

c) For clinical trials of medicines in the UK or EU please give details of CTA (Certificate of 
Clinical Trial Authorization). 

 
 

N/A.  
 

d) Is there a Data Safety Monitoring Board (DSMB) in place? 

 N/A  

15.  If the aim of the study is to improve treatment or management indicate how successful 
treatment would be continued or expanded.   
    

 N/A 
 

16.  Does this study involve the taking of blood samples and/or any other tissue? 
 

 YES 

17.   
a)  

If YES 
Please list samples which will be taken. 

 Peripheral blood (max 50mls) on a maximum of 2 occasions over a 3 month period 
 

b) Please confirm that you have undertaken the on-line training programme available at 
http://intra.lshtm.ac.uk/support/research/humantissueact.html and that you will ensure that 
any staff involved in the procedures for taking consent will also have undertaken an agreed 
training programme. 

  
YES 

c) If samples are taken overseas, will the samples be brought back to LSHTM at any time? 

 N/A 
 

18.  
a)     

Where the research is to take place overseas, the Principal Investigator must seek ethical 
approval, through his/her overseas collaborators, in the country(s) concerned. Approval from 
the LSHTM Committee is dependent on local approval having been received. 
 

Please list the countries where research is being undertaken and arrangements being made 
to obtain local ethical and/or regulatory approval. 
 
Please electronically append copies of local approval letter(s) where this has already been 
obtained. 
 

http://www.who.int/ictrp/en/
http://www.encepp.eu/encepp_studies/index.html
http://intra.lshtm.ac.uk/support/research/humantissueact.html


 
 

N/A 

b) Where the research is taking place in the UK, please list other UK Committees from which 
approval is being sought. 
 

 None 
 

20. Please give details of the funder and whether the funder sent the proposal out to Peer Review 
 

 MRC UK.  
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Influenza Reagent 
Influenza Antigen A/California/7/2009 (H1N1)v (NYMC-X179A) (Egg 

Derived) 
NIBSC code: 09/146 
Instructions for use 

(Version 5.0, Dated 11/01/2013) 
 

This material is not for in vitro diagnostic use.   
 

1.    INTENDED USE  
Influenza antigen reagent 09/146 is prepared for single radial diffusion 
assay of A/California/7/2009 (H1N1)v antigens using an appropriate 
NIBSC antiserum reagent. 
 
2.    CAUTION 
This preparation is not for administration to humans. 
 
The material is not of human or bovine origin.  As with all materials of 
biological origin, this preparation should be regarded as potentially 
hazardous to health.  It should be used and discarded according to 
your own laboratory's safety procedures.  Such safety procedures 
should include the wearing of protective gloves and avoiding the 
generation of aerosols.  Care should be exercised in opening 
ampoules or vials, to avoid cuts. 
 
3.    UNITAGE 
Antigen reagent 09/146 contains 50µgHA/ml. 
 
4.    CONTENTS 
Country of origin of biological material: United Kingdom. 
Antigen reagent 09/146 is prepared from formalin inactivated, partially 
purified A/California/7/2009 (H1N1)v (NYMC-X179A) virus which was 
suspended in PBSA buffer containing 1% (w/v) sucrose and processed for 
freeze drying  as described in: 
http://www.who.int/biologicals/reference_preparations/establishment/en/in
dex.html 
 
 
The reagent has been inactivated following validated procedures 
used to produce human influenza vaccine that is registered in the 
EU. This  inactivated reagent has been shown to be free from 
residual infectious virus by testing according to the European 
Pharmacopeia Compendial Assay (monograph 0158). 
 
5.    STORAGE 
-20°C 
Please note: because of the inherent stability of lyophilized 
material, NIBSC may ship these materials at ambient temperature. 
 
6.    DIRECTIONS FOR OPENING 
DIN ampoules have an „easy-open‟ coloured stress point, where the 
narrow ampoule stem joins the wider ampoule body. 
Tap the ampoule gently to collect the material at the bottom (labeled) 
end. Ensure that the disposable ampoule safety breaker provided is 
pushed down on the stem of the ampoule and against the shoulder of 
the ampoule body. Hold the body of the ampoule in one hand and the 
disposable ampoule breaker covering the ampoule stem between the 
thumb and first finger of the other hand. Apply a bending force to open 
the ampoule at the coloured stress point, primarily using the hand 
holding the plastic collar.  
Care should be taken to avoid cuts and projectile glass fragments that 
might enter the eyes, for example, by the use of suitable gloves and an 
eye shield. Take care that no material is lost from the ampoule and no 
glass falls into the ampoule. Within the ampoule is dry nitrogen gas at 
slightly less than atmospheric pressure. A new disposable ampoule 
breaker is provided with each DIN ampoule.  
 
  

 
7.    USE OF MATERIAL 
 
 
No attempt should be made to weigh out any portion of the freeze-dried 
material prior to reconstitution.    
For all practical purposes each ampoule contains the same quantity of the 
substances listed above. Reconstitute the total contents of one ampoule of 
reagent with 1ml  of distilled water. allow to stand for a minimum of 5 minutes 
before use to allow forcomplete solution of freeze dried material. antigen 
09/146 should be used according to the method described by Wood, JM, 
Schild, GC, Newman RW and Seagrott, VA, journal of Biological 
Standardisation, 1977, 5, 237-247, with the following modification: 
 
It is recommended that antigen reagent 09/146 and test A/California/7/2009 
(H1N1)v virus antigens should be treated with Zwittergent 3-14 detergent 
(Calbiochem-Behring, La Jolla, CA, USA) before single single radial diffusion 
assay. Suitable incubation conditions are as follows: 
 
450 microlitres of antigen are added to 50 microlitres of 10% (w/v) 
Zwittergent dteregent and incubated in covered containers for 30 minutes at 
room temperature (20-25°C). Dilutions of detergent treated antigens are then 
added to wells in single radial diffusion immunoplates and incubated at 20-
25°C. 
 
Reagent 09/146 should be used to assay A/California/7/2009 (H1N1)v 
antigens using an appropriate NIBSC antiserum reagent. 
 
8.    STABILITY  
Reference materials are held at NIBSC within assured, temperature-
controlled storage facilities.  Reference Materials should be stored on 
receipt as indicated on the label. 
      
NIBSC follows the policy of WHO with respect to its reference materials. 
Users of the material wishing to refer to the declared ampoule content for 
use in quantitative or semi-quantitative assay methods should note that 
the stated content of the material is based on a small collaborative study 
involving WHO Essential Regulatory Laboratories (ERLs) or Official 
Medicines Control Laboratories (OMCLs).   Studies of recovery and 
stability of similar antigen preparations indicate that that recovery after 
ampouling is likely to be close to quantitative, and that no significant loss 
of content would be expected during storage over at least a 10 year 
period. 
 
9.    REFERENCES 
N/A 
 
10.    ACKNOWLEDGEMENTS 
N/A 
 
11.    FURTHER INFORMATION 
Further information can be obtained as follows; 
This material: enquiries@nibsc.org 
WHO Biological Standards:  
http://www.who.int/biologicals/en/ 
JCTLM Higher order reference materials: 
http://www.bipm.org/en/committees/jc/jctlm/ 
Derivation of International Units: 
http://www.nibsc.org/products/biological_reference_materials/frequently_
asked_questions/how_are_international_units.aspx  
Ordering standards from NIBSC: 
http://www.nibsc.org/products/ordering_information/frequently_asked_qu
estions.aspx 
NIBSC Terms & Conditions: 
http://www.nibsc.org/terms_and_conditions.aspx 
 
 

mailto:enquiries@nibsc.hpa.org.uk
http://www.who.int/biologicals/en/
http://www.bipm.org/en/committees/jc/jctlm/
http://www.nibsc.ac.uk/products/biological_reference_materials/frequently_asked_questions/how_are_international_units.aspx
http://www.nibsc.ac.uk/products/biological_reference_materials/frequently_asked_questions/how_are_international_units.aspx
http://www.nibsc.ac.uk/products/ordering_information/frequently_asked_questions.aspx
http://www.nibsc.ac.uk/products/ordering_information/frequently_asked_questions.aspx
http://www.nibsc.ac.uk/terms_and_conditions.aspx
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12.    CUSTOMER FEEDBACK 
Customers are encouraged to provide feedback on the suitability or 
use of the material provided or other aspects of our service. Please 
send any comments to enquiries@nibsc.org  
 
 
13.    CITATION  
In all publications, including data sheets, in which this material is 
referenced, it is important that the preparation's title, its status, the 
NIBSC code number, and the name and address of NIBSC are cited 
and cited correctly. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14.    MATERIAL SAFETY SHEET   

Physical and Chemical properties 

Physical appearance:  
White powder 

Corrosive: No 

Stable: Yes Oxidising: No 

Hygroscopic: No Irritant: No 

Flammable: No Handling:See caution, Section 2 

Other (specify):  Contains inactivated influenza virus 

Toxicological properties 

Effects of inhalation: Not established, avoid inhalation 

Effects of ingestion:  Not established, avoid ingestion 

Effects of skin absorption: Not established, avoid contact with skin 

Suggested First Aid 

Inhalation: Seek medical advice 

Ingestion: Seek medical advice 

Contact with eyes: Wash with copious amounts of water.  Seek 
medical advice 

Contact with skin: Wash thoroughly with water. 

Action on Spillage and Method of Disposal 

Spillage of contents should be taken up with absorbent material 
wetted with an appropriate disinfectant. Rinse area with an appropriate 
disinfectant followed by water. 
Absorbent materials used to treat spillage should be treated as 
biological waste. 

 
15.    LIABILITY AND LOSS 
In the event that this document is translated into another language, the 
English language version shall prevail in the event of any 
inconsistencies between the documents. 
Unless expressly stated otherwise by NIBSC, NIBSC‟s Standard 
Terms and Conditions for the Supply of Materials (available at 

http://www.nibsc.org/About_Us/Terms_and_Conditions.aspx or upon 
request by the Recipient) (“Conditions”) apply to the exclusion of all other 
terms and are hereby incorporated into this document by reference. The 
Recipient's attention is drawn in particular to the provisions of clause 11 
of the Conditions. 
 
16.    INFORMATION FOR CUSTOMS USE ONLY 

Country of origin for customs purposes*:  United Kingdom 
* Defined as the country where the goods have been produced and/or 
sufficiently processed to be classed as originating from the country of 
supply, for example a change of state such as freeze-drying.  

Net weight:  1g 

Toxicity Statement: Non-toxic 

Veterinary certificate or other statement if applicable. 
Attached: No    

 

mailto:enquiries@nibsc.org
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