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Abstract 

In the UK, tuberculosis incidence has risen from the mid-1980s until recently, with the 

proportion of cases in foreign-born patients increasing to more than 70% of total cases 

today. Because several features of tuberculosis epidemiology in the UK are unclear, a 

simulation model was applied to better understand the epidemiology of tuberculosis in 

the UK. The model was first used to estimate age- and birthplace-dependent risks of 

disease progression for those infected via the different disease progression 

pathways-recent infection, reinfection, and latent infection-by fitting the model to 

incident cases in England and Wales from 1999 - 2009. Results showed that UK-born 

risks were lower than previous estimates, though foreign-born risks were an estimated 

2.5 times higher than UK-born risks. Estimates for the proportion of disease due to 

recent transmission were higher than previous estimates, at around 46%. Simulations 

also identified plausible assumptions for the contact rate and the infection status of 

migrants upon entry to the UK. Results informed a model fitted to Variable Number 

Tandem Repeat (VNTR) genotyping data from cases in the West Midlands from 2007 -

2011, which was used to estimate the proportion of disease due to recent transmission 

in the UK and compare estimates to those based on genotyping data. Results showed 

that an estimated 45 - 63% of cases in the West Midlands were due to recent 

transmission in the UK, which was underestimated by genotyping data-derived 

estimates of 35%. Results also identified plausible mutation rates for VNTR profiles and 

plausible strain type distributions for UK-born and foreign-born individuals. This work 

suggests there is a large proportion of cases due to recent transmission in the UK, 

which is underestimated by genotyping data. The study also provides current disease 

risk estimates and shows a need for better data on migrants to the UK. This work may 

help focus prevention efforts. 
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Terms Used Within 

Certain terms have ambiguous or conflicting definitions in the tuberculosis literature. 

For reduced ambiguity, the following terms take specific meanings in this thesis. 

Clustered isolate 

Effective contact 

Foreign-born 

Infection state 

Latent Injection 

M. tuberculosis 

Primary Disease 

Reactivation Disease 

Isolate with a genetic strain type which exactly matches 

at least one other isolate in the study population 

Contact that would lead to infection transmission if made 

between an infectious and an uninfected person 

Person born outside of the United Kingdom 

One of the 11 states of Mycobacterium tuberculosis 

infection for classification in the model, analogous to 

compartments in classical models: 1) Uninjected, 

2) Immune, 3) Recent Injection, 4) Latent Injection, 

5) Reinfection, 6) Primary Disease (pulmonary) 7) Primary 

Disease (non-pulmonary), 8) Reactivation Disease 

(pulmonary), 9) Reactivation Disease (non-pulmonary), 

10) Reinfection Disease (pulmonary), and 

11) Reinfection Disease (non-pulmonary) 

Infection acquired more than five years ago or infection 

state after recovery from an active disease episode 

Mycobacterium tuberculosis, the causative agent of 

tuberculosis disease, which for simplicity also refers 

to other mycobacterial species that may cause 

tuberculosis in humans 

First disease episode within five years of first infection 

(Recent Injection) 

Disease more than five years after most recent infection 

or reinfection, or second or subsequent disease episode 

within five years of most recent infection 
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Recent Infection 

Recent transmission 

Reinfection 

Reinfection Disease 

Unique isolate 

First infection with M. tuberculosis, which occurred less 

than five years previously 

Transmission which occurred less than five years before 

disease onset 

Second or subsequent infection with M. tuberculosis 

acquired within the previous five years 

First disease episode within five years of reinfection 

Isolate with genetic strain type which does not match any 

other isolate in the study 
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1 Introduction 

This chapter provides the motivation for this work, outlines the overall aim and specific 

objectives of the study, and briefly describes the thesis structure. 
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1.1 Study Rationale 

Tuberculosis is a leading cause of infectious disease-related mortality in the world, 

despite effective antibiotic treatment, a vaccine, and many years of research into 

infection control and prevention. Most of the disease burden lies in developing 

countries, where infection risks, morbidity, and mortality are higher than in developed 

countries. However, tuberculosis has re-emerged as a global problem, due to factors 

such as the Human Immunodeficiency Virus (HIV) epidemic, migration of infected 

persons, and drug resistance. In some developed countries where incidence had been 

declining for more than a century, the number of cases has been increasing in recent 

years. 

In the United Kingdom (UK), the tuberculosis notification rate rose from about 9 cases 

per 100,000 in 1988 to 14 cases per 100,000 in 2007 [1,2]. During this time, the 

proportion of cases found in foreign-born individuals also rose. In 1988,45% of cases in 

England and Wales occurred in persons born abroad [2] while in 2007, 72% of UK 

cases, t~e vast majority of which come from England and Wales, were born abroad [1]. 

Though many foreign-born persons were probably infected abroad in countries where 

infection risk is greater than in the UK, it is not clear what proportion of cases are due 

to recent transmission in the UK versus reactivation of older or imported infections. 

Knowledge of the proportion of cases due to a recent infection, versus an older 

infection or one acquired abroad, is important for evaluating and focusing tuberculosis 

prevention and control programs. A high or increasing proportion of disease due to 

recent transmission indicates it may be possible to reduce the incidence of new cases 

by preventing ongoing transmission. Preventing ongoing transmission in turn requires 

reducing the infectiousness and infectious period for active cases, which can be 

achieved by identifying and treating active cases as quickly and effectively as possible. 

The identification of cases can be improved by actively searching for cases, often by 

screening high-risk groups in the population for active disease and screening contacts 

of active cases, rather than waiting for them to present to healthcare services. High

risk populations may include communities of individuals from countries with a high 

burden of tuberculosis, homeless persons, and individuals living prisons or other 
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institutionalized housing [3]. For foreign-born individuals, active case finding can also 

take place at the point of migration or in the migrants' host country, prior to migration 

[4]. Effective treatment can be achieved by ensuring those with a confirmed diagnosis 

are started on treatment immediately and, if at risk of defaulting on treatment, are 

followed carefully by healthcare workers [3]. On the other hand, a high proportion of 

cases due to the reactivation of older infections would motivate the prioritization of 

other control measures, including treatment of latent infection with prophylactic 

antibiotics to prevent active disease from developing, and follow-up of those testing 

positive for latent infection but not treated prophylactically [5]. 

Genotyping data is increasingly being used to distinguish between disease due to 

recent transmission and disease due to reactivation of an infection acquired many 

years previously, but the interpretation of these data is complex. It is often assumed 

that isolates with identical strain types-clustered strains-are part of an ongoing 

chain of transmission. However, the relationship between clustering and recent 

transmission changes with many factors, including the rate at which the molecular 

typing marker changes, study duration, study area, case ascertainment, population age 

structure, and the annual risk of infection (ARI) [6-9]. Some studies have addressed 

these issues, but it remains unclear what proportion of tuberculosis in the UK is due to 

recent transmission or how well these data predict the proportion of cases due to 

recent transmission in the UK for this setting. Little is also known about the proportion 

of foreign-born persons entering the UK infected and diseased, the current 

transmission rate-or effective contact rate-in the UK, and the current risks of 

disease for those with recent infection, recent reinfection, and latent infection. 

To reverse the increases in tuberculosis incidence, it is important to better understand 

the epidemiology of tuberculosis in the UK, especially in foreign-born persons, who 

represent the majority of cases. This understanding will ensure that control programs 

are properly focused and prevention efforts, including the national strain typing 

services, can be evaluated. 
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1.2 Aim of the Thesis 

The overall aim of this work is to better understand tuberculosis dynamics and 

epidemiology in the UK. 

1.3 Research Objectives 

The study aim is to be achieved using modelling approaches to answer a variety of 

questions related to understanding tuberculosis epidemiology in the UK, with a 

particular emphasis on the epidemiology of tuberculosis in foreign-born persons, who 

make up the majority of cases in the UK. The following specific research objectives for 

the thesis project fulfil the study aim: 

1) Construct an individual-based model (IBM) of tuberculosis dynamics in the UK. 

Design this model to simulate genetic typing data and describe it according to 

standardized protocols for documenting IBMs, with code made freely available 

for others to use. 

2) Estimate risks of disease for those with a recent infection, recent reinfection, 

and latent infection in both UK-born and foreign-born individuals using the 

model applied to notified cases from England and Wales, 1999 - 2009. Also 

identify plausible assumptions for the effective contact rate and the infection 

status of migrants entering the UK. 

3) Estimate the proportion of cases due to recent transmission in the UK by 

application of the model to data from England and Wales. 

4) Describe the molecular epidemiology of the West Midlands from 2007 - 2011. 

This description includes the risk factors for genotype clustering and a rough 

estimate of the proportion of cases due to recent transmission in the UK, using 

two genotyping methods (15- and 24-locus VNTR) and various clustering 

definitions. 

5) Estimate the proportion of cases due to recent transmission in the UK by 

application of the model to genotyping data from the West Midlands. Explore 

the relationship between genotype clustering and recent transmission in the 

UK. 
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6) Identify plausible mutation rates for 24-locus VNTR, as well assumptions about 

the strain type diversity for 24-locus VNTR profiles found in UK-born and 

foreign-born individuals by application of the model to genotyping data from 

the West Midlands. 

1.4 Thesis structure 

The remainder of the thesis is organized into seven chapters. Chapter 2 provides a 

background on tuberculosis natural history and epidemiology and reviews literature 

relevant to this study. Chapter 2 also introduces the observed notification data used 

for parameter values and for comparison with model output in subsequent chapters. 

Chapter 3 describes the individual-based model (IBM) designed in fulfilment of 

objective one. Chapter 4 presents the data used to form model assumptions and to 

parameterize the model. Chapter 5 describes the application of the model to 

notification data from England and Wales to satisfy objectives two and three. Chapter 

6 provides a molecular epidemiological analysis of genotyping data from the West 

Midlands, to fulfil objective four. Chapter 7 describes the application of the model to 

simulation of the genotyping data from the West Midlands, to satisfy objectives five 

and six. Finally, Chapter 8 concludes the thesis. 

33 



2 Background 

This chapter provides background on the natural history and epidemiology of 

tuberculosis, with a particular focus on the UK. Other topics that are covered 

emphasize areas particularly relevant to this thesis, including the molecular 

epidemiology of tuberculosis and the mathematical modelling of tuberculosis 

dynamics. This chapter also includes a discussion of modelling considerations for this 

thesis. Finally, the chapter describes observed notification data used for parameter 

values and for comparison with model output in later chapters. More details on 

several aspects of tuberculosis natural history and epidemiology appear in Chapter 4, 

which describes specific data and sources of parameter values in the model. 
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2.1 Tuberculosis Natural History 

Tuberculosis has caused morbidity and mortality in human populations for millennia. 

Tuberculosis is primarily a disease of the lungs, though can affect many sites of the 

body, including the kidney, bones, urogenital tract, and central nervous system. 

Symptoms of the disease include a chronic cough, fever, weight loss, night sweats, and 

general malaise. Pulmonary tuberculosis includes any form of disease that includes 

pulmonary lesions, with or without affecting other sites. Pulmonary disease is 

sometimes alternatively referred to as 'respiratory' disease, though respiratory disease 

is slightly broader and also includes disease in pleural effusions and mediastinal nodes 

[3]. Non-pulmonary disease includes all forms ofthe disease that do not include 

pulmonary lesions. Non-pulmonary tuberculosis is also referred to as 'extra

pulmonary' or 'non-respiratory' disease. 

2.1.1 Aetiological Agent and Transmission 

Tuberculosis is caused by Mycobacterium tuberculosis, or, less commonly, M. bovis, M. 

africanum, M. canetn or M. microtti. For simplicity, henceforth M. tuberculosis will be 

considered to include the latter four as well. Coughing, spitting, sneezing, and speaking 

by a person with infectious pulmonary disease produces droplet nuclei containing M. 

tuberculosis [10]. Inhalation of droplet nuclei may, but does not necessarily, cause 

infection. Once infected with M. tuberculosis, a person may develop disease shortly 

after infection, may become latently infected and develop disease later, or may never 

develop disease. A complex interaction between the host's immune system and the 

pathogen, which is mediated by several factors [11], determines which of these occurs 

(see Section 2.1.2 below). Infection with M. tuberculosis does not provide complete 

immunity to a subsequent infection. Reinfection is well documented and more 

common as the annual risk of infection (ARI) increases [12]. Lastly, infection can also 

be caused by the ingestion of unpasteurised milk from cattle with tuberculosis, though 

pasteurisation makes this rare today. 

Pulmonary tuberculosis is generally the infectious form of disease, though not all 

pulmonary cases are infectious. Non-pulmonary tuberculosis is generally not 
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considered infectious. Pulmonary cases with sputum samples that are 'smear-positive' 

are more likely to be infectious than 'smear negative' cases [13, 14] (see Section 2.2.4 

for information on smear status). Although the average number of others infected by 

an infectious case varies among populations, an untreated infectious person may 

infect on average around 20 others over the duration of disease [15]. This number is 

reduced when a person is treated, shortening the duration of infectiousness. It is also 

reduced when living conditions are improved, including smaller household sizes and 

better ventilation. In addition, the susceptibility of contacts will influence how many 

others are infected. Susceptibility may be reduced by vaccination and previous 

infection, but is increased by poor nutritional status and immune deficiencies, such as 

infection with HIV. The transmission rate is difficult to measure directly and therefore 

highly uncertain. Transmission is discussed further in Chapter 4, Section 4.2.2. 

2.1.2 Progression to Disease 

The risk of progression to disease after infection or reinfection with M. tuberculosis 

depends on several factors. Lifetime risks of developing disease following infection 

vary among individuals and are difficult to measure, though are often thought to be 

around 10 -15% [13, 16, 17]. Thus, the majority of infections never cause disease. The 

risk of disease following infection is greatest within the first year or a few years 

following infection [13], after which the bacteria lie dormant and active disease is less 

likely. As with a first infection, persons reinfected are thought to be at greatest risk of 

developing disease soon after reinfection [18, 19]. 

In this study, disease occurring due to a 'recent' infection is defined as disease within 

five years of infection or reinfection, referred to as 'Primary Disease' and 'Reinjection 

Disease', respectively. Those infected or reinfected for more than five years without 

developing disease are usually said to have a 'Latent Injection' and may develop 

'Reactivation Disease' at any point, even many years after infection. The risk of 

Reactivation Disease is thought to be much lower than the risk of Primary Disease or 

Reinjection Disease. It should be noted that these definitions are consistent with 

previous modelling studies [18, 19], but are not universal. A more widely used, clinical 

definition of latent infection requires a positive test for infection and no sign of clinical 
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disease [20], though some clinicians and scientists define latent infections as infections 

more than two years old [21], with the view that the bacteria are usually dormant by 

then in people who have not developed disease. It is recognized that the definition of 

latent infection is controversial [22] and the status as defined here could alternatively 

be thought of as a 'Remote Infection'. 

In addition to the time elapsed since infection, factors that influence disease 

progression risk include age, sex, problem drug use, and underlying medical conditions 

such as HIV, other immunosuppressive conditions, and malnourishment [19, 23-25]. Of 

these, HIV is the most important risk factor, increasing the risk of disease following 

infection several-fold [26], though this increase depends on the stage of HIV infection 

and other factors, as discussed further in Chapter 4, Section 4.2.3.1. Age and sex affect 

risk in several ways. Very young children are at greater risk of tuberculosis before their 

immune systems mature, though after a few years, children are at lower risk until 

adolescence when disease risk increases [27]. Risk of disease may be elevated in older 

individuals [28, 29], though older males experience higher risk of reactivation disease 

than females [24]. Vynnycky and Fine estimated age-dependent disease risks for white 

males in England and Wales from 1900 - 1990 by fitting a model to case notifications 

(this work is discussed further in Section 2.5.2 below). They estimated that cumulative 

risks of Primary Disease and Reinfection Disease over five years of infection were 14% 

and 8%, respectively for males aged 20 years and above. They estimated that the 

annual risk of Reactivation Disease for those with Latent Infection was 0.03% for males 

aged 20 years and above. Since the time period for which these estimates were 

obtained, it is unknown whether disease risks have changed for UK-born individuals. 

Disease risks are unknown for foreign-born individuals, who now account for the 

majority of cases in the UK each year. 

Although it is well-established that foreign-born individuals have higher tuberculosis 

incidence rates than native-born individuals in low-incidence countries, determining 

what portion of the excess is due to increased risk of disease following infection, 

versus higher prevalence of infection prior to migration or increased risk of infection in 

low-incidence countries, is difficult [30]. Some foreign-born individuals have a lower 
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socioeconomic and health status than native-born individuals [31], including an 

elevated prevalence of HIV, all of which may contribute to an increased risk of disease 

following infection [32]. Furthermore, risks of disease depend on time since infection, 

and this is impossible to deduce for immigrants infected abroad. This means that even 

evidence of higher reactivation rates in foreign-born individuals [24] does not mean 

that reactivation disease risk, as defined here, is necessarily higher. Also complicating 

matters, there may be genetic differences across ethnic groups influencing disease risk 

[17,33]. 

Given the multitude of factors increasing disease risks, they are likely to change among 

settings and time periods [24]. Especially for foreign-born individuals, estimates of 

disease risk are important for prioritizing control measures, such as prophylactic 

treatment of latent infection. Mathematical modelling is therefore used to estimate 

disease risks in this study. Assumptions about disease risks are discussed further in 

Chapter 4, Section 4.2.3.1. 

The risk of developing pulmonary versus non-pulmonary disease depends on sex, 

birthplace, and possibly other factors such as age, HIV infection, and probably 

tuberculous infection status (Le. Recent Injection, Reinjection, Latent Injection), but 

this relationship is not well understood. It is likely that risks of non-pulmonary disease 

are lowest with primary infection [34, 35], though there may be differences across 

geographic areas and ethnic groups [36]. Females have a higher proportion of disease 

that is non-pulmonary than males [34, 37-39]. There has been ample evidence in 

surveillance data that immigrants to low-incidence countries, especially those coming 

from Africa or South Asia, have a higher proportion of extra-pulmonary disease than 

those native-born to low-incidence countries [34, 37-41]. The reasons for this are 

unclear, but may be due to latent infection giving rise to a higher proportion of extra

pulmonary disease than primary infection [34]. 

The relationship between age and site of disease in the body is not entirely clear. In 

recent years, the median age for extra-pulmonary cases and pulmonary cases has been 

similar in the US and the UK [34, 37]. Another recent study showed that age interacts 

with the birthplace of individuals [42], with no clear pattern for the effect of age 
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overall. Similarly, a study published in 2005 showed that in France, age was only 

significantly associated with extra-pulmonary disease in Sub-Saharan Africa (SSA)-born 

individuals, but not those from other birthplaces [38]. 

Several studies have shown that HIV-positive patients have an increased likelihood of 

non-pulmonary tuberculosis [43,44]. However, a recent, large study in the US showed 

only a slight correlation between HIV infection and extra-pulmonary disease [37]. 

Results showed a correlation between certain types of non-pulmonary disease and HIV 

infection, concluding that having HIV is a risk factor for disseminated tuberculosis or 

extra-pulmonary and pulmonary tuberculosis, but not for either pulmonary or extra

pulmonary tuberculosis individually [37]. In another study in Canada, high levels of 

extra-pulmonary disease not attributable to HIV have been observed [36]. A recent 

study from France showed being HIV-positive was correlated with extra-pulmonary 

disease for European-born cases, but not for other birthplaces [38]. 

Once active disease develops, pulmonary tuberculosis and some non-pulmonary forms 

can be fatal without treatment. The proportion of patients who die as a result of 

tuberculosis, or 'case fatality rate', depends on many factors including age, site of 

disease, drug resistance, and co-morbidities such as malnutrition or HIV infection [45-

50]. HIV lowers the survival rate of those who develop disease [51]. Increasing age has 

been shown to increase the likelihood of death from tuberculosis. Generally, 

pulmonary tuberculosis is more likely to be fatal than non-pulmonary tuberculosis, 

though this difference depends on the prevalence of highly fatal forms of non

pulmonary tuberculosis. Some forms, such as miliary tuberculosis and tuberculosis 

meningitis, are highly fatal, while others, such as lymphatic disease, are not likely to be 

fatal. With treatment, the case fatality rate is drastically reduced. In areas where 

treatment is widely available, the case-fatality rate has dropped from about 50% 

before antibiotics [52] to less than 5% more recently, including drug resistant cases 

[53]. For more detail on the case fatality rate in recent years in the UK, see Section 

4.2.3.4. 
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2.2 Tuberculosis Control 

2.2.1 Historical Context 

Formal study of tuberculosis dates to more than 2000 years ago, though it was only in 

1882 that Robert Koch discovered the causative agent of the disease, M. tuberculosis. 

Tuberculosis mortality rates were already declining in the US and Western Europe [54] 

when he made this discovery, but the discovery still led to control programs and 

increased isolation of infectious cases [55]. Partly because of these interventions, and 

also because of improved living conditions and nutrition status with industrialization 

[56], mortality due to tuberculosis continued to decline rapidly in the beginning of the 

20th century in Europe and the United States [54]. Declines in mortality and incidence 

continued over most of the century. 

2.2.2 Vaccine 

A major control milestone was the development of the Bacille Cal mette-Guerin (BCG) 

vaccine, prepared from attenuated M. bovis and first used in humans in 1921. It 

remains the only vaccine for tuberculosis and has been widely used. Unfortunately 

BCG has not been consistently proven effective. Estimated vaccine efficacy varies from 

about 0 - 80%, depending on where the vaccine is used and to whom it is given [57]. 

For example, the United States never adopted a BCG vaccine program because of 

scepticism over its efficacy, indicated by studies that showed low efficacy in the US 

[58]. It was later hypothesized that efficacy was low in these trials because they were 

conducted in a region of the US with a high prevalence of environmental 

mycobacteria, and thus most of the population had been sensitized to mycobacterial 

antigens without vaccination. Sensitization by environmental mycobacteria is thought 

to decrease efficacy of the vaccine, though it is not clear precisely why. In many high 

incidence countries, BCG has shown little effect in adults. Notably, a large BCG trial in 

south India found BCG had no protective effect in that setting [59]. However, BCG has 

consistently shown protective benefits for severe forms of tuberculosis in children, 

. such as miliary tuberculosis and tuberculous meningitis, and is still administered to 

newborns in many high-incidence countries around the world for this reason [60]. In 

the UK, a large trial ofthe BCG vaccine begun in the 1950s reported an average 77% 
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efficacy of the vaccine after 20 years of follow-up. It should be noted that the 

protective effect of the vaccine decreased over time and the study could not be 

continued past 20 years due to low power to detect differences among vaccinated and 

non-vaccinated individuals. Still, this trial provided evidence in favour of continued 

vaccine use in the UK [61]. BCG was routinely given to adolescents in the UK from the 

1950s to 2005. More details on BCG vaccination practices and efficacy in the UK are 

found in Chapter 4, Section 4.2.1. 

2.2.3 Treatment 

Also enormously important for control, tuberculosis has been effectively treated using 

antibiotics since the mid-1940s, although the duration of treatment is long and 

requires mUltiple drugs. As mentioned, treatment not only drastically reduces the case 

fatality rate, saving lives, but also reduces the duration of infectiousness, reducing 

transmission. 

Current treatment guidelines in the UK recommend a standard six-month treatment 

course consisting of four antibiotics, isoniazid, rifampicin, pyrazinamide, and 

ethambutol, though the latter two are only required for the first two months [3]. This 

standard regime is altered for some forms of disease or if a person develops drug 

resistance. Drug resistance is a concern because it causes lengthier and more 

expensive treatment and also higher treatment failure rates [62-64]. Drug resistant 

strains can be transmitted from one person to the other, or resistance can develop 

spontaneously, usually due to incomplete antibiotic treatment. 

In recent years, directly observed treatment (DOT) has provided a solution for 

improving adherence to tuberculosis therapy. DOT involves the supervision of the 

ingestion of medication throughout the course of therapy by a health care worker or 

other designated person [65, 66]. DOT has been considered a successful component of 

tuberculosis control in many settings and remains a major part of the World Health 

Organization's strategy for tuberculosis control [67,68]. DOT is not routinely used in 

the UK. Nonetheless, it could be used for improving treatment success in patients at 

risk of defaulting on their treatment course [3]. 
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2.2.4 Diagnosis of Disease 

Especially because of the burden and expense of treatment, a confirmed diagnosis of 

tuberculosis based on more than clinical symptoms is ideal. However, this is 

sometimes challenging due to the low sensitivity of available diagnostic tools. Patients 

with suspected pulmonary tuberculosis are usually given a chest X-ray to confirm 

active tuberculosis [69], although these tests are not highly sensitive and their 

interpretation is somewhat subjective. If possible, laboratory tests performed on 

sputum samples are used to confirm diagnosis. For suspected non-pulmonary 

tuberculosis, diagnosis can be confirmed through scans of the affected areas of the 

body or biopsy of the tissues, in combination with laboratory tests on the tissues. Two 

types of laboratory tests are typical. Firstly, smear microscopy can be used to test the 

sample for the presence of acid-fast bacilli, designating cases as 'smear-positive' or 

'smear negative'. Secondly, the sputum sample can be tested for M. tuberculosis 

growth in culture, designating cases as 'culture positive' or 'culture negative', though 

culturing can take several weeks. Unfortunately, not all active disease cases result in 

culture or smear-positive results. Recently, a deoxyribonucleic acid (DNA) test for 

active disease called 'GeneXpert' was developed, which is fast and very sensitive for 

detecting tuberculosis, though its cost effectiveness has yet to be determined [70]. A 

negative test for M. tuberculosis infection (see below) can also help to rule out a 

tuberculosis diagnosis. 

2.2.5 Tests for Infection 

In resource-rich countries such as the UK, contacts of active disease cases are often 

investigated for active disease or evidence of infection, for treatment or follow-up. 

Tests for infection are also used for healthcare workers and for immigrants arriving 

from high-incidence countries (see Section 2.3.2.3.3). The standard test for M. 

tuberculosis infection is the tuberculin skin test (TST). The TST does not actually test for 

the presence of M. tuberculosis, rather it measures immune response to M. 

,tuberculosis complex bacteria [71]. Test results are affected by BeG vaccination, 

exposure to environmental mycobacteria, immune differences among persons, such as 

from HIV infection, and other factors [71, 72]. The presence of environmental 
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mycobacteria in some places causes sensitivity to T5Ts, making them difficult to 

interpret. BCG vaccination has the same effect. For these reasons, they are not very 

specific. However, in children, T5Ts are more accurate than in adults due to less 

exposure to mycobacteria and therefore prevalence and annual risk of M. tuberculosis 

infection in the past has been estimated using T5Ts on children. Lastly, the T5T results 

are subject to variation due to test methodology, including both administration and 

interpretation [73], plus, if repeated, the tests may alter sensitivity in patients [74]. 

A recent development in testing for infection is the interferon-gamma release assay 

{IGRA}. These assays test blood samples for evidence of immune reactivity to M. 

tuberculosis. The tests are quicker, more accurate, and less subjective than T5Ts. 

Critically, IGRAs are more specific than T5Ts since they do not react to BCG vaccination 

or exposure to environmental mycobacteria [75]. These tests are rapidly being 

introduced to supplement or replace the use of T5Ts. In the U5 for example, since 2005 

IGRA tests have been recommended as replacements for T5Ts in all cases [76]. In the 

UK, 2011 clinical guidelines suggest the use of IGRA tests when TSTs are positive and 

for a first-line test in some other groups [3]. Although IGRAs have several advantages 

over TSTs, their cost effectiveness has yet to be determined for general use [75]. 

In some situations, those who test positive for M. tuberculosis infection are treated 

with isoniazid preventive therapy to reduce the risk of infection developing into 

disease. In the UK, clinical guidelines suggest this prophylactic treatment for those 

with a confirmed infection who are at greatest risk of developing disease, including 

HIV-positive individuals, other immunocompromised persons, and children from high

incidence countries [3]. Patients 35 years and older are not currently recommended to 

have prophylactic treatment, due to its toxicity to the liver. 

2.2.6 Control program strategies 
Given limited resources for tuberculosis control, tuberculosis management programs 

must prioritise control measures. Prioritisation of control resources will be setting-

. specific, depending on factors such as socioeconomic status of the population, the 

prevalence of risk factors for tuberculosis such as drug and alcohol use, the prevalence 

of HIV in the population, and the overall burden of tuberculosis in the population or in 
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subgroups of the population. In addition, and of particular relevance to this thesis, the 

proportion of disease due to recent transmission can influence the prioritisation of 

control measures. In a setting with a high proportion of disease due to recent 

transmission, the focus of control programs will differ from a setting with a high 

proportion of cases due to older or imported infections. 

When a high proportion of cases are due to recent transmission, control programs 

should be focused on stopping ongoing transmission, achieved by reducing the 

infectiousness and duration of the infectious period for infectious cases or by 

vaccination. Given the limitations of the BeG vaccination for M. tuberculosis, 

prevention of ongoing transmission is generally achieved by administering quick and 

effective antibiotic treatment that reaches a high proportion of infectious cases. The 

identification of cases can be improved by actively searching for cases, rather than 

waiting for them to present to healthcare services, by which time they may have 

already spread infection. The active search for cases, or 'active case finding', can 

involve screening high-risk populations for active disease, including those from 

countries with a high burden oftuberculosis, homeless persons, and those living 

prisons or other institutionalized housing [3]. For foreign-born individuals, active case 

finding can take place at the point of migration or in the migrants' host country itself, 

prior to migration [4]. Active case finding can also involve screening contacts of known 

or suspected infectious cases, an effort which may be expanded when in situations 

where transmission potential is high [3, 77]. Tools for active case finding have 

improved with advances in diagnostic tools, such as mobile x-ray units to diagnose 

disease [78]. Effective treatment can be achieved by ensuring those with a confirmed 

diagnosis are started on treatment immediately and, if at risk of defaulting on 

treatment, are followed carefully by healthcare workers, including using DOT to 

improve adherence if necessary [65, 66]. 

On the other hand, a high proportion of cases due to the reactivation of older 

infections would motivate the prioritization of other control measures, including 

treatment of latent infection with prophylactic antibiotics to prevent active disease 

from developing or follow-up of those testing positive for latent infection [3, 5]. There 

44 



is also a possibility that investment of resources for tuberculosis treatment in high

burden countries may be cost-effective for reducing the tuberculosis burden in 

countries which receive immigrants from those countries, as shown for the case of the 

the US and Mexico [79]. 
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2.3 Contemporary Tuberculosis Epidemiology 

Worldwide, an estimated 8.7 million incident cases of tuberculosis and 1.4 million 

deaths due to tuberculosis occurred in 2011 [80L the vast majority of which were 

found in developing countries. The 22 countries designated as 'high-burden' by the 

World Health Organization (WHO), mostly in Africa and Asia, account for about 80% of 

total cases each year [68, 80]. India and China alone contribute almost 40% of total 

cases worldwide [80]. However, SSA has the highest incidence rates per capita in the 

world, in some countries more than 500 cases per 100,000 population per year. Part of 

the reason rates are so high in SSA is due to the effect of HIV on tuberculosis dynamics, 

which severely increases disease risks and mortality rates [26,81]. WHO estimated 

that nearly 39% of tuberculosis cases in the African region were co-infected with HIV in 

2011 [80]. Still, some progress has been made, as worldwide incidence of tuberculosis 

has been slowly declining for several years [80], at least partly attributed to prevention 

and control initiatives brought on by the declaration of tuberculosis as a global 

emergency in 1993 by WHO. 

2.3.1 Tuberculosis in Developed Countries 

In developed countries, tuberculosis has generally been well controlled. However, 

recently, the long-term decline in tuberculosis incidence was reversed in many 

developed countries, including the UK, many Western European countries, and the US 

[82-86]. The increased incidence rates began around the mid-1980s and lasted until 

the early 2000s. In other countries, such as the UK, Norway, and Sweden, incidence 

rates continued to increase until more recently [87]. Immigration from countries with a 

high prevalence of tuberculosis, homelessness, problem drug use, and HIV infection 

have been implicated in this rise in tuberculosis incidence [87-93]. As evidenced by 

these factors, tuberculosis has become less a disease of the general population and 

more a disease in high-risk groups of the population in developed countries today. 

One of the largest risk groups for tuberculosis in developed countries comprises 

foreign-born persons from high-incidence countries. In many developed countries 

today, the majority of cases occur in foreign-born persons, though the proportion of 

46 



cases in foreign-born persons varies from country to country [94-97]. In Europe, 

foreign-born persons account for 0 to 82% of total cases [98], generally over

representing their proportion of the total population. It is likely that a mixture of 

factors cause increased risk of tuberculosis in foreign-born persons. 

Foreign-born persons in developed countries may face higher risks of progression to 

disease [99], as discussed in Section 2.1.2. In addition, more crowded living conditions 

and greater chance of encountering active cases in foreign-born communities could 

increase infection risk. Also importantly, migrants from high-incidence countries are 

more likely to be infected before migration. However, the proportion of foreign-born 

persons infected abroad is not well known, as testing of migrants for infection is 

sporadic. Furthermore, even if infection status is known, there is no way to clinically 

distinguish between disease due to reactivation and disease due to a recent 

reinfection. The proportion of cases due to a recent infection after migrant entry, 

versus an older infection or one acquired abroad, is important for evaluating and 

focusing tuberculosis control programs, as discussed above in Section 2.2.6. 

Genotyping data are increasingly being used to help differentiate between cases due 

to a recent infection and cases due to older infections or infections acquired abroad. 

Unfortunately, genotyping data have several limitations, as discussed further in 

Section 2.4.3. In addition, most developed countries have policies regarding screening 

of migrants for active tuberculosis (100] either before or shortly after migration, 

though policies vary from country to country. A recent study found about half of 

developed countries also test for latent infection in migrants [100]. The US is often 

cited for its successful and comprehensive immigrant screening policy, where all 

migrants are screened for active disease before entry and tested for latent infection 

[101]. Persons with latent infection are then followed up by local health departments 

after settlement in the US {102]. In the UK, screening for active tuberculosis is 

undertaken for persons from certain high-risk countries at port of entry and migrants 

are followed up by local health authorities, although this is not consistently 

undertaken, as discussed in Section 2.3.2.3.3. 
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2.3.2 Tuberculosis in the UK 

Tuberculosis trends in the UK have followed patterns similar to those in other 

developed countries. Declines in tuberculosis mortality that began in the 19th century 

are partly attributed to isolation of patients in workhouses used for treatment of the 

poor [103, 104] and are also attributed to an increase in the standard of living, which 

likely reduced risk of disease progression given infection [103]. Sanatoria were set up 

in the late 1800s and early 1900s; this isolation of infectious persons probably reduced 

infection transmission. Nutrition and health status of the population continued to 

improve over this time. Antibiotic use caused further decline in tuberculosis cases after 

the late 1940s. Some of the decline in tuberculosis incidence could also be attributed 

to BeG use as routine vaccination of all 13-year-olds, which began in 1953. The lowest 

recorded number of tuberculosis notifications since surveillance began in England and 

Wales was 5,086 cases in 1987. However, since then the number of tuberculosis cases 

increased until recently, with 8,400 cases in 2011 in England and Wales. Fortunately, 

the past several years have shown evidence that notifications have stabilized [1, 105]. 

As in other low-incidence countries, tuberculosis has become less uniformly 

distributed in the population, with most disease occurring in sub-groups of the 

population. High-risk sub-groups in the UK include foreign-born individuals from 

countries of high tuberculosis incidence, HIV-infected persons, problem drug users, 

homeless persons, alcohol abusers, and those who have spent time in prison. It is also 

likely that given the decrease in ARI over time, a large fraction of disease in patients 

born in the UK will be due to reactivation of an older infection, acquired when 

infection risks in the UK were greater. 

It was noticed as early as 1958 that immigrants from countries with high tuberculosis 

incidence, namely India and Pakistan, experienced high tuberculosis notification rates 

in the UK [106, 107]. These and other studies provided motivation for a 1965 survey of 

tuberculosis in immigrants in England and Wales [108]. At this time, 16.5% of 

tuberculosis cases occurred in immigrants, mostly Irish and South Asian, though 

foreign-born persons made up about only about 4% of the population [108]. By 1988, 

45% of cases were occurred in foreign-born persons, and this increased to 56% in 1998 
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[2, 109]. In 2001, foreign-born individuals made up only 8% of the population of the UK 

[110] . 

Today, more than 70% of incident cases occur in foreign -born persons [105], with the 

majority of foreign-born cases found in persons born in South Asia or SSA. Foreign 

born persons have higher per capita notification rates than those who are UK-born, 

more than 20-fold higher on average. In the last decade, notification rates have been 

around 80 - 100 cases per 100,000 population for foreign-born persons and constant 

at around four cases per 100,000 population for UK-born persons, as shown in Figure 

2-1. However, even among the UK-born population, there is a wide disparity among 

ethnic groups, with non-white persons having elevated tuberculosis notification rates, 

as shown in Figure 2-2. 
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Figure 2-1: Tuberculosis cases and rat e per 100,000 population for UK-born and foreign-born individuals in t he 

United Kingdom, 2000-2009.Figure was prepared by the Hea lth Protection Agency Tuberculosis Section . Data 

sources are Enhanced Tuberculosis Surveillance and the Office for National Statistics (ONS) mid-year population 

est imates and Labour Force Survey for population sizes. 
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Figure 2-2: Tuberculosis notification rates per 100,000 by birthplace and ethnicity in the United Kingdom, 2011. 

Figure was prepared by the Health Protection Agency Tuberculosis Section. Data sources are Enhanced Tuberculosis 

Surveillance and the Office for National Statistics (ONS) mid-year population estimates and Labour Force Survey for 

population sizes. 

Partly due to the uneven distribution of foreign-born and other persons at high risk for 

tuberculosis, there is also an uneven geographical distribution of cases in the UK. The 

highest incidence rates are currently found in Leicester, London, and Birmingham, 

where more than 40 cases of tuberculosis per 100,000 population occur each year. The 

geographical distribution of tuberculosis in regions of England is illustrated in Figure 

2-3. 

2.3.2.1 England and Wales 

Trends in the epidemiology of tuberculosis in England and Wales follow those in the 

UK, since this region comprises the majority of the UK population and majority of the 

tuberculosis cases in the UK. In 2001, the population size of England and Wales was 

approximately 52.4 million, while the total UK population was 58.8 million [111]. Also 

in 2001,9% of persons in England and Wales were born abroad [111] . 
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Figure 2-3: Tuberculosis cases and rate per 100,000 population for regions of England, 2011. Figure was prepared by 

the Health Protection Agency Tuberculosis Section. Data sources are the Enhanced Tuberculosis Surveillance and 

the Office for National Statistics (ONS) mid-year population estimates. 

2.3.2.2 West Midlands 

The West Midlands is a region of the UK which covers the western half of the 

Midlands, or central England. The population size was 5.3 million in 2001, with about 

5.5% of those persons born abroad [110]. The major urban area in the region 

surrounds Birmingham, the second-largest city in the UK with nearly one million 

people [110]. The region also includes the cities of Coventry and Wolverhampton . All 

three cities are noted for relatively high rates of tuberculosis incidence in the UK [112] . 

In addition, the region as a whole has tuberculosis notification rates above the national 

average, at approximately 18.5 cases per 100,000 in 2011, compared with 14.4 per 

100,000 in the UK [105] . Mirroring national trends, notification rates in the region have 

increased since the late 1980s, with concurrent increases in the proportion of patients 

born abroad. 
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Almost 90% of cases in foreign-born individuals notified from 2007 - 2011 in the West 

Midlands were found in persons from SSA or South Asia. Also, compared to other 

regions of the UK, there is a large population of South Asians in the West Midlands, 

including many who were born in the UK. Over the period 2007 - 2011, approximately 

5.5% of UK-born persons in the West Midlands were of South Asian ethnicity, whereas 

in England and Wales over this period, about 2.7% of UK-born persons were South 

Asian (proportions obtained from analysis of LFS data, see Chapter 4, Section 4.1.3.1 

for information on the dataset). This difference is reflected in the tuberculosis 

epidemiology of the region. From 2007 - 2011, 39% of UK-born tuberculosis cases 

were found in ethnic South Asians, while over the same time period, only around 20% 

of UK-born cases in England and Wales were found in South Asians [105]. 

2.3.2.3 Contemporary surveillance and 

control in the UK 

The UK has a comprehensive tuberculosis surveillance and control program. Since 

1913, mandated reporting of tuberculosis cases to health authorities has been in place. 

More recently, the enhanced tuberculosis surveillance system (ETS) was developed 

(described below). Routine surveillance now includes the results of several laboratory 

tests, in addition to prospective genotyping of all tuberculosis cases which are 

laboratory confirmed (also described below). Other elements of tuberculosis control 

in the UK include contact tracing for each identified case, extensive outbreak 

investigation for drug resistant cases and those suspected to be highly transmissible, 

and screening of migrants for tuberculosis upon entry to the UK. For relevance to this 

study, only the latter of these other elements of tuberculosis control will be further 

discussed. 

2.3.2.3.1 Enhanced tuberculosis surveillance 

The ETS system began in 1999 for the collection of additional data on each notified 

cases of tuberculosis in England, Wales, and Northern Ireland. The enhanced 

surveillance data help better understanding of tuberculosis epidemiology in the UK 

and help inform prevention and control. Data collected for each case include place of 
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residence, date of birth, sex, country of birth, year of entry into UK for foreign-born, 

date of disease onset, date of notification, and laboratory data. In 2002, treatment 

outcome data were added to the system. From 2009, other risk factors for 

tuberculosis, including drug use, alcohol use, homelessness and time in prison have 

also been collected. All ETS data are held by the HPA Centre for Infections. For each 

patient notified, ETS data are matched to laboratory data (see below) through a 

computer algorithm that takes into account various personal identifying information 

and is supplemented by manual checking where necessary [113]. A similar enhanced 

surveillance system is used in Scotland, and those data are collated with ETS data to 

produce annual, UK-wide reports on the epidemiology of tuberculosis in the UK. 

2.3.2.3.2 Laboratory data 

Clinical specimens are sent to the mycobacterial reference laboratories in the UK for 

identification of the species of mycobacteria involved in infection, to test for culturing 

of the organism, to test for antibiotic drug sensitivity of the strain, and to genotype the 

strain. The UK began universal prospective genotyping of isolates from tuberculosis 

cases in 2004, using lS-locus VNTR typing. In 2010, the typing system was upgraded to 

24-locus VNTR typing. Coverage of universal typing has increased over this period, with 

an average of 94% of culture-positive isolates typed in 2011 in England [105]. Each of 

the typing methods is described further in Section 2.4.1.2. 

2.3.2.3.3 Screening of migrants 

In the UK, it is national policy to screen migrants from high-incidence areas at their 

port of entry for active tuberculosis with a chest X-ray. New entrants should then be 

referred to local health authorities for follow-up. Most importantly, they should be 

referred for active disease screening if the chest X-ray was abnormal or inconclusive, 

though for some groups, new entrants are referred for latent infection screening [3]. 

Unfortunately, recent studies have shown that follow-up and latent infection screening 

, by local health authorities was inconsistent [114, 115]. The most recent study did 

confirm that action was consistently taken on reports an abnormal chest X-ray for an 

immigrant at port of entry [114]. 
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2.4 Molecular Epidemiology of Tuberculosis 

Molecular biology tools have become an important part of understanding tuberculosis 

pathogenesis, drug resistance, infection transmission, and strain distribution 

worldwide [116, 117]. In particular, genetic strain typing can identify genetically similar 

strains of M. tuberculosis, which has several uses in public health and epidemiology. 

Genetic strain typing is used to study the phylogeny of M. tuberculosis, identify 

outbreaks of related cases, identify laboratory contamination, detect mixed infections, 

differentiate between cases of relapse and reinfection in recurrent cases of 

tuberculosis, and study M. tuberculosis transmission on the population level [118, 

119]. 

The use of genotyping data to understand transmission will be the focus of this 

section, because of its relevance to the thesis. Genotyping data are often used to help 

distinguish whether disease is due to recent transmission or from reactivation of an 

older infection because there is no way to clinically distinguish between these forms of 

disease. To this end, it is often assumed that isolates which 'cluster' together, or have 

identical genetic strain types, are part of the same recent chain of transmission. On the 

other hand, isolates which do not match any other strain types in the population are 

considered 'unique' and assumed to be the result of reactivation of an older infection 

or one acquired outside the study population. The proportion of isolates clustered is 

used to estimate the proportion of disease due to recent transmission and identify 

population-level risk factors for recent transmission. However, interpretation of these 

data is complicated by several factors, which depend critically on the genotyping 

method used and other, study-level factors. A description of typing methods follows 

below. The application of genotyping data to understanding transmission in the 

population is then discussed. Finally, challenges to interpretation of these data in 

understanding transmission are presented. 

2.4.1 Genotyping Methods 

The development of genetic typing methods for M. tuberculosis has been limited by 

the small amount of genetic variation in the genome, which is reduced compared to 
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other bacterial species. Despite this, sequencing has revealed several polymorphic 

regions, including: Single Nucleotide Polymorph isms (SNPs); insertion elements (e.g. 

IS6110); several regions with variable number tandem repeats (VNTR), including 

mycobacterium interspersed repetitive units (MIRU) and exact tandem repeats (ETR); 

Spoligotyping (the direct repeat region); polymorphic GC-rich sequences; and regions 

of difference polymorph isms. More recently, whole genome sequencing of the 

bacterium has become a possibility, though routine use in public health has is yet to be 

seen [120]. Because of their use in UK surveillance, this study focuses on VNTR typing 

data, with some discussion of insertion element IS6110-based RFLP typing because of 

its importance in other molecular epidemiological studies of tuberculosis. The other 

genotyping methods are reviewed elsewhere [121]. 

2.4.1.1 RFLP 

Insertion sequence IS6110-based RFLP is the most widely used tool for studying the 

molecular epidemiology of tuberculosis [122]. This insertion sequence occurs a 

variable number of times and in different locations throughout the M. tuberculosis 

genome for different strains of the bacterium. RFLP typing requires digestion of the M. 

tuberculosis genome with a restriction endonuclease to cut the DNA at IS6110 

insertion sites and separation of the cut pieces of DNA - called 'restriction fragments' 

-using gel electrophoresis [123]. After hybridization and labelling, the gels produce a 

banding pattern which depends on the number and molecular weight of the restriction 

fragments in a particular M. tuberculosis strain. Electrophoresis gels are photographed 

and then analyzed using specialized software such as BioNumerics® (Applied Maths, 

Sint-Martens-Latem, Belgium). 

Due to a sufficient diversity of strain types in the population and stability of profiles 

over time periods relevant to infection transmission, it is generally assumed that 

patients with identicallS6110 RFLP patterns are part of the same chain of recent 

transmission. Stability of RFLP patterns over time scales relevant to transmission has 

been indicated in studies where epidemiologically-linked patients have identical 

IS6110 RFLP patterns [124, 1251 and where serial isolates from the same patients have 

shown stability in RFLP patterns over time [124, 1261. 
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The rate of change of RFLP profiles have been estimated to be between 8-25% of 

profiles each year in disease cases [127-129]. In Latent Infection, the mutation rate is 

thought to be slower due to reduced replication of M. tuberculosis, though has only 

been estimated by one study, to my knowledge. This study compared strains isolated 

from patients in the 1960s to those isolated from patients in the 1990s to estimate 

that the mutation rate of strains in latent infection over this time period was 

approximately 2% per year [130]. 

Despite widespread use of this method, the validity of using the proportion clustered 

based on 156110 RFLP to estimate recent transmission has been questioned [117, 122, 

131-133], largely due to uncertainty over the mutation rate of RFLP profiles [131]. In 

addition, it is well known that the method is inadequate for isolates with a small 

number of 156110 insertion sites - or low copy number isolates - because of their poor 

discriminatory power [117, 134-137]. Furthermore, 156110 RFLP is labour intensive, is 

relatively slow because it relies on culturing of M. tuberculosis before typing can be 

performed, and results can be difficult to reproduce [116, 138]. Analogue band 

patterns must be digitalized, and this process does not always lead to consistent 

results. 

2.4.1.2 VNTR 

A newer technique for studying tuberculosis molecular epidemiology is VNTR typing, 

which characterizes regions of the genome where short pieces of DNA are repeated in 

tandem a variable number of times [139, 140]. The regions containing these repeated 

elements are referred to as VNTR 'loci'. Other similar regions oftandem repeats, MIRU 

and ETR, will henceforth be referred to as VNTR for simplicity. At each of these loci, a 

'repeat number' is assigned, based on how many times the short piece of DNA is 

repeated at the locus. Thus, a VNTR 'profile' consists of a string of repeat numbers, 

one for each locus included in the profile. VNTR typing is typically done with 12, 15, or 

24 loci, though other combinations are used. 

VNTR typing is highly reproducible because of the digital nature of the genotype, and 

comparisons across laboratories and studies are convenient (116}. VNTR is also 
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advantageous because it relies on peR-based determination of repeat numbers, which 

requires relatively small amounts of DNA and is much quicker than RFLP and other 

methods which rely on culturing of isolates. 

As is the case with any genotyping method, the discriminatory power of VNTR depends 

on the diversity of strain types in the population and rate of change of profiles. For 

VNTR, these characteristics depend critically on how many loci are included in the 

profile and which loci included in the profile, as some loci are more discriminatory than 

others. Some of the commonly used combinations of VNTR loci are discussed below. 

The rate of change of VNTR profiles is also discussed below, in Section 2.4.1.3.4. 

The disadvantages of VNTR typing include relatively high cost, requirement of 

specialized laboratory equipment required, and most importantly, the varying and still 

incompletely known discriminatory ability ofthe typing system. Furthermore, there is 

difficulty comparing across studies in the literature to date, since several different sets 

of loci have been used. It is likely that as VNTR gains in popularity, one standardized 

set of loci will dominate typing of M. tuberculosis isolates, and these problems will 

subside. 

2.4.1.3 VNTR typing systems 

There are many possible combinations of VNTR loci that can be used for M. 

tuberculosis typing. Several of the most important and standardized systems are 

described below. 

2.4.1.3.1 Earliest used loci 

In 1998, five variable loci called exact tandem rep~ats (ETR) were described [141]. 

These five loci have been used in conjunction with other loci in achieving a high level 

of discrimination, or as a second-line test, but are not considered discriminatory 

enough for use on their own [138, 142]. In 2000, Supply et al. described a set of 12 loci 

called 'MIRU' loci which showed enough discrimination and stability to potentially be 

used for studying the molecular epidemiology of tuberculosis [140, 143]. Since then, 

the MIRU loci have been shown to be less discriminatory than originally thought, not 
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usually comparing well to the discriminatory ability of RFLP [144, 145]. Though some 

studies have maintained that the 12 MIRU loci compare well with clustering 

proportions seen in RFlP [146], they are usually only considered as a first-line 

approach, even when combined with spoligotyping [147]. This combination has been 

used in the US for large-scale genotyping of tuberculosis isolates [147, 148]. later, it 

was proposed that six of the original 12 loci should be discarded from the VNTR typing 

system due to insufficient variation, and an additional nine be added. This resulted in 

what is usually considered the standard ls-locus VNTR typing system. Clusters based 

on these 15 loci have been shown to correlate well with RFlP clusters [144], especially 

if used together with spoligotyping [149]. 

2.4.1.3.2 15 loci (UK) 

The ls-locus typing system used in the UK from 2004 - 2009 is slightly different than 

the standard ls-locus typing system found in the literature. This typing system uses all 

five ETR loci, plus the original 12 MIRU loci, which amounts to 15 distinct loci because 

two of the loci overlap [150]. Hawkey et al. found this typing system compared well 

with RFLP in identifying clustered isolates [138], but subsequent studies have shown 

these 15 loci do not appear to achieve discrimination levels near those of RFlP or the 

more discriminatory VNTR sets. Gopaul et al. found in three small study populations 

(n=71, 125, 248) that these fifteen loci were not as discriminatory as RFlP, with more 

than three times the clustering percentage in one of the studies (n=248) [151]. 

Hanekom et al. studied Beijing spoligotype isolates in South Africa and found these 15 

loci did not discriminate any better than the original 12 MIRU loci and were much less 

discriminatory than RFlP [122]. 

2.4.1.-3.3 24 loci 

In 2006, Supply et al. proposed the use of a set of 24 discriminatory loci for use as 

genetic typing standard for M. tuberculosis [152]. This typing method is gaining 

popularity, and as of 2010 has been the standard typing method for isolates from 

tuberculosis cases in the UK. In a Hamburg study in 2007, 24-locus VNTR was found to 

be slightly more discriminatory than RFlP, though there were some inconsistencies 

between RFlP and VNTR clusters [153]. In 2008, it was shown that 24-locus VNTR 
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clusters were highly consistent with RFLP clusters, and gave lower clustering 

proportions than RFLP, even after excluding low copy number isolates from the 

analysis [154]. A study set in Venezuela showed 24-locus VNTR was more 

discriminatory than RFLP, though again, they found some inconsistencies between 

RFLP and 24-locus VNTR clusters [149]. To date, there have been no population-level 

studies using 24-locus VNTR typing which analyzed more than a two or three hundred 

isolates. 

2.4.1.3.4 Rate of change ofVNTR 

profiles 

The rate of change of strain type profiles has a major impact on the genetic diversity in 

a population of strains, and the similarity of strains involved in a chain of transmission. 

Consequently, the mutation rate is a major determinant of the utility of genotyping 

data for identifying disease cases that are due to recent transmission. Changes to 

VNTR profiles can result from changes in the number of repeated sequences at any 

one or more loci in the profile. It is thought that changes to VNTR loci occur during 

replication due to strand slippage during DNA replication, resulting in increases or 

decreases in repeat numbers for individual VNTR loci. Repeat numbers are thought to 

increase or decrease in a stepwise manner, one repeat at a time and loci are also 

thought to mutate independently. 

There have been several studies to estimate the mutation rate of VNTR loci using 

statistical or mathematical models, often combined with observed VNTR genotyping 

data. These have resulted in a very wide range of estimates for the per-locus mutation 

rates, as detailed in Chapter 7, Section 7.1.3.2. Per-locus mutation rates translate into 

mutation rates for 24-locus profiles ranging from 0.02% per profile per year to 30% per 

profile per year [155-158]. Although this wide range of mutation rates indicates great 

uncertainty, the 24-locus VNTR mutation rates may be comparable to those found for 

RFLP profiles, which are on average around 8-25% per profile per year. 

There has been a conventional wisdom that during latent infection, M. tuberculosis 

replication slows or stops [1591, making mutation less likely. However, the relative 

59 



mutation rate of VNTR profiles between active disease and latent infection has not 

been studied, to my knowledge. 

2.4.2 Genotyping Data for Studying Transmission 
As mentioned above, one of the main applications of genotyping data is to study 

transmission in the population. This is typically done by assessing all isolates in the 

population as clustered or unique, and estimating the proportion of cases due to 

recent transmission based on the proportion clustered. 

The simplest analysis regards the proportion of isolates clustered as a direct proxy for 

recent transmission, sometimes called the 'n method' [160]. This statistic is often used, 

though may also be inappropriate for estimating recent transmission in some age 

groups and settings [161]. Another common statistic based on genotyping data is the 

'n-1 method' [162]. This statistic is computed by subtracting the number of clusters 

from the number of clustered isolates and dividing this figure by the total number of 

isolates. The idea behind this method is that each cluster has one source case, which is 

the result of reactivation of a latent infection, while the remaining cases in the cluster 

have been infected recently. This method may not be appropriate for estimating 

recent transmission in all age groups, for example in the young where up to 100% of 

cases in a cluster are due to recent transmission [161] or for studies with reduced case 

ascertainment [163]. 

Another method for assessing clustering is the 'retrospective method', which also 

attempts to distinguish between source cases and recipients of infection. Under this 

definition, cases with strain type profiles that exactly match one or more other profiles 

from case(s) in the study population, which were notified previously, within some 

defined time period, are considered clustered. A case with a strain type profile that 

does not have a match in the study population from a case notified previously, within 

the defined time period, is considered unique. Published studies using this method 

have looked four years and one year prior to define retrospective clustering [164-166]. 

The retrospective method eliminates some bias in cluster analysis that occurs for other 

definitions of clustering because cases notified at different times have different follow

up periods for assessing clustering. Using the retrospective method, the same time 
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period for each isolate is used to look retrospectively for an isolate's match. However, 

this method results in a loss of data, with increasing losses for longer retrospective 

time periods considered. 

Other methods for estimating the extent of recent transmission include genetic 

distance-based metrics [117, 132, 167]. In general these metrics estimate higher 

proportions of disease due to recent transmission due because of more inclusive 

definitions of clustering, but in the absence of a 'gold standard' it is unknown whether 

these are more accurate than other methods for estimating recent transmission. These 

may be appropriate for more discriminatory typing methods, such as whole genome 

sequencing, when that is more commonly used. 

Often clustering is defined by one of these methods, usually the n method, and then 

risk factors for clustering are assessed, assuming clustering is proxy for recent 

transmission. The proportions clustered across demographic and other categories of 

the population are usually reported, along with odds ratios (OR) for clustering among 

different groups. Commonly identified risk factors for clustering are young age, male 

sex, pulmonary disease, being native-born, drug use, alcohol use, and homelessness 

[168-171]. These risk factors for clustering are expected risk factors for transmission 

and thus provide some confirmation for the utility of genotyping data in detecting 

recent transmission. To date, risk factors for clustering on the population level have 

only been studied using RFLP. 

2.4.3 Limitations 
Limitations to the interpretation of genotyping data for assessing recent transmission 

include uncertainty regarding which methods for defining clustering best correlates 

with the amount of disease due to recent transmission, but also other factors. These 

factors include varying discriminatory ability across study settings, uncertainty about 

mutation rate of genotypes, uncertainty about the effects of ARI in some settings, the 

effect of low case ascertainment, the effect of a restricted study duration, and the age

dependent utility of genotyping data for predicting the proportion of disease due to 

recent transmission [122, 168, 172-174]. 
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In 1999, Glynn et al. used simulation modelling to show that increased case 

ascertainment leads to increased clustering, and populations with small cluster sizes 

are more susceptible to underestimation of true clustering as case ascertainment is 

reduced [163]. Two later studies showed clustering underestimates recent 

transmission as study durations are shortened [7,9]. Vynnycky et al. used simulation 

modelling to show how clustering of isolates underestimates the extent of disease due 

to recent transmission in the young and overestimates this in the older individuals. In 

2003, Vynnycky et al. extended this work to show the importance of ARI trend on the 

relationship between clustering and recent transmission [161]. However, the study 

excluded immigrants from analysis and so it is uncertain how results translate to 

tuberculosis epidemiology in countries with a high proportion of cases in immigrants, 

such as the UK. 

In 2002, Murray addressed the influence of latent infection prevalence, population age 

structure, chemoprophylaxis of contacts, and other factors on the proportion of 

isolates clustered and cluster size [175]. Among other results, Murray concluded 

control measures which do not reduce transmission (e.g. screening and treatment of 

latent infection) may not reduce mean cluster sizes. However, the study was not 

calibrated to real data, did not take into account evolution of the molecular marker, 

and did not attempt to explore the effects of immigration [175] so the applicability of 

results is questionable. In a subsequent paper, Murray also explored bias in the 

estimation of recent transmission with different sampling, which confirmed results 

from Glynn et al. [163] 

To summarize, there are several factors which influence the relationship between 

genotype clustering and amount of disease due to recent transmission. It is not clear 

how to quantify the relationship between clustering and recent transmission, for any 

particular molecular marker or statistic, in a population of tuberculosis cases as seen in 

the UK, which is a mixed population of foreign-born and UK-born. These groups will 

have experienced different ARI over their lifetimes, may currently experience different 

ARI and disease risks, and may have different risks of developing infectious disease. No 

study has examined the relationship between clustering and recent transmission in 
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such a population. In addition, no study has taken into account the likely highly 

differential mutation rates of bacteria, and therefore genotype profiles, involved in 

active disease versus infection, when interpreting genotyping data. In the absence of a 

'gold standard' it is difficult to evaluate VNTR typing methods and interpret these data 

reliably across study settings. It may be possible for mathematical modelling to aid 

interpretation of these data. 
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2.5 Mathematical Modelling of Tuberculosis 

Mathematical modelling and simulation of tuberculosis dynamics are helpful in 

studying the disease, especially because of the unusual complexity in its natural 

history. Unlike many diseases, infection with the causative agent of tuberculosis is 

difficult to detect, and an infection is thought to confer incomplete or even little 

immunity to subsequent infection. Because direct experimentation is not ethical in 

humans, mathematical models can help shed light on the natural history of the disease 

[18,19,176, 177]. Models can also be used to assess interventions and make 

projections for disease incidence in the future [178-182]. Models have also been used 

to better understand the long-term disease dynamics and the effect of major changes 

to tuberculosis epidemiology, including the HIV epidemic [183-186]. 

Most tuberculosis models to-date have been deterministic, compartmental models. 

These models group the population into compartments based on infection states, and 

possibly other characteristics, with all individuals within a compartment considered 

equivalent. Some models have further stratified these compartments by age, sex, or 

other variables. Other models have simulated disease dynamics using Markov 

processes, which are stochastic but divide the population into states, similar to 

classical compartmental models [187]. More recently, studies using IBMs of 

tuberculosis dynamics have been published. These models distinguish each individual 

in the population, rather than grouping them into compartments. Distinguishing 

individuals allows for features such as modelling transmission within complex contact 

networks and describing transmission of individual M. tuberculosis strain types. 

In the following section, a brief overview of tuberculosis models is presented, with 

subsequent sections highlighting tuberculosis models in three areas particularly 

relevant to this work: models based on the UK; models including immigration; models 

involving genotypes; and IBMs. 

2.5.1 Chronological Overview of Tuberculosis Models 

Since the first tuberculosis modelling paper published in the 1960s [188], many 

tuberculosis models have been developed, far more than are described here. Because 
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categorizing these models by common features and assumptions of the models leads 

to some confusion, since most categories are not mutually exclusive, here I present a 

roughly chronological description of literature on tuberculosis modelling. I describe 

studies that comprise a group of diverse and important works relevant to the model 

used in this study, with a focus on models applied to tuberculosis in developed 

countries. Reviews of tuberculosis models have been published elsewhere [189-191]. 

In 1962, Waaler et al. published the first tuberculosis modelling paper, describing 

disease dynamics using three disease compartments and a system of linear difference 

equations [188]. They incorporated epidemiological data from South India to solve the 

equations and concluded that tuberculosis dynamicS would remain stable in South 

India. Waaler extended this work in a number of later papers, most of which focused 

on evaluating the cost-effectiveness of different interventions [192-196]. By that time, 

Brogger had already built on Waaler's first model to evaluate different disease control 

strategies [197]. The transmission function in this model was significantly more 

complex than in Waaler's. Also in 1967, Revelle introduced a system of nonlinear 

differential equations to model tuberculosis dynamiCS with the goal of assessing cost

effectiveness of various interventions in developing countries [198]. Ferebee 

constructed a model of tuberculosis dynamics in the US using a structure similar to 

that of Waaler [199], first model studying tuberculosis in a developed country. There 

were few tuberculosis modelling papers in the 1970s and 1980s, though Sutherland et 

al. published an age-structure model in 1982 that took into account reinfection [18]. 

The model was used to estimate risks of developing pulmonary disease for the three 

disease pathways: recent infection, latent infection and reinfection. Model results 

showed sex-differences in disease risks. 

Many tuberculosis modelling papers appeared in the 1990s. There were several 

simulation models that offered numerical analyses and projections of tuberculosis 

burden in various countries or evaluation of control measures [200-203]. In 1995, 

Blower et al. published a paper on the transmission dynamics of M. tuberculosis using 

two analytically tractable ordinary differential equation (ODE) models. Authors suggest 

some of the decline in the tuberculosis incidence in developed countries resulted from 
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a long-term decline in the tuberculosis epidemic [183]. In 1997, Vynnycky and Fine 

published a partial differential equation (POE) model of tuberculosis dynamics in the 

UK, extending the work of Sutherland et al. [18, 19]. Like Sutherland's, this model is 

age-structured and takes into account reinfection. 

In the 2000s, many more models have been published, including some dynamical 

models of tuberculosis that are analytically tractable. These models offer solutions to 

threshold conditions and other insights into disease dynamics. The trade-off is they are 

not always proven realistic with data. In 2000, Aparicio et al. developed a transmission 

model that accounted for close and casual contacts in what they called a 'generalized 

households model.' This compartmental model first stratified the population into 

'active' and 'inactive' groups, based on whether or not persons were in a c1uster

representing households or networks of close contacts-with an active case of 

tuberculosis. Members of the active clusters were at higher risk of disease, being at 

risk for both infections from the active cases in their cluster, and also casual contact 

infection, which can be passed from any infectious case in the population. Inactive 

cluster members could only be infected by casual contacts, and were at a much lower 

risk of infection. Aparicio et al. concluded that casual contacts significantly contribute 

to disease incidence. Other examples may be found in later work by Aparicio and 

colleagues, as well as work by Song and colleagues [191, 204, 205]. 

Other important models have been developed but are not described here because of 

limited relevance to the present study. These include HIV-focused models, models of 

strain competition, and models of drug resistance [179,206-213]. 

2.5.2 Tuberculosis Dynamics in the UK 

In 1997, Vynnycky and Fine published a model of tuberculosis in white males in 

England and Wales from 1900 -1990, extending a model published by Sutherland et 

al. [18]. Vynnycky and Fine's model was age-structured and had eight infection state 

compartments, including a reinfection and reinfection compartments. The population 

modelled was restricted to white ethnic males. Flows between compartments were 

dictated by a system of PoEs, approximated by ordinary differential equations (ODEs) 
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and solved by Euler's method. Instead of dynamical transmission modelling, a time

dependent ARI was assumed to apply to the entire population. Fitting the model to 

notification data allowed estimation of age-specific risks of developing disease via the 

three disease pathways, recent infection, latent infection, and reinfection for white 

ethnic males. 

Extensions of this work include a 1998 paper that estimated the net reproductive 

number for tuberculosis in the UK, and discussed implications of the complex natural 

history of tuberculosis on interpretation of the net reproductive number [214]. In 

1999, Vynnycky and Fine used model results and estimates of the ARI in the UK to 

describe trends in the effective number of contacts for infectious tuberculosis cases 

over the 20th century [56]. Vynnycky and Fine also used the model to estimate secular 

trends in age-specific lifetime risks of developing tuberculosis once infected, and serial 

intervals of the disease in the UK [16]. 

In 2002 Pitman et al. published a compartmental model of tuberculosis dynamics in 

the UK to look at the impact of vaccination, chemotherapy, and preventive therapy on 

disease incidence from 1993 to 1990 [182]. The authors concluded that of these 

interventions, preventive therapy was most important to infection transmission, as 

estimates for the duration of infectiousness were long ("'2-5 years) and infectiousness 

begins before symptoms are present. Pitman later extended this compartmental 

model of tuberculosis dynamics in England and Wales, stratifying the population into 

five risk groups, based on infection exposure risk (R. Pitman, personal communication), 

One limitation of both models is that there were many parameters estimated by fitting 

the models to notification data, many of which were correlated. 

2.S.3 Tuberculosis and Genotyping Data 

Some modelling work has been done to aid interpretation of genetic typing data for 

tuberculosis isolates, including both dynamic transmission models and statistical 

models. Most relevant to this thesis, Vynnycky et al. and Murray both used detailed 

transmission dynamic models to simulate genotyping data [9, 161,175]. In 2001 

Vynnycky et al. used a deterministic, compartmental model to examine the effects of 
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age and study duration on the relationship between genotype clustering and recent 

transmission. Analyses excluded immigrants, those clustered with immigrants, and 

extra-pulmonary cases. This study highlighted the importance of age in determining 

how well clustering predicts the extent of recent transmission, as discussed above in 

Section 2.4.2. A later extension of this model showed that the trend in ARI strongly 

influences the relationship between clustering and recent transmission, also discussed 

above [161]. The model did not account for reduced rate of change of the molecular 

marker when infection was latent. However, as there is biological reason for, and now 

documented evidence of, a much slower rate of change of genotype change in latent 

infection [130], the relationships between clustering and recent transmission derived 

from these studies may be altered if more realistic mutation processes are taken into 

account. 

Murray developed an IBM of tuberculosis dynamics to study cluster size distribution 

and proportion of isolates clustered under different assumptions about control 

strategies, HIV, prevalence of latent infection, and population age structure [175]. The 

IBM tracked individual strains of M. tuberculosis, though did not allow for strain 

evolution (the model was only run for four years) and was not calibrated to data. 

Results show that different control measures can have vastly different effects on 

proportion clustered and cluster size distribution, depending on whether they reduce 

infection transmission or reduce reactivation disease. Murray extended this model to 

examine the effect of the sampling proportion on estimates of recent transmission [8], 

confirming earlier results, as discussed above in Section 2.4.2. Neither study by Murray 

took into account migration into the study population or mutation of the genotype 

profiles. 

Some studies have used statistical models to interpret genotyping data. For example, 

Tanaka et al. used a stochastic model in combination with approximate Bayesian 

computation to estimate transmission parameters from genotyping data [215]. A 

paper by Grant et al. modelled the evolution speed of VNTR loci, although their study 

does not directly address the interpretation of genotyping data for estimating recent 

transmission [156]. 
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2.5.4 IBMs for Tuberculosis 

There are relatively few tuberculosis studies using IBMs, though this type of model is 

increasingly being used. These models are typically used to study contact structure in 

the population, incorporate non-homogeneous mixing, and study M. tuberculosis 

strain types according to genotype or drug sensitivity [189, 207, 216-218]. There have 

also been at least two intra-host models of tuberculosis, both of which model 

individual ce"ular interactions to understand host response to M. tuberculosis 

infection [219,220]. Some notable IBMs relevant to this thesis are reviewed below. 

In 2007, Cohen et al. published an individual-based network model studying the effects 

of reinfection on disease dynamics, accounting for non-homogeneous contact patterns 

among individuals in the model [221]. Authors concluded that non-random mixing 

leads to increased importance of reinfection on tuberculosis burden, even in low

incidence settings, due to localized clusters of cases. In 2008, Colijn et al. published a 

related model studying various effects of heterogeneity in contact structure on 

infection transmission, also in low-incidence settings. Their results suggested that 

localized outbreaks can result directly from non-random contact structure in the 

population, even in the absence of variation in host susceptibility or transmissibility of 

strains. The process for fitting models to data was not specified, and assumed to be ad 

hoc. In 2008, Cohen et al. published an extension of this IBM, which examined the 

accuracy of estimates of the burden of drug resistant tuberculosis [222] and concluded 

previous estimates may have been too low. As described above, Murray developed an 

IBM in 2002 looking at cluster size distribution of M. tuberculosis isolates under many 

different model assumptions [175]. This model also employed a discrete event 

simulation algorithm [8]. 

More recently, Guzzetta et al. published an IBM of tuberculosis dynamics applied to 

data from the US to study the effects of age-structure and preferential mixing on the 

ability of a model to simulate observed data [223]. They compared their fully-specified 

IBM to a deterministic compartmental model and also a simpler IBM, all three of which 

were based on the structure of Vynnycky and Fine's compartmental model. Results 

showed that the fully-specified IBM, with spatial structure and contact networks based 
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on households, schools and workplaces, fit observed data best. Other results include 

an estimated cumulative risk of 15% for primary disease over the first five years of 

infection and age-dependent disease risk estimates which showed that individuals 

over 50 years of age have a four-to-eight-fold increased risk of reactivation disease 

compared to the general population. 

2.5.5 Tuberculosis and Immigration 

In 2002, Wolleswinkel-van den Bosch et al. used a life-table model of tuberculosis in 

Dutch natives to assess the impact of immigrants on the Dutch native population 

[224]. Authors defined the contact rate in their model as 'the average number of 

infections generated by an infectious case', and this was multiplied by the number of 

infectious cases to get the ARI. They concluded that by 2030 at least 60% of Dutch 

tuberculosis cases will have been infected by an immigrant. The model did not explore 

the impact of the Dutch native cases on the incidence of tuberculosis in immigrants. 

McCluskey and van den Driessche used a compartmental, differential equation model 

solved analytically to study tuberculosis dynamics with immigration [225]. When 

immigrants enter the population only as susceptibles, the disease-free equilibrium is 

globally stable when threshold conditions are met- i.e. the reproduction number is 

below one. However, when immigrants are allowed to enter as infected and diseased, 

the disease persists endemically-there is no disease-free equilibrium. In 2008, Zhou 

et al. used a deterministic compartmental model to study tuberculosis in Canada. The 

population was divided into Canadian-born and immigrants, with transmission 

occurring within and between the two groups. Their results showed that only about 

5% of cases in foreign-born persons were infected in Canada. The model was limited 

by including very little heterogeneity apart from the two birthplace groupings - for 

example, no realistic demography, age, or sex differences were taken into account. 

Also in 2008, Jia et al. published a study of the impact of immigration on tuberculosis 

incidence in a compartmental model, also applied to data from Canada [226]. The 

population was stratified into Canadian-born individuals and immigrants, using three 

parameters to describe transmission within and between the two groups. This model 
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was not designed to take into account transmission from natives to immigrants. 

Authors concluded that immigration will allow the disease to persist in areas where 

the net reproductive number is below one in the general population, due to 

importation of infections. Authors advise tuberculosis models should take into account 

immigration, as leaving immigrants out significantly alters disease dynamics, a 

conclusion supported by several modelling studies [224, 225, 227]. 
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2.6 Summary of Modelling Considerations 

2.6.1 Tuberculosis Modelling in This Thesis 
Important considerations for tuberculosis modelling will be question- and setting-

dependent. In this study, one of the most important features of any model used will be 

its capacity for the simulation of genotyping data. To this end, an IBM would be the 

most straightforward and flexible approach to handling these data. Strain types can 

number in the thousands and the population is dynamic, with continual mutation 

processes, making handling these difficult with a compartmental model. The use of an 

IBM also allows the flexibility of extending the model in the future to include a more 

sophisticated contact structure and virtually any type of data. The IBM also simplifies 

the incorporation of highly stratified parameter values. lastly, stratification of the 

population into many groups results in small and variable population sizes for some of 

these groups, providing another reason for using individual-based modelling. 

Stochastic effects are easily handled in an IBM. 

Another important feature to include in the model is the effect of migration, important 

because foreign-born persons in the UK now account for the majority of tuberculosis 

cases. Therefore, migration and explicit division of the population by birthplace is 

essential for better understanding of tuberculosis dynamics in the UK. Also, allowing 

age-structure and realistic demography is essential for modelling tuberculosis given 

the long-term dynamics of the disease [228]. The evidence for the role of reinfection in 

tuberculosis dynamics necessitates its inclusion [19, 221]. The simulation of large 

population sizes, specifically England and Wales, makes speed of computation a 

necessary factor in considering models to use. 

2.6.2 Other Considerations 
New model code was developed to answer my research questions in preference to 

adapting one of the several models reviewed above. I did this for two main reasons. 

First, model code is not freely available for any of the above models. Second, the 

model descriptions, particularly for IBMs, are not sufficient for complete and reliable 

reproduction of the models. Therefore I have developed my own modelling software, 

adapted from an existing IBM for HIV dynamics, as described in Chapter 3. This IBM 
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was available for my use, well described, and allowed me to avoid having to re-design 

the scheduling architecture of the IBM. 

Freely available model code that has been rigorously tested and well documented 

could serve epidemiologists and the broader modelling community. Especially in some 

countries with limited budget for designing models themselves, adapting the code of 

others could potentially save resources and time [229]. Of course, it may not be simple 

to adapt code, but making code freely available at least makes that option possible. 

Freely available code can also help ensure reproducibility of results. Finally, it can help 

identify errors in the code in two ways. Firstly, code that is made freely available would 

be well-tested and well-documented in preparation for release, which, in itself, 

reduces errors. Secondly, others reading papers or adapting the model for their own 

purposes could help discover programming or other errors. These consumers could 

also suggest improvements to the model and advancements of the science. 

These ideas are not new. The immensely popular and successful realm of open source 

software, which spans many disciplines and applications, serves as a model for these 

principles. Also, more recently there has been an 'open science' movement which calls 

for more publishing of data, methods, software, and results in enough detail so that 

other scientists can reproduce and build on current work [230, 231]. 
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2.7 Observed Data Used for the Study 

Some of the observed data used in this study are presented here because they are 

referenced in several chapters. These include notifications from England and Wales, 

from 1999 - 2009 and notifications from the West Midlands, from 2007 - 2011. Each 

dataset is described below. Other observed data used in this thesis include genotyping 

data from the West Midlands, from 2007 - 2011. However, these are not described 

below because significant processing is required before data can be presented. These 

data and processing steps are detailed in Chapter 6. 

2.7.1 Notification Data from England and Wales 

The numbers of tuberculosis case notifications recorded in the Enhanced Tuberculosis 

Surveillance (ETS) system each year from 1999 - 2009 were provided by the HPA 

Tuberculosis Section. Notifications for each year were stratified by age category, sex, 

birthplace, and disease site. Age stratification divided notifications into 11 categories 

for age: under five years, 5 - 9 years, 10 -14 years, 15 - 19 years, 20 - 24 years, 25 -

34 years, 35 - 44 years, 45 - 54 years, 55 - 64 years, 65 - 74 years, and 75 years and 

above. Disease site categories are pulmonary and non-pUlmonary. Birthplace 

categories are UK-born, SSA-born and other foreign-born (OF-born). There was no 

temporal precision beyond the year of the case report. The notifications were reported 

to HPA and stored in the ETS database, where non-cases were de-notified and cases 

reported more than once were de-notified (for more details on the ETS database, see 

Section 2.3.2.3.1). 

2.7.1.1 Data processing 

Cases with unknown age, sex, disease site, or birthplace were excluded from stratified 

notification data provided by HPA, though the total number of cases each year was 

provided. The ratio of total cases to stratified cases (those stratified by age, sex, 

birthplace, and disease site) was calculated for each year and used to adjust stratified 

cases for missing data. It was assumed that cases with missing information did not 

differ from cases with complete information, so notifications for each stratified 

category were multiplied by the ratio of total cases to stratified cases for each year. 
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Table 2-1 gives the total cases and stratified cases for each year, as well as the ratio of 

total cases to stratified cases used to adjust the numbers of cases in each stratified 

category. The majority of cases with missing data were missing information on country 

of birth. After adjustment for cases with missing data, case notifications were grouped 

into age categories consistent with those used by the HPA Tuberculosis section. These 

age categories are: 15 years and under, 15 - 44 years, 45 - 64 years, and 65 years and 

over. 

Table 2-1: Tuberculosis case notifications in England and Wales from 1999 - 2009. The number of total cases 

reported and the number of cases stratified by age, sex, birthplace, and disease site for each year, as provided by 

the HPA Tuberculosis section, is shown. The ratio of total cases to stratified cases was used to adjust each category 

(defined by age, sex, birthplace, and disease site) for cases excluded from stratification due to missing information. 

Cases stratified by 
Ratio of total cases: 

Year Total cases reported age, sex, birthplace 
stratified cases 

and disease site 

1999 5701 4943 1.15 

2000 6264 5324 1.18 

2001 6457 5520 1.17 

2002 6783 6004 1.13 

2003 6823 6181 1.10 

2004 7166 6531 1.10 

2005 7879 7131 1.10 

2006 7902 7036 1.12 

2007 7826 7090 1.10 

2008 8109 7450 1.09 

2009 8500 7751 1.10 
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2.7.1.2 Trends in the number 0/ 

notifications 

From 1999 - 2009, the total number of cases reported in England and Wales increased 

from 5,701 to 8,500. However, the number of notifications and trends in these 

numbers were markedly different among the three different birthplace categories, as 

shown in Figure 2-4-Figure 2-9. UK-born cases made up around 40% of notifications 

in 1999-over 2300 cases-though this decreased to 25% of total notifications and 

about 2200 cases in 2009. The number of notifications in UK-born cases for most age 

groups were roughly constant from 1999 - 2009, though notifications decreased in 

those aged 65 years and above for both sexes. In males, cases in that age group 

decreased from over 400 in 1999 to about 270 in 2009. In females the decrease was 

from about 290 to 200 cases. These trends are shown in Figure 2-4-Figure 2-5. 

For OF-born cases, case notifications for most age groups and both sexes increased 

from 1999 - 2009. Over this time, the proportion of total cases in OF-born individuals 

rose from approximately 44% in 1999 to 53% in 2009. There was an especially marked 

increase in those aged 15 - 44 years, with the number of cases in males more than 

doubling in that age group, from 768 cases in 1999 to 1735 in 2009. In females, cases 

increased less dramatically, from 315 cases in 1999 to 488 in 2009. These trends are 

shown in Figure 2-6-Figure 2-7. 

In SSA-born cases, the number of case notifications also increased for most age groups 

and both sexes from 1999 - 2009. The total number of notifications increased from 

about 870 cases in 1999 to over 1,900 in 2009. The vast majority of cases occured in 

those aged 15 - 44 years. In this age group, notifications rose over the period 1999 -

2009 from about 670 cases to more than 1400 cases in 2009. There were around 900 

cases each for both males and females at the peak incidence in 2006 and 2005, 

respectively, falling to around 700 cases in each group respectively in 2009. There was 

a steadier upward trend in those aged 45 - 64. The number of cases more than 

doubled from 1999 to 2009 for both males and females, with around 150 cases in each 

group in 2009. There were very few cases in the youngest and oldest age categories, 
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although the number of cases did rise in these groups, These trends are shown in 

Figure 2-8-Figure 2-9, 
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Figure 2-4: Tuberculosis notifications for United Kingdom-born males in England and Wales by age category, 1999 -

2009. 
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Figure 2-5: Tuberculosis notifications for United Kingdom-born females in England and Wales by age category, 1999 

-2009. 
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Figure 2-6: Tuberculosis notifications for other foreign -born males in England and Wales by age category, 1999 -

2009. 
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Figure 2-7: Tuberculosis notifications for other foreign -born females in England and Wales by age category, 1999 -

2009. 
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Figure 2-8: Tuberculosis notifications for Sub-Saharan Africa-born males in England and Wales by age category, 1999 

- 2009. 
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1999 - 2009. 
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2.7.1.3 Notification rates 

Notification rates were calculated for each year by dividing the total number of case 

notifications in each demographic category by the estimated population size for that 

category. Estimated population sizes were obtained from analysis of the Labour Force 

Survey (LFS), as described in Chapter 4, Section 4.1.3.1. As per convention for 

tuberculosis, notification rates were multiplied by 100,000 to obtain rates per 100,000 

population per year. 

There were vast differences between notification rates among UK, OF, and SSA-born 

individuals. For UK-born individuals, notification rates were low, ranging from about 

two cases per 100,000 to 13 cases per 100,000 across all age groups and both sexes 

from 1999 - 2009, as shown in Figure 2-10 and Figure 2-11. Notification rates were 

relatively stable from 1999 - 2009, although this varied somewhat with the different 

age and sex categories. As it was also seen in the number of notifications, there was a 

downward trend in the case notification rate in those aged 65 years and above. The 

case notification rate in males fell from about 13 cases per 100,000 in 1999 to eight 

cases per 100,000 in 2009. In females, there was less of a decrease, as the rate fell 

from about seven cases per 100,000 in 1999 to about five cases per 100,000 per year 

in 2009. Generally, notification rates in UK-born males were higher than notification 

rates in UK-born females. 

In OF-born individuals, notification rates were significantly higher than those in UK

born. Rates ranged from a minimum of about 14 cases per 100,000 to more than 130 

cases per 100,000 per year across all age groups and both sexes, as shown in Figure 

2-12 and Figure 2-13. The trends in notification rates by age showed a different 

pattern than trends in UK-born cases. In OF-born cases, those aged 0 - 14 years had 

the lowest notification rates, mostly constant and averaging around 20 cases per 

100,000 per year in males and 25 cases per 100,000 per year in females. The highest 

notification rates were found in those aged 15 - 44 years. Notification rates in this age 

group increased from 1999 - 2009, though only from 97 cases per 100,000 per year to 

112 cases per 100,000 per year in males and from 77 cases per 100,000 per year to 86 

cases per 100,000 per year in females. Rates in 45 - 64 year-olds and those 65 years 
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and older were slightly lower than those aged 15 - 44 years for both males and 

females. These rates also increased slightly from 1999 - 2009. 

In SSA-born individuals, notification rates were significantly higher still. Rates ranged 

from a minimum of 57 per 100,000 per year to a maximum of over 300 per 100,000 

per year across all age groups and both sexes, as shown in Figure 2-14 and Figure 2-15. 

As with OF-born individuals, notification rates were highest in those aged 15 - 44 

years, with the lowest rate being nearly 170 cases per 100,000 and the highest being 

over 300 cases per 100,00 per year. Also, the notification rate in this age group 

increased overall, with a peak notification rate in 2003 for males and 2006 for females. 
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Figure 2-10: Tuberculosis notifications per 100,000 population per year for UK-born males in England and Wales, 

1999 - 2009. 
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Figure 2-11: Tuberculosis notifications per 100,000 population per year for United Kingdom-born females in England 

and Wales, 1999 - 2009. 
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Figure 2-12: Tuberculosis notifications per 100,000 population per year for other foreign-born males in England and 

Wales, 1999 - 2009. 
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Figure 2-13: Tuberculosis notifications per 100,000 population per year for other foreign-born females in England 

and Wales, 1999 - 2009. 
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Figure 2-14: Tuberculosis notifications per 100,000 population per year for Sub-Saharan Africa-born males in 

England and Wales, 1999 - 2009. 
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Figure 2-15: Tuberculosis notifications per 100,000 population per year for Sub-Saharan Africa-born females in 

England and Wales, 1999 - 2009. 
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2.7.2 Notifications from the West Midlands 

Tuberculosis notification rates in the West Midlands from 2007 - 2011 were calculated 

for comparison with model output in Chapter 7. ETS records for each notified case 

from the West Midlands from 2007-2011 were obtained from the HPA Tuberculosis 

Section. The records were used to tabulate the number of cases by age, sex, and 

birthplace. Population denominators for notification rates were obtained by analysis of 

the LFS data, as described in Section 4.1.3.1. 

The overall notification rate in the West Midlands for this time period was about 17 

per 100,000 population, though as with the rates in England and Wales, UK-born rates 

were much lower than foreign-born rates. The UK-born notification rate over this 

period was 6.5 per 100,000 population while the foreign-born rate was 110 per 

100,000 population. The UK-born notification rate in the West Midlands over this time 

period is higher than that seen in England and Wales from 1999 - 2009, which was 

about 4.5 per 100,00 overall. For the foreign-born cases in the West Midlands from 

2007 - 2011, overall notification rates were also higher than those in England and 

Wales from 1999 - 2009, where the rate was about 102 per 100,000 population. 

The notification rates stratified by age are shown in Figure 7-1 for UK-born males and 

Figure 7-2 for UK-born females; rates for foreign-born individuals are in Figure 7-3 for 

males and Figure 7-4 for females. Across age and sex categories, UK-born rates vary 

between about 1 per 100,000 to about 12 per 100,000, while foreign-born rates vary 

between about 20 per 100,000 to about 160 per 100,000. Particularly for UK-born 

cases, notification rates for the West Midlands vary more from year-to-year than 

England and Wales rates, likely due to the smalle~ numbers of cases in the West 

Midlands. This difference could also be partly due to more uncertainty in population 

size estimates and fluctuation in those estimates. 

Some trends in the notification rates for UK-born cases in the West Midlands differ 

from those seen in the whole of England and Wales. Notably, the rates for UK-born 

males and females aged 15 - 44 years are higher than in England and Wales over a 

similar time period. For males in the West Midlands, this ranges from about 8 - 10 per 
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100,000 from 2007 - 2011. For females, this ranges from about 7 -11 per 100,000 

from 2007 - 2011. In England and Wales, these range from about 4 - 6 per 100,000 for 

males and 4 - 5 per 100,000 for females from 1999 - 2009. Rates for those aged 15 -

44 in the West Midlands are also higher than the rate for those aged 65 years and 

above, whereas in England and Wales, the notification rate in those aged 65 years and 

above are generally higher than that for those aged 15 - 44 years. This trend is always 

true for males and usually true for females, though the differences in notification rates 

between the age categories have decreased over time. 
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Figure 2-16: Tuberculosis notifications per 100,000 population for United Kingdom-born male ca ses in the West 

Midlands, 2007 - 2011. 
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Figure 2-17: Tuberculosis notifications per 100,000 population for United Kingdom-born female cases in the West 

Midlands, 2007 - 2011. 
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Figure 2-18: Tuberculosis notifications per 100,000 population for foreign-born males in the West Midlands, 2007 -

2011. 
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3 Model Description and Modelling Methods 

This chapter describes the model of tuberculosis dynamics in the UK that was 

developed for answering research questions in this thesis and fulfilling objective one of 

the study. The model is individual-based so that information can be stored for each 

person in the simulated population. The model is described below following the 

Overview, Design concepts, and Details (ODD) protocol for describing ISMs [232, 233]. 

Following the ODD model description is the account of my own contributions to 

development of the model, which was adapted from the work of C. Lehman. In 

addition, I describe my contributions to the individual-based modelling methods that 

were developed alongside this work, in collaboration with C. Lehman. Lastly, an 

account of the steps taken for verification of the model and an overview of model 

validation and fitting methods are also presented. 
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3.1 ODD Model Description 

3.1.1 Introduction 

IBMs can be particularly difficult to describe clearly because of their inherent 

complexity and because equations and model diagrams are often less applicable to 

them than to classical models. The ODD protocol aids clarity of description and 

reproducibility of the model, allowing others to reproduce the model from its 

description. Furthermore, the standardized and objective approach to description 

makes it easier to compare different models. Although designed for IBMs in ecology, 

the protocol is used here because it is appropriate for any type of IBM and because 

there is currently no standard for describing IBMs in epidemiology. 

The elements of the protocol are summarized in Figure 3-1, which is taken from the 

original publication of the protocol [232]. The guidelines ofthe ODD protocol were 

followed as closely as possible. As permitted in the protocol, I omitted some categories 

of the Design concepts section that were not applicable to this model. Further changes 

to the protocol included a brief review of the purpose or definition of major sections, 

which were added so that those sections were clear without prior knowledge of the 

protocol. Finally, parameter values and data sources, which ODD authors strongly 

recommend including in the model description, are omitted here. Parameter values 

and data sources are instead detailed in Chapter 4. 
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Purpose 

Overview State variables and scales 

Process overview and scheduling 

Design concepts Design concepts 

Initialization 

Details Input 

Submodels 

Figure 3-1: Elements of the Overview, Design concepts, and Deta ils protocol for describing individual -based models. 

Figure was reproduced from the publication describing the protocol (232) . 

3.1.2 Purpose 

The purpose of this model is to help understand tuberculosis transmission dynamics 

and epidemiology in the UK, including how genetic strain typing data can be used to 

estimate the proportion of tuberculosis cases that are due to recently transmitted 

infections. However, the full-complexity model as described below, which includes 

modelling of genotyping data, was not used for both applications of the model in this 

thesis. 

Firstly, a slightly simpler version of the model was applied to tuberculosis dynamics in 

England and Wales for estimating disease risks used in subsequent applications of the 

model and for identifying plausible scenarios for transmission parameters and 

assumptions about the infection status of migrants upon entry to the UK. This version 

of the model was also used to provide an estimate of the proportion of tuberculosis 

cases due to recent transmission, independent of genotyping data. Alterations to the 

model for this application are described in the methods section of Chapter 5. 
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Secondly, the full-complexity model was used to study tuberculosis dynamics in the 

West Midlands, where model outputs were fit to molecular epidemiological data to 

estimate the proportion of tuberculosis cases in the UK caused by recent transmission 

and to help interpret strain typing data. 

3.1.3 Entities, State Variables, and Scales 

This section describes the structure of the model system, including entities, state 

variables, and scales. Entities are the low-level units of interest simulated by the model 

and state variables are the attributes that characterize those entities. Scales of the 

model include the temporal and spatial scales covered by the simulation. 

3.1.3.1 Entities 

The only model entity simulated is the individual person. 

3.1.3.2 State variables 

Individuals are characterized by demographic attributes, as well as infection-related 

attributes. Demographic attributes do not change over the course of the simulation 

and include birth date, sex, and birthplace. Birthplace has three categories: UK, Sub

Saharan Africa (SSA), and other foreign (OF). Although it would be more realistic to 

further stratify birthplace, the data needed for a more detailed stratification is lacking. 

Also, further stratification would result in fewer cases for each demographic category, 

increasing stochasticity in model output and thereby hindering parameter estimation. 

Infection-related attributes include an individual's infection state, date of infection, 

place infection was acquired (UK or foreign), HIV status (positive or negative), smear 

status (positive or negative), and an identifier for the strain type involved in infection. 

Infection states are: Uninfected; Immune; Recent Infection; Reinfection; Latent 

Infection; Primary Disease (pulmonary and non-pulmonary); Reactivation Disease 

(pulmonary and non-pulmonary); and Reinfection Disease (pulmonary and non

pulmonary). HIV status is only considered for SSA-born individuals because the HIV 

prevalence in that group is higher than in other groups (see Chapter 4, Section 4.2.4). 
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The strain type profile identifier is simply a different number for each distinct VNTR 

profile. 

Individuals in the Uninfected class have never been infected with M. tuberculosis and 

are assumed susceptible to infection. Immune individuals have been effectively 

vaccinated and are immune to infection for the duration of the simulation. Those in 

the Recent Infection state have had a first infection with M. tuberculosis that was 

acquired less than five years previously. Those in the Reinfection state have a second 

or subsequent infection which was acquired less than five years previously. Those in 

the Latent Infection state have an infection acquired more than five years previously or 

have recovered from disease due to their most recent infection, which may have been 

acquired less than five years previously. Those with Latent Infection are assumed 

susceptible to a new infection (reinfection). Primary Disease is disease caused by a 

Recent Infection. Reinfection Disease is disease caused by a Reinfection. Reactivation 

Disease is caused by a Latent Infection. The three disease types are each split into two 

categories by disease site, pulmonary and non-pulmonary (see Chapter 2, Section 2.1 

for definitions). Pulmonary disease may be infectious, depending on smear status. 

Non-pulmonary disease is assumed non-infectious. Transition through these states is 

shown in Figure 3-2 and is discussed further in the next section. 
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Figure 3-2: Infection state and event diagram for the model. Arrows show transitions among the 11 infection states, with symbols to indicate the events involved in transitions. Symbols in 

parentheses indicate events that do not change the infection state of the individual. Table 3-1 provides a key to symbols, with a full description of events in Section 3.1.8. 
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Table 3-1: Model events shown in Figure 3-2. Events are also detailed in Section 3.1.8. 

Symbol Event 

b Birth 

m Death 

Immigration 

e Emigration 

v Vaccination 

dl Development of Primary Disease 

d2 Development of Reactivation Disease 

d3 Development of Reinfection Disease 

c Transmission of infection 

t Acquisition of infection 

Transition to Latent Infection from Recent Infection/Reinfection or 

from any disease state 

s Strain type mutation 

n Case reporting, with or without strain typing 

3.1.3.3 Scales 

The model was parameterized to run for 29 simulated years in the England and Wales 

application (from 1981- 2009) and 31 years for the West Midlands application (from 

1981- 2011). The simulations began before the model output was fit to observed data 

so that strain type distributions equilibrated and the effects of assumptions about 

infection and disease prevalence at initialization were minimized. The model was 

allowed to run for 18 and 26 simulated years before the model output was fit to 

observed data for the England and Wales and West Midlands simulations, respectively. 
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The model processes events continuously in time, moving forward from one event in 

time to the next, instead of by arbitrary time steps. This is often referred to as a 

'discrete event simulation.' The closest equivalent to a time step is the average inter

event time, which is the average amount of simulated time, not clock time, that passed 

between events. The average inter-event time varies throughout the simulation and 

depends on factors such as the population size simulated. In a typical run for England 

and Wales, which has over 50 million simulated individuals, events occur on average 

about once per 15 simulated seconds. In a typical run for the West Midlands, which 

includes around five million simulated individuals, events occur on average about once 

per two simulated minutes. Possible events are described below in Section 3.1.4. 

The model does not take into account spatial structure explicitly, although in the two 

applications of the model different geographical regions are covered. 

3.1.4 Process Overview and Scheduling 

This section describes how model entities are processed, including what processes or 

'events' can occur and how these are scheduled. The events are briefly described 

below and detailed in Section 3.1.8. Since this is an event-based simulation, events are 

processed individually and chronologically from a schedule of pending events. Possible 

events include: birth; death (due to tuberculosis or causes other than tuberculosis); 

immigration; emigration; vaccination; acquisition of infection; transition to Latent 

Infection (from Recent Infection/Reinfection or recovery from disease); progression 

from infection to disease; transmission of infection; strain type mutation; and 

reporting of a disease case (with or without strain typing). The different events 

possible for an individual will depend only on their infection state, though probabilities 

of events occurring can change with factors such as the calendar year, age, sex, 

birthplace, and HIV status. Events are summarized in the paragraph below, with a 

complete description of each event and the individuals eligible for the event in Section 

3.1.8. 

The possible events for individuals in each of the 11 infection states are briefly 

described here and depicted in Figure 3-2, with supporting information in Table 3-1. 

Any individual can emigrate or die. In addition, Uninfected individuals can be 

vaccinated, moving to the Immune state, or become infected, moving to the Recent 
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Injection state. Immune individuals never change infection states. Those in Recent 

Injection and Reinjection states can develop disease, moving to one of the Primary 

Disease or Reinjection Disease states, or transition to Latent Injection. In addition, 

their infection strain type can mutate, which does not involve a change of infection 

state. Those in the Latent Injection class can: develop disease, moving to one of the 

Reactivation Disease states; be reinfected, entering the Reinjection state; or have their 

strain type mutate, which does not involve a change of infection states. Individuals in 

the three pulmonary disease states may be infectious and may infect others. In 

addition, they can recover from disease, moving to the Latent Injection state. They can 

also be reported as a case or have their strain type mutate, neither of which involves a 

change of infection state. Those with non-pulmonary disease are assumed to be non

infectious and will not transmit their infection to others, but can recover to the Latent 

Injection state. They can also be reported as a case or have their strain type mutate, 

neither of which involves a change of infection state. When individuals are born, they 

enter the Uninjected state, and when they immigrate into the population, they may 

enter any of the 11 infection states. 

Events in the schedule of future events are limited to those that can be scheduled 

ahead of time. This includes all possible events except the acquisition of an infection, 

which must happen at the time of transmission so that the susceptibility of individuals 

at that time is known (see Section 3.1.8.6 for more on the transmission event). Future 

event times are determined using random draws from appropriate cumulative 

probability distributions for different events, discussed in more detail in Section 

3.1.5.3. 

At model initialization, detailed in Section 3.1.6, all individuals are placed in the 

schedule of future events exactly once, for the time of their earliest pending event. 

This feature of the schedule makes it simple to remove individuals from the population 

or to cancel or modify events. Once initialization is complete, the simulation proceeds 

from the simulated start time to end time, processing events chronologically. Event 

processing generally leads to scheduling of a new event for the individual involved, 

unless the individual is scheduled for death or emigration from the population. 

Sometimes, certain scheduled future times for the individual may be modified during 

event processing. For example, when an individual is scheduled to develop disease, 
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that event may lead to a new scheduled time of death, since disease brings an 

additional mortality risk. Or in the case of infection transmission, processing the 

transmission event for the infectious individual may lead to modifying, adding, or 

cancelling of events for the recipient of infection. For example, a newly infected 

individual may be scheduled to develop disease instead of the event which was 

formerly scheduled for them. 

3.1.5 Design Concepts 

Design concepts are important concepts behind the design of the model. Several of the 

design concepts listed in the ODD protocol do not apply to this model and are omitted. 

Sections included here are called: 'basic principles', which describes the fundamentals 

behind the design of the model; 'interactions', which describes interactions between 

entities in the model; and 'initialization' which describes how the model is initialized. 

3.1.5.1 Basic principles 

Many of the conceptual elements of this model are based on previous work. The 

infection states and transitions through the states of this model are based on a model 

of tuberculosis dynamics in England and Wales by Vynnycky and Fine [19]. However, 

Vynnycky and Fine use a system of partial differential equations solved numerically, 

while here I use an event-based, IBM that is related to a similar set of partial 

differential equations. Part of the reason the IBM was used is that when additional 

complexity is added, particularly when genetic strains are included and arbitrary 

probability distributions for the infection status of migrants entering the simulation, 

this model transcends what can be written down in equation form. Furthermore, 

compared to Vynnycky and Fine, this model considers different time periods, different 

demographic groups of the population, and makes use of enhanced surveillance data 

available more recently. The time period is more recent, concerning the last ten years 

of tuberculosis trends in the UK. Because in this time period the majority of 

tuberculosis cases in the UK occurred in foreign-born persons, this demographic group 

is included in the model. In contrast, only white ethnic males were included in 

Vynnycky and Fine's model. Finally, the infection process is modelled explicitly here, 

rather than through a force of infection applied to the population, as in Vynnycky and 

Fine's model. 
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This model is individual-based so that genetic strain type profiles, of which many 

hundreds or thousands are possible, can be stored in the model for each infected 

individual. This allows for comparison of model results to data from strain typing of M. 

tuberculosis isolates. The model is intended to reproduce genotype clustering patterns 

seen in observed cases to help reveal how these patterns may have been generated 

and to compare the level of genotype clustering to the proportion of cases due to 

recent transmission in the simulation. 

Beyond the requirements for storing genetic strains, the IBM makes narrowly timed 

events-such as vaccination at age 13-easy and accurate to accomplish. In addition, 

early tests indicated that the IBM version ran faster than finite difference 

approximations to partial differential equations with the same number of individuals 

and level of accuracy. 

3.1.5.2 Interaction 

Interactions between individuals in the model are limited to contacts between 

individuals which lead to the transmission of infection. The transmission event is 

detailed in Section 3.1.8.6. There are no indirect interactions between individuals in 

the model; individuals behave independently of one another apart from transmission 

of infection. 

3.1.5.3 Stochasticity 

Stochasticity is used throughout the model in assigning event times. All event times, 

apart from the transition to Latent Infection, which happens exactly five years after 

infection by definition (see Section 3.1.8.8), are assigned by random selection of a time 

to event based on the cumulative probability distribution of event times for that 

individual. This random element allows for variation in the time to events among 

individuals rather than fixing times at the average time to event for all individuals. For 

example, the average duration of disease is six months. Instead of assigning every 

individual to have a disease duration of six months, an individual's duration of disease 

is determined by drawing from the inverse cumulative exponential distribution with a 

mean of six months. Most random draws of event times in the simulation are 

implemented using a new algorithm developed for the model for choosing random 
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numbers from any type of distribution, as below in Section 3.3.2 and in a recently 

published paper [234]. 

Stochasticity is also used in the model for choosing a random individual to be infected 

during transmission (Section 3.1.8.6). assigning a disease as pulmonary or non· 

pulmonary, assigning disease as smear-positive or smear negative (Section 3.1.8.7). 

assigning demographic and infection-related attributes in model initialization (Section 

3.1.6), assigning those attributes for migrants upon entry to the model (Section 

3.1.8.3), assigning sex at birth (Section 3.1.8.1), determining whether an individual will 

be vaccinated and whether the vaccination will be effective (Section 3.1.8.5). and 

determining whether an individual's disease case will be reported (Section 3.1.8.10). 

3.1.5.4 Observation 

The main outputs from the model includes information on reported tuberculosis cases 

and population sizes. Reported tuberculosis cases include a subset of all tuberculosis 

cases in the simulation, designed to reflect the reality that not all cases are reported 

(see Section 3.1.8.10). When an individual develops tuberculosis, they are assigned to 

be reported or not to be reported. If assigned to be reported, the reporting time 

precedes recovery, death and emigration. Reported cases are stored by year of 

reporting and also stratified by age class (0 -14, 15 - 44,45 - 64, or 65 years and 

above), sex, birthplace, and disease site (pulmonary or non·pulmonary). 

For the simulation of genetic strain typing data, a subset of reported cases will include 

genotyping data. Cases are randomly assigned to be genotyped or not, according to a 

disease site-specific probability that typing occurs. Those typed are included in the 

genetic data output which is used for cluster analyses. 

Population sizes are also reported throughout the simulation both to obtain 

notification rates (cases per 100,000 population) and to check that population sizes 

compare well with observed population sizes. Population sizes are totalled twice each 

year and stored by age class, sex, and birthplace. Simulated notification rates are 

compared to observed notification rates using automatically generated plots for 

inspection. 

3.1.6 Initialization 
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Model initialization involves constructing the relevant model population, England and 

Wales or the West Midlands, for the start of the simulation in 1981. A" individuals are 

randomly assigned demographic and infection-related attributes based on data and 

assumptions which are described in more detail in Chapter 4. Demographic attributes 

are assigned according to the 1981 census. From the census data, the number of 

individuals from each birthplace (UK, SSA, OF) is estimated for each five-year age class 

for both males and females. An exact age within these categories is specified by 

randomly drawing an age across the age group, resulting in a uniform distribution of 

ages across the five-year age class. This may be is unrealistic for older age classes. 

However because there are approximately 25 years of simulation for equilibrations, 

and more importantly, because tuberculosis parameters will not differ much between 

sma" age categories, the uniform distribution of individuals within five-year age 

categories is unlikely to have any impact on model outcomes. 

After demographic attributes are assigned, infection-related attributes are assigned 

according to probabilities that depend on demographic attributes. Of infection-related 

attributes, infection state is assigned first, since other attributes will depend on this 

state. This assignment is made using the probability of each of the possible infection 

states, which is in turn based on assumptions about the disease prevalence in 1981, 

vaccination practices in the UK and abroad, and the annual risk of infection 

experienced over the lifetime of UK-born and foreign-born individuals living in the UK 

in 1981 (for details see Chapter 4). These probabilities depend on age, sex, and 

birthplace. After the infection state is assigned, additional characteristics are assigned 

for those infected or diseased. These include time of infection, place of infection (UK 

or abroad), HIV status (positive or negative) and genetic strain type of infection. Time 

of infection is randomly chosen between zero and five years for Recent Infection and 

Reinjection. Time of infection has no impact on disease risk for those with Latent 

Injection so this is always set to exactly five years previously. The place of infection is 

assumed to be abroad for a" migrants. A" individuals are assumed HIV-negative in 

1981. 

The strain type is assigned by randomly drawing from a distribution of strain types by 

birthplace-either UK-born or foreign-born. The strain type distribution for UK-born is 
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used only at model initialization, while the distribution for foreign-born is used to 

assign strain types to all migrants to the UK throughout the simulation. 

Once their demographic and infection-related attributes are assigned, future event 

times for each individual are calculated based on their attributes in the same way that 

event times are calculated throughout the simulation. The earliest event for an 

individual is scheduled and placed in the schedule of pending events, while any later 

events for the individual are stored. This constrains the size of the list of future events 

and speeds operation [235]. When all individuals in the population are assigned 

attributes and scheduled for exactly one event, initialization is complete and the 

simulation begins. 

3.1.7 Input 

According to the ODD protocol, 'input data' are external data sources that represent 

processes that change over time. As these are external to the model, they are not 

considered parameter values per se. 

Input data for the model include immigration data and birth data. Immigration is 

external to the model because of the nature of immigration as coming from outside; 

no natural process internal to the model catalyses immigration. Immigration data 

consisted of numbers of migrants by age, sex, and birthplace (UK, SSA and OF) for each 

year that the model is run. As there was no temporal precision in the data beyond the 

year of entry, immigrants entered the model population at evenly spaced time 

intervals throughout the year. See Section 3.1.8.3 for more information on the 

immigration event. 

Birth is external to the model because fecundity of females was not modelled 

explicitly. Rather, for exact correspondence with reality, the actual numbers of births 

recorded in England and Wales and the West Midlands were generated in the 

simulation. Birth data included the numbers of births by sex for each year. like 

migration data, there was no additional temporal precision and so births were also 

evenly spaced throughout the year. See Section 3.1.8.1 for more information on the 

birth event in the model. 

3.1.8 Submodels 
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The 'submodels' below correspond to events in this model. They are described by first 

explaining how and which individuals arrive at the event and then explaining what the 

event entails. Figure 3-1 supplements the descriptions with a visual depiction of events 

in the model, with supporting information found in Table 3-1. Note that these 

descriptions are general and provide information on the algorithms for events but not 

specific parameter values and data sources for creating cumulative probability 

distributions of event times, which are detailed in Chapter 4. To avoid repetition, 

references to individual sections in Chapter 4 are omitted. 

3.1.8.1 Birth 

The number of births per year, by, is used to schedule a birth every l/by years. At birth, 

all individuals are assigned to the Un infected class and their exact time of birth is 

recorded. Next, the individual's sex is randomly assigned using sex ratios for births 

each year. Random times for death, emigration, and vaccination (if applicable) are 

drawn using appropriate probability distributions and the earliest of these is 

scheduled. 

3.1.8.2 Death 

Individuals in the model can die either from tuberculosis or from other causes. For 

causes other than tuberculosis, time of death is randomly assigned for each individual 

using probabilities drawn from cohort mortality data for each year of the simulation. 

Times of death are assigned at birth for those born in the UK during the simulation, or 

at model initialization or time of immigration for other individuals. 

To generate a random life expectancy from birth, a random number is drawn, 

compared to the cumulative probabilities of death for the newborn's sex and year of 

birth, and an age is calculated by linearly interpolating between integer ages given in 

the cumulative distribution table [234]. For assigning remaining life expectancy for 

individuals at model initialization or for migrants entering the population at various 

ages, the cumulative probability table for their sex and birth year is truncated and 

rescaled to only allow ages from their present age to 121 years. A random life 

expectancy is then drawn from the rescaled table. In both cases, an exact time of 

death is chosen by linearly interpolating between integer ages given in the cumulative 

distribution table. Once a time of death from causes other than tuberculosis is 
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assigned, either at birth, initialization, or time of immigration into the population, it 

will not change throughout the simulation. 

When a person develops active disease, it is assumed they are at increased risk of 

death. This assumption is incorporated into the model by assigning a probability of 

death due to tuberculosis, which is stratified by calendar year, age class, and type of 

disease (pulmonary or non-pulmonary) at disease onset. If a case is randomly assigned 

to die from tuberculosis, the individual is assigned a time of death due to tuberculosis 

before the currently stored times for death from other causes, recovery from disease, 

and emigration. 

Death removes an individual from the population and does not catalyse any other 

event, except a function that transfers the identification number of the highest

numbered individual within the same birthplace to the identification number of the 

removed individual. This reassignment keeps the array of individuals contiguous, 

aiding random selection of an infection target during transmission [236]. 

3.1.8.3 Immigration 

Immigrants are added to the population in fixed intervals, similar to births. The 

number of immigrants per year is iy and an immigrant arrives every l/iy years, 

assuming the total immigrants for the year are spaced evenly throughout the year. 

At immigration, individuals are first assigned a birthplace (UK, SSA, OF), based on the 

probabilities of each. After this, sex is assigned based on probabilities for each 

birthplace group. Next, age is assigned conditional on sex and birthplace. Similar to age 

assignment at population initialization, age is assigned by randomly drawing an age 

class and then drawing an age from within the age class, assuming individuals are 

uniformly distributed throughout the age class. lastly, HIV status is assigned 'negative' 

to UK-born and OF-born individuals. For SSA-born, HIV status is randomly assigned 

according to assumptions about the probability of HIV infection by sex and calendar 

year. 

The infection state is then assigned based on probabilities of infection states for 

migrants, stratified by birthplace, age, sex and year of entry to the UK. To simplify this 

process, probabilities are assigned for eight infection states, rather than 11, by 
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combining pulmonary and non-pulmonary disease classes and assigning those later. 

For those assigned to UninJected, there are no special considerations and they are 

processed similarly to a birth in the model. For Immune, there are also no special 

considerations. 

For those assigned to have infection or disease, some additional steps are taken. Those 

assigned to Recent Injection or Reinjection classes are first assigned a time of infection, 

from zero to five years before the present, chosen randomly from a uniform 

probability distribution. This assignment allows rescaling of the cumulative distribution 

for randomly selecting a time to disease progression (See Section 3.1.8.7). Those 

immigrants assigned to a disease category are randomly designated as pulmonary or 

non-pulmonary cases. The time of disease onset is assigned to be the present time. 

Finally, a strain type is assigned by a random draw from the strain type distribution for 

migrants for all individuals assigned to have infection or disease. 

After the infection state has been assigned, future event times based on that infection 

state and the individual's demographic and infection-related attributes are generated. 

The earliest of these events is scheduled and any later times are stored. 

3.1.8.4 Emigration 

When an individual is born or immigrates into the population, an emigration time is 

assigned based on estimated annual rates of emigration by birthplace, calculated from 

emigration data. Emigration times are assumed to be exponentially distributed. The 

emigration time does not change once assigned. 

Emigration removes an individual from the population and does not catalyse any other 

event, except, like death, it results in the transfer of identification numbers of the 

highest-numbered individual within the same birthplace to the identification number 

of the removed individual to keep the array of individuals contiguous [236]. 

3.1.8.5 Vaccination 

A vaccination time is assigned at birth for those born in the UK and at the time of 

migration for foreign-born individuals aged 13 and under, if probabilities allow. 

Vaccination only happens for an individual in the model if a random number drawn is 

less than the product of vaccine efficacy and vaccine coverage for a given year. 
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Ineffective vaccinations are insignificant for modelling purposes and never scheduled 

to happen. For individuals who will be vaccinated effectively, vaccination is scheduled 

to occur at a random time uniformly distributed between 13 and 14 years of age. If an 

individual becomes infected before vaccination happens, the vaccination is assumed 

ineffective and never happens in the simulation. 

At vaccination, individuals move to the Immune class and retain lifelong immunity, 

only eligible to die or emigrate from the population. They are scheduled for the earlier 

of these, at the times previously assigned, since these are not affected by vaccination. 

3.1.8.6 Transmission 

Only individuals with smear-positive pulmonary disease are assumed infectious, 

though in reality, smear-negative cases can also be infectious. When an individual 

develops smear-positive pulmonary disease, they are assumed to transmit infection to 

an average of c others each year in a purely susceptible population, or have an average 

of c 'effective contacts' per year. The time until each infectious case transmits an 

infection to another person is assigned assuming exponentially distributed times with 

a mean of l/c per year. 

At the time of transmission, a second individual is chosen as the transmission target, 

either randomly from within the same birthplace as the infectious person or randomly 

from the whole population. If a random number drawn is less than the probability that 

the infection target is in the same birthplace as the infectious individual, pcc, the 

infection target will be a randomly chosen individual from within the infectious 

individual's own birthplace (simplified to UK or foreign). This is meant to loosely 

represent the proportion of contacts who are from the same household or are other 

regular contacts. If the random number is greater than or equal to pcc, the infection 

target is chosen from the entire population, including individuals within the same 

birthplace. The individual targeted for infection is only eligible to be infected if they 

are in the Uninfected or Latent Infection states, which are the states assumed to be at 

risk of (re)infection. Otherwise, the transmission does not occur. 

If the infection target is eligible to be infected, that individual's infection state is 

changed to Recent Infection if they were previously Uninfected or changed to 

Reinfection if they were previously in the Latent Infection class. The time of infection is 
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recorded and they are assigned to have the same strain type as the individual 

transmitting the infection. Finally, the individual is assigned future event times and 

scheduled for the earliest of these. In addition to death and emigration, neither of 

which is affected by infection, newly infected individuals are eligible for developing 

disease and for having a strain type mutation. 

Whether the transmission actually occurs or not, the infectious individual is assigned a 

new time for transmission after the transmission event takes place. They are then 

scheduled for the earliest among the new transmission time and the previously 

assigned times for recovery from disease, case reporting, strain mutation, death, and 

emigration, none of which are affected by the transmission event. 

3.1.8.7 Disease 

Once infected, an individual may be scheduled to develop disease if probabilities 

allow. Development of Primary Disease and Reinjection Disease from Recent Injection 

and Reinjection classes happens at a rate which depends on the duration of infection, 

with the highest probabilities of developing disease in the first year of infection and 

lower in subsequent years. More specifically, following Vynnycky and Fine [19], for 

each year in the first five years of infection, the relative risk of developing disease 

following infection or reinfection in that year is fixed relative to other years [19]. These 

relative risks are equal for all ages and regions of birth. However, the total probability 

of developing disease over those five years differs with age and is also allowed to vary 

with birthplace (UK or foreign) and HIV status. This cumulative probability is used to 

decide whether or not an individual will develop Primary Disease or Reactivation 

Disease. If a random number drawn is less than the cumulative probability, the relative 

risk of disease over those five years is used to assign a time to disease. Otherwise, a 

disease time for Reactivation Disease is assigned. Note that for migrants entering the 

Recent Injection and Reinjection infection states, the time since they were infected is 

taken into account in assigning time to disease, which is less likely the longer they have 

had an infection prior to migration. 

Development of Reactivation Disease from Latent Injection is assumed to happen at a 

constant annual rate, independent of duration of infection, since the infection is older. 
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Like Primary Disease and Reinfection Disease, this rate is dependent on age, birthplace 

(UK or foreign), and HIV status. 

For all disease categories, at the scheduled time of disease onset, the individual is first 

assigned to either pulmonary or non-pulmonary disease. Next, a time for death due to 

tuberculosis, a time for case reporting, and a time for recovery from disease are 

calculated for all disease types. Also, a new time for strain mutation is assigned for all 

disease types, since active disease is assumed to increase the rate of strain type 

mutation compared to infection without disease. Finally, if disease is pulmonary, the 

individual is assigned smear-positive or smear-negative disease. For smear-positive 

individuals, a time to transmit infection is also assigned. These times are compared 

with the previously calculated times for emigration and for death due to other causes. 

The earliest of all possible events is scheduled and other times are stored. 

3.1.8.8 Transition to Latent Infection 

There are two pathways to Latent Infection, one from Recent Infection or Reinfection 

and one due to recovery from disease. These are described separately below. 

3.1.8.8.1 Transition from Recent Infection or Reinfection to Latent Infection 

As defined in Section 3.1.3, individuals with Recent Infection or Reinfection by 

definition, have infections that are less than five years old and that have not yet led to 

a disease episode. Therefore, from these states, individuals transition to the Latent 

Infection state after exactly five years if they do not die, emigrate, or develop disease 

before then. 

At transition to Latent Infection, a new time to develop disease is assigned since those 

with Latent Infection are subject to different risks of disease. In Latent Infection, 

disease risks are constant annual rates of disease progression that are lower than 

disease development rates in Recent Infection and Reinfection states. The earliest 

event among death, emigration, strain mutation, and the new time to disease is 

scheduled and all other times are stored. 

3.1.8.8.2 Recovery from disease to Latent Infection 
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Individuals who do not die from active disease or leave the model through death or 

emigration may eventually recover from disease and move to the Latent Infection 

state. Time to disease recovery is assigned at disease onset by assuming exponentially 

distributed times to recovery, with a mean time of six months. 

Transition to Latent Infection from active disease means an individual is no longer 

infectious, no longer subject to death from tuberculosis, no longer eligible for case 

reporting, and no longer subject to the higher strain mutation rate for those with 

active disease. A new time to strain mutation is calculated to reflect the lowered rate 

of mutation in infection without disease. Since Latent Infection individuals are once 

again subject to develop disease, a new time to disease is calculated. The earliest of 

death, emigration, time to disease, and time to strain mutation is scheduled and the 

other future event times are saved. 

3.1.8.9 Strain type mutation 

Strain type mutation is possible for any infected individual, in any of the three 

infection classes or six infection states. Strain mutation captures only mutations that 

are found in the region of the genome relevant to the particular strain typing method 

modelled-in this case 24-locus VNTR-and only those mutations that are successful 

enough to outcompete the previous strain type of infection. The mutation rate for 

diseased individuals is assumed to be higher than the rate for infected individuals, as 

detailed in Chapter 4. 

When strain mutation occurs, a new strain type unique to the population replaces the 

old strain type. Although in reality VNTR profiles could mutate such that they match an 

existing strain type in the population, this is not taken into account in the model to 

simplify the mutation process. This decision was made mainly because of data 

limitations for modelling individual loci of the 24-locus VNTR strain type, described 

further in Chapter 7, Section 7.1.2.1. 

3.1.8.10 Reporting of a tuberculosis case 

To reproduce realistic case reporting in the UK, not all tuberculosis cases in the model 

are reported. When an individual develops disease, the case is reported if a random 

number drawn is less than the probability that a case is reported. At the time a case is 
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reported, it is added to a total of cases for the year, and age class, sex and birthplace 

for the individual. The case is then assigned for strain typing if a random number 

drawn is less than the disease site-specific probability that a case is typed. If typed, the 

strain type is reported for cluster analyses. After reporting, the individual is then 

scheduled for the earliest of the other events possible for that individual, the times of 

which are stored and do not change with case reporting. 
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3.2 Model Development 

The model was adapted from an IBM written by C. Lehman at the University of 

Minnesota in 2009, used for simulating HIV transmission in the US (Lehman et al., in 

revision, manuscript available upon request). The model developed by C. Lehman is a 

speed-efficient and highly adaptable discrete event simulation. At its core is a 

collection of algorithms to manage event times, including a list of future events and an 

event scheduler. These new modelling methods were explained to me by C. Lehman 

and we worked together in a three-day session in early 2010 to begin converting the 

HIV model into a basic tuberculosis model. The purpose of this session was to gain 

experience in adapting the code and to create a template for use in developing the 

tuberculosis model. 

After this working session, the model was a skeleton of what it would become, at 

around 1000 lines of code, compared with the more than 3,500 lines in the final 

version, exclusive of scheduling, grouping, fitting, plotting, and utility routines. At that 

time, the model included nine compartments, a static population size, and no 

heterogeneity on age, sex, and birthplace. There was also no data input for model 

parameters or initial conditions. There were no immigration or emigration functions, 

nor functions for genetic strain type modelling. 

From this initial version, the details of the model were expanded and almost 

completely re-worked, apart from the algorithms for time management and utility 

algorithms such as random number generation and sorting. The first step in the 

adaptation of the model was to distinguish UK-born and foreign-born individuals, 

which meant that the main array of individuals was subdivided and parameters were 

indexed by birthplace. The management of this subdivided array was the inspiration 

for a more general method of efficiently handling heterogeneous mixing in simulation 

models, devised jointly with C. Lehman [236J, as described in Section 3.3.1. 

Other major changes to the model included a more realistic mixing algorithm, with 

birthplace contributing to selection of an infection target (see Section 3.1.8.6). 

Furthermore, the model was adapted to include the entire 11 compartments desired, 

with appropriate transitions added. Emigration and immigration processes were 

added, with both UK-born and foreign-born individuals entering and leaving the UK. 
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Birth and death were de-coupled and the birth function was expanded. Model 

initialization was made more realistic, with the initial population made to reproduce 

the UK population in 1981 as closely as possible. The recording of genetic strains and 

cluster analyses for these data were added. Almost all existing processes in the model, 

such as vaccination and disease development, were fundamentally changed. 

Lastly, empirical data were integrated into the model and parameters were made 

dependent on calendar year, age, sex, and birthplace. Integration of these data 

required new methods to be added to handle the creation of and sampling from 

cumulative distributions for event times, as described in Section 3.3.2 and published in 

a recent paper [234]. 

A list of main modules in the model and the associated model fitting routine is found in 

Table 3-2. For each module, the table provides a brief explanation of the module and 

the length of the module code including comments, the main author(s), and how the 

module is used. The model is coded in C and the code is freely available; it is published 

online at www.cbs.umn.edu/modeling, and in Appendix 10.19. 
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3.3 Contributions to Modelling Methods 

In the process of adapting the IBM designed by C. Lehman for use in this thesis, there 

were several contributions I made to modelling methods. The main contributions were 

in methods for segregating the main array into collectives, with applications for fast, 

non-homogeneous mixing, and methods for incorporating real data into the model by 

drawing random numbers from arbitrary distributions, though both contributions were 

developed jointly along with C. Lehman. I also contributed to the application and 

testing of Centinel, a system for handling input and output of data files, as well as 

documentation and formatting of files. Lastly, I was also part of application and testing 

of the scheduling software itself, and part of a joint paper on the scheduling 

algorithms. Each of these contributions is described below. 

3.3.1 Group Management 

One of the first concerns I had for adapting the IBM for my work was segregating 

individuals based on contact groups. I chose to only divide the population into UK-born 

and foreign-born. The method for doing this was designed for maximal efficiency in 

randomly choosing individuals from within these groups, handled by keeping the array 

of individuals contiguous for each group during the entire simulation .. This method was 

generalized into a group of algorithms for managing groups in simulations, especially 

helpful for incorporating heterogeneous mixing simulations. The algorithms allow 

segregation of many, many types of individuals, for example, dividing the population 

into one-year age classes and by sex. In the end, C. Lehman and I equally contributed 

to these algorithms. These algorithms are described in a recently published paper, 

which is reprinted in Appendix 10.19 [236]. 

3.3.2 Choosing Random Numbers From Arbitrary Distributions 

With the incorporation of actual data into the model, some major changes in assigning 

event times occurred. In some cases, data and assumptions only required a change in 

the annual rate of occurrence for the event, meaning that the method of assigning 

event time was the same as before, drawing a random event time using the inverse 

cumulative exponential distribution with a mean value of the annual rate. Such is the 
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case in assigning duration of disease, which is largely unchanged from the original 

model. 

However, for most transitions in the model, incorporating data required building of 

arbitrary cumulative distributions of event times. For example, consider the 

development of disease following Recent Infection, which is assigned if the individual is 

already randomly chosen to develop disease. The cumulative distribution of the 

probability of disease for these individuals goes from 0 to lover the period of 0 to 5 

years. A time from the cumulative distribution can be assigned using 'if/else' or 'if' 

statements to choose a time category (e.g. disease will develop in the first year of 

infection) and then some interpolation method to get a more specific time, if desired. 

This technique was sufficient for many processes in the model. 

With much of the demographic data however, the sheer volume of data makes this 

method inefficient and difficult to do correctly. As described in Chapter 4, probabilities 

of death are indexed by age, sex, and birth cohort. Also, in the case of death times, 

individuals could enter the population mid-way through the distribution (i.e. at any 

given age), and so computation of death time from that point forward was very 

different than assigning a death time at birth for an individual. Therefore, C. Lehman 

and I jointly devised a method to randomly sample an arbitrary cumulative distribution 

of event times, entering that distribution at any value (e.g. age) desired. We called this 

function RandF and the code was written by C. lehman. The algorithm and its 

description were recently published [234]. The paper is reproduced in Appendix 10.19. 

3.3.3 Other Contributions 

The development of my modelled to the first large scale application and testing of 

algorithms in the original IBM designed by C. lehman. In some cases, my work led to 

improvements to the original code, for example, in error handling for the scheduling 

algorithms. This practical application and large-scale testing of the IBM led to my 

involvement as co-author in the published paper describing these methods [235], 

which is also reproduced in Appendix 10.19. 
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3.4 Model Verification 

Model verification refers to the act of ensuring the simulation model is programmed 

according to its specifications [65, 237], in this case, according to the ODD description 

of the model found above. Methods for verification of computer programs date back 

to the early days of computer science and had become numerous by the late 1960s 

[238-241]. Discussion of model verification is now found in most scientific disciplines 

where simulation models are used (e.g. [65, 242-249]). Model verification is important 

because the behaviour of many complex systems cannot be known ahead of time, and 

therefore, it is difficult to know whether the complex models that simulate them are 

correct. For most complex models there is nothing to compare model output to that 

proves correctness and it is essential to take steps to ensure correctness of results in 

other ways. 

Unfortunately, model verification steps are rarely reported in epidemiological 

modelling papers, though the importance of including model verification efforts has 

been pointed out in a recent article for veterinary epidemiologists [65]. The following 

sections describe my efforts to ensure correctness of the model. These verification 

steps are enormously helpful, but not entirely sufficient, as no procedure can prove all 

algorithms are correct [250]. 

3.4.1 Simple Version of Model Compared to ODE Model 

One step in model verification is to compare a simplified version of the complex model 

to an equation-based model that is solvable using numerical methods, which may be 

called 'reduction testing' in computing literature. The idea of comparing complex 

models to analytical models seems to be rarely referenced in epidemiological 

literature, but sometimes found in other disciplines where simulation modelling is 

used [237, 251]. The first stage of model testing included matching a simplified version 

of the model to an ODE model, which could be solved numerically. This method 

involved first modifying the model, then constructing an ODE model and comparing 

results from the two. 
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3.4.1.1 Simplified IBM 

In the early stages of model development, before integration of complex data and 

functions, the model was written with the intention to validate it by comparison to 

ODEs. To do this, all parameter values and associated event time distributions were 

made equal for all age, sex, and birthplace categories and made invariant with time. All 

genetic strain functions were removed. Individuals in the model retained their 

individual birth dates, sex, and birthplaces, but only to keep the model's structure 

intact. Individuals were actually homogeneous in this implementation of the model, 

since parameter values were independent of their attributes. Events times were 

obtained by a random draw from the inverse cumulative exponential distribution for 

the IBM. Once all parameter values were constant, annual rates of transition for every 

function in the model, the simple IBM became merely a differential equation 

simulator, although implemented very differently than such simulators typically are. 

These changes allowed the structure of the code to be validated against known results. 

3.4.1.1.1 ODE model 

An ODE model was written in the R language (R Foundation for Statistical Computing, 

Vienna, Austria) to correspond to the simplified IBM, which included the testing values 

for parameters with values matching those used in the IBM. The differential equations 

were solved using Euler's method with a sufficiently small time step. The numerical 

solutions from this model provided outputs for the 11 infection states each year for a 

29-year period corresponding to the simple IBM output. The equations for the model 

and its solution are found in Appendix 10.1. 

3.4.1.2 Comparison 

Although the model used was stochastic, its results were expected to match those of 

the analogous deterministic ODE with large enough compartments. With large 

compartments, the variance among runs falls. These comparisons were carried out on 

an ordinary laptop computer, running about 10 million individuals. Therefore, some 

infection state categories (e.g. non-pulmonary reinfection disease) remained small and 

displayed variance between runs, not allowing reliable comparison to the ODE. To 

remedy this outcome and to ensure variance was as small as possible even in the 

larger compartments, the contact number (transmission rate) and disease progression 
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rates were raised to artificially high values. Higher values resulted in enough disease 

cases throughout the simulation to compare results to the ODE model. After 

eliminating mistakes from both the simple model and the ODE model, results matched 

well for the models. The comparisons did not produce an exact numerical match, but 

one which was very close for all categories-essentially exact for large categories

such that there was virtually no chance of an error in the model. 

3.4.2 Modular Programming and Unit Tests 

Another programming practice I followed was writing the program in 'modular' form 

as a collection of smaller functions that are easily understood. Functions were then 

independent of one another, though they could call other functions. Functions were 

tested individually, often called 'unit testing', helpful because the behaviour of 

individual functions is usually predictable, or at least the behaviour is more intuitive 

than that of the entire complex model. Throughout model development, I tested 

functions individually as they were altered. When possible, function input and output 

were compared to what was expected, though this process varies from function to 

function. Also, with some functions is not possible to prove correctness through 

testing, but merely show that output is what one would reasonably expect or check 

only a subset of the function output for correctness. 

One example of function testing I performed concerns the transition from Recent 

Infection and Reinfection to Latent Infection in the model. The function is simple, only 

used to change the state of individual to Latent Infection and schedule them for a new 

event. For testing this function, print statements were first used at the beginning of 

the function to check that the correct individuals were arriving at the function: those in 

Recent Infection and Reinfection states with exactly five years of infection. Print 

statements also showed the saved event times for this individual, of which only the 

time to disease should have changed. When the individual exited from the function, 

print statements were used to check that the new state is correct (Latent Infection) 

and that the individual was scheduled for a new event. The new event should have 

been one of: death, emigration, disease development, or strain type mutation. Print 

statements upon exit were also used to check that the time to disease was different 

than the previously saved time (though in extremely rare cases it could have been the 
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same exact random time is chosen from two different distributions). Mutation times 

should not have changed from the previous time saved for the individual. After it was 

confirmed these conditions were satisfied, the function was considered finished. 

3.4.3 Pre/Postcondition Programming 

Along with modular programming, I adopted a variation of 'pre/postcondition' 

programming [241], designed to help avoid mistakes in complex computer programs. 

The method requires for each function a complete and precise description of its 

requirements for working properly- 'preconditions' -and the resultant state of the 

system at the end of the function if the preconditions are met - 'postconditions'. This 

method also requires that all functions are checked rigorously for compliance with 

pre/postconditions, ideally in joint code review sessions so that they produce the 

correct results each time. When functions written in pre/postcondition style are 

reviewed, a function is checked by checking: 1) the pre/postconditions for that 

function, 2) the code of the function itself, and 3) only the pre/postconditions of any 

other functions called. This helps restrict the range of attention needed. If all functions 

are written and checked this way, it is only necessary to verify the pre/postconditions 

of functions called within other functions, but not the code of the functions called. The 

called functions are assumed to behave according to those conditions when reviewing 

or writing code in other functions. 

In addition to the pre/postconditions, this method of programming also requires 

detailed documentation of the code inside the function and a description of the 

function given in plain language before the preconditions are specified. Although 

mistakes are still possible using the method, it provides inherent correctness-proving. 

In addition, the code is kept to small, readable units and is commented well. This 

brings enormous clarity and structure to a complex model or other program and allows 

someone other than the writer to understand the code. Examples of this method of 

programming are found in the model code, reproduced Appendix 10.19. 

3.4.4 Centinel Input File Handling 
Input files specifying population sizes, mortality rates, and other distributions used for 

initializing the model and assigning times to events for individuals in the model 

became complex very quickly. For example, mortality rates are specified by birth 
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cohort, 1870 - 2011, and age 0 - 120 years. It was clear much effort had to be made to 

avoid errors in input files. Therefore, I began using a module written by C. Lehman for 

reading formatted input files to help avoid mistakes. The module specifies a 

documentation structure for input files and allows those files to be both computer

and human-readable. The module is partly described in a published paper I co

authored with C. Lehman regarding using this file format for archiving scientific data, 

which has many of the same goals in avoiding errors, being computer- and human

readable, and simplistic [252]. An example of a Centinel-formatted input parameter 

file used for this study is found in Appendix 10.2. 

3.4.5 Code Review 

Lastly, model verification included detailed joint reviews of code with another person, 

called 'walkthroughs' in the software engineering field. These are used to identify 

mistakes, improve program documentation and comprehensibility of the code, and re

structure the code for efficiency and clarity. Even the act of explaining the model and 

code to another person is helpful for improvement and seeing one's own mistakes. C. 

Lehman volunteered for a detailed walkthrough of the model code twice during model 

development. The first code review took place part-way through the project, and 

although primarily useful in correctness-proving and eliminating mistakes, it was also 

helpful to restructure some code. The second code review took place at the end of the 

project, before results were obtained. 
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3.5 Model Validation and Calibration 

Model validation refers to the process of demonstrating that the model is appropriate 

for the real-world system it replicates. Model validation has received much attention 

in modelling literature across various fields, though methods vary from discipline to 

discipline [243, 244, 247, 250, 251, 253, 254]. In epidemiology, model validation 

primarily consists of comparing the model to observed data. Methods for model 

validation used in this thesis varied between applications. In the West Midlands 

application of the model, the output for several model scenarios was compared to 

observed genetic and notification data. For the England and Wales application of the 

model, formal/model calibration' was undertaken, as described in Section 3.5.2. 

Model calibration is the alignment of model output and observed data through 

variation of some parameters in the model. The best fit(s) of the model output to 

observed data are found using an optimization algorithm that tests many different 

parameter sets, each time comparing model output to observed data. For each set of 

parameters, the fit of model output to observed data is assessed using a measure of 

goodness-of-fit (GOF) defined a priori. The parameter set(s) that result in the best fit 

of model output to data are taken as best estimates for these unknown parameters, at 

least for the setting to which they were applied. 

This process is easier for deterministic than stochastic models. Because a specific 

combination of parameter inputs always leads to the same model output, each 

parameter combination needs to be tested only once. Calibration still requires many 

model runs, but the computation time is usually reasonable. With stochastic models, 

such as the model described here, a specific combination of parameter inputs does not 

produce the same results each time. The variability from run-to-run depends on the 

number of individuals modelled and the nature of model output, but may require 

hundreds or even thousands of runs for each combination of parameters to reduce 

variance. With specialized computer hardware and software, the reduction in variance 

can be achieved by running many iterations of the program with one set of parameter 

values in parallel. This reduces the computation time of the optimization algorithm. 

3.5.1 Model Stochasticity 
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Because the model is stochastic, there are additional considerations when fitting the 

model to data. Model output varies from run-to-run, even under the same initial 

conditions and parameter values, due to chance. Variance in output among model runs 

is greatest when the population sizes of demographic categories in the model are small 

or when, even for groups with larger population sizes, there are few disease cases for a 

category. Variance between model runs was minimized in three ways to allow the 

model to be fit as if it were a deterministic model. 

Firstly, variance between model runs was minimized by simulating the full population 

size of the study areas, both for England and Wales and the West Midlands, despite 

the added computer resources required. This simulation required running the model 

on specialized computer hardware with several software modifications (see Section 

3.5.2.6). Secondly, variance between model runs was reduced by eliminating output 

categories with an unreliable number of case notifications from the fitting process (see 

methods section of Chapter 5). Thirdly, variance between model runs was reduced by 

averaging several runs of the model for every evaluation of the model under different 

parameter values during fitting. For each evaluation of the model, or for every set of 

parameters tested, there were 30 replicates of the model run with identical initial 

conditions for the England and Wales application of the model. There were 100 

replicates of the model run for the West Midlands application of the model. The only 

difference in model output was due to different starting seeds for the random number 

generator in the model. 

The number of replicates was chosen based on variation in model output due to 

chance and keeping computation hours as low as possible. To explore this variation, 

the model was run with one set of parameter values and initial conditions many times. 

The model output values averaged over those 500 runs were considered the 'true' 

values or deterministic values for model output. Then, average values at different 

numbers of model replicates were taken. Averaging 30 replicates was considered 

sufficiently close to the minimum number of replicates for which the averaged values 

matched 'true' model output for even the relatively small output categories for the 

England and Wales version of the model. More replicates were run for the West 

Midlands version of the model because of greater stochasticity in those runs, due to 

smaller population sizes. 
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Note, in addition to stochasticity in the tuberculosis model, there is stochasticity 

inherent in the fitting process used for the England and Wales application of the 

model. This also required consideration, as described further in Section 3.5.2.4. 

3.5.2 Fitting Process for England and Wales Application 

3.5.2.1 Optimization algorithm and GOF 

statistic 

The model applied to England and Wales was fit to observed notification data through 

an optimization algorithm that combines downhill simplex with simulated annealing 

[255]. The algorithm was used because the downhill simplex part of the algorithm is 

relatively efficient in searching parameter space and the simulated annealing 

algorithm is able to search for optimal parameter sets' across a wide range of 

parameter values, excelling at finding global, as opposed to local, minima. In this 

context, the global minimum occurs when a set of parameters leads to model output 

that is closest to observed data, whereas a local minimum occurs at a place where a 

set of parameters leads to model output that is closest to observed data within a 

limited part of the parameter space. Code for the optimization routine was taken from 

the Numerical Recipes collection, published in the C language as the 'amebsa' routine 

[255,256]. 

Downhill simplex with simulated annealing requires specification of an initial 'simplex' 

or set of n+1 points to begin optimization, where n is the number of variable 

parameters in the model, usually four in this application of the model. Each of these 

points is first evaluated for the GOF of the model output to data, where a lower GOF 

statistic implies a better fit of model output to data (see below for details of the GOF 

statistic used). Then the optimization routine chooses another 'point', or set of values 

for the variable parameters in the model, based on the GOF of the previous n+1 points 

and partly on random chance. The optimization routine works in this manner, with the 

n+1-vertex shape moving about the parameter space to find a best-fitting set of 

parameter values. The best-fitting point is stored and reported when the routine 

converges, or reaches a solution, and little or no change is seen in parameter values or 

GOF values as the routine searches around that point. Convergence is discussed 
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further below. As mentioned, the optimization routine requires a function which 

evaluates the fit of the model output to observed data, also referred to as the GOF 

statistic. The GOF statistic used was Poisson log likelihood deviance, used in a related 

studies [257, 258]. The formula for calculating this statistic is 

-2 ~ ~ ~ ~ 0 t - e t + 0 t X In e t - 0 t X In 0 t L L L L a,S,T, a,S,T, a,S,T, a,S,T, a,S,T, a,S,T, 

a S T t 

where a is age,s is sex, r is birthplace, t is year, oa,s,r,t is the observed number of 

notifications by age, sex, birthplace and year, and ea,s,r,t is the simulated number of 

notifications by age, sex, birthplace and year. This formula is used to calculate the 

deviance for each set of parameters tested. The best-fitting value for each fitting run is 

compared with other runs to assess which scenarios fit best. The deviance statistic 

varies according to a Chi square distribution, with the degrees of freedom equal to the 

number of data points, less the number of variable parameters. 

3.5.2.2 Convergence criteria 

The standard amebsa routine for simulated annealing can be run until it has achieved a 

specified convergence threshold in the GOF statistic [255] or until the rate of change in 

the GOF statistic has approached zero. The former is part of the standard routine and 

the latter is a custom extension by C. Lehman (personal communication, code 

published at http://www.cbs.umn.edu/modeling) to conserved limited computing 

allocations during fitting runs. The custom routine tracked the relative rate of change 

in the parameters until that rate repeatedly remained less than 1% per step over the 

last twenty steps of optimization. 

3.5.2.3 Initial conditions 

Initial conditions for a fitting run include the n+l points of the initial simplex discussed 

above, each with values for the four or six variable parameters in the model. For each 

of the n variable parameters, a value for each of the n+l points of the simplex was 

randomly chosen from specified ranges for each parameter (see Chapter 5, Section 

5.1.6). Note, the simulated annealing routine searches beyond these input parameters 

when searching for optimal parameter values and so the ranges, though relatively 
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large, still do not restrict the optimization routine to find parameter values within 

these ranges. 

3.5.2.4 Replicate fitting runs 

For each fit of the model to data, the fitting routine was run five different times. For 

each of these replicates, a different set of randomly assigned starting simplex points 

was used. These initial conditions are the set of n+1 parameter sets, each set with one 

value for each of the n variable parameters. The five replicates were run for two 

reasons. First, in addition to stochasticity in the tuberculosis model itself, which was 

addressed in mUltiple ways as described in Section 3.5.1, the simulated annealing 

routine is stochastic. Even if the model were deterministic, the fitting routine would 

take a slightly different path to the optimal parameter set, likely finding a different set 

of optimal parameter values under runs with the same input parameter values and 

initial conditions. Secondly, the initial conditions of the fitting run, or points of the 

initial simplex, may influence the pathway to finding a best fit and thus, the best-fitting 

values themselves. Running five replicate fitting runs ensures that a range of values for 

each parameter are tested initially. In summary, replicates help avoid basing 

conclusions on one run of the fitting routine, which may be an anomaly due to chance 

or due to choice of initial conditions. Five replicates were the maximu"m number which 

could be afforded with the computer hours available. 

3.5.2.5 Simulated annealing schedule and 

temperature 

The 'annealing temperature' is a parameter of the optimization routine that controls 

the random element which contributes to the algorithm for choosing a new set of 

variable parameters as the simplex moves about the parameter space, searching for 

the optimal parameter set. The temperature describes the chance that the routine 

accepts an 'uphill' step, or a set of parameters that worsen fit to data over current 

points. This parameter also impacts the amount of random fluctuation on newly 

chosen simplex points. The temperature is high at the beginning of a fitting run, 

allowing the optimization routine to accept uphill steps more often. Accepting uphill 

steps means the simplex may move out of local minima and reduce the chance of 

finding local minima as an optimal solution. As the optimization routine progresses, 
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the temperature decreases and the routine becomes less likely to accept uphill points. 

When the temperature is zero, only 'downhill' steps are taken, or better fits, meaning 

the optimization routine will not move out of a local minimum. 

The 'annealing schedule' is the combination of simulated annealing parameters used in 

the optimization routine. These include the initial temperature, temperature reduction 

factor, the number of iterations per cycle and the final temperature convergence 

tolerance. The initial temperature was set to 2.0. The temperature reduction factor 

specifies how quickly the temperature decreases, and was set to 0.7. After each 

annealing cycle, consisting of a specified number of iterations, each of which generates 

a new point in the simplex, the temperature is multiplied by 0.7. The number of 

iterations per cycle was set to 25. Lastly, as mentioned, the convergence tolerance and 

final temperature were not used in this application of amebsa, as the parameter values 

and GOF values were converging before these were reached. 

3.5.2.6 Computer hardware and software 

As described, the fitting routine compared model output under many different 

parameter sets, searching for the best fit to the observed data. This comparison 

required many runs of the model, one after the other, in serial. Furthermore, each of 

the many runs actually required 30 replicate runs, each with the same parameter 

values but different starting seeds for random number generation, averaged to reduce 

the effects of stochasticity in model output, as described in Section 3.5.1. One instance 

of the model used more than 1.7 minutes of computation time on an average 

processor, for example on the 2.8 GHz IntellNehalem" processors used for this work, 

and an entire fitting run takes on the order of 100 steps, or 100 evaluations of the 

model, to find the optimal parameter set for the run. This timing meant that 

approximately 1.7 x 30 x 100 = 5100 minutes or 85 hours of computation time was 

used per fit. As many fits of the model were needed to explore different input 

parameter scenarios, this time had to be reduced by running the 30 replicate runs of 

the model in parallel, or at the same time. Parallel processing required special 

computer hardware and software. 

One additional complication is that this application of the model required more than 

50 million individuals in the simulation, using a large amount of computer memory, 
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approximately six gigabytes of memory for each run. With 30 replicates running in 

parallel, the memory requirement was 180 gigabytes of memory for each fitting run. 

Therefore, running the model required computer hardware with sufficient memory 

and a sufficient number of processors to run 30 replicates of the model in parallel. 

Running the model in parallel also required special adaptations to the model code, 

making use of Message Passing Interface (MPI) commands to collate data from 

mUltiple processors inside the fitting routine. Lastly, a special compiler which allowed 

the MPI commands to work, 'mpicc', was used to compile the model after these MPI 

commands were integrated. 

The Minnesota Supercomputing Institute was one place with both the hardware and 

software available to run mUltiple, memory-intensive replicates of the fitting routine in 

parallel. There, an HP Linux cluster called 'Itasca' was used for all fitting runs of the 

model. Although Itasca has 1,086 compute nodes and 24 gigabytes of memory per 

node, the computation time for this work was limited by an allocation of computing 

hours designated for this project. 
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Table 3-2: Main software modules used for the thesis work. For each module, there is a description of its purpose, the number of lines of code including comments, the author(s) of the modules, 

their use in the thesis modelling work, and the file in which they exist. The column 'Use' gives the main purpose or place module is used, where 'TIBM' refers to the model of tuberculosis dynamics in 

the UK; 'IBM' refers to general individual-based model machinery; 'FIT' refers to the fitting routine; and 'UTIL' refers to modules which are utilities, used across many programs and often inside other 

modules. 'Location' refers to a '.c' file in which the module exists. 

Module Description Lines Author(s) Use Location (file) 

scheduler Handles event scheduling and dispatching 500 Cl IBM schedule.c 

main Sets up the model, runs main loop for simulation 90 AK/CL TIBM tb36gen.c 

dispatch Dispatches event to scheduler 50 Cl IBM tb36gen.c 

birth Adds newborn to the population 110 AK TIBM tb36gen.c 

immigrate Adds immigrant to the population 220 AK TIBM tb36gen.c 

immg Catalyzes immigration as external event 40 AK TIBM tb36gen.c 

birthg Catalyzes birth as external event 30 AK TIBM tb36gen.c 

vaccinate Vaccinates an individual 40 AK TIBM tb36gen.c 

infect Infects an individual 120 AK TIBM tb36gen.c 

remote Moves individual to Latent Infection 70 AK TIBM tb36gen.c 

disease Moves individual to a disease category 170 AK TIBM tb36gen.c 

transmit Transmits (or attempts to transmit) an infection 90 AK TIBM tb36gen.c 

mutate Mutates strain type profile 150 AK TIBM tb36gen.c 

death Removes individual from population 60 AK TIBM tb36gen.c 

emigrate Removes individual from population 30 AK TIBM tb36gen.c 

newstate Changes state of individual 40 CL TIBM tb36gen.c 

transfer Shifts identification number for contiguous array 20 AK TIBM tb36gen.c 

repcase Stores reported case 120 AK TIBM tb36gen.c 

lifespan Assigns time of death 50 AK/CL TIBM tb36gen.c 

emtime Assigns time of emigration 50 AK TIBM tb36gen.c 

recovery Assigns time to disease recovery 40 CL TIBM tb36gen.c 
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Module Description Lines Author(s) Use Location (file) 

tdisease Assigns time to disease 80 AK TIBM tb36gen.c 

init Initializes output files 50 AK TIBM tb36gen.c 

data Reads data files into arrays 220 AK TIBM tb36gen.c 

param Updates cumulative distributions for variable 190 AK TIBM tb36gen.c 

initpop Initialize starting population of model 200 AK TIBM tb36gen.c 

final Writes final output, plots 1180 AK TIBM tb36gen.c 

(tb30i.c) (Entire TIBM code: declarations, modules (including 4300 AK (TIBM) tb36gen.c 

some little-used and not listed here and comments) 

fit Shell program for fitting routine 160 AK/Cl/NR FIT fit5i.c 

amebsa Downhill simplex with simulated annealing fitting 120 NR FIT amebsa.c 

amotsa Selects next point for evaluation in fitting 50 NR FIT amotsa.c 
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4 Sources for Model Parameters and Assumptions 

The sources used to establish parameter values and other assumptions in the model 

are described in this chapter. Sources are first described for demographic parameters 

and assumptions and then for infection-related parameters and assumptions. 

Sometimes sources differ between the England and Wales and the West Midlands 

model applications. In these cases, sources are detailed for each application. In cases 

where sources are the same, specific model applications are not mentioned and the 

same parameter values and assumptions are used for both applications of the model. 

Although model output was fitted to data from 1999--2009 for the England and Wales 

application of the model and from 2007--2011 for the West Midlands, the model was 

run starting in 1981 for both applications. This reduced the importance of parameter 

values used at model initialization, such as the prevalence of each infection state in 

1981. 
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4.1 Demographic Data 

4.1.1 Births 

For each application of the model, the actual number of births each year was used to 

ensure that exactly that number of individuals was born in the corresponding 

simulation year. For England and Wales, the total number of births for each calendar 

year, as well as the ratio of male births to female births, was obtained from the Office 

for National Statistics (ONS) in electronic form from their website [111]. Data for 1981 

to 2004 were obtained from a download of "Birth Statistics FM1 (Historical Series)" 

files and data for 2004 - 2009 were downloaded from a 2009 "Birth summary 

statistics" file. 

For the West Midlands, the number of males and females born each year to mothers 

whose usual residence was the West Midlands was obtained in an electronic file 

requested from the ONS Vital Statistics Outputs Branch. This file is not available on the 

ONS webpage (L. Todd, personal communication). 

4.1.2 Mortality 

All-cause mortality rates for England and Wales by year of birth, age and sex were used 

to assign life expectancies in the model. The ONS Centre for Demography provided an 

electronic copy of these data on request. Data included tables of qx rates for males and 

females for ages 0 -120 years and birth cohorts from 1870 - 2011. Qx rates for a given 

year of birth and age, x, represent the proportion of those in the cohort who die 

between ages x and x+l. These rates were based on the number of observed deaths 

until 2008 and the number of deaths projected thereafter. For cohorts born after 1946 

for males and after 1941 for females, qx rates remain slightly below 1.0 at age 120 

years, meaning a small fraction live beyond 120 years. However, for simplicity, it was 

assumed that no individuals lived beyond 120 years. 

All-cause mortality rates were used to calculate the time of death due to causes other 

than tuberculosis for individuals in the model, although qx rates included deaths due to 

tuberculosis. Because the effects of tuberculosis-related mortality were negligible for 

the general population during the time period of simulations, 1981- 2011 (see Section 
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4.2.3.4}, this simplifying assumption seems reasonable. It was also assumed that 

foreign-born individuals were subject to the same average mortality rates as the 

general population, although some studies have shown migrants to industrialized 

countries had a lower life expectancy than those who were native-born in 

industrialized countries [259], while other studies have shown higher life expectancies 

for migrants in industrialized countries compared to those who were native-born, or 

were inconclusive [260-262]. In reality, those from some countries may have had 

increased mortality rates and those from other countries may have had lower 

mortality rates. Given the conflicting evidence and absence of any other data on life 

expectancy of those who were foreign-born to the UK, it seemed reasonable to 

assume the mortality rates among UK-born and foreign-born individuals were the 

same. 

Mortality rates from England and Wales were used for the West Midlands model 

because data specific to the West Midlands were not available. 

4.1.3 Population Sizes 

Estimates of population sizes by age, sex, and birthplace (UK, SSA, OF) were used to 

define the initial population of the model in 1981 for England and Wales and the West 

Midlands, as well as to calculate tuberculosis notification rates and emigration rates 

for other years. Whilst census data were available for 1981, when simulations started, 

these data were insufficient for initialising the model population from this year 

because countries of birth were not distinguished in enough detail to use the data for 

model initialization. The numbers of SSA-born individuals could not be extracted 

because birthplace data were aggregated into groupings based on 'Commonwealth' 

versus 'foreign' states, both of which include countries within SSA. Furthermore, for 

calculating notification rates and emigration rates in other years, census data were not 

available for most years because the census occurred only every 10 years. To 

overcome these issues, population estimates were instead obtained by analysis of 

Labour Force Survey (LFS) data. 
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4.1.3.1 Population sizes from LFS data 

Population size estimates were obtained by analysis of individual-level data from the 

LFS, downloaded from the Economic and Social Data Service [263]. The LFS is a 

quarterly survey of households in the UK, designed to obtain information on the labour 

market, but is useful for other purposes due to the comprehensive survey 

questionnaire used. Survey data were analysed using the HPA Tuberculosis section 

protocol for obtaining population size estimates (J. Moore, personal communication), 

to allow comparison with UK national tuberculosis surveillance rates. Under the 

protocol, population size estimates were obtained using data from the April- June 

quarter of the LFS, using the 'survey' commands in STATA software version 11.1 

(STATACorp, College Station, TX, USA) and individual-level weights provided by ONS. 

To keep sample sizes reasonably large and age categories consistent with HPA 

Tuberculosis Section groupings, age was categorized into four classes, 0 -14 years, 15 

- 44 years, 45 - 64 years, and 65 years or above. Methods were identical for producing 

estimates of population sizes for England and Wales and the West Midlands. Before 

applying the protocol for survey data analysis, some additional steps were taken to 

categorize respondents into the three birthplace groupings used in the model, UK

born, SSA-born and OF-born. These steps included distributing those with missing 

country of birth information for each year, as well as distributing ambiguous birthplace 

categories for some years. Methods for distributing respondents into birthplace 

categories are described below. 

4.1.3.1.1 Distribution of respondents into birthplace groupings 

Redistribution of respondents by birthplace was most complex for 1981. This involved 

first placing respondents with countries of birth clearly corresponding to one of the 

three birthplace categories desired into the correct category. These categories 

included most respondents. Appendix Table 10-1 shows LFS country of birth labels and 

the birthplace category assigned. All non-bolded categories were assigned directly to 

one of the three birthplaces. After this, country of birth responses that could not be 

placed directly into one of the three birthplace categories were processed. These 
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included six small categories, totalling less than 1% of respondents, labelled 'other new 

Commonwealth', 'other Africa, foreign', 'rest of the world', 'at sea/in the air', 'not 

stated' or 'not known' for country of birth. Each of these is shown in bold in the 

Appendix Table 10-l. 

Those assigned to the category 'other new Commonwealth' were randomly assigned 

to either African or non-African birthplaces based on the observed proportions of each 

among other Commonwealth countries. All assigned to African birthplaces were then 

placed in the SSA-born category, since African new Commonwealth countries are all 

found in SSA. Those assigned as non-African new Commonwealth were categorized as 

OF-born. Next, those with a birthplace of 'other Africa, foreign' were split into OF-born 

and SSA-born by random distribution based on the relative proportion of survey 

respondents from 'foreign, North Africa' and 'foreign, SSA'. lastly, respondents with 

birthplace categories of 'rest of the world', 'at sea/in the air', 'not stated' and 'not 

known', were collectively referred to as 'missing' and were assigned to UK-born, OF

born, or SSA-born according the proportions in each of those categories among all 

respondents with non-missing country of birth information. 

In 1999, lFS categories for country of birth were expanded and the additional detail 

allowed for straightforward classification of almost all respondents into UK-born, SSA

born, and OF-born. Those who did not fall into these categories were those 

categorized as 'missing' or 'stateless', both distributed among the three categories, 

UK-born, SSA-born, and OF-born, proportionally, as before. From 2000 - 2009 the 

same process was followed. 

4.1.3.1.2 Results, limitations and comparisons to other published estimates 

of population size 

Population size estimates obtained from the lFS analysis for 1981 are presented in the 

Appendix. Table 10-3 and Table 10-5 show population size estimates used for 

calculating notification rates for England and Wales 1999 - 2009 and the West 

Midlands 2007 - 2011. Population size estimates for England and Wales were 

compared against the census and other data sources (see below) to check that analysis 
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of LFS data provided reasonable population size estimates. This comparison was not 

undertaken for West Midlands estimates due to a lack of sufficiently detailed data. 

Estimates obtained from analysis of LFS data for the initial population in 1981 for 

England and Wales appeared reasonably close to the census data for that year, 

however, estimates for SSA-born population sizes were slightly higher than those 

estimated from the census data. The comparisons are shown in Appendix Table 10-6. 

Census estimates assumed that no one assigned to the 'remainder of the new 

Commonwealth' category was SSA-born, while all from 'other Africa' were SSA-born. 

This assumption is based on LFS classification data, which have similar categories. In 

LFS classifications, few or none from 'remainder of new Commonwealth' were SSA

born and all or almost all from 'other Africa' were from SSA. Age-structured population 

sizes from the census, which are stratified by country of birth, did not give detailed 

enough information on country of birth to estimate the proportion of persons born in 

SSA by age. Therefore the LSF estimates were used for the 1981 population by age, 

sex, and birthplace. 

Estimates for 2001 from analysis of LFS data for England and Wales were compared to 

the 2001 census numbers from census Table 5015, which provided population 

estimates by country of birth and sex. The comparison is shown in Appendix Table 

10-7. Again, there was an acceptable agreement between the lFS estimates and 

census numbers. 

Estimates from analysis of lFS data from 2004 - 2009 were also compared to the 

Annual Population Survey (APS) estimates by country of birth for England and Wales, 

as shown in Appendix Table 10-8. Although the APS was largely based on the LFS and 

not an independent source of comparison, APS estimates were official ONS estimates, 

subject to more rigorous analysis than the estimates obtained here through my 

independent analysis of the LFS data. It appears the LFS estimates obtained were 

reasonably close to APS estimates. However, since APS estimates were not published 

by detailed country of birth stratification, only UK-born and foreign-born population 

sizes could be compared. 
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Limitations to the estimates obtained from this analysis of lFS data include sampling 

errors and biases associated with the lFS itself but also potentially inaccuracies due to 

basing the population size estimates on samples for one quarter of the year. 

Furthermore, inaccuracies could have resulted from imputation of missing or non

specific sex or country of birth information. lastly, ONS advises that estimates 

suggesting that there are fewer than 10,000 individuals are unreliable; there were a 

small number of these estimates obtained for SSA-born in some age classes, as well as 

for several demographic categories for the West Midlands. 

4.1.4 Immigration and Emigration 

Data on immigration and emigration were used to specify the numbers of migrants 

entering the study populations each year and the rate at which individuals left the 

study populations each year. Immigration and emigration data were derived from the 

International Passenger Survey (IPS), a sample of passengers entering or leaving 

principal UK air, sea and Channel Tunnel ports, with approximately 0.2% of all 

travellers sampled [264]. The IPS's information for inflow and outflow estimates were 

based on passengers' intended length of stay in or out of the UK. The IPS data 

informed migration inflow and outflow estimates for 1981-1990, produced by ONS. 

For 1991- 2011, ONS produced more refined migration estimates, called long Term 

International Migration {lTIM} estimates. lTIM estimates were derived from the IPS 

and supplemented by information from the lFS, Home Office data on asylum seekers 

and their dependents, and migration data from the Northern Ireland Statistics and 

Research Agency [265]. 

Since published IPS and lTIM tables were not stratified by migrants' country of birth in 

detail nor cross-tabulated by age, sex and region of the UK, customized tables which 

included inflow and outflow estimates for Sub-Saharan Africans were obtained directly 

from the ONS Migration Statistics Unit. These tables provided estimates for the 

number of inward and outward migrants to England and Wales from 1981- 2009 and 

the West Midlands from 1981- 2010 by age category, sex, and birthplace. Age 

categories in years were under-15, 15 - 24, 25 - 34, 35 - 44,45 - 59, and 60 and over. 

Birthplaces included were UK, 'rest of Europe', North Africa, Sub-Saharan Africa, Indian 
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Subcontinent, 'rest of Asia', America, and Oceania. For both inflow and outflow data, 

birthplaces were grouped to correspond with the three birthplaces used in the model: 

UK, OF, and SSA. The numbers of inward migrants stratified by the three birthplaces 

were used directly in the model (numbers are not reproduced here due to ONS 

restrictions on publishing these data). 

The numbers of outward migrants by birthplace (UK, OF, SSA), sex, and year were 

divided by population size estimates by birthplace, sex, and year, to obtain emigration 

rates for each year and birthplace. These rates were averaged over all years to set 

constant emigration rates per year, because emigration data were based on small 

numbers of persons and prone to sampling error. Emigration numbers by birthplace 

are not reproduced here to comply with ONS restrictions on publishing of these data. 

On average, approximately 0.25% of UK-born, 2.8% of OF-born, and 1.8% of SSA-born 

in England and Wales emigrated from the UK each year, while approximately 0.17% of 

UK-born and 1.4% of foreign-born in the West Midlands emigrated from the UK each 

year. 

For the West Midlands model, 2011 migration data were not available. Instead, 

migration numbers and rates were assumed constant from 2010 - 2011. Provisional 

data on total migration to and from the UK for 2011 showed that the total numbers of 

migrants entering and leaving had not changed much from 2010, suggesting this would 

be an acceptable approximation. Provisional data were accessed in an electronic file 

from the ONS web page [266]. 

One of the major limitations to these estimates is that ONS did not attempt to include 

the size of the illegally residing population in the UK [111]. In addition, as these 

estimates were largely based on the sample of migrants who take part in the IPS, they 

are subject to sampling error, as well as bias due to non-responders having different 

characteristics than responders and inaccuracy due to misrepresentation of intentions 

by respondents [111]. Confidence limits on the data indicated a large amount of 

uncertainty due to sampling error, especially for smaller demographic categories. The 

most uncertain were estimates for the numbers of SSA-born migrants to England and 

Wales before 1990 and for estimates for the West Midlands generally. In some years, 
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for small categories, the standard error of the estimate was more than 50% of the 

estimate itself. 
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4.2 Infection-Related Parameters 

4.2.1 Vaccination 

BeG vaccination was explicitly included in the model from 1981 to 2005, for both UK

born and foreign-born individuals who were Uninfected at the time of vaccination. 

Although some individuals were vaccinated in the UK after 2005, these were 

disregarded due to small numbers and limited impact. It was assumed that 75% of 

children between 13 and 14 years of age were vaccinated from 1981- 2005, reflecting 

the policy and estimated coverage in England and Wales over this period [267,268]. Of 

those vaccinated, 77% were assumed to be protected from infection for the remainder 

of their lifetime based on average efficacy estimated from 20 years of follow-up in a 

trial of BeG given to adolescents in the UK [61]. The trial found that the tuberculosis 

incidence in the control and vaccinated arms was very similar 20 years after 

vaccination, which suggests that the assumption that vaccination provides lifelong 

immunity is overly simplistic. However, the lack of apparent protection in the long

term after vaccination may be attributable to other factors, such as decreasing 

susceptibility in the unvaccinated group over time, due to exposure to M. tuberculosis 

or environmental mycobacteria [61]. 

BeG vaccination was also included in the model implicitly for those older than 13 years 

at the start of the model in 1981. Assumptions about vaccination practices prior to 

1981 were used along with other assumptions to estimate the proportion of 

individuals in different infection states, including Immune, at model initialization (see 

Section 4.2.7). Although BeG vaccination began in 1949 in the UK, coverage was 

limited and effects are assumed negligible until 1954, when mass vaccination of 13 

year-olds began. For those Uninfected born 1941 or later, or reached 13 years old in 

1954, the proportion Immune was obtained from multiplying the proportion 

Uninfected at age 13 by the vaccination coverage and vaccine efficacy. Although the 

exact numbers vaccinated from 1954 -1959 are available, population denominators 

are not readily available (although they could be estimated using data from the 1951 

census and age-specific mortality rates). For simplicity, the proportion vaccinated was 

assumed to increase linearly from 0% in 1953 to 75% in 1960 [267, 268]. From 1960 to 

138 



1981, it was assumed a constant 75% of 13-year-olds were vaccinated. Vaccine efficacy 

is assumed to be 77% [61]; for more on vaccination data, see Section 4.2.1. Vaccination 

coverage and efficacy were assumed equal for males and females. This assumption 

may be unrealistic, but sex-specific data were not available. 

For foreign-born individuals, it was assumed that none were Immune in 1981. This 

assumption was based on low estimates of average worldwide vaccine coverage, 

estimated by WHO to be about 16% in 1980 [269]. The average foreign-born individual 

in the UK in 1981 may have emigrated many years previously, and coverage among 

these individuals, on average, would have been even lower. Given this and the low 

vaccine efficacy in many areas of the world [57], the proportion vaccinated effectively 

was likely negligible prior to 1981. Still, this assumption will have underestimated the 

number of vaccine-protected individuals in the population, because some countries 

had higher vaccine coverage and some of these vaccinations would have been 

effective. 

4.2.2 Infection Transmission 

4.2.2.1 Effective contact rate 

The number of new infections per unit time is determined by the 'effective contact 

rate', defined here as the average number of infections that would be generated by 

one infectious case each year in a population of uninfected individuals. Henceforth this 

is referred to as simply the 'contact rate'. It was assumed that only smear-positive 

pulmonary cases were infectious, as discussed below, in Section 4.2.2.2. Although 

infectiousness may depend on the time since disease onset, the contact rate in the 

model was assumed constant for the duration of disease. Due to the difficulty in 

estimating the contact rate directly, the value of this parameter is highly uncertain. 

In estimates of the contact rate for the pre-chemotherapy era, Styblo used the ratio 

between the ARI and the prevalence of smear-positive disease to estimate that each 

infectious case infected 20 others for a two-year duration of infectiousness, or 10 per 

year [13]. More recent calculations using these methods resulted in estimates of a 

contact rate between 2.6 and 5.8 per year, using data from Korea, China and the 

Philippines from the 1970s to 1990s [270]. For England and Wales, the effective 
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contact rate estimated using this method resulted in a contact rate which dropped to 

about one per year in 1990 [56]. However, the estimated ARI is thought to be 

uncertain in recent years, making these estimates also uncertain [271-273]. As 

discussed in Borgdorff et al. [273], age-dependent patterns in contact rates may have 

led to underestimation of the overall annual risk of infection, and therefore, the 

effective contact rate, in recent years. 

Modelling approaches have also been used to estimate the contact rate. Recently, 

Zhou et al. [96] used a compartmental model implemented with difference equations 

to estimate that each infectious case resulted in about 0.6 new infections each month 

in Canada based on data from 1991 - 2000. This contact rate resulted in 7.2 infections 

per year, although this estimate was derived from a mixed population of susceptible 

and non-susceptible individuals, so the corresponding contact rate as defined here 

would be higher. The contact rate estimated by Zhou et al. may also be incompatible 

with the rate used in this model due to different assumptions about disease duration. 

In a compartmental model taking into account households and commuting, Pienaar et 

al. [274] estimated that on average, each infectious case infects 13 others per year in a 

hypothetical urban setting with a high incidence of tuberculosis. 

Assumptions used by modellers Dye and Williams [185] were derived from older work 

by Styblo and unpublished data to assume the contact rate ranges from 10 - 18 per 

year, with a mean of 14 per year for infectious cases, although this work also focused 

on countries with a higher burden of tuberculosis than that in the UK. Citing the 

possible underestimation of the ARI in recent years [273], Wolleswinkel-van den Bosch 

et al. [224] assumed a contact number corresponding to a higher ARI in their model of 

tuberculosis in the Netherlands. They assumed there were eight effective contacts per 

infectious case, or a rate of 16 effective contacts per year with the disease duration of 

six months assumed here. 

In summary, effective contact rates have been estimated or assumed to span a range 

of 1-18 effective contacts per infectious case per year in these and related models 

[56,96,179,185,224,274-276]. Given uncertainty over the value of this parameter, a 

range of contact rates from 4 - 15 per year was used during fitting of model output to 
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observed data. The methods sections in Chapters 5 and 7 provide details on the values 

used in each application of the model. 

4.2.2.2 Susceptible individuals 

As described in Chapter 3, only individuals in the Uninjected or Latent Injection states 

were considered susceptible to infection or reinfection in the model. Furthermore, it 

was assumed those with Latent Injection were equally susceptible to infection as those 

Uninjected, based on analysis from Vynnycky and Fine (1997), which suggested that 

previous infection imparts little protection against subsequent infection for those with 

Latent Injection [19]. 

4.2.2.3 Infectious cases 

It was assumed that all non-pulmonary cases were non-infectious and some 

pulmonary cases were infectious. Of pulmonary cases, those with smear-positive 

disease (see Chapter 2, Section 2.2.4) are much more likely to be infectious than smear 

negative cases [13, 14]. For simplicity, it was assumed that all smear-positive 

pulmonary cases are infectious and all smear negative cases were assumed non

infectious. The proportion of pulmonary cases that were smear-positive was assumed 

to vary with age. 

Data on the age-specific proportion of pulmonary cases that were smear-positive was 

available from pulmonary tuberculosis notifications in Norway 1951- 1969 [19, 267J. 

Following assumptions in Vynnycky and Fine [19] based on these data, it was assumed 

that 10% of cases in children 10 years and younger were smear-positive, increasing 

linearly to 65% smear-positive at 20 years of age. From age 20 years to age 90 years, 

this percentage was assumed to increase from 65% to 85% and it was assumed 

constant at 85% for those aged 90 years and older. In reality, the likelihood of 

developing infectious disease depends on age, HIV status and many other factors. 

4.2.2.4 Contact patterns 

A simple contact scheme similar to homogeneous mixing was implemented in this 

model. The contact scheme only considered an individual's birthplace, UK-born or 

foreign-born, when choosing transmission contacts for an infectious individual. A 
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proportion of transmission contacts were randomly chosen within the same birthplace 

group as the infectious individual, meant to roughly correspond to transmission to 

known contacts, though the model is not spatially explicit and does not model 

transmission among close contacts or households. The remaining contacts are 

randomly chosen from the entire population, including both UK-born and foreign-born, 

meant to represent non-close or 'casual' contacts. In the model it was assumed that 

50% of contacts were close and 50% were casual, although it is unknown exactly- what 

proportion of contacts are close versus casual contacts since this is difficult to estimate 

directly. The assumption agrees qualitatively with conclusions based on modelling 

studies by Aparicio et al. [177] and Jia et al. [277], who stressed that casual contacts 

may be as important, or more important, than close contacts in the transmission of 

infection. Contact patterns in the model do not take into account age, although doing 

so would have been more realistic [273]. 

4.2.3 Natural History of Infection 

4.2.3.1 Disease progression 

It is known that only a portion of those infected with M. tuberculosis develop disease 

and the risks of disease progression vary by age, sex, HIV status and time since 

infection, as discussed below and in Chapter 2, Section 2.1.2. It is possible, but 

unknown, whether disease progression risks are different between UK-born and 

foreign-born individuals after adjusting for these factors. Because disease progression 

risks are uncertain, these were allowed to vary in both applications of the model, with 

estimates obtained by fitting model output to notification data from England and 

Wales data (See methods sections in Chapters 5 and 7). Still, some parameters 

regarding the development of disease were fixed, including relative disease risks 

between some groups in the population to decrease the number of parameters varied 

in the model. The parameters specified mostly followed from assumptions and results 

from previous modelling work, for lack of appropriate data [19], and are detailed 

below. The development of Primary Disease and Reinjection Disease are dictated by 

similar rules, described together in Section 4.2.3.1.1. The development of Reactivation 

Disease is handled differently, as described in Section 4.2.3.1.4. 
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4.2.3.1.1 Risks of developing primary disease and reinfection disease 

Following assumptions made in Vynnycky and Fine [19], the risk of disease due to 

Recent Infection or Reinfection, resulting in Primary Disease and Reinfection Disease 

respectively, were characterized by: 1) the cumulative risk of developing disease 

during the five years of Recent Infection or Reinfection and 2) the relative risk of 

disease for each of the five years since infection. 

4.2.3.1.2 Cumulative risks of developing Primary Disease and Reinfection 

Disease 

Cumulative risks of developing disease likely differ between Recent Infection and 

Reinfection, as well as by age at infection, sex, birthplace and HIV status. Cumulative 

disease risks estimated by the model were those for males aged 20 years and above 

for each infection type. From those risks, disease risks for all other individuals in the 

model were calculated, using the relationships between disease risks for different 

groups in the model, described below. 

Risks by age 

Following Vynnycky and Fine [19], dependency of cumulative disease progression risks 

on age at infection for those in Recent Infection and Reinfection states was 

characterized by a constant risk up to 10 years of age and a constant risk from 20 years 

of age and above, with a linear increase in disease risk assumed between 10 and 20 

years of age. For those over 10 and under 20 years of age, cumulative disease 

progression rate, Do, at age a is given by 

Age-dependency was assumed to follow the same pattern for all individuals in the 

model, regardless of sex, birthplace, or HIV status. 

Because there were few cases in children under 10 years of age, estimation of these 

parameters was hindered, though few cases also reduced their importance in the 

model. Therefore, risks for children under 10 years of age were fixed, based on 

estimates of the risk of respiratory disease by Vynnycky et al. [9, 271] found in Table 
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4-2 [19]. In particular, risks for Reinjection Disease were estimated based on a small 

number of cases and may be unreliable. Progression risks and rates for respiratory 

tuberculosis estimated by Vynnycky et al. were divided by presp, the proportion of 

disease that is respiratory in children under 10 years of age. After dividing by presp, 

the new values represent disease risks for all sites of disease, as used in the model. 

These are found in Table 4-1. 

Presp was estimated from data on tuberculosis notifications by age and sex for the 

time period 1982 - 1995. For both males and females, presp was calculated by dividing 

the number of respiratory cases under ten years of age by the total number of 

tuberculosis notifications for those under ten years of age. For males, this was 0.69 

and for females 0.67 on average over this time period. Note, definitions of non

respiratory disease and non-pulmonary disease are different (See Chapter 2, Section 

2.1) and notification procedures for the different disease types have changed over 

time, which is why this value is different from the assumed proportion of disease that 

is non-pulmonary, described below. 

Table 4-1: Assumed risks and rates of developing all forms of tuberculosis for children ages 0 -10 years. The values 

in the rows for Recent Infection and Reinfection reflect the cumulative risks of developing tuberculosis over the first 

five years of infection and reinfection (%) respectively. For Latent Infection these are rates of developing 

tuberculosis (% per year). 

Infection type Male Female 

Recent Infection 5.92% 6.16% 

Reinfection 10.05 % 10.45 % 

Latent Infection 1.43xlO-7 %/vear 1.49xlO-7 %/year 

Risks by sex 

Also following Vynnycky and Fine [19], disease progression risks for females were 

assumed lower than those for males for some age categories. The ratios of risk for 

females to males, Sda,d, were calculated for risks of disease for those in Recent 

Injection and Reinjection classes and by age using risks estimated for males and 

females by Vynnycky et al. [9, 19], found in Table 4-2. There is only a difference in risks 
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by sex for those with Reinfection aged 20 years and older. Although Vynnycky et al. 

only consider respiratory disease, it was assumed here that the risk ratios of disease 

progression by sex are the same when all forms of disease are considered. These ratios 

were fixed in the model such that any values of male disease risks could be used to 

calculate female disease risks. 

Risks by birthplace 

Because disease risks have not been previously estimated for foreign-born individuals 

in the UK, these risks were assumed to differ from UK-born risks by a factor df, such 

that cumulative risks of Primary Disease and Reinfection Disease for UK-born were 

multiplied by dfto obtain foreign-born risks. As discussed further in the methods 

section of Chapter 5, this parameter was estimated by fitting the model to England and 

Wales notification data. The best-fitting values were then used for the West Midlands 

application of the model, as described in the methods section of Chapter 7. 

Risks by HIV status 

For those with HIV infection, disease progression probabilities are higher than for 

those without HIV infection [26]. Therefore, cumulative disease risk~ for Primary 

Disease and Reinfection Disease were multiplied by a factor, ehiv, for those with HIV 

infection in a similar manner to df. The value of ehiv was assumed to be 7 [26, 278], 

although there is uncertainty over the average magnitude of increased disease risk due 

to HIV infection. In reality, the factor of increase in disease risk will depend on the 

length of time a person has been infected with HIV, the state of their immune system, 

and whether or not they are on antiretroviral treatment. However, for simplicity, the 

same factor of increase was applied to all HIV-positive individuals, representing the 

average factor of increased disease risk across all HIV-positive individuals in the model. 

It is unknown how well this increased risk applies to foreign-born individuals living in 

the UK where access to HIV treatment, nutrition, and overall health may be better 

than in the high-burden countries where tuberculosis disease progression in HIV

positive individuals has typically been studied. It is also possible that ehiv depends on 

whether a person has Recent Infection, Reinfection, or Latent Infection, although for 
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simplification, it was assumed to increase progression for the three disease types 

equally. 

Table 4-2: Risks of developing respiratory tuberculosis by age and sex for the three types of disease, as estimated by 

Vynnycky and Fine [19, 279). Risks for Recent Infection and Reinfection represent cumulative risks of developing 

disease in the first five years of infection or reinfection. Latent Infection risks are annual risks of developing 

respiratory disease, actually a rate. Risks were used to calculate 'sd', the ratio of disease risk for females to males by 

age and type of infection. 'sd' was used to derive female disease risks from male risks for other groups, OF-born and 

SSA-born. 

Risk of developing disease 

Infection type Female: Male 
Age (years) Male Female ratio (sa') 

Recent Infection 0-10 4.06% 4.06% 1 

20+ 13.8% 13.8% 1 

Reinfection 0-10 6.89% 6.89% 1 

20+ 8.25% 0.01% 0.001 

Latent Infection 0-10 9.8 x 10.8 %/year 9.8 x 10.8 %/year 1 

20+ 0.0299 %/year 0.0048 %/year 0.161 

4.2.3.1.3 Relative risks of disease over the first five years of infection 

The relative risk of disease for each year following with M. tuberculosis is the factor by 

which the risk of disease in that year after infection differs from that in the first year 

after infection. Relative risks of disease were assumed to be highest in the first year 

following infection and to decrease over time: Relative risks were assumed as in 

Vynnycky and Fine [19], who based assumptions on results from the UK Medical 

Research Council BCG trial. The relative risks for each of the five years of Recent 

Infection and Reinfection were fixed for all individuals in the model and did not change 

with age, sex, birthplace, or HIV status. See Table 4-3 for relative risk over the five years 

of Recent Infection or Reinfection. 

146 



Table 4-3: Relative risks of disease during first five years of infection. 

Years since infection Relative risk 

1 1.000 

2 0.410 

3 0.130 

4 0.086 

5 0.028 

4.2.3.1.4 Rate of progression to reactivation disease 

Because those in Latent Infection have older infections, Reactivation Disease risk was 

assumed to be much lower than the risk of Primary Disease or Reinfection Disease. 

Further, it was assumed that Reactivation Disease develops at a rate independent of 

time since infection, again following assumptions made by Vynnycky and Fine [19]. The 

rate was assumed to be dependent on age the same way Primary Disease and 

Reinfection Disease progression was dependent on age, with a constant rate to age 10 

years and from age 20 years and over, and a linear increase in the rate from age 10 -

20 years. 

As the case for disease progression to Primary Disease and Reinfection Disease, 

Reactivation disease progression risks for females were assumed different to risks for 

males. The ratios of disease progression rates in Latent Infection for females to males, 

Sda,d, shown by age, again calculated from disease development rates estimated for 

males and females by Vynnycky et al. [9, 19], are found in Table 4-2. These relative 

risks were fixed in the model such that male disease progression rates could be used to 

calculate female disease progression rates. As with the risk of Primary Disease and 

Reactivation Disease, UK-born progression rates were multiplied by the factor dfto get 

foreign-born rates. Rates for HIV-positive individuals were further multiplied by the 

factor ehiv, fixed at 7. 

As for Primary Disease and Reinfection Disease, because there were few cases in 

children under 10 years of age, these disease risks were fixed based on estimates of 

the risk of respiratory disease by Vynnycky et al. [9,271] found in Table 4-2 [19]. Again, 
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progression rates for respiratory tuberculosis estimated by Vynnycky et al. were 

divided by presp, the proportion of disease that is respiratory in children under 10 

years of age. After dividing by presp, the new values represented disease risks for all 

sites of disease, as used in the model. These are found in Table 4-1. 

4.2.3.2 Proportion of cases that are 

pulmonary 

For simplicity, it was assumed the proportion of cases that are pulmonary varies only 

with sex and birthplace (UK, SSA, OF) and is constant over time and for all age groups. 

These proportions were calculated directly from ETS data from England and Wales, 

1999 - 2009 (See Chapter 2, Section 2.7.1) and presented in Table 4-4. Taking the 

proportions from observed data allowed the model to reproduce the observed 

proportion but does not help understanding of the mechanism or effect of different 

disease types on the proportion of disease that was pulmonary. The proportion of 

cases that are pulmonary may also depend on age, HIV status, and probably infection 

history, including duration of infection and whether there have been previous 

infections. However, as discussed in Chapter 2, Section 2.1.2, evidence for these 

relationships is less clear and does not justify taking them into account. 

Table 4-4: Proportion of tuberculosis disease that is pulmonary, by birthplace and sex. Proportions were calculated 

from ETS data from England and Wales, 1999 - 2009. 

Birthplace Male Female 

UK 0.74 0.67 

SSA 0.57 0.52 

OF 0.53 0.47 

4.2.3.3 Recovery from disease 

Recovery from active disease to Latent Infection was assumed to happen at an annual 

rate determined by the average disease duration assumed in the model, important 

mostly for pulmonary disease because it determines the duration of infectiousness. 

The average disease duration is difficult to observe or measure, but some 

epidemiological data can be used to inform the assumption. The average delay from 
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onset of symptoms to beginning of treatment for reported cases in the UK was likely 

between 1.5 - 3 months [280-282]. Treatment coverage was high in the UK [105] and 

those on treatment will have lost infectiousness within weeks of beginning treatment 

[14]. Accounting for unreported cases further lengthens the average duration of the 

disease across all patients. This is because undetected cases remain infectious for 

longer than detected cases. If it is assumed that approximately 25% of cases go 

undetected (see Section 4.2.5), the average duration of disease may increase by 

several months. Taking into account these factors, an average disease duration of six 

months was assumed in the model, as assumed in other recent models [191, 283]. 

4.2.3.4 Death due to tuberculosis 

The overall proportion of cases that die from tuberculosis is referred to as the 'case 

fatality rate', though it is actually a probability, not a rate. The case fatality rate was 

assumed to depend on calendar year, age category, and site of disease, pulmonary or 

non-pulmonary. Since treatment was not modelled explicitly, the case fatality rate was 

averaged over treated and untreated cases. Sex, birthplace, and other factors 

potentially influence the case fatality rate but were not taken into account here due to 

limited availability of data and uncertainty over the impact of these factors. 

Estimates of case fatality rates used in the model were derived from 'death to 

notification ratios' (DNRs) by age category and disease site from two studies 

conducted in England and Wales [284, 285]. The DNR was obtained by dividing the 

number of deaths due to tuberculosis by the number of tuberculosis notifications each 

year. DNRs estimate the case fatality rate as defined here, assuming deaths occur in 

the same year as the notification, which is reasonable given evidence that most who 

die oftuberculosis die within a year of diagnosis [286]. 

DNRs stratified by age category were calculated by Nissar et al. for the years 1974-

1987 [284] and were used as the basis for case fatality rates in the model for 1981-

1987. Firstly however, DNRs by age category and calendar year were split into 

estimated pulmonary and non-pulmonary rates. The overall case fatality rates for any 

given age group can be calculated as a weighted average of pulmonary and non

pulmonary case fatality rates and can be described by the following equation 
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c!rage = pulmagex rage x c!rnonpulm,age + (l-pulmage) x c!rnonpulm,age 

where c!rage is the age-specific case fatality rate, pulmage is the age-specific proportion 

of cases that are pulmonary, c!rpulm,age is the age-specific case fatality rate for 

pulmonary cases, c!rnon-pulm,age is the age-specific case fatality rate for non-pulmonary 

cases, and rage is the ratio of pulmonary to non-pulmonary case fatality rates for a 

given age category. 

Solving the above equation for c!rnonpulm,age results in 

c!rnonpulm,age = c!rage -:- (pulmage x rage + (l-pulmage)) 

To use this equation, first the rage ratios were estimated from the ratio of case fatality 

rates in respiratory cases to non-respiratory cases given by Martineau et al. from data 

for 1998 -1999 [285]. Although there are differences in pulmonary versus respiratory 

disease definitions (see Chapter 2, Section 2.1) and possibly differences in rage over 

time, these ratios were assumed to approximate the ratios of pulmonary to non

pulmonary case fatality rates over the study period. This simplifying assumption was 

used for lack of other data. Ratios were calculated by first combining DNRs for all non

respiratory cases, which were divided into eight categories, using a weighted average 

based on the number of notifications for each category of non-respiratory disease. 

Next, respiratory rates were divided by these amalgamated non-respiratory rates. 

Note that the ratio for the age category of 0 - 14 years was set to one since the null 

rates for non-respiratory disease did not allow division. 

Secondly, estimates for pulmage were obtained from ETS data from 1982 - 2008. It was 

assumed pulmage in 1981 was equal to pulmage in 1982 and also constant from 2008 -

2011. 

The above equation was used to calculate c!rnonpulm,age for each age group from the 

Nissar et al. data from 1981-1987, with c!rpulm,age calculated in a similar manner. 

Results of the calculations of the c!rnonpulm,age and c!rpulm,age are found in Appendix 

Table 10-9. 

For 1988 - 2001, case fatality rates were estimated using age-stratified estimates of 

the DNR provided by Martineau et al. [285] . Because the rates stratified by calendar 

150 



year for this period were not divided into pulmonary and non-pulmonary rates, the 

same methods as above were used to estimate c/rnonpulm,age and c/rpulm,oge for each age 

group. Again, data from Martineau et al. were used to specify age-specific ratios of 

case fatality rates in respiratory cases to non-respiratory cases, as well as pulmage 

estimates from ETS data. Results are also found in Appendix Table 10-9. 

For 2002 - 2011, case fatality rates were extrapolated from 2001 values using average 

rates of change per year for the DNRs as reported by Martineau from 1988 - 2001 

[285]. The average decrease in the DNR was assumed to continue from 2002 - 2011. 

Rates of decrease were zero for the two youngest age categories. For each of the three 

older age categories, the DNRs fell by about 1.6 - 2.6% per year. The resulting case 

fatality rate estimates are found in Appendix Table 10-9. 

4.2.4 "IV Prevalence 

HIV prevalence was important to consider in the model because of its impact on 

tuberculosis disease progression risk, as discussed in Chapter 2, Section 2.1.2. The HIV 

prevalence in all groups except SSA-born individuals was assumed to be zero, as the 

effect of HIV on tuberculosis in these groups was likely negligible in England and 

Wales. In a recent study, the HIV prevalence in non-African, foreign-born tuberculosis 

cases ranged from 0.6% to 7.1% and was 1.5% for UK-born cases [287]. Cases in Asian

born individuals, representing nearly one-third of the total cases, were found to have 

an HIV prevalence of only 0.6%. On the other hand, the same study found about 19.8% 

of African-born and 20.5% of ethnic Black Africans with tuberculosis were co-infected 

with HIV [287], most or all of whom were likely SSA-born. Because it is much higher 

than in other groups, SSA-born HIV prevalence was taken into account in the model. 

There are no published estimates of HIV prevalence in SSA-born migrants entering the 

UK, but estimates of HIV prevalence in heterosexual SSA-born individuals living in 

England and Wales, by sex, for ages 15 - 44 years for 2001- 2008 were recently 

published [288]. These were used to estimate HIV prevalence for all SSA migrants 

entering the UK from 1981- 2011. HIV prevalence among SSA-born individuals living in 

the UK in 1981 and SSA-born migrants entering the UK in 1981 was assumed to be 

zero. It was assumed that from 1981 to 2001 there was a linear increase in HIV 
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prevalence, reaching the median prevalence levels estimated for England and Wales in 

2001 of 1.3% for males and 2.39% for females [288]. The HIV prevalence of SSA-born 

migrants was assumed equal to the estimated median HIV prevalence in the 

population of SSA-born individuals in England and Wales from 2001- 2008, and was 

assumed constant from 2008 - 2011 at 1.55% for males and 3.39% for females. The 

resulting assumed HIV prevalence values for SSA-born migrants by year and sex are 

found in Table 10-10. 

These prevalence values may underestimate HIV prevalence in entering migrants since 

there were SSA-born individuals residing in the UK by 1981 and they were assigned to 

be HIV negative at model initialisation in 1981. This means that entering migrants in a 

given year would have a lower HIV prevalence than that needed to result in the 

prevalence estimated for the overall population residing in the UK at that time. On the 

other hand, using the same HIV prevalence estimated for 15 - 44-year-olds for all 

migrants, regardless of age or sexual orientation, may overestimate prevalence in 

some groups, though there are few migrants in older and younger age groups. It is 

unknown whether these effects balance. 

4.2.5 Proportion of Cases That Are Notified 

Although the UK requires reporting of tuberculosis cases to health authorities, not all 

cases are properly reported and some remain undetected altogether. The proportion 

of cases that are notified includes unreported or otherwise undetected cases, and is 

important for comparing model output to data for 1999 - 2009 in the England and 

Wales model application and 2007 - 2011 in the West Midlands model application. 

Recently, Van Hest et al. estimated under-notification using record-linkage and 

capture-recapture methods {289]. Based on capture-recapture models, only 56.2% of 

cases may be notified, though due to inconsistency with other studies and unmet 

assumptions of the model, they suggested this method may not have been valid. A 

review by Pillaye et al. found that across several studies, it was estimated that 7 - 27% 

of cases were not reported. Taking these sources into account, I assumed that 75% of 

cases were notified. 
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For assumptions about the infection status of the population in 1981, disease 

prevalence was adjusted to account for unreported cases. At this time, it was assumed 

a slightly higher proportion of cases were undetected, 27%, based on a study 

conducted during that time period [290]. 

4.2.6 Proportion of Cases That Are Typed With 24·Locus VNTR 

For the West Midlands application of the model, the proportion of cases typed with 

24-locus VNTR was needed to simulate observed typing data. These proportions were 

taken directly from observed data-the proportion all ETS notifications from the West 

Midlands that were successfully typed using 24-locus VNTR from 2007 - 2011. Cases 

typed successfully included no more than two missing loci. These proportions were 

stratified by disease site and are found in Table 4-5. 

Table 4-5: Proportion of cases typed by disease site, for the West Midlands 2007 - 2011. Proportion typed refers to 

the proportion of notified cases that were successfully typed with 24-locus VNTR, including no more than two 

missing loci. 

Proportion typed with 24-locus VNTR 

Disease site 2007 2008 2009 2010 2011 

Pulmonary 52.5% 55.1% 57.9% .63.6% 57.5% 

Non-pulmonary 35.7% 35.3% 37.3% 38.6% 32.4% 

4.2.7 Infection status of Initial Population, 1981 

The proportion of individuals in each of the infection states, by age and birthplace (UK 

and foreign-born), for all individuals in England and Wales in 1981 was estimated using 

a simple spreadsheet model. This model took into account disease incidence data, 

assumptions about vaccination practices in the UK and abroad, the estimated ARls in 

England and Wales, and the average estimated ARI experienced by foreign-born 

individuals living in the UK throughout their time abroad and in the UK. To simplify 

calculations, individuals were assigned one of eight infection states-instead of 11 

states-by combining pulmonary and non-pulmonary disease categories for each of 

the three disease types, Primary Disease, Reactivation Disease, and Reinfection 

Disease. Disease was then designated as pulmonary or non-pulmonary when the 
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simulation model was run, a random assignment based on the same probabilities used 

for the duration of the simulation (see Section 4.2.3.2). Since the proportions of the 

population in the different infection states were uncertain and relied on many 

assumptions, the model was run for several years before model output was fit to 

notification data, from 1981- 1998 for the England and Wales application and from 

1981- 2006 for the West Midlands application. 

The method for obtaining proportions in each of the infection states was the same for 

UK-born and foreign-born individuals, although assumptions about ARI, disease 

incidence, and vaccination practices varied between the two population groups. These 

assumptions are described below. 

4.2.7.1 ARI 

For UK-born individuals, the ARI estimated by Vynnycky and Fine 1997 [291] for each 

year from 1860 - 1949 for England and Wales was used. A 13% decline in ARI per 

annum was assumed after 1949 [291]. For foreign-born individuals, the average ARI 

experienced was unknown and difficult to estimate. This lack of certainty was because 

the ARI for foreign-born individuals was the average ARI experienced over the average 

foreign-born individual's time abroad and time in the UK, across all age groups. For 

lack of data, the ARI for foreign-born was assumed equal to that of UK-born individuals 

in England and Wales up until 1955 and constant thereafter at 0.84% per year. It was 

assumed that SSA-born individuals in the UK in 1981 had the same exposure as other 

foreign-born individuals, though this was altered in some simulations for the England 

and Wales application of the model, as discussed in Chapter 5, Section 5.1.5. It is 

unknown how well this assumption reflects reality, however, the assumptions used to 

initialize the population in 1981 are unlikely to have made a major impact on 

simulated incidence because the model was run for several years before fitting model 

output to observed data. A plot of the assumed ARls experienced by UK-born and 

foreign-born individuals is found in Figure 4-1. 
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Figure 4-1: Assumed ARls (%) experienced by those living in the UK in 1981, by country of birth. These ARls were 

used to establish the age-specific infection and disease prevalence for the initial model population in 1981. 

4.2.7.2 Vaccination practices 

Vaccination practices are detailed in Section 4.2.1. 

4.2.7.3 Prevalence a/disease 

The number of tuberculosis notifications for 1981 was used to estimate disease 

prevalence for the start of the simulation at the beginning of 1981. There were 8,128 

total incident cases reported in 1981 [292], but this number was adjusted to account 

for underreporting. Assuming 27% of tuberculosis cases were unreported at this time 

(See Section 4.2.5 and reference [290]), the total number of cases was calculated as 

8,128/(1- 0.27), for an adjusted total of 11,134 incident cases in 1981. 

The birthplace of tu bercu losis cases was not reported, so assignment of cases as UK

born and foreign-born was based on trends in the proportion of cases born in the UK in 

five-year tuberculosis surveys in England and Wales. Surveys reported the birthplace of 

cases in 1988 and 1993. In 1988, about 55% of cases were UK-born [2], while in 1993, 

50% were UK-born [293]. It is assumed that the decreasing trend in the proportion of 

cases born in the UK from 1988 to 1993 applies to previous years and could be used to 
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estimate the proportion of cases born in the UK in 1981. Following trends seen from 

1988 -1993, an estimated 62.7% of cases were UK-born in 1981. This proportion 

resulted in an estimated 6,977 UK-born cases and 4158 foreign-born cases of 

tuberculosis in 1981. 

Next, the number of total prevalent cases was estimated. It was assumed the 

prevalence to annual incidence ratio was 1:2 in 1981, consistent with the six-month 

duration of infectiousness assumed in the model (See Section 4.2.3.3). The prevalent 

cases for 1981 was then assumed to be half of the number of incident disease cases, or 

3,488 UK-born cases and 2,079 foreign-born cases. The number of prevalent cases for 

each birthplace was divided by the total population for each group to obtain the 

proportion of individuals with prevalent disease. Although the age and sex distribution 

of cases was unrealistic, it should not affect model results because there is no age- or 

sex-dependent mixing assumed and those cases will have long recovered by the time 

the model is fit to data after almost 20 years of simulation. 

4.2.7.4 Spreadsheet model for calculating 

infection state prevalences 

The above ARI, vaccination, and disease prevalence assumptions were used for 

calculations performed using a spreadsheet model used to obtain the proportions in 

each infection state by birthplace (UK or foreign-born), age, and sex at the end of 

1980, to initialize the population starting at the beginning of 1981. The spreadsheet 

model was implemented in Excel, adapted from work presented in a recent textbook 

(chapter nine) [294]. First, the age-specific proportion of individuals who avoided 

infection, or remained Uninfected, was calculated up until the age of vaccination, if 

applicable, for each one-year cohort born fr0'!l1861-1980. Generally, the proportion 

of individuals at age a who remain Uninfected at age a, at the end of year t is 

Ua,r=l - {1-ARIt-aHl-ARIt-a+1Hl-ARIt-a+2} .... {1-ARIt-1Hl-ARIJ 

where Ua,t is the proportion Uninfected at age a, at the end of the year of interest t, 

and ARlt is the ARI in year t. However, in the simulation model the average individual in 
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a one-year birth cohort experienced only half the ARI in their year of birth, t-o, as 

individuals in a birth cohort were assumed to be born at random times throughout the 

year of birth. The formula above was modified to take this into account and the 

proportion Ua,t, at age 0 and the end of year t became . 

U a,Fl- (1-0.5xARIt-a)(1-ARlt-a+1)(1-ARIt-a+2) .... (1-ARlt-1)(1-ARft) 

When vaccination was included in the spreadsheet model for UK-born individuals, the 

formula above was applied up until the age of vaccination. At the assumed year of 

vaccination for the cohort, the proportion of Uninfected individuals at the end of that 

year was multiplied by the vaccine coverage for that year, vCtJ and efficacy of the 

vaccine, ve, to get the proportion vaccinated effectively, or those assigned to the 

Immune class, Va,t. This proportion is given by 

Va,t = Ua,tX VCtX ve 

for age 0 and year t. The proportion Va,t were subtracted from the proportion 

Uninfected left at the end of the year so that U* a,t represented the corrected number 

of Uninfected, given by 

U*a,t = Ua,t- Va,t 

and the new U* a,t replaced Ua,t in subsequent calculations. After vaccination, the ARI 

was again applied to the remaining Uninfected each year, given by 

Ua,t = Ua-a,t-l - Ua-a,t-l X ARIt 

This process was continued to the end of 1980 for each birth cohort. The proportions 

Ua,t and Va,t at the end of 1980 for each birth cohort were used for those proportions 

Uninfected and Immune for the initial population in 1981. The proportion in Uninfected 

and Immune classes was also tabulated and saved for several years before 1981 for 

use in estimating the proportions in the other infection states. 

The remaining individuals, those not assigned Uninfected or Immune, were then 

assigned to one of the three infection states preliminarily. The preliminary 

assignments were used as a starting point for the final proportions in each infection 

state and also to assign disease cases to one of the three infection states. The first step 
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in assigning preliminary infection classes was to assign those individuals infected in the 

five years prior to 1981 to the Recent Infection class. This assignment was derived from 

the tabulation of Ua,t such that those preliminarily assigned to Recent Infection, Ipa,t. at 

age a and at the end of year t were given by 

Ipa,t = Ua-5,t-5 - Ua,t 

Note that for those under age five, the first term, Ua-s,t-S, equals one. Also note, this 

formula did not work for all individuals, as it had to be corrected for those vaccinated, 

if applicable. In that case the formula became 

Ipa,t= Ua-5,t-5 - Ua,t - Va,t 

Next, the proportion of individuals remaining after accounting for the proportion Ua,t, 

Va,t and Ipa,t were those who had been infected more than five years previously, 

preliminarily assigned to the Latent Infection class and called LPa,t. The proportion Lpa,t 

was used as a proxy for those at risk for Reinfection and this proportion was calculated 

for the five years prior to 1981. It should be noted that this was an approximation that 

over-estimated those at risk for Reinfection since some proportion of these would 

have been reinfected and be in the Reinfection or Reinfection Disease states. The over

estimation of those at risk led to over-estimation of the proportion in the Reinfection 

class, though since the ARI in the five years prior to 1981 was quite low, this over

estimation was likely small. For each of the five years prior to 1981, the ARI for the 

year was multiplied by Lpa,t to get the estimated proportion reinfected in that year. 

The sum over those five years gave the proportion estimated to have Reinfection at 

the end of 1980, calculated by 

This proportion, Rpa,t, was then subtracted from LPa,t to approximate the proportion in 

the Latent Infection class, Lp* a,t, calculated by 

Lastly, the proportion with prevalent disease in 1981 was divided into Primary Disease, 

Reactivation Disease and Reinfection Disease classes. The proportion assigned to each 
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disease type was proportional to the product of the estimated proportions at risk and 

the estimated risk of disease for each infection class. The proportions at risk are 

estimated to be those preliminarily assigned to Recent Infection, Latent Infection and 

Reinfection (/Pa,tJ LP*a,t and RPa,t), respectively. The risk of disease for the three 

infection classes by age and sex was taken from disease risk estimates for white males 

in England and Wales from Vynnycky et al. [19]. After the total proportion of prevalent 

disease was assigned to each disease type, these proportions were subtracted from 

the corresponding infection class to finalize proportions in each infection state used in 

the model. The resulting proportions in each infection state by birthplace, age, and sex 

are found in Appendix 10.7. 

4.2.8 Infection Status of Migrants Upon Entry to UK 

Similar to initialization of the model population in 1981, infection states were assigned 

to migrants when they entered the population throughout the simulation. Obtaining 

estimates for the proportion of migrants in each of the infection states was difficult for 

various reasons. Firstly, even if migrants were screened for infection or disease, there 

would be no way to clinically distinguish or otherwise ascertain the precise infection 

states necessary for the model. Secondly, even information on infection and disease 

prevalence,which could be used for rough groupings for the model, is sparse and 

difficult to come by. The screening programs that are in place are inconsistently 

practiced and also not designed for surveillance of infection and disease prevalence in 

migrants (see Section 2.3.1). Also, up until recently, tests for infection were unreliable 

(see Section 2.2.5). Therefore, given the uncertainty in estimating infection state 

proportions for migrants and their importance for model output, two separate 

methods were used to generate scenarios for the proportions of migrants in the 

different infection states upon entry to the UK. 

The 'screening method' used screening data from new migrants to the UK to base 

assumptions about the probabilities of different infection states. Two different 

distributions of infection state probabilities for migrants were generated using this 

method. The tARI method' is similar to the method used to obtain the infection status 

of the population in 1981 (see above), combining assumptions about the ARI 
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experienced by migrants before arrival to the UK, disease prevalence in migrants, and 

vaccination practices abroad to obtain proportions in the different infection states. 

Three different distributions for the infection state probabilities of migrants were 

generated using this method. The five total distributions for infection state 

probabilities for migrants upon entry to the UK were used for model fitting for the 

England and Wales application of the model in Chapter 5, whereas only the two 

screening method scenarios were used for the West Midlands application of the 

model, as described in the methods for Chapter 7. 

4.2.8.1 Screening method 

Although there is considerable uncertainty over interpretation of TST data, the 

screening method used tuberculosis screening studies to estimate disease and 

infection prevalence in foreign-born migrants to England and Wales. Two related 

schemes were used to interpret the screening data, Scrl and Scr2, translating data into 

infection state probabilities by age, sex, and birthplace (UK, OF, SSA). 

4.2.8.1.1 Screening data 

Most screening studies conducted in the UK have focused on refugees or asylum 

seekers, though one study by Ormerod and colleagues looked at all Immigrants to a 

region, and also stratified immigrants by age [295]. Ormerod et al. reported Tine 

tuberculin test results for new immigrants to the Blackburn, Hyndburn, and Ribble 

Valley District Health Authority from 1983 - 1988, which consisted mainly of Indian 

and Pakistani immigrants. They reported the frequency of five test grades, 0 - 4, by 

ethnic group and age class for all years combined. Age classes reported were: 0 - 4 

years; 5 - 14 years; 15 - 29 years; 30 - 44 years; 45 - 64 years; and 65 years and 

above. Ethnic groups were reported, but they were combined due to small sample 

sizes. Appendix 10.8 provides a table of the proportions in each test grade by age, 

estimated from the combined data found in Figure 1 of the Ormerod paper [295]. The 

test grade data were combined with assumptions about how test grades correspond to 

infection states to assign proportions in the different infection states for migrants. This 

was done for OF-born infection state probabilities only. UK-born and SSA-born 

infection state probabilities were derived using only the OF-born estimates and some 

further assumptions. This was done because UK-born migrants were not included in 
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the screening study, so must be handled separately, and because SSA-born migrants 

were included in the screening study but made up a small proportion of immigrants to 

the UK (about 11% of all foreign-born individuals in recent years). Another reasons 

SSA-born were handled separately is because of their likely higher infection and 

disease prevalence, which was expected to differ from the average values for all 

immigrants 

4.2.8.1.2 Rules for partitioning OF-born individuals into five infection states 

In the first scheme, Scrl, it was assumed that test grades 0 and 1 corresponded to non

reactions and these individuals were Uninfected. It was assumed that test grades 2 and 

3 were reactions to inactive infections and these individuals were placed in the Latent 

Infection class. There was a sizeable proportion of individuals with grade 4 reactions, 

likely more than would have Recent Infection, Reinfection and active disease. 

Therefore, it was assumed 10% of grade 4s had active disease, which gave an active 

disease prevalence roughly comparable to the prevalence found in screening studies. A 

further 40% of grade 4s were assumed to have a Recent Infection or Reinfection. The 

remaining 50% of grade 4s were added to the Latent Infection class. It was also 

assumed that BCG vaccination in migrants was negligible. Although many immigrants 

had been vaccinated upon arrival to the UK, there is much debate over the efficacy of 

vaccination in many places in the world. The clearest evidence shows that BCG 

protects against childhood tuberculosis in many places in the world, but has limited 

success in prevention of adult disease [60,296]. Since the protection from childhood 

tuberculosis in migrants was not important for modelling purposes here, it was 

assumed that no immigrants entered as Immune. Rules and resulting proportions in 

the different infection states for OF-born are found in Table 4-6. 

The second scheme for interpretation of screening data used to devise another 

distribution for infimm is similar to Scrl, though differs in how TST results from those 

aged 15 years and above are interpreted. Table 4-7 details the rules used for 

translating the TST results into infection states in Scr2 for each age group, along with 

resulting proportions in a subset of generalized infection states, five in total. 
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Table 4-6: Rules for translating Tine test grades into infection state categories by age category for OF-born migrants 

under Scheme Scrl and the resulting proportions of OF-born in preliminary infection state categories. 

Proportion assigned to infection state by age class (years) 

Infection state Rule 

0-4 5-14 15-29 30-44 45-64 65+ 

Uninfected Grades 0,1 0.920 0.803 0.695 0.627 0.623 0.414 

Immune None 0.000 0.000 0.000 0.000 0.000 0.000 

Latent Infection 
Grades 2, 3 and 

0.070 0.180 0.263 0.321 0.294 0.496 
50% of grade 4 

Recent 
40% of grade 4 0.008 0.013 0.033 0.041 0.067 0.072 

(re)infection 

Active disease 10% of grade 4 0.002 0.003 0.008 0.010 0.017 0.018 

Table 4-7: Rules for translating Tine test grades into infection state categories by age category for OF-born migrants 

under scheme Scr2 and resulting proportions of OF-born individuals in preliminary infection state categories by age. 

Proportion assigned to infection state by age class (years) 
Infection Rules (Under 

state 15 yrs) 0-4 5-14 Rules (15 yrs and 15-29 30-44 45-64 
65+yrs 

yrs yrs over) yrs yrs yrs 

Un infected Grade 05,15 0.92 0.80 
Grade Os, 15, 50% 

0.77 0.72 0.70 0.52 
25 

Immune None 0.00 0.00 None 0.00 0.00 0.00 0.00 

Latent Grade 25, 35, 
0.00 0.00 

Grade 50% 25, 3s, 
0.01 0.01 0.02 0.02 Infection 50%45 50%45 

Recent 
Infection or 40% Grade 45 0.01 0.01 40% Grade 45 0.03 0.04 0.07 0.07 
Reinfection 

Active 
10% Grade 4s 0.07 0.18 10% Grade 45 0.19 0.23 0.22 0.39 

disease 

4.2.8.1.3 Rules for subdividing infection and disease categories 

The above assumptions split OF-born migrants into five classes, Uninfected, Immune, 

Latent Infection, Recent Infection, or Reinfection, and active disease (combination of all 

six disease classes in the model). The active disease category and the Recent Infection 

or Reinfection category were divided by making some additional assumptions. The 

active disease category was divided according to the age-specific proportions of the 

three disease types estimated for foreign-born individuals at model initialization in 
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1981, with values are given in Table 4-8. The Recent Infection or Reinfection category 

was also split according to the age-specific estimates obtained for foreign-born 

individuals at model initialization in 1981, with values given in Table 4-9. After these 

two categories were split, there were eight disease classes, not the full 11 states found 

in the model, since pulmonary and non-pulmonary disease were combined for each 

disease type. Disease site was assigned when the model was run. For Scrl, these are 

found in Table 4-10. For Scr2, these are found in Table 4-11. 

Table 4-8: Proportion of all active disease assumed for each disease type, Primary Disease, Reactivation Disease, 

and Reinfection Disease by age category for migrants. 

Proportion assigned to infection state 
Infection state 

0-4 yrs 5 -14 yrs 15-29 yrs 30-44yrs 45 -64 yrs 65+ yrs 

Primary Disease 1.00 0.97 0.99 0.98 0.93 0.28 

Reactivation 
0.00 0.00 0.01 0.02 0.07 0.71 Disease 

Reinfection 
0.00 0.03 0.01 0.00 0.00 0.01 Disease 

Table 4-9: Proportion recent (re)infections assigned to Recent Infection and Reinfection states by age category for 

migrants. 

Proportion assigned to infection state 
Infection state 

0-4 yrs 5-14 yrs 15-29 yrs 30-44 yrs 45-64 yrs 65+ yrs 

Recent Infection 1.00 0.97 0.87 0.68 0.36 0.03 

Reinfection 0.00 0.03 0.13 0.32 0.64 0.97 
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Table 4-10: Assumed proportions for each infection state by age category for other foreign-born migrants upon 

entry to the UK, generated by the Scrl scheme of the screening method. 

State 
0-4 5-14 15-29 30-44 45-64 

65+ years 
years years years years years 

Uninfected 0.919636 0.802986 0.695497 0.627303 0.622697 0.413556 

Immune 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

Recent Infection 0.008291 0.012976 0.028628 0.027302 0.022967 0.002034 

Latent Infection 0.070000 0.180379 0.263103 0.321096 0.293596 0.495889 

Reinfection 0.000000 0.000332 0.004492 0.013979 0.043999 0.070410 

Primary Disease 0.002073 0.003321 0.008225 0.010119 0.015517 0.004729 

Reactivation Disease 0.000000 0.000006 0.000054 0.000197 0.001200 0.007047 

Reinfection Disease 0.000000 0.000000 0.000001 0.000004 0.000024 0.006335 
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Table 4-11: Assumed proportions in each infection state by age category for other foreign-born migrants upon entry to the UK, generated by the Scr2 scheme of the screening method. 

Infection state 0-4 years 5-14 years 15-29 years 30-44 years 45-64 years 65+ years 

Uninfected 0.919636 0.802986 0.773236 0.722191 0.696966 0.523333 

Immune 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

Recent Infection 0.008291 0.012976 0.028628 0.027302 0.022967 0.002034 

Latent Infection 0.070000 0.180379 0.185364 0.226208 0.219326 0.386111 

Reinfection 0.000000 0.000332 0.004492 0.013979 0.043999 0.070410 

Primary Disease 0.002073 0.003321 0.008225 0.010119 0.015517 0.004729 

Reactivation Disease 0.000000 0.000006 0.000054 0.000197 0.001200 0.007047 

Reinfection Disease 0.000000 0.000000 0.000001 0.000004 0.000024 0.006335 
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4.2.8.1.4 Rules for obtaining UK-born infection state proportions 

To obtain analogous estimates of infection state proportions for UK-born individuals, 

the proportion of those in the Uninfected class by age category was first estimated 

using the spreadsheet model described in Section 4.2.7.4. The age specific proportions 

of Uninfected UK-born individuals were calculated for 1995, the average year of 

migration, to simplify calculations. For these calculations, it was assumed that the ARI 

experienced was the same as the ARI for England and Wales until the year 1960, after 

which the ARI was constant at 0.4% until 1995. This ARI was chosen to reflect a higher 

ARI compared with those living in England and Wales due to potential exposures 

abroad. The proportion Un infected by age for the average time of migration, 1995, was 

estimated using the spreadsheet model. These proportions were then averaged into 

age classes, which corresponded to age classes in the screening data, which were used 

for the proportion of Uninfected UK-born individuals in this method. Next, the 

proportion Uninfected for UK-born was compared the proportion for OF-born 

individuals for estimating proportions in other infection states. For each age class, the 

ratio of estimated UK-born Un infected to OF-born Uninfected was calculated. These 

ratios were then used to estimate plausible values for other UK-born infection states 

by age category. This was done by reducing the Recent Infection and Reinfection 

classes and the three disease classes by the inverse of these ratios. The proportion 

with Latent Infection was assigned to be the remainder, after these adjustments. The 

resulting proportions for UK-born are found in Table 4-12 and Table 4-13. 
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Table 4-12: Infection state probabilities for UK-born migrants by age category, estimated using the Scr1 method. 

Infection state 0-4years 5 -14 years 
15-29 30-44 45-64 

65+ years 
years years years 

Uninfected 0.989655 0.959255 0.910651 0.847613 0.625054 0.116202 

Immune 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

Recent 0.007704 0.010862 0.021864 0.020206 0.022880 0.007239 
Infection 

Latent 0.000715 0.026820 0.057730 0.114198 0.291554 0.561516 
Infection 

Reinfection 0.000000 0.000278 0.003431 0.010345 0.043833 0.250587 

Primary 0.001926 0.002780 0.006282 0.007489 0.015459 0.016831 
Disease 

Reactivation 0.000000 0.000005 0.000042 0.000146 0.001195 0.025079 
Disease 

Reinfection 0.000000 0.000000 0.000001 0.000003 0.000024 0.022547 
Disease 

Table 4-13: Infection state probabilities for UK-born migrants by age category, estimated using the Scr2 method. 

Infection state 0- 4 years 5 -14 years 
15-29 30-44 45-64 

65+ years 
years years years 

Uninfected 0.989655 0.959255 0.910651 0.847613 0.625054 0.116202 

Immune 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

Recent Infection 0.007704 0.010862 0.024308 0.023262 0.025609 0.009161 

Latent Infection 0.000715 0.026820 0.054196 0.108422 0.281608 0.475966 

Reinfection 0.000000 0.000278 0.003814 0.011910 0.049061 0.317105 

Primary Disease 0.001926 0.002780 0.006984 0.008622 0.017302 0.021299 

Reactivation 0.000000 0.000005 0.000046 0.000168 0.001338 0.031736 
Disease 

Reinfection 
0.000000 0.000000 0.000001 0.000003 0.000027 0.028532 

Disease 
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4.2.8.1.5 Rules for obtaining SSA-born infection state proportions 

To obtain estimates for SSA-born infection state proportions, a method similar to the 

one used for UK-born was employed. The proportion of SSA-born Un infected by age 

was calculated assuming the same ARls experienced by those in England and Wales, 

decreasing until 1947 and constant thereafter at about 1%. The proportion Uninfected . 

by age for the average time of migration, 1995, was estimated. These proportions 

were then averaged into age classes that correspond to age classes in the screening 

data. For each age class, the ratio between estimated proportions of Uninfected SSA

born individuals and Uninfected OF-born individuals was calculated and the Recent 

Infection and Reinfection classes and the three disease classes were increased by the 

inverse of this ratio. The proportion with Latent Infection was assigned to be the 

remainder after these adjustments. The resulting proportions for SSA-born individuals 

can be found in Table 4-14 for Scrl and Table 4-15 for Scr2. 

Table 4-14: Infection state probabilities for SSA-born migrants by age category, estimated using the Scrl method. 

Infection state 

Uninfected 

Immune 

Recent 

Infection 

Latent Infection 

Reinfection 

Primary Disease 

Reactivation 

Diseose 

Reinfection 

Disease 

0-4 years 5-14 years 

0.959093 0.846127 

0.000000 0.000000 

0.007950 0.012314 

0.030970 0.138086 

0.000000 0.000315 

0.001987 0.003152 

0.000000 0.000006 

0.000000 0.000000 

15-29 years 30-44 years 45-64 years 65+ years 

0.686635 0.533466 0.371400 0.069046 

0.000000 0.000000 0.000000 0.000000 

0.028998 0.032105 0.038507 0.012183 

0.271430 0.405856 0.488254 0.388564 

0.004550 0.016438 0.073770 0.421730 

0.008331 0.011899 0.026016 0.028326 

0.000055 0.000232 0.002012 0.042207 

0.000001 0.000005 0.000041 0.037946 

168 



Table 4-15: Infection state probabilities for SSA-born migrants by age category, estimated using the Scr2 method. 

Infection state 0-4 years 5-14 years 15-29 years 30-44 years 45-64 years 65+ years 

Uninfected 0.959093 0.846127 0.686635 0.533466 0.371400 0.069046 

Immune 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

Recent Infection 0.007950 0.012314 0.032239 0.036961 0.043100 0.015417 

Latent Infection 0.030970 0.138086 0.266743 0.396678 0.471514 0.244587 

Reinfection 0.000000 0.000315 0.005059 0.018924 0.082569 0.533677 

Primary Disease 0.001987 0.003152 0.009262 0.013699 0.029119 0.035845 

Reactivation Disease 0.000000 0.000006 0.000061 0.000267 0.002252 0.053411 

Reinfection Disease 0.000000 0.000000 0.000001 0.000005 0.000046 0.048018 

4.2.8.2 ARI method 

The 'ARI method' was used to tabulate age-specific proportions in each infection state 

using the same method as that used for the initial population in 1981, described above 

in Section 4.2.7. Briefly, the ARls for migrants were used along with assumptions about 

disease incidence to inform a spreadsheet model used to estimate age-dependent 

proportions in the different infection states for each year and birthplace (UK, OF, SSA). 

Three schemes were generated this way, one for each of three different assumptions 

about the ARls experienced by migrants: 'ARllow', 'ARI mid' and 'ARI high'. ARI and 

disease prevalence assumptions are described below. This method was only used for 

fitting scenarios in the England and Wales application of the model. 

4.2.8.2.1 ARI estimates 

Since older estimates of ARI were not available, it was assumed that ARls for all 

countries followed patterns similar to those in the UK, falling to recently estimated 

values from nearly 20% in 1861. It was assumed that once the ARI fell to the recently 

estimated value, it was constant thereafter. The recently estimated values were 

different for each birthplace (UK, OF, SSA) and are outlined below. 
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Firstly, estimates of the ARI in all regions of the world for recent years were compiled. 

Recent ARI estimates were divided into UK, 'rest of Europe', North Africa, Sub-Saharan 

Africa, Indian Subcontinent, 'rest of Asia', America, and Oceania, consistent with 

migration data provided by ONS. ARls estimated for each region were obtained from 

WHO estimates or other literature sources. A range of ARI estimates was established 

for each region, as well as low, mid and high values for each. These are found in Table 

4-16, along with notes on the literature sources for the estimates. Many of these 

estimates were taken from a 1988 WHO report by Cauthen et aI., where ARls were 

estimated in many countries of the world using data from 1975 onward [297]. There 

were also several studies of the ARI in individual countries and regions within countries 

[298-302]. 

ARls for UK-born and SSA-born individuals were assumed constant for recent years, 

including every year of the simulation, at values listed in Table 4-16. For OF-born 

migrants, overall ARls experienced recently for each year of the simulation were 

estimated by calculating a weighted average of ARls from the various regions of the 

world, with weights for each year determined by the number of migrants to England 

and Wales from each region. These weighted-average ARls were calculated for each 

year of the simulation and separately for the low, mid, and high estimates of ARlo 

Results for the weighted-average ARls experience in recent years for OF-born for each 

year of the simulation are found in Figure 4-2. 

These ARI estimates for recent years were joined with assumptions about the ARls 

experienced in the longer term, using the historic trajectory of ARI described above. 

For example, if an OF-born migrant entered the UK in 2009, the recently estimated low 

ARt value was about 0.4%, so it was assumed the ARI for these migrants decreased 

from nearly 20% in 1861 to about 0.4% in 1961 and remained constant thereafter, as 

shown in Figure 4-3. This pattern was followed for OF-born individuals in other years 

and for UK-born and SSA-born individuals. The ARI decreased to the recently estimated 

level and remained constant thereafter. 
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Table 4-16: Estimates of the annual risk of infection (ARI) by world region. These values were used to estimate 

infection and disease prevalence for migrants to the UK in the ARI method. Note, values for the UK reflect 

assumptions about ARls experienced by UK-born migrants returning to England and Wales after having lived abroad 

and reflect higher ARls than currently estimated for the UK. 

ARI(%) 

World region References 

low Mid High 

To reflect ARls experienced abroad, ARls estimated for England 

UK 0.400 0.800 1.700 and Wales for 1960, 1955, and 1950 [271] were taken as the 

low, mid, and high estimates. 

Sub-Saharan 
Cauthen et al. African region, Tanzania Tuberculin Survey 

1.000 2.000 3.000 
Africa Collaboration 2001 [297]. 

Sutherland et al. 1983, estimated from data from the 

Rest of 0.016 0.042 0.067 Netherlands, where low set at 1979 value, high at 1967 value 
Europe 

and mid between the two [303]. 

0.150 0.325 0.500 
Cauthen et al.1988, Eastern Mediterranean region data (297); 

North Africa 
Ibiary et al. 1999 

Indian 
Cauthen et al. 1988, South-East Asia region [297]; Gopi et al. 

1.000 1.500 2.000 
Subcontinent 2006 [300]. 

Cauthen et al. 1988, Western Pacific region [297]; Norval et al. 
0.500 0.750 1.000 

2004 [301]. 
Rest of Asia 

Cauthen et al. 1988, Region of the Americans [297, 300]; 
0.070 0.385 0.700 

Salpeter & Salpeter 1999[304]. 
America 

Oceania 0.070 0.385 0.700 Assumed to be the same values as for' America'. 
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Figure 4-2 : Assumed average annual risk of infection (%) experienced in recent years for OF-born migrants by year 

of entry to England and Wales. These were used along with other assumptions to construct distributions for the 

probabilities of infection states of OF-born migrants upon entry to England and Wales. 
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Figure 4-3: Assumed average annual risk of infection (ARI) (%) experienced by OF-born migrants to the UK who 

entered in 2009. Assumptions for migrants entering in other years, 1981 - 2008, were very similar except the ARI 

fell to different values in recent years each year of entry, as shown in Figure 4-2. 

4.2.8.2.2 Prevalence of disease in migrants 

Tuberculosis screening studies were used to make assumptions about the prevalence 

of disease in foreign-born migrants upon entry to the UK for foreign-born migrants. It 
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was assumed that 0.55% of OF-born migrants across all age groups entered the UK 

with active disease, based on two screening studies from the UK [295, 305]. Ormerod 

reported on immigrants screened from 1983 -1988 and 1990 -1994, obtaining a 

prevalence of all forms of active tuberculosis in regular immigrants to the Blackburn 

local government area. These two studies gave an average active disease prevalence of 

0.55%. Because age-specific data were not available for either study, this prevalence 

was used for all age groups and was used for all foreign-born migrants. For UK-born 

migrants returning to the UK, the disease prevalence for 1981 UK-born individuals 

residing in the UK was used as the disease prevalence for UK-born migrants arriving 

throughout the simulation, from 1981 - 2009, for lack of other data. 

4.2.8.2.3 Results 

Three different distributions for the infection state probabilities in UK-born, OF-born, 

and SSA-born individuals were generated by applying the low, mid, and high ARI 

assumptions. Results are not shown, as these are cumbersome multi-dimensional 

tables that include values for eight infection states, 29 years, 120 age classes, both 

sexes, and three birthplaces for each of three ARI schemes. 
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5 England and Wales Modelling 

This chapter describes the application of a simplified version of the model introduced 

in Chapter 3 to tuberculosis dynamics in England and Wales. The aim was to better 

understand tuberculosis epidemiology in the region and to inform subsequent 

modelling work. To satisfy study objective two, the model was fit to tuberculosis 

notifications from England and Wales from 1999 - 2009 to estimate disease risk 

parameters and to identify plausible values for effective contact rate and assumptions 

about the infection status of migrants upon entry to the UK. The model was also used 

to estimate the proportion of cases due to recent transmission in the UK to satisfy 

objective three. The quality of model fits to observed data and disease risk estimates 

are reported for various combinations of effective contact rates and assumptions 

about the infection status of migrants upon entry to the UK. Results were obtained for 

two stages of fitting. In stage one, parameter values and input scenarios were outlined 

a priori based primarily on published data. In stage two, parameter values and input 

scenarios were identical to those used in stage one, apart from four variations: 1) 

altered parameter distributions for the HIV prevalence of SSA-born immigrants; 2) 

altered infection status for SSA-born individuals at model initialization in 1981; 3) 

additional disease risk parameters estimated; and 4) a single foreign-born category 

combining SSA-born and OF-born during fitting. Reporting focuses on results from the 

best fits to observed data, which came when combining SSA-born and OF-born during 

fitting. The input parameters used for subsequent modelling in later chapters are also 

identified. 
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5.1 Methods 

5.1.1 Notification Data Used For Fitting Targets 
The fitting targets are the observed data to which model output are fitted. In this 

application of the model, notifications for all forms of tuberculosis, pulmonary and 

non-pulmonary cases, in England and Wales from 1999 - 2009 were used for fitting 

targets. These data are fully described in Chapter 2, Section 2.7.1. Since notifications 

were stratified by age, sex, and birthplace, many demographic categories had a small 

number of cases observed each year. Some demographic categories also had a small 

population. In both cases, categories were less reliable for fitting. This is indicated by 

high random variability in simulations in model runs with identical parameter values 

and initial conditions, but different random number seeds (see Chapter 3, Section 3.5.1 

for discussion of model stochasticity). 

As shown in Chapter 2, Section 2.7.1, for each year of notification, sex, and birthplace, 

the age category of 0 - 14 years resulted in relatively few cases and thus were not well 

suited as fitting targets. For UK-born and OF-born individuals, the remaining three age 

classes (15 - 44 years, 45 - 64 years and 65 and over years) for both sexes were used 

for fitting from 1999 - 2009. These are shown in Figure 5-1- Figure 5-4. For SSA-born 

individuals, for both sexes and all years, those aged 45 - 64 years and 65 years and 

above had small population sizes in the UK and also small numbers of tuberculosis 

notifications. These age classes were also not used for fitting targets. Figure 5-5 and 

Figure 5-6 show fitting targets for SSA-born, 1999 - 2009. 

175 



600 

III 
Q.I 

500 III 
ra 
u 
"tl 
·iii 400 .2 
:l 
u 
~ 
Q.I 300 .JJ 
:l ... ... 
0 200 
~ 
Q.I 

.JJ 
E 100 :l 
Z 

0 
1999 2001 2003 

Year 

2005 2007 2009 

___ 15-44 

.....45-64 

~6s+ 

Figure 5-1 : Tuberculosis notifications used for model fitting targets for UK-born males by age category (years) for 

England and Wales, 1999 - 2009. 
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Figure 5-2: Tuberculosis notifications used for model fitting targets for UK-born females by age category (years) for 

England and Wales, 1999 - 2009. 
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Figure 5-3: Tuberculosis notifications used for model fitting targets for other foreign-born males by age category 

(years) for England and Wales, 1999 - 2009. 
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Figure 5-4: Tuberculosis notifications used for model fitting targets for other foreign-born females by age category 

(years) for England and Wales, 1999 - 2009. 
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Figure 5-5: Tuberculosis notifications used for model fitting targets for Sub-Saharan African-born males aged 15 - 44 

years for England and Wales, 1999 - 2009. 
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Figure 5-6: Tuberculosis notifications used for model fitting targets for Sub-Saharan African-born females aged 15 -

44 years for England and Wales, 1999 - 2009. 
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5.1.2 Simplified Model 
The model of tuberculosis dynamics described in Chapter 3 was simplified for 

application to notification data from England and Wales. Because genotyping data 

were not available, records of strain types were left out to save computer memory and 

computational time. For this application of the model, the model reported numbers of. 

case notifications each year, stratified by age, sex, and birthplace for comparison with 

the fitting targets described above. 

Fitting required many model runs in serial and parallel (see Chapter 3, Section 3.5.2). 

Therefore, because simulation of the entire population of England and Wales was 

memory-intensive and because it was important to minimize computation time, only 

data essential to the fitting process were enabled. For example, data such as the time 

and place of acquisition of an infection was not needed. After fitting, independent runs 

using best-fitting disease risk parameters were employed to estimate the proportion of 

disease due to recent transmission. For these estimates, the model was run on 30 

processors in parallel, as done during the earlier fitting runs, and the proportion of 

cases due to recent transmission was calculated for each demographic category. 

Results were averaged for the 30 model runs and proportions from each separate run 

of the model were plotted to depict the variance in simulation results. 

5.1.3 Model Parameterization 
Parameter values and assumptions used in the model are described in Chapter 4 and 

were based on published data wherever possible. However, as discussed in Chapter 4, 

some parameters were not well supported in the literature nor found in other 

available data sources, and thus were estimated or varied during model fitting. Disease 

risk parameters were particularly uncertain and were estimated during model fitting, 

as described below. Contact rates and infection status for migrants upon entry to the 

UK were also both uncertain. These parameters were not estimated during model 

fitting, but instead they were varied, taking on different values in different fitting 

scenarios. The contact rates used are described in Section 5.1.3.2, assumptions about 

the infection status of migrants upon entry to the UK in Section 5.1.3.3, and a 

summary of the fitting scenarios defined by these parameters in Table 5-3. 
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5.1.3.1 Disease risk parameters 

Parameters for the risk of developing disease following infection with M. tuberculosis 

were estimated by fitting numbers of case notifications in model output to the number 

of observed notifications in England and Wales for each demographic category from 

1999 - 2009. The risk of disease following infection with M. tuberculosis was assumed 

to depend on age, sex, birthplace, HIV-status, and infection type (Recent Infection, 

Latent Infection or Reinfection), as detailed in Chapter 4, Section 4.2.3.1 and 

summarized below. Recall that risks for Primary Disease and Reinfection Disease are 

cumulative risks of developing disease over the five years of Recent Infection and 

Reinfection respectively, while the risks for Reactivation Disease are proportions of 

individuals with Latent Infection who develop disease each year-actually a rate of 

disease development. 

To reduce the number of variable parameters in the model, several simplifying 

assumptions were made regarding the effects of age, sex, birthplace, and HIV on 

tuberculosis progression risks. First, risks for OF-born and HIV-negative SSA-born 

individuals were related to UK-born disease risks by a factor, df, by which UK-born risks 

were multiplied to get OF-born and HIV-negative SSA-born risks. This factor implies the 

relative differences between risks of disease for the different infection types and 

between the sexes was the same for UK-born and foreign-born individuals. It is 

unknown if this assumption is valid. The value of dfwas estimated in model fitting, as 

discussed below. 

Risks of developing tuberculosis for HIV-positive SSA-born individuals were assumed to 

be related to risks for OF-born and HIV-negative SSA-born individuals of the same age 

and sex by a factor of increase in disease risk due to HIV, ehiv. The value of ehiv was 

fixed at 7.0 in the model for all infection types, as discussed in Chapter 4, Section 

4.2.3.1. In addition to defining df and ehiv, the number of variable parameters was 

reduced by fixing disease risk ratios between males and females. These were fixed 

based on work by Vynnycky et al. [9, 19J as discussed in Section 4.2.3.1; values are 

given in Table 5-1. 
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For each birthplace and sex, age-dependency of disease risk parameters was simplified 

to take into account only two age classes, those aged 10 years and under and those 20 

years and over, following Vynnycky and Fine [19]. A linear increase in risk was assumed 

between ages 10 and 20 years. The number of variable parameters was reduced by 

fixing the disease progression risks for UK-born individuals under 10 years of age for 

both males and females. These were fixed based on estimates of the risk of respiratory 

disease by Vynnycky et aI., as discussed in Section 4.2.3.1 and shown in Table 5-1 [19]. 

Progression risks and rates for respiratory tuberculosis estimated by Vynnycky et al. 

were divided by the proportion of disease that is respiratory in children under 10 years 

of age. This division converted respiratory disease risks into disease risks for all sites of 

disease combined, as used herein. These risks were fixed because there were few 

cases on which to base estimates and because these cases were excluded from the 

data used for model fitting. Furthermore, these risks were not relevant to a large 

segment of the population, as relatively few children in England and Wales were 

infected with M. tuberculosis. 

For stage one fits, four disease risk parameters were estimated during fitting of model 

output to observed data. These parameters and their relationships to other 

parameters in the model are shown in Table 5-2, with fitted parameters marked in 

bold. For Recent Infection and Reinfection, cumulative disease risks for UK-born males 

aged 20 years and above were estimated in fitting. For Latent Infection, annual rates of 

disease progression for UK-born males aged 20 years and above were estimated in 

fitting. lastly, foreign-born risks were estimated by the model using a parameter for 

the factor by which UK-born disease risks and rates were multiplied to get foreign-born 

disease risks and rates, df. For each fit of the model to observed case notifications, 

estimates for these four parameters were obtained. Different fits of the model were 

obtained for 25 different input scenarios under which the effective contact rate and 

assumptions about the infection status of migrants upon entry to the UK were varied, 

. as discussed below. 
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Table 5-1: Key to parameter names with values for fixed parameters where applicable. 

Description Parameter Value Units 

Risk of Primary Disease for those 
dlukl0 4.06 Cumulative % 

aged <10 years 

Risk of Reactivation Disease for 
d2ukl0 9.82 x 10-8 Cumulative % 

those aged <10 years 

Risk of Reinfection Disease for 
d3ukl0 6.89 % per year 

those aged <10 years 

Risk of Primary Disease for those 
dluk20 

Estimated in 
Cumulative % 

aged 20 years and above fitting 

Risk of Reactivation Disease for 
d2uk20 

Estimated in 
% per year 

those aged 20 years and above fitting 

Risk of Reinfection Disease for 
d3uk20 

Estimated in 
Cumulative % 

those aged 20 years and above fitting 

RatiOS of female:male disease risks 
by infection type and age specified sd[J 
below. 

Recent Infection, age <10 sd[dlal0] 1 None 

Latent Infection, age <10 sd[d2al0] 1 None 

Reinfection, age <10 sd[d3al0] 1 None 

Recent Infection, age 20+ sd[dla20] 1 None 

Latent Infection, age 20+ sd[d2a20] 0.16054 None 

Reinfection, age 20+ sd[d3a20] 0.00121 None 

Ratio of foreign-born: UK-born 
df 

Estimated in 
None 

disease risks fitting 

Ratio of HIV+:HIV- disease risks for 
ehiv 7 None 

SSA-born individuals 
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Table 5-2: Table of disease risk parameters by infection type, age, sex, birthplace, and Human Immunodeficiency Virus (HIV) status. Age is divided into those under 10 years of age and those aged 20 

years and over. Birthplaces are the United Kingdom (UK), Sub-Saharan Africa (SSA) and other foreign countries (OF). Parameters estimated in the model are printed in bold. Key to parameter names 

and values for fixed parameters are given in 

Infection type 

Recent Infection 

Reinfection 

Lotent Infection 

Infection type 

Recent Infection 

Reinfection 

Latent Infection 

Infection type 

Recent Infection 

Reinfection 

Latent Infection 

UK-born 

Ages 10 years and under 

Male 

dlukl0 

d2ukl0 

d3ukl0 

Female 

dlukl0*sd[lj 

d2ukl0*sd[3j 

d3ukl0*sd[5j 

Male 

dluk20 

d2uk20 

d3uk20 

Ages 20 years and over 

Female 

dluk20*sd[2j 

d2uk20*sd[4j 

d3uk20*sd[6j 

OF-born and HIV-negative SSA-born 

Ages 10 years and under Ages 20 years and over 

Male Female Male Female 

dl*dlukl0 dl*dlukl0*sd[lj drdluk20 drdluk20*sd[2j 

dl*d2ukl0 dl*d2ukl0 *sd[3j drd2uk20 drd2uk20*sd[4j 

dl*d3ukl0 dl*d3ukl0*sd[5j drd3uk20 drd3uk20*sd[6j 

HIV-positive SSA-born 

Ages 10 years and under Ages 20 years and over 

Male 

ehiv*dl*dlukl0 

ehiv*dl*d2ukl0 

ehiv*dl*d3ukl0 

Female 

ehiv*dl*dlukl0*sd[lj 

ehiv*dl*d2ukl0 *sd[3j 

ehiv*dl*d3ukl0*sd[5j 

Male 

ehiv*drdluk20 

ehiv*drd2uk20 

ehiv*drd3uk20 

Female 

ehiv*drdluk20*sd[2j 

ehiv*drd2uk20*sd[4j 

ehiv*drd3uk20*sd[6j 

Units of disease risk 

Cumulative % developing disease over 5 years 

Cumulative % developing disease over 5 years 

% developing disease each year 

Units of disease risk 

Cumulative % developing disease over 5 years 

Cumulative % developing disease over 5 years 

% developing disease each year 

Units of disease risk 

Cumulative % developing disease over 5 years 

Cumulative % developing disease over 5 years 

% developing disease each year 
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5.1.3.2 Contact rate 

Although only disease risk parameters were estimated during model fitting, there was 

also uncertainty in the contact rate parameter in the model, as detailed in Section 

4.2.2.1. The contact rate was not estimated during fitting due to the expected inverse 

correlation between this parameter and disease risk parameters. Increasing the 

transmission parameters should result in decreasing the disease risk, and vice versa. 

Instead of estimating the contact rate during model fitting, five plausible schemes for 

the contact rate were tested in separate model fits. Given uncertainty in the value of 

this parameter, a range from two per year to 10 per year was explored, representing a 

range of published estimates of the contact rate, reviewed in Section 4.2.2.1. Contact 

rate assumptions include schemes where all individuals have the same contact rate 

and also where the contact rate differs by birthplace (UK or foreign). The five different 

schemes for contact rates are: 1) all = 4; 2) all = 6; 3) all = 8; 4) all = 10; and 5) UK-born 

= 4, Foreign-born = 8. 

5.1.3.3 Infection status ofmigrants upon 

entry to the UK 

As with the effective contact rate, there was uncertainty about the probabilities of the 

different infection states for migrants entering the UK, as discussed in Chapter 4, 

Section 4.2.8. The probabilities of infection states for migrants entering the UK can be 

thought of as probability distributions for randomly selecting the infection status of 

migrants upon entry to the UK, hereafter abbreviated as the 'infection status of 

migrants'. These parameters were not estimated using model fitting for two reasons. 

First, the parameters would likely be highly correlated with the disease risk 

parameters. This is because increasing the proportion infected or diseased entering 

the simulation would increase the number of disease cases, and vice versa, which is 

also true for disease risks. Second, there would be a very large number of variable 

parameters related to these distributions and this could be difficult for fitting and 

make several parameter estimates dependent on too little data. Therefore, two 

separate methods for arriving at assumptions about the infection status of migrants 

upon entry to the UK were used to produce five schemes for the infection status of 

migrants. These are detailed in Chapter 4, Section 4.2.8. Briefly, the ARI method used a 
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spreadsheet model to produce three schemes for the infection status of migrants, 

based on low, medium and high assumptions for ARI experienced by migrants before 

entry. The screening method was used to produce two schemes for the infection status 

of migrants, based on data from studies which screened migrants to the UK for TST 

reactions and active disease upon arrival [295]. 

5.1.4 Stage One Fitting 
The five contact rate schemes and the five schemes for the infection status of migrants 

are combined into 25 input parameter scenarios, each of which is fit to observed data. 

These scenarios are enumerated in Table 5-3. 

5.1.5 Stage Two Fitting 
After stage one fitting of the 25 scenarios, four separate variations were tested for 

improved fits, as described in the sections below. For each variation, 10 of the 25 

fitting scenarios were used to reduce computational time and to eliminate scenarios 

that were unlikely to result in good fits of the model to data. These 10 scenarios 

included the two best-fitting contact parameter schemes for each of the five schemes 

for the infection status of migrants, marked in bold in Table 5-3. A" parameter values 

and assumptions for stage two fits are the same as for stage one fits, unless specified 

otherwise. 

5.1.5.1 Variation One 

The first of the four variations tested a new distribution of HIV prevalence for SSA-born 

immigrants entering the study population each year. This distribution was identified as 

potentially problematic because it was based on HIV prevalence in the UK for all SSA

born individuals living in the UK (see Section 4.2.4), but used in the model to assign HIV 

status only to those SSA-born individuals arriving in a given year. These data were used 

because they were the only data available. However, these may have underestimated 

the HIV prevalence in new SSA-born migrants each year, since many SSA-born adults 

living in the UK arrived before the recent HIV epidemic. These individuals would 

decrease the overall average HIV prevalence compared with new migrants from SSA, 

among whom HIV prevalence is higher. Again, due to lack of data, the factor by which 

HIV prevalence values should have been increased was unknown. As a starting point, 

HIV prevalence was increased by 50% for both sexes each year. 
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5.1.5.2 Variation Two 

The second variation tested a new parameter distribution for the M. tuberculosis 

infection status of SSA-born individuals in 1981, to allow for increased prevalence of 

M. tuberculosis infection and disease compared with OF-born. In stage one fits, the 

infection and disease prevalences of SSA-born individuals was assumed equal to those 

in OF-born individuals in 1981 (see Chapter 4, Section 4.2.7). This assumption was for 

simplicity, and also because data to support more complex assumptions was lacking. 

Here a higher M. tuberculosis infection and disease prevalence in SSA-born was tested. 

The higher infection and disease prevalence assumptions were established using the 

same methods for estimating the infection status of UK-born and OF-born individuals 

in 1981 (again, see Chapter 4, Section 4.2.7), but assuming SSA-born individuals in 

1981 had experienced a higher ARI than those who were UK-born or OF-born. The ARI 

for M. tuberculosis in SSA-born individuals living in England and Wales in 1981 was 

assumed to decline as it did in England and Wales from around 1900, but remain 

constant from 1952 to 1980 at the estimated value for the ARI in England and Wales 

for the time, about 0.6% [271]. 

5.1.5.3 Variation Three 

In the third variation, six disease risk parameters in the fitting routine were estimated. 

Instead of fixing the ratio between foreign-born and UK-born disease risks, df, for each 

type of disease, three additional disease risk parameters applied to foreign-born adult 

males, one for each disease type. These three disease risk parameters were analogous 

to the three risks for UK-born individuals, all specified for males aged 20 years and 

above. To clarify how these new parameters fit into parameters outlined in Table 5-2, 

recall that foreign-born Primary Disease risk for males aged 20 years and above is given 

by dj*dluk20. Under this fitting scheme, this equation became a new parameter, 

dlnuk20. The new parameter also took the place of dj*dluk20 for other disease risks 

which are derived from this-for example, foreign-born females aged 20 years and 

above, given by dlnuk20·sd[l]. The situation is analogous for Reactivation and 

Reinjection Disease, and also applies to risks in Table 5-2. 
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5.1.5.4 Variation Four 

The last of the four variations used a single foreign-born category during fitting, 

combining SSA-born and OF-born. Although the groups were combined in fitting and 

plotting of results, for expediency, the model itself was not changed and they were 

handled separately. The groups were combined in fitting because SSA-born population 

sizes are small and model output is uncertain for the group, carrying a high degree of 

stochasticity. Even estimates of SSA-born population sizes are uncertain. Furthermore, 

also due to data that were uncertain or lacking, the model did not differentiate 

between SSA-born and OF-born for some parameters, for example the contact rate 

and disease risk parameters for HIV-negative individuals, which caused conflicts for 

fitting. The model was not fully specified when fitting the two groups separately, hence 

the logic for combining them in this analysis. 
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Table 5-3: Input parameter scenarios, as defined by assumptions about the infection status of migrants upon entry 

to the UK and contact rate parameters. All 25 input scenarios were used in stage one fits, whereas stage two fits 

used only the 10 scenarios in bold. For the infection status of migrants upon entry to the UK, the ARI method was 

used to produce three the infection status of migrants schemes, 'ARIIow', 'ARI med', and 'ARI high', based on low, 

medium and high assumed ARls experienced by migrants before entering the UK. The screening method was used 

to produce two the infection status of migrants schemes based on a study which screened migrants to the UK upon 

arrival, resulting in schemes 'Scr1' and 'Scr2'. 

Scenario 
1 
2 
3 
4 

5 

6 
7 
8 
9 

10 

11 
12 
13 
14 

15 

16 
17 
18 
19 

20 

21 
22 
23 
24 

25 

Infection status of 
migrants 

Scr1 
Scr1 
Scr1 
Scr1 

Scr1 

Scr2 
Scr2 
Scr2 
Scr2 

Scr2 

ARI low 
ARI low 

ARI low 
ARI low 

ARI low 

ARI med 
ARI med 
ARI med 
ARI med 

ARI med 

ARI high 
ARI high 
ARI high 
ARI high 

ARI high 

Contact rate (number per 
year) 

all = 4 
all = 6 
all = 8 

all = 10 

UK-born=4, Foreign-born=8 

all = 4 
all =6 
all = 8 

all = 10 

UK-born=4, Foreign-born=8 

all = 4 
all = 6 
all = 8 

all = 10 

UK-born=4, Foreign-born=8 

all = 4 
all = 6 
all = 8 

all = 10 

UK-born=4, Foreign-born=8 

all = 4 
all = 6 
all = 8 
all = 10 

UK-born= 4, Foreign-born= 8 
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5.1.6 Fitting Procedure 
Methods for fitting the model to observed data are detailed in Chapter 3, Section 

3.5.2. Briefly, disease risk parameters for UK-born males aged 20 years and above for 

each infection type, Recent Infection, Latent Infection, and Reinfection, plus the ratio of 

disease risk in foreign-born individuals to disease risks in UK-born individuals, were 

varied to fit the model output to observed tuberculosis notifications. For each set of 

parameter values tested during fitting, the model output was averaged over 30 

replicates. The averaged model output was then fit using a simulated annealing with 

downhill simplex optimization routine [255]. The optimization routine, or 'fitting 

routine', returned the best-fitting estimates for each of the four variable parameters 

and the value of the Poisson log likelihood deviance GOF statistic, hereafter called the 

'GOF statistic', which is a measure of the quality of fit of model output to observed 

data. This GOF statistic is lowest for the best fits, indicating less deviance from the 

observed data. Fitting terminated when the rate of change in the GOF statistic and 

estimated parameters converged to less than 1% change on average over the previous 

20 runs, repeatedly. See Chapter 3, Section 3.5.2.2 for more information. 

For each input parameter scenario, the fitting routine was run five times in replicate 

with different initial conditions, as discussed below and in Chapter 3, Section 3.5.2. 

Each replicate provided estimates for the four disease risk parameters and the GOF 

statistic measuring the fit of model output to data. Initial conditions were defined by 

starting values for the variable parameters, including five sets of the four variable 

parameters necessary to initialize the optimization routine. These were randomly 

drawn for each run of the fitting routine from the means and standard deviations 

shown in Table 5-4. Replicates are not always necessary with simulated annealing, 

since the method is designed to explore a wide parameter space to find the best-fitting 

set. Nonetheless, replicates were used here to help assure the best fit would be found. 

Plausible means and standard deviations of parameters to be estimated were derived 

from ranges extracted from literature values and values assumed in related models 

when possible, capturing broad ranges intentionally. Ranges for the three disease risks 

for UK-born males aged 20 years and above were derived from risks estimated and 

assumed in several tuberculosis modelling studies [19, 179, 182, 224]. For the ratio 

between disease risks in foreign-born and UK-born individuals, estimates were not 
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available, so a range of 0.5 - 3.0 was used. Ranges were converted into means and 

standard deviations by setting the midpoint of each range as the mean of the 

parameter distribution and assuming the range covered the 95% confidence bounds of 

the distribution. The variance was calculated assuming a normal distribution. Note that 

the initial values for parameters drawn from the distributions in Table 5-4 do not 

restrict parameter estimates to these ranges. 

Table 5-4: Means and standard deviations used to randomly assign initial values for the four variable disease risk 

parameters in the fitting routine. 

Parameter Description Mean SO 

df Ratio of disease risk foreign-born to disease risk in UK-born 1.75 0.638 

dluk20 Cumulative risk (%) of disease resulting from Recent Infection, 0.077 0.037 
males aged 20 years and above 

d2uk20 Annual risk (%) of disease resulting from for Latent Infection, 0.000807 0.0003538 
males aged 20 years and above 

d3uk20 Cumulative risk (%) of disease resulting from Reinfection, 0.077 0.037 
males aged 20 years and above 

5.1.7 Statistical Analysis of Model Results 

Although results generally focused on the best-fitting replicate for each scenario to 

report and compare fits across input scenarios, to supplement this approach, an 

analysiS of variance (ANOVA) was performed to compare variance in the GOF statistic 

among replicates within a scenario to variance across scenarios. ANOVA was used to 

help identify whether there were true differences in fit quality across scenarios. In 

addition to helping quantify the effect of the contact rate and the infection status of 

migrants upon entry to the UK, a two-way ANOVA was used to test the effects ofthese 

parameters on GOF values and disease risk estimates. For parameters significantly 

associated with GOF or disease risk, simple linear regression was also used to estimate 

coefficients of variation. All ANOVA and regression tests were performed using the R: 

A language and Environment for Statistical Computing (R Foundation for Statistical 

Computing, Vienna, Austria). 
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5.2 Results 

Results of fitting model output to observed tuberculosis notifications in England and 

Wales from 1999 - 2009 are divided into two sections. Firstly, results from stage one 

fits are reported. Next, results from stage two fits are reported. Since the best fits of 

model output to data were found in stage two fitting when a single foreign-born 

category was used, only those stage two results are detailed. For both stage one and 

two fits, the quality of fits to observed data, disease risk estimates, the estimated 

proportion of cases due to recent transmission in the UK, and the effect of parameter 

values for the contact rate and infection status of migrants upon entry to the UK are 

reported. 

5.2.1 Stage One 
A summary of the results of fitting the 25 scenarios to case notifications from England 

and Wales is shown below in Table 5-5. Best-fitting disease risk estimates for Primary, 

Reactivation, and Reinjection Disease in UK-born males aged 20 years and above and 

the relative risk of disease between foreign-born and UK-born individuals are shown 

for each input scenario. The GOF statistic and the GOF rank for each of the scenarios 

from the best-fitting (1) to the worst-fitting (25), or equivalently from the lowest GOF 

statistic to the highest are given. To simplify results, only the best-fitting of the five 

replicates run for each input scenario is reported, regarding it as the true best fit for 

that scenario. However, the five replicates within a scenario did generally result in 

differing parameter estimates and GOF statistics, as discussed further in Section 

5.2.1.1.2. 
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Table 5-5: Results of stage one model fitting to the 25 input scenarios. Scenarios are defined by the contact rate and five schemes for the infection status of migrants upon entry to the UK, including 

Scrl and Scr2, both based on immigrant screening data, and ARllow, ARlmed, and ARlhigh, based on assumptions about the ARI experienced by migrants prior to arrival in the UK. The best-fitting of 

the five replicate fitting runs is shown for each scenario. Asterisks denote scenarios used for stage two fitting. Results of model fitting to observed case notifications include disease risk estimates and 

the value of the goodness of fit (GOF) statistic measuring the quality of fit of the model to data. The GOF rank orders fits from the best (1) to the worst (25). Only the best-fitting replicate for each 

scenario is shown. 

Estimated disease risks for UK-born adult males 

by disease type 

Infection Contact rate Foreign:UK-
Primary Reactivation Reinfection 

Scenario status of (number per born risk ratio GOF GOF rank 

migrants year) 
(%) (% per year) (%) 

(dt) 

1 Scrl 4 23.4 0.010 18.1 1.68 10452 23 

2 Scrl 6 17.4 0.012 3.1 1.81 10235 21 

3* Scrl 8 12.4 0.009 7.6 1.90 10052 17 

4* Scrl 10 10.3 0.009 6.2 1.85 9925 16 

5 Scrl 
UK-born=4, 

14.1 0.015 3.7 1.76 10361 22 
Foreign-born=8 

6 Scr2 4 23.9 0.003 27.4 1.56 9678 12 

7 Scr2 6 15.5 0.008 12.3 1.77 9437 6 

8* Scr2 8 10.9 0.011 5.9 1.97 9387 5 

9* Scr2 10 9.3 0.010 5.9 1.88 9274 3 

10 Scr2 
UK-born=4, 

15.2 0.012 6.5 1.50 9537 9 
Foreign-born=8 

11 ARIIow 4 20.1 0.018 13.2 3.28 9920 15 

12 ARIIow 6 15.0 0.016 7.3 3.17 9686 13 
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Estimated disease risks for UK-born adult males 

by disease type 

Infection Contact rate Foreign:UK-
Primary Reactivation Reinfection 

Scenario status of (number per born risk ratio GOF GOF rank 

migrants year) 
(%) (% per year) (%) 

(df) 

13* ARIlow 8 10.0 0.021 0.4 3.79 9368 4 

14* ARIlow 10 8.5 0.020 0.4 3.69 9201 2 

15 ARIlow 
UK-born=4, 

14.4 0.021 1.7 2.74 9531 8 
Foreign-born=8 

16* ARImed 4 32.6 0.022 0.1 1.69 9595 10 

17* ARImed 6 23.1 0.017 8.0 1.65 9639 11 

18 ARImed 8 16.4 0.012 16.5 1.64 10097 18 

19 ARImed 10 14.5 0.013 9.2 1.60 10201 20 

20 ARImed 
UK-born=4, 

23.1 0.019 4.0 1.35 10858 24 
Foreign-born=8 

21 ARIhigh 4 20.8 0.025 7.8 2.37 9759 14 

22* ARIhigh 6 18.2 0.020 7.9 2.02 9171 1 

23* ARIhigh 8 14.8 0.022 7.6 1.89 9505 7 

24 ARIhigh 10 11.1 0.018 8.0 2.06 10126 19 

25 ARIhigh 
UK-born=4, 

17.1 0.020 7.2 1.71 11331 25 
Foreign-born=8 

Mean 16.5 0.015 7.8 2.09 
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5.2.1.1 Quality a/fits 

Across input scenarios, the model output captured most, but not all, trends found in 

observed case notifications in England and Wales from 1999 - 2009. To illustrate the 

quality of model fit to observed data, plots of model output versus observed 

notification data are shown for the two best-fitting scenarios of the 25 stage one fits, 

scenarios 14 and 21, though GOF statistics and plots suggest that several scenarios fit 

the data roughly equally well. Plots of simulated numbers of case notifications versus 

observed case notifications are found in Figure 5-7 - Figure 5-12 and described below 

in Section 5.2.1.1.1 while plots of simulated versus observed notification rates per 

100,000 population are described in the Appendix 10.9. The variance in GOF statistics 

among the five replicates for each scenario is discussed in Section 5.2.1.1.2. These 

GOF statistics and plots for each of the five replicates for each scenario indicate that 

several of the scenarios resulted in the model output fitting the observed data 

approximately equally well (see Section 5.2.1.1.2). 

5.2.1.1.1 Plots of model fit to case notifications 

Trends in the observed number of case notifications differed markedly among the 

three birthplace groups, and major differences were largely reflected in model output. 

Plots showing model output versus observed case notifications for best-fitting 

scenarios 14 and 22 are found in Figure 5-7 - Figure 5-12, with a plot for each 

birthplace and sex combination. 

OF-born individuals had the highest number of cases, which generally increased from 

1999 - 2009, with the trend captured well by the model in both scenarios 14 and 22 as 

shown in Figure 5-8 and Figure 5-11. Age-specific trends in this group were also 

captured well by the model. The age group of 15 - 44 years for both males and 

females accounted for the majority of cases, increasing to over 1700 cases in males 

and over 1300 cases in females by 2009. Under scenario 14, in this age group, the 

number of cases predicted by the model was fairly consistent with observed 

notifications although on average, underestimated for males and overestimated for 

females. The number of notifications in males and females aged 45 - 64 years were 

generally overestimated by model predictions for both males and females under 
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scenario 14. There were few cases in children and those aged 65 years and above, but 

trends and numbers of cases were reproduced well by the model. 

Under scenario 22 for OF-born individuals, cases in the 15 - 44 age group were 

reproduced well for males from 1999 - 2005, though overestimated by the model from 

2005 onward. The number of cases in females was consistently overestimated, but the 

model output matched well to qualitative trends in the data. For the other three age 

groups, the model predicted the number of cases and reproduced qualitative trends 

well, albeit slightly overestimated the number of cases in the 45 - 64 age group for 

both males and females. 

UK-born individuals also accounted for a substantial number of cases, which were 

more evenly distributed among age classes than for OF-born individuals. These age

specific trends for UK-born individuals were not captured as well for as those for OF

born, as shown in Figure 5-7 and Figure 5-10 for Scenarios 14 and 22. The model fits by 

age group varied between the two scenarios and between the sexes. For males under 

scenario 14, trends in notifications for those aged 45 - 64 years, 0 -14 years, and 65 

years and above were reproduced well by the model (Figure 5-7-A). However, the 

number of notifications in those aged 15 - 44 years-the group with the largest 

number of cases for UK-born males-was underestimated by the model. The 

qualitative trend of stable or slightly increasing numbers of notifications observed was 

captured by the simulation. For UK-born females under scenario 14, the model 

predicted the number of notifications in the 15 - 44 years age group well (Figure 5-7-

B). However, in older females, the model failed to show the observed trends of 

decreasing numbers of notifications. The model also predicted increasing notifications 

in the 45 - 64 age group when observed cases for females aged 45 - 64 years were 

falling. This problem was also present for females aged 65 years and above, where 

observed notifications decreased but the model predicted a stable or slightly 

increasing number of cases each year. 

Under scenario 22, notifications in the 15 - 44 age group for UK-born individuals were 

underestimated for both males and females, although the qualitative trend of stable to 

slightly increasing incidence was reproduced well by the model, as shown in Figure 

5-10. Also, for both males and females, observed trends and case notifications in those 
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aged 45 - 64 years were reproduced successfully by the model. Most problematic for 

both males and females was the age group of 65 years and above, in which the 

observed number of case notifications decreased from 1999 - 2009. The model failed 

to reproduce the decreasing trend. In males, cases in those aged 65 years and above 

were stable in the model output while in females, cases were increasing in the model. 

For SSA-born individuals, there were fewer total cases than among the OF-born or UK

born individuals, however there were a substantial number of cases in the 15 - 44 age 

group, the only age group for SSA-born individuals used in model fitting. There was a 

noticeable time trend of rise and fall in the number of SSA-born cases for both males 

and females from 1999 - 2009. As shown in Figure 5-9 and Figure 5-12, this qualitative 

trend in SSA-born notifications was captured by the model especially well in scenario 

22, although the model underestimated the number of cases seen in that group. For 

both scenarios 14 and 22, and for males and females, the model predicted far fewer 

cases than were observed. Despite that other age groups were not used in fitting, the 

model reproduced the case numbers well in the three other age groups for SSA-born 

individuals. 
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5.2.1.1.2 Replicates 

The five replicates run for each scenario are relevant to assessing the quality of fit of 

the model to data and choice of best-fitting scenarios in two ways. First, replicates 

show the kind of variation in fits that occurred within a scenario and give an indication 

of the acceptability of using only the best-fitting of the replicates. Secondly, the five 

replicates allow comparison of variation within a scenario to variation among the 25 

scenarios. This comparison can help determine whether there were significant 

differences in the quality of fit among scenarios. 

To illustrate variation across replicates, the five replicates from scenarios 14 and 22 are 

shown below in Table 5-6 and Table 5-7. The patterns of variation among replicates 

were typical. The patterns support considering the best-fitting among the five 

replicates as the true best fit, although more replicates would have increased the 

chance of improving this fit. For example, in scenario 14, the two best-fitting replicates 

were almost identical in GOF statistics and best-fitting parameter estimates. For 

scenario 22 parameter estimates were similar for the two best fits, though the GOF 

statistics varied more between the two best fits. 

As illustrated with scenarios 14 and 22, GOF values among replicates within a scenario 

varied substantially. However, an ANOVA on the variance in GOF statistics among 

scenarios showed that, despit~ this variation within a scenario, the GOF results 

differed significantly among the 25 scenarios (see Figure 5-8, p-value 0.00003). When 

including only the 10 scenarios which were used for stage two modelling, ANOVA 

results showed GOF statistics still differed significantly among the 10 scenarios at the 

p=0.05 level (see Figure 5-9, p-value 0.014), though the p-value was much larger. After 

removing the two scenarios with the highest mean GOF statistics, scenarios 17 and 23, 

ANOVA results on the eight remaining best scenarios showed that GOF statistics were 

not significantly different among scenarios (p-value 0.127). 
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Table 5-6: Results for the five replicates of Scenario 14 in stage one fitting. Results include estimated disease risks 

and the value of the goodness of fit (GOF) statistic measuring the quality of fit of the model to data. The GOF rank 

orders fits from the best (1) to the worst (5). 

Primary (%) 
Reactivation (% per 

Reinfection (%) 
Foreign:UK-born 

GOF GOF rank 
year) risk ratio (df) 

8.5% 0.0195% 0.4% 3.7 9201 1 

8.8% 0.0198% 0.3% 3.6 9235 2 

11.0% 0.0106% 5.7% 2.8 10019 3 

10.6% 0.0066% 10.7% 2.7 10508 4 

12.5% 0.0002% 15.7% 2.3 11735 5 

Table 5-7: Results for the five replicates of Scenario 22 in stage one fitting. Results include estimated disease risks 

and the value of the goodness of fit (GOF) statistic measuring the quality of fit of the model to data. The GOF rank 

orders fits from the best (1) to the worst (5). 

Primary (%) 
Reactivation (% per Reinfection Foreign:UK-born 

GOF 
GOF 

year) (%) risk ratio (df) rank 

18.2% 0.0204% 7.9% 2.0 9171 1 

15.8% 0.0207% 8.2% 2.2 10288 2 

14.3% 0.0237% 8.4% 2.4 10477 3 

18.3% 0.0253% 1.2% 2.0 11571 4 

10.2% 0.0286% 14.2% 2.9 12515 5 
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Figure 5-13: Box plot of goodness-of-fit (GOF) statistics for each of the 25 fitting scenarios, with five replicates each. 

GOF statistics differ significantly among scenarios according to a one-way analysis of variance (p-value 0.00003). 
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5.2.1.2 Disease risk estimates 

For each of the 25 scenarios, the best-fitting values for the four disease-risk 

parameters and the GOF statistics are shown in Table 5-5, for the best-fitting replicate 

of each scenario. Although the quality of fits of the model to observed data were 

similar for many scenarios, estimates of the risk disease risk varied across scenarios. 

The cumulative risk of Primary Disease over the five years of Recent Infection ranged 

from about 8% to over 30% across the 25 scenarios, as estimated for UK-born adult 

males. Estimates of the risk of Reactivation Disease, or the annual percentage with 

Latent Infection who developed disease, ranged from about 0.003% to 0.025% per 

year, on average 0.015% per year for UK-born adult males. Estimates for the 

cumulative risk of Reinfection Disease over the first five years of reinfection had a 

relatively larger range across scenarios, with estimates from about 0.01% up to over 

27% for UK-born adult males. Across all scenarios, the estimates averaged at about 8%. 

The estimated ratios of disease risk between foreign-born and UK-born adult males, df, 

ranged from 1.35 - 3.79. On average, dfwas 2.1 across all scenarios. 

For simplification of reporting and because for stage two fitting only 10 of 25 scenarios 

were tested, the remainder of this chapter will focus on results from those 10 

scenarios. These are summarized in Table 5-8. Comparison of this table with Table 5-5 

shows that average estimates for the 10 best scenarios are similar to those for all 25 

stage one fitting scenarios. When considering just the 10 scenarios, the estimated risk 

for Reinfection Disease was slightly lower, about 5%, and dfwas slightly higher, around 

2.2. 

For illustration of the differences in disease risk among demographic groups, Table 5-9 

shows foreign-born and female disease risks calculated from the UK-born male risks 

estimated for the 10 best-fitting scenarios. Risks for foreign-born individuals, including 

both those who were OF-born and those who were HIV-negative SSA-born, were 

calculated by mUltiplying df by the risks for each disease type. Consistent with model 

assumptions, risk ratios for foreign-born to UK-born disease risk were equal for each 

disease type. Disease risks for females were obtained by multiplying male risks for a 

given category by the ratio between female and male disease risks, as described in 

Section 5.1.3.1. These values highlight the differences in risks between males and 
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females, particularly for Reinfection Disease risk. For simplification of the presentation 

of results, only the disease risk parameters for UK-born males aged 20 years and older 

will be reported for the remainder of fits. 

The estimates for cumulative risk of developing Primary Disease for adults were 

greater than the cumulative risk of developing Reinfection Disease for each of the 10 

best-fitting scenarios, as shown in Table 5-10. The average risk ratio for Reinfection 

Disease to Primary Disease was 0.39, corresponding to a 61% reduction in the risk of 

Reinfection Disease compared to Primary Disease. 

Table 5-8: Disease risk estimates for each of the 10 of the best-fitting scenarios of stage one fits. 

Scenario 
Primary(%) 

Reactivation (% per 
Reinfection (%) 

Foreign:UK-
year) born 

3 12.4% 0.009% 7.6% 1.90 

4 10.3% 0.009% 6.2% 1.85 

8 10.9% 0.011% 5.9% 1.97 

9 9.3% 0.010% 5.9% 1.88 

13 10.0% 0.021% 0.4% 3.79 

14 8.5% 0.019% 0.4% 3.69 

16 32.6% 0.022% 0.1% 1.69 

17 23.1% 0.017% 8.0% 1.65 

22 18.2% 0.020% 7.9% 2.02 

23 14.8% 0.022% 7.6% 1.89 

Mean 15.0% 0.016% 5.0% 2.23 
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Table 5-9: Disease risk estimates bV sex and birthplace for adults 20 years and older for the 10 best-fitting scenarios of stage one fitting. Risks for UK-born adult males and the disease risk ratio 

between foreign-born and UK-born individuals were estimated bV the model. The disease risk ratio was used to calculate foreign-born risks. Female risks were calculated from parameter risk ratios 

between females and males, which were fixed in the model (see Table 5-1). 

Disease risks for UK-born males Disease risks for foreign-born males Disease risks for UK-born females Disease risks for foreign-born females 

Scenario 
Primary React. 

Reinf. (%) Primary (%) React. (%/vear) Reinf. (%) Primary (%) React. (%/vear) Reinf. (%) Primary (%) React. (%/vear) Reinf. (%) 
(%) (%/vear) 

3 12.4 0.009 7.6 23.6 0.017 14.4 12.4 0.001 0.01 23.6 0.003 0.02 

4 10.3 0.009 6.2 19.1 0.016 11.4 10.3 0.001 0.01 19.1 0.003 0.01 

8 10.9 0.011 5.9 21.4 0.021 11.6 10.9 0.002 0.01 21.4 0.003 0.01 

9 9.3 0.010 5.9 17.5 0.019 11.0 9.3 0.002 0.01 17.5 0.003 0.01 

13 10.0 0.021 0.4 38.0 0.078 1.6 10.0 0.003 0.00 38.0 0.012 0.00 

14 8.5 0.019 0.4 31.4 0.072 1.4 8.5 0.003 0.00 31.4 0.012 0.00 

16 32.6 0.022 0.1 55.1 0.036 0.2 32.6 0.003 0.00 55.1 0.006 0.00 

17 23.1 0.017 8.0 38.1 0.028 13.2 23.1 0.003 0.01 38.1 0.004 0.02 

22 18.2 0.020 7.9 36.7 0.041 16.0 18.2 0.003 0.01 36.7 0.007 0.02 

23 14.8 0.022 7.6 27.8 0.041 14.4 14.8 0.003 0.01 27.8 0.007 0.02 

Mean 15.0% 0.016% 5.0% 30.9% 0.037% 9.5% 15.0% 0.003% 0.0% 30.9% 0.006% 0.0% 
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Table 5-10: Estimated risks of Primary Disease, Reinfection Disease, and the risk ratio between Reinfection Disease 

and Primary Disease for 10 of the best-fitting scenarios from stage one. 

Scenario 
Primary 

Reinfection Disease (%) Risk ratio 
Disease (%) 

3 12.4% 7.6% 0.61 

4 10.3% 6.2% 0.60 

8 10.9% 5.9% 0.54 

9 9.3% 5.9% 0.63 

10 15.2% 6.5% 0.43 

13 10.0% 0.4% 0.04 

14 8.5% 0.4% 0.04 

16 32.6% 0.1% 0.00 

22 18.2% 7.9% 0.44 

23 14.8% 7.6% 0.52 

Mean 0.39 

5.2.1.3 Proportion of disease due to recent 

transmission in the UK 

The proportion of cases due to recent transmission in the UK across the 10 best-fitting 

input scenarios is summarized in Table 5-11. The table presents average values for 

each age and birthplace category, as well as the interquartile range across years, input 

scenarios, and model replicates, as an indicator of variability for each estimate. Age

specific trends vary by birthplace. For UK-born individuals, the highest proportion of 

disease due to recent transmission was estimated for UK-born children 0 - 14 years of 

age, at 95% on average. This percentage decreased as age increased, with the 

proportion of cases due to recent transmission in the UK estimated at 48% on average 

in those aged 65 years and above. For OF-born and SSA-born individuals, the 

proportion of cases due to recent transmission in the UK increased with increasing age. 

Those aged 0 - 14 years had the lowest estimated proportions of disease due to recent 

transmission in the UK, at 46% and 37% on average respectively, whereas those aged 

65 years and above had the highest proportion of disease due to recent transmission, 

at 78% and 53% on average. Across all age, sex, and birthplace categories from 1999 -

2009 an estimated 59.8% of cases were due to recent transmission in the UK. For UK-

born individuals, this percentage was estimated to be 67% and for foreign-born 

individuals (OF-born and SSA-born combined) this percentage was estimated to be 

56%. 
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This proportion of cases due to recent transmission in the UK differs among input 

scenarios, as shown in Table 5-12 and illustrated in plots of the estimates for scenarios 

14 and 22, shown in Figure 5-10 - Figure 5-20. As in the case over all 10 best-fitting 

scenarios, both scenarios showed those aged 0 -14 years, both males and females, 

were mostly due to recent transmission in the UK. Under scenario 22, the proportion 

was close to 100%. On the other hand, those aged 65 years and above had the lowest 

proportion of cases due to recent transmission in the UK, around 20% on average for 

males under Scenario 14, though increased over time. Under scenario 22, the 

proportion was higher, increasing over time from about 30 to 40% for males. Similar 

trends were found females, although the proportion of cases due to recent 

transmission was higher than in males. 

For OF-born individuals, estimates of the proportion of cases due to recent 

transmission in the UK were generally very high under Scenario 14, usually between 80 

- 90% for all age groups apart from males aged 65 years and above, where the 

proportion was closer to an average of about 60%. These proportions were lower 

under Scenario 22, though were still fairly high for older individuals, aged 45 - 64 years 

and 65 years and above, which were estimated to have 70 - 90% of cases due to 

recent transmission in the UK. 

For SSA-born individuals, estimates of the proportion of disease due to recent 

transmission in the UK showed more stochasticity than estimates for UK-born and OF

born. Age-specific trends were also less clear. Generally, for both illustration scenarios, 

those aged 0 - 14 years and 15 - 44 years had a lower proportion of disease due to 

recent transmission in the UK. Those aged 45 - 64 years and 65 years and above had a 

higher proportion of disease due to recent transmission in the UK. 
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Table 5-11: Estimated proportion of cases due to recent transmission in the UK by age and birthplace, across the 10 

best-fitting scenarios of stage one, 1999 - 2009 for England and Wales. Estimates were averaged for 30 replicates of 

the model per scenario. 

Birthplace Age category Mean 0.25 0.75 

0-14 years 0.95 0.93 0.98 

15 -44 years 0.72 0.63 0.83 
UK 

45 - 64 years 0.68 0.55 0.8 

65+ years 0048 0.37 0.59 

0-14 years 0.46 0.26 0.59 

15 -44 years 0.52 0.38 0.55 
OF 

45 -64 years 0.8 0.74 0.87 

65+ years 0.78 0.73 0.86 

0-14 years 0.37 0.17 0.54 

15 -44 years 0.39 0.28 0.49 
SSA 

45 - 64 years 0.59 0046 0.72 

65+ years 0.53 0.29 0.75 

Table 5-12: Proportion of cases due to recent transmission in the UK by input scenario, averaged over 1999 - 2009 

and over all demographic categories. 

Scenario Mean 0.25 0.75 

3 0.56 0.39 0.74 

4 0.58 004 0.75 

8 0.52 0.35 0.7 

9 0.55 0.37 0.72 

13 0.72 0.59 0.88 

16 0.59 0.35 0.85 

17 0.65 0.46 0.88 

22 0.59 0.38 0.81 

23 0.62 0.42 0.84 
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Figure 5-15: Proportion of cases due to recent transmission in simulation results for UK-born males (A) and females 

(B) by age category for 1999 - 2009, under fitting Scenario 14. The averaged model output follows the dashed line 

and individual runs of the model are denoted with a ' -' (there are 30 for each data point). Age categories are as 

follows: ages 0 -14 years are in black; ages 15 - 44 years are in blue; ages 45 - 64 are in green; and ages 65 years 

and over are in grey. 
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(B) by age category for 1999 - 2009, under fitting Scenario 14. The averaged model output follows the dashed line 

and individual runs of the model are denoted with a'·' (30 for each data point). Age categories are as follows: ages 
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(B) by age category for 1999 - 2009, under fitting Scenario 14. The averaged model output follows the dashed line 
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Figure 5-18: Proportion of cases due to recent transmission in simulation results for UK· born males (A) and females 

(B) by age category for 1999 - 2009, under fitting Scenario 22. The averaged model output follows the dashed line 

and individual runs of the model are denoted with a '.' (there are 30 for each data point) . Age categories are as 
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and over are in grey. 

215 



~ 
VI:::) 
<II 
VI c: 
ro .-

U c: 
..... 0 o ·Vi 

VI c: .-
o E 
.- VI 
t: c: 
o ro a. ... 
01-a: .... c: 

" <II <II U 
.... <II 
~o::: 
::J 0 
E .... 

• - <II 
(f) ::J 

o 

~ 
VI:::) 
<II 
VI c: 
ro .-

U c: 
..... 0 o ·Vi 
c: .!!! 
o E 
.- VI 
t: c: 
o ro a. ... 
01-... a.. .... c: 

" <II <II U 
.... <II 
~o::: 
::J 0 E .... 
.- <II 
(f) ::J 

o 

A. 
1.0 .--------------------------------------------. 

0.8 ~~ = j~ = = ~:= = ~ = = 4 = = t::::1f = =If - ==l~ = ~~ =~; 
. . 

0.6 -

r- - _ ~ __ ~ ___ ~ __ ~ __ ~ __ ~ _ _ ~ __ .=.. __ ~ 
0.4 - . - , : ~- -

: : -:- -~ - --=--
: : --

0.2 -i - - t - - f" - - f" - -:- - -~ 
- -

O.O ~----------,-I---------r-I---------.-I---------,-I--------~ 

Age classes 
_ 0-14 
_ 15-44 
_ 45-64 

; _ 65+ 

1999 2001 2003 2005 2007 2009 

B. 
1.0 ,_ --------------------------------------------~ 

:: =. .: -

0 . 8 li~ = jl==:: ~ - = ~ = = ~: == ~: -t ~;~--~~ ~~t.:-~~ 
- -

0.6 -
- - -

r- - - }- - - l- - - l - - ~ - _ -' __ -= - - ~ 
--~--

- -- -
0.4 -

f§---"----
0.2 -; -:... - - ~ 

O . O ~----------r-I---------.-I---------.-I---------.-I--------~ 

Age classes 
_ 0-14 
_ 15-44 
_ 45-64 
_ 65+ 

1999 2001 2003 2005 2007 2009 

Figure 5-19: Proportion of cases due to recent transmission in simulation results for OF-born males (A) and females 

(8) by age category for 1999 - 2009, under fitting Scenario 22. The averaged model output follows the dashed line 

and individual runs of the model are denoted with a '-' (30 for each data point) . Age categories are as follows : ages 

0 -14 years are in black; ages 15 - 44 years are in blue; ages 45 - 64 are in green; and ages 65 years and over are in 

grey. 
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Figure 5-20: Proportion of cases due to recent transmission in simulation results for SSA-born males (A) and females 

(6) by age category for 1999 - 2009, under fitting Scenario 22. The averaged model output follows the dashed line 

and individual runs of the model are denoted with a ' -' (30 for each data point) . Age categories are as follows : ages 

0 - 14 years are in black; ages 15 - 44 years are in blue; ages 45 - 64 are in green; and ages 65 years and over are in 

grey. 

217 



5.2.1.4 Effect of contact rate and infection 

status ofmigrants 

As detailed in Section 5.2.1.1, results showed several scenarios fit the data roughly 

equally well. Since scenarios were defined by the contact rate and the infection status 

of migrants, the effects of these parameters on GOF statistics and disease risks 

estimates were explored quantitatively. Two-way ANOVA was performed for testing 

the effects of these parameters on GOF statistics and disease risks, restricting analysis 

to the 10 scenarios used in stage two fitting. ANOVA showed the contact rate had a 

significant effect on GOF statistics (p-value 0.02), while the effect of the infection 

status of migrants was not significant (p-value 0.12). When looking at estimated risks 

of Primary Disease, two-way ANOVA showed that only the contact rate had a 

significant effect on estimates (p-value <2xlO-16
), which was also true for Reactivation 

Disease (p-value 5.5x10-7
). However, neither the contact rate nor the infection status 

of migrants significantly affected Reinfection Disease risk estimates. Simple linear 

regression coefficients confirmed that as the contact rate increased, Primary Disease 

risk decreased (results not shown). The quantitative relationship between 

Reactivation Disease risk estimates and the contact rate and infection status of 

migrants was less clear (results not shown). 

5.2.2 Stage Two 

Stage two fits included four variations on stage one fits, targeting parameters and 

assumptions that were based on the least reliable data. These were: 1) altered 

parameter distributions for the HIV prevalence of SSA-born immigrants; 2) altered 

infection status for SSA-born individuals at model initialization in 1981; 3) additional 

disease risk parameters estimated; and 4) fitting of a single foreign-born category, 

comprised of both SSA-born and OF-born individuals. Results from the first three of the 

four variations showed that fits of model output to observed data were not improved. 

These are reported in Appendices 10.10, 10.11, and 10.12. Improved fits were 

obtained with the fourth variation, in which a single foreign-born category was fit to 

data, as described in 5.1.5.4. The remainder of this section will report on those results. 
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5.2.2.1 Quality o/fits 

Fitting of the single foreign-born group resulted in noticeably improved fits, especially 

for the foreign-born group, both when looking qualitatively at plots of observed data 

versus model output and when comparing the GOF statistics, given in Table 5-13, to 

those of previous fits. Fits of the model to observed data are described for both the 

numbers of case notifications that were used to fit the model and for the observed 

notification rates. Variance in GOF statistics among and between the 10 scenarios is 

also discussed. 

5.2.2.1.1 Fits to case notifications 

It should be noted that the GOF statistics for stage two fits with a single foreign-born 

category were lower than those for stage one fits, indicating better fits to data, but this 

difference is at least partly due to the fact that there were fewer data points used to 

measure the GOF for this fitting scheme. In stage one fits, the GOF statistic was 

calculated using 154 data points, with 66 data points each for UK-born and OF-born 

cases and 22 data points for SSA-born cases. The 66 data points for UK-born and OF

born cases were derived from 11 years of data, two sexes, and three age groups for 

each birthplace. The 22 data points for SSA-born case were derived from 11 years of 

data, two sexes, and one age group. In the stage two fitting scheme, the 22 data 

points for SSA-born cases were removed, as these cases were combined with OF-born 

cases for one foreign-born category. This left a total of 132 data points. 

Fewer data points meant that the Chi square distribution to compare the GOF statistic 

against had fewer degrees of freedom. This would normally aid interpretation of the 

GOF statistic and comparison across studies, though in the case of results from this 

study, across both stage one and stage two, the GOF statistic compared to the Chi 

square distribution led to the same value, 1. Thus, the statistics did not help 

differentiate quality of fits across scenarios with different degrees of freedom. Instead, 

visual inspection of plots from stage one and stage two confirmed that stage two fits 

were better. Within a stage of fitting with the same number of data points, the GOF 

statistic was used to compare fits. 

For illustration of fit quality, the model output versus observed number of tuberculosis 

notifications for the two best-fitting scenarios from this fitting scheme, scenarios 9 and 
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4, are shown in Figure 5-21- 5-24. It is clear from these plots that foreign-born fits are 

generally good. UK-born fits vary with age category and sex and are imperfect for some 

of these categories. 

For both scenarios 9 and 4, the number of cases of tuberculosis among UK-born 

individuals aged 0 -14 years was predicted well by the model, despite those groups 

not being used for calculation of the GOF statistic in fitting. For those aged 15 - 44 

years, the model predicts observed cases fairly well for females. For males, cases are 

substantially underestimated by the model. For those aged 45 - 64 years, the number 

of cases in males was predicted well by the model, but for females, this group was 

problematic. In both best-fitting scenarios, the model predicted an increasing number 

of cases in this group while the observed number of cases decreased from 1999 -

2009. For those aged 65 years and above, fits were also problematic; in males, the 

observed number of cases decreased. Model output showed some increases and 

decreases but overall, a stable number of cases from 1999 - 2009. Generally, the 

model overestimated the number of cases for this group, though numbers were 

reasonably similar to those observed. For females on the other hand, the model was 

much worse at predicting observed numbers of cases. In this group, the number of 

observed cases also decreased from 1999 - 2009, even more markedly than for males. 

The model predicted a trend of increasing case notifications over this time period, 

failing to fit the data at all, except when the upward and downward trend lines crossed 

in 2006. 

For foreign-born cases, for all groups for males and females, model trends reproduced 

observed trends in notification data. For those aged 0 - 14 years, the model slightly 

overestimated the number of cases for both males and females, although this was a 

very small absolute number of cases. For those aged 15 - 44 years, the group in which 

the vast majority of cases were found, the upward trend in numbers of notification 

was reproduced well by the model for both males and females. The number of cases 

was also reproduced well by the model, apart from a slight overestimation near the 

end of the simulation when the observed number of cases levelled off for both males 

and females. The number of cases of tuberculosis in those aged 45 - 64 years was 

accurately predicted by the model for males and females, although slightly 
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overestimated by the model for males. For those aged 65 years and above, the model 

predicted the number of observed cases well for males and females. 

221 



Table 5-13: Results of model fitting to observed case notifications for stage two fits with a single foreign-born group. Results include estimated disease risks and the value of the goodness of fit (GOF) 

statistic measuring the quality of fit of the model to data. The GOF rank orders fits from the best (1) to the worst (10). Only the best-fitting replicate for each scenario is shown. Assumptions for the 

infection status of migrants upon entry to the UK and values for the contact rate are also given. 

Disease risks for UK-born adult males by disease type 

Infection 
status of Contact 

Scenario migrants rate Primary (%) Reactivation (% per year) Reinfection (%) Foreign:UK-born GOF GOF rank 

3 5cr1 all = 8 10.0% 0.012% 3.4% 2.33 3548 4 

4 Scr1 all = 10 7.5% 0.017% 1.2% 2.59 3474 2 

8 5cr2 all=8 9.0% 0.012% 3.8% 2.39 3499 3 

9 5cr2 all = 10 7.4% 0.012% 2.6% 2.44 3449 1 

13 ARIIow all=8 10.2% 0.018% 2.4% 3.75 5390 9 

14 ARIIow all = 10 9.0% 0.022% 0.1% 3.50 5418 10 

16 ARI med· all=4 26.3% 0.017% 11.0% 2.05 4556 7 

17 ARI med all = 6 17.3% 0.021% 4.8% 2.23 4617 8 

22 ARI high all=6 17.4% 0.018% 5.1% 2.16 4217 5 

23 ARI high all = 8 13.0% 0.019% 2.9% 2.30 4248 6 

Mean 12.7% 0.017% 3.7% 2.6 
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Figure 5-21: Model output and observed cases notified in England and Wales for UK-born males (A) and females (S) 

by age category for 1999 - 2009 for stage two fitting of a modified version of Scenario 9 for which a single foreign

born category was used. Sub-Saharan African-born and other foreign-born were combined during fitting. Model 

output follows the dashed line and individual runs ofthe model are denoted with a '-' (30 for each data point). 

Observed numbers of case notifications follow the solid line. Age categories are as follows: ages 0 - 14 years are in 

black; ages 15 - 44 years are in blue; ages 45 - 64 are in green; and ages 65 years and over are in grey. 

223 



III 
CI) 
III 
t1I 

U 
III . iii 

..2 
~ 
u ... 
CI) 

..c 

~ ..... 
0 ... 
CI) 

..c 
E 
~ 

z 

III 
CI) 
III 
t1I 

U 
III . iii 

..2 
~ 
u ... 
CI) 

..c 

~ 
..... 
0 ... 
CI) 

..c 
E 
~ 

z 

A. 
3000 

2500 

2000 

1500 

1000 

500 
1 

0 

--.j..--

_ - i- - -I 
- I - - 1- - -

- I---~---

Age classes 
_ 0-14 
_ 15-44 
_ 45-64 
_ 65+ 

1999 2001 2003 2005 2007 2009 

B. 
3000 

2500 

2000 

1500 

_-i---~--
A---~__ ~---4 

Age classes 
_ 0-14 

__ i---i-: -! .... 
_ 15-44 
_ 45-64 
_ 65+ 1000 

500 

o 
1999 

_- --!---i--~ 

-~ _-~-- -- -- ~ == ~ == ~ == i = ~ 1 
= = 1 = ~ _ - -1- - - 1 - - -

2001 2003 2005 2007 2009 

Figure 5-22: Model output and observed cases notified in England and Wales for foreign-born males (Al and females 

(B) by age category for 1999 - 2009, for stage two fitting of a modified version of Scenario 9 for which a single 

foreign-born category was used. Sub-Saharan African-born and other foreign-born were combined during fitting. 

Model output follows the dashed line and individual runs of the model are denoted with a '-' (30 for each data 

point). Observed numbers of case notifications follow the solid line. Age categories are as follows: ages 0 - 14 years 

are in black; ages 15 - 44 years are in blue; ages 45 - 64 are in green; and ages 65 years and over are in grey. 
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Figure 5·23: Model output and observed cases notified in England and Wales for UK·born males (A) and females (B) 

by age category for 1999 - 2009, for stage two fitting of a modified version of Scenario 4 for wh ich a single fore ign

born category was used. Sub·Saharan African·born and other foreign·born were combined during f itting. Model 

output follows the dashed line and individual runs of the model are denoted with a '·' (30 for each data point). 

Observed numbers of case notifications follow the solid line. Age categories are as follows: ages 0 - 14 years are in 

black; ages 15 - 44 years are in blue; ages 45 - 64 are in green; and ages 65 years and over are in grey. 
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Figure 5-24: Model output and observed cases notif ied in England and Wales for fore ign-born males (A) and females 

(B) by age category for 1999 - 2009, for stage two fitting of a modified version of Scenario 4, for wh ich a single 

foreign-born category was used. Sub-Saharan African-born and other foreign-born were combined during fitting. 
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5.2.2.1.2 Replicates 

ANOVA performed on the 10 scenarios used for this variation of stage two fitting 

showed that there was significant variation in GOF statistics across the scenarios (p

value 0.01). Only when analysis was restricted to the four scenarios with lowest mean 

GOF statistic-scenarios 3, 4, 8, and 9-did the ANOVA show that GOF statistics do not 

significantly vary with fitting scenario (p-value 0.07). Note that scenarios 3, 4, 8, and 9 

also have the absolute lowest GOF statistics when comparing only the lowest of the 

five replicates for each scenario. 
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Figure 5-25: Box plot of the goodness of fit (GOF) statistics resulting from the 10 fitting scenarios with five replicates 

each for stage two fits . Analysis of variance (ANOVA) showed GOF statistics differed significantly among the 10 

scenarios (p-value 0.0102). ANOVA performed on scenarios 3,4, 8, and 9 showed that GOF statistics were not 

significantly different among those four scenarios (p-value 0.0662). 
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5.2.2.2 Disease risks 

Best~fitting disease risk estimates for the 10 scenarios are shown in Table 5-13. Since 

GOF statistics from scenarios 3, 4, 8, and 9 were the lowest and there were no 

significant differences between them, only these are presented. Results from these 

four scenarios gave a mean value for the risk of Primary Disease as 8.5% and 2.7% for 

Reinfection Disease. The annual rate of progression to Reactivation Disease from 

Latent Infection was estimated to be 0.013% on average. As shown in Table 5-15, the 

risk reduction for Reinfection Disease compared to Primary Disease averaged 75% 

among these four scenarios and 73% among all 10 scenarios, figures not shown. 

Table 5-14: Estimated disease risks and mean values for the four best-fitting scenarios. 

Disease risks for UK-born adult males by disease type 
Infection status of Primary Reactivation (% per Reinfection Foreign:UK-

Scenario migrants Contact rate (%) year) (%) born 

9 Scr2 all = 10 7.4% 0.012% 2.6% 2.44 

4 Scr1 all = 10 7.5% 0.017% 1.2% 2.59 

8 Scr2 all = 8 9.0% 0.012% 3.8% 2.39 

3 Scr1 all =8 10.0% 0.012% 3.4% 2.33 

Mean 8.5% 0.013% 2.7% 2.44 

Table 5-15: Comparison of disease risk estimates for Primary Disease and Reinfection Disease for the four best

fitting input parameter scenarios from stage two. Ratios between the risk of Reinfection and Primary Disease are 

reported, along with the corresponding reduction in risk for Reinfection Disease. 

Scenario Primary (%) Reinfection (%) Risk ratio 
Risk 

Reduction 

9 7.4% 2.6% 0.35 0.65 

4 7.5% 1.2% 0.15 0.85 

8 9.0% 3.8% 0.42 0.58 

3 10.0% 3.4% 0.34 0.66 

Mean 0.25 0.75 
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5.2.2.3 Proportion of cases due to recent 

transmission in the UK 

A summary of the proportion of cases due to recent transmission in the UK estimated 

by the model is shown in Table 5-16. As found in stage one fits, age-dependent trends 

differed between UK-born and foreign-born. UK-born cases aged 0 - 14 years had the 

lowest proportion of disease due to recent transmission in the UK, 95% on average. 

This proportion decreased with increasing age category, with an estimated 42% of 

cases due to recent transmission in the UK for those aged 65 years and above. For 

foreign-born individuals, the trend was reversed. Those aged from 0 - 44 years had a 

lower proportion of disease due to recent transmission, around 49%, than those aged 

45 years and older, around 74%. Only considering the four best-fitting scenarios, and 

averaging over all age and sex categories for 1999 - 2009 resulted in the estimate that 

about 43% of foreign-born and 55% of UK-born cases, or 46% of cases overall, were 

due to recent transmission in the UK. There was little variation among the four 

scenarios, as estimates ranged from 52 - 57% for UK-born cases, 42 - 44% for foreign

born cases, and 45 - 47% overall. 

Estimates of the proportion of disease due to recent transmission in the UK for input 

scenario 9, the best-fitting of the 10 scenarios in which a single foreign-born category 

was fit, are shown in Figure 5-26 and Figure 5-27. Plots show age- and sex-specific 

trends in the estimated proportion of cases due to recent transmission in the UK over 

1999 - 2009. Age-specific trends in UK-born cases differed from trends in foreign-born 

cases. Estimates were higher for UK-born, and clearly declined with increasing age. For 

foreign-born cases, the age-specific trends were less clear, though generally, those 

under age 45 had lower estimated proportions of disease due to recent transmission, 

while those aged 45 years and older had a higher proportion of disease due to recent 

transmission in the UK. 
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Table 5-16: Proportion of cases due to recent transmission in the UK, averaged over all demographic categories and 

input scenarios for stage two fits using a single foreign-born category, 1999 - 2009. 

Age Birthplace Mean 0.25 0.75 

0-14 years Foreign 0.47 0.28 0.63 

15 -44 years Foreign 0.50 0.36 0.53 

45-64 years Foreign 0.76 0.65 0.86 

65 years+ Foreign 0.72 0.62 0.83 

0-14 years UK 0.95 0.93 0.98 

15 -44 years UK 0.69 0.58 0.82 

45 -64 years UK 0.63 0.49 0.78 

65 years+ UK 0.42 0.29 0.53 
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Figure 5-26: Estimates of t he proportion of disease due to recent t ra nsmission in the UK for UK-born males (A) and 

females (8) by age category for scenario 9, the best -fitting of 10 stage two scenarios in which a single foreign-born 

category was used fo r fitt ing. 
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Figure 5-27: Estimates of the proportion of disease due to recent transmission in the UK for foreign-born males and 

females by age category by age category for scenario 9, the best -fitting of 10 stage two scenarios in which a single 

foreign-born category was used for fitting. 
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5.2.2.3.1 Effect of contact rate and infection status of migrants 

Again for this variation, results showed that several scenarios fit the data roughly 

equally we". Two-way ANOVA was performed for testing the effects of those 

parameters on GOF statistics and disease risks. As seen in the analyses on the stage 

one fits, only the infection status of migrants was significant (p-value 1.57xlO-ll). Also, 

as seen in analyses on the stage one fits, both the contact rate and the infection status 

of migrants were significantly associated with primary disease risk estimates. For the 

contact rate, there was a negative coefficient for the linear regression, indicating that 

disease increased with decreasing contact rate. For Reactivation Disease risks, only the 

contact rate was significantly associated with estimates (p-value 0.002). The linear 

regression coefficient showed that there was a very sma" negative association 

between the variables, meaning increased contact rates resulted in decreased 

Reactivation Disease estimates. However, neither the contact rate nor assumptions 

about the infection status of migrants significantly affected Reinfection Disease risk 

estimates. 
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5.3 Discussion 

Results showed the best fits to observed data were stage two fits for which a single 

foreign-born category was used in fitting. For this reason, these stage two results will 

be used to fulfil objectives and to inform subsequent modelling described in the thesis. 

Firstly, pertaining to objective two of this study, disease risk estimates were lower than 

earlier estimates for UK-born adult males, reflecting a decrease in disease risk 

following infection for UK-born individuals in recent years. Foreign-born disease risks 

were consistently higher than those of UK-born, on average 2.4 times higher than UK

born disease risks. The model fits suggested the contact rate was between eight and 

10 effective contacts per year for infectious cases. Secondly, pertaining to objective 

three, estimates of the proportion of cases due to recent transmission in the UK were 

around 46% on average. Results are discussed further below, in separate sections 

discussing the quality of model fit to data, disease risk estimates, estimates of the 

proportion of cases due to recent transmission in the UK, and plausible assumptions 

about the contact rate and infection status of migrants. Also, limitations of the study 

are discussed. This section concludes with a discussion of the implications of results. 

5.3.1 Summary and Interpretation of Findings 

5.3.1.1 Quality o/modelfit to data 

In stage one fits, model output followed major trends in the observed notification 

data, and reproduced observed data for some groups well, but fell short of accurately 

reproducing observed data for other demographic groups. Poor fits for some 

population groups, most notably for SSA-born individuals, suggested problems in one 

or more elements of the model, input data, or fitting process. Discrepancies between 

the model and observed data have many possible causes, as discussed below in 

Section 5.3.5.1. 

In stage two fits under the variation using a single foreign-born category, the model 

output reproduced observed data much more satisfactorily. There are several 

potential reasons why fitting to the combined foreign-born group resulted in better fits 

to observed data. Combining SSA-born and OF-born cases may have improved fits 

since the model does not completely differentiate between these two groups in the 
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first place. It appears that the assumption in the model that OF-born individuals and 

HIV-negative SSA-born individuals have the same disease risks caused some constraint 

in model fitting. The numbers of SSA-born case notifications were generally 

underestimated in the model while the number of OF-born notifications fit to 

observed data more accurately. The OF-born group had many more cases than SSA

born and had more influence on disease risk parameters. Combining groups also 

meant fitting to fewer data points and larger population sizes for each data point. The 

increased population sizes may have improved fits but also resulted in more consistent 

results for best-fitting disease risks and for scenarios of the contact rate and the 

infection status of migrants, which fit observed data best. For these reasons, the 

parameter estimates and scenarios for subsequent modelling will use only the results 

from the stage two fits using a single foreign-born category. 

5.3.2 Estimates of Disease Risk 
Estimates for the risk of Primary Disease and Reinjection Disease for UK-born adult 

males were around 8.5% and 2.7%, respectively, among the four best-fitting of the 10 

scenarios using a single foreign-born group. These were lower than estimates from 

England and Wales over the 20th century [19], which were 14% and 8% for Primary 

Disease and Reinjection Disease respectively. The estimate for Primary Disease was 

also lower than a recent estimate of 15%, obtained using models of tuberculosis 

dynamics in the US based on similar principles [223]. Estimates obtained here are 

closer to earlier estimates for adult males from the Netherlands, which were 5% and 

2% for cumulative risks of Primary Disease and Reinjection Disease. The risk reduction 

for Reinfection Disease compared with Primary Disease estimated in this study was 

around 75%, similar to the 80% estimated in a recent literature review of evidence 

from cohort studies [306], but higher than estimates 62% [18],40% and less than 35% 

[307] provided by previous modelling studies. Estimates for the annual rate of 

Reactivation Disease averaged approximately 0.01% among the four best-fitting of the 

10 scenarios, which was lower than previous estimates for UK-born males of around 

0.03% [19] and almost identical to estimates from recent models of tuberculosis 

dynamics in the US of around 0.01% [223]. 
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However, for foreign-born individuals, taking into account the risk ratio estimated by 

the model for foreign-born versus UK-born risk meant disease risks for foreign-born 

individuals were consistently higher than risks for UK-born individuals. The risk ratio 

between foreign-born and UK-born disease risk was around 2.6 on average for the 10 

scenarios, or 2.4 in the best four of these 10 scenarios. This ratio makes foreign-born 

disease risk estimates very similar to the risks estimated for UK-born males in England 

and Wales over the last century [19]. 

5.3.3 Proportion of Cases Due to Recent Transmission in the UK 

The overall estimated proportion of cases due to recent transmission in the UK was 

high, around 46% on average for the four best-fitting scenarios. There was little 

variation among scenarios as estimates ranged from 45 - 47%. Estimates were higher 

than the recent estimates of the proportion of disease due to recent transmission in 

the Netherlands, estimated to be 40% for urban cases and 27% for rural cases using an 

analysis stratifying cases using characteristics including results from strain typing of 

isolates. The estimates obtained in this study were also higher, particularly for older 

age groups, compared with a previous modelling study using data from the 

Netherlands [9]. Estimates of the proportion of disease due to recent transmission 

have also been obtained by molecular epidemiological studies, which attempted to 

differentiate between disease due to recent infection and due to older or imported 

infections. The estimates obtained here were higher than estimates from the two UK 

studies estimating the proportion of cases due to recent transmission using RFLP data 

[166,308]. However, these studies were limited by interpretation of the genotyping 

data and the still unclear relationship between genotype clustering and recent 

transmission, as discussed in Chapter 2, Section 2.4.3 and further in Chapter 7. 

Note that male-female differences in the proportion of disease due to recent 

transmission can be largely explained by relative risks between adult males and 

females. In the model it was assumed that females are less likely to develop 

Reactivation Disease than males, very much less likely to develop Reinfection Disease, 

and equally likely to develop Primary Disease. Therefore, best-fitting disease risks will 

alter differences in the proportion of cases due to recent transmission in the UK. For 
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example, increased primary disease risk will mean a larger proportion of disease due to 

recent transmission for females. 

Results among birthplace groups showed that UK-born individuals had a higher 

proportion of disease due to recent transmission than foreign-born individuals, as 

expected. Age-dependent trends in the proportion of disease due to recent 

transmission were also different between UK-born and foreign-born individuals. UK

born children have the highest proportion of disease due to recent transmission

almost all cases-whereas older UK-born individuals have a decreased proportion of 

disease due to recent transmission because they are more likely to have been infected 

long ago. Still, these proportions were high, even in older individuals. 

The patterns for foreign-born individuals generally showed that those aged lS - 44 

years had the lowest estimates of the proportion of disease due to recent 

transmission. This finding seems reasonable because they are the group most likely to 

be the newest immigrants and are more likely to have an infection acquired abroad. 

Disease caused by recent infections acquired abroad did not contribute to the 

proportion of disease due to recent transmission in the UK. Foreign-born children also 

had a low proportion of cases due to recent transmission in the UK for similar reasons. 

Based on their ages, they would have been recent migrants, and therefore probably 

acquired their infection abroad. On the other hand, the elderly foreign-born have likely 

been in the UK for a long time and are likely to have an older infection, which carries 

relatively low risks for progression to disease. Since recent infections have a much 

higher risk of progression to disease, many of these cases are due to recent 

transmission, even though most infections in this group are probably older or 

imported. The estimates here may have been high due to a higher contact rate than is 

appropriate. Model estimates of the proportion of cases due to recent transmission in 

the UK were sensitive to the input scenarios, in particular to the contact rate and to 

disease risks. As would be expected, higher contact rates and higher risks of Primary 

Disease resulted in higher estimates for the proportion of disease due to recent 

transmission in the UK. The contact rate was explored further in Chapter 7, where 

genotyping data were used to help understand the relationship between genotype 

clustering and recent transmission. 
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5.3.4 Effect of Contact Rate and Infection Status of Migrants 
The most appropriate contact rates and assumptions for the infection status of 

migrants are assumed to be those from the best fits of the model to observed data. 

Among the 10 scenarios tested for the stage two variation fitting a single foreign-born 

category, four were distinguished as better than the rest, when considering both the 

mean GOF statistics across five replicates-they were the four lowest-and also when 

considering only the best-fitting among the five replicates for each scenario-also the 

four lowest using this criterion. Therefore, these scenarios will form a starting point for 

contact rate values and distributions for infection status of migrants used in 

subsequent modelling in this thesis. 

5.3.5 Limitations 

S.3.S.1 Discrepancies between model 

outputs and observed data for stage 

onefits 

One limitation of the work is that there were discrepancies between model output and 

observed data for stage one fitting runs designed a priori. There are several potential 

causes of these discrepancies, each of which should be considered for better 

understanding of the limitations of the model. For one, discrepancies may result 

because the fitting routine, including choice of variable parameters, may itself be 

limited. The fitting scheme was developed under constraints of lack of data and limited 

computer resources. This consideration, and the limited scope of the project generally, 

led to some simplifications that may have contributed to problems obtaining good fits 

of the model to observed data. It is possible that the model parameters left to vary 

during fitting were too few to achieve a good fit of model output to observed data. The 

ratio of disease risk between UK-born and foreign-born, df, and the ratios of disease 

risk between males and females, sd, were particularly restrictive and likely hindered 

better fitting of the model output to observed data across demographic groups. It may 

have been better to fit more variable disease risk parameters, even though some 

estimates would be based on little data. 
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Fit discrepancies could also be due to input parameters and input scenarios. Although 

these represent a range of plausible assumptions about the contact rate parameter 

and assumptions about the infection status of migrants, it is possible that the contact 

rate parameters do not cover the true best values even among 25 scenarios. With 

regard to other input data, it is possible that some other parameters were 

problematic. Due to insufficient or inaccurate observed data, some of the fixed 

parameters in the model could have been inaccurate and made it impossible to fit 

model output to observed data accurately. Major data limitations are discussed below 

in Section 5.3.5.2. Furthermore, the target data that the model is fit to could have 

been inaccurate. Limitations to these data are also discussed below in Section 5.3.5.2. 

Other causes of the discrepancies between model output and observed data could be 

due to errors in the coding of the model itself, though steps were taken to avoid these 

types of errors, as discussed in Chapter 3, Section 3.4. 

S.3.S.2 Data and model assumptions 

Another potential cause of inadequate fits of the model in stage one of fitting were 

input parameter values and other assumptions in the model. Parameters were taken 

from literature sources or data whenever possible. However, some parameters had to 

be based on little or surmised data, including the infection status of the population in 

1981, the infection status of migrants, and the contact rate. Other parameter values 

were uncertain for some demographic groups or uncertain for recent years. For 

example, the ratio of female to male disease risk was taken from an England and 

Wales study, but it is possible those values did not extend to the populations modelled 

here, since they were based on the white ethnic group in an earlier time period. Also, 

the age-specific proportion of cases that are smear-positive was taken from previous 

work, based on trial results which are now more than SO years old. In addition, the 

vaccine efficacy assumptions for UK-born individuals were based on older trials. Other 

parameters were based on uncertain data including lFS estimates for population size 

estimates for small demographic categories, which were uncertain and affect case 

numbers and also notification rates. SSA-born migration and populati<;>n sizes were the 

least certain, as was HIV prevalence among SSA-born migrants. 
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Finally, the assumption of lifelong immunity for those vaccinated may have been 

unrealistic, as well as the assumption that no migrants are vaccine-protected. This may 

have allowed an artificially high contact rate to fit the data, since such contact would 

commonly be wasted on vaccine-protected individuals. On the other hand, although 

the mechanism is wrong, it is likely that much of the population in the UK is effectively 

immune from M. tuberculosis infection due to isolation of the disease and its 

transmission to mainly high-risk groups of the population. 

One possible shortcoming of the model is that it may have been stratified into more 

categories than supported in available data for parameters. Despite input data 

limitations, the model output was stratified into age, sex, and birthplace categories 

because these were each thought to be important factors in the natural history and 

epidemiology of tuberculosis. However, the model as it was parameterized may not 

have allowed necessary differences among categories to fit model output to observed 

data. For example, in many cases it was assumed that males and females had equal 

values for parameters, when in reality the case may be different. Specifically, estimates 

of infection and disease prevalence for the initial population in 1981 and infection and 

disease prevalence in immigrants (where applicable), the ARt was assumed equal for 

males and females. In addition, the contact rate was assumed equal for males and 

females, and both were equally susceptible to being the target of a transmission. In 

reality, there may actually have been differences between male and female behaviour, 

which could also interact with age, but the model and available input data did not 

specify so. This limitation is also true for birthplace. 

5.3.5.3 Other limitations 

Due to limited computer time, only five replicates of each fitting scenarios were run. 

The five replicates exhibited variance, though often the two or three replicates with 

the best GOF statistics had similar GOF statistics and parameter estimates. The 

patterns generally supported choosing the best fitting among the five replicates, 

though more replicates would have increased the likelihood that the fits and the 

resulting parameter estimates were the best possible for that scenario. Also due to 

limited computer hours, confidence bounds for the estimated parameters were not 
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calculated. These could have been estimated by running the model with randomly 

chosen parameter values many times (say thousands), accepting parameter estimates 

as part of 95% confidence interval if model output using those parameter estimates 

fell within some specified range, determined by the optimal deviance. Confidence 

limits were not generated mainly because the method requires thousands of runs of 

the model and computer hours were limited. Instead of using confidence limits, 

several best-fitting scenarios covering a range of estimates were tested for subsequent 

modelling in the thesis. 

5.3.6 Implications of Findings 

Estimates of the proportion of disease due to recent transmission in the UK over this 

time period may help assess M. tuberculosis infection control strategies. The estimated 

proportions of disease due to recent transmission show there is still motivation to 

work towards stopping the transmission of M. tuberculosis in the UK. Estimates for 

foreign-born proportions of disease due to recent transmission are lower than those 

for UK-born proportions, but many foreign-born cases are still likely to be due to 

transmission within the UK. 

Disease risk estimates show there is a clear difference between risks in UK-born and 

foreign-born, with foreign-born risks 2.4 times higher on average. Higher disease risk 

for foreign-born individuals means that measures such as prophylactic treatment may 

be more cost-effective since more cases may be avoided for any number of treatments 

given. These newly estimated risks may help inform cost-effectiveness studies of 

interventions such as prophylactic treatment of latent infection. 

Implications for subsequent modelling are multi-fold. Firstly, disease risk estimates 

span a wide range of values and it is problematic to identify exact values to be used. 

Several values should be used in subsequent modelling. Secondly, several 

combinations of the contact rate and assumptions about the infection status of 

migrants led to equally good fits of model to data. A range of these input scenarios 

should also be used in subsequent fitting. Thirdly, my results suggest that the model 

and current data do not have the ability to distinguish between separate groups of 

foreign-born individuals and that this population should be modelled as one group in 
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any further modelling if more data do not become available. As better screening data, 

immigration data, and HIV prevalence data become available, the model may provide 

better differentiation among immigrant groups. 
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6 Molecular Epidemiology of the West Midlands 

This chapter describes the analysis of genotyping data from the West Midlands to fulfil 

objective four of the thesis. Here the molecular epidemiology of the West Midlands is 

studied from 2007 to 2011, using both 1S-locus and 24-locus VNTR typing systems, to 

provide an analysis of the risk factors for clustering of isolates from tuberculosis cases 

and a population-based comparison between the two VNTR typing systems. A crude 

estimate of the proportion of cases due to recent transmission is also calculated from 

the VNTR typing data. Results provide population-level estimates of clustering and risk 

factors associated with clustering using 24-locus VNTR data and a background for the 

use of these data in the molecular epidemiological modelling described in Chapter 7. 
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6.1 Methods 

6.1.1 Study Population, Data Collected, and Laboratory Methods 

The study population included all tuberculosis cases from the West Midlands notified 

from January 2007 to December 2011. The region has a population size of 

approximately 5.6 million [309] and includes the cities of Birmingham, Coventry, and 

Wolverhampton (see Chapter 2, Section 2.3.2.2), all noted for relatively high rates of 

tuberculosis incidence in the UK [112]. In addition, the region as a whole has 

tuberculosis notification rates above the national average, at approximately 18.5 cases 

per 100,000 population in 2011 [105]. Mirroring national trends, notification rates in 

the region have increased since the late 1980s, with concurrent increases in the 

proportion of patients born abroad. 

During this period, data on notified cases were maintained in the national ETS 

database (see Chapter 2, Section 2.3.2.3.1). For each case, ETS holds: demographic 

data including age, sex, world region of birth, ethnic group, and time from entry to the 

UK and tuberculosis diagnosis for foreign-born individuals; clinical details, including 

site of disease and year of notification; behavioural risk factors, including history of or 

current problem drug or alcohol use and history of or current homelessness or time 

spent in prison; and laboratory data, including culture positivity and drug sensitivity for 

cases in the study. The characteristics used as variables in the study are summarized in 

Table 6-1. In the ETS database, duplicate notifications and specimens from the same 

patient were collated if they occurred within 12 months of the initial notification or 

specimen date. Episodes of tuberculosis more than 12 months apart were captured as 

separate notifications. 

Also during the study period, clinical specimens from suspected cases of tuberculosis in 

the West Midlands were routinely sent to the HPA Regional Centres for 

Mycobacteriology, Birmingham, for culturing, identification, strain typing, and drug 

susceptibility testing according to standard methods as described previously [310]. 

Briefly, specimens were first decontaminated, examined by microscopy, and then 

incubated in liquid culture. Positive cultures were identified with a DNA test which 
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detects M. tuberculosis complex DNA. Culture-positive isolates were tested for drug 

susceptibility to isoniazid, rifampicin, pyrazinamide, and ethambutol. 

Table 6-1: Description of demographic and other characteristics of tuberculosis cases used for variables in analyses 

in the study. 

Variable name 

sex 

age group 

birthploce 

ethnicity 

time since entry 

disease site 

drug sensitivity 

previous 
diagnosis 

drug use 

alcohol use 

homelessness 

prison time 

Description 

Sex 

Age group 

World region of birth 

Ethnic group 

Categories 

Male, female 

0- 14, 15 - 44, 45 - 64, 65+ 
(years) 

UK, Europe, East Mediterranean, 
Africa, Americas, South Asia, 
East/Southeast Asia 

White, Black-Caribbean, Black
African, Black-Other, South Asian, 
Chinese, Mixed/Other 

Time from entry to UK to TB diagnosis 0 - 1, 2 - 4, 5 - 9, 10+ (years) 

Site of body affected by disease 

Sensitivity to the four first line 
antibiotics, isoniazid, rifampicin, 
pyrazinamide, and ethambutol 

History of TB diagnosis 

History of or current problem drug 
use 

History of or current problem alcohol 

use 

History of or current homelessness 

History of or currently imprisoned 

Pulmonary (including pulmonary 
and extra-pulmonary), extra
pulmonary only 

Sensitive, resistant to one or 
more drugs 

Yes, no 

Yes, no 

Yes, no 

Yes, no 

Yes, no 

From 2007 - 2009, isolates from culture-positive samples were routinely typed with a 

set of 15 VNTR loci, including the 12 original MIRU loci and ETR loci 'A', 'B', and 'e' 

[150]. From 2010, isolates from cUlture-positive samples were routinely typed with the 

standard set of 24 VNTR loci, which include the 15 loci used previously, plus an 

additional nine loci [152] (See also Chapter 2, Section 2.4.1.3). VNTR typing was 
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performed according to standard methods, as described previously [116, 140, 141, 

310,311]. 

To extend the dataset of 24-locus profiles, further typing with the additional nine loci 

was undertaken for isolates from 2007 - 2009 with 15-locus profiles. To conserve 

limited laboratory resources and time, only those 2007 - 2009 isolates that matched 

one or more other isolates in the study population, or were 'clustered' according to a 

cluster analysis on the 15 loci, were typed with an additional nine loci. These isolates 

were identified by performing a preliminary cluster analysis on the 15 loci for all 

isolates from 2007 - 2011 (details of this preliminary cluster analysis are described 

below, in Section 6.1.2.3). 

In the laboratory, steps were taken to exclude isolates suspected of laboratory 

contamination (J. Evans, personal communication), however, after I obtained 

laboratory data, no cases were excluded from analysis due to suspected laboratory 

cross-contamination. This is because the dates specimens were processed in the 

laboratory were unknown. 

Strain types and other laboratory data were linked to cases notified to ETS through a 

matching process based on patient names, birthdates and addresses, undertaken by 

the HPA Tuberculosis section, as described elsewhere [113]. The matching process 

allowed laboratory strain types from culture-confirmed isolates to be associated with 

demographic and other case data in ETS. Cases without a match to laboratory data 

included culture-negative cases, cases with no specimens sent to the laboratory, and 

cases for which the matching process failed. 

6.1.2 Data Analysis 

6.1.2.1 Descriptive analysis 

The proportion of notified cases with a positive culture was calculated, as well as the 

proportion of notified cases that were eligible for VNTR cluster analysis. For the 15-

locus analysis, eligible cases include those with 15-locus strain type profiles and no 

more than one of the 15 loci missing. For the 24-locus analysis, these include cases 

with 24-locus profiles missing no more than two loci, and cases with 15 locus-profiles, 
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which were unique in a dataset-wide cluster analysis on the 15 loci. For eligible cases 

and for all cases, the numbers and proportion of cases by demographic and other 

characteristics outlined in Table 6-1 were tabulated. Only cases that fulfilled criteria for 

inclusion in both the 15- and 24-locus analyses were used for subsequent analyses. 

6.1.2.2 Clustering definitions 

In this study, two definitions of clustering were used along with one index for 

estimating the proportion of cases due to recent transmission. First, according to the 

'n method' [163], cases with strain type profiles that exactly matched one or more 

other profiles in the study population were considered 'clustered'. Cases with strain 

type profiles that did not have an exact match in the study population were considered 

'unique'. A group of two or more cases with identical strain types in the study 

population formed a 'cluster'. 

Second, the 'retrospective method' attempts to distinguish between source cases and 

recipients of infection. Under this definition, cases with strain type profiles that exactly 

match one or more other profiles from case(s) in the study population, which were 

notified previously, within some defined time period, were clustered. A case with a 

strain type profile that did not have a match in the study population from a case 

notified previously, within the defined time period, was considered unique. In the 

present study, the time period used was two years. Other studies have looked four 

years and one year prior to define retrospective clustering [164-166]. Here, the 

proportion of cases clustered by study duration justified the choice of a two-year 

definition, as shown in Appendix 10.17, because the proportion of cases clustered did 

not increase much after two years of genotyping data. The retrospective method 

eliminates some bias in cluster analysis that occurs for other definitions of clustering 

because cases notified at different times have different follow-up periods for assessing 

clustering. Using the retrospective method, the same time period for each isolate is 

used to look retrospectively for an isolate's match. However, this method results in a 

loss of data, with increasing losses for longer retrospective time periods considered. As 

defined here, the first two years of notified cases were excluded, as there were not 

enough preceding data to evaluate those cases as clustered or unique. 
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Lastly, clustering according to the 'n-1 method' [162] was calculated to provide a 

simple estimate of the proportion of cases due to recent transmission. The n-1 method 

considers any isolate for which there is another isolate with an identical strain type 

profile from a case notified previously as clustered. This means that within a cluster of 

cases with identical strain type profiles, all but the first of them to be notified are 

considered clustered, with the implicit assumption that the first case notified is the 

source of transmission. 

6.1.2.3 Molecular epidemiology 

Cluster analyses on strain type profiles were performed for both typing systems, 15-

locus 24-locus VNTR, including a preliminary cluster analysis on the 15 loci. Methods 

were identical for each cluster analysis. VNTR profiles were imported into BioNumerics 

version 6.2 (Applied Maths, Kortrijik, Belgium) as categorical data 'experiments', 

separately for 15-and 24-locus VNTR. For each typing system, a cluster analysis was 

performed using the Unweighted Pair Group Method with Arithmetic Mean, Pearson's 

correlation, and 100% profile similarity cut-off, though alternate options in 

BioNumerics produced identical results since VNTR data are categorical and 100% 

profile similarity was used to define clusters. Missing loci were ignored, which meant 

profiles with missing loci were allowed to cluster with complete profiles. 

For each cluster analysis, an identification number was assigned to each distinct strain 

type profile, such that identical profiles share the same identification number using the 

'fill field with cluster number' script available with the BioNumerics software. The 

resulting dataset was analysed using Stata version 12.1 (Stata Corporation, College 

Station, TX). The proportion of isolates clustered, using both 15- and 24-locus VNTR for 

both the n method and the two-year retrospective method, was calculated"6Yth.e . 

demographic and other characteristics of cases found in Table 6-1. In addition, cluster 

size distributions were compared for 15- and 24-locus typing systems and an estimate 

of the proportion of cases due to recent transmission was calculated using the n-1 

method for both typing systems. 

A univariate analysis of factors associated with clustering was performed for both 

typing systems and definitions of clustering for all characteristics found in Table 6-1. 
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Maximum likelihood estimates of odds ratios (OR) with Wald tests with 95% 

confidence limits are reported. Significance was evaluated using p-values derived from 

the likelihood ratio chi-square test (LRT), with p<0.05 considered significant. 

Multivariate logistic regression models were also constructed for each typing system 

and definition of clustering, with a subset of factors explored in the univariate tests. It 

was decided a priori to include the age group in the multivariate models since there 

was an expectation this age would impact cluster membership [166, 169,312]. 

Multivariate models included other variables significantly associated with clustering in 

the univariate analysis (p-values < 0.05), less some exceptions. It was decided a priori 

that only one of the region of birth and ethnicity variables would be included in the 

model, with region of birth preferred if both significant. Time since entry, only 

applicable to foreign-born cases, was not eligible for inclusion in these multivariate 

models since that would reduce the models to foreign-born only (a separate model for 

foreign-born is described below). In addition, since the behavioural risk factors, drug 

use, alcohol use, homelessness, and prison time, were only collected for a subset of 

cases, these were left out of these multivariate models. The excluded factors were 

explored in additional multivariate models, described below. For factors included in 

the multivariate models, adjusted ORs and their 95% confidence limits were reported, 

with significance evaluated using p-values from the LRT. 

For foreign-born cases, separate multivariate models were constructed to allow 

incorporation of the variable time since entry. These models were constructed using 

variables significantly associated with clustering in a univariate analysis of risk factors 

for clustering in foreign-born cases. Models were constructed for each definition of 

clustering, although for simplicity, only the 24-locus typing system was used. As in the 

initial models, behavioural risk factors were excluded from the foreign-born models 

because of the large amount of missing data for these variables. 

Additional supplementary multivariate logistic regression models were constructed to 

explore behavioural risk factors significantly associated with clustering on the 

univariate tests. Again, models were constructed for each definition of clustering, 

though only using the 24-locus typing system. For each model, demographic and other 
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factors significantly associated with clustering in the initial multivariate model 

described above were included at the start. Behavioural factors were then added one 

at a time, using forward selection. Inclusions were accepted if the model was 

significantly improved according to the LRT test at the p=0.05 significance level. 
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6.2 Results 

6.2.1 Study Population and Descriptive Analysis 
From 2007 - 2011, there were 4,84S tuberculosis cases notified in the West Midlands. 

Of those, 2,749 (S6.7%) had a positive culture, and isolates from 2,S43 of them (92.S%) 

were typed with at least 1S loci. Of those typed, 2,423 (9S.3%) had at most one missing 

locus and were eligible for the preliminary cluster analysis on the 1S loci. 

The preliminary cluster analysis was performed on all the 2,423 eligible 1S-locus 

profiles to determine which 1S-locus profiles were clustered, and therefore should 

have isolates typed with the additional nine loci. The additional typing was carried out 

on as many of these as possible, including more than 1,000 isolates from 2007 - 2009 

that formerly had only IS-Iocus profiles. Nevertheless, 108 isolates were clustered in 

the IS-Iocus analysis but not typed with the additional nine loci and were thus 

excluded from further analyses. The preliminary cluster analysis also revealed 319 

isolates that were unique on the IS-Iocus cluster analysis and eligible for inclusion in 

the 24-locus analysis. 

After the additional typing, there were 2,080 cases with 24-locus profiles, of which 88 

cases were excluded due to having profiles missing more than two loei, leaving 1,992 

eligible cases. With the additional 319 cases with unique IS-Iocus profiles, there were 

a total of 2,311 cases eligible for analysis using 24-locus profiles. 

The intersection of the 2,311 cases eligible for 24-locus analysis and the 2,423 cases 

eligible for IS-Iocus analysis left 2,283 cases eligible for both analyses. These represent 

83.1% of culture-positive isolates, or 47.1% of all notified cases in the study period, as 

depicted in the diagram in Figure 6-1. 
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The demographic and other characteristics of the 2,283 cases are summarized in Table 

6-2. Demographic variables were missing for only a small minority of cases, though for 

some other variables, such as previous diagnosis and the four behavioural risk factors, 

there were a substantial portion of cases with missing data; see Appendix 6-8 for 

details of the proportion missing by variable. The demographic and other 

characteristics for all 4,845 notified cases are found in Appendix 6-C. 

n=4,845 
cases reported 

I 

n=2,749 (56.7%) 
cases with a positive culture 

I 

n=2,543 (52.5%) 
typed with at least 15 loci 

n=2,283 (47.1%) 
met inclusion criteria for 

cluster analyses 

Figure 6-1: Diagram showing the proportion of notified cases included in cluster analyses. From 2007 - 2011, there 

were 4,845 cases reported in the West Midlands. Of those, 2,749 had a positive culture while the remainder had a 

negative culture result or were missing specimens or laboratory data. Of those with a positive culture, 2,543 were 

typed with at least 15 loci and 2,283 were eligible for inclusion in both 15- and 24-locus cluster analyses. 

6.2.2 Molecular Epidemiology 

Over all of the 2,283 cases analysed, 46.5% were clustered in the 24-locus analysis and 

68.9% in the 15-locus analysis, using the n method. There were a total of 252 clusters 

in the 24-locus analysis, 135 of which included only two cases. There were a further 85 

clusters with 3 - 5 cases, 18 clusters with 6 - 9 cases and 13 clusters with 11 - 49 

cases. Only one 24-locus cluster had 50 or more cases. Under the 15-locus analysis, 

there were a total of 255 clusters, 97 of which included only two cases. There were 96 

clusters with 3 - 5 cases, 33 clusters with 6 - 9 cases and 27 clusters with 10 - 49 cases 

using 15-locus profiles. Only two 15-locus clusters had 50 or more cases. The cluster 
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size distributions for the 15- and 24-locus typing systems are compared visually in 

Figure 6-2. 
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Figure 6-2: Cluster size distributions for 15- and 24-locus VNTR typing systems. Clusters were defined according to 

the n method and included all cases notified in the West Midlands from 2007 - 2011 that were typed with VNTR 

and met inclusion criteria for the study. 

The proportion of cases clustered by demographic and other characteristics is shown 

in Table 6-2 for the analysis based on 24-locus profiles, using both the n method and 

the two-year retrospective method to define clustering. Table 6-1 also shows the DRs 

obtained from univariate analysis of variables associated with clustering for each 

definition of clustering with p-values obtained using the LRT. 

Factors significantly associated with clustering using the n method included age group, 

sex, birthplace, ethnicity, time since entry (only applicable to foreign-born cases), 

disease site, drug sensitivity, drug use, alcohal use, and prison time. The risk of 

clustering increased with: a younger age group; male sex; UK birthplace; white 

ethnicity; pulmonary disease; infection with strains sensitive to antibiotic drugs; 

alcohol use; drug use; and present or past history of imprisonment. 

Using the retrospective method, trends were consistent with those observed using the 

n method, although the proportions clustered were lower. The risk of clustering 
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increased with: younger age group; UK birthplace; white ethnicity; pulmonary disease; 

strains sensitive to antibiotic drugs; alcohol use; drug use; and prison time, as in the 

analysis using the n method. Sex was not significantly associated with clustering under 

the retrospective method analysis. 

The same trends were observed using the 1S-locus typing system for both the n 

method and retrospective method. The only differences were that neither age group 

nor sex was significantly associated with clustering for either definition of clustering 

(see results for 1S-locus analyses in Appendix 6-0). 

Multivariate logistic regression models for each typing system and the definition of 

clustering were used to test whether univariate associations with clustering held after 

adjustment for other variables. Age group was included in the models a priori. For the 

24-locus typing system and both definitions of clustering, birthplace, disease site, and 

drug sensitivity were included in the model because they were significantly associated 

with clustering in the univariate analyses. Sex was also included in the n method model 

because it was significant in the univariate analysis. For both models, all variables 

remained significantly associated with clustering, with adjusted odds ratios reported in 

Table 6-2. 

Results were similar under the 1S-locus multivariate models. For both the n method 

and retrospective method, variables birthplace, disease site, and drug sensitivity 

remained significantly associated with clustering, with adjusted odds ratios reported in 

Appendix 6-0. Age group, which was included in both models but not significant in the 

univariate analysis, was not significantly associated with clustering (see Appendix 6-0). 

Note that while ethnicity was also significantly associated with clustering for both 

typing systems and definitions of clustering, it was excluded from multivariate models 

a priori due for correlation with region of birth. In addition, although the variable time 

since entry (applicable to foreign-born cases) and several behavioural characteristics of 

cases were significantly associated with clustering for both typing systems and 

definitions of clustering, they were excluded and explored in two supplementary 

multivariate models. 
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The univariate analysis of factors associated with clustering for foreign-born using the 

24-locus typing system and n method showed that longer time since entry, pulmonary 

disease site, drug sensitive strains, drug use, and prison time were significantly 

associated with clustering. OR and associated p-values are found in Table 6-3. A 

multivariate model was constructed with these factors, less the behavioural risk 

factors drug use and prison time, which were omitted as before due to missing data. 

Only the variables sex, time since entry, and disease site remained significant in the 

multivariate model. Adjusted ORs and associated p-values are also shown in Table 6-3. 

Using the 24-locus system and the retrospective method of clustering, only drug use 

and alcohol use were significantly associated with clustering in the univariate analysis 

for foreign-born cases (results not shown); a multivariate model was therefore not 

constructed using the retrospective method. 

For the multivariate logistic regression model incorporating behavioural risk factors, 

only the n method and 24-locus typing system were used. The model included base 

variables age group, birthplace, disease site, and drug sensitivity, all significantly 

associated with clustering in the main multivariate model. Next, the behavioural risk 

factor drug use, which was most significantly associated with clustering in the 

univariate analysis (p-value 0.00), was added to the regression model. It significantly 

improved model fit, according to the LRT (p-value 0.01). None of the three remaining 

behavioural factors significantly improved model fit after drug use was added. Final 

adjusted ORs for the model including drug use are shown in Table 6-4. 

Results using the retrospective method were very similar to results for the n method; 

again, only drug use improved the model fit significantly (results not shown). 

Finally, the estimated proportion of cases due to recent transmission, or clustering 

according to the n-l method, was 57.7% for 15-locus analysis and 35.5% for the 24-

locus analysis. 
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Table 6-2: Demographic features and risk factors for clustering using 24-locus typing for cases notified in the West Midlands, by the n method and retrospective method of clustering. The n 

method results apply to all cases in the study population, 2007 - 2011. The retrospective method results only apply to cases from 2009 - 2011, as cases from 2007 - 2008 are only used to 

define clusters for later cases. 

All cases, 07 -11 Clustered cases, under the 'n method' 
All cases, 09 -

11 Clustered cases, under the 2-year 'retrospective method' 

N eol% N 
Row 

OR (95% el) 
aOR(95% 

N eol% N % OR (95% el) aOR (95% el) 
% 

p 
(I) 

p p p 

Sex 
Male 1,271 55.7 618 48.6 1.0 0.03 1.0 0.04 784 55.9 293 37.4 1.0 0.09 0.0 

Female 1,010 44.3 444 44.0 0.8 (0.7,1.0) 
0.8 

618 44.1 204 33.0 0.8 (0.7,1.0) 0.0 (0.0,0.0) 
(0.7,1.0) 

Total 2,281 100.0 1,062 46.6 1,402 100.0 497 35.5 

Age group (years) 
0-14 55 2.4 39 70.9 1.0 0.00 1.0 0.00 31 2.2 18 58.1 1.0 0.00 1.0 0.00 

15-44 1,440 63.1 692 48.1 0.4 (0.2,0.7) 
0.5 

873 62.3 338 38.7 0.5 (0.2,0.9) 0.6 (0.3,1.3) 
(0.3,0.9) 

45-64 425 18.6 192 45.2 0.3 (0.2,0.6) 
0.4 

273 19.5 81 29.7 0.3 (0.1,0.7) 0.4 (0.2,0.8) 
(0.2,0.8) 

65 and over 363 15.9 139 38.3 0.3 (0.1,0.5) 
0.3 

225 16.1 60 26.7 0.3 (0.1,0.6) 0.3 (0.1,0.7) 
(0.2,0.6) 

Total 2,283 100.0 1,062 46.5 1,402 100.0 497 35.5 

Birthplace 
UK 693 32.4 451 65.1 1.0 0.00 1.0 0.00 412 30.7 222 53.9 1.0 0.00 1.0 0.00 

Europe 53 2.5 17 32.1 0.3 (0.1,0.5) 
0.2 

37 2.8 10 27.0 0.3 (0.1,0.7) 0.3 (0.1,0.6) 
(0.1,0.4) 

East 
24 1.1 10 41.7 0.4 (0.2,0.9) 

0.4 
17 1.3 5 29.4 0.4 (0.1,1.0) 0.3 (0.1,1.0) 

Mediterranean (0.2,1.0) 

Africa 364 17.0 138 37.9 0.3 (0.3,0.4) 
0.4 

228 17.0 60 26.3 0.3 (0.2,0.4) 0.3 (0.2,0.4) 
(0.3,0.5) 

Americas 25 1.2 14 56.0 0.7 (0.3,1.5) 
0.9 

14 1.0 5 35.7 0.5 (0.2,1.4) 0.7 (0.2,2.2) 
(0.4,2.0) 
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All cases, 07 - 11 Clustered cases, under the 'n method' 
All cases, 09 -

11 Clustered cases, under the 2-year 'retrospective method' 

N Col % N 
Row 

OR (95%CI) 
aOR(95% 

N Col % OR (95% CI) aOR (95% CI) % 
p 

CI) 
p N % P P 

South Asia 927 43.3 356 38.4 0.3 (0.3,0.4) 
0.4 

599 44.6 169 28.2 0.3 (0.3,0.4) 0.4 (0.3,0.5) 
(0.3,0.5) 

East/Southeast 
56 2.6 14 25.0 0.2 (0.1,0.3) 

0.2 
37 2.8 10 27.0 0.3 (0.1,0.7) 0.3 (0.1,0.6) Asia (0.1,0.3) 

Total 2,142 100.0 1,000 46.7 1,344 100.0 481 35.8 

Ethnicity 
White 383 17.4 213 55.6 1.0 0.00 222 16.5 89 40.1 1.0 0.01 
Black-

84 3.8 61 12.6 
Caribbean 

2.1 (1.3,3.6) 37 2.7 20 54.1 1.8 (0.9,3.5) 

Black-African 350 15.9 140 40.0 0.5 (0.4,0.7) 219 16.3 64 29.2 0.6 (0.4,0.9) 
Black-Other 11 0.5 6 54.6 1.0 (0.3,3.2) 9 0.7 5 55.6 1.9 (0.5,7.1) 
South Asian 1228 55.7 559 45.5 0.7 (0.5,0.8) 757 56.2 271 35.8 0.8 (0.6,1.1) 
Chinese 18 .0.8 4 22.2 0.2 (0.1,0.7) 10 0.7 1 10.0 0.2 (0.0,1.3) 
Mixed/Other 129 5.9 51 39.5 0.5 (0.3,0.8) 94 7.0 36 38.3 0.9 (0.6,1.5) 
Total 2203 100.0 1,034 46.9 1,348 100.0 486 36.1 

Time since entry to UK to 
tuberculosis diagnosis (years)· 
0-1 242 18.2 72 29.8 1.0 0.02 151 17.4 34 22.5 1.0 0.29 
2-4 307 23.1 111 36.2 1.3 (0.9,1.9) 192 22.1 49 25.5 1.2 (0.7,1.9) 
5-9 310 23.3 122 39.4 1.5 (1.1,2.2) 218 25.1 61 28.0 1.3 (0.8,2.2) 
10 and over 470 35.4 193 41.1 1.6 (1.2,2.3) 308 35.4 94 30.5 1.5 (1.0,2.4) 
Total 1,329 100.0 498 37.5 869 100.0 238 27.4 

Disease site 
Pulmonary 1,505 66.3 783 52.0 1.0 0.00 1.0 0.00 931 66.6 363 39.0 1.0 0.00 1.0 0.00 
Extra-

766 33.7 277 36.2 0.5 (0.4,0.6) 
0.6 

467 33.4 0.6 (0.5,0.8) 0.7 (0.5,0.8) 
pulmonary (0.5,0.7) 

134 28.7 

Total 2,271 100.0 1,060 46.7 1,398 100.0 497 35.6 

Drug sensitivity 
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All cases, 07 - 11 Clustered cases, under the 'n method' 
All cases, 09 -

11 Clustered cases, under the 2-year 'retrospective method' 

N Col % N 
Row 

OR (95% CI) 
aOR(95% 

N Col % N % OR (95%CI) aOR (95% CI) 
% 

p 
CI) 

p p p 

Resistant to at 
110 4.9 36 32.7 1.0 0.00 1.0 0.01 78 5.6 13 16.7 1.0 0.00 1.0 0.01 

least one drug 

Sensitive 2,159 95.2 1,022 47.3 1.8 (1.2,2.8) 
1.8 

1,310 94.4 481 36.7 2.9 (1.6,5.3) 2.3 (1.2,4.4) 
(1.2,2.9) 

Total 2,269 100.0 1,058 46.6 1,388 100.0 494 35.6 

Previous diagnosis 
No 1,445 86.7 680 47.1 1.0 0.53 1,059 85.1 376 35.5 1.0 (0.0,0.0) 0.19 
Yes 221 13.3 109 49.3 1.1 (0.8,1.5) 185 14.9 75 40.5 1.2 (0.9,1.7) 
Total 1,666 100.0 789 47.4 1,244 100.0 451 36.3 

History of or current problem drug use·· 
No 1,047 95.9 472 45.1 1.0 0.00 1,018 95.9 352 34.6 1.0 (0.0,0.0) 0.00 

Yes 45 4.1 36 80.0 
4.9 

44 4.1 34 77.3 6.4 (3.1,13.2) 
(2.3,10.2) 

Total 1,092 100.0 508 46.5 1,062 100.0 386 36.4 

History of or current problem alcohol use·· 
No 1,025 96.7 466 45.5 1.0 0.00 997 96.6 352 35.3 1.0 (0.0,0.0) 0.00 
Yes 35 3.3 25 71.4 3.0 (1.4,6.3) 35 3.4 23 65.7 3.5 (1.7,7.1) 

Total 1,060 100.0 491 46.3 1,032 100.0 375 36.3 

History of or current homelessness·· 
No 1,066 96.9 494 46.3 1.0 0.45 1,034 96.8 373 36.1 1.0 (0.0,0.0) 0.20 
Yes 34 3.1 18 52.9 1.3 (0.7,2.6) 34 3.2 16 47.1 1.6 (0.8,3.1) 

Total 1,100 100.0 512 46.6 1,068 100.0 389 36.4 

History of or currently in prison·· 
No 1,007 95.9 465 46.2 1.0 0.00 980 95.9 346 35.3 1.0 (0.0,0.0) 0.00 
Yes 43 4.1 32 74.4 3.4 (1.7,6.8) 42 4.1 29 69.1 4.1 (2.1,8.0) 

Total 1,050 100.0 497 47.3 1,022 100.0 375 36.7 
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All cases, 07 -11 

N Col % N 

Clustered cases, under the 'n method' 

Row 
% 

OR (95%CI) p 
aOR(95% 

CI) 
*Foreign-born only, "Missing for 2007, 2008 and half of 2009 cases 

p 

All cases, 09 -
11 

N Col % 

Clustered cases, under the 2-year 'retrospective method' 

N % OR (95% CI) p aOR (95% CI) p 
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Table 6-3: Demographic features and risk factors for clustering under the 24-locus typing system for foreign-born cases notified in the West Midlands 2007-2011, using the n method for 

clustering. 

Total cases Clustering according to 24 loci, n method 
N Col % N % OR 95%CI P aOR 95%CI p 

Sex 
Male 819 55.6 332 40.54 1.00 0.02 1.00 0.01 
Female 654 44.4 227 34.71 0.78 0.63-0.96 0.74 0.59-0.93 
Total 1,473 100 559 37.95 

Age group 
0-14 19 1.29 12 63.16 1.00 0.09 
15-44 922 62.55 336 36.44 0.33 0.13-0.86 
45-64 291 19.74 113 38.83 0.37 0.14-0.97 
65 and over 242 16.42 98 40.5 0.40 0.15-1.04 
Total 1,474 100 559 37.92 

Region of birth 
UK n/a n/a n/a n/a n/a n/a n/a 
Europe 3.66 3.66 17 32.08 1.00 0.13 
East Mediterranean 1.66 5.31 10 41.67 1.51 0.56-4.09 
Africa 25.12 30.43 138 37.91 1.29 0.70-2.39 
Americas 1.73 32.16 14 56 2.70 1.01-7.17 
South Asia 63.98 96.14 356 38.4 1.32 0.73-2.39 
East/Southeast Asia 3.86 100 14 25 0.71 0.31-1.63 
Total 1,449 100 549 37.89 

Ethnicity 
White 2.91 2.91 11 26.19 1.00 0.09 
Black Caribbean 2.15 5.05 16 51.61 3.01 1.12-8.05 
Black-African 22.84 27.89 130 39.39 1.83 0.89-3.77 
Black-Other 0.48 28.37 3 42.86 2.11 0.41-10.98 
South Asian 63.53 91.9 361 39.32 1.83 0.91-3.68 
Chinese 1.11 93.01 4 25 0.94 0.25-3.53 
Mixed/Other 6.99 100 29 28.71 1.14 0.50-2.56 
Total 1,445 100 554 38.34 
Years since entry to 
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tuberculosis diagnosis· 
0-1 242 18.21 72 29.75 1.00 0.02 1.00 0.03 
2-4 307 23.1 111 36.16 1.34 0.93-1.92 1.35 0.94-1.95 
5-9 310 23.33 122 39.35 1.53 1.07-2.19 1.56 1.09-2.24 
10 and over 470 35.36 193 41.06 1.65 1.18-2.29 1.60 1.14-2.24 
Total 1,329 100 498 37.47 

Disease site 
Pulmonary 875 59.69 365 41.71 1.00 0.00 1.00 0.00 
Extra pulmonary 591 40.31 193 32.66 0.68 0.54-0.84 0.72 0.57-0.91 
Total 1,466 100 558 38.06 

Drug sensitivity 

Resistant ~1 drug 86 5.87 23 26.74 1.00 0.02 1.00 0.08 
Sensitive 1,378 94.13 533 38.68 1.73 1.06-2.82 1.55 0.93-2.59 
Total 1,464 100 556 37.98 

Previous diagnosis 
No 935 86.73 345 36.9 1.00 0.25 
Yes 143 13.27 60 41.96 1.24 0.86-1.77 
Total 1,078 100 405 37.57 

History of or current 
problem drug use·· 
No 718 99.17 266 37.05 1.00 0.02 
Yes 6 0.83 5 83.33 8.50 0.99-73.11 
Total 724 100 271 37.43 

History of or current 
problem alcohol use·· 
No 696 98.44 256 36.78 1.00 0.07 
Yes 11 1.56 7 63.64 3.01 0.50-0.68 
Total 707 100 263 37.2 
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History of or current 
homelessness·· 

No 712 97.53 266 37.36 1.00 0.73 
Yes 18 2.47 6 33.33 0.84 0.31-2.26 
Total 730 100 272 37.26 

History of or currently in 
prison·· 
No 686 98.28 262 38.19 1.00 0.05 
Yes 12 1.72 8 66.67 3.24 0.97-10.85 
Total 698 100 270 38.68 

··Missing for 2007, 2008 and half of 2009 cases 
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Table 6-4: Adjusted odd ration (aOR) for a multivariate model constructed with factors significantly associated with 

clustering, plus additional behavioural factors added using a forward selection. Only drug use significantly improved 

the model; aORs for the model including drug use are reported. 

Sex aOR CI CI 

Male 1.00 

Female 0.71 0.54 0.94 

Age group 

0-14 1.00 

15-44 0.49 0.19 1.25 

45-64 0.28 0.11 0.76 

65 and over 0.23 0.08 0.61 

Region of birth 

UK 1.00 

Europe 0.23 0.09 0.58 

East Mediterranean 0.34 0.11 1.06 

Africa 0.35 0.23 0.54 

Americas 1.17 0.30 4.58 

South Asia 0.44 0.32 0.60 

East/Southeast Asia 0.26 0.11 0.62 

Disease site 

Pulmonary 1.00 

Extra pulmonary 0.69 0.51 0.92 

Drug sensitivity 

Resistant to one or more 
drugs 1.00 

Sensitive 1.65 0.86 3.17 

History of or current 
problem drug use 

No 1.00 

Yes 3.24 1.29 8.12 
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6.3 Discussion 

For 15- and 24-locus VNTR typing systems and both definitions of clustering, cases with 

a UK birthplace, pulmonary disease, and drug sensitive strains were associated with 

higher risks of clustering. These associations remained significant even after 

adjustment for other risk factors in multivariate models. Younger age was also 

significantly associated with clustering for the 24-locus analysis, both in the univariate 

analysis and after adjustment for other factors. Drug use was significantly associated 

with clustering after adjustment for other factors in a model exploring behavioural risk 

factors collected for a subset of cases. For foreign-born individuals, time since arrival 

was significantly associated with clustering. Results are consistent with other studies, 

several of which have found younger age, native birthplace, pulmonary disease, drug 

use, and time since arrival for foreign-born individuals to be risk factors for clustering 

[168, 169,313]. 

The association between drug sensitive strains and clustering has been found 

previously [170,314,315] and is supported by theoretical and empirical evidence [316, 

317]. However, the reasons are still unclear and several studies have shown the 

opposite effect, whereby drug resistance is associated with clustering [318]. Fitness of 

the bacterial strain may depend on the type of drug resistance mutation and could 

therefore explain some of the variance in the effect of drug resistance on clustering 

across studies [319]. Several studies have shown that isoniazid-resistant strains with 

the prevalent katG mutation were at least as likely to be clustered as sensitive strains, 

however isoniazid-resistant strains without the mutation were less likely to be 

clustered [315, 319, 320]. 

It is possible that the association between clustering and drug sensitivity is not due to 

the drug sensitivity itself, but to other associated factors. The multivariate model used 

to conclude that drug sensitive strains were more likely to be clustered was adjusted 

for other risk factors, including birthplace. Still, it should also be noted that drug 

resistance is associated with foreign-birthplace. Since foreign-born individuals are less 

likely to cluster than UK-born individuals, this could help explain why drug sensitive 

strains are more likely to be clustered than drug resistant strains. Supporting this idea, 

the multivariate model for foreign-born individuals shows that, after adjustment for 
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other factors, drug resistance was not significantly associated with clustering in that 

model. However, this finding could simply reflect the reduced power to detect 

associations within a smaller sample size of only foreign-born cases. 

Another factor significantly associated with clustering in univariate analyses was 

ethnicity, though this variable was not included in the multivariate model because of 

concerns over correlation with the birthplace variable. Across typing of both systems 

and definitions of clustering, all non-White ethnicities showed reduced risk of 

clustering, apart from Black-Caribbean individuals. This reduced risk is likely due to the 

immigration history of groups, with migration from the Caribbean peaking many years 

ago and reducing in recent years; most Black-Caribbean tuberculosis patients were 

born in the UK, and of those born outside the UK arrived many years ago. 

The overall proportion of isolates clustered in this study was 46.5%, using 24-locus 

VNTR and the n method. This finding compares well to several RFlP-based clustering 

proportions found in studies from other developed countries. For example, 45% were 

clustered in the Netherlands over a six-year period using RFlP. A study of tuberculosis 

in New York City from 1990 -1999 showed 48% clustered with RFlP [171], although in 

this study, most cases were US-born, not foreign-born, which may contribute to 

increased clustering proportions. In Baltimore, a 2.5 year study showed 46% of isolates 

clustered with RFlP [321]. These results are consistent with studies comparing the 

discriminatory ability of 24-locus VNTR with RFlP showing agreement between the 

two typing methods [149, 154,322-324]. However, even among studies from 

developed countries, there is a large variation in the proportion clustered across RFlP 

studies [325], with proportions ranging from below 20% to more than 80% (e.g. [170, 

326-328]), so the results of the present study contrast with some estimates. 

It follows that the rough estimate of the proportion of disease due to recent 

transmission, which was 35.5% using the n-l method and 24-locus VNTR, is similar to 

RFlP-based estimates from other developed countries [160, 171,312,321,329,330]. 

This estimate is also similar to an estimate of 38% from the Netherlands based on a 

more sophisticated interpretation of RFlP data combined with epidemiological data 

[331]. However, this percentage is higher than a recent estimate of about 25% of cases 
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due to recent transmission in the United States based on spoligotyping and 12-locus 

VNTR data combined with geospatial scanning [332]. 

In contrast with the results of this study, a national study of tuberculosis in the UK for 

cases notified in 1998 with isolates typed using RFLP found only 21% of cases clustered 

[166]. Although proportions clustered are discrepant, the 1998 study used only one 

year of data and was further limited by a low proportion of isolates with typing 

results-61% of the culture-confirmed cases, compared to 92.5% in the present study. 

As authors pointed out, both of these limitations reduce the proportion clustered and 

adjustments can be made for them. Following their work, correction for the study 

duration can be made assuming 72.5% of total clustering is identified within one year 

and correction for the proportion of culture-positive isolates typed results in an 

adjusted proportion clustered of 20.6%/0.725/0.61 = 46.6%, the corrected proportion 

clustered according to the n method. Correction for the proportion of culture-positive 

isolates typed in the present study results in an adjusted proportion clustered of 

46.5/92.5 = 50.3%. Despite the disparate geographic areas considered and different 

typing systems used, the adjusted proportions clustered are similar between this study 

and the 1998 study. 

The proportion of cases clustered in the present study is also significantly higher than 

the only other population-based molecular epidemiological study in the UK, a study of 

isolates from London spanning 2.5 years from 1995-1997. In that analysis, 22.7% of 

isolates were clustered using RFLP. The restricted geographical range and low 

proportion typed were limitations of the study however. Only 77% of culture

confirmed cases in London were typed, which means an even lower proportion of total 

cases were typed since the proportion culture-confirmed can be low (here it was 53%). 

A further 18% of isolates were excluded from the cluster analysis due to low copy 

number profiles. For these reasons, it is not surprisingly that the London study found a 

much lower proportion of isolates clustered. 

As expected, the proportion of cases clustered was higher using 15-locus VNTR 

compared with 24-locus VNTR for any definition of clustering. Interestingly however, 

conclusions about risk factors for clustering are generally very similar between the two 

typing systems. This similarity suggests data from 15-locus typing may have some 
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utility in population-based studies of risk factors for clustering, even if 15-locus VNTR is 

not discriminatory enough to make conclusions about individual transmission events. 

Results were also very similar between the n method and retrospective method of 

clustering definitions, though the retrospective method did not identify as many 

significant risk factors for clustering. This result could partly be due to reduced sample 

sizes resulting from exclusion of the first two years of data, or a true effect resulting 

from the slightly different, and less biased, definition of clustering. 

One major limitation to the study is the combined effect of a restricted geographical 

area of the study population and incomplete case ascertainment, both of which 

potentially decrease clustering proportions and odds ratios for clustering risk factors 

[8, 166]. The restricted geographical area means that some patients transmitting to or 

from patients in the study may have resided outside the study area and were not 

captured by the study. The study of molecular epidemiology in England in 1998 

showed that restricting analyses to London only reduced clustering by nearly 40% 

[166]. However, as discussed above, that particular study was limited by a fairly low 

coverage of CUlture-positive patients and short study duration of only one year. If the 

study had been longer and the proportion of culture-positive cases had been higher, it 

is unlikely that restricting analyses to the London area would have resulted in such a 

large reduction in the clustering proportion. In summary, the effect of a restricted 

geographical area is difficult to disentangle from study size, including case 

ascertainment, though both are problematic. 

The impact of incomplete case ascertainment is difficult to quantify. Incomplete 

ascertainment results from cases not being notified at all, cases with no laboratory 

data, and cases for which typing results were incomplete or missing. These missing 

cases also likely reduce clustering proportions. In this study, the low proportion of 

cases with a positive culture, only 56.7%, is of particular concern. This low proportion 

could be partly due to an increasing proportion of cases that are culture negative, or, 

more likely, due to cases missing from laboratory data. 

A final limitation was that no cases were excluded due to laboratory contamination. 

None were excluded because dates of specimen processing were not available. This is 

unlikely to much impact results because of the low probability of laboratory error, as a 
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2002 study in the UK showed only 0.54 - 0.93% of cases with false positive results due 

to laboratory cross-contamination [333]. laboratory contamination is discussed 

further in Appendix 10.18. 

In conclusion, this descriptive study is one of the first large-scale, population-level 

molecular epidemiological studies using 24-locus VNTR. Results show that known risk 

factors for clustering of tuberculosis cases using RFlP were present in the study period 

in the West Midlands using 24-locus VNTR. Interestingly, the same risk factors for 

clustering were identified using both 24-locus and 1S-locus VNTR, despite the reduced 

discriminatory ability of the 1S-locus system. Using the n method and retrospective 

methods also resulted in similar conclusions. Crude estimates for the proportion of 

cases due to recent transmission in the UK established a baseline population estimate 

that can be compared to future estimates for this region using genotyping data and are 

also useful for comparison to model-derived estimates in Chapter 7. 
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7 West Midlands Molecular Epidemiological Modelling 

This chapter describes the simulation of molecular epidemiological data from the West 

Midlands to explore the relationship between genotype clustering and recent 

transmission of M. tuberculosis. Genotyping of M. tuberculosis isolates from 

tuberculosis cases is potentially helpful for understanding transmission patterns in 

populations. However, the relationship between genotype clustering and recent 

transmission is unclear. The model described in Chapter 3 was used to simulate 24-

locus VNTR genotyping data from the West Midlands by assigning each infected 

individual in the simulation a time, place and strain type of infection. A genotype 

cluster analysis was performed on simulated genotyping data and the proportion of 

cases clustered in the simulation was calculated. These model outputs were compared 

to observed molecular epidemiological data from the West Midlands from 2007 -

2011, described in Chapter 6, for a range of input parameter scenarios. For scenarios 

which corresponded best with observed data, implications for interpretation of 

clustering data, including positive and negative predictive values, as well as trends in 

the proportion of cases due to recent transmission are described. 

269 



7.1 Methods 

7.1.1 Observed Data 

Observed data used for this chapter included notification rates from the West 

Midlands, 2007 - 2011, presented in Chapter 2, Section 2.7.2 and reviewed below. 

Other observed data include 24-locus VNTR typing data associated with a subset of 

cases. The genotyping data are described in Chapter 6, though for modelling purposes, 

only the proportions clustered by age, sex, and birthplace were used. 

7.1.1.1 Notification rates by age, sex and 

birthplace 

Tuberculosis notification rates in the West Midlands from 2007 - 2011 were calculated 

for comparison with model output. The overall notification rate in the West Midlands 

for this time period was about 17 per 100,000 population, though as with the rates in 

England and Wales, UK-born rates are much lower than foreign-born rates. The UK

born notification rate over this period was 6.5 per 100,000 population while the 

foreign-born rate was 110 per 100,000 population. The UK-born notification rate in the 

West Midlands over this time period was higher than that seen in England and Wales 

from 1999 - 2009, which was about 4.5 per 100,00 overall. For the foreign-born 

individuals in the West Midlands from 2007 - 2011, overall notification rates were also 

higher than those in England and Wales from 1999 - 2009, where the rate was about 

102 per 100,000 population. 

The notification rates broken down by age are shown in Figure 7-1 for UK-born males 

and Figure 7-2 for UK-born females; rates for foreign-born are in Figure 7-3 for males 

and Figure 7-4 for females. Across age and sex categories, UK-born notification rates 

varied between about 1 per 100,000 to about 12 per 100,000, while foreign-born rates 

varied between about 20 per 100,000 to about 160 per 100,000. Particularly for UK

born cases, notification rates for the West Midlands varied more from year to year 

than England and Wales rates, likely due to the smaller numbers of cases in the West 

Midlands. This variation could have also been partly due to more uncertainty in 

population size estimates and fluctuation in those estimates. 
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Some trends in the notification rates for UK-born cases in the West Midlands differ 

from those seen in the whole of England and Wales. Notably, the notification rates for 

UK-born males and females aged 15 - 44 years were higher than in England and Wales 

over a similar time period. For males in the West Midlands, this ranged from about 8-

10 per 100,000 from 2007 - 2011. For females, this ranged from about 7 -11 per 

100,000 from 2007 - 2011. In England and Wales, these ranged from about 4 - 6 per 

100,000 for males and 4 - 5 per 100,000 for females from 1999 - 2009. Rates for those 

aged 15 - 44 years in the West Midlands were also higher than the rate for those aged 

65 years and above, whereas in England and Wales, the notification rate in those aged 

65 years and above were generally higher than that for those aged 15 - 44 years. This 

trend was always true for males and usually true for females, though the differences in 

notification rates between the age categories have decreased over time. 
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Figure 7-1: Tuberculosis notifications per 100,000 population for UK-born male cases reported in the West 

Midlands, 2007 - 2011. 
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Figure 7-2: Tuberculosis notifications per 100,000 population for UK-born female cases reported in the West 

Midlands, 2007 - 2011. 
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Figure 7-3: Tuberculosis notifications per 100,000 population for foreign-born male cases reported in the West 

Midlands, 2007 - 2011. 
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Figure 7-4: Tuberculosis notifications per 100,000 population for foreign-born female cases reported in the West 

Midlands, 2007 - 2011. 
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7.1.1.2 Proportion clustered by age, sex and 

birthplace 

As reported in Chapter 6, the overall proportion of cases clustered in the West 

Midlands from 2007 - 2011 was 46.5% using 24-locus VNTR genotyping data. 

Clustered cases were defined as those with an isolate with a 24-locus strain type 

profile that matched the profile of any other isolate in the study period, across cases 

from all demographic categories, according to the In method', as described in Chapter 

6. For comparison with model output, the proportion of cases clustered is reported for 

each age category, sex, and birthplace for the West Midlands from 2007 - 2011. These 

proportions are found in Figure 7-5. 

The proportion of cases clustered was generally higher for UK-born individuals than for 

those who were foreign-born, with about 65% of cases and about 38% of cases 

clustered in the two groups, respectively. Age-specific trends also differed. For UK

born individuals, the proportion clustered clearly decreased with age, with proportions 

clustered approximately halving from the youngest age group, 0 - 14 years, to the 

oldest age group, 65 years and above. For foreign-born individuals, those aged 0 - 14 

years had a much higher proportion clustered than the three older age classes, but 

there was no clear age-dependent trend in the proportion clustered from age groups 

for those aged 15 years and above. 

90 ~--------------------------

80 +-~~~--------------------

~ 70 
't:J e 60 
a.J 

~ 50 
U 
5 40 -!-----.:~----~~~~~~-
.~ 30 -L----~::::~~~:::~-
Q. 

e 20 +--------------------------
a.. 

10 

o 
0-14 15-44 45-64 

Age category (years) 

65 and 

above 

..... UK-born males 

___ UK-born females 

....... Foreign-born males 

~ Foreign-born females 

Figure 7-5: Proportion clustered (%) by age, sex and birthplace (UK-born and foreign-born) for the West Midlands, 

2007 - 2011. 
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7.1.2 The Model 

The model is described in Chapter 3, with model parameters and assumptions 

described in Chapter 4. Most parameter values and assumptions used for this 

application of the model were identical to those used for the England and Wales 

application of the model, though some parameter values and distributions were 

specific to the West Midlands, as indicated in Chapter 4. These include migration data 

and the proportion of cases that are pulmonary, plus genotyping-specific parameters 

not included in the England and Wales application of the model. For this application of 

the model, the full version of the model including genotype-related processes was 

used for simulation of molecular epidemiological data. Also, because of its importance 

in this chapter, the strain type assignment and mutation processes are briefly 

summarized below. 

7.1.2.1 Genotype-related processes 

Strain types were assigned to every infected and diseased individual in the simulation. 

During infection transmission, an infectious individual passed their strain type to the 

individual infected. This was true whether the recipient of infection had Latent 

Infection or was Uninfected. For aSSigning strains at model initialization and aSSigning 

strains to migrants entering the study population, strains were randomly selected from 

a distribution which represents the entire population of strains. The entire population 

included both observed strains-those strains from typed cases-and hypothesized 

unobserved strains-those strains assumed to exist in unreported or untyped disease 

cases or in all other infections that had not progressed to disease. Assumptions about 

strain type distributions were derived from observed strain typing data, as discussed 

below in Section 7.1.3.1. 

Strain types in the model could mutate at any time during infection or disease. As 

discussed in Chapter 4, the mutation rate was defined here as the rate of change of 

the dominant 24-locus VNTR strain type in the body. The mutation rate took into 

account the rate at which mutants were produced and the probability that mutants 

were successful enough to become the dominant genotype in the body. For simplicity, 

the dominant strain was taken to be the strain that was transmitted and that was 

detected in culturing clinical specimens from disease sites. 
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For 24-locus VNTR strain types modelled here, mutants arose by a change in the 

number of repeats at any of the 24 loci in the strain type profile, although for 

simplicity and lack of appropriately detailed data, loci were not modelled individually.' 

That would require a mutation rate specific to each locus and estimates of the genetic 

diversity at each locus, both of which are largely unknown for any given population of 

strains, including the population of the West Midlands. Estimates of the average 

mutation rate per locus per annum were used to infer a mutation rate per annum for 

entire 24-locus VNTR profiles, though in reality, loci have different mutation rates 

[334]. Because loci were not modelled individually, it was assumed that every 

mutation led to a new, unique 24-locus VNTR profile. In reality, it is possible that 

mutations to the VNTR profile could have resulted in a profile that matches as an 

existing strain in the population, a so-called 'homoplasic' mutation [335]. However, 

considering the relatively small population of strains, relatively large amount of 

diversity provided by 24-locus profiles, and relatively short time scales, the 

simplification seems reasonable. This conclusion is supported in a recent paper by 

Reyes et al. who studied the extent of homoplasic mutations in VNTR profiles by 

simulation of the mutation process nested in a transmission model [335]. Authors 

concluded that while there may be a significant amount of homoplasic mutations over 

long time periods, these are unlikely to substantially affect clustering statistics with 

sufficiently variable genetic markers such as 24-locus VNTR. 

7.1.3 Key Input Parameters 

Five model parameters that were particularly uncertain were varied, and model output 

under different combinations of variable parameters was compared with observed 

clustering proportions. Firstly, the mutation rate of 24-locus VNTR profiles was varied 

using five estimates from studies in the literature (see Section 1.1.1.1). Secondly, the 

strain type distribution assumptions were varied using three different assumptions 

based on observed strain type distributions (section Section 7.1.3.1). lastly, three 

other parameters and distributions were varied together: disease risks, contact rates, 

and assumptions about the infection status of migrants upon entry to the UK. These 

parameters were varied together because the disease risks were estimated from 

England and Wales modelling, and different estimates were obtained under different 

values for the contact parameter and the infection status of migrants upon entry to 
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the UK. The four best-fitting scenarios from the England and Wales model, including all 

three parameters, were used here. Although, it should be noted that these were 

modified slightly by using increased contact numbers, as discussed in Section 7.1.4.2. 

7.1.3.1 Distributions of strain types at 

model initialization and for 

migrants 

For choosing strain types for all individuals at model initialization and for choosing 

strain types for migrants when they enter the UK, a distribution of strain type 

frequencies was necessary. Although there are data on observed strain type diversities 

for various populations, including those in the UK, these only include culture-positive, 

genotyped cases. The unobserved strain type diversity appears to be largely 

unexamined, but presumably, many strains are unobserved, including genotypes found 

in untyped disease cases and all infections that have not resulted in disease. Of course, 

empirical data on the distribution of unobserved strain types would be nearly 

impossible to obtain since isolation of M. tuberculosis from infection is not feasible, at 

least with current technology. However, to my knowledge, no studies have attempted 

to characterize this population even indirectly using models or techniques from 

population genetics or ecological tools for handling species diversity. 

For lack of suitable alternative data, the observed strain type distributions from the 

West Midlands, 2007 - 2011, were used to generate plausible distributions for the 

total population of strain types, including observed and unobserved strain types. These 

distributions were created separately for each birthplace category, UK-born and 

foreign-born. UK-born and foreign-born strain type distributions were differentiated 

because the strain type distributions were expected to differ between these 

populations. The UK-born strain pool is expected to be a relatively distinct and stable 

population, though its distinctness and stability are influenced by contact between UK

born and other populations. The foreign-born strain pool is expected to contain a 

mixture of strains from countries around the world, giving the strain type pool vastly 

different properties, such as an increased total number of strains and higher variance 
, 

in strains. In the simulation, the UK-born strain type distribution was used to assign 
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strains for UK-born individuals at initialization only. The foreign-born strain type 

distribution was used to assign strains for all migrants entering the UK at any point, 

including foreign-born individuals at model initialization and both UK-born and foreign

born individuals entering through migration at any point in the simulation. This 

method of assignment meant the foreign-born strain type pool covered more than 100 

years of time and the entire world in geography. 

One tool for characterizing observed strain type distributions and making inferences 

about the unknown population of strain types is a 'species abundance distribution' 

[336]. These plots are commonly used in ecology to study species abundance and 

diversity. The plots can take several related forms, including representing the 

abundance of each distinct species in the population on the y-axis, ordered left to right 

from most abundant to least abundant on the x-axis. In this application, a strain type is 

considered equivalent to a species and the abundance is the prevalence of a strain 

type in the population of known strains. For brevity, the terms 'UK-born strain' and 

'foreign-born strain' are used below to mean 'strains in UK-born individuals' and 

'strains in foreign-born individuals', respectively. 

The observed species abundance plots for UK-born and foreign-born strains in the 

West Midlands are shown in Figure 7-6 and Figure 7-7. For UK-born cases, there were 

379 distinct strains in the UK-born strain pool of 700 total cases. The most prevalent 

strain type accounted for 12.4% of all UK-born strains. The least prevalent were the 

295 unique cases, each of which each accounted for 0.1% of all UK-born strains. For 

foreign-born cases, there were 1,128 distinct strains observed from 1,492 total 

foreign-born cases. The most prevalent of these accounted for about 0.2% of all 

foreign-born strains. The least prevalent were the 969 unique cases, each accounting 

for 0.07% of all strains. If the plots are examined with more resolution, it can be seen 

that the right tail of the distribution approaches a straight line. The line is formed by 

the lowest prevalence values, which include unique strains, clusters of two isolates, 

and clusters of three isolates. 

Because empirical distributions miss a portion of strains in the entire population of 

infected and diseased individuals, the tail of the species abundance curve must be 
, 

extended to estimate the number of unobserved strains. Only the tail of the 
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distribution was extended, both for simplicity and because rare strains are the ones 

most likely to be unobserved. Each tail was extended by fitting a straight line to the 

points in the right tail of the distribution, where it was approximately linear, and 

projecting to the x-intercept. This linear part of the line included at least the rightmost 

two prevalence values. The x-intercept then became a proxy for the total number of 

strains in the population, including observed and unobserved strains. The unobserved 

strains were then added to the empirical distribution, creating one occurrence for each 

new strain. The species abundance curve was then redrawn and used for model 

assumptions. For illustration, lines fit to the last two prevalence values for each 

distribution are shown in Figure 7-8 and Figure 7-10. Solving the equation for the 

straight line fit to all the points with the last two values of the UK-born curve results in 

the estimate that there are 700 distinct strains in the population of UK-born cases in 

the West Midlands, including the 379 observed and 321 unobserved strains. The new 

species abundance curve used in the model is shown in Figure 7-9. For foreign-born 

individuals, solving the equation for the line fit to all the pOints with the smallest two 

prevalence values resulted in an estimated 3,000 distinct strains in this population, 

including the 1,128 observed and 1,872 unobserved strains. The new curve accounting 

for all 3,000 strains is found in Figure 7-11. The same process was applied when fitting 

a line to the last three prevalence values of each distribution and resulted in 625 

distinct strains for UK-born cases and 2,190 distinct strains for foreign-born cases 

(figures not shown). 

Because this method resulted in conservative estimates of the total number of 

unobserved strains in the population, an extension of this method-choosing a larger 

number of total distinct strains beyond the intercept obtained by fitting the tail of the 

distribution as described above-was also used. This variation allowed for a high

diversity scenario for strain type distributions. The intercept estimates of 2,190 and 

3,000 possible distinct strains for all migrants from all over the world for the long time 

span of infections included seemed particularly low, so those were increased to 5,000 

for a less conservative measure. The 625 and 700 possible distinct strains for UK-born 

in the West Midlands seemed more reasonable, so those were increased only to 1,000 

for the high diversity scenario. Of course, since most of these strains were rare, most 

were never observed in the model. 
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Figure 7-6: Strain type distribution observed for strains from UK-born cases in the West Midlands, 2007 - 2011. The 

prevalence of each strain in the population of all strains from UK-born cases is plotted. There were 379 distinct 

strains observed. 
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Figure 7-7: Strain type distribution observed for strains from foreign-born cases in the West Midlands, 2007 - 2011. 

The prevalence of each strain in the population of all strains from foreign-born cases is plotted. There were 1,128 

distinct strains observed. 
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Figure 7-8: Excerpt from plot of strain type distribution observed for strains from UK-born cases in the West 

Midlands, 2007 - 2011, with straight line fitted to the last two prevalence values observed. The fitted line results in 

an intercept of 733, or an estimated 733 total strains in the population, including the 379 observed strains and 354 

unobserved strains. 
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Figure 7-9: New strain type distribution for UK-born cases in the West Midlands, derived from extension of 

observed data by fitting a straight line to the last two points of the empirical distribution, resulting in 733 total 

distinct strains. 
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Figure 7-10: Excerpt from plot of strain type distribution observed for strains from foreign-born cases in the West 

Midlands, 2007 - 2011, with straight line fitted to the last two prevalence values. The fitted line results in an 

intercept of 3,000, or an estimated 3,000 total strains in the population, including the 1,128 observed strains and 

1,872 unobserved strains. 
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Figure 7-11: New strain type distribution for foreign-born cases in the West Midlands, derived from extension of 

observed data by fitting a straight line to the last two points of the empirical distribution, resulting in 3,000 total 

strains. 
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7.1.3.2 Mutation rate o/24-locus VNTR 

profiles 

As discussed in Chapter 2, Section 2.4.1.3.4, VNTR profile mutations are thought to 

occur due to replication errors. Slower replication of bacteria then leads to fewer 

mutations. In active disease, bacteria replicate at the fastest rate. It is thought that 

during Latent Infection, bacteria replicate much more slowly or even stop replicating 

[159]. In newer infections replication may be faster, including a period of rapid 

replication in primary infection, but this is likely to be on the order of weeks [337, 

338]. Since Recent Infection and Reinfection states in the model include infections up 

to five years old, these are assumed to also have a reduced mutation rate, for 

simplicity equal to that in Latent Infection. Thus, it was assumed that two different 

mutation rates applied in the model, one for those with active disease and one for 

those with infection. Mutation rates for VNTR profiles in disease cases have been 

estimated in some recent studies, which are presented below. The mutation rate of 

VNTR loci involved in infection has not been studied, to my knowledge. Therefore, a 

study of the mutation rate of RFLP profiles in latent infection was compared to 

published estimates of the RFLP mutation rate in disease to estimate the relative rate 

of VNTR profiles mutation in infection, as described below. 

7.1.3.2.1 VNTR mutation rates in disease cases 

At least four recent studies provide estimates for mutation rates of VNTR loci in 

disease cases. Generally, estimates were provided for the mutation rate per locus per 

year. These were then converted to the mutation rate as defined here, the rate of 

change per year for an entire 24-locus profile. The mutation rate for the entire 24-

locus profile is given by the formula 1 - (1 - J1.1ocus)24, where J1.1ocus is the per locus 

per annum mutation rate. 

The most recent estimates of VNTR mutation rates were reported by Aandahl et aI., 

who analysed results of a tuberculosis transmission model combined with a strain 

mutation model in a Bayesian framework [157]. They provided estimates for two 

different versions of the strain mutation model. The 'linear' model assumed the 

mutation rate scales linearly with the number of repeats at a locus. The 'constant' 
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model assumed the mutation rate was independent of the number of repeats at a 

locus. Although authors concluded the linear model fits the data better, results from 

the constant model were used here since loci were not modelled individually. This 

estimate is 8.7x10-3 mutations per locus per year, or for a 24-locus profile, a mutation 

rate of approximately 19% per year. 

In 2010, Reyes and Tanaka estimated that the per-locus mutation rate is between 

7x10-4 and 1.5x10-2 per year using a population genetic model, with estimates derived 

from relative genetic diversity observed between VNTR and other markers, plus 

assumptions about the mutation rates in those markers [155]. These estimates 

translated into per profile per year mutation rate estimates of approximately 1.7% and 

30.4%. The midpoint between these estimates is a rate of change of about 17.2% per 

year for 24-locus profiles. The VNTR typing data used to derive estimates included 12 

or more loci. It is likely that the average mutation rate per locus for 24-locus profiles 

was at the higher end of this spectrum since the additional loci used for 24-locus 

profiles are known to have increased diversity in copy numbers. More diversity in copy 

numbers generally means the locus is subject to higher mutation rates. 

Wirth et al. looked at VNTR profiles from serial isolates of epidemiologically linked 

cases to estimate the per locus, per annum mutation rate of 1.4x10-3 for five of the 

most variable loci [158]. They combined these data with a lower prior value for the 

mutation rate of 10-4
, attempting to reflect the lower mutation rate for less variable 

loci in Bayesian inference to obtain a posterior estimate of the mutation rate of about 

1.2x10-4• 

lastly, Grant et al. used a mathematical modelling approach to estimate the mutation 

rate of VNTR loci per generation as 2.3x10-8 [156]. This approach resulted in a per 

locus, per annum estimate of about 10-5 per locus per year or 0.0002 per profile per 

year. This estimate is far lower than those estimated in other work and does not 

explain the relatively common occurrence of mutation in VNTR profiles. 

The four studies and results are summarized in Table 7-1, and two averages of the 

mutation rates are shown. The first is an average value for every rate reported in the 

table, while the second is the average which only considers one mutation rate from 
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each study. Those in bold were used as parameter values in the model, chosen to 

reflect the variety of rates estimated across studies. 

Table 7-1: Mutation rates estimated for VNTR profiles from four recent studies. Studies generally provided per

locus, per-year rates of change, which were then converted to rates of change per profile, per-year for 24-locus 

VNTR. 

Study 

Aandahl et al. 2012 [157] 

Reyes and Tanaka 2010 
[155] 

Reyes and Tanaka 2010 
[155] 

Reyes and Tanaka 2010 
[155] 

Wirth et al. 2008 [158] 

Wirth et al. 2008 [158] 

Grant et al. 2008 [156] 

Average, using all values 

Average, using one value 
per study 

Estimated mutation rate 
(per 24-locus profile per 

year) 

18.9% 

1.7% 

30.4% 

17.2% 

3.3% 

0.3% 

0.02% 

10.3% 

9.9% 

Notes 

Value from constant model, since 
tuberculosis model does not model 

individual loci 

Low estimate 

High estimate 

Mid-value of low and high estimates 

Estimate derived from data 

Posterior estimate derived from data and a 
prior distribution to account for lower 

mutation rate in less variable loci 

7.1.3.2.2 Relative mutation rates between infection and disease 

Relative mutation rates between infection and disease for RFLP profiles were used in 

the model for relative rates between infection and disease for VNTR profiles. Lillebaek 

et al. compared 203 strains isolated from patients in the 1960s to over 4,000 strain 

isolates from patients in the 1990s to estimate that the mutation rate of strains in 

latent infection over long time periods was approximately 1.94% per year [130]. This 

mutation rate was compared with three studies estimating the mutation rate of RFLP 

profiles in disease cases [127-129], given an average ratio of the mutation rate in 

infection to the mutation rate in disease of 0.106, or 10.6%, as shown in Table 7-2. This 

value was fixed for all runs in this application of the simulation model. 
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Table 7-2: RFLP mutation rates and ratio of mutation rates in infection versus disease. The mutation rate in RFLP 

latent infection was estimated as 1.94% per profile per year by Lillebaek et al. [130]. Estimates of the mutation rates 

for disease cases are presented for three studies, with the average value in bold used in the model. 

Study 
Mutation rate (per profile Infection mutation rate: 

per year) disease mutation rate 

Warren et al. 2002 [127] 7.9% 0.245 

de Boer et al. 1999 [128] 21.7% 0.090 

Rosenberg et al. 2003 
25.3% 0.077 

[129] 

Average 18.3% 0.106 

7.1.3.3 Parameters obtained from England 

and Wales model fitting 

In the first instance, the four best scenarios obtained from fitting the England and 

Wales model to observed data were tested here, across variable mutation rates and 

assumptions for strain type distributions. The four scenarios include four disease risk 

parameters, contact rates, and assumptions about the infection status of migrants 

upon entry to the UK. The four scenarios specifying each of these parameters are 

indicated in Table 7-3. 

Table 7-3: Best-fitting model input scenarios from England and Wales application of the model, which were used for 

baseline parameter values for the West Midlands application of the model. This table is an excerpt from (Table 5-

22). These fits were obtained using a single foreign-born category during fitting. Scr1 and Scr2 are two different 

assumptions about the infection status of migrants to the UK, which were based on screening studies. See Chapter 

5 for more details. 

Disease risks for UK-born adult males by disease type 

Infection Foreign-
status for Contact Reactivation born: 

Scenario migrants rate Primary (%) (% per year) Reinfection (%) UK-born 

3 Scrl 8 10.00% 0.01% 3.40% 2.33 

4 Scrl 10 7.50% 0.02% 1.20% 2.59 

8 Scr2 8 9.00% 0.01% 3.80% 2.39 

9 Scr2 10 7.40% 0.01% 2.60% 2.44 
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7.1.4 Input Parameter Scenarios 

7.1.4.1 Stage one 

In stage one, 60 input scenarios were tested for comparison to observed data. These 

included the four input scenarios from England and Wales modelling shown in Table 

7-3, each run with the five different mutation rates shown in bold in Table 7-1 and the 

three strain type distributions described in 7.1.3.1. 

7.1.4.2 Stage two 

Because runs of the model in stage one failed to achieve adequate fits to observed 

notification rates for several demographic categories, and because contact rate is one 

of the uncertain parameters that likely varies in different populations, a 50% increased 

contact rate was applied in stage two to improve correspondence with observed 

notification rates and clustering proportions. This increased contact rate was intended 

to reflect larger household sizes and different community contact structure than may 

have been found in England and Wales as a whole (see Section 7.3.5 for further 

discussion). Again, 60 input scenarios were tested, consisting of the four input 

scenarios from England and Wales modelling-with increased contact numbers-for 

each of the five different mutation rates and three strain type distributions. 

In addition, the scenario with the best correspondence to observed data in stage two 

was tested with the contact rate reduced to the original value from the England and 

Wales model for each of the five mutation rates. Although problematic regarding fits 

to notification data, results were used to illustrate the effects of the increased contact 

rate on estimates of the proportion of cases due to recent transmission in the UK and 

the relationship between genotype clustering and recent transmission. This illustration 

also allowed for the comparison of results across the five mutation rates using a lower 

contact rate. 

7.1.5 Model Output 

Several types of model output were obtained for each of the input parameter 

scenarios tested. Notification rates per 100,000 were presented by age category, sex, 

and birthplace and compared to observed notification rates. The proportion clustered 

was presented for each age category, sex, and birthplace and also compared with 
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observed proportions clustered. In addition, the GOF of the model output to observed 

proportions clustered was calculated using the sum of least squares GOF statistic, 

reported to assist in assessing the fit of model output to observed clustering 

proportions. The 10 best-fitting scenarios defined by the lowest GOF statistics were 

used to summarize results. 

Additional measures reported by the model included the proportion of cases infected 

recently in the UK for each age category, sex, and birthplace. As defined previously, 

recent infections were defined as those causing Primary Disease or Reinfection 

Disease, or infections that happened less than five years before disease onset. The 

positive and negative predictive values of clustering for identifying disease due to 

recent transmission in the UK were defined based on statistics used by Vynnycky et al. 

[161]. The statistics were defined slightly differently here because of interest in 

identifying cases due to both recent transmission and transmission occurring in the UK, 

rather than simply cases due to recent transmission. As such, the positive predictive 

value of clustering for identifying recent transmission was the proportion of cases that 

were in a cluster in a given period and had been infected or reinfected in the UK less 

than five years before disease onset. The negative predictive value of clustering was 

calculated as the proportion of cases that were not in a cluster in a given period that 

had been infected or last reinfected more than five years before disease onset, or 

were infected or last reinfected outside the UK. Both the positive and negative 

predictive values of clustering were reported for each age category, sex, and 

birthplace. 

For each set of model parameters tested, 100 simulation runs were averaged and 

plotted for each type of model output. These were run using the computer hardware 

described in Chapter 3, Section 3.5.2.6. 
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7.2 Results 

All runs of the model were first evaluated for correspondence with overall notification 

rates and clustering proportions, as well as the notification rates and clustering 

proportions by birthplace-UK-born and foreign-born-as a first step in assessment of 

model fits. Stage one runs of the model did not fit these overall proportions well. 

Notification rates for UK-born cases were lower than observed at around 4 per 

100,000 population instead of the 6.5 per 100,000 observed. For UK-born males and 

females aged 15 - 44 years, notification rates were especially low compared to the 

observed rates, averaging around 4 per 100,000 population while the observed rate 

was around 9 per 100,0000 population. Foreign-born notification rates were also low, 

around 80 - 90 per 100,000 population instead of the 110 per 100,000 observed. 

Overall clustering proportions for initial scenarios were close to those observed for 

some of the scenarios for which the mutation rate was low, 3.3% or 0.3%. However, 

the clustering proportions were too low for most of the 60 scenarios tested. 

Stage two runs of the model with the 50% increase in contact rate described earlier for 

all individuals fit observed notification and clustering data sufficiently well, though 

model output compared with observed notification rates by age, sex and birthplace 

categories shows some discrepancies. Rates for males aged 15 - 44 years were still 

lower than those observed, rates for females aged 45 - 64 years were high, and rates 

for foreign-born under 15 years of age were also high. Still, overall rates closely 

matched those observed and several model input scenarios fit the observed 

notification rates and clustering proportions roughly equally well. 

Table 7-4 shows 10 of the best-fitting scenarios and resulting notification rates for UK

born and foreign-born cases. In those scenarios, the UK-born notification rates ranged 

from about 5 - 6 per 100,000 population, compared to 6.5 per 100,000 observed. The 

foreign-born rates ranged from 105 - 114 per 100,000 population, compared to 110 

per 100,000 observed. Since this correspondence was deemed sufficient, the 

remainder of this section focuses on clustering and recent transmission output from 

the model. 
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Table 7-4: Results for simulated notification rates from the 10 best-fitting input parameter scenarios as measured by fit of simulated proportions clustered to observed proportions clustered. Input 

parameters and distributions include those taken from England and Wales modelling (infection status of migrants, disease risks as detailed in Table 7-3), a contact rate which was based on results 

from England and Wales simulations but increased by 50%, mutation rates based on literature values, and strain types distribution assumptions. Column headings which merit further description 

include: 1) Foreign:UK-born. This represents the ratio of disease risk in foreign-born individual to UK-born individuals and 2) The strain type distributions are named according to the total number of 

distinct strains in the total strain pool for UK-born at model initialization and for migrants entering the simulation at any time, including for foreign-born at model initialisation. 

Disease risk estimates from previous work Notification rates per 100,000 

Mutation 
Infection status Reactivation Foreign:UK- Contact rate (per Strain type 

Scenario of migrants Primary (per year) Reinfection born rate year) distributions Foreign-born UK-born All 

UK-lOOO, 
4 Scr1 7.5% 0.017% 1.2% 2.59 15 18.9% Migrants-SOOO 114.6 6.0 15.9 

UK-lOOO, 
6 Scr1 7.5% 0.017% 1.2% 2.59 15 17.2% Migrants-SOOO 114.4 5.9 15.9 

UK-lOOO, 
13 Scr2 7.4% 0.012% 2.6% 2.44 15 18.9% Migrants-SOOO 105.1 4.6 13.8 

UK-lOOO, 

33 Scr2 9.0% 0.012% 3.8% 2.39 12 18.9% M igra nts-SOOO 107.7 5.1 14.4 

UK-1000, 
34 Scr2 9.0% 0.012% 3.8% 2.39 12 17.2% M igrants-SOOO 114.1 6.0 15.9 

UK-1000, 
36 Scr1 10.0% 0.012% 3.4% 2.33 12 18.9% Migrants-SOOO 114.5 6.0 15.9 
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Disease risk estimates from previous work Notification rates per 100,000 

Mutation 
Infection status Reactivation Foreign:UK- Contact rate (per Strain type 

Scenario of migrants Primary (per year) Reinfection born rate year) distributions Foreign-born UK-born All 

UK-lOOO, 
43 Scr1 7.5% 0.017% 1.2% 2.59 15 18.9% Migrants-sOOO 105.0 4.6 13.7 

UK-lOOO, 
44 Scr2 9.0% 0.012% 3.8% 2.39 12 18.9% Migrants-sOOO 107.0 4.9 14.3 

UK-lOOO, 
45 Scr2 7.4% 0.012% 2.6% 2.44 15 17.2% Migrants-sOOO 105.2 4.6 13.8 

UK-1000, 
46 Scr1 7.5% 0.017% 1.2% 2.59 15 17.2% Migrants-5000 107.1 4.9 14.3 

Average 109.5 5.2 14.8 
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7.2.1 Proportion Clustered 

For each of the 10 scenarios with best correspondence to the observed age-specific 

proportions clustered, the simulated proportions clustered, and GOF statistics 

measuring the fit of these proportions to observed data are shown in Table 7-5. Trends 

in the age-specific proportions clustered, estimated proportion of cases due to recent 

transmission, and estimated predictive values of clustering were similar across the 10 

best-fitting scenarios. For these reasons, age and sex-stratified results are discussed 

only for the best-fitting scenario, four, which is shown in Figure 7-12 - Figure 7-15. 

Bars 'a' show observed clustering proportions and bars 'b' show simulated clustering 

proportions, with dots above and below bar 'b' marking each of the 100 replicate runs 

of the model for the scenario. As shown in these figures, the simulation output did not 

differentiate clustering proportions between birthplaces and across age categories 

well. For UK-born cases, the model underestimated clustering in the young, though 

comes close to observed values in those aged 45 years and above. This trend was true 

for both males and females, though the underestimation of clustering proportions was 

worse for young males than young females. The overall percent of UK-born cases 

clustered in the simulation, 48%, was lower than the observed proportion of 65%. 

For foreign-born cases, the simulation reproduced clustering proportions fairly well for 

males and less well for females. For all age categories apart from those aged 0 - 14 

years, clustering proportions produced by the model were higher than those observed 

on average. For males, observed values generally fell within the range of 100 replicate 

runs. For females, observed values were generally lower than most of the 100 replicate 

runs for those age categories, apart from those aged 65 years and above. For those 

aged 0- 14 years, the proportion clustered was underestimated by the model for both 

males and females, although replicate runs show there was uncertainty such that 

replicate runs ranged from 0 to 100%. 



Table 7-5: Ten best-fitting scenarios for comparing clustering output with observed clustering proportions. Input 

parameters for each scenario can be found in Table 7-4. Simulated proportions clustered for each birthplace, UK

born and foreign-born are reported. The GOF statistic is also reported; this statistic is a measure of the fit of 

simulated clustering proportions to those observed using the sum of least squares, where the lower GOF indicates a 

better fit. Scenarios are ranked from best fit (1) to worst fit (10) of the 10 scenarios. Observed clustering was 46% 

overall, and 38% for foreign-born and 65% for UK-born. 

Proportion clustered by birthplace 

GOF 
Scenario Foreign UK All GOF rank 

4 43% 48% 45% 1.29 1 

6 44% 50% 47% 1.37 2 

13 43% 50% 46% 1.41 3 

33 41% 49% 44% 1.43 4 

34 43% 50% 46% 1.48 5 

36 43% 51% 46% 1.51 6 

43 46% 51% 48% 1.51 7 

44 46% 51% 48% 1.54 8 

45 44% 52% 47% 1.57 9 

46 48% 53% 50% 1.59 10 

Average 44% 51% 47% 
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Figure 7-12: Observed and simulated clustering statistics by age category for UK-born males under model input 

scenario 4. Bars are labelled as follows : (a) observed proportion clustered, (b) simulated proportion clustered, 

where the bar depicts the mean and dots show individual runs of the simulation, (c) proportion of cases due to 

recent infection in the UK, (d) proportion of clustered isolates due to recent transmission in the UK, and (e) 

proportion of unique cases due to older infection or infection acquired abroad. 
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Figure 7-13: Observed and simulated clustering statistics by age category for UK-born females under model input 

scenario 4. Bars are as in Figure 7-12. 
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Figure 7-14: Observed and simulated clustering statistics by age category for foreign -born males under model input 

scenario 4. Bars are as in Figure 7-12. 
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Figure 7-15: Observed and simulated clustering statistics by age category for foreign-born females under model 

input scenario 4. Bars are as in Figure 7-12. 
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7.2.2 Proportion of Cases Due to Recent Transmission 

The estimated proportion of cases due to recent transmission, overall and for UK-born 

and foreign-born cases, are found in Table 7-6 for the 10 best-fitting scenarios. For 

scenario 4, the estimated proportion of cases due to recent transmission in the UK by 

age, sex and birthplace are shown in bars 'c' in Figure 7-12 - Figure 7-15. Overall, an 

estimated 63% of cases were due to recent transmission. Estimates differed between 

UK-born and foreign-born. For UK-born cases, around 76% on average were estimated 

to be due to recent transmission in the UK; this estimate was 56% on average for 

foreign-born cases. Age-dependent trends are clear in UK-born individuals, where the 

proportion of cases due to recent transmission was high in the youngest age class and 

decreased with increasing age. Almost 100% of cases in those aged 0 - 14 years were 

estimated to be due to recent transmission in the UK. On the other hand, 44% of cases 

in the oldest age class, those aged 65 years and above, were estimated to be due to 

recent transmission. For foreign-born cases, age-dependent trends in the proportion 

due to recent transmission in the UK were less clear. For males, age groups apart from 

those 15 - 44 years had similar estimated proportions, around 70%, while those aged 

15 - 44 years had lower estimated proportions, just above 40%. For females, the two 

older age categories had a higher proportion of cases due to recent transmission, 

around 80%, than the younger age categories, at around 60%. 
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Table 7-6: Estimated proportion of cases due to recent transmission in the UK. Estimates obtained by fitting the 

model to 24-locus VNTR data from the West Midlands, 2007 - 2011. More information on parameter values for 

each scenario are found in Table 7-4. 

Proportion of cases due to recent 
transmission 

Scenario Foreign-born UK-born All 

4 0.56 0.76 0.63 

6 0.57 0.77 0.64 

13 0.56 0.79 0.63 

33 0.57 0.82 0.65 

34 0.56 0.76 0.63 

36 0.57 0.77 0.63 

43 0.56 0.78 0.63 

44 0.57 0.8 0.64 

45 0.56 0.78 0.63 

46 0.57 0.8 0.64 

Average 0.57 0.78 0.64 

Results from testing the best-fitting scenario, number four, with the reduced contact 

rate of 10 per year across the five values for the mutation rate of 24-locus profiles are 

found in Table 7-7. Although the scenario tested with a lowered contact rate was one 

of the initial fits that did not reproduce notification rates well, runs were tested to 

illustrate how conclusions may have changed if the contact rate had been lower. The 

results showed a decrease in the proportion of cases due to recent transmission with 

reduced contact rate, 45% overall. For foreign-born cases, the proportion due to 

recent transmission in the UK was estimated to be 39% and this proportion was 60% 

for UK-born. These values represent 30% and 20% reductions in the proportion of 

cases due to recent transmission for foreign-born and UK-born cases, respectively, 

with the reduced contact rate of 10 per year compared with 15 per year. 
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Table 7-7: Stage two fitting results of simulation runs using a modified version of scenario 4, using reduced contact 

rate of 10 per year across five values for the mutation rate. Contact rate was the same rate used in stage one fits. 

Input modification to 
Proportion clustered Proportion recent/UK 

scenario 4 

Mutation Contact Foreign-
UK-born All GOF 

Foreign-
UK-born All 

rate rate born born 

18.9% 10 0.34 0.38 0.36 1.57 0.39 0.60 0.45 

17.2% 10 0.36 0.41 0.38 1.42 0.39 0.61 0.45 

9.9% 10 0.41 0.49 0.44 1.27 0.39 0.60 0.45 

3.3% 10 0.47 0.59 0.52 2.11 0.39 0.60 0.45 

0.3% 10 0.52 0.65 0.57 3.17 0.39 0.60 0.45 

7.2.3 Predictive Value of Clustering 

A comparison of simulated proportions clustered to the simulated proportion of cases 

due to recent transmission is found by comparing bar fb' to bar 'c' for each age 

category, sex, and birthplace in Figure 7-12 - Figure 7-15. The simulated proportions 

clustered, shown in bars 'b', consistently underestimate the simulated proportion of 

cases due to recent transmission, shown in bars 'c', for all age groups, both sexes, and 

both birthplaces. These simulated proportions of cases clustered most notably 

underestimated the proportion of cases that were due to recent transmission in UK

born males and females aged less than 44 years, who represent the majority of cases 

in individuals born in the UK. The underestimation of the proportion of cases due to 

recent transmission was less severe for other categories. For foreign-born cases, the 

proportion of cases clustered was more similar to the proportion due to recent 

transmission for the 15 - 44 years age group, for both males and females, though still 

underestimated. 

The positive predictive value of clustering for identifying recent transmission was 

calculated as the proportion of cases in a cluster that had been infected or reinfected 

in the UK within five years of disease onset in a given period. The positive predictive 

values of clustering varied with age and birthplace, as shown in bars 'd' for each 

birthplace, sex, and age category in Figure 7-12 - Figure 7-15. For UK-born cases, the 

positive predictive value of clustering decreased with age. This positive predictive 

value was very high for those aged 0 -14 years and decreased to less than 60% for UK-
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born males and to about 80% for UK-born females in the oldest age class, 65 years and 

above. For foreign-born cases, there was less of an age-dependent trend for the 

positive predictive value. The positive predictive value ranged from about 60 - 80% for 

males and females across age categories. There was a considerable amount of 

uncertainty in these estimates, indicated by the range covered by the 100 simulation 

replicates runs, each shown with a grey dot. 

The negative predictive value of clustering was calculated as the proportion of cases 

not in a cluster in a given period that had been infected or last reinfected more than 

five years before disease onset or were infected or last reinfected outside the UK. The 

negative predictive value was lower for UK-born cases than for foreign-born cases, as 

shown in bars Ie' for each birthplace, sex, and age category in Figure 7-12 - Figure 

7-15. For UK-born cases, this value increased dramatically with age for males, from 

nearly 0% in those aged 0 -14 years to about 70% in those aged 65 years and above. 

The negative predictive value of clustering increased moderately with age for females, 

rising to just over 40% in the oldest age category. For foreign-born cases, age

dependent trends were less clear. For males, the negative predictive value of 

clustering was just above 40% for those aged 0 - 14 years, 45 - 64 years, and 65 years 

and above. For those aged 15 - 44 years, the negative predictive value was much 

higher at close to 70%. For females, a similar trend was observed, though there was 

more variation among age categories. Again, these estimates showed much 

uncertainty, indicated by the range covered by the 100 replicate runs of the 

simulation, each shown with a grey dot aligned with bars Ie'. 

Results differed somewhat for the modified versions of scenario 4 with a reduced 

contact rate. As shown in Figure 7-16 - Figure 7-19, clustering did not always 

underestimate the proportion of cases due to recent transmission. The proportion 

clustered underestimated the proportion of cases due to recent transmission in the UK 

for all UK-born females and UK-born males under age 45 years. For foreign-born cases, 

clustering underestimated the proportion of cases due to recent transmission for all 

age categories apart from those aged 15 - 44 years. 

Also shown in Figure 7-16 - Figure 7-19, the positive and negative predictive values of 

clustering also differed for the modified scenario. Trends in the positive predictive 

value of clustering were similar between the scenarios, though this values fell more 
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dramatically with age for UK-born cases in the modified scenario with a reduced 

contact rate, which resulted in a lower average value for the modified scenario. The 

age-dependent trends were less clear for foreign-born cases and generally similar 

those in the higher contact rate scenarios, though overall values were lower. For UK

born cases, trends in the negative predictive value of clustering were similar to those 

seen in the higher contact scenario, with a clear increase with increasing age groups 

for males and females. However, values were generally higher in the lower contact 

rate scenario. For foreign-born cases, again, age-dependent trends were not very clear 

but similar to patterns seen in the higher contact rate scenarios. Also, values were 

generally higher in the lower contact rate scenario. 
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Figure 7-16: Observed and simulated clustering statistics by age category for UK-born males under a modified 

version of model input scenario 4, with a contact rate of 10 per year and a mutation rate of 9.9% per year. Bars are 

labelled as follows: (a) observed proportion clustered, (b) simulated proportion clustered, where the bar depicts the 

mean and dots show individual runs of the simulation, (c) proportion of cases due to recent infection in the UK, (d) 

proportion of clustered isolates due to recent transmission in the UK, and (el proportion of unique cases due to 

older infection or infection acquired abroad. 
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Figure 7-17: Observed and simulated clustering statistics by age category for UK-born females under a modified 

version of model input scenario 4, with a contact rate of 10 per year and a mutation rate of 9.9% per year. Bars are 

as in Figure 7-16. 
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Figure 7-18: Observed and simulated clustering statistics by age category for foreign -born males under a modified 

version of model input scenario 4, with a contact rate of 10 per year and a mutation rate of 9.9% per year. Bars are 

as in Figure 7-16. 
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Figure 7-19: Observed and simulated clustering statistics by age category for foreign-born females under a modified 

version of model input scenario 4, with a contact rate of 10 per year and a mutation rate of 9.9% per year. Bars are 

as in Figure 7-16. 
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7.2.4 Mutation Rate, Strain Type Distributions, and Other Inputs 

Mutation rates in the 10 best scenarios for correspondence to observed data included 

only the two highest of the five values tested, 17.2% and 18.9% per year. The lower 

mutation rates, especially the two lowest values tested, 3.3% and 0.3% per year, 

seemed to be incompatible with the observed clustering proportions across a range of 

input parameter values. However, results were sensitive to the contact rate assumed 

in the model. This was illustrated by results from runs using a reduced contact rate for 

best-fitting scenario 4 for each of the five mutation rates. With the reduced contact 

rate, the best-fitting mutation rate for scenario 4 was 9.9%, lower than the 18% in the 

higher contact rate version. Results are shown in Table 7-7. 

The strain type distribution assumptions across each of the 10 the best-fitting 

scenarios were the two higher-diversity assumptions of the three distributions tested. 

However, the mutation rate was inversely correlated with the amount of diversity in 

the strain type distribution used. Increased mutation rates improved the fits for the 

lower diversity strain type assumptions. 

Among best-fitting scenarios, the input scenarios from England and Wales modelling 

did not change simulation results much. These were comprised of disease risk 

estimates, the contact rate-which was increased for this stage of fitting, and the 

infection status of migrants. 
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7.3 Discussion 

In stage two fitting, the model reproduced observed notification rates well due to the 

increased contact number. The overall proportions clustered in the simulation also 

corresponded with observed data well overall, though there were some discrepancies 

when data were stratified into age and sex classes. The proportion of cases due to 

recent transmission in the UK was estimated to be 63% across 10 of the best-fitting 

scenarios of stage two, though could be closer to 45% if the contact rate were 

lowered. The best-fitting scenarios resulted from high mutation rates for 24-locus 

VNTR profiles, 17-19% per year. 

7.3.1 Fits to Clustering Proportions 

Across several scenarios, the overall proportions clustered predicted by the model 

corresponded well to the overall proportions clustered in observed data. General 

trends, including the reduction in proportion clustered with increasing age for UK-born 

cases was present. However, age-dependent proportions clustered were not 

reproduced perfectly by the model. For foreign- born cases, observed clustering 

proportions were high for those aged 0 - 14 years, but roughly equal for other age 

groups. The trends in model estimates were similar to these, though lower than 

observed for those aged 0 - 14 years. It is likely that more fully age-specific disease 

risks and contact structure would have helped fit to age classes more closely. Risk of 

disease may be elevated in older individuals [28, 29, 223L whereas here, it was 

assumed that all individuals aged 20 years and over had the same risks of disease. In 

addition, contact rates would likely be lower for older individuals, though here were 

assumed equal across age groups [339, 340]. Also unrealistic was the assumption of 

homogeneous mixing among age groups, which, in reality, would likely be strongly 

associative by age [273, 340]. If, for example, higher reactivation risks and lower 

contact rates for the elderly were used, this age group would likely have had a lower 

clustering proportion and lower proportion due to recent transmission. Likewise, if the 

younger individuals had higher contact rates and lower reactivation disease risks, they 

would have had increased proportions clustered and proportion of cases due to recent 

transmission. These would have been more consistent with observed data. 
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Results also showed less differentiation between UK-born and foreign-born 

proportions clustered than was seen in observed data. This finding might have been 

due to inaccurate assumptions regarding the strain type distributions. For example, 

with increased diversity in the assumed foreign-born strain pool and decreased 

diversity in the UK-born strain pool, there would be more differentiation in clustering 

proportion between the groups. This outcome could also have been impacted by 

migration data and assumptions about the infection status of migrants upon entry to 

the UK. Increased migration of infected and diseased foreign-born individuals would 

have decreased clustering in this group, assuming there was sufficient strain diversity 

in the foreign-born strain pool. 

7.3.2 Proportion of Cases Due to Recent Transmission in the UK 

The estimated proportion of cases due to recent transmission in the UK, 63% overall, 

was higher than previous estimates found in genotyping studies in the UK [166, 308]. 

However, these estimates based on genotyping data would be expected to 

underestimate the proportion of cases due to recent transmission due to sampling bias 

[8, 163]. Also, although estimates obtained here were high, they still fell within the 

range of estimates of the proportion of cases due to recent transmission estimated 

from RFLP genotyping studies in developed countries [325], as discussed further in 

Section 6.3. 

In any case, estimates obtained in these analyses could be thought of as an upper 

bound on the proportion of cases due to recent transmission in the UK. This 

consideration is because, in order to achieve adequate model fits to observed 

notification rates in the West Midlands, the contact rate alone was increased. In reality 

there are other factors that could have been altered to achieve the observed 

notification rates in simulation results. Other solutions which would not have 

increased the proportion of cases due to recent transmission as much, for example, 

modelling of individuals travelling to high burden countries, assuming increased 

reactivation risk in the elderly, or assuming higher infection and disease prevalence for 

migrants upon entry to the UK. In reality, a mixture of these and other factors was 

likely important. But since only the contact number was raised to achieve the observed 

notification rates in the simulation, it is likely that the estimates of recent transmission 
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from the model were at the upper limit of the true proportions because of this high 

contact rate. 

The results from runs with a reduced contact number, as expected, showed a reduced 

proportion of cases due to recent transmission, 45% on average. These results may be 

interpreted as a lower bound of the estimates for the proportion of cases due to 

recent transmission in the UK. The estimates may accurately reflect the proportion of 

cases due to recent transmission in the UK if model parameters other than the contact 

rate were altered to achieve fits to observed notification data, as discussed above. 

7.3.3 Predictive Value of Clustering 

The relationship between strain type clustering and the proportion of cases due to 

recent transmission in the UK in the simulation results showed that the proportion 

clustered consistently underestimated the proportion of cases due to recent 

transmission. This finding raises concerns about the utility of clustering data if 

mutation rates are as high as the estimates of 17.2% and 18.9% per year, which led to 

best fits of the model to observed data. 

These conclusions are sensitive to the contact rate, however. When the contact rate 

was decreased to 10 per year, the proportions clustered were better estimates of the 

true proportion of cases due to recent transmission because the mutation rate which 

allowed best correspondence to observed data had decreased. There was not a 

consistent underestimate of the proportion of cases due to recent transmission, and 

the age-dependent effects were more similar to those found in previous work [9]. 

However, for foreign-born aged 15-44 years, this value was again low, which is 

problematic since these represent the largest group of cases. 

The positive predictive values of clustering showed clear age-dependent trends for UK

born cases, with the positive predictive value decreasing with age and the negative 

predictive value increasing with age. These findings are similar to trends found in 

previous work looking at the positive predictive value among different population 

trends in the ARt [161]. tt appeared, however, that the magnitude of increase and 

decrease in these values by age category matched better to settings with high, 

constant ARts rather than ARts that have declined, as in the Netherlands [161]. This 

may have been due to the higher contact rate assumed. Direct comparisons were 

306 



difficult because of the different age categories used. Trends for the predictive values 

of clustering for foreign-born cases did not show clear age-dependency, nor 

correspondence to any of the ARI scenarios presented by Vynnycky et al. [161]. This is 

not completely unexpected, as a mixture of native-born and foreign-born were 

modelled here, whereas that study did not consider immigrants. 

7.3.4 Mutation Rate, Strain Type Distributions, and Other Inputs 

Results showed that only the highest mutation rates for 24-locus profiles, about 17-

19% per year, and highest diversity assumptions for strain type distributions fit 

observed data best. 

When the lower contact version of scenario 4 was run, the average mutation rate 

across literature values, 9.8%, fit the data fairly well, indicating that as contact rate 

assumptions change, lower mutation rates are possible. Still, these results showed that 

even under reduced contact rate scenarios, the lowest mutation rate estimates from 

the literature, 0.03 - 0.3% per year, resulted in clustering proportions that were too 

high. This finding suggests that these estimates may be implausibly low. It should be 

noted that correlation between the strain type diversity assumptions and the mutation 

rate means that, without a more precise and accurate estimate of one of them, 

conclusions about each independently should be interpreted with caution. 

7.3.S Limitations 

The work described in this chapter has several limitations. Firstly, the initial 

comparison of model output to notification data showed poor correspondence. It is 

recognized that there are differences in the resident populations and tuberculosis 

epidemiology between the West Midlands and other areas of the UK, including 

England and Wales, which likely explain discrepancies between initial outputs of the 

model and observed data. As discussed in Chapter 2, the West Midlands has a large 

population of South Asian individuals, including UK-born South Asians. Although at a 

lower risk of infection than those born in South Asia, UK-born South Asians may have 

more exposure to M. tuberculosis than other UK-born individuals through travel to 

South Asia, from household contacts born in South Asia, and from more contacts with 

South Asian-born individuals in their communities. A 2007 report showed that those of 
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South Asian descent in Birmingham live in households of larger size than other 

demographic groups [341]. 

Although the increased contact number in stage two fitting led to correspondence 

between simulated and observed notification rates in the West Midlands, this was only 

one solution to obtain correspondence, of which many possible others could be 

explored. One major factor that may relate to the discrepant fits includes the model's 

sensitivity to migration data, which were particularly uncertain for the West Midlands. 

Until better data are available, it may be better to model larger regions when more 

genotyping data are available, and where migration estimates would be based on 

larger and more robust sample sizes. It is also possible that infection status of migrants 

upon entry to the UK could be different than for England and Wales, for example, 

there might be higher infection and disease prevalence in migrants to the region. 

Another factor may be that case reporting completeness in the West Midlands is 

better than in England and Wales because of the higher notification rates in the West 

Midlands. Clinicians in this region are likely more aware of tuberculosis than clinicians 

in other regions, due to the high notification rates and large South Asian population. A 

higher proportion of cases notified in the model would increase the notification rates 

estimated at least somewhat. Other characteristics of the model structure which could 

be amended for this region include incorporating UK-born travel to South Asia or other 

high burden areas. It is possible that exposure abroad contributes to increased 

tuberculosis incidence in some ethnic groups, such as South Asians. 

If anyone or more of these factors could have been explored, it is possible that the 

contact rate would not need to be increased as much to account for differences in 

epidemiology between the West Midlands and England and Wales; a lower contact 

rate would have likely reduced the proportion of cases due to recent transmission in 

the UK. These modifications could also allow the model to fit to clustering proportions 

with lower mutation rates and strain type distributions with reduced strain diversity. 

Further limitations include several model assumptions that could be made more 

realistic. There is no age-dependent mixing implemented or other more realistic 

contact structures taken into account. This work suggests a high contact rate may be 

necessary for the model to reproduce the West Midlands epidemiology generally. 

However, it is possible that the contact rate is high for some groups and moderate or 
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low for others, including the elderly. A heterogeneous contact rate may also allow a 

better fit to observed age-dependent clustering patterns, though could also change 

conclusions. In addition, other contact heterogeneities taken into account in 

tuberculosis models include a household structure for contact patterns. There could 

also be a more sophisticated handling of the variance in contact rate from individual to 

individual. 

In addition, several parameter values are highly uncertain or otherwise problematic. 

Migration data are particularly uncertain for the West Midlands and the model is 

particularly sensitive to these inputs. Unless more precise migration data are made 

available, results must be interpreted with caution. The population size of the region 

means that population categories divided by age, sex and birthplace have a relatively 

small number of data points per category, especially for foreign-born individuals, 

which causes several problems. The notification rates per 100,000 may be subject to 

error due to inaccurate population sizes for some demographic categories, particularly 

for the foreign-born population. Also, the other data, such as proportion clustered in 

these groups, will be uncertain. 

Modelling methods and model structure issues to be considered for future research 

include the modelling of individual loci, which would be more realistic and is a natural 

extension of the work done here. Travel could be added to the model-especially in the 

West Midlands where there are many UK-born people of South Asian descent, it is 

possible some of these are travelling back to high-incidence countries and being 

exposed to M. tuberculosis there. Finally, formal fitting methods could have been used 

to estimate the mutation rate and possibly other parameters. Also, an uncertainty 

analysis could be formalized and extended. 

7.3.6 Implications 

This work is the first application of an IBM of tuberculosis dynamics to help better 

understand observed genotyping data, and, to my knowledge, the first application of a 

model to simulate observed genotyping data in a mixed population of native-born and 

foreign-born individuals. This analysis suggests a high proportion of cases that are due 

to recent transmission in the UK and that clustering proportions consistently 

underestimate the proportion of disease due to recent transmission in the UK. 
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However, conclusions are sensitive to the contact rate and this value, along with other 

factors that influence the epidemiology of tuberculosis in the West Midlands, should 

be better understood before making definitive conclusions. These analyses are 

intended to be a first exploration into the IBM fit to genotyping data. Several lines of 

future work are opened by this study. 
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8 Conclusions 

This chapter concludes the thesis with a unifying discussion of the study. The aim and 

objectives are reviewed and the main findings reported. The specific new contributions 

to the field are highlighted. Broader implications of the work, study limitations, and 

suggested future work are also discussed. 
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8.1 Introduction 

The primary aim of the thesis is to better understand tuberculosis dynamics and 

epidemiology in the UK. Modelling approaches were used to achieve the following six 

study objectives: 

1) Construct an IBM of tuberculosis dynamics in the UK that is freely available for 

others to use and documented according to a standardized protocol 

2) Estimate risks of disease for those with a recent infection, recent reinfection, 

and latent infection in both UK-born and foreign-born individuals using the 

model applied to notification data from England and Wales, 1999 - 2009. Also 

identify plausible assumptions for the effective contact rate and the infection 

status of migrants entering the UK 

3) Estimate the proportion of cases due to recent transmission in the UK by 

application of the model to data from England and Wales. 

4) Describe the molecular epidemiology of tuberculosis the West Midlands from 

2007 - 2011 

5) Estimate the proportion of tuberculosis cases due to recent transmission in the 

UK by application of the model to genotyping data from the West Midlands and 

explore the relationship between recent transmission in the UK and genotype 

clustering 

6) Identify plausible assumptions about the mutation rate for 24-locus VNTR, as 

well as the strain type diversity for 24-locus VNTR profiles found in UK-born and 

foreign-born individuals by application of the model to genotyping data from 

the West Midlands 
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8.2 Summary of Findings 

As covered in Chapter 3, objective one was accomplished by developing the model, 

describing it according to the ODD protocol and publishing the code in the appendix of 

this thesis and online (http://www.cbs.umn.edu/modeling). 

Objectives two and three were addressed in Chapter 5 by fitting the model to 

notification data from England and Wales, 1999 - 2009. For objective two, disease risk 

estimates were lower than earlier estimates for UK-born adult males, perhaps 

reflecting a decrease in disease risk following infection for UK-born individuals in 

recent years. Foreign-born disease risks were consistently higher than those of UK

born. Best fits of the model show foreign-born disease risks are on average 2.4 times 

higher than risks for UK-born. The model fits suggest the contact rate was between 

eight and 10 effective contacts per year for infectious cases. Plausible scenarios for the 

infection status of migrants upon entry to the UK were identified. For objective three, 

estimates of the proportion of cases due to recent transmission in the UK were around 

42 - 47% on average for best-fitting scenarios, which is higher than previous estimates 

from genotyping-based studies in the UK. 

In Chapter 6, objective four was addressed. The molecular epidemiological analysis of 

24-locus VNTR data from the West Midlands identified risk factors for clustering. The 

identified risk factors were largely consistent with findings from earlier RFLP studies. 

The results suggest 24-locus VNTR is useful for population-level analyses of risk factors 

for clustering. Lastly, the estimate for the proportion of cases due to recent 

transmission using genotyping data alone was 36% overall. 

The final two objectives of the study were addressed in Chapter 7 by application of the 

model to genotyping data from the West Midlands, 2007 - 2011. The proportion of 

tuberculosis cases due to recent transmission in the UK were estimated to be in the 

range of 45 - 63%. Again, these are higher than previous estimates for the UK. 

Simulations also suggested genotyping data were likely to consistently underestimate 

the proportion of disease due to recent transmission, though this conclusion is 

sensitive to model parameters. The mutation rates that best fit these data were 17-

19% per 24-locus VNTR profile per year, though the rate could be as low as 10% per 
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profile per year, depending on model assumptions. Plausible strain type distributions 

for UK-born and foreign-born cases were identified. 

8.3 Original Contributions 

Several new contributions to the field resulted from this study. The first contribution is 

the presentation of a new, freely available, rigorously tested model of tuberculosis 

dynamics, which is adaptable to suit other applications. Other contributions include 

the furthering of the understanding of tuberculosis epidemiology in the UK. These 

include: estimates of disease progression risks for foreign-born and UK-born 

individuals in recent years; estimates of the proportion of disease due to recent 

transmission in the UK for recent years using three different approaches; an 

exploratory appraisal of genetic typing methods for estimating the extent of recent 

transmission in a population comprised of foreign-born and UK-born individuals; and a 

population-scale molecular epidemiological analysis using 24-locus VNTR from the 

West Midlands. lastly, methodological contributions that have stemmed from the 

work in this thesis include several recently published algorithms useful for simulation 

models generally [234-236, 252, 342]. 

8.4 Broader Implications of the Work 

There are three main areas where this work has broader implications, 1) foundations 

for future modelling studies, 2) identifying priorities for data collection, and 3) disease 

prevention and control. 

Because simulation modelling requires enormous effort, creating model software 

which is rigorously tested, well documented, and freely available is beneficial and 

important for epidemiology for several reasons, 1) this helps ensure the model and 

conclusions drawn from its use are correct 2) this helps ensure others can reproduce 

the work and 3) this allows others to build on the work, rather than starting anew. 

Especially for the latter reason, the impact of releasing model software will perhaps be 

longer lasting than conclusions regarding tuberculosis epidemiology. Also, the new 

published algorithms add to the computing literature and may be useful other 

simulations in epidemiology and other disciplines. 
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In addition to model development, parameterization of the model was a considerable 

effort because incorporating detailed data, especially when distributions of times to 

event are necessary, is difficult. For future models, some of the parameters estimated 

or derived in this study may be useful. These include disease risks, the effective 

contact rate, the mutation rate of 24-locus VNTR profiles, strain type distributions, and 

plausible assumptions for the infection status of migrants to the UK. Another part of 

model parameterization is the organization of the thousands of data points used as 

input parameters to generate these time-to-event distributions. The use of specialized 

software for helping to ensure input data are read and documented correctly is 

important. This work motivated the creation of a system designed for reading and 

documenting input files, which is presented in a published paper I contributed to 

[252]. 

Also related to model parameterization, this study identified some areas where data 

could be strengthened. Population sizes based on lFS data are highly uncertain for 

small demographic categories, for example, many estimates for age groups in the West 

Midlands and for Sub-Saharan Africans by age and sex categories throughout the UK. 

Migration data are also unreliable for many demographic categories, especially 

estimates for the West Midlands generally and some categories for England and 

Wales. These are based on the IPS, which only samples a fraction of travellers. Both 

types of data are important for the epidemiology and modelling of several diseases 

and for other concerns of the country. Such data are expensive to collect, but the 

benefits may be worth the cost of expanding the surveys. Also, although plausible 

assumptions for the infection status of migrants were established in the study, 

updated and improved screening data to better inform these parameters would be 

beneficial as these are critical for the understanding of tuberculosis epidemiology. 

Similarly, although results from this work showed that two of the highest and most 

recent estimates for the mutation rate of VNTR profiles were most plausible [155, 

157], these conclusions are sensitive to other model parameters. Further study and 

data on mutation rates is recommended because of the importance to both model 

conclusions and the utility of genotyping data. 
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Lastly, for tuberculosis prevention and control, results have several potential 

implications. Estimates of the proportion of cases due to recent transmission were 

generally higher than estimated elsewhere, between 45 - 63% on average, depending 

on model parameters. However, most previous estimates were based on crude 

estimates from genotyping data, which are likely to underestimate the proportion of 

disease due to recent transmission. Furthermore, especially within high-risk subgroups 

of the population, it is possible that individuals are exposed to a very high risk of 

infection and this would explain the large estimated proportion of cases due to recent 

transmission in the UK. Even the lower estimates of this range indicate a substantial 

number of cases due to recent transmission in the UK, and that efforts to stop further 

transmission are worthwhile. 

The interruption of transmission can be achieved by reducing the period of 

infectiousness of active cases by treating as many cases as possible, as early and 

effectively as possible. This involves first identifying infectious cases, which can be 

achieved through active case finding. That can involve mobile screening units or 

screening programs in prisons, homeless shelters, or other high-risk populations. 

Confirmed cases would then be given treatment effectively and followed up to ensure 

treatment is administered properly and effectively. These and other such interventions 

could be compared with cost-effectiveness analyses taking into account results from 

this study. In addition, estimates of the proportion of disease due to recent 

transmission established here can be used for monitoring the change in these 

estimates over time and may help evaluate the success of interventions. Estimates 

may also help predict future trends in tuberculosis incidence. 

Results showed that disease risks were consistently higher in foreign-born individuals, 

which may have implications for treatment and control. For example, prophylactic 

treatment of latent infection in these groups may be more beneficial than in the 

general population, because a higher risk of disease means the average number of 

cases prevented would be higher for any number of treatments administered. They 

would also be more likely to benefit an individual patient. Additionally, the higher 

disease risk may change the cost-effectiveness of the intervention and so should be 

considered in cost-effectiveness studies. 
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Conclusions about the utility of 24-VNTR genotyping for identifying recent 

transmission showed genotyping data were likely to underestimate the proportion of 

cases due to recent transmission, confirming results of previous work. However, the 

descriptive molecular epidemiological analysis suggests both 15 and 24-locus VNTR are 

useful for identifying risk factors for clustering, and, to some extent, recent 

transmission on a population level. This analysis highlights the utility of genotyping 

data and the benefits of the national strain typing service in the UK. Another benefit of 

the strain typing service demonstrated in this study is the usefulness of the genotyping 

data in modelling studies to help better understand tuberculosis epidemiology. 

8.5 Limitations 

Limitations are discussed in each chapter, but some of the most important and 

generally applicable limitations of the study are reviewed here. 

First and foremost, this work is limited by the quality of the data used for model 

inputs. There is a need for more and better-quality data, including migration data and 

population size estimates for some subgroups of the population. Migration data and 

population sizes stratified by age, sex, and birthplace are particularly important for 

understanding patterns in tuberculosis dynamics and are uncertain for many 

demographic categories. Assumptions about the infection status of migrants were 

used to determine the proportion of immigrants in each of the disease compartments 

when they arrive in the UK. Thus, estimates will impact model output, as more 

infections and disease entering the UK means more cases from these sources and 

generally lower infection and disease risks within the country. Other model 

assumptions come from parameter values which are uncertain. For example, 

vaccination was assumed to impart lifelong immunity for those vaccinated effectively, 

which is likely overly simplistic. The relative risk ratio for HIV infected persons was 

fixed at 7.0 for all disease types and HIV-positive persons, but this assumption is also 

overly simplistic. Even if HIV infection is not explicitly modelled, the relative risk ratio 

could be varied to reflect the changing risk ratio for different stages of HIV infection, 

different M. tuberculosis infection status, effects of HIV treatment, and other risk 

factors for HIV-associated tuberculosis. Similarly, disease risks in females were fixed by 
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relative risk ratios based on previous studies, since some of these values are quite low 

and higher values could be explored. 

The 24-locus VNTR data used for the molecular epidemiological analysis and for 

comparison to model output for the West Midlands model were problematic due to a 

low case ascertainment. Less than 50% of notified cases were typed. This low 

percentage was mainly due to a low proportion of cases with a positive culture, due to 

both a low proportion of cases that were pulmonary, but also missing laboratory data 

on some pulmonary cases. In addition, the geographical area of the study population 

was also restricted. Both of these limitations lower estimates of the proportion of 

cases due to recent transmission in the UK using genotyping data and could help 

explain why model-based estimates were higher. Low case ascertainment could also 

mean that some risk factors for clustering were missed. 

Another limitation of the study is the equal contact rate for all individuals and the 

nearly-homogeneous contact structure assumed in the model. These are overly 

simplistic. In reality, the contact rate will likely depend on age and other factors and 

true contact patterns reveal associative mixing, both age-dependent mixing and a 

contact structure which depends on households, schools, and workplaces. None of 

these factors were taken into account in the model, although they likely have an 

impact on age-dependent disease risk estimates, estimates for the proportion of cases 

due to recent transmission, and the interpretation of genotyping data. Also related to 

contacts and risk of infection is that the risk of travel to high-burden countries by UK

born and foreign-born individuals was ignored. The effects of this travel may be 

important sources of infection risk that could be modelled. 

Another limit is that the effect of HIV is included in a simplistic manner. Because an 

increasing number of immigrants are co-infected with HIV, future models could take 

co-infection into account more fully. Unfortunately, HIV testing of tuberculosis 

patients is not routine, and therefore, HIV prevalence in tuberculosis cases is hard to 

estimate. Further research should explore the impact of HIV on tuberculosis incidence 

in the UK. Antibiotic treatment of tuberculosis and drug resistance of strains were also 

not explicitly included in this study, though are not central to the conclusions herein. 
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Some of the challenges in obtaining adequate fits of the model to observed data 

indicate there are features of the tuberculosis epidemiology, especially in some 

subgroups of the population, that were not fully understood. Furthermore, fitting to 

many age, sex, and birthplace categories was problematic given that input data did not 

fully specify parameter values for each of these categories. 
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8.6 Areas for Further Research 

Several lines of future work are inspired by the findings in this thesis. 

With the appropriate data, the model could be further stratified to take into account 

more detailed birthplace or ethnic groupings to better understand the differences in 

these subgroups for the epidemiology of tuberculosis in the UK. This stratification 

would almost certainly require more refined migration data and population size 

estimates than are currently available. More broadly, the model is designed to be 

flexible enough to take into account almost any type of data, for example, individual

level host genetic factors or health status information, so that infection and disease 

risks are more specific to individuals. 

Other structural improvements to the model for future studies include explicit spatial 

structure and contact networks, both within the scope of this kind of model. A more 

refined contact network would greatly improve the model and more accurately reflect 

the heterogeneous M. tuberculosis infection risks for different subgroups of the 

population in the UK. Another extension of the model structure could include 

incorporation of more sophisticated modelling of strain type mutation, including the 

modelling of each locus individually, or even incorporating new understanding of M. 

tuberculosis mutation processes based on whole genome sequencing, once those data 

are available. Lastly, explicit treatment of co-infections, such as HIV, which would be 

natural extensions of the model, are worth exploring. 

Another future application of the model could test how well the model fits data from 

other developed countries to compare and contrast drivers of tuberculosis incidence 

among countries. In the first instance, this comparison could be done by changing 

population sizes and migration data but keeping the majority of parameters the same. 

Some countries in Western Europe and the United States and Canada have migration 

patterns similar to those found in England and Wales, with migrants entering from 

both countries with both low-burdens and high-burdens of tuberculosis. 

Also, it should soon be possible to extend molecular epidemiological analyses and 

modelling to a larger geographical and temporal scale, as universal prospective 24-

locus VNTR typing is now implemented across England and Wales. With more 

320 



genotyping data, the conclusions here could be tested and could contribute to the 

evaluation of the strain typing service. Eventually, it would be interesting to model 

molecular epidemiology of tuberculosis worldwide. The expansion from the 50-million 

individuals this model presently handles for the UK to six billion or more for the entire 

globe is only about two orders of magnitude larger than the present simulations. At 

the historical growth rate for computing capacity of doubling every 18 months or so, it 

will only be ten years until that two orders of magnitude can be readily accommodated 

on supercomputers. The algorithmic methods employed in this study are capable of 

handling such an increase with only linear increases in memory and computational 

time. 

Finally, a large-scale model such as this, with some categories with millions of 

individuals behaving deterministically and others with only a few individuals behaving 

stochastically, could be used for developing and evaluating new computer algorithms 

beyond the several that have already emerged from the study --- for example adaptive 

algorithms for state-space searching to support faster and more reliable parameter 

fitting, and new parallel-coded algorithms for event-based simulation. 

8.7 Concluding Remarks 

Although there are many dedicated clinicians, prevention and control scientists, and 

researchers working to reduce the tuberculosis burden in the UK and worldwide, the 

disease remains a problem. This modelling study provides some insight into the 

difficult-to-measure and unobservable features of tuberculosis dynamics in the UK, 

and helps advance tools for studying the disease in hopes of informing prevention, 

control, and future research. Ultimately, this research is motivated by saving and 

improving lives. 
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10.1 Equations for ODE model written in R language 

The following ODE model was designed to match the simplified version of the 

tuberculosis IBM described in Chapter 3, Section 3.4.1.1. This model was used for 

testing in the initial phases of model development as described in Section 3.4.1. 

# SOLVING ODE VERSION OF TUBERCULOSIS IBM 

b = 50000; 
im = 6000; 
e1 = 0.006; 
c = 20.0; 
v1 0.77; 
v2 = 0.75; 
v3 = 13; 

# Births 
# Total immigrants per year 
# Emigration rate per year 
# Effective contacts per year 
# Efficacy of vaccine 
# Proportion vaccinated at designated age 
# Average age of vaccination 

p = 0.6; 
d1 0.04*2; 
d2 0.0002*2; 
d3 0.04*2; 
r1 0.2; 

# Proportion of disease cases that are pulmonary 
# Progression to disease for Recent Infection. 
# Progression to disease for Latent Infection. 
# Progression to disease for Reinfection. 
# Annual rate of transfer to latent (12) from 11 
# and I3 

r2 

m1 
m2 

im1 

1. 0; 

0.01; 
0.02; 

.9*im; 

# Annual rate of transfer to Latent Infection 
# from disease classes 
# Mortality of non-disease classes 
# Mortality of disease classes 

# Proportion of immigrants Uninfected 
im2 .l*im; # Proportion of immigrants with Recent Infection 

UO 9855145; VO = 0; 
12 = 0; 13 

0; D3 0; 
0; D6 0; 

I1 144855; 
D1 0; D2 
D4 0; D5 = 

tgap=1.0; tp=-2*tgap; 
#t=O; tmax=44; dt=1/365.25; 
t=O; tmax=44; dt=1/1000; 

plotUO numeric(); plotVO 
plotIl numeric(); plotI2 
plotD1 numeric(); plotD2 
plotD4 numeric(); plotD5 

i = 1; 

# Initial conditions 
0; 

# Time between displays 
# Time range and time step 
# Time range and time step 

numeric(); 
numeric() ; plotI3 numeric() ; 
numeric(); plotD3 numeric(); 
numeric(); plotD6 numeric() ; 

while (t<=tmax) 
{ 

# Trace the solution with Euler's method 

NO = UO +VO +11 +12 +13 +D1 +D2 +D3 +D4 +D5 +D6; 
c1 c*(D1+D2+D3)*(UO/NO); 
c2 = c*(D1+D2+D3)*(I2/NO); 

dUOdt -e1*UO -ml*UO - (v1*v2/v3)*UO + b + im1 
dVOdt -e1*VO -m1*VO + (v1*v2/v3)*UO; 
dIldt -e1*Il -ml *Il - d1 * Il - r1 *Il + im2 

- c1; 

+ cl; 
dI2dt -el*I2 -m1*I2 - d2*I2 + rl* (Il+I3) + r2*(D1+D2+D3+D4+D5+D6) 
dI3dt -e1*I3 -m1*I3 -d3*I3 - r1*I3 
dD1dt -e1*D1 -m2*D1 -r2*D1 + p*d1*Il; 
dD2dt -el*D2 -m2*D2 -r2*D2 + p*d2*I2; 
dD3dt -e1*D3 -m2*D3 -r2*D3 + p*d3*I3; 
dD4dt -e1*D4 -m2*D4 -r2*D4 + (l-p) *dl*Il; 
dD5dt -el*D5 -m2*DS -r2*DS + (l-p) *d2*I2; 
dD6dt -el*D6 -m2*D6 -r2*D6 + (l-p) *d3*I3; 

-
+ 

c2; 
c2; 
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dUO dUOdt*dt; 
dVO dVOdt*dt; 
d11 d11dt*dt; 
d12 dI2dt*dt; 
d13 d13dt*dt; 
dOl d01dt*dt; 
d02 d02dt*dt; 
d03 d03dt*dt; 
d04 d04dt*dt; 
d05 d05dt*dt; 
d06 d06dt*dt; 

UO UO + dUO; 
VO VO + dVO; 
11 11 + dI1; 
12 12 + d12; 
13 13 + d13; 
01 01 + dOl; 
02 02 + d02; 
03 03 + d03; 
04 04 + d04; 
05 05 + d05; 
06 06 + d06; 

plotUO[i] 
13; 

p1ot01[i] 

UO; plotVO[i] 

01; p1ot02[i] 
05; 

plot06 til 06; 

i = i+1; 

VO; plot11 [i] 11; plotI2[i) 12; plotI3[i] 

02; plot03[i] 03; plot04[i] 04; plot05[ij 

if(t-tp>=tgap) {print(c(t,UO, VO, 11, 12, 13,01,02,03,04,05,06)); tp 
t; } 

t = t+dt; 

FINAL 
FINAL; 

c (t, UO, VO, II, 12, 13, 01, 02, 03, 04, 05, 06); 

plot.new(); plot.window(xlim=c(0,i),ylim=c(0,5000000)) 
axis(l); axis(2) 
tit1e(main="TB IBM 12") 
title (xlab="t"); title (ylab="UO (t), VO (t), 11 (t), 12 (t), 13 (t), 01 (t), 02 (t), 
03 (t), 04 (t), 05 (t), 06 (t)") 
box () 
lines(plotUO,col="green"); lines(plotVO,col="orange"); 
lines(plotI1,col="red"); lines(plotI2,col="black"); lines(plotI3,col="blue"); 
lines(plotOl,col="red"); lines(plot02,col="grey"); lines(plot03,col="yellow"); 
lines(plot04,col="violet"); lines(plot05,col="magenta"); 
lines (plotD6,col="pink") ; 
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10.2 Centinel Input Data File Format Example 

This file format and software was used for reading input files into the model. The 

example file provides HIV prevalence values assumed for Sub-Saharan Africa-born 

individuals in the model. 

Dataset: HIV Prevalence in Sub-Saharan-African-born immigrants. 
Description: These data are estimates of the prevalence of HIV in SSA 

immigrants entering the UK from 1981. Estimates are based on 
the assumption that the prevalence was zero in 1981 and 
increased linearly to overall prevalence in SSA immigrants 
estimated by Presanis et al. for 2001. Estimates from 2001 to 
2008 were taken directly from Presanis et al. estimates. The 
estimates of prevalence in SSA immigrants by Presanis et al. 
2008 prevalence estimates are extended to 2009-2011 for lack of 

other 
data. 

Label y: Year, relative to 1981. 
Label s: Prevalence by sex, O=male, l=female. 

Iy IsO Is1 
I 0 1.0000 1.0000 
I 1 1.0007 1.0012 
I 2 1.0013 1.0024 
I 3 1.0020 1.0036 
I 4 1.0026 1.0048 
I 5 1.0033 1.0060 
I 6 1.0039 1.0072 
I 7 1.0046 1.0084 
I 8 1.0052 1.0096 
I 9 1.0059 I .0108 
110 1.0065 1.0119 
111 1.0072 1.0131 
112 1.0078 1.0143 
113 1.0085 1.0155 
114 I .0091 1.0167 
115 1.0098 1.0179 
116 1.0104 I .0191 
117 1.0111 1.0203 
118 1.0117 1.0215 
119 1.0124 1.0227 
120 1.0130 1.0239 
121 1.0214 1.0283 
122 1.0221 1.0328 
123 1.0185 1.0337 
124 1.0163 1.0317 
125 I .0176 1.0340 
126 1.0160 1.0325 
127 1.0155 1.0339 
128 1.0155 t .0339 
129 1.0155 1.0339 
130 1.0155 1.0339 
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10.3 Classification of LFS Respondents into Three Birthplace 

Categories 

Table 10-1: Classification of labour Force Survey (lFS) respondents' country of birth into the three birthplace 

categories for the model. Birthplace categories are United Kingdom-born (UK-born), Sub-Saharan Africa-born (SSA

born), and other foreign-born (OF-born). The table shows lFS classifications for 1981 data and corresponding 

birthplace category used in the model. For some lFS countries of birth, classification is ambiguous and categories 

are distributed among the three birthplace categories for the model based on assumptions described in the text. 

These categories are highlighted in bold and make up less than 1% of the total respondents in 1981. The third 

column of the table, 'Intermediary grouping for redistribution of categories' provides information that aids 

redistribution of the ambiguous categories. 1999 - 2009 lFS data fall into similar categories, but since data are 

more resolved, there are fewer ambiguities. lFS countries of birth in bold are those that are redistributed into one 

of the three birthplaces in the model, according to proportions stated. 

Country of birth from lFS 

United Kingdom 

Channel Islands 

Isle of Man 

Irish Republic 

Canada 

Australia 

New Zealand 

Kenya 

Uganda 

Tanzania 

Malawi 

Zambia 

Zimbabwe 

Botswana, lesotho and Swaziland 

Gambia 

Ghana 

Nigeria 

Sierra leone 

Barbados 

Jamaica 

Birthplace category for 
model 

UK 

UK 

UK 

OF 

OF 

OF 

OF 

SSA 

SSA 

SSA 

SSA 

SSA 

SSA 

SSA 

SSA 

SSA 

SSA 

SSA 

OF 

OF 

Intermediary grouping for 
redistribution of categories 

New Commonwealth, Africa 

New Commonwealth, Africa 

New Commonwealth, Africa 

New Commonwealth, Africa 

New Commonwealth, Africa 

New Commonwealth, Africa 

New Commonwealth, Africa 

New Commonwealth, Africa 

New Commonwealth, Africa 

New Commonwealth, Africa 

New Commonwealth, Africa 

New Commonwealth, non-Africa 

New Commonwealth, non-Africa 
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Trinidad and Tobago OF New Commonwealth, non-Africa 

West Indies OF New Commonwealth, non-Africa 

Other Caribbean OF New Commonwealth, non-Africa 

Belize OF New Commonwealth, non-Africa 

Guyana OF New Commonwealth, non-Africa 

Bangladesh OF New Commonwealth, non-Africa 

India OF New Commonwealth, non-Africa 

Sri Lanka OF New Commonwealth, non-Africa 

Hong Kong OF New Commonwealth, non-Africa 

Malaysia OF New Commonwealth, non-Africa 

Singapore OF New Commonwealth, non-Africa 

Cyprus OF New Commonwealth, non-Africa 

Gibraltar New Commonwealth, non-Africa 

Malta OF New Commonwealth, non-Africa 

Seychelles New Commonwealth, Africa 

Mauritius New Commonwealth, Africa 

Redistributed into OF/SSA 
based on ratio of New 

Other new Commonwealth Commonwealth, non-
African: New 

Commonwealth, African. 

Algeria OF Foreign, North Africa 

Morocco OF Foreign, North Africa 

Tunisia OF Foreign, North Africa 

Libya OF Foreign, North Africa 

Egypt OF Foreign, North Africa 

South Africa SSA Foreign, SSA 

Redistributed Into 

Other Africa, foreign 
OF/SSA, based on ratio of 

Foreign, North Africa: 
Foreign, South Africa. 

USA OF 

Caribbean OF 

Central America OF 

South America OF 

Pakistan OF 
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Burma OF 

China OF 

Japan OF 

Philippines OF 

Vietnam OF 

Iran OF 

Israel OF 

Other Middle Eastern OF 

Other Asia, foreign OF 

Belgium OF 

Denmark OF 

France OF 

Italy OF 

Luxembourg OF 

Netherlands OF 

Germany, Federal Republic of OF 

Germany (PNS) OF 

Greece OF 

Albania OF 

Bulgaria OF 

German, Democratic republic of OF 

Czechoslovakia OF 

Hungary OF 

Poland OF 

Romania OF 

Austria OF 

Switzerland OF 

Portugal OF 

Spain OF 

Finland OF 

Norway OF 

Sweden OF 

Yugoslavia OF 

354 



Other Europe 

Turkey 

USSR 

Rest of the world 

At sea/in the air 

Not stated/no reply 

Not known 

OF 

OF 

OF 

Redistributed into 
UK/OF/SSA, based on 

proportion of each after 
other redistributions. 

Redistributed into 
UK/OF/SSA, based on 

proportion of each after 
other redistributions. 

Redistributed into 
UK/OF/SSA, based on 

proportion of each after 
other redistributions. 

Redistributed into 
UK/OF/SSA, based on 

proportion of each after 
other redistributions. 
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10.4 Population Size Estimates Derived from Analysis of 

LFS Data and Comparison to Other Sources 

Table 10-2: Population size estimates for England and Wales in 1981, used for model initialization. Estimates were 

computed using Labour Force Survey (LFS) data for one-year age classes, amalgamated into larger age classes for 

presentation here. See text for LFS analysis methods. 

UK-born OF-born SSA-born 

Age class (years) Males Females Males Females Males Females 

0-9 3,100,097 2,942,244 64,623 58,380 8,689 7,949 

10-19 3,889,003 3,714,639 120,282 114,955 35,546 38,165 

20-29 3,196,662 3,125,856 253,385 273,498 63,513 60,742 

30-39 3,159,263 3,108,019 241,041 258,896 36,345 35,447 

40-49 2,495,251 2,467,101 245,384 241,086 20,066 16,073 

50-59 2,528,484 2,636,362 237,742 232,400 9,653 9,375 

60+ 3,899,090 5,493,322 . 205,322 229,967 4,968 9,123 

Total 22,267,850 23,487,543 1,367,779 1,409,182 178,780 176,874 
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Table 10-3: Population size estimates (thousands) from Labour Force Survey for England and Wales by age, sex, and 

birthplace. 

UK-born OF-born SSA-born 

Age class 
Year (years) Male Female Male Female Male Female 

0-14 4,958 4,693 124 116 23 22 

15-44 9,598 9,631 792 883 183 205 

1999 45-64 5,500 5,524 431 537 66 61 

65+ 3,087 4,230 246 302 13 12 

Total 23,143 24,078 1,592 1,839 284 300 

0-14 4,929 4,695 117 110 26 26 

15-44 9,597 9,604 873 929 161 212 

2000 45-64 5,520 5,593 458 529 78 73 

65+ 3,106 4,224 251 297 16 19 

Total 23,152 24,115 1,699 1,865 281 330 

0-14 4,895 4,640 137 112 24 23 

15-44 9,574 9,613 885 970 219 232 

2001 45-64 5,572 5,663 470 519 71 76 

65+ 3,129 4,202 272 330 14 15 

Total 23,170 24,118 1,765 1,931 328 346 

0-14 4,819 4,612 133 125 37 28 

15-44 9,581 9,571 967 1,013 229 237 

2002 45-64 5,614 5,697 470 536 82 97 

65+ 3,162 4,198 279 339 16 19 

Total 23,176 24,079 1,849 2,013 364 381 

0-14 4,774 4,564 158 142 33 35 

15-44 9,536 9,495 1,041 1,060 251 295 

2003 45-64 5,688 5,760 452 537 91 104 

65+ 3,217 4,215 265 332 17 20 

Total 23,215 24,034 1,916 2,071 391 453 

2004 0-14 4,761 4,562 140 128 33 34 
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UK-born OF-born SSA-born 

Age class 
Year (years) Male Female Male Female Male Female 

15-44 9,607 9,516 1,026 1,083 264 285 

45-64 5,715 5,798 488 568 96 107 

65+ 3,259 4,255 262 305 18 18 

Total 23,343 24,131 1,915 2,084 412 444 

0-14 4,706 4,492 159 158 38 34 

15 -44 9,615 9,510 1,103 1,161 279 310 

2005 45-64 5,766 5,861 503 577 113 118 

65+ 3,289 4,224 267 342 26 26 

Total 23,376 24,088 2,032 2,237 455 487 

0-14 4,668 4,445 175 165 41 38 

15 -44 9,482 9,456 1,275 1,237 291 340 

2006 45-64 5,845 5,951 516 598 125 120 

65+ 3,320 4,211 273 355 24 29 

Total 23,316 24,063 2,239 2,355 481 527 

0-14 4,651 4,399 176 197 42 35 

15-44 9,391 9,349 1,431 1,378 296 333 

2007 45-64 5,910 6,030 532 621 130 130 

65+ 3,360 4,224 279 360 28 31 

Total 23,312 24,002 2,418 2,555 496 529 

0-14 4,675 4,450 185 170 40 49 

15-44 9,318 9,227 1,504 1,472 303 321 

2008 45-64 5,956 6,097 551 627 156 158 

65+ 3,424 4,237 286 391 32 39 

Total 23,374 24,011 2,526 2,660 531 567 

0-14 4,640 4,457 216 192 42 43 

15-44 9,329 9,144 1,545 1,528 291 342 

2009 45-64 6,024 6,151 567 632 154 195 

65+ 3,485 4,300 298 398 42 31 

Total 23,477 24,053 2,626 2,750 530 610 
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Table 10-4: Population size estimates for the West Midlands in 1981, used for model initialization. Estimates were 

computed using Labour Force Survey (LFS) data for one-year age classes, amalgamated into larger age classes for 

presentation here. See text for LFS analysis methods. 

UK-born OF-born SSA-born 

Age class (years) Males Females Males Females Males Females 

0-9 339,697 318,881 7,412 6,467 450 1,432 

10-19 426,111 405,400 11,614 12,074 5,354 5,806 

20-29 324,237 315,536 37,059 37,522 6,439 5,042 

30-39 333,120 320,017 29,376 34,422 1,898 1,900 

40-49 263,937 257,517 34,853 30,918 941 1,178 

SO-59 260,338 273,106 39,995 27,900 1,251 701 

60+ 379,256 525,820 25,177 19,376 491 0 

Total 2,326,696 2,416,277 185,486 168,679 16,824 16,059 

359 



Table 10-5: West Midlands population size estimates for calculation of notification rates, 2007 - 2011. Estimates 

were obtained from analysis of the Labour Force Survey. 

UK-born OF-born 

Year Age Male Female Male Female 

0-14 484,625 462,860 17,811 18,768 

15-44 964,035 957,430 115,785 112,914 

2007 45-64 601,825 620,005 60,851 54,239 

65+ 343,609 427,947 32,130 42,687 

Total 2,394,094 2,468,242 226,577 228,608 

0-14 494,330 465,286 15,748 13,228 

15-44 925,366 930,817 147,173 141,822 

2008 45-64 594,774 617,257 74,327 63,919 

65+ 352,010 430,665 32,003 45,978 

Total 2,366,480 2,444,025 269,251 264,947 

0-14 476,383 457,347 26,426 22,844 

15-44 925,399 914,393 150,950 153,112 

2009 45-64 599,452 608,526 72,826 77,509 

65+ 354,039 435,925 38,340 46,643 

Total 2,355,273 2,416,191 288,542 300,108 

0-14 481,254 457,019 19,045 23,067 

15 -44 920,537 920,876 155,518 142,779 

2010 45-64 614,898 619,334 63,244 73,414 

65+ 359,688 440,477 40,850 47,577 

Total 2,376,377 2,437,706 278,657 286,837 

0-14 479,968 462,142 24,900 21,673 

15-44 924,747 917,097 138,638 144,889 

2011 45-64 612,903 631,159 70,479 69,896 

65+ 372,955 440,762 38,887 56,971 

Total 2,390,573 2,451,160 272,904 293,429 
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Table 10-6: Comparison of 1981 population estimates from Labour Force Survey analysis with 1981 census for 

England and Wales (thousands of persons). Note, the 1981 census does not allow estimation of the Sub-Saharan 

African population directly; rather, these estimates come with some assumptions. 

LFS 

Census 
estimate 

Males 

22,268 

22,029 

UK-Born 

Females 

23,488 

23,274 

Total 

45,755 

45,303 

OF-Born SSA-born 

Males Females Total Males Females Total 

1,368 

1,427 

1,409 

1,465 

2,777 

2,892 

179 177 356 

169 158 327 

Table 10-7: Comparison of 2001 population estimates from Labour Force Survey analysis with 2001 census for 

England and Wales (thousands of persons) for United Kingdom-born (UK-born), other foreign-born (OF-born), and 

Sub-Saharan Africa-born (SSA-born). 

UK-born OF-born SSA-born 

Males Females Males Females Males Females 

LFS 23,170 24,118 1,765 1,931 328 346 

Census 23,144 24,263 1,824 2,072 359 382 

Table 10-8: Comparison of 2004 - 2009 population estimates from Labour Force Survey (LFS) analysis with Annual 

Population Survey (APS) estimates for England and Wales (thousands of persons). LFS estimates are based on 

independent analysis of LFS data. APS estimates are official estimates published by the Office for National Statistics. 

UK-born Foreign-born Total 

Year LFS APS LFS APS LFS APS 

2004 47,474 47,382 4,855 4,958 52,330 52,340 

2005 47,463 47,426 5,212 5,268 52,675 52,694 

2006 47,379 47,310 5,601 5,691 52,980 53,001 

2007 47,314 47,337 5,998 5,991 53,312 53,328 

2008 47,385 47,419 6,284 6,294 53,669 53,713 

2009 47,530 47,557 6,516 6,488 54,046 54,045 
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10.5 Case Fatality Rates 

Table 10-9: Estimated case fatality rates by year, age category, and site of disease used in the model. 

Non-pulmonary case fatality rate (%) by age category Pulmonary case fatality rate (%) by age category 

0-14 15-34 35-54 55-74 75+ 0-14 15-34 35-54 55-74 75+ 
Year years years years years years years years years years years 

1981 0.51% 0.81% 3.03% 10.26% 36.80% 0.51% 0.84% 4.18% 15.54% 38.82% 

1982 0.32% 0.63% 3.73% 10.64% 35.63% 0.32% 0.66% 5.15% 16.11% 37.58% 

1983 0.65% 0.34% 2.64% 9.62% 32.23% 0.65% 0.35% 3.65% 14.56% 34.00% 

1984 0.67% 0.78% 2.97% 8.90% 34.23% 0.67% 0.82% 4.10% 13.47% 36.11% 

1985 0.70% 0.94% 2.73% 10.05% 33.96% 0.70% 0.97% 3.76% 15.22% 35.82% 

1986 0.62% 0.72% 2.39% 8.76% 33.95% 0.62% 0.75% 3.29% 13.26% 35.82% 

1987 0.46% 0.87% 3.11% 10.29% 31.49% 0.46% 0.91% 4.29% 15.58% 33.22% 

1988 0.00% 0.51% 3.10% 11.51% 35.32% 0.00% 0.53% 4.27% 17.43% 37.26% 

1989 0.23% 0.80% 2.43% 9.41% 33.45% 0.23% 0.83% 3.35% 14.25% 35.29% 

1990 0.50% 0.72% 2.15% 9.23% 28.70% 0.50% 0.75% 2.97% 13.97% 30.27% 

1991 0.22% 0.64% 2.87% 8.92% 38.94% 0.22% 0.67% 3.96% 13.50% 41.07% 

1992 1.01% 0.56% 2.47% 8.88% 29.84% 1.01% 0.58% 3.41% 13.44% 31.48% 

1993 0.71% 0.69% 2.61% 8.83% 28.81% 0.71% 0.72% 3.60% 13.37% 30.39% 

1994 0.00% 0.94% 2.70% 9.71% 27.67% 0.00% 0.97% 3.72% 14.70% 29.19% 

1995 1.05% 1.00% 2.43% 10.22% 31.03% 1.05% 1.05% 3.35% 15.47% 32.73% 
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Non-pulmonary case fatality rate (%) by age category Pulmonary case fatality rate (%) by age category 

0-14 15-34 35-54 55-74 75+ 0-14 15-34 35-54 55-74 75+ 
Year years years years years years years years years years years 

1996 0.27% 0.59% 2.58% 9.27% 29.68% 0.27% 0.62% 3.56% 14.03% 31.31% 

1997 0.22% 0.63% 2.51% 8.00% 27.86% 0.22% 0.66% 3.46% 12.12% 29.39% 

1998 0.00% 0.72% 2.44% 8.10% 29.19% 0.00% 0.75% 3.36% 12.26% 30.79% 

1999 0.00% 0.70% 2.13% 7.69% 29.51% 0.00% 0.73% 2.93% 11.64% 31.13% 

2000 0.77% 0.56% 1.78% 7.36% 28.33% 0.77% 0.58% 2.46% 11.14% 29.89% 

2001 0.00% 0.89% 2.00% 8.23% 25.79% 0.00% 0.93% 2.75% 12.46% 27.21% 

2002 0.00% 0.89% 1.93% 7.99% 25.35% 0.00% 0.93% 2.67% 12.09% 26.74% 

2003 0.00% 0.89% 1.90% 7.89% 24.98% 0.00% 0.93% 2.63% 11.95% 26.35% 

2004 0.00% 0.89% 1.85% 7.79% 24.60% 0.00% 0.93% 2.55% 11.79% 25.95% 

2005 0.00% 0.89% 1.82% 7.61% 24.21% 0.00% 0.93% 2.51% 11.52% 25.54% 

2006 0.00% 0.89% 1.76% 7.40% 23.86% 0.00% 0.93% 2.43% 11.20% 25.16% 

2007 0.00% 0.89% 1.73% 7.26% 23.48% 0.00% 0.93% 2.39% 11.00% 24.77% 

2008 0.00% 0.89% 1.69% 7.05% 23.15% 0.00% 0.93% 2.33% 10.68% 24.42% 

2009 0.00% 0.89% 1.64% 6.87% 22.78% 0.00% 0.93% 2.27% 10.40% 24.03% 

2010 0.00% 0.89% 1.60% 6.70% 22.41% 0.00% 0.93% 2.21% 10.14% 23.64% 

2011 0.00% 0.89% 1.56% 6.53% 22.06% 0.00% 0.93% 2.15% 9.88% 23.27% 

363 



10.6 HIV Prevalence in SSA-born 

Table 10-10: Human Immunodeficiency Virus (HIV) prevalence assumed in Sub-Saharan Africa-born migrants 

entering the UK 1981-2008. Assumptions were based on 2001 to 2008 estimates from Presanis et al. 2010 [288]. 

Assumed HIV prevalence (%) 

Year Males Females 

1981 0.00% 0.00% 

1982 0.07% 0.12% 

1983 0.13% 0.24% 

1984 0.20% 0.36% 

1985 0.26% 0.48% 

1986 0.33% 0.60% 

1987 0.39% 0.72% 

1988 0.46% 0.84% 

1989 0.52% 0.96% 

1990 0.59% 1.08% 

1991 0.65% 1.19% 

1992 0.72% 1.31% 

1993 0.78% 1.43% 

1994 0.85% 1.55% 

1995 0.91% 1.67% 

1996 0.98% 1.79% 

1997 1.04% 1.91% 

1998 1.11% 2.03% 

1999 1.17% 2.15% 

2000 1.24% 2.27% 

2001 1.30% 2.39% 

2002 2.14% 2.83% 

2003 2.21% 3.28% 

2004 1.85% 3.37% 

2005 1.63% 3.17% 

2006 1.76% 3.40% 

2007 1.60% 3.25% 

2008 1.55% 3.39% 

364 



10.7 Infection State Probabilities for Model Initialization in 1981 

Table 10-11: Proportion by infection state for UK-born males in 1981. 

UK-born males, proportion of individuals in each infection state in 1981 

Age class Recent Latent Primary Reactivation Reinjection 
Uninjected Immune Reinfection 

(years) Injection Injection Disease Disease Disease 

0 0.999867 0.000000 0.000063 0.000000 0.000000 0.000070 0.000000 0.000000 

1 0.999571 0.000000 0.000353 0.000000 0.000000 0.000076 0.000000 0.000000 

2 0.999231 0.000000 0.000693 0.000000 0.000000 0.000076 0.000000 0.000000 

3 0.998840 0.000000 0.001084 0.000000 0.000000 0.000076 0.000000 0.000000 

4 0.998391 0.000000 0.001533 0.000000 0.000000 0.000076 0.000000 0.000000 

5 0.997875 0.000000 0.001781 0.000267 0.000000 0.000076 0.000000 0.000000 

6 0.997282 0.000000 0.001780 0.000861 0.000000 0.000076 0.000000 0.000000 

7 0.996602 0.000000 0.001779 0.001542 0.000001 0.000076 0.000001 0.000000 

8 0.995820 0.000000 0.001778 0.002324 0.000002 0.000075 0.000001 0.000000 

9 0.994922 0.000000 0.001777 0.003222 0.000003 0.000075 0.000001 0.000000 

10 0.993890 0.000000 0.001776 0.004253 0.000005 0.000074 0.000002 0.000000 

11 0.992706 0.000000 0.001774 0.005437 0.000007 0.000074 0.000002 0.000000 

12 0.991347 0.000000 0.001772 0.006796 0.000009 0.000073 0.000003 0.000000 

13 0.989786 0.000000 0.001770 0.008355 0.000012 0.000072 0.000004 0.000000 

14 0.987995 0.000000 0.001768 0.010146 0.000015 0.000072 0.000004 0.000000 

15 0.985940 0.000000 0.001765 0.012200 0.000019 0.000071 0.000005 0.000000 

16 0.983583 0.000000 0.001761 0.014556 0.000024 0.000070 0.000006 0.000001 

17 0.980881 0.000000 0.001757 0.017257 0.000028 0.000069 0.000007 0.000001 

18 0.977783 0.000000 0.001753 0.020354 0.000034 0.000067 0.000008 0.000001 

19 0.974233 0.000000 0.001748 0.023902 0.000041 0.000066 0.000009 0.000001 

20 0.970168 0.000000 0.001742 0.027966 0.000048 0.000064 0.000011 0.000001 

21 0.965515 0.000000 0.001735 0.032617 0.000057 0.000063 0.000012 0.000001 
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UK-born males, proportion of individuals in each infection state in 1981 

Age class Recent Latent Primary Reactivation Reinfection 
Uninfected Immune Reinfection 

(years) Infection Infection Disease Disease Disease 

22 0.960193 0.000000 0.001727 0.037938 0.000066 0.000061 0.000014 0.000001 

23 0.954109 0.000000 0.001717 0.044020 0.000077 0.000059 0.000016 0.000002 

24 0.947160 0.000000 0.001706 0.050967 0.000090 0.000057 0.000018 0.000002 

25 0.939231 0.000000 0.001694 0.058894 0.000105 0.000054 0.000020 0.000002 

26 0.930194 0.000000 0.001680 0.067928 0.000121 0.000052 0.000022 0.000002 

27 0.919907 0.000000 0.001663 0.078213 0.000140 0.000049 0.000024 0.000002 

28 0.908214 0.000000 0.001644 0.089904 0.000162 0.000047 0.000027 0.000003 

29 0.894945 0.000000 0.001622 0.103171 0.000186 0.000044 0.000029 0.000003 

30 0.879916 0.000000 0.001597 0.118197 0.000214 0.000041 0.000032 0.000003 

31 0.863161 0.000000 0.001569 0.134949 0.000245 0.000038 0.000035 0.000004 

32 0.845859 0.000000 0.001539 0.152248 0.000277 0.000035 0.000037 0.000004 

33 0.828217 0.000000 0.001509 0.169888 0.000310 0.000033 0.000039 0.000004 

34 0.810241 0.000000 0.001478 0.187861 0.000343 0.000031 0.000041 0.000004 

35 0.791943 0.000000 0.001446 0.206158 0.000377 0.000029 0.000043 0.000004 

36 0.773331 0.000000 0.001413 0.224768 0.000412 0.000027 0.000045 0.000005 

37 0.754420 0.000000 0.001380 0.243678 0.000447 0.000025 0.000047 0.000005 

38 0.735222 0.000000 0.001345 0.262874 0.000483 0.000023 0.000048 0.000005 

39 0.715754 0.000000 0.001311 0.282340 0.000519 0.000022 0.000050 0.000005 

40 0.696032 0.000000 0.001276 0.302061 0.000555 0.000020 0.000051 0.000005 

41 0.676075 0.000000 0.001240 0.322016 0.000593 0.000019 0.000052 0.000005 

42 0.655904 0.000000 0.001203 0.342186 0.000630 0.000018 0.000053 0.000005 

43 0.635541 0.000000 0.001167 0.362548 0.000668 0.000016 0.000054 0.000006 

44 0.615009 0.000000 0.001130 0.383079 0.000706 0.000015 0.000055 0.000006 

45 0.594335 0.000000 0.001092 0.403752 0.000745 0.000014 0.000056 0.000006 

46 0.573545 0.000000 0.001054 0.424541 0.000783 0.000013 0.000057 0.000006 
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UK-born males, proportion of individuals in each infection state in 1981 

Age class Recent Latent Primary Reactivation Rein/ection 
Unin/ected Immune Rein/ection 

(years) In/ection In/ection Disease Disease Disease 

47 0.552668 0.000000 0.001016 0.445417 0.000822 0.000012 0.000058 0.000006 

48 0.531734 0.000000 0.000978 0.466350 0.000861 0.000012 0.000059 0.000006 

49 0.510771 0.000000 0.000940 0.487307 0.000900 0.000011 0.000059 0.000006 

50 0.489828 0.000000 0.000902 0.508254 0.000939 0.000010 0.000060 0.000006 

51 0.468924 0.000000 0.000864 0.529158 0.000978 0.000009 0.000061 0.000006 

52 0.448100 0.000000 0.000826 0.549981 0.001017 0.000009 0.000061 0.000006 

53 0.427393 0.000000 0.000788 0.570688 0.001056 0.000008 0.000062 0.000006 

54 0.406842 0.000000 0.000750 0.591238 0.001094 0.000007 0.000062 0.000006 

55 0.386485 0.000000 0.000713 0.611595 0.001132 0.000007 0.000063 0.000006 

56 0.366362 0.000000 0.000676 0.631717 0.001169 0.000006 0.000063 0.000007 

57 0.346513 0.000000 0.000639 0.651565 0.001206 0.000006 0.000064 0.000007 

58 0.326978 0.000000 0.000603 0.671100 0.001243 0.000005 0.000064 0.000007 

59 0.307196 0.000000 0.000568 0.690281 0.001279 0.000005 0.000065 0.000007 

60 0.289007 0.000000 0.000533 0.709070 0.001314 0.000005 0.000065 0.000007 

61 0.270649 0.000000 0.000500 0.727427 0.001348 0.000004 0.000065 0.000007 

62 0.252760 0.000000 0.000467 0.745316 0.001381 0.000004 0.000066 0.000007 

63 0.235375 0.000000 0.000435 0.762700 0.001414 0.000003 0.000066 0.000007 

64 0.218529 0.000000 0.000404 0.719546 0.001445 0.000003 0.000066 0.000007 

65 0.202255 0.000000 0.000374 0.795820 0.001475 0.000003 0.000066 0.000007 

66 0.186582 0.000000 0.000345 0.811493 0.001505 0.000003 0.000067 0.000007 

67 0.171536 0.000000 0.000317 0.826538 0.001533 0.000002 0.000067 0.000007 

68 0.157143 0.000000 0.000290 0.840931 0.001559 0.000002 0.000067 0.000007 

69 0.143422 0.000000 0.000265 0.854651 0.001585 0.000002 0.000067 0.000007 

70 0.130392 0.000000 0.000241 0.867682 0.001609 0.000002 0.000068 0.000007 

71 0.118065 0.000000 0.000218 0.880008 0.001632 0.000002 0.000068 0.000007 
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UK-born males, proportion of individuals in each infection state in 1981 

Age class Recent Latent Primary Reactivation Reinfection 
Uninfected Immune Reinfection 

(years) Infection Infection Disease Disease Disease 

72 0.106450 0.000000 0.000197 0.891623 0.001654 0.000001 0.000068 0.000007 

73 0.095554 0.000000 0.000177 0.902519 0.001674 0.000001 0.000068 0.000007 

74 0.085376 0.000000 0.000158 0.912697 0.001693 0.000001 0.000068 0.000007 

75 0.075913 0.000000 0.000140 0.922159 0.001711 0.000001 0.000068 0.000007 

76 0.067158 0.000000 0.000124 0.930914 0.001727 0.000001 0.000068 0.000007 

77 0.059098 0.000000 0.000109 0.938974 0.001742 0.000001 0.000068 0.000007 

78 0.051718 0.000000 0.000096 0.946354 0.001756 0.000001 0.000069 0.000007 

79 0.045014 0.000000 0.000083 0.953058 0.001769 0.000001 0.000069 0.000007 

80 0.039045 0.000000 0.000072 0.959027 0.001780 0.000000 0.000069 0.000007 

81 0.033761 0.000000 0.000062 0.964311 0.001790 0.000000 0.000069 0.000007 

82 0.029099 0.000000 0.000054 0.968972 0.001798 0.000000 0.000069 0.000007 

83 0.024999 0.000000 0.000046 0.973072 0.001806 0.000000 0.000069 0.000007 

84 0.021405 0.000000 0.000040 0.976666 0.001813 0.000000 0.000069 0.000007 

85 0.018265 0.000000 0.000034 0.979807 0.001818 0.000000 0.000069 0.000007 

86 0.015531 0.000000 0.000029 0.982541 0.001824 0.000000 0.000069 0.000007 

87 0.013159 0.000000 0.000024 0.984913 0.001828 0.000000 0.000069 0.000007 

88 0.011108 0.000000 0.000021 0.986964 0.001832 0.000000 0.000069 0.000007 

89 0.009341 0.000000 0.000017 0.988730 0.001835 0.000000 0.000069 0.000007 

90 0.007825 0.000000 0.000014 0.990246 0.001838 0.000000 0.000069 0.000007 

91 0.006529 0.000000 0.000012 0.991542 0.001840 0.000000 0.000069 0.000007 

92 0.005426 0.000000 0.000010 0.992645 0.001842 0.000000 0.000069 0.000007 

93 0.004490 0.000000 0.000008 0.993581 0.001844 0.000000 0.000069 0.000007 

94 0.003700 0.000000 0.000007 0.994371 0.001846 0.000000 0.000069 0.000007 

95 0.003036 0.000000 0.000006 0.995035 0.001847 0.000000 0.000069 0.000007 

96 0.002480 0.000000 0.000005 0.995591 0.001848 0.000000 0.000069 0.000007 
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UK-born males, proportion of individuals in each infection state in 1981 

Age class Recent Latent Primary Reactivation Reinfection 
Uninfected Immune Reinfection 

(years) Infection Infection Disease Disease Disease 

97 0.002016 0.000000 0.000004 0.996055 0.001849 0.000000 0.000069 0.000007 

98 0.001632 0.000000 0.000003 0.996440 0.001849 0.000000 0.000069 0.000007 

99 0.001314 0.000000 0.000002 0.996757 0.001850 0.000000 0.000069 0.000007 

100 0.001054 0.000000 0.000002 0.997018 0.001851 0.000000 0.000069 0.000007 

101 0.000844 0.000000 0.000002 0.997227 0.001851 0.000000 0.000069 0.000007 

102 0.000677 0.000000 0.000001 0.997395 0.001851 0.000000 0.000069 0.000007 

103 0.000542 0.000000 0.000001 0.997529 0.001851 0.000000 0.000069 0.000007 

104 0.000434 0.000000 0.000001 0.997637 0.001852 0.000000 0.000069 0.000007 

105 0.000348 0.000000 0.000001 0.997723 0.001852 0.000000 0.000069 0.000007 

106 0.000279 0.000000 0.000001 0.997792 0.001852 0.000000 0.000069 0.000007 

107 0.000224 0.000000 0.000000 0.997848 0.001852 0.000000 0.000069 0.000007 

108 0.000179 0.000000 0.000000 0.997892 0.001852 0.000000 0.000069 0.000007 

109 0.000144 0.000000 0.000000 0.997928 0.001852 0.000000 0.000069 0.000007 

110 0.000115 0.000000 0.000000 0.997956 0.001852 0.000000 0.000069 0.000007 

111 0.000092 0.000000 0.000000 0.997979 0.001852 0.000000 0.000069 0.000007 

112 0.000074 0.000000 0.000000 0.997997 0.001852 0.000000 0.000069 0.000007 

113 0.000059 0.000000 0.000000 0.998012 0.001852 0.000000 0.000069 0.000007 

114 0.000047 0.000000 0.000000 0.998024 0.001852 0.000000 0.000069 0.000007 

115 0.000038 0.000000 0.000000 0.998033 0.001852 0.000000 0.000069 0.000007 

116 0.000030 0.000000 0.000000 0.998041 0.001852 0.000000 0.000069 0.000007 

117 0.000024 0.000000 0.000000 0.998047 0.001852 0.000000 0.000069 0.000007 

118 0.000020 0.000000 0.000000 0.998052 0.001852 0.000000 0.000069 0.000007 

119 0.000016 0.000000 0.000000 0.998056 0.001852 0.000000 0.000069 0.000007 

120 0.000013 0.000000 0.000000 0.998059 0.001852 0.000000 0.000069 0.000007 
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Table 10-12: Proportion by infection state for UK-born females in 1981. 

UK-born females, proportion of individuals in each infection state in 1981 

Age class Recent Latent Primary Reactivation Reinfection 
Un infected Immune Reinfection 

(years) Infection Infection Disease Disease Disease 

0 0.999867 0.000000 0.000063 0.000000 0.000000 0.000070 0.000000 0.000000 

1 0.999571 0.000000 0.000353 0.000000 0.000000 0.000076 0.000000 0.000000 

2 0.999231 0.000000 0.000693 0.000000 0.000000 0.000076 0.000000 0.000000 

3 0.998840 0.000000 0.001084 0.000000 0.000000 0.000076 0.000000 0.000000 

4 0.998391 0.000000 0.001533 0.000000 0.000000 0.000076 0.000000 0.000000 

5 0.997875 0.000000 0.001781 0.000267 0.000000 0.000076 0.000000 0.000000 

6 0.997282 0.000000 0.001780 0.000861 0.000000 0.000076 0.000000 0.000000 

7 0.996602 0.000000 0.001779 0.001542 0.000001 0.000076 0.000000 0.000000 

8 0.995820 0.000000 0.001778 0.002325 0.000001 0.000076 0.000000 0.000000 

9 0.994922 0.000000 0.001776 0.003223 0.000003 0.000076 0.000000 0.000000 

10 0.993890 0.000000 0.001774 0.004255 0.000005 0.000076 0.000000 0.000000 

11 0.992706 0.000000 0.001772 0.005439 0.000007 0.000076 0.000000 0.000000 

12 0.991347 0.000000 0.001770 0.006798 0.000010 0.000076 0.000000 0.000000 

13 0.989786 0.000000 0.001767 0.008358 0.000012 0.000076 0.000001 0.000000 

14 0.987995 0.000000 0.001764 0.010149 0.000016 0.000076 0.000001 0.000000 

15 0.985940 0.000000 0.001760 0.012204 0.000020 0.000075 0.000001 0.000000 

16 0.983583 0.000000 0.001756 0.014561 0.000024 0.000075 0.000001 0.000000 

17 0.980881 0.000000 0.001751 0.017263 0.000029 0.000075 0.000001 0.000000 

18 0.977783 0.000000 0.001745 0.020361 0.000035 0.000075 0.000001 0.000000 

19 0.974233 0.000000 0.001739 0.023910 0.000042 0.000075 0.000002 0.000000 

20 0.970168 0.000000 0.001732 0.027975 0.000049 0.000074 0.000002 0.000000 

21 0.965515 0.000000 0.001723 0.032627 0.000058 0.000074 0.000002 0.000000 

22 0.960193 0.000000 0.001714 0.037949 0.000068 0.000074 0.000003 0.000000 

23 0.954109 0.000000 0.001703 0.044033 0.000079 0.000073 0.000003 0.000000 
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UK-born females, proportion of individuals in each infection state in 1981 

Age class Recent Latent Primary Reactivation Reinfection 
Uninfected Immune Reinfection 

(years) Infection Infection Disease Disease Disease 

24 0.947160 0.000000 0.001691 0.050981 0.000092 0.000073 0.000004 0.000000 

25 0.939231 0.000000 0.001676 0.058909 0.000107 0.000072 0.000004 0.000000 

26 0.930194 0.000000 0.001660 0.067945 0.000124 0.000071 0.000005 0.000000 

27 0.919907 0.000000 0.001642 0.078232 0.000143 0.000071 0.000006 0.000000 

28 0.908214 0.000000 0.001621 0.089924 0.000165 0.000070 0.000006 0.000000 

29 0.894945 0.000000 0.001597 0.103193 0.000189 0.000069 0.000007 0.000000 

30 0.879916 0.000000 0.001570 0.118220 0.000218 0.000068 0.000009 0.000000 

31 0.863161 0.000000 0.001540 0.134974 0.000249 0.000067 0.000010 0.000000 

32 0.845859 0.000000 0.001509 0.152274 0.000281 0.000065 0.000011 0.000000 

33 0.828217 0.000000 0.001478 0.169915 0.000314 0.000064 0.000012 0.000000 

34 0.810241 0.000000 0.001446 0.187889 0.000348 0.000063 0.000014 0.000000 

35 0.791943 0.000000 0.001413 0.206187 0.000382 0.000061 0.000015 0.000000 

36 0.773331 0.000000 0.001380 0.224797 0.000416 0.000060 0.000016 0.000000 

37 0.754420 0.000000 0.001346 0.243707 0.000452 0.000059 0.000018 0.000000 

38 0.735222 0.000000 0.001311 0.262903 0.000488 0.000057 0.000019 0.000000 

39 0.715754 0.000000 0.001277 0.282370 0.000524 0.000056 0.000021 0.000000 

40 0.696032 0.000000 0.001241 0.302090 0.000561 0.000054 0.000022 0.000000 

41 0.676075 0.000000 0.001206 0.322045 0.000598 0.000053 0.000023 0.000000 

42 0.655904 0.000000 0.001170 0.342214 0.000636 0.000051 0.000025 0.000000 

43 0.635541 0.000000 0.001133 0.362576 0.000674 0.000050 0.000027 0.000000 

44 0.615009 0.000000 0.001097 0.383106 0.000712 0.000048 0.000028 0.000000 

45 0.594335 0.000000 0.001060 0.403779 0.000750 0.000047 0.000030 0.000000 

46 0.573545 0.000000 0.001023 0.424567 0.000789 0.000045 0.000031 0.000000 

47 0.552668 0.000000 0.000985 0.445442 0.000828 0.000043 0.000033 0.000000 

48 0.531734 0.000000 0.000948 0.466374 0.000867 0.000042 0.000034 0.000000 
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UK-born females, proportion of individuals in each infection state in 1981 

Age class Recent Latent Primary Reactivation Reinfection 
Un infected Immune Reinfection 

(years) Infection Infection Disease Disease Disease 

49 0.510777 0.000000 0.000911 0.487330 0.000906 0.000040 0.000036 0.000000 

50 0.489828 0.000000 0.000873 0.508277 0.000945 0.000039 0.000038 0.000000 

51 0.468924 0.000000 0.000836 0.529180 0.000984 0.000037 0.000039 0.000000 

52 0.448100 0.000000 0.000799 0.550002 0.001023 0.000035 0.000041 0.000000 

53 0.427393 0.000000 0.000762 0.570707 0.001062 0.000034 0.000042 0.000000 

54 0.406842 0.000000 0.000725 0.591257 0.001100 0.000032 0.000044 0.000000 

55 0.386485 0.000000 0.000689 0.611612 0.001138 0.000031 0.000045 0.000000 

56 0.366362 0.000000 0.000653 0.631733 0.001176 0.000029 0.000047 0.000000 

57 0.346513 0.000000 0.000617 0.651581 0.001213 0.000028 0.000049 0.000000 

58 0.326978 0.000000 0.000583 0.671114 0.001249 0.000026 0.000050 0.000000 

59 0.307796 0.000000 0.000548 0.690294 0.001285 0.000025 0.000052 0.000000 

60 0.289007 0.000000 0.000515 0.709082 0.001320 0.000023 0.000053 0.000000 

61 0.270649 0.000000 0.000482 0.727438 0.001354 0.000022 0.000054 0.000000 

62 0.252760 0.000000 0.000450 0.745326 0.001388 0.000020 0.000056 0.000000 

63 0.235375 0.000000 0.000419 0.762709 0.001420 0.000019 0.000057 0.000000 

64 0.218529 0.000000 0.000389 0.779553 0.001452 0.000018 0.000059 0.000000 

65 0.202255 0.000000 0.000360 0.795826 0.001482 0.000016 0.000060 0.000000 

66 0.186582 0.000000 0.000332 0.811499 0.001511 0.000015 0.000061 0.000000 

67 0.171536 0.000000 0.000305 0.826543 0.001539 0.000014 0.000062 0.000000 

68 0.157143 0.000000 0.000280 0.840935 0.001566 0.000013 0.000063 0.000000 

69 0.143422 0.000000 0.000255 0.854654 0.001592 0.000012 0.000065 0.000000 

70 0.130392 0.000000 0.000232 0.867683 0.001616 0.000011 0.000066 0.000000 

71 0.118065 0.000000 0.000210 0.880010 0.001639 0.000010 0.000067 0.000000 

72 0.106450 0.000000 0.000190 0.891623 0.001661 0.000009 0.000068 0.000000 

73 0.095554 0.000000 0.000170 0.902519 0.001681 0.000008 0.000068 0.000000 
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UK-born females, proportion of individuals in each infection state in 1981 

Age class Recent Latent Primary Reactivation Reinfection 
Uninfected Immune Reinfection 

(years) Infection Infection Disease Disease Disease 

74 0.085376 0.000000 0.000152 0.912696 0.001700 0.000007 0.000069 0.000000 

75 0.075913 0.000000 0.000135 0.922158 0.001718 0.000006 0.000070 0.000000 

76 0.067158 0.000000 0.000120 0.930912 0.001734 0.000005 0.000071 0.000000 

77 0.059098 0.000000 0.000105 0.938971 0.001749 0.000005 0.000071 0.000000 

78 0.051718 0.000000 0.000092 0.946350 0.001763 0.000004 0.000072 0.000000 

79 0.045014 0.000000 0.000080 0.953054 0.001776 0.000004 0.000073 0.000000 

80 0.039045 0.000000 0.000070 0.959023 0.001787 0.000003 0.000073 0.000000 

81 0.033761 0.000000 0.000060 0.964306 0.001797 0.000003 0.000073 0.000000 

82 0.029099 0.000000 0.000052 0.968967 0.001805 0.000002 0.000074 0.000000 

83 0.024999 0.000000 0.000044 0.973067 0.001813 0.000002 0.000074 0.000000 

84 0.021405 0.000000 0.000038 0.976661 0.001820 0.000002 0.000074 0.000000 

85 0.018265 0.000000 0.000033 0.979801 0.001825 0.000001 0.000075 0.000000 

86 0.015531 0.000000 0.000028 0.982535 0.001831 0.000001 0.000075 0.000000 

87 0.013159 0.000000 0.000023 0.984907 0.001835 0.000001 0.000075 0.000000 

88 0.011108 0.000000 0.000020 0.986958 0.001839 0.000001 0.000075 0.000000 

89 0.009341 0.000000 0.000017 0.988724 0.001842 0.000001 0.000075 0.000000 

90 0.007825 0.000000 0.000014 0.990240 0.001845 0.000001 0.000076 0.000000 

91 0.006529 0.000000 0.000012 0.991536 0.001847 0.000001 0.000076 0.000000 

92 0.005426 0.000000 0.000010 0.992639 0.001849 0.000000 0.000076 0.000000 

93 0.004490 0.000000 0.000008 0.993574 0.001851 0.000000 0.000076 0.000000 

94 0.003700 0.000000 0.000007 0.994364 0.001853 0.000000 0.000076 0.000000 

95 0.003036 0.000000 0.000005 0.995028 0.001854 0.000000 0.000076 0.000000 

96 0.002480 0.000000 0.000004 0.995585 0.001855 0.000000 0.000076 0.000000 

97 0.002016 0.000000 0.000004 0.996048 0.001856 0.000000 0.000076 0.000000 

98 0.001632 0.000000 0.000003 0.996433 0.001856 0.000000 0.000076 0.000000 
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UK-born females, proportion of individuals in each infection state in 1981 

Age class Recent Latent Primary Reactivation Reinfection 
Uninfected Immune Reinfection 

(years) Infection Infection Disease Disease Disease 

99 0.001314 0.000000 0.000002 0.996750 0.001857 0.000000 0.000076 0.000000 

100 0.001054 0.000000 0.000002 0.997011 0.001858 0.000000 0.000076 0.000000 

101 0.000844 0.000000 0.000002 0.997220 0.001858 0.000000 0.000076 0.000000 

102 0.000677 0.000000 0.000001 0.997388 0.001858 0.000000 0.000076 0.000000 

103 0.000542 0.000000 0.000001 0.997522 0.001859 0.000000 0.000076 0.000000 

104 0.000434 0.000000 0.000001 0.997630 0.001859 0.000000 0.000076 0.000000 

105 0.000348 0.000000 0.000001 0.997716 0.001859 0.000000 0.000076 0.000000 

106 0.000279 0.000000 0.000000 0.997785 0.001859 0.000000 0.000076 0.000000 

107 0.000224 0.000000 0.000000 0.997841 0.001859 0.000000 0.000076 0.000000 

108 0.000179 0.000000 0.000000 0.997885 0.001859 0.000000 0.000076 0.000000 

109 0.000144 0.000000 0.000000 0.997921 0.001859 0.000000 0.000076 0.000000 

110 0.000115 0.000000 0.000000 0.997949 0.001859 0.000000 0.000076 0.000000 

111 0.000092 0.000000 0.000000 0.997972 0.001859 0.000000 0.000076 0.000000 

112 0.000074 0.000000 0.000000 0.997990 0.001859 0.000000 0.000076 0.000000 

113 0.000059 0.000000 0.000000 0.998005 0.001859 0.000000 0.000076 0.000000 

114 0.000047 0.000000 0.000000 0.998017 0.001859 0.000000 0.000076 0.000000 

115 0.000038 0.000000 0.000000 0.998026 0.001859 0.000000 0.000076 0.000000 

116 0.000030 0.000000 0.000000 0.998034 0.001859 0.000000 0.000076 0.000000 

117 0.000024 0.000000 0.000000 0.998040 0.001859 0.000000 0.000076 0.000000 

118 0.000020 0.000000 0.000000 0.998045 0.001859 0.000000 0.000076 0.000000 

119 0.000016 0.000000 0.000000 0.998049 0.001859 0.000000 0.000076 0.000000 

120 0.000013 0.000000 0.000000 0.998052 0.001860 0.000000 0.000076 0.000000 
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Table 10-13: Proportion by infection state for foreign-born males in 1981. 

Foreign-born males, proportion of individuals by infection state in 1981 

Age class Reactivation Reinfection 
Uninfected Immune Recent Infection Latent Infection Reinfection Primary Disease 

(years) Disease Disease 

0 0.99582 0.00000 0.00351 0.00000 0.00000 0.00066 0.00000 0.00000 

1 0.98751 0.00000 0.01183 0.00000 0.00000 0.00066 0.00000 0.00000 

2 0.97926 0.00000 0.02008 0.00000 0.00000 0.00066 0.00000 0.00000 

3 0.97108 0.00000 0.02826 0.00000 0.00000 0.00066 0.00000 0.00000 

4 0.96297 0.00000 0.03637 0.00000 0.00000 0.00066 0.00000 0.00000 

5 0.95493 0.00000 0.04023 0.00414 0.00003 0.00066 0.00000 0.00000 

6 0.94695 0.00000 0.03989 0.01235 0.00014 0.00066 0.00000 0.00000 

7 0.93904 0.00000 0.03956 0.02043 0.00030 0.00065 0.00000 0.00001 

8 0.93120 0.00000 0.03923 0.02836 0.00054 0.00065 0.00000 0.00002 

9 0.92342 0.00000 0.03891 0.03617 0.00084 0.00064 0.00000 0.00002 

10 0.91571 0.00000 0.03859 0.04387 0.00117 0.00063 0.00000 0.00003 

11 0.90806 0.00000 0.03826 0.05150 0.00151 0.00062 0.00000 0.00004 

12 0.90048 0.00000 0.03794 0.05907 0.00184 0.00061 0.00000 0.00005 

13 0.89296 0.00000 0.03762 0.06658 0.00217 0.00060 0.00000 0.00006 

14 0.88550 0.00000 0.03731 0.07402 0.00250 0.00060 0.00000 0.00007 

15 0.87811 0.00000 0.03699 0.08141 0.00283 0.00059 0.00000 0.00008 

16 0.87071 0.00000 0.03668 0.08873 0.00315 0.00058 0.00000 0.00008 

17 0.86350 0.00000 0.03637 0.09599 0.00348 0.00057 0.00000 0.00009 

18 0.85629 0.00000 0.03607 0.10319 0.00379 0.00056 0.00000 0.00010 

19 0.84914 0.00000 0.03576 0.11033 0.00411 0.00056 0.00000 0.00011 

20 0.84204 0.00000 0.03546 0.11741 0.00442 0.00055 0.00000 0.00012 

21 0.83501 0.00000 0.03517 0.12443 0.00473 0.00066 0.00000 0.00000 

22 0.82804 0.00000 0.03487 0.13139 0.00504 0.00066 0.00000 0.00000 

23 0.82112 0.00000 0.03458 0.13829 0.00534 0.00066 0.00000 0.00000 
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Foreign-born males, proportion of individuals by infection state in 1981 

Age class Reactivation Reinfection 
Uninfected Immune Recent Infection Latent Infection Reinfection Primary Disease 

(years) Disease Disease 

24 0.81426 0.00000 0.03429 0.14514 0.00564 0.00066 0.00000 0.00000 

25 0.80746 0.00000 0.03400 0.15193 0.00594 0.00066 0.00001 0.00000 

26 0.80022 0.00000 0.03370 0.15916 0.00626 0.00066 0.00001 0.00000 

27 0.79197 0.00000 0.03335 0.16740 0.00662 0.00066 0.00001 0.00000 

28 0.78258 0.00000 0.03295 0.17678 0.00703 0.00066 0.00001 0.00000 

29 0.77191 0.00000 0.03250 0.18742 0.00750 0.00066 0.00001 0.00000 

30 0.75983 0.00000 0.03199 0.19949 0.00803 0.00066 0.00001 0.00000 

31 0.74615 0.00000 0.03142 0.21314 0.00863 0.00066 0.00001 0.00000 

32 0.73149 0.00000 0.03080 0.22778 0.00927 0.00066 0.00001 0.00000 

33 0.71654 0.00000 0.03017 0.24271 0.00992 0.00065 0.00001 0.00000 

34 0.70129 0.00000 0.02953 0.25793 0.01059 0.00065 0.00001 0.00000 

35 0.68577 0.00000 0.02887 0.27342 0.01127 0.00065 0.00001 0.00000 

36 0.66997 0.00000 0.02820 0.28920 0.01197 0.00065 0.00001 0.00000 

37 0.65391 0.00000 0.02753 0.30523 0.01267 0.00065 0.00001 0.00000 

38 0.63760 0.00000 0.02684 0.32151 0.01338 0.00065 0.00001 0.00000 

39 0.62105 0.00000 0.02614 0.33803 0.01411 0.00065 0.00001 0.00000 

40 0.60428 0.00000 0.02544 0.35478 0.01484 0.00065 0.00002 0.00000 

41 0.58730 0.00000 0.02472 0.37173 0.01559 0.00065 0.00002 0.00000 

42 0.57012 0.00000 0.02400 0.38888 0.01634 0.00065 0.00002 0.00000 

43 0.55277 0.00000 0.02326 0.40620 0.01710 0.00064 0.00002 0.00000 

44 0.53527 0.00000 0.02253 0.42367 0.01787 0.00064 0.00002 0.00000 

45 0.51763 0.00000 0.02178 0.44128 0.01864 0.00064 0.00002 0.00000 

46 0.49989 0.00000 0.02104 0.45900 0.01942 0.00064 0.00002 0.00000 

47 0.48205 0.00000 0.02028 0.47680 0.02020 0.00064 0.00003 0.00000 

48 0.46416 0.00000 0.01953 0.49467 0.02098 0.00064 0.00003 0.00000 
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Foreign-born males, proportion of individuals by infection state in 1981 

Age class Reactivation Reinfection 
Uninfected Immune Recent Infection Latent Infection Reinfection Primary Disease 

(years) Disease Disease 

49 0.44623 0.00000 0,01877 0.51257 0.02177 0.00063 0.00003 0.00000 

50 0.42829 0.00000 0.01802 0.53048 0.02255 0.00063 0.00003 0.00000 

51 0.41037 0.00000 0.01726 0.54836 0.02334 0.00063 0.00003 0.00000 

52 0.39251 0.00000 0.01651 0.56619 0.02412 0.00063 0.00004 0.00000 

53 0.37474 0.00000 0.01576 0.58394 0.02490 0.00062 0.00004 0.00000 

54 0.35708 0.00000 0.01502 0.60157 0.02567 0.00062 0.00004 0.00000 

55 0.33957 0.00000 0.01428 0.61905 0.02644 0.00062 0.00005 0.00000 

56 0.32224 0.00000 0.01355 0.63635 0.02719 0.00061 0.00005 0.00000 

57 0.30513 0.00000 0.01283 0.65343 0.02794 0.00061 0.00005 0.00000 

58 0.28827 0.00000 0.01212 0.67026 0.02868 0.00061 0.00006 0.00000 

59 0.27170 0.00000 0.01143 0.68681 0.02941 0.00060 0.00006 0.00000 

60 0.25544 0.00000 0.01074 0.70303 0.03012 0.00060 0.00007 0.00000 

61 0.23954 0.00000 0.01007 0.71891 0.03081 0.00059 0.00007 0.00000 

62 0.22402 0.00000 0.00942 0.73440 0.03149 0.00058 0.00008 0.00000 

63 0.20893 0.00000 0.00878 0.74947 0.03215 0.00058 0.00008 0.00000 

64 0.19427 0.00000 0.00817 0.76410 0.03279 0.00057 0.00009 0.00000 

65 0.18009 0.00000 0.00757 0.77826 0.03341 0.00056 0.00010 0.00000 

66 0.16642 0.00000 0.00700 0.79191 0.03401 0.00055 0.00011 0.00000 

67 0.15327 0.00000 0.00644 0.80504 0.03459 0.00055 0.00012 0.00000 

68 0.14067 0.00000 0.00591 0.81762 0.03514 0.00054 0.00013 0.00000 

69 0.12863 0.00000 0.00541 0.82963 0.03567 0.00052 0.00014 0.00000 

70 0.11718 0.00000 0.00493 0.84106 0.03617 0.00051 0.00015 0.00000 

71 0.10633 0.00000 0.00447 0.85190 0.03664 0.00050 0.00016 0.00000 

72 0.09608 0.00000 0.00404 0.86213 0.03709 0.00048 0.00018 0.00000 

73 0.08644 0.00000 0.00363 0.87175 0.03751 0.00047 0.00019 0.00000 
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Foreign-born males, proportion of individuals by infection state in 1981 

Age class Reactivation Reinfection 
Uninfected Immune Recent Infection Latent Infection Reinfection Primary Disease 

(years) Disease Disease 

74 0.07742 0.00000 0.00325 0.88076 0.03791 0.00045 0.00021 0.00000 

75 0.06901 0.00000 0.00290 0.88915 0.03827 0.00043 0.00023 0.00000 

76 0.06121 0.00000 0.00257 0.89693 0.03861 0.00041 0.00025 0.00000 

77 0.05402 0.00000 0.00227 0.90412 0.03893 0.00039 0.00027 0.00000 

78 0.04741 0.00000 0.00199 0.91072 0.03922 0.00037 0.00029 0.00001 

79 0.04137 0.00000 0.00174 0.91674 0.03948 0.00035 0.00031 0.00001 

80 0.03594 0.00000 0.00151 0.92216 0.03972 0.00032 0.00034 0.00001 

81 0.03113 0.00000 0.00131 0.92697 0.03993 0.00030 0.00036 0.00001 

82 0.02688 0.00000 0.00113 0.93121 0.04012 0.00027 0.00038 0.00001 

83 0.02313 0.00000 0.00097 0.93496 0.04028 0.00025 0.00041 0.00001 

84 0.01984 0.00000 0.00083 0.93824 0.04042 0.00022 0.00043 0.00001 

85 0.01696 0.00000 0.00071 0.94112 0.04055 0.00020 0.00045 0.00001 

86 0.01445 0.00000 0.00061 0.94362 0.04066 0.00018 0.00048 0.00001 

87 0.01226 0.00000 0.00052 0.94580 0.04075 0.00016 0.00050 0.00001 

88 0.01037 0.00000 0.00044 0.94769 0.04084 0.00014 0.00052 0.00001 

89 0.00874 0.00000 0.00037 0.94932 0.04091 0.00012 0.00053 0.00001 

90 0.00734 0.00000 0.00031 0.95072 0.04097 0.00010 0.00055 0.00001 

91 0.00613 0.00000 0.00026 0.95192 0.04102 0.00009 0.00056 0.00001 

92 0.00511 0.00000 0.00021 0.95295 0.04107 0.00008 0.00058 0.00001 

93 0.00424 0.00000 0.00018 0.95382 0.04111 0.00006 0.00059 0.00001 

94 0.00350 0.00000 0.00015 0.95455 0.04114 0.00005 0.00060 0.00001 

95 0.00288 0.00000 0.00012 0.95517 0.04116 0.00005 0.00061 0.00001 

96 0.00236 0.00000 0.00010 0.95569 0.04119 0.00004 0.00062 0.00001 

97 0.00192 0.00000 0.00008 0.95613 0.04121 0.00003 0.00062 0.00001 

98 0.00156 0.00000 0.00007 0.95649 0.04122 0.00003 0.00063 0.00001 
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Foreign-born males, proportion of individuals by infection state in 1981 

Agee/ass Reactivation Reinfection 
Unin!ected Immune Recent Infection Latent Infection Reinfection Primary Disease 

(years) Disease Disease 

99 0.00126 0.00000 0.00005 0.95679 0.04124 0.00002 0.00063 0.00001 

100 0.00101 0.00000 0.00004 0.95704 0.04125 0.00002 0.00064 0.00001 

101 0.00081 0.00000 0.00003 0.95724 0.04126 0.00001 0.00064 0.00001 

102 0.00065 0.00000 0.00003 0.95740 0.04126 0.00001 0.00064 0.00001 

103 0.00052 0.00000 0.00002 0.95753 0.04127 0.00001 0.00064 0.00001 

104 0.00042 0.00000 0.00002 0.95763 0.04127 0.00001 0.00064 0.00001 

105 0.00033 0.00000 0.00001 0.95771 0.04128 0.00001 0.00065 0.00001 

106 0.00027 0.00000 0.00001 0.95778 0.04128 0.00000 0.00065 0.00001 

107 0.00021 0.00000 0.00001 0.95783 0.04128 0.00000 0.00065 0.00001 

108 0.00017 0.00000 0.00001 0.95787 0.04128 0.00000 0.00065 0.00001 

109 0.00014 0.00000 0.00001 0.95791 0.04128 0.00000 0.00065 0.00001 

110 0.00011 0.00000 0.00000 0.95794 0.04129 0.00000 0.00065 0.00001 

111 0.00009 0.00000 0.00000 0.95796 0.04129 0.00000 0.00065 0.00001 

112 0.00007 0.00000 0.00000 0.95798 0.04129 0.00000 0.00065 0.00001 

113 0.00006 0.00000 0.00000 0.95799 0.04129 0.00000 0.00065 0.00001 

114 0.00005 0.00000 0.00000 0.95800 0.04129 0.00000 0.00065 0.00001 

115 0.00004 0.00000 0.00000 0.95801 0.04129 0.00000 0.00065 0.00001 

116 0.00003 0.00000 0.00000 0.95802 0.04129 0.00000 0.00065 0.00001 

117 0.00002 0.00000 0.00000 0.95802 0.04129 0.00000 0.00065 0.00001 

118 0.00002 0.00000 0.00000 0.95803 0.04129 0.00000 0.00065 0.00001 

119 0.00002 0.00000 0.00000 0.95803 0.04129 0.00000 0.00065 0.00001 

120 0.00001 0.00000 0.00000 0.95803 0.04129 0.00000 0.00065 0.00001 
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Table 10-14: Proportion by infection state for foreign-born females in 1981. 

Foreign-born females, proportion by infection state in 1981 

Age category Recent Latent Primary Reactivation Reinfection 
Uninfected Immune Reinfection 

(years) Infection Infection Disease Disease Disease 

0 0.99582 0.00000 0.00351 0.00000 0.00000 0.00066 0.00000 0.00000 

1 0.98751 0.00000 0.01183 0.00000 0.00000 0.00066 0.00000 0.00000 

2 0.97926 0.00000 0.02008 0.00000 0.00000 0.00066 0.00000 0.00000 

3 0.97108 0.00000 0.02826 0.00000 0.00000 0.00066 0.00000 0.00000 

4 0.96297 0.00000 0.03637 0.00000 0.00000 0.00066 0.00000 0.00000 

5 0.95493 0.00000 0.04023 0.00414 0.00003 0.00066 0.00000 0.00000 

6 0.94695 0.00000 0.03989 0.01235 0.00014 0.00066 0.00000 0.00000 

7 0.93904 0.00000 0.03956 0.02043 0.00030 0.00065 0.00000 0.00001 

8 0.93120 0.00000 0.03923 0.02836 0.00054 0.00065 0.00000 0.00002 

9 0.92342 0.00000 0.03891 0.03617 0.00084 0.00064 0.00000 0.00002 

10 0.91571 0.00000 0.03859 0.04387 0.00117 0.00063 0.00000 0.00003 

11 0.90806 0.00000 0.03827 0.05150 0.00150 0.00062 0.00000 0.00004 

12 0.90048 0.00000 0.03795 0.05908 0.00183 0.00061 0.00000 0.00005 

13 0.89296 0.00000 0.03764 0.06659 0.00215 0.00060 0.00000 0.00006 

14 0.88550 0.00000 0.03733 0.07403 0.00247 0.00060 0.00000 0.00007 

15 0.87811 0.00000 0.03702 0.08142 0.00279 0.00059 0.00000 0.00008 

16 0.87077 0.00000 0.03671 0.08874 0.00311 0.00058 0.00000 0.00008 

17 0.86350 0.00000 0.03641 0.09600 0.00342 0.00057 0.00000 0.00009 

18 0.85629 0.00000 0.03611 0.10320 0.00374 0.00056 0.00000 0.00010 

19 0.84914 0.00000 0.03581 0.11035 0.00405 0.00056 0.00000 0.00011 

20 0.84204 0.00000 0.03551 0.11743 0.00435 0.00055 0.00000 0.00012 

21 0.83501 0.00000 0.03510 0.12445 0.00478 0.00066 0.00000 0.00000 
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Foreign-born females, proportion by infection state in 1981 

Age category Recent Latent Primary Reactivation Reinfection 
Uninfected Immune Reinfection 

(years) Infection Infection Disease Disease Disease 

22 0.82804 0.00000 0.03480 0.13141 0.00509 0.00066 0.00000 0.00000 

23 0.82112 0.00000 0.03451 0.13831 0.00539 0.00066 0.00000 0.00000 

24 0.81426 0.00000 0.03421 0.14516 0.00570 0.00066 0.00000 0.00000 

25 0.80746 0.00000 0.03392 0.15195 0.00600 0.00066 0.00001 0.00000 

26 0.80022 0.00000 0.03361 0.15919 0.00632 0.00066 0.00001 0.00000 

27 0.79197 0.00000 0.03326 0.16743 0.00669 0.00066 0.00001 0.00000 

28 0.78258 0.00000 0.03286 0.17680 0.00710 0.00066 0.00001 0.00000 

29 0.77191 0.00000 0.03240 0.18745 0.00757 0.00066 0.00001 0.00000 

30 0.75983 0.00000 0.03188 0.19952 0.00811 0.00066 0.00001 0.00000 

31 0.74615 0.00000 0.03130 0.21317 0.00871 0.00066 0.00001 0.00000 

32 0.73149 0.00000 0.03067 0.22781 0.00936 0.00066 0.00001 0.00000 

33 0.71654 0.00000 0.03003 0.24274 0.01003 0.00065 0.00001 0.00000 

34 0.70129 0.00000 0.02938 0.25796 0.01070 0.00065 0.00001 0.00000 

35 0.68577 0.00000 0.02872 0.27346 0.01139 0.00065 0.00001 0.00000 

36 0.66997 0.00000 0.02804 0.28924 0.01209 0.00065 0.00001 0.00000 

37 0.65391 0.00000 0.02735 0.30527 0.01280 0.00065 0.00001 0.00000 

38 0.63760 0.00000 0.02666 0.32156 0.01352 0.00065 0.00001 0.00000 

39 0.62105 0.00000 0.02595 0.33808 0.01425 0.00065 0.00001 0.00000 

40 0.60428 0.00000 0.02523 0.35483 0.01500 0.00065 0.00002 0.00000 

41 0.58730 0.00000 0.02450 0.37178 0.01575 0.00065 0.00002 0.00000 

42 0.57012 0.00000 0.02377 0.38893 0.01651 0.00065 0.00002 0.00000 

43 0.55277 0.00000 0.02303 0.40626 0.01728 0.00064 0.00002 0.00000 

44 0.53527 0.00000 0.02228 0.42373 0.01805 0.00064 0.00002 0.00000 

45 0.51763 0.00000 0.02153 0.44134 0.01883 0.00064 0.00002 0.00000 

46 0.49989 0.00000 0.02077 0.45906 0.01962 0.00064 0.00002 0.00000 

47 0.48205 0.00000 0.02001 0.47687 0.02041 0.00064 0.00003 0.00000 
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Foreign-born females, proportion by infection state in 1981 

Age category Recent Latent Primary Reactivation Reinfection 
Uninfected Immune Reinfection 

(years) Infection Infection Disease Disease Disease 

48 0.46416 0.00000 0.01924 0.49474 0.02120 0.00064 0.00003 0.00000 

49 0.44623 0.00000 0.01848 0.51264 0.02200 0.00063 0.00003 0.00000 

SO 0.42829 0.00000 0.01771 0.53055 0.02279 0.00063 0.00003 0.00000 

51 0.41037 0.00000 0.01695 0.54843 0.02358 0.00063 0.00003 0.00000 

52 0.39251 0.00000 0.01618 0.56626 0.02438 0.00063 0.00004 0.00000 

53 0.37474 0.00000 0.01543 0.58401 0.02516 0.00062 0.00004 0.00000 

54 0.35708 0.00000 0.01467 0.60164 0.02594 0.00062 0.00004 0.00000 

55 0.33957 0.00000 0.01393 0.61913 0.02672 0.00062 0.00005 0.00000 

56 0.32224 0.00000 0.01319 0.63642 0.02749 0.00061 0.00005 0.00000 

57 0.30513 0.00000 0.01246 0.65351 0.02824 0.00061 0.00005 0.00000 

58 0.28827 0.00000 0.01174 0.67034 0.02899 0.00061 0.00006 0.00000 

59 0.27170 0.00000 0.01103 0.68688 0.02973 0.00060 0.00006 0.00000 

60 0.25544 0.00000 0.01034 0.70311 0.03045 0.00060 0.00007 0.00000 

61 0.23954 0.00000 0.00967 0.71898 0.03115 0.00059 0.00007 0.00000 

62 0.22402 0.00000 0.00901 0.73447 0.03184 0.00058 0.00008 0.00000 

63 0.20893 0.00000 0.00837 0.74954 0.03250 0.00058 0.00008 0.00000 

64 0.19427 0.00000 0.00775 0.76416 0.03315 0.00057 0.00009 0.00000 

65 0.18009 0.00000 0.00715 0.77831 0.03378 0.00056 0.00010 0.00000 

66 0.16642 0.00000 0.00657 0.79196 0.03439 0.00055 0.00011 0.00000 

67 0.15327 0.00000 0.00602 0.80508 0.03497 0.00055 0.00012 0.00000 

68 0.14067 0.00000 0.00549 0.81765 0.03553 0.00054 0.00013 0.00000 

69 0.12863 0.00000 0.00498 0.82966 0.03606 0.00052 0.00014 0.00000 

70 0.11718 0.00000 0.00451 0.84108 0.03657 0.00051 0.00015 0.00000 

71 0.10633 0.00000 0.00406 0.85191 0.03705 0.00050 0.00016 0.00000 

72 0.09608 0.00000 0.00363 0.86213 0.03750 0.00048 0.00018 0.00000 

73 0.08644 0.00000 0.00323 0.87173 0.03793 0.00047 0.00019 0.00000 
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Foreign-born females, proportion by infection state in 1981 

Age category Recent Latent Primary Reactivation Reinfection 
Uninfected Immune Reinfection 

(years) Infection Infection Disease Disease Disease 

74 0.07742 0.00000 0.00286 0.88073 0.03833 0.00045 0.00021 0.00000 

75 0.06901 0.00000 0.00252 0.88910 0.03870 0.00043 0.00023 0.00000 

76 0.06121 0.00000 0.00221 0.89687 0.03904 0.00041 0.00025 0.00000 

77 0.05402 0.00000 0.00192 0.90404 0.03936 0.00039 0.00027 0.00000 

78 0.04741 0.00000 0.00166 0.91061 0.03965 0.00037 0.00029 0.00001 

79 0.04137 0.00000 0.00143 0.91662 0.03992 0.00035 0.00031 0.00001 

80 0.03594 0.00000 0.00122 0.92201 0.04016 0.00032 0.00034 0.00001 

81 0.03113 0.00000 0.00104 0.92680 0.04037 0.00030 0.00036 0.00001 

82 0.02688 0.00000 0.00088 0.93102 0.04056 0.00027 0.00038 0.00001 

83 0.02313 0.00000 0.00074 0.93474 0.04073 0.00025 0.00041 0.00001 

84 0.01984 0.00000 0.00063 0.93800 0.04087 0.00022 0.00043 0.00001 

85 0.01696 0.00000 0.00052 0.94085 0.04100 0.00020 0.00045 0.00001 

86 0.01445 0.00000 0.00044 0.94334 0.04111 0.00018 0.00048 0.00001 

87 0.01226 0.00000 0.00037 0.94550 0.04121 0.00016 0.00050 0.00001 

88 0.01037 0.00000 0.00031 0.94737 0.04129 0.00014 0.00052 0.00001 

89 0.00874 0.00000 0.00025 0.94898 0.04136 0.00012 0.00053 0.00001 

90 0.00734 0.00000 0.00021 0.95037 0.04142 0.00010 0.00055 0.00001 

91 0.00613 0.00000 0.00017 0.95155 0.04148 0.00009 0.00056 0.00001 

92 0.00511 0.00000 0.00014 0.95256 0.04152 0.00008 0.00058 0.00001 

93 0.00424 0.00000 0.00012 0.95342 0.04156 0.00006 0.00059 0.00001 

94 0.00350 0.00000 0.00010 0.95415 0.04159 0.00005 0.00060 0.00001 

95 0.00288 0.00000 0.00008 0.95476 0.04162 0.00005 0.00061 0.00001 

96 0.00236 0.00000 0.00006 0.95527 0.04164 0.00004 0.00062 0.00001 

97 0.00192 0.00000 0.00005 0.95570 0.04166 0.00003 0.00062 0.00001 

98 0.00156 0.00000 0.00004 0.95606 0.04168 0.00003 0.00063 0.00001 

99 0.00126 0.00000 0.00003 0.95635 0.04169 0.00002 0.00063 0.00001 
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Foreign-born females, proportion by infection state in 1981 

Age category Recent Latent Primary Reactivation Reinfection 
Uninfected Immune Reinfection 

(years) Infection Infection Disease Disease Disease 

100 0.00101 0.00000 0.00003 0.95660 0.04170 0.00002 0.00064 0.00001 

101 0.00081 0.00000 0.00002 0.95679 0.04171 0.00001 0.00064 0.00001 

102 0.00065 0.00000 0.00002 0.95695 0.04172 0.00001 0.00064 0.00001 

103 0.00052 0.00000 0.00001 0.95708 0.04172 0.00001 0.00064 0.00001 

104 0.00042 0.00000 0.00001 0.95718 0.04173 0.00001 0.00064 0.00001 

105 0.00033 0.00000 0.00001 0.95726 0.04173 0.00001 0.00065 0.00001 

106 0.00027 0.00000 0.00001 0.95733 0.04174 0.00000 0.00065 0.00001 

107 0.00021 0.00000 0.00001 0.95738 0.04174 0.00000 0.00065 0.00001 

108 0.00017 0.00000 0.00000 0.95742 0.04174 0.00000 0.00065 0.00001 

109 0.00014 0.00000 0.00000 0.95745 0.04174 0.00000 0.00065 0.00001 

110 0.00011 0.00000 0.00000 0.95748 0.04174 0.00000 0.00065 0.00001 

111 0.00009 0.00000 0.00000 0.95750 0.04174 0.00000 0.00065 0.00001 

112 0.00007 0.00000 0.00000 0.95752 0.04174 0.00000 0.00065 0.00001 

113 0.00006 0.00000 0.00000 0.95753 0.04174 0.00000 0.00065 0.00001 

114 0.00005 0.00000 0.00000 0.95754 0.04175 0.00000 0.00065 0.00001 

115 0.00004 0.00000 0.00000 0.95755 0.04175 0.00000 0.00065 0.00001 

116 0.00003 0.00000 0.00000 0.95756 0.04175 0.00000 0.00065 0.00001 

117 0.00002 0.00000 0.00000 0.95757 0.04175 0.00000 0.00065 0.00001 

118 0.00002 0.00000 0.00000 0.95757 0.04175 0.00000 0.00065 0.00001 

119 0.00002 0.00000 0.00000 0.95757 0.04175 0.00000 0.00065 0.00001 

120 0.00001 0.00000 0.00000 0.95758 0.04175 0.00000 0.00065 0.00001 
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10.8 Data for the Infection Status of Migrants 
Table 10-15: Proportion of immigrants, by age class, with Tine test reaction grades 0 - 4 from Ormerod et al. [295]. 

Also shown is 'n', the total number tested in each age class. These data were used to produce infection state 

probabilities for migrants to England and Wales following the screening method, schemes Scr1 and Scr2, described 

in Section 4.2.8.l. 

Tine test 0-4 yrs 5 -14 yrs 15 -29 yrs 30-44 yrs 45 -64 yrs 65+ yrs 
grade 

0 0.58 0.37 0.25 0.16 0.10 0.09 

1 0.34 0.44 0.44 0.46 0.52 0.32 

2 0.06 0.13 0.16 0.19 0.15 0.22 

3 0.00 0.04 0.07 0.08 0.06 0.19 

4 0.02 0.03 0.08 0.10 0.17 0.18 

(n) 110 211 1057 178 89 45 
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10.9 Fits to Notification Rates per 100,000 Population for Stage One 

Although the model was not fit to the number of notifications per 100,000 population 

per year, results from fitting scenarios 14 and 22 are used to illustrate how notification 

rates predicted by the model compared to observed notification rates. Based on visual 

inspection, fits to notification rates were generally worse than fits to the number of 

case notifications. 

UK-born individuals had the lowest notification rates per 100,000 population per year 

among the three birthplace groups. Notification rates are below 15 per 100,000 cases 

per year for all sex and age groups from 1999-2009, as shown in Figure 10-1- Figure 

10-4 for Scenarios 14 and 22. For UK-born males under both scenarios 14 and 22, 

observed notification rates are predicted fairly well by the model, apart from 

overestimation of the notification rate in those aged 65 years and above. Under 

scenario 14, notification rates are overestimated by the model for most of the time 

period, from about 2002-2009. Under scenario 22, trends are very similar although the 

model consistently overestimates the notification rate in those aged 65 years and 

above. The model predicts notification rates from about 13-15 per 100,000 per year, 

while observed notification rate fall from less than 13 per 100,000 to about 8 per 

100,000 from 1999-2009 in this age group. For UK-born males aged 15-44 years, the 

model underestimated the rate in slightly for both scenarios. Overall, qualitative 

trends fit observed trends reasonably well and the absolute differences between 

notification rates predicted by the model and those observed are small, on the order 

of less than a few cases per 100,000 per year. 

For UK-born females, model predictions are less consistent with observed notification 

rates, although still within a few cases per 100,000 population per year. Model 

predictions are particularly problematic for older individuals in both scenarios 14 and 

22. For those aged 65 years and above, rates are underestimated for most of the 1999-

2009 time period in both scenarios 14 and 22, and, notably, the decreasing trend in 

observed notification rates in this group is not reproduced by the model for either 

scenario 14 or 22. For the 45-64 age group, the model actually predicts an increased 

notification rate from 1999 - 2009 under both scenarios, while the observed 

notification rate decreases over this time period. Notification rates in this age group 
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are over-estimated by the model from 1999-2009. In both age groups and under both 

scenarios, notification rates are within a few cases per 100,000 per year of observed 

notification rates. 

OF-born have notification rates much higher than those in UK-born, generally ranging 

from about 25-125 per 100,000 per year across the sex and age categories as shown in 

Figure 10~2 to Figure 10-5. Notification rates are highest in those aged 15-44 years, and 

these rates and trends are reproduced fairly well by the model for both males and 

females, though fits differ between the two scenarios 14 and 22. In scenario 14, 

notification rates in this group are underestimated by the model for males and 

overestimated for females. In scenario 22, notification rates in the model reproduce 

observed data until 2006-2009, when observed notification rates drop and are 

overestimated by the model. As in scenarios 14, for females under scenario 22, the 

notification rates are consistently overestimated by the model from 1999-2009, with 

difference between model and observed rates ranging from about 20 - 50 cases per 

100,000 per year. 

In both males and females under scenario 14, notification rates in those aged 45-64 

years are overestimated by the model. Under scenario 22, rates are slightly 

overestimated for males and very close to observed for females. Although the model 

was not fit to notifications in children, the model consistently and greatly 

overestimates the notification rates in those aged 0-14 years, for both males and 

females and under scenarios 14 and 22. For those aged 65 years and above, the model 

reproduces observed trends and values of the notification rates fairly well, except 

under scenario 22, where notification rates in females aged 65 and older are 

underestimated by the model, often around 25 cases per 100,000 per year below 

observed notification rates. 

SSA-born notification rates are highest of the three birthplace groups, approaching 300 

cases per 100,000 population per year in the 15-44 age group, the only age group used 

for fitting the model to observed notifications. For both scenarios 14 and 22, observed 

notification rates in this age group are greatly underestimated by the model, with the 

largest discrepancies predicting about 100 fewer cases per 100,000 per year. 
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Figure 10-1: Simulated and observed cases per 100,000 per year in England and Wales for UK·born males (A) and 

females (B) by age category from 1999 - 2009, under fitting Scenario 14. Averaged model output follows the 

dashed line and individual runs of the model are denoted with a '.' (there are 30 for each data point) . Observed 

numbers of case notifications follow the solid line. Age categories are as follows : ages 0 - 14 years are in black; ages 

15 - 44 years are in blue; ages 45 - 64 are in green; and ages 65 years and over are in grey. 
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Figure 10-2: Simulated and observed cases per 100,000 per year in England and Wales for other foreign-born males 

(A) and females (8) by age category from 1999 - 2009, under fitting Scenario 14. Averaged model output follows 

the dashed line and individual runs of the model are denoted with a '-' (there are 30 for each data point) . Observed 

numbers of case notifications follow the solid line. Age categories are as follows : ages 0 -14 years are in black; ages 

15 - 44 years are in blue; ages 45 - 64 are in green; and ages 65 years and over are in grey. 
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Figure 10-5 : Simulated and observed cases per 100,000 per year in England and Wales for other fore ign-born males 

(A) and females (8) by age category for 1999 - 2009, under fitting Scenario 22. The averaged model output follows 

the dashed line and individual runs of the model are denoted with a '-' (30 for each data point) . Observed numbers 
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Figure 10-6: Simulated and observed cases per 100,000 per year in England and Wales for SSA-born males (A) and 

females (8) by age category from 1999 - 2009, under fitting Scenario 22 . The averaged model output follows the 

dashed line and individual runs of the model are denoted with a '-' (30 for each data point) . Observed numbers of 

case notifications follow the solid line. Age categories are as follows : ages 0 - 14 years are in black; ages 15 - 44 

years are in blue; ages 45 - 64 are in green; and ages 65 years and over are in grey. 

393 



10.10 Stage Two Fitting Results Using Increased HIV 

Prevalence for SSA-Born Migrants 

For this variation in stage two fitting, each of the 10 scenarios was run with an altered 

distribution for HIV prevalence in SSA-born immigrants to the UK each year. HIV 

prevalence was increased by 50% above original values, which were based on the 

estimated HIV prevalence of all SSA-born individuals living in the UK, as opposed to the 

HIV prevalence in new immigrants upon entry to the UK, as discussed in 4.2.4 and 

5.1.5.1. As the results found in Table 10-16 show, this increased HIV prevalence did not 

improve upon model fits and or much impact resulting best-fitting parameter values. 

The best-fitting scenario had a higher GOF statistic than the lowest in stage one. This 

meant that this variation did not fit data as well as the best-fitting scenario of the 25 

scenarios in stage one. This finding suggested there was no reason to replace the HIV 

prevalence distribution used originally with the version used in this variation and this 

variation was not studied further. 
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Table 10-16: Results from fitting model to observed data in stage two fits with increased HIV prevalence in Sub-Sahara Africa-born immigrants. Risks were estimated for UK-born adult 

males for the three disease types and for the risk ratio between disease risk in foreign-born and UK-born adults. 

Disease risks by type of disease 

Infection 
status of Contact Primary Foreign:UK-

Scenario migrants rate (%) Reactivation (% per year) Reinfection (%) born GOF GOF rank 

3 Scr1(OR7) all=8 10.0% 0.012% 8.0% 2.13 11055 10 

4 Scr1(OR7) all=10 7.2% 0.016% 3.0% 2.63 10802 9 

8 Scr2(OR9) all=8 8.3% 0.016% 4.1% 2.48 10156 6 

9 Scr2(OR9) all=10 9.3% 0.010% 7.2% 2.21 10144 5 

13 ARIIow all=8 9.1% 0.023% 0.0% 4.14 9276 1 

14 ARIIow all=10 10.7% 0.015% 0.5% 3.01 9569 2 

16 ARI med a 11=4 27.6% 0.018% 17.0% 1.84 9755 3 

17 ARI med a 11=6 18.8% 0.018% 9.8% 1.94 10767 8 

22 ARI high a 11=6 16.4% 0.018% 12.7% 2.09 9831 4 

23 ARI high all=8 12.7% 0.013% 16.0% 1.99 10550 7 
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Table 10-17: Disease risks for UK-born and foreign-born males and females under the stage two fitting scheme in which an increased HIV prevalence in Sub-Sahara Africa-born 

immigrants was used. Disease risks for UK-born were estimated by the model, as was a risk ratio between foreign-born and UK-born disease risk. Foreign-born disease risks were 

calculated by multiplying that risk ratio by UK-born risks. Female disease risks were calculated by multiplying those risks by risk ratios between males and females, see Table xx /text). 

Disease risks for UK-born males Disease risks for foreign-born males Disease risks for UK-born females Disease risks for foreign-born females 

Scen- Primary React. (% per Reinf. Primary React. (% per Reinf. Primary React. (% per Reinf. Primary React. (% per Reinf. 

aria (%) year) (%) (%) year) (%) (%) year) (%) (%) year) (%) 

3 10.0 0.012 8.0 21.4 0.026 17.0 10.0 0.002 0.01 21.4 0.004 0.02 

4 7.2 0.016 3.0 18.9 0.042 7.8 7.2 0.003 0.00 18.9 0.007 0.01 

8 8.3 0.016 4.1 20.6 0.041 10.2 8.3 0.003 0.00 20.6 0.007 0.01 

9 9.3 0.010 7.2 20.6 0.023 15.9 9.3 0.002 0.01 20.6 0.004 0.02 

13 9.1 0.023 0.0 37.7 0.094 0.1 9.1 0.004 0.00 37.7 0.015 0.00 

14 10.7 0.015 0.5 32.1 0.047 1.5 10.7 0.002 0.00 32.1 0.007 0.00 

16 27.6 0.018 17.0 50.6 0.033 31.2 27.6 0.003 0.02 50.6 0.005 0.04 

17 18.8 0.018 9.8 36.4 0.Q35 18.9 18.8 0.003 0.01 36.4 0.006 0.02 

22 16.4 0.018 12.7 34.3 0.037 26.6 16.4 0.003 0.02 34.3 0.006 0.03 

23 12.7 0.013 16.0 25.2 0.026 31.8 12.7 0.002 0.02 25.2 0.004 0.04 
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10.11 Stage Two Fitting Results For Altered infection Status For SSA

born Individuals In 1981 

For this variation, each of the 10 scenarios was run with an altered distribution of 

infection state probabilities for the initial population in 1981. Specifically, this was 

altered to increase the infection and disease prevalence in SSA~born individuals, as 

described in Chapter 5, Section 5.1.5.2. As with the first variation tested in stage two 

fitting, visual inspection of fits to observed data showed this variation did not improve 

the quality of fits. Furthermore, the quality of fits as measured by the GOF statistic was 

not improved, as shown in the results in Table 10-18. The best-fitting scenario of the 

10 did fit better than the best-fitting of the 25 stage one scenarios, however on 

average the fitting statistic values were similar, and qualitatively, best-fits were similar 

to those obtained in stage one fits. This variation was not studied further. 
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Table 10-18: Results of stage two fits with increased prevalence of infection and disease (tuberculosis) at model initialization for Sub-Sahara Africa-born immigrants. 

Disease risks for UK-born adult males by type Risk ratio, 
Infection 
status of Contact Foreign:UK-

Scenario migrants rate Primary (%) Reactivation (% per year) Reinfection (%) born GOF GOF rank 

3 Scr1 all=8 8.4 0.013 2.3 2.82 10730 10 

4 Scr1 all=10 6.0 0.016 0.7 3.26 10555 9 

8 Scr2 all=8 7.5 0.011 4.2 2.77 9944 6 

9 Scr2 all=10 5.5 0.014 1.2 3.30 9796 4 

13 ARIIow all=8 10.3 0.015 1.5 3.72 8849 2 

14 ARIIow all=10 7.S 0.019 0.0 4.14 8537 1 

16 ARI med a 11=4 20.7 0.020 5.3 2.55 9801 5 

17 ARI med all=6 15.3 0.015 10.8 2.32 10251 7 

22 ARI high all=6 15.2 0.013 14.0 2.22 9702 3 

23 ARI high all=8 10.9 0.018 5.7 2.56 10336 8 
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10.12 Stage two fitting Results for Six Estimated Disease Risk 

Parameters 

For this variation of stage two fitting, six disease risks were estimated, three for UK

born as in stage one fits, plus three analogous risks for foreign-born. The three risks 

estimated for foreign-born replaced the parameter, dJ, the parameter the ratio of 

disease risk between UK-born and foreign-born for all three disease types. Results for 

the 10 scenarios run with these six parameters show no improvement in fits according 

to the GOF statistics obtained. The average GOF was higher than in this stage two 

variation of fitting than across the 25 fitting scenarios in stage one, despite fewer 

degrees of freedom for the GOF statistic since there were more variable parameters. 

For this reason, results for this variation are described briefly but not illustrated with 

all plots. Table 10-19 shows GOF statistics and disease risk estimates for these fits. 
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Table 10-19: Results of model fitting to observed case notifications for the stage two fitting scheme with six disease risk parameters estimated. Only the best-fitting replicate for each scenario is 

shown. 

Disease risks for UK-born adult males by Disease risks for foreign-born adult males by disease 

disease type type 

Infection 
Contact Primary 

Scenario status of React. (% per year) Reinf. (%) Primary (%) React. (% per year) Reinf. (%) GOF GOF rank 
migrants 

rate (%) 

3 Scr1 8 9.6 0.014 2.2 22.5 0.062 5.5 11007 6 

4 Scr1 10 7.9 0.014 3.6 19.0 0.042 6.3 11062 7 

8 Scr2 8 9.7 0.008 9.6 19.6 0.040 16.6 10237 4 

9 Scr2 10 7.7 0.011 4.5 18.1 0.035 6.9 10318 5 

13 ARIIow 8 10.9 0.020 2.1 38.5 0.082 0.3 9445 2 

14 ARIIow 10 8.7 0.020 1.9 32.1 0.069 0.9 9353 1 

16 ARI med 4 30.1 0.015 5.7 51.1 0.085 1.8 10071 3 

17 ARI med 6 14.3 0.016 8.6 29.7 0.050 4.6 11910 10 

22 ARI high 6 13.7 0.020 0.0 28.8 0.075 0.1 11574 8 

23 ARI high 8 14.0 0.021 0.0 28.7 0.070 0.1 11650 9 
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10.13 Quality of Fits to Notification Rates for Stage Two Fitting with 

Single Foreign-born Category 

As shown in Figure 10-7 and Figure 10-8, comparing case notification rates generated 

by the model to those observed showed a different picture than when comparing the 

model and data using numbers of tuberculosis case notifications. 

For UK-born males, the notification rates per 100,000 population predicted by the 

model are fairly close to observed notification rates, as shown in Figure 10-7 (A). The 

model overestimated the notification rate for those aged 65 years and above, the 

group with the highest notification rates for UK-born. Also, the model underestimated 

the notification rate for those aged 15-44, but is otherwise fairly good. 

For UK-born females, the model predicted notification rates fit observed case 

notification rates less well, as shown in Figure 10-7 (8). The age categories 45-64 years 

and 65 years and above are especially problematic, as seen when comparing the 

number of case notifications predicted and observed. Again, for both of these groups, 

the model predicted an increasing trend, while the observed data showed decreasing 

trends over 1999-2009. 

For foreign-born, simulated notification rates followed trends in observed notification 

rates fairly well. For males aged 15-44 years, this still meant that simulated notification 

rates were high or low by as much as 20 cases per 100,000 per year, depending on the 

year, but averaged rates were similar to those observed. For females, simulated rates 

were closer to observed rates. The fits to notification rates in children were the worst, 

as the model consistently over-estimated the number of cases in this group. For some 

runs, the rate was overestimated by as much as 50 cases per 100,000 for some runs of 

the simulation. Notification rates for older individuals were under-estimated by the 

model for several of the earlier years of fitting. 

401 



.... 
CIJ 
C. 

o 
o 
o 
o 
o ...... 
.... 
CIJ 
C. 

'" CIJ 

'" "' u 

.... 
"' ~ 
.... 
CIJ 
C. 

0 
0 
0 
0 
0 ...... 
.... 
CIJ 
c. 

'" CIJ 

'" "' u 

A. 
20 

18 

16 

14 

12 " : : " 
10 i 

8 

-~ -- ~ ..... 
i--i __ ~-_~ 

! ; ;--t.---r--r 
Age classes 
_ 0-14 

_ 15-44 
_ 45-64 
_ 65+ 

O ~-------,--------,--------,---------,------~ 

1999 2001 

B. 
20 

18 

16 

14 

12 

10 

8 

6 

0 
1999 2001 

2003 2005 

2003 2005 

2007 

2007 

2009 

Age classes 
_ 0-14 
_ 15-44 
_ 45-64 
_ 65+ 

2009 

Figure 10-7: Observed versus simulated notification rates per 100,000 population per year for UK-born in England 

and Wales, 1999 - 2009, for stage two fitting of Scenario 9, for which a single foreign-born category was used. Sub

Saharan African-born and other fore ign-born were combined during fitt ing. Model output follows the dashed line 

and individual runs of the model are denoted with a ' -' (there are 30 for each data point) . Observed notification 

rates follow the solid line. Age categories are as follows : ages 0 - 14 years are in black; ages 15 - 44 years are in 

blue; ages 45 - 64 are in green; and ages 65 years and over are in grey. 
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England and Wales, 1999 - 2009, for stage two fitting of Scenario 9, for which a single fore ign-born category was 

used. Sub-Saharan African-born and other foreign-born were combined during fitting. Model output follows the 

dashed line and individual runs of the model are denoted with a ,-, (there are 30 for each data point) . Observed 

notificat ion rates follow the solid line. Age categories are as follows: ages 0 - 14 years are in black; ages 15 - 44 

years are in blue; ages 45 - 64 are in green; and ages 65 years and over are in grey. 

403 



10.14 Missing Data for West Midlands Cases, 2007-2011. 

Most cases in the study had complete data on demographic characteristics. Generally, 

less than 1% of patients were missing data on these characteristics, apart from a few 

exceptions. There were 3.5% and 6.2% of cases missing data on ethnicityand 

birthplace, respectively. Time since entry was missing for nearly 10% of foreign-born 

individuals (and is not applicable to UK-born). Of non-demographic characteristics, 

there were more missing data; information on previous diagnosis was missing for 27% 

of cases, although collection of data on this feature of cases improved from 2007 -

2011, with less than 5% of 2011 cases missing that information. Also, more than 50% 

of cases were missing data on the behavioural risk factors, drug use, alcohol use, 

homelessness, and prison time, as these were only collected from mid-2009. 
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10.15 Characteristics of Cases Notified in the West 

Midlands, 2007-2011. 

Table 10-20: Characteristics of all 4,845 cases notified in the West Midlands, 2007-2011. 

Variable 

Year notified 

2007 

2008 

2009 

2010 

2011 

Total 

Sex 

Male 

Female 

Total 

Age group 

0-14 

15-44 

45-64 

65 and over 

Total 

Region of birth 

UK 
Europe 

East Mediterranean 

Africa 

Americas 

South Asia 

East/Southeast Asia 

Total 

Ethnicity 

White 

Black-Caribbean 

Black-African 

Black-Other 

South Asian 

Chinese 

Mixed/Other 

Total 

Years since entry to tuberculosis diagnosis· 

0-1 

2-4 

N 

938 

1,015 

1,009 

872 

1,011 

4,845 

2,638 

2,205 

4,843 

286 

2,769 

966 

824 

4,845 

1,555 

101 

45 

700 

57 

1,912 

103 

4,473 

880 

173 

711 

18 

2,602 

47 

248 

4,679 

435 

573 

% 

19.36 

20.95 

20.83 

18 

20.87 

100 

54.47 

45.53 

100 

5.9 

57.15 

19.94 

17.01 

100 

34.76 

2.26 

1.01 

15.65 

1.27 

42.75 

2.3 

100 

18.81 

3.7 

15.2 

0.38 

55.61 

1 

5.3 

100 

16.35 

21.54 
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Variable N % 

5-9 606 22.78 

10 and over 1,046 39.32 

Total 2,660 100 

Disease site 

Pulmonary, with or without extra-pulmonary 
2,632 55.14 

Extra-pulmonary only 2,141 44.86 

Total 4,773 100 

Drug sensitivity 

Resistant to one or more drugs 147 5.42 

Sensitive 2,567 94.58 

Total 2,714 100 

Previous diagnosis 

No 2,920 85.56 
Yes 493 14.44 

Total 3,413 100 

History of or current problem drug use" 

No 2,181 96.8 
Yes 72 3.2 

Total 2,253 100 

History of or current problem alcohol use" 

No 2,138 97.31 
Yes 59 2.69 

Total 2,197 100 

History of or current homelessness·· 

No 2,201 98.08 

Yes 43 1.92 

Total 2,244 100 

History of or currently in prison" 

No 2,084 97.11 

Yes 62 2.89 

Total 2,146 100 

"'Foreign-born only 
**Missing for 2007,2008 and half of 2009 cases 
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10.16 Demographic Characteristics and Risk Factors for Clustering Using 1S-locus VNTR for Cases in the West 

Midlands, 2007-2011. 

Table 10-21: Demographic features and risk factors for clustering under the 1S-locus typing system for cases notified in the West Midlands, using the n and retrospective methods of clustering. The n 

method results apply to all cases in the study, 2007 - 2011. The retrospective method only applies to cases from 2009 - 201l. 

All cases, 07 - All cases, 09 -
Clustered cases, 'n method' 

11 11 Clustered cases, two-year 'retrospective method' 

Row aOR aOR 
N Col % N OR (95% CI) p p N Col % N % OR (95% CI) P P 

% (95%CI) (95% CI) 

Sex 

Male 1,271 55.7 894 70.3 1.0 0.10 784 55.9 484 61.7 1.0 0.09 

Female 1,010 44.3 678 67.1 0.9 (0.7,1.0) 618 44.1 354 57.3 0.8 (0.7,1.0) 

Total 2,281 100.0 1572 68.9 1,402 100.0 838 59.8 

Age group (years) 

0-14 55 2.4 44 80.0 1.0 0.11 1.0 0.33 31 2.2 21 67.7 1.0 0.70 1.0 

15-44 1,440 63.1 984 68.3 0.5 (0.3,1.1) 0.8 (0.4,1.5) 873 62.3 524 60.0 0.7 (0.3,1.5) 0.9 (0.4,2.0) 0.31 

45-64 425 18.6 304 71.5 0.6 (0.3,1.3) 0.8 (0.4,1.6) 273 19.5 164 60.1 0.7 (0.3,1.6) 0.8 (0.3,1.8) 

65 and over 363 15.9 241 66.4 0.5 (0.2,1.0) 0.6 (0.3,1.3) 225 16.1 129 57.3 0.6 (0.3,1.4) 0.7 (0.3,1.6) 

Total 2,283 100.0 1573 68.9 1,402 100.0 838 59.8 
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All cases, 07 - All cases, 09 -
Clustered cases, 'n method' 

11 11 Clustered cases, two-year 'retrospective method' 

Row aOR aOR 
N Col % N OR (95% CI) P P N Col % N % OR (95% CI) p p 

% (95% CI) (95% CI) 

Region of 

birth 

UK 693 32.4 571 82.4 1.0 0.00 1.0 0.00 412 30.7 308 74.8 1.0 0.00 1.0 0.00 

Europe 53 2.5 32 60.4 0.3 (0.2,0.6) 0.3 (0.2,0.5) 37 2.8 17 46.0 0.3 (0.1,0.6) 0.3 (0.1,0.5) 

East 
24 1.1 15 62.5 0.4 (0.2,0.8) 0.4 (0.2,0.9) 17 1.3 10 58.8 0.5 (0.2,1.3) 0.5 (0.2,1.3) 

Mediterranean 

Africa 364 17.0 213 58.5 0.3 (0.2,0.4) 0.3 (0.2,0.4) 228 17.0 107 46.9 0.3 (0.2,0.4) 0.3 (0.2,0.4) 

Americas 25 1.2 19 76.0 0.7 (0.3,1.7) 0.8 (0.3,2.0) 14 1.0 10 71.4 0.8 (0.3,2.7) 1.0 (0.3,3.3) 

South Asia 927 43.3 321 65.4 0.4 (0.3,0.5) 0.5 (0.4,0.6) 599 44.6 339 56.6 0.4 (0.3,0.6) 0.5 (0.4,0.6) 

East/Southeast 
56 2.6 31 44.6 0.2 (0.1,0.3) 0.2 (0.1,0.3) 37 2.8 15 40.5 0.2 (0.1,0.5) 0.2 (0.1,0.4) 

Asia 

Total 2,142 100.0 1481 69.1 1,344 100.0 806 60.0 

Ethnicity 

White 383 17.4 296 77.3 1.0 0.00 222 16.5 146 65.8 1.0 0.03 

Black-
84 3.8 72 85.7 1.8 (0.9,3.4) 37 2.7 27 73.0 1.4 (0.6,3.1) 

Caribbean 

Black-African 350 15.9 209 59.7 0.4 (0.3,0.6) 219 16.3 111 50.7 0.5 (0.4,0.8) 

Black-Other 11 0.5 7 63.6 0.5 (0.1,1.8) 9 0.7 5 55.6 0.7 (0.2,2.5) 
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All cases, 07 - All cases, 09 -
Clustered cases, 'n method' 

11 11 Clustered cases, two-year 'retrospective method' 

Row aOR aOR 
N Col % N OR (95% CI) p p N Col % N % OR (95% CI) p p 

% (95% CI) (95% CI) 

South Asian 1228 55.7 847 69.0 0.7 (0.5,0.9) 757 56.2 462 61.0 0.8 (0.6,1.1) 

Chinese 18 0.8 13 72.2 0.8 (0.3,2.2) 10 0.7 6 60.0 0.8 (0.2,2.9) 

Mixed/Other 129 5.9 79 61.2 0.5 (0.3,0.7) 94 7.0 54 57.5 0.7 (0.4,1.2) 

Total 2203 100.0 1523 69.1 1,348 100.0 811 60.2 

Years since entry to tuberculosis 

diagnosis· 

0-1 242 18.2 131 54.1 1.0 0.00 151 17.4 66 43.7 1.0 0.02 

2-4 307 23.1 200 65.2 1.6 (1.1,2.2) 192 22.1 108 56.3 1.7 (1.1,2.5) 

5-9 310 23.3 186 60.0 1.3 (0.9,1.8) 218 25.1 109 50.0 1.3 (0.8,2.0) 

10 and over 470 35.4 317 67.5 1.8 (1.3,2.4) 308 35.4 179 58.1 1.8 (1.2,2.6) 

Total 1,329 100.0 834 62.8 869 100.0 462 53.2 

Disease site 

Pulmonary 1,505 66.3 1093 72.6 1.0 0.00 1.0 0.00 931 66.6 585 62.8 1.0 0.00 1.0 0.01 

Extra-
766 33.7 475 62.0 0.6 (0.5,0.7) 0.7 (0.6,0.8) 467 33.4 252 54.0 0.7 (0.6,0.9) 0.7 (0.6,0.9) 

pulmonary 

Total 2,271 100.0 1568 69.0 1,398 100.0 837 59.9 
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All cases, 07 - All cases, 09 -
Clustered cases, 'n method' 

11 11 Clustered cases, two-year 'retrospective method' 

Row aOR aOR 
N Col % N OR (95% CI) P P N Col % N % OR (95% CI) P p 

% (95% CI) (95% CI) 

Drug 

sensitivity 

Resistant to at 
110 4.9 58 52.7 1.0 0.00 1.0 0.00 78 5.6 32 41.0 1.0 0.00 1.0 0.01 

least one drug 

Sensitive 2,159 95.2 1507 69.8 2.1 (1.4,3.0) 1.9 (1.2,2.8) 1,310 94.4 798 60.9 2.2 (1.4,3.6) 1.9 (1.2,3.2) 

Total 2,269 100.0 1565 69.0 1,388 100.0 830 59.8 

Previous diagnosis 

No 1,445 86.7 1004 69.5 1.0 0.31 1,059 85.1 633 59.8 1.0 (O.O,O.O) 0.24 

Yes 221 13.3 161 72.9 1.2 (0.9,1.6) 185 14.9 119 64.3 1.2 (0.9,1.7) 

Total 1,666 100.0 1165 69.9 1,244 100.0 752 60.5 

History of or current problem drug 

use·· 

No 1,047 95.9 713 68.1 1.0 0.00 1,018 95.9 603 59.2 1.0 (O.O,O.O) 0.00 

4.4 
Yes 45 4.1 39 86.7 3.0 (1.3,7.3) 44 4.1 38 86.4 

{l.8,10.4) 

Total 1,092 100.0 752 68.9 1,062 100.0 641 60.4 
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All cases, 07 - All cases, 09 -
Clustered cases, 'n method' 

11 11 Clustered cases, two-year 'retrospective method' 

Row aOR aOR 
N Col % N OR (95% CI) P P N Col % N % OR (95% CI) P P 

% (95% CI) (95% CI) 

History of or current problem alcohol use·· 

No 1,025 96.7 698 68.1 1.0 0.00 997 96.6 592 59.4 1.0 (0.0,0.0) 0.00 

5.0 4.1 
Yes 35 3.3 32 91.4 35 3.4 30 85.7 

(1.5,16.4) (1.6,lD.7) 

Total 1,060 100.0 730 68.9 1,032 100.0 622 60.3 

History of or current homelessness" 

No 1,066 96.9 732 68.7 1.0 0.54 1,034 96.8 616 59.6 1.0 (0.0,0.0) 0.19 

Yes 34 3.1 25 73.5 1.3 (0.6,2.7) 34 3.2 24 70.6 1.6 (0.8,3.4) 

Total 1,100 100.0 757 68.8 1,068 100.0 640 59.9 

History of or currently in 

prison·· 

No 1,007 95.9 698 69.3 1.0 0.00 980 95.9 589 60.1 1.0 (0.0,0.0) 0.00 

Yes 43 4.1 38 88.4 3.4 (1.3,8.6) 42 4.1 36 85.7 4.0 (1.7,9.5) 

Total 1,050 100.0 736 70.1 1,022 100.0 625 61.2 

*Foreign-born only, **Missing for 2007,2008 and half of 2009 cases 
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10.17 Proportion of Isolates Clustered by Study Duration 

The proportion clustered by study duration is shown in Figure 10-9, with clustering 

defined according to the n method and the 24-locus VNTR typing system. Clustering 

increases with increasing study duration. Note that since the retrospective method 

already requires exclusion of two years'-worth of data, an analogous plot using this 

method would only have three data points, so was not produced. This analysis could 

be used to support the two-year definition of retrospective method, as more than 80% 

of total clustering over the five years period is attained after two years, illustrated in 

Figure 10-10. 
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Figure 10-9: Percentage of isolates clustered by study duration, where clustering is defined according to the n 

method, using the 24-locus VNTR typing system. 
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10.18 Exclusion of Cases Due to Laboratory Contamination 

In the present study, only the date of case report to ETS was available for all cases, not 

the date of receipt or processing of the clinical specimen in the laboratory. Therefore, 

no isolates were excluded from analyses due to suspected laboratory contamination. 

Studies of laboratory contamination of tuberculosis cultures or isolates have resulted 

in a wide range of estimates for the proportion of cases affected by laboratory 

contamination, though a recent UK study found only 0.54 - 0.93% of cases with false 

positive results due to laboratory cross-contamination [333]. Although this is a serious 

problem for individual patients if resulting in misdiagnosis, contamination rates are 

low enough that laboratory contamination is unlikely to impact population-based 

molecular epidemiological studies such as the present study. Still, laboratory 

contamination could result in a slight increase in the proportion clustered in the study, 

though efforts to exclude cases due to laboratory contamination could alternatively 

result in legitimately clustered cases being excluded, slightly lowering the proportion 

clustered. 

For comparison with other studies in the literature, it was observed that some 

molecular epidemiological studies have excluded cases due to suspected laboratory 

contamination [77, 321, 326, 329, 343-345], while many others have not [165, 273, 

313,332,346-350]. One common method for excluding cases suspected of laboratory 

contamination is to exclude cases for which the following three criteria are met: 1) 

There is only a single positive culture for the case; 2) A test for acid-fast bacilli is smear

negative; and 3) Another case, processed in the laboratory on the same day, was also 

found CUlture-positive and had the same strain type profile as the suspected false 

Positive case [77, 162, 326, 329, 351]. Similar methods have been used in other studies 

[164,345]. 
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10.19 Model Code and Published Algorithms 

This appendix exhibits the source code and detailed algorithms that have been applied 

to the research questions in this thesis. The purpose and design of the model were 

described in Chapter 3. In addition, objective one of the thesis included making the 

model be fully and freely available so that others might understand its operation in 

detail, validate its applicability to particular problems, adapt it to new and different 

situations, and generally improve it for future use. 

Accordingly, source code for the main program, with complete technical 

documentation, appears in this appendix. Included is all the code that implements the 

flow depicted in Figure 3-2, comprising approximately 2,500 lines. Not included is 

supporting code that is unnecessary for understanding the program, such as (1) input 

routines to gather parameters from commands and files, (2) output routines to display 

results as listings and graphs, and (3) standard subroutines such as those to generate 

random numbers from classical probability distributions. This code and all the 

supporting code, approximately 8,000 lines total, is downloadable free from a project 

website, www.cbs.umn.edu/modeling, and is also available free from the author upon 

request. 

The source code included here is organized into 32 main sections, each containing, 

where applicable, (1) a number and title for the section, (2) an abstract describing the 

section, (3) conditions that must be established before code in the section is invoked, 

(4) conditions that will prevail when the code of the section has completed execution, 

(5) a description of the algorithm in a right-hand column, and (6) the code that 

accomplishes the algorithm in a left-hand column. The amount and style of the 

information presented is intended to supply that which is necessary and sufficient to 

validate the program's correctness, and which has been used in that way during 

development and testing of the program. 

The code is a subset of the standard programming language C. The subset uses only 

those features necessary for efficient scientific programs. For example, indexed arrays 

rather than memory pointers are used to managing data within the program. This 

results in no loss of speed but affords an improvement in comprehensibility. The style 

of the coding is also meant to enhance readability and comprehensibility. For example, 

the local structure of the code is indicated by indentation, but with the block-defining 
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brackets omitted when unnecessary and placed unobtrusively when they are 

necessary, to reduce visual noise and clutter. 

A number of general computer algorithms and techniques were developed as part of 

this thesis research, or were expanded and tested during this research. Five of those of 

which I am either auxiliary or primary author are now published in the computing 

literature. The papers describing these general algorithms are also necessary for fully 

understanding the code of the model, and accordingly they are also included, after the 

source code in this appendix, as follows. 

1. Main source code of the model 

2. Algorithm for managing groups of objects 

3. Algorithm for managing schedules of future events 

4. Algorithm for random numbers from any distribution 

5. Method of organizing data read by the model 

6. Method of multi-processing for model simulation 
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Model for Tuberculosis in the UK 

This individual-based model (IBM) is to simulate tuberculosis dynamics ill the UK. This 
version of the model stores individual strain types for each infection to simulate strain 
type clustering patterns seen in disease cases. This version was developed for use in the 
West Midlands, a region with a population size of around five million people. One major 
characteristic of individuals is their region of birth, UK or non-UK. In the SSAV version 
of the model, the non-UK-born region of birth is divided into Sub-Saharan African born 
(SSA-born) and other non-UK born (ONUK-born) for some model parameters. 

1. BACKGROUND ALGORITHMS. The core IBM algorithms, external to this simulation 
program, were written by Clarence Lehman (CL) in 2009. The method was first developed 
for simulation of HIV dynamics in the US. Beginning in January 2010. and with initial 
help from CL, Adrienne Keen (AK) adapted this IBM skeleton for modelling tuberculosis 
dynamics in the UK, first for fitting the model to tuberculosis notifications in England 
and Wales and then for simulating genotyping data from the West Midlands. 

2. SUMMARY OF METHOD. This is an event-based simulation where continuous time is 
simulated directly. There is no arbitrary time step. Instead, events are processed one at a 
time, chronologically. The time variable t is time in years, with arbitrarily high resolution 
down to small fractions of a instant and all complexities and inaccuracies associated with 
multiple events during a finite time step vanish--such as undershooting zero when the 
sum of the rates times the width of the time step exceeds unity. Continuous time also 
allows all activities to occur in a single data array, rather than having to swap old and 
new arrays at each time step. Events are assumed to following probability distributions 
that vary through time and space. 

States of the system never change spontaneously-all changes are induced by some other 
event in the system and usually scheduled in advance. The scheduled times are deter
mined stochastically from functions whose characteristics may depend on the state of the 
individual and the environment at the time. An individual's age, sex, infection history, or 
any other considerations can be incorporated into the functions. 

For example, death is scheduled at the time of birth, with the time chosen randomly from 
a life-span distribution for babies born in the simulated year. But the scheduled time of 
death is not immutable, nor are any other scheduled times in the system. If the individual 
develops disease, the scheduled time of death may be cancelled and a new time of death 
due to tuberculosis may be scheduled instead. At no time does the program visit an 
individual when it does not need to, and therein lies its speed. 

Many future events may apply to each individual and are saved for that individual, but 
only the earliest among each individual's events enters a global "list of future events." 

3. MAIN DATA STRUCTURES. Each individual is assigned a number 1 through nand 
recorded in a linear array A of structures Indiv. Each element of A defines the state of 
the correspondng individual. 
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For example, this would be defined as struct A [indi v+3] , the main array of individuals. 
Suppose there are 3 UK-born and 3 non-UK-born individuals, with a total maximum 
population size of 14 (indiv). Note, in the SSAV version of the model. SSAs are stored as 
non-UK born and it is not possible to tell from their ID number alone whether they are 
SSA-born or ONUK-born. 

n A[n] A array index 

o [Reserved] (Null pointer for list) 
1 (Non-UK-born) 
2 (Non-UK-born) 
3 (Non-UK-born) 
4 [Empty] 
5 [Empty] 
6 [Empty] 
7 [Empty] 

-------------------(Imaginary 
8 (UK-born) 
9 (UK-born) 

10 (UK-born) 
11 [Empty] 
12 [Empty] 
13 [Empty] 
14 [Empty] 
15 External event, birth 

immid-1 
immid 

maximm 
separator, non-UK/UK born) 

maximm+1 

ukbid-1 
ukbid 

indiv 

16 External event, immigration 
indiv+1 or BIRTH 
indiv+2 or IMM 

--------------------------------------------------

4. MODEL FITTING. Prior versions of the model were designed to work with an opti
mization algorithm for model fitting, currently found in fi t5. c. In this version of the 
model, the fitting routine is not needed. 

To run this program stand-alone, as opposed to inside the fitting routine, simply comment 
out the =define main mainiac and everything else will be handled automatically. 

Below is a sample program call when it is running as an individual executable, not linked 
with the fitting routine. A different syntax is used for the call inside fi t5i. c. 

tb36gen df=2.5 d1uk20=0.10 d2uk20=0.0003 d3uk20=0.05 

When linked with the fitting routine, the model is called from the fitting routine, not as an 
independent executable, so that it is compatible with parallel runs using MPI commands. 
In this set up, the model accepts four variable disease risk parameters, df, dluk20 [M] , 
d2uk20 [M] , and d3uk20 [M] . See the function Data for information on these. Briefly, df is 
the factor by which UK-born disease risks are multiplied to obtain non-UK born disease 
risks. The other three parameters are UK~born disease risks for Primary, R.eactivation, 
and R.einfection Disease respectively, in adult males (those aged 20 years and over). In 
this version of the model, disease risk are fixed for children under ten years of age, allowing 
for fewer variable parameters. 

5. OTHER.. Note that the following program substitutes the term dec for the C term 
double. It is short for "decimal", in contrast and parallel with "integer", saving valuable 
coding columns at the left of the line and helping data names line up. 

The sequence of random numbers is specified on the command line with phrases like rand
seq=O, randseq=l, randseq=-6, randseq=239702397623, and so forth. Fixed sequences 
that are the same each time the program runs occur when randseq is 0 or greater. Each 
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integer gives a different sequence of random numbers. (Actually. it gives only a different 
starting point in a single long sequence of random numbers.) Positivp integers. or zero. 
are typically used in testing because program results are precisely repeatable. 

Arbitrary sequences that are different, with high probability, each time the program runs 
occur when randseq is negative. The date and time, measured to the nearest second. 
selects the starting sequence. then the negative value modifies that sequence. Thus if 
several instances of the program were started on separate processors at the same time. the 
first with randseq=-l, the second with randseq=-2, and so forth. each instance of the 
program is guaranteed a different random number sequence. Unlike the case with non
negative integers, however, the sequence be different each time the program runs. with 
very high probability. 

The actual starting seed, incorporating the time of day if requested by a negative value of 
randseq, is stored in randO and reported at the end of the run. That allows a run to be 
repeated exactly even if it was started with an arbitrary sequence. 

6. NOTES ON GENETIC STRAINS. At model initialization, strains are randomly as
signed from two different strain type distributions derived from empirical data, one for 
non-UK born and one for UK-born, saved in sdimm and sduk, respectively. Also, the total 
number of available strains in each distribution is isO and isl, respectively. These are set 
in define statements before the model is run to faciliate array initialization and contiguous 
number of strains. New mutant strains which appear as the simulation runs will be given 
strain IDs distinct from any in the sdimm or sduk distributions. These IDs will begin with 
integer isO+isl and will always be greater than or equal to this value. The variable stid 
holds the next available strain type ID for new mutants. The diagram below illustrates 
which strain IDs belong to which individuals in the simulation: 

StrainID Available for Generic Reference 

--------------------------------------------------------
0 
1 
2 
3 
4 
5 
6 
7 
8 

(Not used) 
Initial non-UK, 
Initial non-UK, 
Initial non-UK, 
Initial non-UK, 
Initial UK 
Initial UK 
Initial UK 
Initial UK 

migrants 
migrants 
migrants 
migrants isO 

isO+l 

9 New mutant strain 
isO+isl 
isO+isl+l 

10 New mutant strain 
11 New mutant strain 
14 Next available new mutant stid 

#include 
#include 
#include 
#include 
#include 

#define 
#define 
#define 

#define 
#define 

<stdio.h> 
<stdlib.h> 
<time.h> 
Itcommon.hlt 
Itfileio.hlt 

PN (ql+l) 
TO 1981 
Tl 2012 

TDATA 2007 
SSAV 1 

N umber of elements in array N. 
Start time of model, years. 
End time of model, years. The simulation 
ends before reaching this year. 
First year of observed data, for reporting times. 
Switch model version depending on existence 
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#define SUPER 1 

#define DPARAM 1 

#define REC 
#define BIRTH 
#define IMM 
#define RT 
#define NUK 
#define UK 
#define HIV 
#define SSA 
#define M 
#define F 
#define E 

#define AC 122 
#define LAT 5 

1 
(indiv+l) 
(indiv+2) 
(Tl-TO) 
o 
1 
2 
2 
o 
1 
0.0000000001; 

#define BY (2012-1870+1) 
#define ISO 5000 
#define lSi 1000 

dec N[PN]j 
dec N2 [4] [2] [2] [RT] ; 

dec N3[4] [2] [2] [RT] ; 

int Np [4] [2] [2] [RT] ; 
dec agel[2],age2[2],agee[2]; 

dec repc[4] [2] [2] [2] [RT]; 

dec repc2[4] [2] [2] [2] [RT] [5]; 

dec repc3[15000] [7]; 

int ari[2] [RT]; 

int clust[4] [2] [2] [5]; 

int deaths; 
int events; 
int immid; 
int ukbid; 
int stid; 
int repid; 

of separate SubSaharan African group, 
O=non-SSA. l=SSA. 
Flag for whether model is run on supercomputer, 
O=no, 1 =yes (changes population sizes). 
Allows model to accept disease progression 
parameters (4 in this version), O=no, 1 =yes. 
Flag for whether tallying recent transmissions. 
Index used for scheduling births. 
Index for scheduling arrival of immigrants. 
Running time of model, calendar years. 
Array index for nOll-UK born. 
Array index for UK-born. 
Array index for HIV +. 
Array index for SSA-born. 
Array index for males. 
Array index for females. 
Small number added to some event times to 
ensure they happen in the future. 
Age classes for mortality data. 
Years to Remote from recent (re) infection. 
Number of birth cohorts for mortality data. 
Number of strains for migrants. 
Number of strains for UK-born at model 
initialization. 
Current number in each disease state. 
Population sizes in the model at end of year by 
age, sex, rob and year. 
Population sizes observed, which are compared 
with model population sizes and used to correct 
case numbers produced by the model. 
Infected persons by age, sex, rob, year. 
Accumulators for 1st and 2nd moments of age. 

Reported cases by age category, sex, rob, 
disease site and year. 
Time/place of tranmission for reported cases, 
indexed as repe plus last index is 0 for 
total cases, 1 for recent/UK, 2 for older/UK 
3 for recent/NonUK and 4 for older/NonUK. 
Data on typed cases, O=age, l=sex, 2=rob, 3=time 
of report, 4=place/time of infection, 5=strain ID, 
6=number of others with identical strain. 
Number of successful transmissions, by rob 
(UK/NUK) and year. 
Clustering data by age, sex, and rob, where 
last index gives cases which are: O=unique and 
non-recent/non-UK,l=unique and recent/UK, 
2=dustered and non-recent/non-UK, 3=clustered 
and recent/UK, 4=total typed cases. 
Current number of deaths. 
Current number of events dispatched. 
Next available ID number for immigrants. 
Next available ID number for UK-born. 
Next available ID for new strain types. 
Next available ID for repe3 case report. 
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extern dec t; 
dec pt; 
dec to = TO; 
dec t1 = T1; 
int tdata = TDATA; 
int lup; 

dec runid; 

unsigned long startsee; 
unsigned long randO; 

struet Indiv *A; 

Current time (Managed by EventSehedule). 
Time of previous report. 
Beginning time of simulation. 
End time of simulation. 
First year of observed data. 
Year of last update to birth and immigration 
rates. which are sensitive to calendar year. 
ID number for printing output files. 

Starting clock time, seconds of Unix. 
Starting random number seed. 

State of each individual, including their 
characterisitics, saved event times, etc. 

1. Parameters and control variables 

Population initialization 

int maximm; 
dec inf1981 [121] [3] [2] [9]; 

dec n1981[121] [2] [2]; 

dec ssa1981 [121] [2]; 

Infection transmission 

dec e [2] [2] ; 

dec pee; 

dec s2[2]; 
dec smear[121]; 

Vaccination 

dec v1[2]; 
dec v2[2]; 
dec v3[2]; 

Disease progression 

dec d1 [2] [3] [121] ; 

dec d3[2] [3] [121]; 

dec drr[6]; 

dec B1[6]; 

Maximum immigrants in pop 'n at any time. 
Cumulative probabilities of the 9 disease 
states for pop. initialization (by a,s,rob). 
Numbers in each age/sex/rob category at 
population initialization, 1981. 
Proportion SSA by age/sex category. 

Effective contacts per year per pulmonary 
case (smear+) by sex and region of birth. 
Probability effective contact is close contact 
(drawn from within own region of birth, 
UK or non-UK). 
Relative susceptibility to reinfection (s). 
Proportion smear positive by age. 

Efficacy of vaccine (rob). 
Portion vaccinated at designated age (rob). 
Average age of vaccination (rob). 

Proportion Recently Infected who progress to 
disease over first 5 years of infection 
(by sex,rob,age) 
Proportion Reinfected who progress to disease 
over first 5 yrs of reinfection (by a,s,r). 
Cumulative, relative risk of disease 
progression by year since infection, used 
with d1 and d3 (for first 5 years of infection). 
Array of values for finding cumulative risk of 
in first five years of infection/reinfection, 
used with drr. 
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dec d2[2] [3] [AC+2]; 

dec A2[AC+2] ; 

dec ehiv; 

dec df; 

dec dlukl0[2]; 
dec dluk20[2]; 
dec d2ukl0[2] ; 
dec d2uk20[2]; 
dec d3ukl0[2] ; 
dec d3uk20[2]; 
dec sdfl [2] ; 
dec sdf2[2]; 
dec sdf3 [2] ; 
dec presp; 

dec pi [121] [2] [2] ; 
dec p2 [121] [2] [2] ; 
dec p3 [121] [2] [2] ; 
dec duklp [2] [2] ; 
dec duk2p [2] [2] ; 
dec duk3p [2] [2J ; 

dec dlp[121J [2J [2J; 
dec d2p[121J [2] [2J; 
dec d3p[121J [2J [2J; 

Proportion of those Remotely Infected who progress 
to disease, cumulative dsn by sex, rob 
(where r=O, 1, or 2. 2=HIV+ and SSA in 
SSA version of model), and age. 
Array of values for finding random time to 
disease for Remote Infection. 
Factor by which non-UK born disease risks are 
multiplied for HIV + SSA individuals. 
Factor by which UK-born disease progression 
rates are multiplied to get immigrant rates. 
Rates of disease progression for primary (1), 
Reactivation (2), and Reinfection (3) disease 
for those aged 0-10 (10) and 20+ (20) by sex. 
These help construct dl, d2, and d3. 

Risk ratios for female:male disease 
progression risks/rates (by age 0-10,20+). 

Proportion of all tuberculosis which is respiratory, 
for correcting disease risks in Vynn. and Fine to 
pulmonary disease risks in children. 
Portion pulm -primary disease (a,s,rob) 
Portion pulm -reactivation disease (a,s,rob) 
Portion pulm -reinfection disease (a,s,rob) 
Intermediate parameters for pulmonary-only 
rates of disease progression. Used for 
incorporating estimated rates from Vynnycky and 
Fine into rates for this model, which are 
combined pulmonary / non-pulmonary. Indexed by 
age (O-lOyrs, 20+yrs) and sex. 
Intermediate param's for pulmonary-only rates 
of disease progression. Used to get overall 
rates using those estimated by Vynn. and Fine 
(which are pulmonary rates). Indexed by age, 
sex, and rob. Precursors to dl, d2, d3. 

Disease recovery, indexed by sex 

dec r3[2] ; 
dec r4[2]; 
dec r5[2J; 
dec r6[2]; 
dec r7[2]; 
dec r8[2J; 

Mortality 

dec Al[ACJ; 

dec Ml [BYJ [2] [ACJ ; 

dec eft [121J [2J [RTJ ; 

Primary disease recovery rate 
Reactivation disease recovery rate 
Reinfection disease recovery rate 
Primary non-pulmonary disease recovery rate 
Reactivation non-pulm. disease recovery rate 
Reinfection non-pulm. disease recovery rate 

Holds ages 0-121 which correspond to the 
cumulative probabilities in Ml. 
Cumulative probabilities of death by a given 
birth cohort, sex and age. 

Case fatality rate due to tuberculosis (a,type dis,y) 
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Below are mortality rates used to generate lifetimes with exponential distribution. used 
for "reduction testing" of the model. 

dec ml [2] [RT] ; 
dec m6 [2] [RT] ; 
dec m7 [2] [RT] ; 
dec m8 [2] [RT] ; 
dec m9 [2] [RT] ; 
dec ml0[2] [RTJ; 
dec ml1 [2] [RT] ; 

Birth and migration 

dec bey[RTJ; 
dec pmale[RT]; 
dec immig[RT]; 
dec pimm[RTJ; 
dec ssaim[RT]; 

dec hi vp [2J [RT] ; 

dec immsex[RTJ[3J; 

dec immage[RT] [2J [3J [7J ; 

dec immageX[RTJ [2] [3J [6J; 

dec infimm[121] [3] [RT] [9]; 

dec Ax[9]; 
dec ypb, ypi; 
dec em[2] [3] ; 

Strain type related 

dec md; 
dec mi; 
dec isO = ISO; 
dec isl = IS1; 
dec SO[ISO+l]; 

dec Sl [IS1+l] ; 

dec sdimm[ISO+l]; 

dec sduk[IS1+l]; 

dec ptyped[2]; 

Mortality of uninf/vacc/inf iud's (sex. y) 
Mortality of primary disease (sex.y) 
Mortality of reactivation disease (sex.y) 
Mortality of reinfection disease (sex,y) 
Mortality of primary nOll-pulm. disease (sex,y) 
Mortality of reactivated non-pulm. disease (s,y) 
Mortality of reinfection non-pulm. disease (s,y) 

Births by calendar year. 
Portion of newborns who are male by year. 
Total (uk+non-uk-born) immigrants by year. 
Proportion of immigrants non-UK born by year. 
Proportion of non-UK born immigrants born in 
SubSaharan Africa by year. 
HIV Prevalence in SubSaharan African born 
immigrants by sex,year. 
Proportion immigrants who are male by yr and 
rob:O=non-UK,l=UK, 2=non-UK SSA. Note there 
are different input files for SSA and non-
SSA version of the model. 
Cumulative proportion of immigrants (by yr, 
sex,rob) in age classes, for use with RandF. 
Probabilities of 6 age classes (by yr,sex, 
rob) from ONS inflow data-as in immsex. 
Note there are two versions of the input file 
for this array. Precursor to immage. 
Cumulative probabilities immigrants enter 
disease states, by age,rob and year. 
State variables which accompany inf imm. 
Years per birth, years per immigrant. 
Annual emigration rate by sex. rob. 

Mutations per year per strain type (diseased). 
Mutations per year per strain (infected). 
Number of strains for migrants. 
Number of strains for UK-born. 
Strain IDs to accompany strain distribution 
for migrants. 
Strain IDs to accompany strain distribution 
UK-born at initialization. 
Cumulative probabilities of strain types 
for non-UK born and migrants. 
Cumulative probabilities of strain types 
for UK-born at initialization. 
Proportion of cases with strain type, by 
disease site, O=non-pulm, l=pulm. 
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Assorted 

The following two recovery rates will not be used in version of model that defines Remote 
Infection as LAT years after most recent infection. 

dec r1 [2] ; 
dec r2[2] ; 

dec proprep; 

dec re1ativetime = 0; 

Rate Recent Infection moves to remote (s) 
Rate Reinfection moves to remote (s) 

Proportion of cases reported. 

Set for relative time reporting. 
dec randseq = 
dec tgap = 

0; 
0.5; 

Random number sequence (set with randseq=N). 
Time between reports, years. 

dec kernel = 0; 
dec sigma = 1 ; 

struct IO fmt [] 
{ 1*00*1 { (dec*)bcy, 

1*01*1 { (dec*)immig, 
1*02*1 { (dec*)pimm, 
1*03*1 { (dec*)ssaim, 
1*04*1 { (dec*)pmale, 
1*05*1 { (dec*)hivp, 
1*06*1 { (dec*)infimm, 
1*--*1 { (dec*)inf1981, 
1*--*1 { (dec*)inf1981, 
1*09*1 { (dec*)ssa1981, 
1*10*1 { (dec*)n1981, 
1*11*1 { (dec*)immsex, 
1*12*1 { (dec*)immageX, 
1*13*1 { (dec*)immage, 
1*14*1 { (dec*)Ml, 
1*15*1 { (dec*)cft, 
1*16*1 { (dec*)dl, 
1*17*1 { (dec*)d2, 
1*18*1 { (dec*)d3, 
1*19*1 { (dec*)inf1981, 
1*20*1 { (dec*)smear, 
1*21*1 { (dec*)N3, 
1*22*1 { (dec*)repc, 
1*23*1 { (dec*)sdimm, 
1*24*1 { (dec*)sduk, 

{ } }; 

Contagion kernel, 0= Panmictic , 1 = Cauchy. 
Width of contagion kerneL where applicable. 

Format statements for input/output. 
{ - ) i ' ,RT} }, 
{-, i ' ,RT} }, 
{-, i ' ,RT} }, 
{-'i',RT} }, 
{-'i' ,RT} }, 
{-'s',2,-'Y',RT}, {-'y',-'S'} }, 
{-'a' ,121,-'r' ,3,-'y' ,RT,-'q' ,9}, {-'R' ,O,SSAV+l,-'Y' ,-'Q' ,-'A'} }, 
{-'a' ,121,-'r' ,2,-'q' ,9}, {-'a' ,120,O,-'r' ,UK,UK, -'q' ,1, 7} }, 
{-'a',121,-'r',2,-'q',9}, {-'a',120,O,-'r',NUK,NUK,-'q',l,7}}, 
{-'a' ,121,-'s' ,2}, i-'s' ,-'A'} }, 
{-'a' ,121,-'s' ,2,-'r' ,2}, i-'s' ,-'a' ,-'R' ,l,O,l} }, 
{-'i' ,RT,-'r' ,3}, {-'i' ,-'R' ,O,SSAV+1} }, 
{-' i' ,RT ,-'s' J 2,-'r' ,3,- 'a' ,6}, {-' i', -'r' ,O,SSAV+l, -'s' ,-'a'} }, 
{-'i' ,RT,-'s' ,2,-'r' ,3,-'a' ,7}, {-'i' ,-'R' ,O,SSAV+l,-'A' ,-'s'} }, 
{-'i',BY, -'s',2,-'a',AC}, {-'s',-'i',-'A'} }, 
{-'a' ,121,-'d' ,2,-'i' ,RT} }, 
i-'s' ,2,-'r' ,3,-'a' ,121}, i-'s' ,-'r' ,O,l,-'A'} }, 
i-'s' ,2,-'r' ,3,-'a' ,124}, i-'s' ,-'r' ,O,2,-'A'} }, 
i-'s' ,2,-'r' ,3,-'a' ,121}, i-'s' ,-'r' ,O,l,-'A'} }, 
{-'a' ,121,-'s' ,2,-'r' ,3,-'q' ,9}, {-'r' ,-'s' ,-'A' ,120,O,-'Q' ,l,8} }, 
{-'a' ,121} }, 
{-'a' ,4, -'s' ,2,-'r' ,2,-'i' ,RT} }, 
{ -, a' ,4, -' s' ,2, -, r' ,2, -' d ' ,2, -' i " RT} }, 
{-'i',ISO+1} }, 
{-'i' ,IS1+!} }, 

2. Main initialization 

This routine should be called each time the program is reused. to clear static variables 
for the next run. The function was added when tb30i. c was made into a function of the 
fitting routine, to implement parallel, replicate runs of the tuberculosis program. This 
would not be necessary if the program were called as independent executable. as before. 

Mainlnit() 
{ int i,j,k,1,m,nj 

for(i=O; i<PNj i++) N[i] = 0; 
for(i=Oj i<2j i++) age1[i] = age2[i] = agec[i] = OJ 

for(i=Oj i<4; i++) 
for(j=Oj j<2j j++) 
for(k=Oj k<3; k++) 
for(l=Oj 1<2j 1++) 
for(m=Oj m<RT; m++) 
for(n=Oj n<5; n++) 
{ repe [i] [j] [k] [1] em] = 0 j 
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repc2[iJ [jJ [kJ [lJ [mJ [nJ 
ari[jJ [mJ 
N2 [iJ [j J [kJ [mJ 
N3 [i] [j] [k] em] 
Np [i] [j] [kJ [mJ 
clust [iJ [jJ [1] [nJ 

for(i=O; i<15000; i++) 
for(j=O; j<7; j++) 

repc3 [iJ [jJ =0; 

= 
= 
= 

= 
= 

0; 
0; 
0; 
O' , 
0; 
0; } 

deaths events = immid ukbid = repid = stid 0; 
t = pt = 0; 

} 

3. Main program 

Due to an MPI bug not allowing popen and related routines to work. the tuberculosis 
program is defined as a function which returns an array of output (rather than stand
alone executable) for use with the fitting routine. A define statement is used to control 
whether tuberculosis program is a stand-alone executable or function within the fitting 
routine. 

#define main dec *mainiac 

#ifdef main 
static int fit5i = 1 ; 
#else 
static int fit5i = 0; 
#endif 
static int fitm 2; 

dec out [1000] ; int outi; 
dec outn[1000]; int outni; 
dec outc[1000]; int outci; 
dec out 0 [1000] ; int outoi; 

main(int argc, char *argv[]) 
{ int i, j, k, I, n, sid; 

startsec = time(NULL); 

if(fit5i==0) Errorlnit(); 
Mainlnit(); 
Eventlnit() ; 
Finallni to; 
ReportIni to; 

A = (struct Indiv *) 
calloc(indiv+3, sizeof(struct Indiv»; 

if(A==O) Error(911.); 

if(SUPER) maximm = 900000; 
else maximm = 500000; 

Make main not the real main. for 
use with fitting routine. Comment 
out for independent executable. 

Flag set when linked with fitting. 

Flag set when not linked. 

Flag set when fitting to rates, 
(O=numbers. l=rates, 2=clust 
and 3=overall rates). 

Main output array (all). 
Main output array (case numbers). 
Main output array (dust). 
Main output array (overall rates). 

Retrieve the wall-clock time. 

Trap system failures. 
Start the main program. 
Start the event queue. 
Start the final reports. 
Start the output reports. 

Allocate array of individuals. 
(Not static because of gee bug 
restricting such arrays to 2GB.) 

Adjust maximm if not running on 
supercomputer. 
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} 

DataO; 

gparam(argc, argv); 

ParamO; 

if(bcy[O]<=O.OOOl) 
{ ypb = RT*100; 

printf("Births are zero!\n"); } 
else ypb = 1./bcy[0]; 
if(immig[O]<=O.OOOl) 
{ ypi = RT*100; 

printf("Immigrants are zero!\n"); } 
else ypi = 1./immig[0]; 

lup = to; 

randO = abs(randseq); 
if (randseq>=O) RandStart(randO); 
else randO = RandStartArb(randO); 

EventStartTime(tO); 

t = to; 

stid = isO+isl; 

InitPop(); 

Report(argv[O]); pt = t; 

BirthGO; 
ImmigrateGO; 

for(t=tO; t<tl; Dispatch()) 
{ if(t-pt<tgap) continue; 

pt = t; Report(argv[O]); } 

Report(argv[O]); 
eluatO; 
Final 0 ; 
free(A); 

if (fit5i) 
return fitm==O?outn: fitm==l?out: 

fitm==2?outc: auto; 

return 0; 

Read in appropriate data files 
and parameters. store to arrays. 
Collect parameters which have 
been changed on the command line. 

Update par amet ers/ distributions 
affected by parameters changed. 

Calculate years per birth and years 
per immigrant at t=tO for 
scheduling. If none should occur. 
make interval very large, so 
they never happen. 

Update time of last update for 
parameters sensitive to 
calendar year. 

Start the random number sequence 
from a specified or an arbitrary 
place. 

Initialize the event queues. 

Set the starting time. 

Set first available new strain 
strain ID for mutants. 

Set up initial population. 

Report initial conditions. 

Start external event generators 
for birth and immigration. 

Main loop: process events, 
reporting results periodically. 

Get final report. 
Get clustering statistics. 
Close processing and return to 
caller. 

If linked with fitting routine, 
return selected results. 

Otherwise return a success code. 

4. Dispatch next event 

All events pass through this routine. It picks the earliest event in the list of pending 
events, sets the time to match that event, and performs the operations called for by that 
event. Typically that will result in other events being scheduled, to be seen in the future 
as they arrive at the top of the list of pending events. 
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Entry: The system is initialized with all events in the list ready for 

Exit: 

processing. 
t contains the present time. 
t 1 contains the ending time. 

The next event has been processed and events incremented. if the 
events time is less than t1'. 

t is advanced to the next event. which may be an unprocessed event at 
time greater than t1. 

Dispatch() 
{ int n; dec tw; 

tw = t; 
n = EventNext(); if(t>tl) return; 
tstep(tw, t); 
events += 1; 

Remember the previous time. 
Advance time to the next event. 
Record the size of the time step. 
Increment the events counter. 

switch(A[n] .pending) 
{ case pVaccin: Vaccination(n); break; 

case pTransm: Transmission(n); break; 
case pRemote: Remote(n); break; 
case pDisease: Disease(n); break; 
case pDeath: Death(n); break; 
case pMutate: Mutate(n); break; 
case pEmigrate: Emigrate(n); break; 
case pBirth: BirthGO; break; 
case plmmig: ImmigrateG () ; break; 
case pRep: Rep(n); break; 

default: Error2(92i.2, 
"(A[",n,"] .pending=",A[n] .pending); } 

} 

5. Birth 

Process the event. 
[Vaccination] 
[Transmission of an infection] 
[Transition to latency] 
[Progression to disease] 
[Death] 
[Strain type mutation] 
[Emigration] 
[Birth generator] 
[Immigration generator] 
[Case report] 

[System error] 

This routine is dispatched when an individual is to be born. All newborns are Uninfected; 
exit from the Uninfected compartment is by vaccination to the Immune compartment. by 
infection to the Recent Infection compartment, and by emigration from the population or 
death. 

Entry: n indexes an individual being born. 
b contains the time of birth. Presently, this is the current time, 

though with some set up, it could be earlier than present (notably. 
pmale would have to be indexed differently). 

t contains the current time. 
A en] . state contains the present state of the record (can be any state, 

including 0, which is not a state but marks records not yet assigned). 
ml contains the mortality rate for susceptible individuals, if applicable. 
em contains the emigration rate. 
vi contains vaccine efficacy. 
v2 contains the probability that an individual will be vaccinated. 
v3 contains the average age of vaccination. 
VTYPE is zero if vaccinations are to match ODE conventions. 
No event is scheduled for individual n. 
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Exit: Birth contains a status code. 
o The individual would die before the current time so no birth has been 

recorded and no event scheduled. 
1 Entry n is initialized as a susceptible newborn and its first event 

is scheduled, either vaccination, emigration or death. 
A en] . state marks a susceptible individual. 
Counters in N are updated. 

#define VTYPE 1 

int Birth(int n, dec b) 
{ int y, s, v, e; dec wd, we, wv; 

Vaccination type. 

if (n<maximm+l) Errorl (610 .1, "n=", (dec)n); Check for appropriate n, this 
if (n>indiv) Error1(610.2, "n=", (dec)n); routine does not allow immigrant 

y = (int)t - (int)tO; 
A[n] .sex = Rand()<pmale[y]? 0: 1; 
s = A[n].sex; 

wd = b+LifeDsn(s,t-b,ml[s] [y]); 
if(wd<t) Error(850.); 
we = b+EmDsn(l,s,t-b,em[s] [UK]); 

A[n] .tBirth = b; 
= wd; A[n] .tDeath 

A[n].tEmigrate we; 
A[n] .rob = 1; 
NewState(n, qU); 
A[n].tExit = 0; 
A[n] .tDisease 0; 
A[n] .tTransm = 0; 
A[n).tMutate = 0; 
if(REC) A[n] .inf = 1; 
if(SSAV) A[n].ssa = 0; 
A[n] . strain = 0; 

v = 0; switch (VTYPE) 
{ 

case 0: 
wv = b+Expon(v1[UK]*v2[UK]/v3[UK]); 
if(wv<wd && wv<we) v = 1; 
break; 

case 1: 
wv = b+v3[UK]+Rand(); 
if(b<1993 && Rand()«vl[UK]*v2[UK]) 

&& wv<wd && wv<we) v = 1; 
break; 

default: Error1(611., "", (dec)VTYPE); } 

if(v) 
{A[n].pending = pVaccin; 

EventSchedule(n, wv); 
return 1; } 

if (we<wd) 

births or births to those with 
index number greater than indiv. 

Retrieve year index for arrays. 
Assign the newborn's sex. 

Schedule a time of death and 
check for errors. 
Calculate time of emigration. 

Record the time of birth. 
Record the time of death. 
Record the time of emigration. 
Set as born in UK. 
Mark as Uninfected. 
Clear any other saved event 
times or states. 

Select the type of vaccination 
scheduling. 

Generate a time for vaccination 
compatible with ODE models (for 
testing). 

Generate a vaccination sometime 
within the specified year if 
probabilities allow. 

Improper vaccination type. 

If vaccination occurs before 
death and emigration, schedule 
the vaccination. 

Schedule emigration if that 
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} 

{ A[n] . pending = pEmigrate; 
EventSchedule(n, we); 
return 1; } 

{ A[n] . pending = pDeath; 
EventSchedule(n, wd); 
return 1; } 

is the earliest event. 

Otherwise. schedule death. 

6. Immigration 

This routine brings a new individual into the population from outside. The new individual 
assigned demographic and infection-related attributes according to appropriate probability 
distributions. They are then scheduled for their earliest event. All information stored 
for this individual is written over. in case their index number is being recycled from an 
individual leaving the study population through death or emigration. 

Entry: n contains the index number of the new immigrant. The contents of the 
record is undefined. 

t contains the current time. 
indi v contains the highest index number for any individual. 
maximm contains the highest index number for an immigrant. 
to contains begining time of the simulation. 
SSAV contains model version, O=non-SSA, 1=SSA 
ssaim contains proportion of non-UK born immigrants from SSA by year. 
immsex [r] contains the proportion of immigrants who are male, 

r=O, non-UK born; r=1, UK-born; r=2, SSA-born. Note in SSA and non-SSA 
versions of the model, non-UK born will be defined differently. 

Exit: 

hi vp contains the HIV prevalence, by sex and year, for SSA immigrants. 
infimm contains cumulative probabilities immigrants enter disease 

states, by age, rob and calendar year. 
Ax contains state variables which accompany inf imm. 
Ml contains the mortality table for non-diseased (real runs only). 
Ai contains state variables which accompany M1. 
ml contains the mortality rate (ODE validation only). 
em contains the emigration rate. 
vi contains vaccine efficacy. 
v2 contains the probability that an individual will be vaccinated. 
v3 contains the average age of vaccination. 
No event is scheduled for individual n. 

An event is scheduled for individual n. 
A En] . state contains the disease state. 
A En] . tEntry contains the time of entry to the new state. 
A En] . tBirth contains the time of birth. 
A En] . tImm contains the time of immigration. 
A En] . tDeath contains the time of death. 
A En] . tEmigrate contains the time of emigration. 
A En] . sex contains the sex. 

int Immigrate(int n) 
{ int y,s,rob,rob2,ac,a,st; dec r,age,wd,we,wv,tinf; 

if(n>indiv) Error1(610.3, "n=", (dec)n); 
if (n<l) Errorl (610.4, "n=", (dec)n) ; 

Check for appropriate n. 

429 



Set up basic, uninfected immigrant 

NewState(n,qU); 

y = (int)t - (int)tO; 

A[n] .tExit = 0; 
A[n] .tDisease = 0; 
A[n] .tTransm 0; 
A[n] .tMutate = 0; 
if(REC) A[n] .inf = 1; 
if(SSAV) A[n] .ssa = 0; 
A[n].strain = 0; 

if(n<=maximm) A[n] .rob rob = 0; 
else A[n] .rob = rob = 1; 

s = 0; 

if(rob==O && SSAV==l) 
{ A[n] .ssa = 0; 

if (Rand()<ssaim[y]) 
{ A En] . ssa = 1; 

if (Rand()>immsex[y] [SSA]) s = 1; 
if (Rand()<hivp[s] [y]) A[n].ssa = 2; } 

else 
if (Rand(»immsex[y] [0]) s = 1; } 

else 
if (Rand(»immsex[y] [rob]) s = 1; 

A[n] .sex = s; 

age=GetAge(n,s,rob); 
a = (int) age; 
rob2=rob; 
if(SSAV && A[n].ssa) rob2=2; 

A[n] .tBirth = t-age; 

A[n].tDeath = wd 
= t+LifeDsn(s,age,m1[s] [y]); 

if (wd<A[n] .tBirth+age) Error(612.1); 

A[n].tEmigrate 
= we 
= t+EmDsn(rob2,s,age,em[s] [rob2]); 

if(age<v3[rob] && Rand()<vl[rob]*v2[rob] 
&& t<2005-(v3[rob]-age)) 

wv = t+(v3[rob]-age)+Rand(); 
else wv = t+2*RT+Rand(); 

if(wv<wd && wv<we) 
{ A[n] . pending = pVaccinj 

EventSchedule(n, wv); } 

else if(wd<we) 
{ A[n].tExit = wd; 

A[n].pending = pDeath; 
EventSchedule(n, wd); } 

Assign to U ninfected state 
to start with. 
Get array index for year. 

Clear saved event 
times or states. 

Assign rob=O to all non-UK born. 
Assign rob=l to UK-born. 

Set sex as male to begin. 

If non-UK born and running 
SSA version of model. check 
to see if SSA. If so, get their 
sex and HIV status. 
Get sex of SSA. 
Get HIV status of SSA. 
If not SSA. leave as other non
UK and assign sex. 
Assign sex to non-UK-born in 
non-SSAV model and UK-born. 

Assign sex to record. 

Assign age. 
Save integer age. 
Create rob2 (0,1 and 2) 
since here rob is only 0 or 1). 

Save time of birth based on age. 

Assign time of death and check 
death time is ok. 

Assign emigration time. 

Determine if vaccination should 
occur and assign vaccination 
time if so. If it should not 
occur, set to time which will 
not happen in the model. 
Schedule vaccination if it is 
the earliest event. 

Schedule death if it is the 
earliest event. 
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else 
{ A[n] .tExit = we; 

A[n].pending = pEmigrate; 
EventSchedule(n, we); } 

A[n] .tDisease 
A[n] .tTransm 
A[n] .tMutate 

= 

= 

OJ 
O' , 
0; 

Otherwise schedule emigration if 
it is the earliest event. 

Clear time to disease. 
Clear time to transmit. 
Clear time of strain mutation. 

Assign disease state to immigrant and process accordingly 

} 

st = 1+ 
(int)RandF(Ax,infimm[a] [rob2] [y] ,9,1.0)j 

if(st==l) 
return 0; 

else if(st==2) 
{ EventCancel(n); 

Vaccination(n); 
return 1; } 

else if(st==3) 
{ tinf = Rand()*5; 

Infect(n,tinf,Strain(O),O); 
if(REC) A[n] .inf = 3; 
return 2; } 

else if(st==4) 
{ EventCancel(n); 

A[n] . strain = Strain(O); 
NewState(n,qD1); 
Remote(n); 

if(REC) A[n].inf = 4; 
return 3; } 

else if(st==5) 
{ NewState(n,qI2); 

tinf = Rand()*5; 
Infect(n,tinf,Strain(O),O); 

if(REC) A[n] .inf = 3j 
return 4; } 

else if(st>5 && st<9) 
{ EventCancel(n); 

A[n].strain = Strain(O); 
NewState(n,st-3); 
Disease(n); 
if (REC) 
{ if(st==7) A[n] .inf = 4; 

else A[n] .inf = 3; } 
return 5; } 

else 
Error(618.1); 
return 0; 

Get random disease state. 
Do nothing if Uninfected. 

Process Immune. 

Process Recently Infected. 
Set random time since infection 
within the last five years. 
Assign inf (time/place). 

Process Remotely infected. 

Assign infection strain. 
Put in temporary disease state 
to facilitate re-scheduling of 
events in the Remote function. 
Assign inf (time/place). 

Process Reinfected. 
Put in Remote infection so 
that Infect picks this up 
as reinfection. also draw 
random infection time. 
Assign inf (time/place). 

Process Primary, Reactivation. 
Reinfection disease classes. 
Assign infection strain. 
First put in correct infection 
class and then send to Disease. 
Assign inf (time/place) 

(Will never reach this). 
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7. Vaccination 

This routine is dispatched when an individual is scheduled for an effective vaccination. In
effective vaccinations are already accounted for-they are never scheduled for this routine. 
Effective vaccinations are assumed to impart lifelong immunity; therefore individuals will 
never leave this state, except by dying or emigrating from the population. 

Entry: n indexes an individual being born. 
t contains the current time. 
A En] . state contains the present state (always qU). 
A En] . sex contains the individual's sex. 
A En] . tEmigrate contains time of emigration. 
A En] . tDeath contains time of death. 
No event is scheduled for individual n. 

Exit: A En] . state contains the new state, qV. 
Counters in N are updated. 

int Vaccination(int n) 
{ 

} 

NewState(n, qV); 

if(A[n].tEmigrate<A[n].tDeath) 
{ A[n] . pending = pEmigrate; 

EventSchedule(n, A[n].tEmigrate); } 
else 
{ A[n] . pending = pDeath; 

EventSchedule(n, A[n].tDeath); } 

return 0; 

Change states. 

Schedule emigration if that is 
the earliest event. 

Otherwise, schedule death. 

8. Infect a specified individual 

Individuals receive infections from others via this routine. If the targeted individual is 
in the Uninfected or Remote Infection state. it acquires the infection and moves to the 
Recent Infection or Reinfection state. The individual is then scheduled to return to Remote 
Infection, develop disease, emigrate, die or have its strain type mutate, depending on 
probabilities of each and random chance. If the individual targeted for infection is in one 
of the other nine disease states, they are not susceptible to infection and the transmission 
event has no effect. 

Entry: n indexes the individual to be infected. 
tinf contains the time of infection, 5 or fewer years ago. 
strain contains the strain ID number of infecting strain. 
type differentiates infections at initialization or migration, 

type=O or transmission during the simulation, type=1. 
t contains the current time. 
A En] . state contains the state of infection target. 
A En] . tEmigrate contains the time of emigration of infection target. 
A En] . tDeath contains the time of death for infection target. 
r1 and r2 contain the latency rates for qI1 and qI3. 
mi contains the mutation rate for infection strains. 
An event is still scheduled for individual n. 
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Exit: Infect describes the result. 
o The specified individual could not be infected or reinfected. 
1 Return to remote infection is scheduled. 
2 Disease is scheduled. 
3 Death is scheduled. 
4 Strain mutation is scheduled. 
5 Emigration is scheduled. 

A en] . state contains the new state, if applicable. 
Entry n is infected (if Infect is nonzero). 
Counters in N are updated. 

int Infect(int n, dec tinf, int strain, int type) 
{ int a,s,rob,y,q; dec d,r,wd,we,wdis,wr,wm; 

if (n>indiv II n<1) Error1(610. 3,"" ,n) ; Check for appropriate n. 
if (strain>:::stid) Errorl (616.0,"", strain) ; Check for appropriate strain ID. 
if (tinf>51 I tinf<O) Error1(617. 0,"" , tinf) ; Check for appropriate tinf. 
if (tinf::::::5) tinf:::tinf-E; Correct tinf if equal to 5. 

a ::: (int) (t-A[n] .tBirth); 
s = A[n] .sex; 
rob = A[n] .rob; 
y (int)t - (int)tO; 

switch(A[n].state) 
{ 

case qI2: r:::r2[s]; q=qI3; break; 
case qU: r:::rl[s]; q=qIl; break; 
default: return 0; } 

EventCancel(n); 
NewState(n. q); 
if(REC) A[n].inf ::: 1; 

if (type==1) 
ari(rob] [y]++; 

A[n] . strain = strain; 

wd = A[n).tDeath; 
we A[n] .tEmigrate; 
wr = t+LAT-tinf; 

Retrieve integer age. 
Retrieve sex. 
Retrieve region of birth. 
Get array index for year. 

Determine the new state and 
its associated parameters. 

Avoid uninfectable states. 
Else cancel the pending event and 
mark this individual as infected. 
Save place of infection a."l UK 
(will be changed outside routine 
if infection is acquired abroad). 
Increment ARI counter if infection 
occurred in the UK. 

Assign infecting strain type. 

Retrieve time of death. 
Retrieve time of emigration. 
After LAT years individual is 
defined as remotely infected. 
Calculate time to disease. wdis ::: t+Tdis(n,a,s,rob,tinf)+E; 

if(wdis<:::t) Error2(620.0,lt=",t, 
WID = t+Expon(mi); 

" wdis:::",wdis); 

if(wd<we && wd<wr && wd<wdis && wd<wm) 
{ A[n] .pending = pDeath; 

EventSchedule(n, wd)j 
return 3; } 

if(we<wr && we<wdis && we<wm) 
{ A[n].pending = pEmigrate; 

EventSchedule(n, we); 
return 5; } 

if(wr<wdis && wr<wm) 
{ A[n].pending = pRemote; 

Calculate strain mutation time. 

If death is earliest event, 
schedule the death and 
ignore everything else. 

If emigration is the earliest 
event, schedule it and 
ignore everything else. 

Otherwise. if transition to 
remote infection is the 
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EventSchedule(n, wr); 
A[n] .tMutate = wm; 
return 1; } 

ifCWIn<wdis) 
{ A[n].pending = pMutatej 

EventSchedule(n, WIn); 
A[n] .tDisease = wdis; 
A[n] .tExit = wr; 
return 4; } 

schedule that. save mutation 
time. and ignore disease 
time. 

Otherwise. if mutation is the 
earliest event, schedule 
that and save time to disease 
and time to remote. 

{ A[n] .pending = pDiseasej 
EventSchedule(n, wdis); 
return 2; } 

Otherwise, schedule disease and 
ignore other times, as they will 
be recalculated at disease onset. 

} 

9. Enter compartment remote 

This routine is dispatched when an infection becomes latent, entering the Latent Infec
tion state (qI2). Recent Infection (qI1), Reinfection (qI3). and all disease compartments 
(qD1-qD6) can lead to this state. The Latent Infection state allows the possibility of pro
gression to disease, mutation of strain type, death and emigration. Also, those with Latent 
Infection can be reinfected, although that is induced by a transmission event dispatched 
independently and not handled here. 

Entry: n indexes the individual. 
t contains the current time. 
A [n] . state contains the present state (can be qI1, qI3. 

qD1-qD6). 
A [n] . tMutate contains the strain mutation time. 
d2 contains the disease progression rate for qI2. 
m4 contains the mortality rate for qI2. 
mi contains the mutation rate of strain types in those infected. 
but not diseased. 

Exit: 

No event is scheduled for individual n. 

Remote contains a status code: 
2 Disease is scheduled. 
3 Death is scheduled. 
4 Mutation is scheduled. 
5 Emigration is scheduled. 

A [n] . state represents Remote Infection (qI2). 
A En] . tDeath is updated as necessary. 
A [n] . tMutate is updated as necessary. 
Counters in N are updated. 

int Remote(int n) 
{ int y, a, s, rob, qj dec age, wdis, wd, we, WInj 

y = (int)t - (int)tO; 
age = t-A[n] .tBirth; 
a = Cint) age; 
s = A[n] .sex; 
rob = A[n] .robj 

q = A[n].state; 

Retrieve array index for year. 
Retrieve age. 
Integer age. 
Retrieve sex. 
Retrieve region of birth. 

Remember the previous state. 
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} 

NewState(n, qI2); 
if (REC) 

if(A[n].inf==l I I A[n].inf==3) 
A[nJ.inf+=l; 

if (q>=qDO 
A[n].tMutate = t+Expon(mi); 

wdis = t+Tdis(n,a,s,rob,O); 
wd = A[n].tDeath; 
we = A[n].tEmigrate; 
wm = A[n].tMutate; 
if(wd<wdis && wd<wm && wd<we) 
{ A[n] . pending = pDeath; 

EventSchedule(n, wd); 
return 3; } 

if(wm<wdis && wm<we) 
{ A[n].pending = pMutate; 

EventSchedule(n, wm); 
A[nJ .tDisease = wdis; 
return 4; } 

if (we<wdis) 
{A[n].pending = pEmigrate; 

EventScheduleCn,we); 
return 5; } 

{A[n].pending = pDisease; 
EventScheduleCn, wdis); 
return 2; } 

10. Disease 

Mark the individual as remote. 
Adjust inf to older infection 
if not already older. 

Establish a new time for strain 
mutation if the prior state 
was disease. 

Calculate time to disease. 
Retrieve time of death. 
Retrieve time of emigration. 
Retrieve time of mutation. 
If death is the earliest event, 
schedule it. 

Otherwise, if strain mutation 
is the earliest event, 
schedule strain it and save 
time to disease onset. 

Otherwise, if emigration is 
the earliest event, schedule 
it and ignore other times. 

Otherwise, schedule progression 
to disease and ignore 
everything else. 

This routine is dispatched when an infection progresses to active disease. There are six 
distinct disease compartments, pulmonary and non-pulmonary compartments for Primary 
(qDl/qD4), Reactivation (qD2/qD5), and Reinfection (qD3/qD6). Individuals enter disease 
compartments from three infection compartments--Recent Infection, Latent Infection, and 
Reinfection-which determine the disease compartment they enter. This routine handles 
all transitions to disease. 

Future events for diseased individuals include transmission of infection to others, recovery 
to Latent Infection, death, emigration, reporting of their disease case, or strain type 
mutation. 

Entry: n indexes the individual progressing to disease. 
t contains the current time. 
A En] . state contains the state progressing to disease (can be 

qI1, qI2, or qI3). 
A En] . tBirth contains the time of birth of the individual. 
A En] . sex contains the sex of the individual. 
A En] . rob contains region of birth of the individual. 
A En] . tEmigrate contains the time of emigration. 
A En] . tDeath contains the scheduled time of death. 
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Exit: 

eft contains the case fatality rate (actually a proportion). 
r3, r4. r5,r6.r7. and r8 contain recovery rates for qDl. 

qD2. qD3, qD4, qD5. and qD6, respectively. 
m6, m7, m8, m9,ml0, and m11 contain mortality rates for the 

states named above in the ODE-compatible version of the model. 
pi. p2. and p3 contain the fraction of disease which becomes 

pulmonary. from sources Il. 12, and 13. respectively. 
c contains the average number of new infections produced by this 

individual per year. 
proprep contains the proportion of cases reported. 
md contains the mutation rate for strains involved in disease. 
No event is scheduled for individual n. 

Disease contains a status code. 
1 A transmission is scheduled. 
2 Recovery is scheduled. 
3 Death is scheduled. 
4 Strain mutation is scheduled. 
5 Emigration is scheduled. 
6 Case report is scheduled. 

A en] . state contains the new state. 
A en] . tDeath contains a possibly updated time of death. 
A en] . tMutate contains the new time of strain mutation, if applicable. 
A en] . tTransm contains the next time of transmission. if applicable. 
A en] . tExi t contains the time of recovery to remote infection, or if 

would happen after death, the time of death. 
A en] . tRep contains the time of disease case report, if applicable. 
Counters in N are updated. 

int Disease(int n) 
{ int a, s, rob, y, ds, q; dec age, r, m, p, 

age = t-A[n].tBirth; 
WID, we, wd, wr, wt, e, wrep; 
Retrieve age. 

a = (int)age; 
s A[n] .sex; 
rob = A[n] .rob; 
y = (int)t - (int)tO; 

switch(A[n].state) 
{ 

Calculate integer age. 
Retrieve sex. 
Retrieve region of birth, 0 or 1. 
Retrieve array index for year. 

Determine the new state and its 
associated parameters. 

case q1l: 
case qI2: 
case qI3: 
default: 

r=r3[s]; m=m6[s] [y]; 
r=r4[s]; m=m7[s] [y]; 
r=r5[s]; m=m8[s] [y]; 
Error(922.0)j } 

p=pl[a] [s] [rob]; q=qOl; break; 
p=p2[a][s] [rob]; q=qD2; break; 
p=p3[a] [s] [rob]; q=q03; break; 

if (Rand 0 >p) 
{ switch(A[n] . state) 

{ 

case qll: 
case qI2: 
case qI3: 
default: 

r=r6[s]; m= m9[s] [y]; 
r=r7[s]; m=ml0[s] [y]; 
r=r8[s]; m=ml1[s] [y]; 
Error(922.0); } } 

NewState(n, q); 

If this should be non-pulmonary 
disease, update new state and 
associated parameters. 

q=q04; break; 
q=q05; break; 
q=q06; break; 

wr = A[n] .tExit = t+RecovOsn(s,age,r); 
we = A[n] .tEmigrate; 

Mark the individual as diseased. 

Establish time to remote. 
Retrieve emigration time. 
Retrieve time of death. wd = A[n].tOeathj 
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A[n] .tMutate = wm = t+Expon(md); 

if(q>=qD4) ds = 0; 
else ds = 1; 

if (Rand() <cft [a] Cds] [y]) 
{ if(wr<wd && wr<we) e = wr; 

else if(wd<we) e = wdj 
else 

wd = t+O.99*(e-t); 

A[n] .tDeath = wd; } 

if (Rand()<proprep) 

e = we; 

{ if(wr<wd && wr<we) e = wr; 

else if (wd<we) e = wd; 

else e = we; 

A[n] .tRep = t+Rand()*(e-t); } 

else 
A[n].tRep = t+2*RT+Rand(); 

if (A[n] .tRep==O) Error1(619., "n=",n); 
wrep = A[n].tRep; 
if (wd<wr) 

wr = wd; 

if(q<qD4 && Rand()<smear[a]) 
wt = t+Expon(c[s] [rob]); 

else wt = t+2*RT + Rand(); 
A[n] .tTransm = wt; 

if(wt<wr && wt<wm && wt<we && wt<wrep) 
{ A[n] . pending = pTransm; 

EventSchedule(n, wt); 
return 1; } 

if(wrep<wr && wrep<wm && wrep<we) 
{ A[n].pending = pRep; 

EventSchedule(n, wrep); 
return 6; } 

if(wr<wd && wr<wm && wr<we) 
{ A[n].pending = pRemote; 

EventSchedule(n, wr)j 
return 2; } 

if(wm<wd && wm<we) 
{A[n].pending = pMutate; 

EventSchedule(n, wm)i 
return 4; } 

if (we<wd) 
{A[n].pending = pEmigratej 

Establish new mutation time. 

Set disease 8i te to n011-pulmonary 
or pulmonary. 

If perS011 should die from disease, 
find earliest of death. emigration 
and recovery to assign death 
before these occur, assigning 
death time close to the end of 
disease duration. 

Since disease death is before 
natural death time, replace it. 

If case should be reported. find 
reporting time. 
First find earliest of death. 
emigration and disease recovery 
to get range for reporting time. 

Randomly assign reporting time. 

If case should not be reported, 
assign a reporting time beyond 
running time of model. 

Save reporting time. 
If death would occur before 
recovery, give death precedence. 

If this is pulmonary disease and 
smear positive. store time 
to transmit. Otherwise, set time 
to transmit which never happens. 

If transmission is earliest 
event, schedule it. 

If case report is earliest 
event, schedule it. 

If recovery is the earliest 
event. schedule it. 

If mutation is the earliest 
event, schedule it. 

If emigration is the earliest 
event, schedule it. 
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} 

EventSchedule(n,we); 
return 5; } 

{ A[n] . pending = pDeath; 
EventSchedule(n, wd); 
return 3; } 

Otherwise schedule death. 

11. Transmission 

Infectious individuals transmit infection via this routine. Another individual is selected 
to be infected, either randomly from within the same region of birth as the infectious 
individual (UK-born or non-UK born, even in SSA version of model), or randomly from the 
entire population. If the target individual is susceptible (Uninfected or Remote Infection 
states), infection is established and that individual is processed accordingly. If not, no 
transmission occurs. 

After the transmission attempt, the infectious individual is then scheduled for another 
transmission, strain type mutation, recovery, case report, emigration or death. 

Entry: n indexes the individual to transmit an infection. 
t contains the current time. 

Exit: 

A en] . tExi t contains the time of recovery, or if that time 
is equal to or greater than the time of death, contains time of death. 

A en] . tDeath contains the time of death. 
A en] . tMutate contains the strain type mutation time. 
A en] . tEmigrate contains the emigration time. 
A en] . rob contains the region of birth, UK or non-UK. 
A en] . sex contains the sex. 
A en] . strain contains the infection strain ID number. 
pee contains the proportion of close contacts. 
maximm contains the maximum ID number for immigrants. 
Non-UK born individuals are indexed from 1 to (immid-1), a total of 

(immid-1) individuals. 
UK-born individuals are indexed from (maximm+1) to (ukbid-1), a total 

of (ukbid-maximm-1) individuals. 
No event is scheduled for individual n. 

A new individual ha..<; been targeted for infection. If the infection takes 
hold, that individual is scheduled for strain mutation, disease, 
remote infection, emigration or death. 

Transmission contains a status code. 
1 Another infection is scheduled. 
2 Recovery to remote infection is scheduled. 
3 Death is scheduled. 
4 Strain mutation is scheduled. 
5 Emigration is scheduled. 
6 Case report is scheduled. 

Counters in N are updated. 

#define SCHED(X,Y,Z) {A[n].pending = X; EventSchedule(n,Y); return Z; } 

int Transmission(int n) 
{ int i, j, y, low, tot; dec age; 

static int v[] = { iTransm,iDeath,iEmigrate,iExit,iMutate,iRep, -1 }; 
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} 

y = (int)t - (int)tO; 

if (RandO <pee) 
{ if (A En] . rob) 

{ low = maximm+1; 
tot = (ukbid-1) - low + 1; } 

else 
{ low 

tot = 
1 ; 
immid-l - low + 1; } 

do i=low+(int)(Rand()*tot); 
while(i==n); } 

else 
{ do 

{ tot = (immid-1) + (ukbid-maximm-1); 
j = 1 + (int)(Rand()*tot); 
if (j>=immid) 

i = j+(maximm+1-immid); 
else 

i = j; } 
while (i==n); } 

Infeet(i,O,A[n].strain,l); 

Get year for array index. 

If targetting a "close contact" . 
obtain total number and lowest 
ID number from individual's own 
region of birth, for selection 
of random target for infection 
within that region of birth. 

Find person other than self to 
infect. 

If not a "close contact". choose 
random person to infect from 
entire population, increment 
Adjust ID numbers for UK-born. 

A void infecting self. 
Infect chosen individual. 

A[n] .tTransm=t+Expon(c[A[n] . sex] [A[n] .rob]) ; Establish time to transmit again. 

swi teh (i=Earliest (A En] . t, v)) Schedule the earliest event. 
{ case iRep: SCHED(pRep, A[n].tRep, 6); 

case iTransm: SCHED(pTransm, A[n] .tTransm, 1); 
case iExit: SCHED(pRemote, A[n] .tExit, 2); 
case iMutate: SCHED(pMutate, A[n] .tMutate, 4); 
case iEmigrate: SCHED(pEmigrate, A[n] . tEmigrate , 5); 
case iDeath: SCHED(pDeath, A[n] .tDeath, 3); 
default: Error1 (922., "m=", (dec) i) ; } 

return 0; (Will never reach this.) 

12. Mutation 

This routine is dispatched when the strain type of an infected or diseased individual is 
scheduled for mutation. The mutation does not affect any other event. After mutation is 
processed, the individual is scheduled for their next event, which will depend on disease 
state. 

Entry: n indexes an individual whose strain type is to mutate 
t contains the current time. 
mi contains the mutation rate for strains not in an active disease 

case (merely infection). 
md contains the mutation rate for strains in a disease case. 
A En] . state contains the current state (can be any infection or disease 

state). 
A En] . strain contains the strain identification number of the current 

strain of infection or disease. 
A En] . tDeath contains the saved time of death. 
A En] . tEmigrate contains the saved time of emigration. 
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Exit: 

A [n] . tExi t contains the saved time to exit state. 
A [n] . tTransm contains the saved time to transmit again. 
No event is scheduled for individual n. 

The next event for individual n is scheduled. 
A En] . tMutate contains the time of next scheduled strain mutation. 
Mutation contains a status code. 

1 Recovery to remote infection is scheduled. 
2 Progression to disease is scheduled. 
3 Death is scheduled. 
4 Strain mutation is scheduled. 
5 Emigration is scheduled. 
6 Case report is scheduled. 

Counters in N are updated. 

Mutate(int n) 
{ dec m, WID, wd, we, wdis, wr, wt, wrep; 

A[n] . strain = stid++; Assign new, mutant strain type 
and update next available ID. 

if(A[n] .state<=qI3) m = mi; 
else m = md; 

Determine appropriate mutation 
rate and calculate time to 

wm = t+Expon(m); 

wd = A[n] .tDeath; 
we = A[n].tEmigrate; 
wdis = A[n].tDisease; 
wr = A[n] .tExit; 

if(A[n].state==qI2) 
{ 

if(wd<we && wd<wdis && wd<wm) 
{ A[n].pending = pDeath; 

EventSchedule(n, wd); 
return 3; } 

if(wm<we && wm<wdis) 
{ A[n].pending = pMutate; 

EventSchedule(n, wm); 
return 4; } 

if (wdis<we) 
{ A[n].pending = pDisease; 

EventSchedule(n, wdis); 
return 2; } 

{ A[n].pending = pEmigrate; 
EventSchedule(n, we); 
return 5; } } 

if(A[n].state<=qI3) 
{ 

if(wd<wdis && wd<wr && wd<wm && wd<we) 
{ A[n].pending = pDeath; 

EventSchedule(n, wd); 
return 3; } 

if(wr<wdis && wr<wm && wr<we) 
{ A[n].pending = pRemote; 

next mutation. 

Get time of death. 
Get time of emigration. 
Get time of disease. 
Get time to remote infection. 

Schedule events for remotely 
infected individuals (qI2). 

If death occurs first, 
schedule it. 

Otherwise, if strain mutation 
occurs first, schedule it. 

Otherwise, if disease occurs 
first, schedule it. 

Otherwise, schedule emigration. 

Schedule events for the other 
infected classes (qI1, qI3). 

If death is earliest event, 
schedule it. 

Otherwise, if transition to 
remote infection occurs 
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{ 

} 

EventScheduleCn, wr); 
A[n).tMutate = wm; 
return 1; } 

if(wm<wdis && wm<we) 
{ A[n].pending = pMutate; 

EventSchedule(n, wm); 
return 4; } 

if (wdis<we) 
{ A[n].pending = pDisease; 

EventSchedule(n, wdis); 
return 2; } 

{ A[n).pending = pEmigrate; 
EventSchedule(n, we); 
return 5; } } 

wrep = A[n) .tRep; 
if(A[n) .state<qD4) 
{ wt = A[n] .tTransm; 

if(wt<wd && wt<wr && wt<wm && wt<we 
{ A[n] .pending = pTransm; 

EventSchedule(n, wt); 
A[n].tMutate = wm; 
return 1; } } 

first, schedule it and 
save mutation time. 

Otherwise. if mutation is the 
earliest event, schedule it. 

Otherwise, if disease onset 
is earliest, schedule it. 

Otherwise, schedule emigration. 

Schedule events for diseased. 
Get time of case report. 
If this is pulmonary disease, 
retrieve time for transmission 

&& wt<wrep) 
and if it is the earliest 
event, schedule it and 
save mutation time. 

if(wrep<wd && wrep<wr && 
{ A[n] .pending = pRep; 

EventScheduleCn. wrep); 
A[n].tMutate = wm; 

wrep<wm && wrep<we) 

return 6; } 

if(wr<wd && wr<wm && wr<we) 
{ A[n).pending = pRemote; 
EventSchedule(n, wr); 
return 2; } 

if(wm<wd && wm<we) 
{ A[n) . pending = pMutate; 
EventScheduleCn, wm); 
return 4; } 

if (wd<we) 
{ A[n].pending = pDeath; 
EventSchedule(n, wd); 
return 3; } 

{ A[n] . pending = pEmigrate; 
EventSchedule(n, we); 

return 5; } } 

If case report is the earliest 
event, schedule it and save 
mutation time. 

If recovery is the earliest 
event. schedule it. 

If mutation is the earliest 
event. schedule it. 

If death is the earliest 
event, schedule it. 

Otherwise, schedule emigration. 
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13. Death 

This routine is dispatched when individuals die. The routine logs dead individuals out of 
compartments as they leave the study population, to keep track of numbers of individuals 
in each compartment so that the array of individuals does not have to be scanned for that 
information. Also, the individuals index number is recycled with Transferso that 
array A' is always continuous. 

Entry: n indexes an individual who has just died. 
t contains the current time. 
A en] . state contains the present state (can be any compartment). 
A en] . tBirth contains the time of birth. 
ukbid contains the next available index number for UK-born individuals. 
No event is scheduled for individual n. 

Exit: Either entry n is sent to the function Birth, to be initialized as a 
susceptible newborn and function returns 0 (DTYPE==O) or index number 
is recycled with Transfer (DTYPE==l), no birth is generated and 
function returns 1. 

N [A [n] . state] is decremented. 
Counters agel, age2, and agec are updated. 
Counters in N are updated. 
deaths is incremented. 

#define DTYPE 1 Allows for non-constant population 
size. 

Death(int n) 
{ int n2; dec age; 

} 

deaths += 1; 
N[A[n] .state]-=l; 
age = t-A[n].tBirth; 

{ agel[O] += agej age2[0] += age*agej 
agec[O] += lj } 

if (DTYPE==O) 
{ Birth(n, t); 

return OJ } 

if (A [n] . rob) 
{ n2 = ukbid-lj ukbid--j } 

else 
{ n2 = immid-ij immid--j } 

Transfer(n, n2)j 
return 1j 

Increment the number of deaths. 
Decrement the number in the state. 
Compute the age at death. 

Accumulate statistics for mean 
age and its variance. 

If population size is to be held 
constant, initiate a birth. 

A void unoccupied index numbers 
in array A by transferring 
highest-numbered individual. n2, 
to index number n. 

14. Emigration 

This routine is dispatched when individuals migrate out of the study population. This 
routine logs the individual out of its compartment as they leave the population, maintain
ing numbers in each compartment so that the array of individuals never has to be scanned 
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for that information. Also, the individual's index number is recycled with Transfer so 
that array A is always continuous. 

Entry: n indexes the individual. 
tli contains the time of last immigration. 
A en] . state contains the disease state. 
A en] . rob contains the region of birth. 
immig [y] contains the total number of immigrants each year. 

Exit: N [A en] . state] is decremented. 
n is recycled such that the highest-numbered individual within the 

same region of birth as n takes the index number n and array A 
remains continuous. 

Emigrate (int n) 
{ int n2; 

} 

N[A[n].state] -= 1; 

i£(A en] . rob) 
{ n2 = ukbid-1; ukbid--; } 

else 
{ n2 = immid-1; immid--; } 

Transfer(n, n2); 

Decrement state. 

Use emigrant's region of birth 
to find highest index number of 
individual who will take over 
emigrant's index number, to 
prevent array from having gaps 
of unoccupied index numbers. 

15. Immigration generator 

This routine brings a new immigrant into the population and schedules the next immi
grant's arrival. The routine can be thought of as an external immigration event generator. 
The routine uses a pseudo-individual (index number IMM) to schedule the immigrant ar
rivals at evenly spaced intervals. 

Entry: t contains the current time. 
to contains the end time of model. 
pimm contains the proportion of immigrants who are non-UK born. 
immid contains the next available index number for non-UK born. 
ukbid contains the next available index number for UK born. 
IMM contains the index number for the pseudo-individual used to 

schedule external immigration events handled here. 
ypi contains the years per immigration, re-calculated each year 
from data on immigrants per year (immig). 

Exit: An immigrant is brought into the population and the next immigrant 
due is scheduled. 

ImmigrateGO 
{ int y, n; 

y = (int)t - (int)tO; Get integer year array index. 

i£(RandO<pimm[yJ) { n = immid; immid++; } Determine whether immigrant will 
else { n = ukbid; ukbid++; } be UK or non-UK born. 

Immigrate (n) ; Create immigrant. 
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} 

A [IMM] . pending = pImmig; 
EventSchedule(IMM, t+ypi); 

Schedule next immigration. 

16. Birth generator 

This routine initiates a birth and schedules the next birth. at regularly spaced intervals. 
acting as the external event generator for births. The routine uses a pseudo-individual 
(index number BIRTH) to schedule births at evenly spaced intervals. 

Entry: t contains the current time. 
ukbid contains the next available ID number for UK-born. 
A [BIRTH] is the individual designated for scheduling births. 
ypb contains years per birth, re-calculated each year 
from data on births per year (births). 

Exit: A new individual is born. 
The next birth is scheduled. 
ukbid is incremented. 

BirthG() 
{ 

} 

Birth(ukbid,t); ukbid++; 

A[BIRTH].pending = pBirth; 
EventSchedule(BIRTH,t+ypb); 

Produce a birth and increment the next 
available index number for UK-born. 
Sched ule the next birth for ypb 
years into the future. 

17. Change states 

This routine logs individuals out of states as they leave them and into new states as they 
enter. It maintains counters of the numbers in each state so that the array of individuals 
never has to be scanned for that information. 

Entry: n indexes the individual. 
q contains the new state. This is a number greater than zero, in the 

range qO to q1. 
A En] . state contains the old state, either 0 or in the range qO to 

q1. If 0, this record is not in use. 
A En] . bstate includes the non-susceptible states visited thus far. 

Exit: A[n] . state contains the number of the new state (q on entry). 
A En] . bstate incorporates the new state (q on entry). 
A En] . tEntry contains the time of entry to the new state. 
N [u] is decremented, where u represents the old state. 
N [v] is incremented, where v represents the new state. 

NewState(int n, int q) 
{ 

if (q>qU) 
N[A[n] . state] -= 1; 

if(N[A[n] . state] (0) 

Reduce the number in the old state unless 
the individual is entering Uninfected, 
which only happens at birth or immigration. 

Make sure the state has not become 
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} 

Error2(609.0, "q=", (dec)q, 
" n=",(dec)n); 

A[n] . state = q; 
N[A[n].state] += 1; 

negative. 

Change state. 
Increase the number in the new state. 

18. Transfer 

This routine transfer all information about an individual, including saved event times, to 
a new identification number. The routine then cancels the pending event for that index 
number and re-schedules it using the new index number. The routine is used to keep the 
array of individuals contiguous for each region of birth. 

Entry: n is the new index number to be assigned, which has no event scheduled 
n2 is the current index number of the individual. 

Exit: 

There is an event scheduled for n2. 

n is the new index number of the individual. 
The event scheduled for n2 is now re-scheduled under n and all other 

data from n2 are transferred to n. n2 no longer has an event 
scheduled and the index number is free to be used again. 

Transfer(int n, int n2) 
{ 

if(n!=n2) 
{ A[n] = A[n2]; EventRenumber(n, n2); } Copy data and reschedule as n. 

} 

19. Add reported case 

This routine keeps track of the number of reported cases by age, sex, place of birth, disease 
site and calendar year. After a case is reported, they are scheduled for their next event. 
For the version of the model with a genetic component, this routine also allows for a stain 
to be genotyped and reports genotyping and other data for those cases, including the 
strain type identifier, and the age, sex, rob, etc for the case. 

Entry: t is the current time. 
to is model start time. 
t 1 is the model end time. 
A en] . tBirth contains the time of birth. 
A en] . sex contains the sex of the individual. 
A en] . rob contains the region of birth of the individual, O=non-UK, 

l=UK born. 
SSAV is the version of the model running, O=non-SSA, l=SSA. 
repc holds the numbers of reported cases. 
repc2 holds the numbers of cases by place and time of infection. 
ptyped holds the proportion of cases with genotyping data, by rob. 
repc3 holds data on cases reported and genotyped. 
A en] . tDeath contains the individuals time of death. 
A en] . tEmigrate contains the individual's time of emigration. 
A en] . tExi t contains the individual's time to remote infection. 
A en] . tMutate contains the individual's strain mutation time. 
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A En] . ssa holds country of birth in SSA version of modeL 
O=UK and non-UK other. l=SSA, 2=SSA.HIV+ 

A En] . tlmm contains the time of immigration to UK. 
A En] . tInfeeted contains the time infection was acquired. 
A En] . inf contains the time and place of infection 1 =recent /UK. 2=0lder /UK. 

3=recent / non-UK, 4=0lder /non-UK. 
A En] . strain contains the strain ID for the case. 
A [n] . state contains the disease state of the individual. 

Exit: repe contains an additional case, individual n. 
repe2 contains an additional case, if running REC version of 

the model. 
repe3 contains an additional case, if n was selected for 

genotyping. 
A En] . tRep contains a time past the end of the simulation. so that 

individual n will not be reported again. 
Rep contains a status code. 

1 A transmission is scheduled. 
2 Recovery is scheduled. 
3 Death is scheduled. 
4 Strain mutation is scheduled. 
5 Emigration is scheduled. 

Rep(int n) 
{ 

int s,r,y,ael,d; dec age,wt, wd, we, wr, WID, wrep; 

age = t-A[n].tBirth; 
if(age<15) acl=O; 
else if(age<45) acl=l; 
else if(age<65) ael=2; 
else acl=3; 
s = A[n].sex; 
r = A[n].rob; 
y = (int)t - (int)tO; 
if(A[n].state>=qD4) d=O; 
else d=l; 

repe [acl] [s] [r] Ed] [y] += 1; 

if (REC) 
{repe2[ael][s] [r] Ed] [y] [0] 

repe2 [ael] [s] [r] [d] [y] [A [n] . inf] 

if(Rand()<ptyped[r] && t>=2007) 
{repc3[repid][O] = age; 

repc3[repid] [1] = s; 
repe3[repid] [2] = r; 
repe3[repid] [3] = t; 
repc3[repid] [4] = A[n] .infi 
repe3[repid] [5] = A[n] . strain; 
repid++; } 

A[n].tRep = t1*2+Rand(); 

wd = A[n].tDeath; 
we = A[n] .tEmigrate; 

+= 1; 
+= 1; } 

Get age. 
Find age class (classes which match 
notification rates). 

Get sex. 
Get region, O=non-UK, l=UK. 
Get year for array index. 
Get disease site (pulm/non-pulm) 
for arrray index. 

Increment reported cases. 

Increment reported cases for recent 
transmission stats, by inf. 

If case is designated to be typed 
and is within correct time window, 
store for genetic output. 

Set reporting time distant enough 
that it cannot occur again. 

Get time of death. 
Get time of emigration. 
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} 

wr = A[n] .tExit; 
wm = A[n].tMutate; 

if(A[n] .state<qD4) 
{wt = A[n].tTransm; 

if(wt<wd && wt<we && wt<wr && wt<wm) 
{ A[n] . pending = pTransm; 

EventSchedule(n, wt); 
return 1; } } 

if(wr<wd && wr<we && wr<wm) 
{ A[n] . pending = pRemote; 

EventSchedule(n, wr); 
return 2; } 

if(wm<wd && wm<we) 
{ A[n] . pending = pMutate; 

EventSchedule(n, wm); 
return 4; } 

if (we<wd) 
{ A[n] . pending = pEmigrate; 

EventSchedule(n,we); 
return 5; } 

{ A[n] . pending = pDeath; 
EventSchedule(n, wd); 
return 3; } 

Get time to remote infection. 
Get strain mutation time. 

If this is pulmonary disease. 
get time for transmission 
and if it occurs earliest, 
schedule it. 

If recovery occurs earliest, 
schedule it. 

If mutation occurs earliest, 
schedule it. 

If emigration occurs earliest, 
schedule it. 

Otherwise schedule death. 

20. Lifespan distribution 

This routine assigns the number of remaining years to live for an individual, based on 
the present year, the individual's sex and age, and other factors. Various probability 
distributions may be selected. Exponentially distributed ages, with a constant chance of 
death in any year, are an option included for calibration of the model to results from an 
ordinary differential equation version of the model. 

Entry: sex contains the individual's sex, O=male, l=female. 
age contains the individual's present age, years and fractions thereof. 
mort contains a mortality factor. For testing, this is the proportion 
of individuals who would die per year it deaths were strictly random 

(Le., Poisson distributed in time). 
lifedsn defines the lifespan distribution computation: 

o Exponential 
1 Gompertz 
2 Empirical life tables 

t contains the present time. 

Exit: LifeDsn contains the remaining life time (years until death) for the 
individual. 

static int lifedsn = 2; Type of longevity distribution to be used. 

dec LifeDsn(int sex, dec age, dec mort) 
{ int yb, y, n; dec w; 

switch(lifedsn) 
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} 

{ 

case 0: return Expon(mort); 
case 2: 
{ yb = (int)(t-age); 

y = yb-1870; if(y<O) y=O; 
w = RandF(A1, M1[y] [sex], 122, age); 
return w; } 

default: Error(922.0); } 

return 0; 

Constant probability of death. 
Empirical life tables. 
Get year of birth. 
Get array index for birth year. 

Incorrect life span selection. 

(Will never reach this.) 

21. Emigration time distribution 

This routine assigns the number of years until time of emigration from the study population 
for an individual, based on the present year, the individual's sex and age, and other 
factors in the condition of the individual. Exponentially distributed times, with a constant 
chance of emigration in each year, are included for calibration of the model to an ordinary 
differential equation version of the model. 

Entry: rob contains the individual's region of birth. O=non-UK, l=UK 
sex contains the individual's sex, O=male, 1 = female. 
age contains the individual's present age, years. 
em contains the emigration rate. 
emdsn defines the emigration time distribution computation: 

o Exponential 
2 Empirical migrant flow data. 

t contains the present time. 

Exit: EmDsn contains the remaining time in the UK for the 
individual in the updated version of the program. Note that many 
individuals will have dates of emigration beyond the running time of 
the model or beyond their own death date; these individuals will never 
emigrate. 

static int emdsn = 0; Type of longevity distribution to be used. 

dec EmDsn(int rob, int sex, dec age, dec em) 
{ int yb, y, a, n; dec w; 

switch(emdsn) 
{ 

case 0: return Expon(em); 

default: Error(922.0); 
} 

return 0; 
} 

Constant probability of 
emigration. 
Incorrect life span selection. 

(Will never reach this.) 

448 



22. Recovery distribution 

This routine assigns a time to remote infection based on the present year. the individual's 
sex and age, and other factors in the condition of the individual. Various probability 
distributions may be selected. 

Entry: sex contains the individual's sex. O=male. l=female. 
age contains the individual's present age, years. 
r contains a recovery parameter describing the individual. For 
testing this represents the proportion that would recover per 
year if recovery were strictly random (Le., Poisson distributed in 
time). 

t contains the present time. 

Exit: RecovDsn contains the time until recovery, in years. 

static dec recovdsn = 0; 
static dec rmu 0.0; 
static dec rsigma = 0.1; 

Type of recovery distribution to be used. 
Centering of recovery distribution, years. 
Half-width of recovery distribution, years. 

dec RecovDsn(int s, dec age, dec r) 
{ dec W; 

switch«int)recovdsn) 
{ case 0: return Expon(r); 

case 1: w = 0; 

Select the type of recovery. 
(completely random) 
(completely fixed) 

case 2: w = Uniform(-rsigma,rsigma); 
case 3: w = LogNormal(rmu, rsigma); 
case 4: w = Gauss(.O, rsigma); 
case 5: w = Cauchy(.O, rsigma); 
default: Error(922.); } 

break; 
break; 
break; 
break; 
break; 

(uniform variation) 
(log-normal variation) 
(truncated Gaussian variation) 
(truncated Cauchy variation) 

} 
return max(le-9, w+l./r); Return the time for recovery, 

always after a slight delay. 

23. Time to disease 

This routine assigns a time to disease based on the individual's age, sex, region of birth, 
infection status (Recent Infection, Remote Infection, Reinfection). and in the SSAV version 
of the model, HIV status. Note that Recent Infection and Reinfection states are handled 
similarly, whereas Remote Infection is handled somewhat differently. 

Notes on SSA version of model: Would like to get disease rates correct so things are 
comparable between the SSA and non-SSA models. I think it is best to leave them as a 
ratio (ehi v) and then when fitting model, the non-SSA model should fit higher disease 
risk for non-UK born than in the SSA model. In the SSA model they should be lower 
since a portion of non-UK born individuals will have elevated risk due to HIV. 

Entry: n contains the individual's identifier. 
s contains the individual's sex, O=male, l=female. 
a contains the individual's integer age. 
rob contains the individual's region of birth, O=non-UK l=UK, 2=SSA 
t inf contains the time since infection (years). 
dl and d3 contain the probability of progressing to disease for qll 

and qI3 over the first five years of infection. 
d2 contains the probability per year of progressing to disease for 
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qI2. 
A [n] . state contains the present state of the individual, qI1. qI2. 

qI3. 
t contains the present time. 
drr gives the relative risk of disease over the first five years 

of infection. 
B1 contains the year of infection. for use with drr. 
SSA V contains 1 if SSA version of model is to be run. 

Exit: Tdis contains the number of years until disease development. 

dec Tdis(int n, int a, int s, int rob, dec tinf) 
{ dec d,age,w; 

} 

if(SSAV && A[n] .ssa==2) 
rob=2; 

switch(A[n] .state) 
{ case qI1: 

{ d = d1[s] [rob] [a] 

if (Rand(»d) 
{ w = 2*RT+Rand(); 

return w; } 
else 
{ w = RandF(B1,drr,6,tinf); 

return w; } } 

case qI3: 
{ d = d3[s] [rob] [a] 

if (Rand(»d) 
{ w = 2*RT+Rand(); 

return w; } 
else 
{ w = RandF(B1,drr,6,tinf); 

return w; } } 

If running SSA version of model and 
individual is HIV+, adjust rob. 

Process Recently Infection. 
First calculate overall disease risk 
for tinf greater than 0 if applicable. 

If disease should NOT occur. schedule 
disease past the running time of 
model so that it never occurs. 

If disease should occur. randomly 
choose year, based on relative risk 
over five years. 

Process Reinfection. 
First calculate overall disease risk 
for tinf greater than 0 if applicable. 

If disease should NOT occur. schedule 
disease past the running time of 
model so that it never occurrs. 

If disease should occur. get year 
from relative risk over five years. 

case qI2: Process Remote Infection. 
{ age = t-A[n].tBirth; 

w = RandF(A2,d2[s] [rob],AC+2,age); 
return w; } 

default: Error(922.); 
return 0; 

} 

(Will never reach this.) 

24. Get random age for immigrant 

This routine assigns an age to an individual who is immigrating into the population. Age 
is randomly assigned based on probabilities of age classes from data. Probabilities of age 
classes are conditional on sex and region of birth. 

Entry: n contains the individual's identifier. 
s contains the individual's sex, O=male l=female. 
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r contains the individual's region of birth. O=non-UK, l=UK 
t contains the present time. 
immage contains cumulative probabilities of the age classes; to 

be compatible with future calls to RandF, the first cumulative 
probability is O. 

SSAV contains 1 if SSA version of model is to be run. 

Exit: Get Age contains the age (in years) of the individual. 

dec GetAge(int n, int s, int r) 
{ dec rn,age; int y; 

} 

rn = RandO; 

if (SSAV) 
if(A[n] .ssa) r~2; 

y = (int)t - (int)tO; 

if (rn<immage[y] [s] [r] [1]) 
return Rand()*15; 

if (rn<immage[y] [s] [r] [2]) 
return Rand()*10+15; 

if (rn<immage[y] [s] [r] [3]) 
return Rand()*10+25; 

if(rn<immage[y] [s] [r] [4]) 
return Rand()*10+35; 

if (rn<immage[y] [s] [r] [5]) 
return Rand()*15+45; 

age=Expon(O.10)+60; 
if(age>=121) age=120+Rand(); 

return age; 

Get random number. 

If running SSA version of model, 
check if SSA and adjust r (rob) if so. 

Get array index for calendar year. 

Assign a random age class within the 
correct age class, depending on the 
random number draw and cumulative 
probabilities of each age class specified 
by immage. 

For the age class 60+, add age of 60 plus 
draw from exponential distribution with 
mean of 10 years. 

25. Parameter changing 

This function updates variables a.'lsociated with parameters that change with each model 
run. This routine must come after any change to parameters, e.g. through the gparam func
tion. Currently four disease risk parameters are varied during model fitting: d1uk20 [M], 
d2uk20 [M], d3uk20 [M] and df. d 1 uk20 [M] is the risk of developing Primary Disease for 
UK-born males aged 20 years above. d2uk20 [M] is the annual risk of developing Reac
tivation Disease for UK-born males aged 20 years and above. d3uk20 [M] is the risk of 
developing Reinfection Disease for UK-born males aged 20 years and above. df is the 
factor by which UK-born disease risks are multiplied to get non-UK born risks. 

Entry: drr contains relative cumulative rates of disease progression by 
time since infection, up to five years. 

dluk20 [M] contains the risk of developing Primary Disease for UK-born 
males aged 20 years above 

d2uk20 [M] contains the annual risk of developing Reactivation Disease 
for UK-born males aged 20 years and above. 

d3uk20 [M] contains the risk of developing Reinfection Disease for 
UK-born males aged 20 years and above. 

df contains the factor by which UK disease risk are multiplied to 
get non-UK born disease risks. 
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sdf1 contains the sex ratios of female:male disease risk (Primary Disease). 
sdf2 contains the sex ratios of female:male disease risk (Reactivation Disease). 
sdf 3 contains the sex ratios of female:male disease risk (Reinfection Disease). 
presp contains the proportion of disease respiratory for children. 

Exit: d1contains Primary Disease risk by sex. rob (UK/nonUK/HIV) and age. 
d2contains Reactivation Disease rate by sex, rob (UK/nonUK/HIV) and age. 
d3contains Primary Disease risk by sex, rob (UK/nonUK/HIV) and age. 

Notes: Disease progression risks are specified separately for Recent, Remote, and Rein
fected individuals (d1, d2. d3), and also allowed to vary by sex, rob and age. Following 
Vynnycky and Fine, the age-dependency of risk is specified by two parameters--one for 
risk ages 0-10 (constant) and one for 20+ (constant). Risk between ages 10-20 is assumed 
to increase linearly from the rate at 10 to the rate at age 20.For those over 10 and under 
20 overall disease progression rate is: AO+(age-10)*«A20-A10)/10). 

For d1 and d3, these represent overall. cumulative risks of disease progression in the first 
five years of infection or reinfection for infection at a given age. The array drr specifies 
the cumulative relative risk over these five years and is used along with d1/d2 to generate 
a time to disease, if applicable. For d2 the disease progression risks are annual rates at a 
given age (and sex/rob) for disease progression. d2 is converted to cumulative risk by age, 
and the cumulative distribution is used, along with current age of individual infected, to 
assign a time to disease. 

Disease progression risks estimated by Vynnycky and Fine 1997 for white ethnic males 
are used to set UK-born males and UK-born female risk for those under ten years of age. 
For all ages, female risks are calculated by multiplying male risks by the risk ratios for 
sex, sdfl, sdf2, and sdf3. Risks for 20 year-olds are allowed to vary in the model (one 
for each disease types, so three parameters). For non-UK born risks, df is multiplied by 
the UK-born risks to get non-UK born risks. df is allowed to vary in the model. HIV
positive risks are further multiplied byehiv. This means as the three UK-born risks and 
df are varied during model fitting, non-UK born disease progression risks would need to 
be re-generated each time the model is run. 

One complication regards pulmonary versus overall disease risk. In Vynnycky and Fine 
1997, risks are for respiratory disease. However, disease risk needed for the model is overall 
disease risk, pulmonary plus non-pulmonary. For those fixed in the model (UK-born under 
10), the respiratory risk is corrected to equal overall (pulmonary + non-pulmonary) risk. 

ParamO 
{ int a,s,r; 

dec ep = 0.00000000000001; 
if(ehiv<ep) ehiv= ep; 
if (df<ep) df = epi 

mi= .106*mdi 

if (DPARAM) 
{ if(dlukl0[M]<ep) dlukl0[M]=ep; 

if(dluk20[M]<ep) dluk20[M]=ep; 
if(d2uk10[M]<ep) d2ukl0[M]=ep; 
if(d2uk20[M]<ep) d2uk20[M]=ep; 
if(d3ukl0[M]<ep) d3ukl0[M]=ep; 
if(d3uk20[M]<ep) d3uk20[M]=ep; 

dlukl0[F] = dlukl0[M]*sdfl[O]; 
d2ukl0[F] = d2ukl0[M]*sdf2[O]; 

Check that ehi v and df are not 
negative, making them ep, a small 
positive number if not. 

Set infection mutation rate after 
disease mutation rate is read. 

For new way of varying disease risks: 
First check that all risks/rates are 
positive (greater than a small positive 
number). 

Also for new version of model, set 
females' values for disease progression, 
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d3uk10[F] = d3uk10[M]*sdf3[O]; 
d1uk20[F] = d1uk20[M]*sdf1[1]; 
d2uk20[F] = d2uk20[M]*sdf2[1]; 
d3uk20[F] = d3uk20[M]*sdf3[1]; 

for(s=O; s<2; s++) 
{ d1ukl0[s] = dluk10[s]/presp; 

d2uk10[s] = d2uk10[s]/presp; 
d3uk10[s] = d3uk10[s]/presp; 

for(a=O; a<10; 
for(s=O; s<2; 
{ dl [s] [UK] [a] 

d2 [s] [UK] [a] 
d3 [s] [UK] [a] 

a++) 
s++) 
= d1uk10[s]; 
= d2uk10[s]; 
= d3uk10[s]; } 

for(a=10; a<20; a++) 
for(s=O; s<2; s++) 

relative to males, with sex ratios 
calculated from rates in Vynnycky and 
Fine. 

Also for new version of model, set 
divide by presp to get overall (not 

} respiratory) progression rates/risks. 

Now expand rates to all ages for 
by assuming constant risk/rate from age 
0-10, linear increase from 10-20, and 
constant risk/rate from age 20+. Note, 
for d1 and d3 these are cumulative risks 
over first 5 yrs for (infected at age a) 
while for 'd2; these are annual rates of 
progression. 

{ d1[s] [UK] [a] = d1uk10[s] 
d2[s] [UK] [a] = d2uk10[s] 
d3[s] [UK] [a] = d3uk10[s] 

+ (a-10)*«d1uk20[s]-d1uk10[s])/10); 
+ (a-10)*«d2uk20[s]-d2uk10[s])/10); 
+ (a-10)*«d3uk20[s]-d3uk10[s])/10); } 

for(a=20; a<121; a++) 
for(s=O; s<2; s++) 
{ d1[s] [UK] [a] = d1uk20[s]; 

d2[s] [UK] [a] = d2uk20[s]; 
d3[s] [UK] [aJ = d3uk20[s]; } } 

else 
for(a=O; a<121; a++) 
for(s=O; s<2; s++) 
{ d1[s] [UK] [a] = d1p[a] [s] [UK]/presp; 

d2[s] [UK] [aJ = d2p[a] [s] [UK]/presp; 
d3[s] [UK] [a] = d3p[a] [s] [UK]/presp; } 

for(a=O; a<121; 
for(s=O; s<2; 
{ d1 [s] [NUK] [a] 

d2 [s] [NUK] [a] 
d3 [s] [NUK] [a] 

a++) 
s++) 
= df*d1[s] [UK] [a]; 
= df*d2[s] [UK] [a]; 
= df*d3[s] [UK] [a]; } 

for(a=O; a<121; a++) 
for(s=O; s<2; s++) 
{ if(dl[s] [NUK] [a] >1) dl[s] [NUK] [a] = 1; 

if(d2[s] [NUK] [a]>l) d2[s] [NUK] [a] = 1; 
if (d3 [s] [NUK] [a] >1) d3 [s] [NUK] [a] = 1; 

if (SSAV) 
{ for(a=O; a<121; a++) 

for(s=O; s<2; s++) 
{ d1 [s] [HIV] [a] = ehi v*d1 [s] [NUK] [a] ; 

d2 [s] [HIV] [a] = ehi v*d2 [s] [NUK] [a] ; 
d3[s] [HIV] [a] = ehiv*d3[s] [NUK] [a]; } 

for(a=O; a<121; a++) 
for(s=O; s<2; s++) 

For UK-born get overall disease risks 
(d1 and d3) and annual risks (d2) 
from respiratory risks, taken from 
Vynn and Fine 1997 (divided by prop. 
of all tuberculosis which is respiratory 
(see Data). Indexed by sex, rob, 
and age. 

For non-UK born: multiply UK-born 
risks by df to get nOll-UK born 
disease risks by sex, rob and age. 

Check that overall disease risks 
(dl, d3) are not above 1; also check 
annual rates (d2) are not above 1 
for non-UK born. 
} 

Get disease risks for HIV-positive 
SSAs by multiplying non-UK born 
risks/rates by factor ehiv. 

Make sure disease risks for HIV + 
are not above 1. 
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{ if (d1[s] [HIV] [a] > 1) d1[s] [HIV] [a] =1 ; 
if(d2[s] [HIV] [a]>l) d2[s] [HIV] [a]=l; 
if (d3[s] [HIV] [a]>l) d3[s] [HIV] [a]=l; } } 

for(s=O; s<2; s++) Fix end of array for d2 (longer). 
for(r=O; r<3; r++) 

d2 [s] [r] [121] = d2 [s] [r] [120] ; 

for(s=O; s<2; s++) 
for(r=Oj r<3j r++) 

d2 [s] [r] [1] = d2 [s] [r] [0] ; 

Redefine d2 as cumulative probability of 
disease progression; first translate risk 
in first year of life (d2 [s] [r] [0]) as 
cumulative risk experienced before age 1 

for (a=2; a<=121; a++) (d2 [s] [r] [1]). Then convert rest of array 
for (s=O; s<2; s++) to cumulative risks. Indexed by sex, rob 
for(r=O; r<3; r++) and age. 

d2[s] [r] [a] = d2[s] [r] [a-l]+(1-d2[s] [r] [a-l])*d2[s] [r][a]; 

for (s=O; s<2; s++) Make sure cumulative probability of disease 

} 

for (r=O; r<3; r++) has not gone beyond 1. 
{ if(d2[s] [r] [121]>1) Error(754.1); } 

for(s=O; s<2; s++) 
for(r=O; r<3; r++) 
{ d2[s] [r] [0] = 0.0; 

d2[s] [r] [122] d2[s] [r] [121]; 
d2[s] [r][123] = 1.0; } 

Finish cumulative distribution so that 
cumulative risk before age 0 is 0 and 
those who should never progress to disease 
are assigned times far into the future so 
that disease progression does not happen. 

26. Initialize starting population 

This function sets up the intial population by looping through matrix n1981 which holds 
numbers in the initial population by age, sex. and rob. For the SSA version of model, 
ssa1981 is used for the proportions of SubSaharan Africans among non-UK born in 1981 
by age and sex. 

Notes: In function Param, one could multiply 1981 (if they are proportions) by the initial 
population size, e.g. ini tpop. Assignments could also be made deterministic since the 
numbers are sufficiently large. This would need some planning for dealing with remainders 
and other numeric issues. 

Entry: n1981 contains numbers by age, sex. and rob for individuals in the 
population at initialization in 1981. 

ssa1981 contains the proportion of SSAs among non-UK born 
at population initialization. 

Exit: The intial population is set up; each individual is assigned attributes 

InitPop() 

and scheduled for exactly one event (other event times may be stored 
for an individual. 

{ int a,s,i,n,st,rob; dec age,wd,we,wv,tinf; 
ukbid :: maximm+l; Initialize ID numbers to 
immid :: 1; correct values. 
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NOTE: This function could be made so that UK-born. non-UK born and SSA-born are 
initialized with one function. called three times. Also so that states are assigned and 
processed in a function. 

} 

for(a=O; a<121; a++) 
for(s=O; s<2; s++) 
for(i=O; i<n1981 [a] [s] [UK]; i++) 
{ n = ukbid; ukbid++; 

age = a+RandO; 
A[n].tBirth = t-age; 
A[n].sex = s; 
A[n].rob = rob = UK; 

Basiclnd(n,UK,age,s); 
DisState(n,UK,a); } 

if (SSAV) 
for(a=O; a<121; a++) 
for(s=O; s<2; s++) 
for(i=O; i<n1981 [a] [s] [NUK]; i++) 
{ n = immid; immid++; 

else 

age = a+RandO; 
A[n].tBirth = t-age; 
A[n].sex = s; 
A[n].rob = rob = NUK; 
if (Rand()<ssa1981 [a] [s]) 
{ A en] . ssa = 1; 

rob=SSA; 
if (Rand()<hivp[s] [0]) A[n].ssa=2; } 

Basiclnd(n,NUK,age,s); 
DisState(n,rob,a); } 

for(a=O; a<121; a++) 
for(s=O; s<2; s++) 
for(i=O; i<n1981 [a] [s] [NUK]; i++) 
{ n=immid; immid++; 

age=a+RandO; 
A[n] .tBirth = t-age; 
A[n].sex = s; 
A[n] .rob = rob = NUK; 

Basiclnd(n,NUK,age,s); 

DisState(n,NUK,a); } 

First, initialize UK-born 
(rob=l) population for all age 
and sex categories. 
Take the next available ID. 
Assign age plus random bit. 
Assign birth time from age. 
Assign sex. 
Set to UK-born. 

Set up basic individual. 
Assign disease state and 
process accordingly. 

Process non-UK born in SSA 
version of model, taking into 
account the proportion of 
SSAs and their HlV 
status. 

If SubSaharan African, indicate 
this and assign HlV status. 

Set up basic individual. 
Assign disease state and 
process accordingly. 

Process non-UK born for non-SSA 
version of model. 

Set up basic individual. 

Assign disease state and 
process accordingly. 

27. Set up basic individual for population initialization 

This function sets up a basic individual assigned to a death, emigration, or vaccination 
time. This is similar to birth but processes individuals of any age, sex, or region of birth 
(anyone being initialized when the model starts). The scheduled event may change if a 
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state other than Uninfected is assigned when diseaes state is assigned. This function is 
merely used to get the individual initialized. 

Entry: A en] individual is not scheduled for any event. 
rob is 0 for non-UK born (ONUK and SSA), 1 for UK-born. 
age is the age of the individual in years. 
sex is 0 for males and 1 for females. 

Exit: A en] is in the Uninfected state and scheduled for its earliest 
event. 

Basiclnd(int n, int rob, dec age, int s) 
{ dec wd, we, wv; 

NewState(n,qU); Assign to Uninfected state. 
A en] . tDeath = wd = t+LifeDsn (s, age ,m1 [0] [0] ); Assign time of death. 
if (wd<A[n] .tBirth+age) Error(612.2); Check death time. 
A en] . tEmigrate = we Assign time of emigration. 

= t+EmDsn(rob,s,age,em[s] [rob]); 
if (age<v3 [rob] && Rand 0 <v1[rob] *v2 [rob] ) Calculate time to vaccination, 

wv = t+(v3 [rob] -age)+RandO ; set to time which never 
else wv = t+2*RT+Rand(); happens if it should not occur. 

if(wv<wd && wv<we) 
{ A[n] . pending = pVaccin; 

EventSchedule(n, wv); } 

else if(wd<we) 
{ A[n] .tExit = wd; 

If vaccination is the earliest 
event, schedule it, 

If death is the earliest 
event, schedule it. 

A[n] .pending = pDeath; 
EventSchedule(n, wd); } 

else 
{ A[n] .tExit = we; 

Or, if emigration is the 
earliest event, schedule that. 

} 

A[n] . pending = pEmigrate; 
EventScheduleCn, we); } 

28. Assign disease state for initial member of population 

This function assigns one of the eight disease states (8 instead of 11 because those with 
disease are not assigned to pulmonary or non-pulmonary until after being processed). 

Entry: n is the individual's ID number. 
A[n] is set up as basic Uninfected individual. 
rob is the region of birth, O=Non-UK, l==UK, 2=SSA (if running 

SSAV version of model. 
a is the integer age of the individual. 
Ax contains the disease state, used for RandF along with inf1981. 
inf 1981 contains the probabilities of the different disease states, 

which are numbers in Ax. 

Exit: A[n] has been assigned disease state (may remain unchanged) and 
processed accordingly. 

DisState(int n, int rob, int a) 
{ int st,str,r; dec tinf; 
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} 

st = 1+(int)RandF(Ax,inf1981[a] [A[n] . sex] [rob] ,9,1.0); Get disease state. 

r=rob; 
if(r==2) r=O; 

switch(st) 
{ 

case 2: 
EventCancel(n); 
Vaccination(n); 
break; 

case 3: 
tinf = RandO *5; 
Infect(n,tinf,Strain(r),O); 
if (REC) 
{ if(r) A[n].inf = 1; 

else A[n].inf = Rand()<.5? 1: 3; } 
break; 

case 4: 
EventCancel(n); 
A[n] . strain = Strainer); 
NewState(n,qD1); 
Remote(n); 
if (REC) 
{ if(r) A[n] .inf = 2; 

else A[n].inf = Rand()<.25? 2:4; } 
break; 

case 5: 
NewState(n,qI2); 
tinf = Rando*5; 
Infect(n,tinf,Strain(r),O); 
if (REC) 
{ if(r) A[n] .inf = 1; 

else A[n].inf = Rand()<.5? 1: 3; } 
break; 

case 6: case 7: case 8: 
EventCancel(n); 
A[n].strain=Strain(r); 
NewState(n,st-3); 
Disease(n); 
if (REC) 
{ if(r&&st==7) A[n].inf = 2; 

else if(r) A[n].inf = 1; 

Get rob of 0/1 for assigning 
place of infection in inf 
and for assigning strain ID. 

Send to vaccination. 

Get the time of infection before 
sending to Infect. 

Assign inf (time/place) 
if REC version of model. 

Before sending to Remote, put 
in temporary disease state to 
facilitate re-scheduling of 
events in Remote function. 

Assign inf (time/place) 
if REC version of model. 

Before sending to Infect, put 
in "Remote infection" state so 
that this is correctly treated 
as Reinfection. 
Assign inf (time/place) 
if REC version of model. 

Process disease states by first 
putting in correct infection 
state and then sending to 
Disease. 

Assign inf (time/place) 
if REC version of model. 

else if(st==7) A[n].inf = Rand()<.2? 2: 4; 
else A[n].inf = Rand()<.4? 1: 3; } 

break; 

default: 
if(st!=l) Error(618.2); } 
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29. Choose strain identification number 

This routine chooses a strain number at model initialization, or for immigrants at the time 
of immigration. Future versions of the model will expand tracking of strain type profile 
identifiers, which will require an expanded version of this routine. 

Entry: type holds the type of strain number to be generated, where 
O=Non-UK born at model initialization and migrants during 
the simulation, l=UK-born at model initialization. 

Exit: 

SO holds strain IDs for migrants, corresponding to probabilities 
held in sdimm. 

Sl holds strain IDs for UK-born at model initialization, which 
correspond to probabilities held in sduk. 

sdimm holds cumulative probabilities of selection for strains in 
migrants, SO. 

sduk holds cumulative probabilities of selection for strains in UK
born at model initialization, held in S1. 

isO holds the number of non-UK born strains, for model initialization 
and for migrants upon entry to the UK. 

isl holds the number of UK-born strains at model initialization. 

A strain ID number is returned. 

int Strain(int type) 
{ 

if (type==O) 
return (int)RandF(SO,sdimm,isO+1,1); 

Process Non-UK individuals, where 
strains are numbered 1 to isO. 

else Process UK-born, where strains are 
return (int)RandF(Sl,sduk,is1+1,isO+1); numbered isO+1 to isO+is1. 

} 

30. Cluster analysis 

This function analyzes genetic typing data created during the simulation, checking whether 
cases have strains that match others in the population and computing cluster sizes for each 
strain. This routine is called once at the end of the simulation, so speed is not an issue. 

Entry: repc3 holds data on cases which are reported and genotyped; the first 
array dimension holds reporting identification numbers; the second 
dimension h8..<; 7 elements: 

o age 
1 sex 
2 birthplace 
3 time of case report 
4 place/time of infection (as in A en] . inf) 

1 recent/UK 
2 older/UK 
3 recent/NonUK 
401der/NonUK 

5 strain type of infection 
6 set to zero. 

repid holds the total number of reported cases. 
clust is empty and set to zero, indexed as described its data 
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definition. 

Exit: repe3 is updated to include the number of individuals with the same 
strain in element 6 of the second array dimension. 

clust Cae] [s] [r] [k] counts the number of cases for each combination of 
age class (0=0 14. 1=15 44. 2=45 64. 3=65). 
sex (O=male. l=female). and 
rob (O=foreign. l=UK) combination. 

with the fourth array dimension counting where and when infected: 
o unique and non-recent/non-UK, 
1 unique and recent/UK cases. 
2 clustered and non-recent/non-UK. 
3 clustered and recent/UK, 
4 total of indexes 0 to 3. 

int CIustO 
{ int i,j,k,ae,s,r; dec age; 

for(i=O; i<repid; i++) 
{ for(j=O; j<repid; j++) 

if (j!=i && repe3[i] [5] ==repc3 [j] [5]) 
repc3 [i] [6] ++; 

age = repe3[i] [0]; 
ac = age<15?0: age<45?1: age<65?2: 3; 
s = repe3[i] [1]; 
r = repc3[i] [2]; 

For each case count the 
number of other cases 
with matching strains. 

Get age class, sex, and 
birthplace indexes. 

k = repc3[i] [4]==1? 1: 0; 
if (repc3[i] [6]>0) k += 2; 

Develop the array index for the 
fourth dimension. by recent/UK 
and clustering. 

eIust[ae] [s] [r] [k]++; 
eIust[ae] [s] [r] [4]++; } 

Increment cases by category and 
accumulate the total. 

return 0; Return to caller. 
} 

31. Check for monotonicity 

This routine checks whether a table of cumulative probabilities is monotonically increasing 
and optionally whether it is bracketed by 0 and 1. 

Entry: p is the table of cumulative probabilities. 
n is the number of entries in the table. 
b is set if the table should begin with 0 and end with 1. 
r1 and r2 contain two numbers that may help to identify the location 

of the error. If such numbers will not help, then either or both 
contain zero. 

Exit: The routine returns if the table appears to be correct. If not, an error 
message is issued and the routine never returns. 

int monotone(dee pc], int n, int b, int ri, int r2) 
{ int i; 

for(i=l; i<n; i++) 
if (p [i -1] >p [i] ) 

Make sure the sequence never 
decreases. 
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Error3(621., "'",rl, "' ",r2, "' ", i) ; 

if(b && (p[O] !=Ol Ip[n-l] !=1)) 
Error2(622., ""I,rl, It< ",r2); 

If requested. make sure it begim; 
with 0 and ends with 1. 

return 0; (Will never reach this). 
} 

32. Service routines 

Various service routines, such as parameter reading and report writing, which are periph
eral to the operation of the program, are included in file service. c. This becomes part of 
the main program but is kept separate for simplicity. The tables below define parameters 
that may vary each time the program is invoked, available to the parameter gathering 
routine gparam. 

char *pntab [] = Table of parameter names. 
{ "s2[0]","s2[1]","c[0] [O]","c[O] [l]","c[l] [0]", "c[l] [1]", 

"vl [OJ", "vl [lJ", "v2 [OJ", "v2 [lJ ", "v3 [OJ", "v3 [lJ ", "ehiv", 
"rl[OJ","rl[1]", "r2[OJ", "r2[lJ", "r3[OJ", "r3[1]", 
"r4 [0] " , "r4 [1] ", "r5 [OJ", "r5 [1] " , "r6 [OJ" , "r6 [lJ " , 
"r7 [OJ" , "r7 [lJ ", "r8 [OJ", "r8 [lJ " , "df" , "runid" , 
"dluk20", "d2uk20", "d3uk20", "md", "mi", 
"pmale [OJ", "randseq", 0 }; 

dec *patab [] = 
{ &s2[0], &s2[1], &c[OJ[OJ, &c[OJ [lJ, 

&vl[O], &vl[l], &v2[0], &v2[lJ, 
&rl[OJ, &rl[lJ, &r2[O], &r2[lJ, 
&r4[OJ, &r4[lJ, &r5[OJ, &r5[lJ, 
&r7[O], &r7[1], &r8[0], &r8[lJ, 
&dluk20[0], &d2uk20[0], &d3uk20[0], 
&pmale[O] , &randseq, 0 }; 

#include "service.c" 

Table of parameter addresses. 
&c [1] [0], &c [lJ [1] , 
&v3[O], &v3[1], &ehiv, 
&r3 [OJ, &r3 [1] , 
&r6[0], &r6[1], 
&df, &runid, 

&md,&mi, 
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Abstract- Microscale models that simulate discrete indi
viduals commonly organize those individuals into groups of 
similar characteristics. During the simulation, individuals 
are frequently added to groups, removed from groups. and 
moved among groups. Moreover; individuals must be se
lected randomly based on probabilities that vary among the 
groups, and even that may vary within a group. Space and 
time limit the number of individuals, as the number desired 
can be large-up to the population of entire nations or more. 
Therefore algorithms for processing them should be efficient. 
Here we explain a set of Order-I algorithms for managing 
groups. These algorithms run at a constant speed regardless 
of whether 100 individuals are included or 100 million. They 
use space-time tradeofJs recently made possible by large 
computer memories to bring the number of iterations per 
operation close to one. This increases the scale of problems 
that can be addressed by individual-based, agent-based, 
discrete-event, and other microscale simulations. 

Keywords: individual-based simulation, discrete event simulation. 
equation-free models, order-I algorithms, memory-speed tradeoff 

1. Introduction 

One goal of the algorithms described here is to select individ
uals at random, from given groups. in the least possible time. 
Such operations can be needed billions of times during large
scale individual-based and other microscale simulations in 
science and industry [IJ [2J [3J. For example, epidemiolog
ical models may need to select simulated individuals from 
given age groups, birthplaces, and susceptibility categories 
as targets of infection transmitted during the simulation. 

Selection is easiest and fastest if the data structures for 
all members of a group occupy a contiguous block of 
memory, with no intervening gaps. Then selecting a random 
member is merely generating a random number between I 
and the number of members in the group, then indexing 
the corresponding member. If all individuals in the group 
have the same probability of being selected, that operation 
is clearly independent of the number of individuals in the 
group. In other words, it is of "Order- I ," running at the same 
speed regardless of how many individuals are in a group. If 

the probabilities of being selected vary within the group, 
the algorithm remains Order-I, but with slightly more time 
required per selection. 

During the course of the simulation, individuals will be 
added to groups, deleted from them, and moved between 
them. When an individual is deleted, for example, the gap 
in the group formed by that individual must be closed up. 
These addition-deletion operations occur frequently during 
the simulation, so ideally they should also be Order-I, as are 
the algorithms explained in this paper. 

With high-speed algorithms for adding and deleting, indi
viduals can be organized into groups even if random selec
tion is not needed. For example, such organization can help 
tallying-keeping counts of those in different groups through 
time without scanning the array of individuals. Under the 
right circumstances, the algorithms can also be used within 
in many applications that require efficient priority queues [4]. 

Order- I algorithms are rare, but they have been known 
since the early days of computer science [5J. They often 
rely on an abundance of computer memory to keep data 
structures sparse, and therefore were costly to apply in earlier 
days. Now, because allocating a gigabyte array is readily 
within the reach even of portable computers, new rules for 
memory use apply. Algorithms that trade additional memory 
for additional speed are possible and desirable. 

Some groups may have myriad individuals and others only 
a few. The size of the groups may not be known in advance 
and may vary widely during the simulation. Therefore, it is 
not practical to allocate separate arrays large enough for each 
group, and dynamically allocating and reallocating memory 
would be unnecessarily inefficient. The algorithms described 
here eliminate the need for such reallocations, using space 
not needed by smaller groups to accommodate the needs of 
larger groups. The algorithms use buffer areas of allocated 
but unused memory to speed operations. Their running times 
become independent of the number of individuals and nearly 
independent of the number of groups. 

2. Sample application 
For an example of use of these algorithms, consider an 
epidemiological model having what is called "age dependent 
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mixing: ' Transmission of inHuenza, for example, is more 
likely between those in similar age groups, since individuals 
of similar ages spend much of their time in similar locales
such as day-cares, schools, business places, or ass isted 
living facilities. These may have approximately uniform 
mixing within age groups , but reduced mi xing between age 
groups [6] . An age-dependent mixing strategy can substitute 
for a more accurate but unknown contact network. 

In an individual-based, discrete-event simulation of this 
type, when an infectious individual is about to infect another, 
the new individual must be selected efficiently from a li st 
of perhaps tens of millions of individuals. Which group will 
receive the infection is determined in the program at large, 
outside the algorithms described here, via empirical or hypo
thetical probability distributions. Figure I is a hypothetical 
example of such a distribution. It represents the probability 
of transmission by age class from an infected four-year-old. 
The hori zonta l ax is is the age of a susceptible individual, 
the vertical ax is represents relative probabi lity of receiving 
an infection from an infected four-year-old. 

p(x) P (x) 

-,----- ------=:::::=;=-, 1.0 0.10 

0.08 0.8 

0.06 
Cumulat ive P (x) 

0.6 

0.04 0.4 
Density p( x) 

0.02 _./ 0.2 
/ .... 

0 .00 ~mm~ilTm1TTTTTT1TI1~-m-~mm,.",,:;;m;Trrrrmmrri-;m;:;-m-iTni'-i'm1i-iT-mmTl- 0.0 
0 10 20 30 40 50 60 70 80 90 100 

Figure 1. Sample probabil ity function for se/ec/ing groups, illus
tra/ed as the probabili/y oftransmi.~sion ofinfec/ion from an infected 
four-year-old 10 each of 100 groups, here repre.~enting one-year 
human age c1as.~e.~ . The probability of being se/ec/ed depends on lhe 
group, according 10 an empirical probabili/y distribution, de/ermined 
or surmised. Lef/ axis, probability density function, dashed curve. 
Righ/ axi.~, corresponding cumula/i ve probability dislribution, solid 
curve. 

In this illustration, four-year o lds can tran mit infection 
to anyone but have the highest probability of transmilling to 
other four-year old and to nearby ages, an increased proba
bility of transmilling to tho e the age of their parents, peak
ing around 24 years old, and their grandparent, around 44 
year old. and great-grandparents around 64 years old. Such 
distributions would be empirically estimated and groups to 
receive an infection would be selected many times during 
the simulation. Thi s would be accompli hed, for example, 
with a non-uniform random number generator that selects 
from arbitrary probability di tribution [7] [8] [9] , like the 
distribution in Figure I. That is accomplished through the cu
mulative probability distribution by representing its inverse 
in an effic ient way, as with piecewise-polynomial curves, 

then sampling from that inverse di stribution with uni form 
random numbers (e.g., [10]). That process, accomplished 
outside these algorithms, determines which group of indi
viduals will receive the infection. The algorithms described 
here are then applied to select an individual from the group. 
They are also applied to add individuals to groups, delete 
them, or move them between groups. 

3. Algorithms and data structures 
One array exists for individuals and two for groups (see 
appendix). A[n] is a one-dimensional array of structures 
representing individuals, in order by group and contiguous 
within each group, but in no particular order wi thin groups, 
and with pos ible gaps between groups. The re levant simu
lation data fo r each individual is carried in this array, which 
varies by application, but in our example would include 
such items as sex , birth date, birthplace, and geographic 
coordinates. Each individual may also carry information on 
its own probabi lity of being selected within a group, in 
data e lement A[n].v. By convention, A[l] is the first entry 
used, so that index 0 may be used as a null li st index. This 
is the largest data structure, potentially containing tens or 
hundreds of millions of individuals and occupyi ng gigabytes 
of memory. 

C[i] is a one-dimensional array of groups, identifying 
the lowest-numbered individual in A[n] for each group, 
structured so that C[O] is the index of the lowest numbered 
individual in the fir st group and that C[j + 1]- C[j]- E[j] 
is the number of individuals in group j. E[i] is simply 
a one-dimensional array identifying the number of empty 
cell s at the e nd of each group. Deletions increase the 
number of empty ce lls and additions draw from those empty 
cells. These are relatively small arrays, typica lly occupying 
only kilobytes each. They can be initialized by Group/nil 
(appendix), or by a custom routine. Global scalar variables 
are rna, the maximum number of individuals in A, and nc, 
the number of groups. 

3.1 Selecting from a group 
Becau e all individuals in a group occupy contiguous e l
ement of array A[nJ, selecting one at random simply 
involve generating a uniformly di tributed random number 
between one and the number of individuals in the group, then 
selecting that individual after bia ing the number to align 
with index numbers in A[nJ for the group. If all members 
of the group are equally likely, the process is complete. If 
probabilitie of election vary among member of the group, 
then the "sieve method" [I I] applie within the group. That 
is implemented in Algorithm I (appendix). In effect, the 
ieve method tentatively selects a random member of the 

group and examines its probability of being elected, relative 
to others in the group. One additional uniform random 
number determines if the tentatively selected individual 
should remain unselected, based on the probability recorded 
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Figure 2. lIlu.'tration of addition and deletion. Each row .,how., the array of individual.' A[n], 1 ::; n ::; 10, of 
groups C[i]. 0 ::; i ::; 2, and of empty cell., E[i], same range on i. The lOp row is the initial empty state. The 
next 10 row.' are individual., being added in random order by Algorithm 2. The bottom row i., an individual 
being deleted by Algorithm 3. Number.' in the upper left of each cell of A[n] indicate the group 10 which that 
cell is presently aJ/ocaled, as defined by array C[i]. The letter., in the center.' of the ceJI., of A[n] repre.,em 
distinct individuals assigned to the cells. 

for it in A[n]. If so, the individual is ignored and the selection 
process is repeated. The entire process is still Order-Ion the 
number of individuals, though with a higher coefficient. 

3.2 Adding to a group 
Adding a member to a group is a relatively simple but 
exacting process. If space is available at the end of the group, 
the new individual is simply placed there and the number of 
unused entries in the group, E[i], is reduced by I. If, on the 
other hand, the area allocated to the group is full, then one 
member from each of one or more neighboring groups must 
be shifted to make room. The external function Transfer is 
called to actually move the entries, since the larger program 
may have other lists that must be updated when an individual 
is moved. 

This process is defined preCisely in Algorithm 2 (ap
pendix) and illustrated in Figure 2. The latter is a step-by
step example starting with an empty list of 10 individuals 
and filling it in random order. In the example there are 26 
possible individuals, each with a fixed "name", 'A' through 
'Z'. Each is assigned an initial group, which organizes the 
list, such that 'A' through 'J' initially belong to group 0, 'K' 
through 'T' initially belong to group I, and 'U' through 'Z' 

initially belong to group 2. Individuals can be moved from 
group to group as the simulation proceeds. In practice, large 
numbers of individuals would be processed, not just ten. 

Array A[n] starts with 10 empty slots. The three groups, 
0, I, and 2, have an initial allocation of 3, 3, and 4 slots, 
respectively. Entries are added at the first available slot for 
their group, until that group is filled. Then entries cascade 
to the right or left, resting in the first available slot. 

Individual 'U' is added first. It is initially in group 2, 
which begins at position A [7]. That is followed by '0', 'p', 
'Z'. 'M', 'S'. and 'W', all of which fall into empty slots 
pre-allocated in their initial groups. That situation is typical 
when the array is sparse, and in part leads to the algorithm's 
speed. However, when'S' is to be added, the space allocated 
to its group (cells A[4]. A[5]. and A[6j) is full. To make 
room, group 2 could move down or group I could move 
up. This example shows the latter. and accomplishes that 
by shifting 'M' into the open cell at A[3]. changing C[l] 
accordingly, and placing'S' at the newly opened cell at A[6]. 
Note that'S' could simply have been placed in poSition A[3], 
rather than moving 'M' there. Various optimizations could 
be applied at the cost of a little additional complexity in the 
code, though the effects on overall timing would be minor. 
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Individual 'X', initially designated for group 2, falls 
immediately in the open cell at A[lO]. Individual 'Y' is 
also of group 2, and the cells for that group are full. The 
algorithm moves '5' to empty cell A[2], then moves 'X' to 
A[6], just vacated by 'S', and finally stores 'Y' in the vacated 
cell A[lO]. Arrays C and E are updated in the process. 

With this method, the maximum number of array elements 
moved is bounded by the number of groups, independent 
of the number of individuals. When sufficient memory is 
allocated to leave a fraction of the space free in A[n], then 
typically no array elements must be moved. That makes the 
Order-} coefficient as small as possible. It also makes it, for 
practical purposes. independent of the number of groups. 

3.3 Deleting from a group 
Deleting is simpler. The individual is removed and the 
member from the end of that group is moved into its place. 
which keeps the individuals in the group contiguous. For 
example. when individual 'U' is removed. that would leave 
a gap in the middle of group 2. Individual 'Y' at the end 
of the group is moved into its place, increasing by one the 
number E[2] of empty slots at the end of the group. Deleting 
is always independent of the number of individuals and the 
number of groups. 

Moving an individual from one group to another is merely 
deleting from one group and subsequently adding to another. 
As before. the external function Transfer is called to actually 
move the entries. 

4. Timing 
Timing tests of the above algorithms, starting with an empty 
array and building to one-hundred million individuals (lOH), 

averaged 1.04 seconds total on a 2.8 GHz processor, or 10.4 
nanoseconds per addition. Individuals were added in random 
order. with all groups equally likely, into an array that had 
15% more room than required. Selecting from } 00 groups 
averaged 2.1 nanoseconds per selection. Deleting them all 
at the end averaged 6.8 nanoseconds each. 

With sufficient space in array A[n]. as provided above. 
the algorithms become independent not only of the number 
of individuals but also of the number of groups. Keeping 
all else equal while increasing groups a thousand-fold. to 
100.000 distinct groups. required no additional running time 
in the algorithm itself. 

Nonetheless, large multi-gigabyte arrays such as these 
may exercise a processor's internal memory caches in vari
ous ways. and that can affect finer details of timing. In any 
case. the algorithms remain efficient for a very large number 
of groups. 

5. Conclusions 
The algorithms presented here can be incorporated into any 
individual-based or other microscale model. where they can 
speed simulations many orders of magnitude over alternative 

methods that are not Order-I. The methods applied in 
these algorithms are part of a large-scale simulation model 
developed by one of us (A.K.) for tuberculosis in the UK. 
Compilable copies of the code described here and related 
simulation algorithms are available free from the authors 
upon request. 
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8. Appendix: Grouping Algorithms 
To use the algorithms described in this paper, it is only 
necessary to understand the entry and exit conditions that 
appear at the beginning of each. not the code itself. Nonethe
less, to allow complete evaluation of the algorithms. and to 
encourage further development of them. we present them as 
pseudo-code inspired by and simplified from the program
ming languages C, R, and Python. The algorithms are defined 

with sufficient precision that they can be tested, timed, or 
translated to other languages. Familiarity with a relatively 
few operators' and with the syntax of flow control (if. 
for, while. etc.). is sufficient to follow the algorithms. Text 
copies of this pseudo-code translated into operational C 
are available from the authors upon request, or from the 
associated website, 'www.cbs.umn.edu/modeling·. 

DATA STRUCTURES 

ma == 100000000 
ne == 10000 

structure Individual 
integer g; 
real v; 
real tbirth; 
integer rob; 

structure Individual A[ma + 1J; 
integer CIne + 2J; 
integer t:[nc + 2J; 

Sample, maximum number of individuals in A. 
Sample, maximum number of groups in C. 

Sample, datu structure for individuals 
(Optional, group for this individual) 
(Optional. relative probability of remaining unselected) 
(Sample, time of birth) 
(Sample. region of birth). 

Array of individuals. 
Array of beginning index for each group in A. 
Number of empty cells trailing each group. 

Algorithm 1. SELECT RANDOM ELEMENT FROM GROUP 

Upon entry to the algorithm. (1) k defines the group to be sampled. (2) ne specifies the number of groups. (3) C 
indexes the first individual in each group. (4) E[kJ contains the number of empty cells at the end of the group. 
(5) A[i].v contains the probability of each individual in the group remaining unselected, relative to the individual 
least likely to remain unselected. All A[i].v are zero if all individuals are equally likely. (6) Rand returns a 
uniformly distributed random number between 0 and I, including 0 but not including I. At exit. GraupSeled 
indexes the individual selected. If zero, the group is empty. 

Integer Groul'Select(k) integer k; Integer h, n; 

if ClO] = 0 or k 2: ne : returu 0; 

C[k + 1 J - ClkJ - t:[kJ --t h; 
If h ::; 0 : return 0; 

loop until return : 
ClkJ + h*RandO --t n; 
if A[nJ.!' = 0: return n; 

if RandO 2: A[nJ.v : 
return n; 

I. Guard against null cases. 

2. Determine how many occupy the 
group. 

3. Select an individual randomly and 
use it unless it has a probability of 
remaining unseleeted. 

4. Otherwise use it only in proportion 
to its relative probability. 

* The pseudo-code given here i., two-dimensional, as in the language 
Python, .'0 that indentation completely define., the ne.'ted .,truclUre, 
with no need for bracketing characters "uch as '{' and '} '. Variable" 
and function name" are italicized and flow control and reserved 
word" are bolded, 

Using up-tick and down-tick operators to write 't a', ' .. a', 'a t " 
and 'a <. ' form pre- and po,'t-increments by one, a" in '++a', '--a', 
'a++', and 'a--' ofC. 

The assignment operator is represented either as '~' or '--t', 

"imilar to a""igmenr., in R. The compound a""ignment,' 'a + 1 --t 
a --t b --t W[i]U]' and 'W[i]U] ~ b ~ a ~ a + 1 'are equivalent, 
tirst incrementing a and placing the results back in a, then in b, and 
then in the i,jth element of the array W. 

Arrays are indexed as in the language C, starting with O. Data 
type" are 'Integer' and 'real', with the laNer specifying floating 
point. Operator precedence i,~ that of C, with assignment,~ having 
lowest precedence. Logical operators "ueh a" 'and' and 'or' are 
preemptive, terminating a chain of logical operations a,~ soon as 
the re"ult i" known. Permanent glohal a"signment,~, liS would he 
represented '#define Q /3' in C, are rendered as '0 == /3', 
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Algorithm 2. ADD ELEMENT TO GROUP 

Upon entry to the algorithm, (1) A contains the list of individuals, ordered by group, with sufficient room 
for at least one more individual. (2) e indexes the first individual in each group. (3) E contains the number 
of empty cells in each group. (4) k is the group for the individual to be added. (5) rna contains the maximum 
number of individuals that may reside in A. (6) riC contains the number of groups. (7) TransJe1'(m, 11) is an 
external function to move individuals from entry Tn to entry 71, including updating of any external information. 
At exit, (1) GroupAdd returns the index of an available entry in A where the individual is to be added. If zero, 
none can be added. (2) A. e, and E are updated to include space for the new individual. 

integer GroupAdd(k) integer k; integer i, m, n, d; 

if C[O] == 0 : return 0; 

o -) d; 
while k - d > 0 or k + d + 1 < nc : 

k - d -) i: if i 2: 0 and "-'[i] > 0: exit loop; 
k + d + 1 -) i; if i ::; nc and "-'[i] > 0: exit loop; 
- 1 -) i; i d; 

if i < 0 : return 0; 

whilei>k: 
.).1-:[i]; C[i + 1] - "-'[iJ - 1 -) m; 
if i = k : return m; 
C[iJ -) n; if m i' n : Tramf"er(n, m); 
t "-'[i - 1 J; t C[iJ; .[ i; 

while i < k: 
J."-'[i];-C[i+l]-1 -)m; 
if i = k : return m; 
e[i + 2] - 1 -) n; if m i' n : Tran.~f"er(n, m); 
i"-'[i+l]; J.C[i+1]; ii; 

Algorithm 3. DELETE ELEMENT FROM GROUP 

I. Guard against null cases. 

2. Search forward and backward 
simultaneously for the nearest 
group with an empty slot, 
returning with failure if the 
array is full. 

3. If there is a slot at the present 
location, use it, or if forward, 
cascade it back to the current 
location. 

4. Otherwise, if there is a slot 
earlier in the list of groups, 
cascade it forward to the current 
location. 

Upon entry to the algorithm, (1) k is the group for the individual to be deleted. (2) 71 indexes the individual 
being deleted, whose entry is ready for reuse. (3) A contains the list of individuals, ordered by group. (4) C 
indexes the first individual in each group. (S) E contains the number of empty cells in each group. (6) nc contains 
the number of classes. (7) Transfer(rn,n) is an external function to move individuals from entry 111 to enlry 
71, including updating of any external information. At exit, (1) GroupDelete returns zero if the operation failed. 
(2) A, e, and E are updated to exclude the deleted individual. 

integer GroupIJeiele(k, n) Integer k, n; integer m; 

if C[O] == 0 or k > n(" or C[k + 1]- C[k] ::; 0 : return 0; 

t "-'[k]; C[k + 1] - "-'[k] -) m; 
if n i' m : Tra1l.lfer(m, n); 

return 1; 

Algorithm 4. INITIALIZE ALL GROUPS 

I. Guard against null cases. 

2. Transfer the last occupied entry 
to the deleted slot. 

3. Return with success. 

Upon entry to the algorithm. (1) nc is the number of groups. (2) rna is the maximum number of individuals. 
At exit, (1) e[i] indexes the location for the first individual of group i. (2) E[i] contains the number of entries 
initially in group i. Groups are of equal size to within the limits of integer arithmetic. 

GrouplnilO integer i, k, n, r; 
maine -) n; rna - ne*n -) r; 

1 -) k; 
for i from 0 to nc : 

n --; 1-:[i]; if i 2: ne - r: t Eli]; 
k -) e[i]; k + H[i] -) k; 

o -) "-'[nc]; 

t. Compute the group size and remainder. 

2. Initialize the location and size of 
each group, distributing the remainder 
across higher-numbered groups. 

3. Close the list of groups. 
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"It is a mistake to try 10 look 100 far ahead. The chain of destiny can only be grasped one link at a time." 
-Winston Churchill 

Abstract- Given vast increases in computing capacity. ap
plications in science and engineering that were formerly 
interpreted with ordinary or partial differential equations. or 
by integro-partial differential equations. can now be under
stood through microscale modeling. Interactions among in
dividual particles-be they molecules. viruses. or individual 
humans-are modeled directly. rather than first abstracting 
the interactions into mathematical equations and then simu
lating the equations. One approach to microscale modeling 
involves scheduling all events into the future. wherever that 
is possible. With sufficient spacejor-time tradeoffs. this con
siderably improves the speed of the simulation. but requires 
scheduling algorithms of high efficiency. In this paper we 
describe our variation on calendar queues and their usage. 
presenting detailed algorithms. intuitive explanations of the 
methods. and notes from our experiences applying them in 
large-scale simulations. Results can be useful to scientists 
in ecology. epidemiology. economics. and other disciplines 
that employ microscale modeling. 

Keywords: microscale modeling, discrete event simulation, cal
endar queues. pending events set, space-time tradeoff 

1. Introduction 
The obvious approach to model a large number of discrete 
interacting entities, hereinafter called "individuals," is to 
emulate what is done to model continuous systems with 
differential equations. That is, select a small time step Ilt, 
compute how the system will change during the interval Ilt, 
update the system with those changes, then advance to the 
next time step. In ordinary differential equations, as the time 
step shrinks, the dynamics of the simulated system converge 
to the correct behavior. This is "macroscale modeling," 
following Euler's method or its many variations [I]. With a 
model of 100 compartments, representing, for example, 100 
age classes in a human population, relatively few dynamical 
variables must be examined and updated in each time step. 

The same approach works with microscale modeling, 
though with difficulties. At each time step, each individual 
is examined to determine what interactions will occur during 

that time step. The difficulty with this approach is twofold. 
First, each individual acts as a dynamical variable, so there 
can be many millions or hundreds of millions of variables 
to be examined and updated in each time step. Moreover, 
as the time step shrinks to assure convergence, it becomes 
exceedingly unlikely that anything will happen to a given 
individual during the time step. Therefore, in contrast with 
its macroscale counterpart, that approach to microscale mod
eling spends most of its time checking and finding nothing 
to do. 

Inspiration for a faster approach comes from an alternative 
method of solving differential equations. Instead of deter
mining what will happen during the present small time step, 
an algorithm can determine at what time in the future the 
next event will occur. This can be determined reliably for 
the very next event, and the precise process for doing so is 
called Gillespie's method [2). It is the complement of the 
standard method. J 

Despite certain epistemological difficulties about project
ing the future that are beyond the scope of the present paper, 
hinted at in Churchill's statement above, Gillespie's method 
can be extended to determine possible times for all future 
events in many dynamical systems of scientific interest-<>r 
at least all events that control the fate of the system. But the 
number of future events can be large, with many events per 
individual, and the number of individuals in the simulation 
may be tens or hundreds of millions or more. 

Fortunately, algorithms are known that are extremely 
efficient at handling schedules of future events. Discovered 
by Randy Brown in 1988 [3], these are called "calendar 
queues" or "pending event sets," and have been undergoing 
successive refinements ever since (e.g. [4] [5] [6] [7]). They 
have the desirable-and remarkable-property that their 
speed is independent of the number of events scheduled. 

l/n simulating fIx) '" dx/dt <=:; Ax/At, a small time step At can be 
established. such as 0.01 seconds, and the change in population (or other 
simulated quantity) can be estimated as Ax <=:; f(x)At. That is Euler's 
method. Alternatively, a change in quantity Ax can be specified (such as 
a population growth of one individual) and the time for that to occur can 
be estimated as At ~ Ax/ fIx). That is Gillespie's method. Thus the 
mathematics for the two are complementary. 
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Adding an event, canceling one, or finding the next event 
about to occur is the same whether the schedule contains 100 
events or 100 million. That is, they are "Order I" algorithms. 

In this paper we present our adaptation of calendar queues 
to large-scale individual-based modeling in epidemiology. 
Lessons should be applicable to areas including ecology, 
economics, and other physical and natural sciences. We 
attempt to make our presentation intuitive for access by 
scientists and other readers outside computer science. The 
goals of this paper are to (I) review the idea of space
for-time trade-offs that have become widely useable and 
applicable to other algorithms (e.g. [8]), (2) explain our 
variation on calendar queues and their incorporation in 
microscale simulations, and (3) present our algorithms in 
full detail for use and adaptation by others. 

2. Space for time 
The persistent increase in random access computer memories 
has carried algorithms through a "phase change," wherein 
a slow continuous advance in memory sizes has resulted 
in a rapid, almost abrupt, change in some of the rules for 
constructing algorithms for scientific programs. If it will 
speed processing, computer algorithms can now afford to 
allocate hundreds of millions of bytes of empty space
even if that space will never be used. This is a "space
for-time tradeoff." With large memories now available, such 
allocation is no longer wasting memory. On the contrary, 
leaving memory unused, or leaving it applied to insignificant 
purposes, is wasting it. 

A basic space-time tradeoff arises with numerical keys. 
Suppose we have 10,000 items, each identified by a distinct 
six-digit "key," and with keys randomly distributed among 
values from '000000' to '999999'. Suppose each of the 
10,000 items occupies 100 memory cells (e.g. 100 bytes). 
Stored contiguously, this will require 104 x 102 = lOti 
memory cells. In such a compact arrangement, searching can 
be relatively fast if the entries are kept in numeric order2 . 

However, in this case adding and deleting will be slow, 
averaging N or more accesses to keep the list contiguous and 
in order. On the other hand, if the entries are left in random 
order. adding and deleting will be fast, I to 3 accesses only;l 
but searching will be slow. sequentially checking each entry 
until the right one is encountered. The point is, this minimal
space approach inevitably results in algorithms that are slow 
in one respect or another. 

An alternative is to "waste" memory by allocating one slot 
in memory for each of the million entries possible. Now to 
search for a specific six-digit key, say key '314159', the 
algorithm merely goes directly to the 314,159th entry of the 
table. Only one access to the memory array is thus needed 

2For instance, by using a binary search algorithm, which is of Order log2 N 
accesses, where N is the number of items in the list 

1 New entries can be added at the end in I access; deleted entries can be 
swapped with the entry at the end in 3 accesses. 

to retrieve, and the same is needed to add or delete. With 
10,000 active entries. this space-time tradeoff speeds the 
algorithm 5,000 fold. However, it comes at the expense of 
100-million memory cells, about one-tenth of a gigabyte. 
Such cavalier abandon in the use of memory would have 
been unthinkable until recently, but if speed is the utmost 
criterion, then allocating an extra 1110 OB to accomplish a 
multi-thousand-fold increase in speed is the clear and proper 
choice. 

This approach extends to larger keys through the method 
of "hash coding." which is directly related to calendar 
queues. Hash coding is an Order-I algorithm known at 
least since Arnold Dumey in 1956 [9). The key may be 
an individual's first, last, and middle name, for which the 
space required for direct access would be astronomical, 
beyond the power of any computer presently foreseeable. 
Even if the key was only a nine-digit social security number, 
such as 123-45-6789, providing one direct-access entry for 
all possible social security numbers would be prohibitively 
large. 

The simplest solution merely extracts the rightmost six 
digits of the social security number and indexes an array of 
a million entries with those six digits. Of course. as many 
as 1,000 individuals may share the same last six digits of 
their social security numbers, so "collisions" can occur. But 
with only 10,000 entries of a million active, and assuming 
all possible social security numbers are equally likely, each 
entry in the array has only a 0.01 chance of being occupied, 
so the chance that two or more individuals will occupy 
the same cell is very small. Nonetheless, the possibility of 
collisions must be provided for, and a variety of practical 
methods have been devised [10). Once that is done. locating 
an individual by social security number, or indeed by first, 
last, and middle name, can be accomplished in one access, 
or arbitrarily close to one access, with a sufficiently large 
space-far-time tradeoff. 

Dumey's scheme [9J was to use a modulus operation by 
conSidering the key to be a large number, dividing it by the 
size of the memory array (number of entries in the array), 
then discarding the quotient and using the remainder to index 
the array-as in the social security example. In that case, the 
rightmost six digits were equivalent to the remainder after 
division by one million. Essentially the same underlying 
scheme is applied in calendar queues, dividing the scheduled 
time by the size of the memory array (one year's worth of 
minutes in the intuitive example to follow), and using the 
remainder to index the array. Therefore, the same space
for-time tradeoffs that make hash-coded accesses maximally 
fast also can make calendar queues, properly programmed, 
maximally fast for managing large numbers of future events. 

3. Future events 
Having emphasized the value of spending memory to buy 
time, we must also say that it is pointless to spend memory 
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when it does not buy time. The more events that are 
scheduled at once, the greater the amount of memory that is 
needed to handle them efficiently, in direct proportion to the 
number scheduled. Also, the more that the number of events 
scheduled vary during the simulation. the more frequently 
the data structures should be optimized by "resizing" [3]. 

Therefore, to help keep the scheduling algorithms ef
ficient, our microscale simulation programs withhold all 
but one event per individual from them. Characteristics of 
individuals are maintained in a large array of data structures, 
A[nJ, indexed by individual number n, which ranges from 
one to some maximum value. This array includes data of 
two types: (I) information about the individual, such as, in 
a model of human events, date of birth, sex, geographic 
location. and so forth. and (2) a list of all future events 
relevant to that individual. This large array is not processed 
nor examined by the scheduling routines described in this 
paper. 

Only the earliest among the events pending for each 
individual is entered into the global schedule, with the 
data structure A[nJ holding the rest. Such withholding of 
information has several benefits: (J) the number of events 
managed by these algorithms is considerably reduced, (2) the 
number of events that must be canceled and rescheduled is 
reduced, and (3) the size of the scheduling data structures 
are predictable, with precisely one event per individual. 
This partly obviates the need for the scheduling algorithms 
to maintain separate lists for near, intermediate, and far 
future events, as in some variations of calendar queues [II l, 
and also eliminates the need for time-consuming "resizing" 

operations [3). 

4. Intuitive view 
We want to (I) schedule new events, (2) cancel existing 
events, and (3) notify a dispatcher as the time for each 
event arrives-all three with maximal efficiency. The coding 
details can be subtle, but the overall operation is not. It can 
be understood intuitively through a physical analogy. 

Assume, for a specific illustration, that half a million 
events are to be scheduled over the next five years, and that 
they appear more-or-less randomly throughout that period. 
Suppose that each event has a ticket with (I) a unique event 
number and (2) a scheduled time, represented at least to the 
nearest second, but possibly much finer. 

Now consider a series of pigeon-hole bins to contain 
the tickets, one bin representing each minute of an entire 
year. The first bin represents the first minute after midnight 
on New Year's Day, the second bin represents the second 
minute, and so forth to the last bin, which represents the last 
minute on December 31 st. That is 366 days x 24 hours/day 
x 60 minuteslhour = 527,040 bins total, each labeled with 
the month, day, hour, and minute that it represents. Each 
bin also has a flag that can be lowered or raised according 
to whether the tickets in the bin are known to be in 

chronological order. We assumed half a million events to 
be scheduled. less than one event per bin on average. 

4.1 Creating a new event 

Events are created as the simulation proceeds, each asso
ciated with a particular individual and with a precisely as
signed time, usually stochastically assigned. In an ecological 
model these may represent a time of birth or death, in 
an epidemiological model they may represent the time of 
onset of a disease, or the time for transmission to another 
indiv.idual. .In any case, new events arise frequently during 
the sImulatIOn. The procedure for scheduling a new event is 
quite easy: 

I. Go to the bin representing the month, day. hour, and minute 
for the event. Although the year, second, and any fraction of a 
second .are not used to select a bin, they are later used to place 
events In precIse chronological order. 

2. Drop the event's ticket on top of the others in the bin. 

3. Raise the nag on the bin to indicate that its tickets may no 
longer be In chronological order. 

That required only a single operation, regardless of how 
many events were in the bin. We take it to be important 
merely to drop the ticket atop others in the bin, as above, 
rather than trying to sort it into place among other tickets in 
the b.in. Earlier implementations of calendar queues [3] keep 
all bIOS always sorted, but that can be disabling if a large 
number of events accumulate in any bin. Such accumulation 
can occur during testing or simulation. 

4.2 Canceling an existing event 

Once scheduled, events may occasionally have to be can
~el~d: For example, in an epidemiological model, a healthy 
mdlvldual may become the target of an infection. Whatever 
the next event in their life was. it may have to be rescheduled 
as the simulated individual progresses toward disease and 
infectiousness. Therefore, the existing event will be canceled 
and the earliest of other future events for the individual will 
be scheduled instead. In the physical analogy, that requires 
three steps: 

I. Go to the bin representing the month. day. hour, and minute for 
the event. As before, ignore the year, second and any fraction 
of a second. 

2. Flip through them to find the tickel for the event in question. 
3. Destroy that ticket. 

That required one operation for every ticket in the bin, 
but on average there is only one ticket in the bin. Canceling 
an event can be slow if the events cluster badly. because of 
the need to flip through the tickets in the bin. But cancel
ing is ~ot a usual operation. The two common operations 
are addtOg events (described above) and dispatching them 
(described next). 
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4.3 Dispatching the next event 
The simulation proceeds stepwise by locating the earliest 
among all events in the schedule, removing it, then process
ing it. This is efficient, but it involves several steps: 

I. Go to the bin representing the current day, hour, and minute. 
2. If the flag on the bin i, raised. arrange the tickets in chrono

logical order and lower the Hag. 

3. Leave any tickets for future years in the bin. 
4. Process any tickets from this year, day, hour, and minute, each 

to be handled precisely in sequence as the scheduled second 
and fraction of a second arrives. 

5. If any tickets for the current bin arrive while the bin is being 
handled, put them in their proper position among the other 
tickets. 

This required only one operation for each ticket, plus one 
or two more per ticket to order them chronologically before 
dispatching the contents of the bin. Again, on average there 
is only one ticket in the bin. 

This method intentionally does not keep tickets in the bins 
ordered, using instead '~ust-in-time sorting." Usually this 
will make little difference, since the bins are intentionally 
designed to be nearly empty. However, as described earlier, 
if unexpected clustering occurs, this just-in-time sorting will 
be much faster than keeping the contents of all bins in order 
each time an event is added. 

Within a simulation program using these scheduling al
gorithms, the individual associated with the ticket being 
handled will have other pending events in its entry of data 
structure A[n]. The simulation program will then pass the 
earliest of these to the scheduling algorithms, through a call 
to EventSchedule. 

The discussion above shows how the algorithms achieve 
their speed-by maintaining at least as many bins as there 
are tickets. If there were sixty times as many tickets-thirty 
million-the same speed of operation could be maintained 
simply by increasing the number of bins by sixty, to one bin 
for each second. 

5. Applications 
The algorithms described here have been applied and tested 
in a large-scale multi-compartmental epidemiological model 
of tuberculosis transmission developed by one of us (A.K.). 
That model runs with upwards of 6 x 101 individuals (60 
million), representing the entire population of the UK, on 
multiple parallel processors for parameter fitting by simu
lated annealing. Each individual has many events pending, 
including, for example, scheduled times of death, emigra
tion, onset of disease for recently infected individuals, next 
transmission for infectious individuals, potential vaccination 
for juveniles, and so forth. 

In this epidemiological model, typical runs spanned 30 
simulated years and used 75 million bins occupied by 60 
million individuals. Each run consumed about 80 seconds 
on a 2.8 GHz processor, using a little over 6 GB of memory 

on each of 30 to 50 parallel processors. The average time 
increment between scheduled events was 14 simulated sec
onds, with a standard deviation of 12 seconds. The minimum 
was less than a simulated microsecond, whenever stochastic 
events appeared by chance close together in time. The 
maximum time increment was 5~ simulated seconds. Thus 
the time steps are very small compared with a corresponding 
macroscale model. 

In simplified timing tests on the same processor, outside 
of the operation of the epidemiological model, a list with 
6 x 107 individuals needed 30 nanoseconds on average to 
schedule each new event, 18 nanoseconds to cancel an event, 
and 12 nanoseconds to dispatch each event when its time 
arrived. This was near-ideal conditions, with new events 
arising in sequence in a way that minimized clustering in 
the schedule. Expanding the number of individuals by a 
factor of more than 16, to 10\1 individuals (one billion) 
required exactly the same amount of time per operation
within small bounds of statistical error-demonstrating the 
Order-I behavior of the algorithms. 

On the other hand, events ariSing in random order needed 
90 nanoseconds to schedule each new event into a list of 60 
million and 180 nanoseconds into a list of one billion. The 
three to six-fold increase can be attributed to interactions 
with internal memory caches. Such caches grow less useful 
as memory accesses become less localized. 

6. Algorithmic details 
The intuitive picture sketched above converts directly into 
the algorithms displayed in the appendix. As implemented 
in the algorithms, the bins need not correspond to standard 
time units such as minutes, but can be any values. 

A simulation begins by adding one or more events, 
typically one event per individual, and ends either at a pre
determined time or when the last event has been dispatched. 
Array A[n] would be established earlier with a collection of 
pending events for each individual n. The main simulation 
program would be structured as follows: 

[1] ProgramlnitO; 

[2] loop for all n in Aln] : 
El'entSchedule (n, earliest( n»); 

[3] loop for t from 0 to tmax : 

Process ( EventN ext () ) ; 
[4] exit; 

In step I above, Programlnit sets the initial conditions for 
the program, including allocating all individuals that will 
start the simulation and all future events that are known 
for each. Step 2 moves through all individuals, selects the 
earliest event for each (earliest(n), and schedules each 
event by calling EventSchedule. With all events to start the 
simulation scheduled, step ~ repeatedly asks for the next 
chronological event by calling EventNext and passing the 
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number of that event to Process. In turn. Process will call 
upon EventSchedule and possibly EventCancel and Event
Renumber while carrying out the simulation. Program/nit, 
Process, and earliest. as well as array A[n], are written 
as part of the simulation program. The rest are scheduler 
algorithms detailed in the appendix. 

The two main data structures organizing the earliest event 
for each individual are (\) a circular array of integers Q[h]. 
each heading a linked list in PIn] of events scheduled for 
time bin h, and (2) an array of integers PIn], each continuing 
the linked list from Q[n]. The number of entries in PIn] 
must equal the number in external array A[n], and like A[n], 
PIn] is indexed by individual number. But the number of 
time bins Q[h] may be smaller or larger than the number of 
individuals. The size of Q[n] is a matter of optimization. It 
is typical to have one time bin for each event that could be 
scheduled, meaning each bin will represent a single event 
on average. A space-time tradeoff occurs because optimal 
allocation leaves about one-third of the bins empty.4 

Each bin Q[h] represents many related times, all equal 
modulo the width of the series of time bins. Qw. The width 
Qw of all bins combined is also a matter of optimization. 
If it is much too large, events will tend to cluster near the 
bin being dispatched. If it is much too small, events will 
tend to spread out, with most bins containing events that are 
for the more distant future. A suitable value for Qw can be 
found by knowledge of the system being analysed. or by 
experimental trials to find a good speed of operation. 

For speed of addition, the lists of events in P[i] are 
not maintained in any particular order. but each bin is 
sorted chronologically before it is dispatched. Any sorting 
algorithm used should have (I) best performance when the 
list is already partially sorted, e.g. Order N, important 
because lists will remain partially sorted from earlier passes, 
(2) high-speed when sorting only I and 2 entries, which are 
the most common. and (3) good worst-case performance, 
e.g. Order N log2 N. The sorting routine presented as Algo
rithm 5 in the appendix has these properties. 

7. Conclusions 
The algorithms presented here can be incorporated into any 
individual-based or other microscale model, where they can 
speed simulations many orders of magnitude over alternative 
methods that are not Order-\. 

They are part of a large-scale simulation model developed 
by one of us (A.K.) for tuberculosis in the UK. Sixty million 
individuals thus can be handled by allocating less than a 
gigabyte of random access memory-within the reach even 
of portable computers. In practice, these algorithms should 
be able to schedule, cancel, and dispatch up to 107 or more 
events per second with 60 million or more pending events 

4Under random distribution, 1/ e = 37'*' will be empty. That can be shown 
to be optimal for overall speed if all bin operations are equally fast. 

maintained in the queue. Therefore. they should not become 
a bottleneck in the simulation as a whole. 

Compilable copies of the code described here and related 
simulation algorithms are available free from the authors 
upon request. 
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10. Appendix 
To use the algorithms described in this paper. it is only 
necessary to understand the entry and exit conditions that 
appear at the beginning of each. not the code itself. Nonethe
less, to allow complete evaluation of the algorithms, and to 
encourage further development of them. we present them as 
pseudo-code inspired by and simplified from the program
ming languages C, Python, and R. The algorithms are defined 
with sufficient precision that they can be run, tested, timed, 

modified, or translated to other languages. Familiarity with a 
relatively few operators' and with the syntax of flow control 
(if, for, while. etc.), is sufficient to follow the algorithms. 
WarnMsg and ExifMsg display error messages and the latter 
terminates the program. Not all functions return values. Text 
copies of this pseudo-code translated into operational C 
are available from the authors upon request, or from the 
associated website www. cbs. umn. edu/modeling. 

PROGRAM PARAMETERS 

TN == (100000000) 
PN == (100000003) 
TW == 20 

INTERNAL DATA STRUCTURES 

PZ ==-1 

real T[PN] <-- 0; 
integer P[PN] <-- PZ; 
integer Q[TN] <-- 0; 

real QUI <-- TW; 
integer Qn <-- TN; 
integer Qi <-- 0; 
integer Qe <-- 0; 

real QtO <-- 0; 
real Qtl <-- TW; 
real t <-- 0; 

Algorithm 1. SCHEDULE A NEW EVENT 

Example, maximum number of time bins. 
Example. maximum number of forward indexes to time bins. 
Example. time width of all bins combined (for optimization). 

Marker for empty bins. 

Time for each scheduled event. 
Forward indexes within bins, ending with zero. 
First index for the bin, with zero for empty bins, 
negative for unsoned bins. 
Interval of time represented for each cycle in Q. 
Number of elements in Q. 
Index of the immediate time bin. 
Number of events in all bins. 

Earliest time representable this cycle in Q. 
Earliest time beyond this cycle in Q. 
Current time. last dispatched event. 

Upon entry to the algorithm, (1) n contains the number (staning with I) of a new event. (2) te contains the 
time at which the new event will occur. (3) PIn] indicates that the event is unscheduled (equal to PZ). (4) The 
scheduling data structures are prepared as described above. At exit, (1) the event has been scheduled. to occur 
when the proper time arrives. (2) T[n] records the time Ie of the event. (3) P[n] links the event with others in 
its time bin. 

EventSchedule(n, Ie) integer n, real Ie; integer i; reallr; 
ie n < 1 or n 2 PN: ExilM"g(3); 
ie PIn] # PZ: f;XiIM"g(4); 
ie Ie < I: f;XitM"g(5); 

Ie --; T[n]; 

(Ie - QIO)/QW --; Ir; If - (int)lf --; If; 
Ir*Qn --; i; 

ah,,( Q[i]) --; P[ n J, - n --; Q[ iJ, t Qe; 

I. Check the indel( and make sure an 
event is not already scheduled 
and is not in the pas!. 

2. Record the time of the new event. 

3. Conven the time to a bin number. 

4. Add the event to the list for that bin 
and increment the number of events. 

* The p.~eudo-code given here is two-dimensional, as in the language 
Python, .~o that indentation completely define.~ the ne.~ted .~tructure, 
with no need for brllcketing characters such a.' '{' lind '} '. Vllriab/e .• 
and function names are italicized and flow control and reserved 
word.~ are bolded. 

an if-expre.~.~ion, lind v i .• lin el .• e-expre .•.• ion, foJlow.~ that of C. Using 
up-tick and down-tick operators to write 't a', '4. a', 'a t " and 'a 4. ' 
form pre- and pmt-increments by one, a., in '++a', '--a', 'a++', 
and 'a--'ofC. 

The a .•.• ignment operator i .• represented either a .• '<--' or '--;', 
similar to assignments in R. The compound assignments 'a + 1 --; 
a --; b --; W[i][j] , and 'W[i][j] <-- b <-- a <-- a+ l'areequivalent, 
fir.~t incrementing a and placing the re.mlts back in a, then in b, and 
then in the i,jlh element of the array W. 

The expression .• tructure 'c? u : v', where c is a condition, u is 

Arrays are indexed as in the language C, starting with O. Data 
type.~ are integer' and 'real', with the latter specifying floating 
point. Operator precedence is that of C. with a.~.~ignment.. having 
lowest precedence. Logical operators such a.' 'and' and 'or' are 
preemptive, terminating a chain of logical operation.~ a.' soon as 
the result is known. Pemlanent global assignments, as would be 
represented '#define Q W in C. are rendered a.~ '0 == 8 '. 
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Algorithm 2. CANCEL AN EXISTING EVENT 

Upon entry to the algorithm, (1) n contains the number (starting with I) of the event to be cancelled. (2) T[nJ 
contains the scheduled time of the event. (3) the scheduling data structures are prepared as described above. 
At exit, the event has been removed from the list. 

HvenICance/(n) integer n; integer i, i, il'; real Ir; 
if n < 1 or n ~ PN: biIMslI(6); 
if P[nJ = PZ: ExiIMslI(7); 

(T[n] - QIO)/Qw -+ Ir; Ir - (in/)Ir -+ Ir; 
Ir*Qn -+ i; 

if slIhcancel(n, i): return; 
(i - 1 + Qn) mod Qn -+ i; if slIhcancel(n, i): return; 
(i + 2 + Qn) mod Qn -+ i; if slIhcance/(n, i): return; 

t;xiIM.I'II(8); 

integer suhcancet(n, i) integer n, i; integer.i, .il': 
o -+ iI', ah.l'(Q[iJ) -+ i; 
loop while i > 0: 

if j = n: 
if jl' > 0: P[;J -+ P[;I'J; 
else Q[iJ > O?P[;J: - P[;J -+ Q[iJ; 
PZ -+ P[;]; if .j. Qe < 0: ExiIM.I'II(9); 
return 1; 

i -+ iI', P[;) -+ j; 

return 0; 

Algorithm 3. DISPATCH THE NEXT EVENT 

I. Check the index and make sure an 
event is scheduled. 

2. Convert the time to a bin number, 
modulo the duration of the cycle. 

3. Remove it from its normal bin 
or from an adjacent bin above or 
below (due to rounding error). 

4. If the specified event was not in 
the list, signal an error. 

I. Scan the list of pending events in 
this bin and remove the specified 
event. (The average number of events 
in non-empty bins is about 1.5) 

Upon entry to the algorithm, (1) T contains the time for each scheduled event. (2) The scheduling data structures 
are prepared as described above. At exit, (1) EventN ext contains the number of the next event. If zero, no 
events are scheduled. (2) t contains the time of the next event, if NextEvent is not zero. 

integer HvenlNexlO integer j, n; 
loop while Qe > 0: 

loop while Qi < Qn: 
Q[Qi) -+ j; if i = 0: t Qi; repeat loop; 

if j < 0: 
sort(P, - i, 0, order) -+ Q[QiJ -+ i; 

if T[;J < QI/: 
if P[;] = PZ: ExiIM.I'II(2); 
pV] -+ Q[Qi], PZ -+ PV], J. Qe; 
TVJ -+ I; return i; 

tQi; 

o -+ Qi, QI() + Qw -+ QIO, QI() + Qw -+ QI/; 

return 0; 

Algorithm 4. RENUMBER AN EVENT 

I. Advance to the next non-empty 
bin. 

2. Sort the bin if it may be necessary 
(usually sorts I or 2). 

3. If the event belongs to this pass, 
remove it, decrement the number of 
events, advance the time, and return 
its index. 

4. Advance to the next bin and repeat. 

5. Circle back to the first bin. 

6. Signal completion of all events. 

Upon entry to the algorithm, (1) n contains the new index number, which has no event scheduled. (2) TTl 

contains the current index number of the event. At exit, (1) n is the new index number. (2) The event originally 
scheduled as TTl is re-scheduled as n. Event m no longer has an event scheduled and the inde)l is free to be 
reused. 

HvenlRenumher(n, m) integer n, m; 
if n < 1 or n > PN: ExiIM·fII(IO); 
If m < 1 or m-~ PN: HxiIMsg(ll); 

ifn # m: 
T[m] -+ T[n]; 
EventCance/(m); 
EvenISchedllle{n, T[n]); 

I. Check the indexes and make sure 
they are in range. 

2. Transfer the time. 
3. Cancel the old number. 
4. Reschedule as the new number. 
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Algorithm 5. SORTING 

Upon entry to the algorithm, (1) list points to an array of forward indexes. list[O] is unused. (2) p indexes the 
first element of the list, which ends with a zero. (3) n contains the number of items in the list, if known. If zero. 
the number of items is not known and sort should count. (4) c compares two list elements u and v. It returns 
negative. zero, or positive when u < v, u =' v. and u > v, respectively. At exit, sort indexes the first element 
in the sorted list. which ends with a zero. The original ordering is preserved for entries that are equal. 

integer .P, pc, pr, m, (>I()rder) (in/, int); 

integer .l'Orl(lis/, p, n, c) integer lis/[], p, n, ('i(')(int, int); integer i; 

C --7 order, Ii.>! --7 P; 

if n = 0: p --7 i; loop while i > 0: P[i] --7 i, n i; 
if n = 0 or p =' 0: return 0; 
if n =' 1: return 1'; 

if n = 2: 
if orderVJ, PIP]) :::; 0: return p; 

P[P] --7 i, I' --7 P[i], 0 --7 PIP]; 
return i; 

I' --7 pc; return isort(n); 

I. Record calling parameters. 

2. Count the number of elements and 
return empty and single·element 
lists immediately. 

3. If the list contains only two 
elements, sort it by inspection. 

4. Otherwise sort the full list. 

Partition into sorted sublists. Upon entry, (1) n defines the minimum number of elements to be sorted. (2) P 
is the list of forward indexes. (3) pc indexes the first element of the list. (4) order compares two list elements. 
At exit, (1) isort indexes the first element in the sorted list, which ends with a zero index. (2) m defines the 
number of elements which were actually sorted, greater than or equal to its value on entry. (3) pc indexes the 
element following the last element sorted. If the entire list has been sorted, pc is null. 

integer isor/(n) integer n; Integer wpl, wp2, ml; 
if n < 1: 

if pc =' 0: return 0; 
pc --7 wpl, 0 --7 m; 

loop: pc --7 pr, P[pe] --7 pc, m + 1 --7 m; 
If pc = 0: return wpl; 
If order(pr, pc) > 0: exit loop; 

o --7 P[pr]; return wpl; 

isor/(n/2) --7 wpl; 
if n :::; m: return wpl; 

m --7 ml, i.l'Or/(n - m) --7 wp2, m + ml --7 m; 
return imerlie(wpl, wp2); 

I. If a single element is requested, 
initialize variables and check for 
error in count. 

2. Then scan forward in the list to find 
the longest list that is already in 
order and return that list. 

3. If multiple elements are requested, 
sort the first part of the list 
and return if enough was sorted. 

4. If it was not, then sort what remains 
and merge the two sublists. 

Merge sublists. Upon entry, (1) P is the list of forward indexes. (2) p and q index the first element of a sorted 
primary and secondary list, respectively. (3) order compares two list element~. At exit, imerge indexes the first 
element of the list merged in order. In case of equal entries, those from the primary list appear first. 

integer imerlieVJ, q) Integer p, q; Integer ph, v; 
if I' = 0: return q; if q = 0: return 1'; I. Handle empty lists. 

if orderVJ, q) > 0: q --7 ph, 1 --7 1'; 
else I' --7 ph, 3 --7 v; 
loop while I' > 0: 

loop while I' =' 1: q --7 pr, P[q] --7 q; 
If q =' 0: - 2 --7 v; 
else If order(p, q) :::; 0: 2 -t v; 

If v = 2: I' --7 P[pr]; 

loop while I' ?: 2: I' -t pr, P[P] --71'; 
If I' = 0: - 1 --7 v; 
else If order(p, q) > 0: 1 -t 1'; 

if v = 1: q --7 P[pr]; 

if v < -1: I' --7 P~}r]; else q --7 P~JT]; 
return ph; 

2. Save the beginning of the list 
and select the proper routine. 

3. Scan for a secondary element 
greater than or equal to the 
current primary element and mend 
the secondary list. 

4. Scan for a primary clement 
greater than the current 
secondary element, mend the 
primary list, and repeat. 

5. Attach any remaining elements and 
return the merged list. 
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"Truth is much too complicated to allow anything but approximations." 
-John von Neumann. 1947 

Abstract-Microscale simulations and other applications 
in science, engineering, and commerce need an abundance 
of pseudo-random numbers drawn from non-classical prob
ability distributions. including empirical distributions that 
may be incompletely known. Discrete-event simulations that 
assign random times to future events have further require
ments, including numbers drawn from subsets of distribu
tions to help establish initial conditions, or to deal with 
events that are partially complete. Fast methods are known 
for generating pseudo-random numbers accurately from ar
bitrary probability distributions, but those methods do not 
combine the full range of necessary algorithms outlined here. 
In this paper we provide techniques and computer code for 
practical high-speed generation of pseudo-random numbers 
from any continuous, discontinuous, or discrete probability 
distribution, reducing the need for approximation by stan
dard probability functions. The techniques are designed for 
the kinds of scientific simulations presently emerging. 

Keywords: non-uniform random numbers, uniform random num
bers, pseudo-random numbers. probability distributions, numerical 

si mulations 

1. Introduction 
Computer generated pseudo-random numbers are needed at 
every step in stochastic simulations-as well as to estab
lish representative sets of initial conditions in deterministic 
simulations, to draw samples for statistical bootstrapping 
and other operations, to identify uncertainty in models by 
varying parameters, to randomize experimental designs, to 
develop test cases for commercial software, and for many 
other applications in science, industry, and art. They can 
arise in such quantities as to become a Significant part of 
the total time for the computation itself. 

For example, an emerging application arises in discrete
event simulation [I), where stochastically assigned times 
of future events must be determined in advance. When a 
simulated individual is born, the future time of death may 
be assigned from empirical probabilistic "life tables" for the 
year, geographic location, and other conditions of the indi-

vidual being simulated. Initial conditions for the simulation 
can start with an empirically or hypothetically derived "age 
distribution." Subsets of the life tables (sub-distributions) are 
sampled to determine how long each individual will live, 
based on initial conditions. Moreover. when new individuals 
may enter the population as immigrants, sub-distribution 
sampling is also needed to assign future times of death. 
Examples and code that follows will illustrate these points. 

In what follows we shall omit the prefix "pseudo" in 
"pseudo-random", it being understood that repeatable se
quences of numbers generated by deterministic computer 
algorithms can be at best apparently random. The starting 
point for random number generation from a desired distribu
tion is random number generation from the standard uniform 
distribution. That is, random numbers greater than equal to 
zero and less than one, all drawn with equal likelihood and 
with no correlation between any prescribed pair of numbers. 
This is difficult to achieve in practice, but much theory and 
effort have been dedicated to the problem, and a number of 
acceptable algorithms are known (e.g. [2l). 

The question is. given a standard uniform random number. 
how can that be accurately converted to a random number 
from an arbitrary distribution? Answers were found in the 
earliest days of computers, as early as John von Neumann 
in 1945, and some of those methods are still in use [3]. The 
early methods, of necessity, used essentially no computer 
memory. However, with the vast computer memories now 
available, not using available memory is wasting it, and time
for-space tradeoffs that support arbitrary distributions have 
been published recently [3]. 

In this paper we (I) provide further background on the 
kinds of probability distributions needed in random num
ber generation, (2) introduce a new aspect we call "sub
distribution sampling," (3) provide detailed algorithms for 
generating numbers from the kinds of distributions that arise 
in practice, and (4) compare processor time required of 
selected methods. 

2. Density and cumulative functions 
The "probability density function" is the most familiar 
representation, but it is the corresponding "cumulative prob-
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ability distribution" that is employed for generating random 
numbers. In what follows, for brevity we shall write "density 
function" for the probability density function, "cumulative 
function" for the cumulative probability distribution. Also, 
we shall write "inverse function" or "inverse cumulative 
function" for the inverse of the cumulative probability dis
tribution. 

The vertical axis of a density function is the "probability 
density" that a corresponding value on the horizontal axis 
will be drawn by chance. This is not the actual probability of 
it being drawn, since in many distributions. the probability of 
any precise value being drawn is 0, amongst the infinite set 
of possible values. The probability density can take on any 
value from zero to infinity. If one considers the probability 
that a single random number drawn from the distribution 
will fall between two specified values, such as between 1.49 
and 1.51, that probability is equal to the average value of the 
density function over that interval. multiplied by the width 
of the interval. Or what is equivalent. it is the area beneath 
the density function from the left to the right endpoint of 
the interval. Thus the area under the entire density function 
becomes I. Modes of the distribution correspond to peaks 
in the density function. while the median and the mean are 
not immediately visible. 

The cumulative function carries the same information 
as the corresponding density function, but in a different 
form. The vertical axis is the probability that a number less 
than or equal to the corresponding value on the horizontal 
axis will be drawn from the distribution. The vertical axis 
of a cumulative function is thus constrained to a range 
of ° to I. While the density function can have peaks and 
valleys. the cumulative function is either level or increasing. 
The cumulative function is one degree smoother than the 
corresponding density function. since it is its integral. The 
median of the distribution corresponds to the half-way point 
on the vertical axis (y = 0.5) and modes of the distribution 
correspond to places of maximum slope. The mean is not 
immediately visible in the cumulative function. 

See Figures I A through 10 for examples of four cumu
lative functions shown above their corresponding density 
functions. 

3. The inverse cumulative technique 
Using the inverse cumulative function to generate random 
numbers from any desired distribution is a long-recognized 
approach [41. and the idea is straightforward. Start with a 
uniform random number U between ° and I. locate that 
number on the vertical axis of the cumulative function, and 
find which value on the horizontal axis corresponds. That 
value is the desired random number. See the arrows in 
Figures IA through 10, where P = 0.25 on the vertical 
axis maps to -1, 4.25. 1.0638. and 2, respectively. on the 
horizontal axes of the various cumulative distributions. Note 
that domains from which a random number generator may 

never select random values correspond to perfectly level 
stretches in the cumulative function (Figure I B and 10). 
and that discrete random numbers correspond to vertical 
jumps (Figure 10). Also. as Oevroye points out [4J. using the 
same value of U like this for multiple distributions. or using 
correlated values ! (U ±p, ). with Pi being a small random 
variate. draws correlated random numbers from multiple dis
tributions. Likewise. using uniform random numbers equal 
to U and !(1-U±Pi) will generate negatively correlated 
numbers from any distribution. or pair of distributions. Both 
kinds of correlation can be useful in applications. 

The inverse technique is simple graphically but not nec
essarily numerically. for it involves computing the inverse 
function. A few classical distributions, such as the exponen
tial. Cauchy. and Pareto. have inverse functions that can be 
written in terms of elementary functions (4J and therefore 
computed directly. In general. however, inverting an arbitrary 
cumulative distribution is computationally difficult. in which 
case generating the corresponding random numbers is slow. 

Hormann and Leydold [5] explained how to improve the 
speed by computing the inverse function only once when the 
simulation begins, then approximating it by interpolation as 
the simulation proceeds. This can be done by computing 
a series of x, y pairs from the cumulative function. then 
exchanging x and y and fitting the y, x pairs to obtain the 
inverse. Approximating the inverse in this way is reasonably 
fast and can be made as accurate as desired for many 
distributions. 

In this paper we exhibit a variation that is simpler yet 
still fast. and that supports the full set of functions required. 
We approximate not the inverse cumulative function, but the 
cumulative function itself. with quadratic pieces that join 
smoothly, without sharp corners, where one piece ends and 
the next begins. or which approximate smoothness as accu
rately as we need. We can then invert the function piecewise 
as the simulation runs. since inverting quadratic functions 
involves only the quadratic formula. We use this because 
it directly supports "sub-distribution sampling," which is 
useful in general discrete-event simulations [I] and other 
micro-scale computations. It also supports efficient random 
numbers from discrete density functions (e.g. Poisson). step 
functions (e.g. empirical histograms). or piecewise linear 
(e.g. empirical function estimates). See Figure I for exam
ples. The corresponding algorithms (appendix) are short and 
relatively simple. 

The algorithms we present can be made to reproduce 
known distributions as accurately as desired, although in 
many cases such accuracy is superfluous. Classical distri
butions may be used because they are known and avail
able, even though they may not closely approximate the 
distributions of interest. For instance, waiting times in an 
individual-based computer model may be selected from an 
exponential distribution that is used largely as a convenience. 
for correspondence with differential equation models. More-
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Figure 1. Random number generation at four levels of continuity. Horizontal axes represent values of random 
variables. The vertical ax is for cumulative function.~ represents the probability that the random variable is less than or 
equal to t.he corresponding va lue x on the IlOrizonwl-ax i." and for densi ty functions represent.' the average probability of 
a random number being in an arbitrarily small surrounding interval. (A) A stnndard Cauchy distribution, which does not 
converge to a mean. That render., it difficult to replicate purely with finite approximations. It represents the distribution of 
slopes that are associated with random angle.,. Other classical distributions, such as nonnal, lognonnal, exponential, and 
chi-square, which do converge to means, are also higher order like thi.' . (8 ) A hypothetical empirical distribution of two 
lobes developed from a piecewise linear density function, with each lobe equally likely. See Figure 2 for dat;) structures 
of this example. Multi -modal distributions like thi.' arise, for example, in carbon- 14 dating, though those functions are 
typically more complicated than this illustration. (C) A hypothetical empirical distribution of fai lure rate., of machine 
parts. Probability of failure is relatively high for new parts, drops to a minimum at intennediate ages, lhen rises again 
when parts get older. (D) A Poisson distribution with mean of 3. This di.,crete distribution represent.' frequencies of 
co-occurrence of random events with delta-function spikes. 
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i: o 2 3 4 5 6 7 8 9 

Xli]: 0 1 3 5 8 10 1l.75 15.75 18 20 

Y[;]: 0 0 .llll .3333 .5000 .5000 .5729 .9063 1 1 

Q[i]: 0 0 1/9 1/9 0 0 1/12 1/12 0 0 

Figure 2. Data structures. Three one-dimensional arrays. X[i], Y[i], and Q[i] carry the.T value.~. the 
cumulative y values, and optionally the density y value.~, re.~pectiveJy, for a probability function. This example 
correspond.~ to the diMribution of Figure I B. In practice, array.~ are often much larger than thi.~ iJluMration. 

over, a simulation may benefit from using data directly, such 
as lifetime survivorship data available for multiple years 
and geographic areas, rather than approximating the data 
with standard distributions, then handling those distributions 
exactly. On top of all this, many empirical distributions are 
poorly known. Important distributions, such as the duration 
of infectiousness for certain asymptomatic diseases, may not 
be known to more than one digit of accuracy. Therefore, we 
are not recommending these algorithms as general solutions 
for all cases, but they can be particularly useful in practical 
cases where even the density function may be imperfectly 
known. 

4. Data structures 
Each cumulative function and. where needed. each corre
sponding density function, is defined by a set of two or three 
matched one-dimensional arrays that define the functions 
at selected points in their domains (Figure 2). These are 
constructed by the user and supplied to the algorithms, either 
to approximate classical distributions but more typically to 
represent distributions derived empirically. 

The first array is Xli], which contains the x values that 
cover the range of random values to be generated. With 
entries in one-to-one correspondence, Y[i] contains the y 
values for the cumulative distribution, with Y[O] = 0 and 
Y[i llmx ] = 1. Optionally, Q[i] can be supplied, which carries 
the derivatives of Y [i]. That is, it carries the probability 
density function. When Q[i] is used, it is piecewise linear, 
making Y[i] piecewise quadratic. With a sufficient number 
of points, this can model any distribution. When Q[i] is not 
used, Y[i] is taken to be piecewise linear or piecewise con
stant and the implied Qli] is a piecewise constant histogram. 
That corresponds to many empirical distributions, such as 

life tables. 

5. Algorithms 
The appendix defines four algorithms sufficient to accom
plish the goals of this paper: 

I. Cinverse: Evaluates inverse cumulative functions. 
2. Cforward: Evaluates general functions. 
3. Cdiscrete: Evaluates discrete functions. 
4. Cintegral: Prepares cumulative functions. 

Algorithm I, Cinl'erse, accepts a probability, typically 
as a uniform random number, plus a starting point g, and 
returns a corresponding random number for the cumulative 

distribution defined by X, Y, and optionally Q. It calls 
Cforward and Cdiscrete to accomplish its work. The starting 
point g is a minimum value for the random number returned. 
It is typically set to the minimum value of the distribution, 
X[O], but may be a greater value. In that case numbers are 
selected from the remainder of the distribution, starting at 
g, transformed as Z(x) = (Y(x + g) - Y(g))/(l - Y(g)). 
This we call "sub-distribution sampling," which has such 
uses as initializing a population with individuals of various 
ages before the simulation begins, or handling immigrants to 
a population of random ages and projecting their remaining 
lifetimes. Note that "memoryless" distributions (the expo
nentials) are invariant under this transformation. 

Algorithm 2, Cforward, determines the value y of a 
function at a specific point x, here used to obtain the value 
of the cumulative function at a random value ;T. It calls 
Cdiscrete to accomplish its work. The function is defined 
by tables X and Y of values for corresponding points, and 
optionally a table Q of derivatives of Y at each point in X. 
Values in tables X and Yare increasing. Passing Y[i] as a 
function of Xli] processes forward functions, while passing 
Xli] as a function of Y[i] processes their inverses. (Y need 
not be increasing if Q is not supplied, though processing 
non-cumulative functions is not a purpose of this subroutine.) 

Algorithm 3, Cdiscrete, is where the process begins. For 
cumulative distributions of discrete density functions that 
have precisely one entry per non-negative integer, as in 
Figure I D, the process is complete and this routine may 
be called directly. For non-discrete cumulative functions, 
Cinverse is called instead. That calls this routine to start 
and then handles any necessary inverse linear or quadratic 
interpolation. This routine is nothing more than a recursive 
binary search that processes ordered tables of 11 entries in 
time proportional to log2 n. 

Algorithm 4, Cintegral, creates a cumulative function 
on demand, given an array of points Xli] and a density 
function QU]. It integrates using quadratic interpolation. It 
is not needed for linear interpolation or discrete distributions, 
where the cumulative distribution is simply the sum of the 
density function values, as in Figure I D. 

6. Timing 
In timing tests, drawing 107 random values from a Poisson 
distribution with a mean of 3, as in Figure I D, averaged 
0.89 seconds on a 2.4 GHz processor for both a standard 
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iterative method [6] and for this method. For means greater 
than 3, the standard iterative method was slower. Generating 
numbers from discrete distributions like the Poisson is exact 
and is particularly fast because no interpolation is needed. 
In a continuous case. drawing 107 random values from a 
lognormal distribution required 1.14 seconds overall with 
the standard Box-Muller method and 1.07 seconds with this 
method, on the same processor. The 6% improvement in 
speed is not significant, but it is significant that a general 
method like this is competitive with the speed of classical 
custom methods. Timing tests showed that the recursive 
binary-search of Algorithm 3 could be speeded by about 
10% by using an equivalent iterative algorithm. at the cost 
of a little greater complexity. 

7. Discussion 
Devroye [4] listed six factors for assessing general ran
dom number generation, (I) speed, (2) initialization time, 
(3) memory requirements, (4) portability, (5) generality, and 
(6) simplicity/readability. He pointed out that the sixth factor 

is the most neglected. 
We find that his first factor, speed, is as important now 

as then. Despite the enormous increase in computer speeds, 
computers now labor under proportionally longer simula
tions. The second. initialization time, is less important, 
since it typically vanishes into the time for the simulation 
itself. Moreover, with large memories spaces that can be 
allocated, cumulative distributions may be precomputed and 
read from files, so initialization times become essentially 
zero. The third factor. memory. is largely irrelevant now
except insofar as it increases complexity-thanks to the then
incomprehensible rise in computer memory sizes. The fourth 
factor, portability, is now easily had with careful coding, for 
which countless examples exist. Therefore, speed, generality. 
and simplicity remain as important factors. 

The algorithms we present satisfy the simplicity factor 
well. They require under 60 lines of computer code alto
gether and are completely exhibited here, with code and 
accompanying meta-code. They are also fast. slightly outper
forming even well-established methods like t~e ~ox.-Mul.ler 
algorithm for drawing numbers for standard dlstflbutlons hke 
the lognormal. Finally they are general. written to handle any 
continuous or discrete distributions for which the density 
function or cumulative function is known. 

Modest increases in speed could be obtained in these 
algorithms at the cost of complexity. trading space for time 
by storing the inverse cumulative function as a direct-access 
table, with one entry per lattice point in the probability ~pace 
Y. This would eliminate the binary search. though that IS not 
slow. It would work if the slope of the cumulative function 
never gets very close to zero. A more modest increase in 
speed, whenever sub-distribution sampling applies, could 
result from rescaling the random number differently so that 
the entire table need not be searched. but only the part 

covering value 9 and above. That could eliminate a few calls 
of binary-search recursion if 9 was large. 

Generality could be increased even further. As written, 
the algorithms handle all the kinds of distributions shown in 
Figure I. but not mixtures of those types-for example. den
sity functions that are discrete in some parts of the domain 
and continuous in other parts. Such functions are compatible 
with the algorithms detailed here and the algorithms could 
be extended to accommodate them. but at the cost of a little 
complexity. should the need for such hybrid distributions 
ever arise. 

8. Conclusions 
The algorithms presented here can be incorporated wherever 
efficient random numbers drawn from arbitrary distributions 
are needed. These algorithms have been successfully used 
in a large-scale simulation model developed by one of us 
(A.K.) for tuberculosis in the UK. Compilable copies of the 
code described here and related simulation algorithms are 
available free from the authors upon request. 
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11. Appendix 
To use the algorithms described in this paper. it is only 
necessary to understand the entry and exit conditions that 
appear at the beginning of each, not the code itself. Nonethe
less. to allow complete evaluation of the algorithms, and to 
encourage further development of them, we present them as 
pseudo-code inspired by and simplified from the program
ming languages C, R, and Python. 

The algorithms are defined with sufficient precision that 
they can be run. tested, timed, modified, or translated to other 
languages. Familiarity with a relatively few operators' and 

with the syntax of flow control (if. for. while. etc.). is 
sufficient to follow the algorithms. Text copies of this 
pseudo-code translated into operational C are available from 
the authors upon request, or from the associated website 
www.cbs.umn.edu/modeling. 

The algorithms assume a uniform random number gen
erator Rand, which returns values in the range of 0 to I. 
including 0 but not including I. as is typical for uniform 
random number generators. WarnMsg and ExitMsg display 
error messages and the latter terminates the program. 

Algorithm 1. Evaluate inverse cumulative function, with sub-distribution sampling. 

Upon entry to the algorithm, (1) k describes the piecewise order of the function: O=constant, 1=linear. 
2=quadratic. (2) y contains a value between 0 and I. representing a probability. (3) 9 is given value in the 
range X[OJ to X[n - 1J. inclusive. (4) n is the number of entries in tables X, y, and Q. (5) X is a table of 
strictly increasing values in the set of numbers to be generated. (6) Y is a table of probabilities, each being the 
probability that a value will be less than or equal to the corresponding value in X. (7) Q is a table of probability 
densities, in effect the derivative of Y at every point in X. At exit, Cinverse returns the value from the given 
distribution corresponding to probability y. starting at value g. Note that if 9 > O. this is the value from the 
rescaled distribution. 

real Cinverse(k, y, ~, n, X, Y, Q) integer k, n; real y, ~, X[ J, Y[ J, Q[ J; 
integer i; real r, .1', d, h, a, b, c, p, 11'; 

if X[OJ > ~ or X[n - 1J <~: HxiIMs~(l); 
if Y[O] ¥ 0 or YIn - 1] ¥ I: HxiIM.\·~(2); 

if y < Y[O}: return X[O}; 
if y > YIn - 1]: return X[n - I}; 

Y --+ r; ~ - X[O} --+ d; 
if d: Cforward(k, ~, 0, n - 1, X, Y, Q) --+ p, 

p+ n(l- p) --+ r; 

Cdiscrele(Y, 0, n, r) --+ i; 
if k = 0: return Xli] - d; 

Xli + 1}- Xli] --+ 11'; 
if k = 2 and Q: (Q[i + 1J - Q[i])!(2*w) --+ a, 

Q[i] --+ b, Y[i] - r --+ c; 
else 0 --+ a; 

if a: b*b - 4*aH' --+ .1'; if .I' < 0: HxiIMs~(3); 
sqrr(.I') --+.1', (-b + s)!(2*a) --+ h; 
if h < 0 or h > 11': HxiIMslI(4); 

else 
Y[i + 1J - Y[iJ --+.1'; 
if.l': (r - Y[ill/s --+ s; else 1 --+.1'; 
HII' --+ h; 

return XliJ + h - d; 

* The pseudo-code given here i.~ two-dimensional, a.~ in the language 
Python, .~o that indentation completely define.~ the nested structure, 
with no need for bracketing characters ,~uch a,~ '{' and '} '. Variables 
and function names are italicized and flow control and re,~erved 
words are balded. 

The a,~,~ignment operator i,~ repre,~ented either as '+-' or '--+', 
similar to a,~sigment.~ in R. The compound assignment.~ 'a + 1 --+ 
a --+ b --+ W[iJU] ' and 'W[i]UJ +- b +- a +- a + 1 • are equivalent, 
lim incrementing a and placing the result.~ back in a, then in b, and 
then in the i,jth element of the array W. 

The expre.~sion structure 'c? u : v', where c is a condition, U is 

I. Check the bounds of both tables. 

2. Handle variables outside the 
normal range. 

3, Rescale the probability value if only 
part of the distribution is to be 
sampled, 

4. Bracket the probability value and 
return if it is piecewise constant. 

5. If this is piecewise quadratic, 
generate the coefficients of the 
quadratic equation, ax2 + bx + c. 

6. If the equation actually has a quadratic 
term, invert it using the positive root 
of the quadratic formula. 

7. If it is only linear, invert it 
with linear interpolation. 

8. Return the result. 

an if-expres.~ion, and v is an else-expression, follow,~ that ofC. Using 
up-tick and down-tick operators to write' t a', '.j. a '. 'a t " and 'a.j. , 
form pre- and post-increments by one, as in '++a', '--a', 'a++', 
and 'a--' ofC. 

Arrays are indexed a.~ in the language C • . waning with O. Data 
types are 'integer' and 'real', with the latter .~pecifying floating 
point. Operator precedence i.~ that of C. with as.~ignments having 
lowe.~t precedence. Logical operators such as 'and' and 'or' are 
preemptive, terminating a chain of logical operation.~ as soon a.~ 
the result i.~ known. Permanent global as.~ignment.~. as would be 
repre.~ented 'j/define ll' fl' inC, are rendered as '0 == fl'. 
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Algorithm 2. Evaluate general function. 

Upon entry to the algorithm, (1) k describes the piecewise order of the function: O=constant, 1=linear, 
2=quadratic. (2) x specifies the independent variable. (3) iO and i1 define the first and last entries. respectively, 
in tables X. Y. and Q. (4) X and Y define the independent and dependent variables. respectively. (5) Q define, 
the derivative of the function. if k is 2. Otherwise Q is null. At exit. C forward returns the value of the function 
at point x. If x is below or above the range defined in table X. the minimum or maximum value, respectively. 
in table Y is returned. 

real C,{iJrward(k, x, iO, iI, X, Y, Q) integer k, iO, iJ; real x, Xl]' Y[], Q[J; 
integer i; real h, .1', U, w; 

if k > 1 and Q = 0: ExiIM.I'/I(5); 

if x < X[iOJ: return Y[iOJ; 
if x> X[il]: return Y[ilJ; 

Cdi.l'crele(X, iO, il - iO + 1, x) -+ i; 
if k = 0: return Y[i + IJ; 
Xli + IJ - XliJ -+ w, x - XliJ -+ u; 

if k = 2: 
(Q[i+1J-Q[iJ)lw -+.1, 
u*(Q[i] + 11*.1/2) -+ h; 

else 
if w; IIlw -+ w; else 1 -+ w; 
w*(Y[i + 1J - Y[iJ) -+ h; 

return Y[iJ + h; 

Algorithm 3. Evaluate discrete function. 

I. Check for certain invalid calls. 

2. Handle variables outside of the 
normal range. 

3. Bracket the independent variable 
and return if piecewise constant. 

4. Compute x-width and displacement. 

5. If a derivative is supplied. compute 
the y-value with quadratic 
interpolation. 

6. Otherwise interpolate linearly. 

7. Return the computed y-value. 

Upon entry to the algorithm, (1) T addresses a strictly increasing table of two or more values. (2) b indexes 
the beginning entry to be examined in T. (3) n defines the number of entries to be examined in T. at least 2. 
(4) v specifies the value to be located in T. with T[bJ ::; v ::; T[b + n - IJ. At exit, Cdiscrete indexes the local 
pair of table entries containing v. such that T[loeJ ::; v ::; T[loc + IJ. 
integer Cdi.,crele(T, b, n, v) integer b, n; real T[], I'; integer m; 

(n + 1)/2 - 1 -+ m; 
return m::; O? b: v < T[b + mJ? Cdiscrele(T, b, m + 1, 1'): Cdiscrele(T, b + m, n - m, v); 

Algorithm 4. Prepare cumulative fuoctioo. 

Upon entry to the algorithm. (1) n is the number of entries in tables X. Y. and Q. (2) X is a table of strictly 
increasing values in the set of random numbers to be generated. (3) Y is a table to receive the cumulative function 
associated with the corresponding values in X. (4) Q is a table representing the piecewise linear density function 
associated with the corresponding values in X. At exit, (1) Cintegral returns the number of entries in Y up 
to and including the first entry that saturates at I. (2) Y contains the piecewise quadratic cumulative distribution 
function associated with the corresponding values in X. 

integer Cinle/lral(n, X, Y, Q) integer n; real X[], Y[], Q[ J; 
integer i, m; real w; 

for; from 1 to n - 1: 
If Xli - 1J ~ Xli]: t:xiIM.,!:(6); 

o -+ Y[O], 1 -+ m; 
for; from 1 to n - 1: 

Y[i - 1J -+ Y[iJ, X[iJ - Xli - 1J -+ w; 
(Q[i - 1J + (Q[iJ - Q[i - 1])/2) *w + Y[i) -+ Yli]; 
If Y[i] > 1: WarnMs/I(7), 1 -+ Y[iJ; 
if Y[iJ < 1: i + 1 -+ m; 

if YIn - 1J i 1: WarnM.I·!:(8); 
return m + 1; 

l. Make sure the domain i~ strictly 
increasing. 

2. Integrate the probability density 
function to obtain the cumulative 
distribution function. 

3. Make sure it adds and return the 
number of operational entries. 
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"A library book lasts as long as a house, for hundreds of years." 
-Thomas Jetferson, 1821 

Abstract-A common experience among scientists and en
gineers is storing and sharing data. the capacity for which 
has advanced immensely since laboratory notebooks were 
only paper and ink. However. since that time. the sustain
ability of data has decreased. Even though our digital data 
should be safer and more secure than ever. a continuing 
cascade of obsolescence in computer media and software 
can actually make it less so. Here we outline an ensemble of 
free tools and techniques that we call "Centinel," designed to 
manage, communicate. and archive digital datasets. Rather 
than embedding error-correcting codes as part of the com
puter media, Centinel exposes them and places them with 
the data and metadata. Thus even printed copies of the 
data form reliable storage media that can last indefinitely 
without intervening attention. Centinel complements stan
dard methods for data sustainability, such as data migration. 
Unified approaches, as we outline here. benefit reliability 
and longevity of data. 

Keywords: database, data archive, data longevity, data reliability, 

error correcting codes 

1. Introduction 

In 1815 began one of the largest scientific data collection 
projects ever launched [J]. Legions of surveyors walked 
regularly spaced transects along 2,500,000,000 meters of 
the Louisiana Territory. recording the biological species, 
geographic locations, and diameters of selected trees near 
periodic sample points-plus other information on soils, 
vegetation, and boundaries of wetlands. For almost a century 
the survey continued. Now. another century after the last data 
were recorded, the results form one of the most visible ef
forts ever, organizing the rural landscape into square sections 
along those transects. The results also form one of the best 
preserved and widely available datasets ever. Think of which 
present datasets, in your personal experience, are guaranteed 
to be extant and usable well into the 22nd century. 

A large part of the reason the survey data survived was 
that it was recorded on paper and protected at many different 

governmental sites. In the meantime, technology changed 
immensely. Computers emerged and increased in capacity so 
relentlessly that the Library of Alexandria's ancient charge 
of organizing and cataloging all human knowledge began to 
draw within reach. Global access to digital data can make 
that knowledge available to all. Large-scale private enter
prises are aiming at this goal, but individuals in academia 
and industry are established sources of knowledge and 
therefore have a special role in achieving this. 

Here we are addressing that role-of scientists, engineers, 
and others who collect empirical data, share it, and want 
to preserve it for the future. In this report we explain how 
digital computer techniques of today combine naturally with 
paper methods of prior centuries to create a form of digital 
storage that can reliably persist into future centuries and 
improve electronic processing today. 

2. What Centinel is and is not 
The general topic that Centinel addresses has been long 
discussed (e.g., [2] [3J [4] [5] [6] [7J [8J (9)) and a complete 
solution is not yet available. Centinel combines the words 
"century" and "sentinel," guarding data for extended periods. 
One goal for Centinel is to ensure that the digital data it 
encodes will be accessible in a century or more, without the 
need for care and intermediate steps by humans. A second 
goal is to protect data over a shorter term, from the time of 
initial creation to the time of final processing. Centinel works 
by (I) keeping all metadata with the data. (2) protecting 
data with line-by-line error correcting codes, (3) providing a 
format easily readable by humans as well as computers and 
scanners, (4) supporting a reliable digital format that works 
on any media, including paper and verbal communications, 
to protect data from unintentional alteration, and (5) supply
ing an extensible, self-defining format with accompanying 
tools that help computer programmers know that the data 
entering their programs are correct. Centinel is an approach 
to data management, but also a set of basic computer utilities 
for writing, reading, editing, separating, joining, ordering, 
and aligning data. It avoids structures that are error prone 
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6674844762232577 
0629561874138616 
0211050455008008 
5515307245627135 
5915322805104717 
1453182442695072 
1382423906566782 
5953391885352618 
0748783303437946 
0229302812296440 
0602654116737437 
0229302812296440 
0000000000000000 
1976160343505769 
4554847814214755 
2646746581124348 
1076375677295808 
2000446884315808 
0582356170295008 
1485325476235008 
4100414960104041 
6773084583093978 
4766066289426272 

Keyword SpAbbr: Abbreviations for species names. Abbreviations contain the 
first three letters of the genus name followed by the first three letters 
of the species name. The full species names are recorded with their 
abbreviations in table "species codes" at the end of the chapter. 

Keyword Date: Date species was collected. Format year-month-day. 
Keyword CollID: Unique code assigned to species sample collected. 
Keyword Cover: Estimated canopy cover, in percent. Dashes indicate missing 

data. (See "methods" at the end of the chapter.) 
Keyword HtMax: Maximum height, in meters. Dashes indicate miSSing data. 

(See "methods" at the end of the chapter.) 
Keyword HtMin: Minimum height, in meters. Dashes indicate missing data. 

(See "methods" at the end of the chapter.) 

:Site : Code :SpAbbr : Date :CoUID :Cover : HtMax : HtMin 
:1600 :P1600D04 : Abibal :1989-08-21 :AMB00555 - : 5 6 
:1600 :P1600DOl : Abibal :1989-08-21 :AMB00604 2 1 1 
:1600 :R1600EA :Abibal :1989-08-24 :AMB00666 3 1 1 
:1600 :R1600EA : Abibal :1989-08-24 :AMB00668 6 6 6 
:1600 :R1600EA : Abibal : 1991-08-01; : AMBO 1719 2 2 2 
:1600 :R1600EA : Abibal : 1991-08-06 : AMBO 1722 4 6 6 
:1600 :R1600EA : Acerub :1991-08-05 :AMB01603 2 2 2 
:1600 :P1600BOl : Agreca :1989-08-25 :AMB00456 3 2 2 
:1600 :P1600DOl : Amerot : 1991-06-17 :AMB01439 2 2 2 

Figure 1. Excerpt of a .'ample Centinel data file from a large ecological databa.'e, with metadata above and error 
correcting codes called "centineh" at lefl. Here colons separate column., rather than vertical bar.'. In the Centinel 
structure, error detection and correction slays with the data rather than with the computer medium. 

and supports good data management practices, for example 
as outlined in [10] and [II]. 

Centinel is not intended to substitute for large-scale in
teractive databases undergoing continual manipulation, such 
as in PostgreSQL, MySQL, or Access. It is, however, a 
good format for long and medium-term retention of such 
databases, as Centinel format can be readily exported from 
them through simple utility programs, and conversely, im
ported through conventional means or by scanning. Nor is 
Centinel intended as a complete solution to the problem of 
storing all data at national and international scales (e.g. [12J 
[13]), but rather as a solution for individual research and 
development groups to help maintain their data. 

As in some other databases, Centinel has multiple equiv
alent formats, which we call "singular," "columnar," and 
"mixed." Long lines of data in singular format can extend 
onto new lines, indented as in Figure I. Here is a simpler 
file in singular format: 

The Centinel format shown in Figure I supports the 
movement of data through place and time. A dataset docu
mented sufficiently with complete descriptions as its meta
data, and protected with error correcting "centinels," can be 
transmitted to another researcher in a distant place without 
separate documentation and time spent explaining the data, 
or equivalently it can be transmitted forward to another 
researcher in the distant future. In other words, it can be 
archived. Instead of error detecting and correcting codes 
being applied to the storage media, as is the common method 
today, codes in Centinel are applied to the data themselves, 
and stay with the data through all media changes. That 
simple but unusual characteristic fills a gap in existing data 
methods and provides confidence in the data across distant 
places and times. Multiple printed copies of the data can 
be stored throughout the world and scanned with optical 
character recognition in the remote future. The centinels, 
checked automatically against the scanned results, are the 
essential link to data reliability. 

Class: 1 
10: 123 
Age: 21 
Region: SSA 

Class: I 
10: 47 
Age: 7 
Region: UK 

Class: 2 
10: 723 
Age: 70 
Region: US 

Below are the same data in columnar format: 

I Class I 10 1 Age I Region 
I I I 123 I 21 I SSA 
I I I 477 I 7 1 UK 
I 2 1 723 I 70 I US 

And below is mixed format: 

Class: I 
lID 
I 123 
1477 

Class: 2 

I Age 
121 
1 7 

I Region 
I SSA 
IUK 

1723 170 1 US 

These formats are interchangeable. The choice is a matter 
of space, readability, and ease of processing. All software 
written to handle Centinel data should process the three 
formats equally. 
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Printed copies of data with error-correcting centinel s need 
not be limited to small data sets. For example, the genome 
of the fruit fl y (Drosophila melallogasler) , represented with 
one base-64 symbol for each of its 47 million codons, 
would require approximately 6000 pages-not absolutely 
prohibitive to print for an important, expensive dataset. By 
compari son, the King James Bible is 4.3 million characters, 
about one- tenth of this genome, and more than one copy of 
that work has been printed. 

3. How Centinel works 
Centinel protects data when they are complete and ready to 
be archived. But it can also be used when the data are first 
entered, to guard against accidental modificat ions of datasets 
undergoi ng incremental change. 

To explain how Centinel works, we must consider what 
it means for data to be digital. Two properties are essential. 
First, the data must be represented by "symbols" that have 
only a finite number of states. Second, the shapes of any 
two distinct symbols must be separated by a sufficient gap, 
so that a symbol for one datum does not, except very 
rarely, degrade into a different symbol for a different datum. 
Symbols can take various forms-binary 0 and I encoded 
electronically in computer memories are one example of 
digita l data. The Arabic numerals 0-9 printed on paper are 
another. With these ideas in mind, Figure 2 shows analog 
versus digital representations of a function , y = f (x) . 

An analog form on paper could take the form of a graph, 
Figure 2A. The value on the vertical ax is varies smoothly, 
and can be read to reasonable accuracy with a ruler and 
a careful eye. However, each time the graph is copied, 
its accuracy diminishes. The curve becomes successively 
blurred, the right side may get slightly skewed with respect 
to the left, and so forth . In contrast, the entire curve in digital 
form is defined by coefficients, Figure 2B. When this digital 
version is copied by re-typesetting, it will not degrade, for 
the individual symbol s will be recogni zed for what they are 
and reproduced intact. A new font may even change ' x' to 
' x', but the meaning of the symbol will remain . 

A 

0.4 

0.2 

- 0.2 

- 0.4 

B 

1.5 2.0 2.5 3.0 3.5 

I, .O]!J7.r - 1:3.R 1G!) 

Figure 2. Non-electronic analog and dig iral dara for the same curve. 
Printed copies of the digiraJ data (B) wiJ/ not degrade over time as 
wiJ/ the analog version (A) of the same data. 

x x x x x x x x x 
x x x x x x x x x 

x x x x x x x x x 
x x x x x x x x x x 

x x x x x x x x x x 

J.. 0 y 0 f a m i s t y d a \J n 
~ '-'- ~ ~~ 

g b f e J 

iii iii iii iii i ii i ii i ii iii 
- 5- 4- 3- 2- 1 1 2 3 4 5 6 7 8 9 10 111213 1415 16 17 18 19 

Figure 3. Error-correcting "centinels" (lef t) for a 19-character mes
sage (right). Each cenrinel covers a distinct combination of column.~, 

.~uch tlJat any unmatched centine/s identify which column is in error 
and how to correct it. (See code in the appendix for derai ls.) 

Thus digital data are not at all restricted to electronic 
media , but paper can carry digital data as well , and has 
done so for millennia. Moreover, some of the most common 
digital information read by computers today is recorded 
directly on paper, plastic, metal, and other substrates. The 
ubiquitous bar code is a case in point, though bar codes are 
not human-readable as Centinel-protected data are. 

A significant separation between symbols in appearance 
or physical state keeps unavoidable small degradation in 
information from changing the message, because one symbol 
does not eas ily degrade into another. However, separation 
of symbol s is not enough. For highest reliability, error 
correcting codes must be applied to the digital data to prevent 
rare alterations of one symbol into another from changing 
the message, except with negligibly small probability. 

Centinel uses a "Hamming code" for arbitrary symbols, 
a generali zation of the original code [1 4] for binary digits. 
Such codes we call "centinels," and they appear at the left 
of each line, a t the end of each printed page, and at the 
end of each fi le. They can correct any single-symbol error 
in a line and detect any two-symbol errors. In addition, 
with high probability they detect multiple-symbol errors, 
including errors in the centinels themselves. 

Each symbo l is ass igned a small integer and the integers 
for a given subset of columns are summed. The sum, modulo 
the number of symbols, is translated back to a symbol , as 
in columns - 1 to -5 of Figure 3. Thi s is repeated for 
carefully chosen subsets of column which allow errors to 
be located and corrected. Then the re ult are tran lated to 
decimal form, as in Figure I, to mask the actual random 
combinations of symbol , which by happenstance can pell 
out any word. 

Complete detail are in the Centi nel algorithms (ap
pendix). These details are part of the metadata and should 
be included with archived data. 

4. Comparison with other approaches 
A standard approach to data archivi ng i a rigorous effort 
of continually transferring data from old media and old 
software to new, before the old media and oft ware become 
completely ob olete-keeping the data "alive" 0 to speak. 
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That is called "migration" [12]. It is a practical, well-tested 
method, though it can be labor intensive and susceptible to 
catastrophic failure. 

Successful migration requires a central discipline main
tained over long periods. Any lapse in the chain of migration 
will result in the complete loss of data. Successful migration 
will be practical for large, well funded data sets. However, 
for many small data sets, discipline and funding can easily 
lapse over long periods of time. 

Timing is key, as migration must take place while (I) ma
chines that can read the media still exist, (2) programs 
encoding the information are still operational, and (3) the 
media and the information stored on it have not deteriorated. 

It follows that the best chance of success in data preser
vation will be for (I) media that require no advanced or 
specialized machinery to read them, (2) formats that require 
no complex computer programs to process them, or at worst 
require the simplest programs that can be described com
pletely in a few pages of text, as in the Centinel algorithm 
(appendix), and (3) media and encoding methods that will 
themselves last a century or more. Centinel allows data 
preservation with a single migration. 

A second method is called "encapsulation." Fully suc
cessful migration to new media will be worthless if the 
software that accesses the data ceases to exist. For example, 
an organization producing software may go out of existence 
and no other organization may support the old format. 
This has happened repeatedly in the history of computing. 
Encapsulation aims to include with the data all software 
that accesses the data, in a form that can be translated 
to future machinery. That is, of course, easiest when the 
corresponding software is as limited as possible. 

Two other methods proposed for data archiving are "em
ulation" and "technology-preservation." In emulation, the 
complete hardware and software architectures to retrieve the 
data are migrated forward with the data and "emulated" 
on the future system. That practice was widespread and 
successful among mainframe computers in the 196Os, where 
one generation of computers would emulate the hardware of 
the generation before. But as computers become increasingly 
complex in their architecture and operating software, it 
becomes difficult to make this practical into the indefinite 
future. 

In technology-preservation, the actual hardware and soft
ware is preserved, museum-style, along with the data for 
future access. This is problematic, however, for today's 
computers are built for the moment, not built to last, and 
may not even boot up properly after a decade of disuse. 

Therefore, emulation and technology-preservation are not 
related to Centinel, but migration and encapsulation are. 
Centinel implements encapsulation in the simplest form
under 100 lines of code (appendix)-and with a single 
migration, creates digital documents that last as long as 
possible-up to a century or more. 

5. Suggestions 
In conclusion, we offer the following: (I) To keep electronic 
data safe, prepare early for archiving. (2) Archive data in 
the simplest formats possible. (3) Document data to the 
highest standards. (4) Associate documentation directly with 
the data it describes, ideally in the same file. (5) Keep 
multiple copies in separate locations. (6) Regularly convert 
working files from proprietary databases to archival format. 
(7) Keep printed copies of critical data, with Centinel-Iike 
guard symbols and documentation for future recovery. 

For full details and utility programs supporting this 
project, see www.cbs.umn.edulcentinel. 
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7. Appendix: The Centinel algorithm 
The complete algorithm that encapsulates Centinel files is 
given here in a subset K&R C [15]. The material below, 
together with Kernighan and Ritchie's book, should allow 
the algorithm to be transcribed into future programming 
languages and the data to be extracted from Centinel files 
as long as the printed form is extant. 

The algorithm adds an error-correcting code to each line 
of a text-based file, another to each page, and a third to 
the entire file. Each output line begins with a decimal error 
correcting code guarding that line, and also guarding the 
error correcting code itself, then the text of the line. In printed 
form another decimal code guards the entire page and a third 
guards the entire file. 

DATA STRUCTURES 

In computing the error correcting code, leading and 
trailing white space is skipped, multiple blanks count as 
a single blank, and end-of-line codes are not counted. The 
code at the beginning of the line is not counted either. The 
assignment between symbols and numbers is specified in 
array s below, where 'a' is number I, 'b' is number 2, 'A' is 
number 27, and so forth. Any similar assignment could be 
substituted. 

In the algorithms below, How control and reserved words 
are bolded, variables and function names are italicized, and 
certain operations such as '<=', '>=', '!=', and '==' are 
displayed in a mathematical form as ':'S', '2:', 'fe', and '",', 
respectively. 

#deflne C 256 I. Maximum character code plus I. 
#deflne L 120 2. Maximum data length, excluding guard symbols. 
#deflne G 8 3. Number of guard symbols. 
#deflne COL 9 4. Number of symbols columns displayed on the page. 
#deflne PAGf;L 50 5. Number of lines per page. 
#deflne ID/ONT 127 6. Identity symbol. 

char s[] = 7. Character set available for present application. 
"_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZO123456789" 
" .,;: !?+_*/\\=\'" () [] {)<>A&%I"; 

int nchar; 
char seq[CJ; 
charI[CJ[C]; 
char prn[L][G + 1J; 
Int pall~{ = PAGf:L; 
int pages = PAGHL; 

int ipage = 0; 
int ili/e = 0; 
char in[L + 1]; 

char /ine[L + 1], page[L + 1], Ii/e[L + 1]; 
char !?uard[G + 1); 

END OF PAGE 

8. Maximum number of characters in present application. 
9. Sequence number for each symbol in the set. 

10. Modulo sum and difference tables. 
II. Pattern of guard symbols for each position. 
12. Number of lines on first page. 
13. Number of lines per subsequent page. 

14. Page index. 
15. File index. 
16. Input line. 

17. Current line, page, and file. 
18. Guard symbols, individual characters. 

Upon entry to the algorithm. (1) page contains a list of symbols representing the current page. (2) ipage 
indexes the next entry for the page. (3) a is set if a blnnk line should follow the code, indicnting end of page. 
(This is not used on the last page of the file, because the code for the entire file follows immediately.) At exit, 
(1) Guard symbol. for the page are displayed. (2) guard is destroyed. (3) ipage is set to zero . 

.I'eqpa!?e( a) int a; 
{ 

if (ipa!?e == 0) return; 
palle[ip£llle] = 0; ecc(lIuard, palle); 
.I'eqn(/iuard, "; ", ""); if (a) /1rin({("\n"); 
ipa!!" = 0; } 
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MAIN PROGRAM 

main(arIlC, arKv) int arllc; char *arlll'[ I; 
I char C; int i, i, k; 

if (arlll' > 1) 
I pall~1 == a/oi(arllv[lJ); 

if (pa1l4 < 2 II palll!.! > 100) palle.1 == PAGJ<:L; 
palies == pall".{; I 

if (arlll' > 2) 
I pall4 == a/oi(arlll'[2J); 

if (palie.{ < 2 II pall4> 100) pall".f == PAGJ<:L; 

.I'[OJ == /DtNT; 
for (i == 0; s[i); i == i + 1) seq[s[i]] == i; 
nchar == i; 

for (i == 0; i < C; i == i + 1) 
for (j == 0; } < C; j == j + 1) 

f[i][;1 = IDHNT; 

for (i = 0; s[iJ; i == i+ 1) 
for (j == 0; s[jJ;} ==j + 1) 
I k == i + j; if (k 2: nchar) k == k - nchar; 

. f[.,[ij][s[jJJ = s[k!j I 
for (i == 3; i::; 7; i = i + 2) coillen(i, G - 1); 
ipalie == 0; 1ftle == 0; 

while (flle/s(in, L, s/din)) 
I i == .I'/r/en(in); 

if (in[i - IJ ",,' \n') inti - IJ = 0; 

line [OJ ==' -'; 
for (i =} = 0; in[iJ; i+t) 
I c = in[iJ; if (.I'eq[cJ "" 0) c ==' '; 

if (lineliJ ",," && (' ",,' ') continue; 
line[ +tiJ == l'; I 

line[ +til == 0; 

e('c(lIuard, line + 1); .l'eqn(lIuard, '''', in); 

palleUpalle +t J = lIuard[G - IJ; 
if (ipalle 2: palle.O .l'eqpalle( 1), palle.l == palles; 

file(ifi/e ++ ] == lIuard[G - I]; 
if (ifile 2: L) ifi/e == ili/e - 1; I 

.I'eqpage(O); file[1file! = 0; 
e('('(guard, .fi/e); .I'eqn(lIuard, ".", ""); 
ilile == 0; I 

COMPUTE CENTINELS 

I. If an entry parameter has been 
supplied, take it to be the 
page length. 

2. Determine the number of symbols 
in the set while developing a 
list of sequence numbers. 

3. Clear the modulo addition table. 

4. Construct tables mapping all 
symbol pain. to corresponding 
sums . 

5. Generate odd guard patterns. 

6. Compute the error-correcting code 
for the line. 

7. Compress multiple blanks from 
the input line. 

8. Compute the ECC guard symbols. 

9. If this is the end of the page, 
prepare a code for the entire 

10. If this is the end of the page, 
prepare a code for the entire 

II. At the end of the file, prepare 
a code for the entire file. 

Upon entry to the algorithm. (1) 98 points to an area of length G + 1 to receive the results. (2) line points to 
the line. (3) G defines the number of guard digits to be computed. (4) ptn defines which line positions contribute 
to which guard digits. (5) f contains the modulo-addition table for all symbols. At exit. 98 contains the guard 
symbols for the line. 

ecc(gs, line) char *11.1', * line; 
lint i, }; 

for (i == 0; i < G; i == i + 1) II.\·UJ == ff)HNT; 

for (i = 0; i < Gj i == i + 1) 
for (j == 0; IineVJ; j = i+ 1) 

If (ptn[jHiJ "" X') 
1I.I'[iJ == f]g.l'[ilJ[line[jJJ; 

KS[G] =0; I 

I. Clear all the guard symbols. 

2. Generate each guard symbols. 
3. following the table that shows 

which line positions contribute 
to which guard symbols. 
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CONVERT CENTINELS TO INTEGERS 

Upon entry to the algorithm, (1) gs contain~ the guard ~ymbols. (2) sep contains a separator character. (3) sym 
contains the ~tring of symbol>. At exit, gn contains the corresponding integer ~equence numbe~. 

seqn(~.\', sep, .\'.vm) char *8.\', *."iep, *.\ym; 
{ int i; 

for (i = 0; i < G; i = i + 1) 
prin!f("%02tf', seq[g"[ilJ); 

prin!ff'%s%s\n", sep, .\~vm); 

GENERATE PERMUTATIONS 

I. Display the sequence numbers 
for the guard symbols. 

2. Display the full line. 

Upon entry to the algorithm, (1) n defines the number of guard symbols to be marked. (2) k defines the 
position for the initial mark. (3) I defines the column number on the line, ~tarting with O. (4) ptn contains an 
area to receive the permutations. (5) UI contains a work area for generating the permutation~. At exit, (I) All 
permutations have been generated. (2) I is advanced by the number of combinations generated. (3) ptn[O .. l) 
contain~ the permutations generated thus far. (4) UI contains the most recent permutation generated. 

coillen(n, k) int II, k; 
{ static char wIG + 1] = ""; static int 1=0; int i; 

if (w[O] == 0) 
for (i=0; i<G; i=i+l) wU]='-'; 

if (n > 0) for (i = k; i :2: n - 1; i = i-I) 
( w[i] =' X'; 

co/Ken(n -1, i-I); 
w[;] =' -'; } 

else if (I < L) 
{ for (i = 0; i < G; i = i + 1) 

ptn[/][i] = w[i]; 
/=/+1; }} 

1. On the first call, establish a 
null pattern in the array. 

2. Mark the guard symbol for each 
possible position and generate 
all permutations within that 
position. 

3. I f there are no deeper 
permutations, save the current 
permutation and advance the 
column number. 
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Symmetry and Simplicity in Simulation: 
Reducing Complexity in Alternate Parallel-Serial Processing 
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Abstract- Certain simulations are characterized by al
ternating periods of "expansion" and "contraction." For 
example, simulated populations of migratory birds may con
gregate in a central geographic location for overwintering, 
handled by a single processor; then fan out to dispersed loca
tions f or local ecological interactions during the rest of the 
year; handled by one processor per location. In another ap
plication, the difficult problem of jirring parameters to large
scale stochastic simulation models may fan our to numerous 
processors compuring independent stochastic trajectories 
from the same initial conditions. then "contract" to allow 
a new, more likely set of parameters to be estimated from 
the compured distriburion of independenr trajectories. The 
conrraction is commonly handled by a designated "master 
processor. " In this paper. we point our a simpler. completely 
symmetric algorithm in which all processors act idenrical/y 
and no processor is designated master. We have used it f or 
applications in simulated annealing and exhibit it here in a 
standard MPI (Message Passing Interface) environment. 

Keywords: parallel processing, symmetric multiprocessing, 
parallel- serial simulation, parameter fining, individual-based mod
eling 

1. Introduction 
The goal of this paper is to demonstrate a ymmetric tech
nique for coordinating multiple processors and contrast that 
technique wi th a more usual master- ubordi nate technique. 
We consider the case where multiple processors calculate re-
ults independently of one another for an extended length of 

time, from econds to minutes or more. The processors then 
pool their results before parti tioning the calculations and 
expanding to multiple independent proces ors agai n. This 
repeats through multiple expansion--contraction phases until 
the computation converges to some result. We exhibit the 
algorithms in detail and illustrate them wi thin an application 
of parameter fitti ng. 

2. Algorithms 
We assume each proce or accepts a data structure as input 
and return the results of its calculation in the same or 
another data structure. For simplici ty here, we represent thi 
data structure a an array of double-precision floating-point 

numbers, localb] , though it could take any form. In addition, 
an array of these data structures, global [i] [j]. has one row 
per processor. I n the symmetric algorithm, all processors use 
this array, but in the master-subordinate algorithm, only the 
master uses it. Any processor can be the master, but here 
we make it the one numbered O. The processor number is 
placed in an integer variable named cproc by Function I 
of the appendix. Algorithms in the appendix encapsul ate 
the MPI environment [I] and provide a degree of system 
independence. 

Figure 1. Communicat.ions among a dozen proces.~ors in the 
symmetric technique, top, and the master-.~ubordina te technique, 
bottom. The standard technique on !he bottom might seem simpler, 
because of fewer interconnections, but asymmet.ries actually make it 
more complex. 
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We present the algorithms in a stylized form of the 
language C, as an alternative to pseudocode, so that they 
define the interface precisely, and so they can be compiled, 
run, and modified. In the displayed algorithms, flow control 
and reserved words are bolded, variables and function names 
are italicized, and certain operations such as '<=', '>=', 

'! =', and '==' are displayed in a mathematical form as ':;', 
'2:', '/', and ':=', respectively. 

2.1 Symmetric technique 
In applications of parameter fitting, computing a new set 
of parameters is a global step, needing input from all the 
processors together. Therefore, it seems natural to assign 
that step to a master processor. However, such assignment is 
unnecessary. If all processors share information equally, then 
every processor can compute the new parameters for itself, 
using the same algorithm that would be used by the master 
processor. No time is lost, for all subordinate processors 
would be waiting for the master processor anyway. No 
chance of error arises, for all processors are executing the 
same code. And a notable simplification results, cutting 
the number of lines of code needed almost four-fold (see 
discussion below). 

For the symmetric case, the program begins by invoking 
function MPBegin and ends by invoking MPEnd, defined in 
the appendix (steps I and 4, respectively, in the algorithm 
below). Variables 1 and Imax are integers recording the 
current and the maximum times, respectively. The main loop 
has five lines. 

[1] MPBeginO; 

[2] for (I = 0; I:; Imax; 1 ++ ) 
converge = NewParamelers(global); 
if (converge) break; 

[3] Simulale(loca/); 
MPCommon(global, local, W); } 

[4] MPEndO; 

Steps I and 4 above merely begin and end multiprocess
ing operations. Step 2 loops through the procedure, with 
each processor invoking function NewParameters to handle 
data from all the processors (array global), for example 
computing a new set of parameters by whatever technique 
is desired-gradient descent, simulated annealing, genetic 
search, and so forth. That function returns an indication of 
whether the process has converged, and if convergence is 
detected, the program terminates the main loop. 

Step 3 invokes function Simulale, which carries out the 
current processor's simulation task, getting its parameters 
from array local and returning its results in the same array. 
Finally each processor communicates its results to all other 
processors and symmetrically receives all results back by 
invoking function MPCommon before repeating. W in the 
example is the width of arrays global and local. 

In addition to the code for MPBegin and MPEnd (Func
tions 1 and 2 in the appendix), this process uses only the five 
lines of code of Function 3 in the appendix. The amount of 
data communicated is It' N(N -1) elements. where 1V is the 
number of elements per processor and N is the number of 
processors. Processors pass messages only once per iteration. 

2.2 Master-subordinate technique 

When the global process is assigned to a master processor, 
the program also begins by invoking function MPBegin and 
ends by invoking MPEnd, defined in the appendix (steps I 
and 8, respectively, in the algorithm below). The variable 
cproc defines the processor number, which was not needed 
in the symmetric case. As before. 1 and tmax are integers 
recording the current and the maximum times, respectively. 
The main loop has nine lines. 

[IJ MPBeginO; 

[2J for (I = 0; f:; Imax; 1 ++ ) 
[3] if (cproc := 0) 

{ converge = NewParameters(global); 
if (converge) break; 
MPMasterSend(global, W); } 

[4] else MPSubordinateReceil'e(/ocal, W); 

[5J Simulate( local); 

[6] if (cproc:= 0) MPMasterReceil'e(giobal, W); 
[7] else MPSubordinafeSend(local, W); } 

[8J MPEndO; 

At the beginning of the loop, cproc is tested to determine 
whether the master processor is running (processor num
ber 0). If so, then the master processor computes the new pa
rameters, checks for convergence, and if convergence has not 
been achieved, sends the parameters out to all subordinates 
for additional computation (step 3 in the algorithm). If, on 
the other hand, a subordinate processor is running, it merely 
waits for the master processor to send it the parameters 
(step 4 in the algorithm). 

After that, all processors, master and subordinate alike, 
run one simulation task by invoking function Simulare 
(step 5), as in the symmetric technique. Next the master 
processor receives the simulation results from all subordi
nates (step 6) while subordinates send them (step 7). Then 
the loop repeats. As before, It' is the width of arrays global 
and local. 

In addition to the code for MPBegin and MPEnd (Func
tions I and 2 in the appendix) this process uses the twenty
eight lines of code of Functions 4a, 4b. 5a, and 5b in the 
appendix. The amount of data communicated is 2W(N-l) 
elements, where It' is the number of elements per proces
sor and N is the number of processors. Both master and 
subordinate processors pass messages twice per iteration. 
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3. Discussion 
The symmetric version needs no conditional if-else state
ments to determine which processor is running. It makes 
half the number of calls to the message passing interface 
per iteration, which simplifies the communications. It is 
somewhat less error prone, not only because of its greater 
simplicity, but also because multiple processors can be 
automatically checking each others work, detecting such 
mistakes as uninitialized variables that may behave differ
ently under different conditions. It is shorter. The symmetric 
version uses 5 lines within its loop in the algorithm above 
and calls upon the 5 lines of Function 3 in the appendix, 
for a total of 10 lines in the loop. Functions 4a, 4b, Sa, and 
5b in the appendix do not exist in the symmetric version. 
The master-subordinate version, in contrast, uses 9 lines 
within its loop and calls upon the additional 28 lines of 
Functions 4a, 4b, Sa, and 5b in the appendix, for a total of 
37 lines in the loop. 

The code to support symmetric multiprocessing is thus 
almost four times as compact. This savings can become 
compounded in the application code, because that code does 
not have to differentiate between master and subordinate 
communications. In parts of the code not connected with 
inter-processor communication, such as printing, one pro
cessor may still have to act as master. Yet since each level 
of reduction in complexity can be significant in a large 
program, this technique is preferred, all other things being 
equal. 

One thing not equal is energy consumption. With all 
processors computing during the contraction phase, more 
heat will be generated and more energy consumed. Computa
tions performed during the contraction phase will typically 
be short and simple compared with long and complicated 
simulations in the expansion phase. so this will be negligible. 
But if it is not, then a master-subordinate approach might 
be preferred. 

Another thing not equal is the amount of information 
communicated among processors. The master-subordinate 
technique has only N -1 communication paths, where N is 
the number of processors, whereas the symmetric technique 
has 1/2 N (N -1) paths (Figure I). Though this can be a large 

difference, it can also be insignificant in many applications. 
If the computation step is seconds or minutes or more, as it 
often will be, the microseconds or milliseconds dedicated to 
communications will vanish into the rest of the computation. 

4. Conclusions 
The symmetric version is simple. It is a viable way of 
communicating among multiple processors that can be incor
porated into any expansion-{;ontraction simulation programs, 
or related kinds of simulations. We have used it successfully 
in a large-scale simulation model developed by one of us 
(A.K.) for human tuberculosis in the UK. Compilable copies 
of the code described here and related simulation algorithms 
are available free from the authors upon request. 
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8. Appendix 
This appendix defines the precise connections with the "Mes
sage Passing Interface," MPI [I]. Prototypes for functions 
and constants are defined in a file "mpi.h", which must be 
included at the top of the code. Then each process must call 
Function J before beginning. That function initializes com
munications, determines the number of processors that are 
participating, and assigns a number to the current processor. 
Furthermore, each process calls Function 2 after its work is 
complete, just before ceasing operations. 

Function 3 is used in both symmetric and master
subordinate techniques. In this example it assembles an nproe 
by w array of data from all processors. where nproe is the 
number of processors and w is the number of data elements 
shared by each processor. It is typically called at the end of 
each processing step to synchronize all processors and put 
them all in a common data state. Processing is delayed until 
all processors have called this function. Therefore. note that 
all processors must call at corresponding points in the cycle 
or operations could deadlock. 

Functions 4a, 4b, 5a, and 5b are additional algorithms 
needed for master-subordinate processing. Function 4a sends 

Function 1. 

data from the master processor, numbered 0, to all processors 
allocated, including itself. Data to be sent reside in the 
nproe by w array of data. Function 4a is typically called 
at the beginning of each processing step to synchronize 
all processors and give each processor the data it needs to 
carry out the next step. The master process must call this 
function and all others must call the companion function 
MPSubordinaleReeeive, Function 4b, at corresponding points 
in the cycle. Function 4b receives data from the master 
processor, resulting from that processor's call to 4a. 

Function 5a receives data from subordinate processors, 
whose numbers are greater than O. Data are assembled in 
the nproe by w array. Function 5a is typically called by 
the master processor at the end of each processing step 
to receive results back from all processors and compute 
the data to begin the next step. The master process must 
call this function and all others must call the companion 
function MPSubordinaleSend, 5b, at corresponding points in 
the cycle. Function 5b sends data back to the master pro
cessor, numbered 0, to satisfy its call to MPMaslerReceil'e, 
Function 5a. 

Upon entry to the algorithm, no conditions are significant. At exit, (1) multiprocessing operations 
have commenced. (2) nproc contains the total number of processors allocated. (3) eproc contains the 
number of the current processor, in the range 0 to nproc - 1. 

int MPBeginO 
{ static int arge; static ehar **argl'; lnt n; 

MPljnil(&arge, &argv); 
MPCCommJank(MPCCOMM_WORLD, &cproe); 
MPCComm_size(MPCCOMM_WORLD, &nproc); 
return 0; } 

Function 2. 

I. Initialize message processing. 
2. Determine this processor's number. 
3. Determine the number of processors. 
4. Return to caller. 

Upon entry to the algorithm, multiprocessing operations have closed. At exit, the main program 
may itself exit. 

int MPEndO I MPIJinalize(); return 0; } 

Function 3. 
Upon entry to the algorithm, (1) local is a vector of w data elements (double preciSion floating 
point) that are this processor's contribution to the global data set. (2) global is a nproc by w matrix to 
receive the values of local from all processors. (3) w contains the width of local and global. At exit, 
global[n) contains a copy of the contents of local from each processor n, where n ranges from 0 to 
nproc - 1. In particular, the local of this processsor passed on entry is in row global [cprocJ. 

int MPCommon(double global!J[], double local[), lnt w) 
{ MPCAligalher(loeal, w, MPCDOUBLE, 

return 0; } 

global, w, MPCDOUBLE, 
MPCCOMM_WORW); 
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Function 4a. 

Upon entry to the algorithm, (1) cproc is O. (2) global is a nproc by w matrix containing values to 
be sent to each processor n in row global[n]. (3) w contains the width of global[i]. At exit, global[n] 
has been sent to each processor n. 

int MPMasterSend(double *global, int If) 

{ double * temp = 

(doublet<)malloc( If * sizeoj( double)); 

MPCScatter(global, If, MPI_DOUBLE, 
temp, If, MPCDOUBLE, 
0, MPCCOMM_WORW); 

jree(temp); 
return 0; I 

Function 4b. 

I. Allocate a temporary area to receive 
the master's data back from itself. 

2. Send data from global[n] to each 
processor n. 

3. Release the temporary area. 
4. return to caller. 

Upon entry to the algorithm, (1) cproc is not O. (2) local is vector of w elements to receive data 
from the master processor. At exit, local contains the data received. 

int MPSubordinateReceive( double local[], int w) 
{ MPCScatter( (doublet<)O, 0, MPCDOUBLE, 

return 0; I 

Function Sa. 

local, If, MPCDOUBLE, 
0, MPI_COMM_WORLD); 

Upon entry to the algorithm, (1) cproc is O. (2) global[nprocJ[w] is an area to receive values for 
each processor n in row globa/[nJ. (3) global[O] contains any results from the master processor. to be 
sent back to itself. (4) w contains the width of global[i]. At exit, global[n] contains the results from 
each processor n, except that global[O] is unchanged. 

int MPMasterReceive(double global[]!], int w) 
{ int i; 

double *temp = 
(doublet<)malloc( w *sizeoJ(double)); 

for (i = 0; i < w; i ++) temp[i] = global[iJ; 

MPCGather(temp, w, MPCDOUBLE, 
global, w, MPCDOUBLE, 
0, MPCCOMM_WORW); 

jree(temp); 
return 0; I 

Function Sb. 

I. Allocate a temporary area to receive 
the master's data back from itself. 

2. Send data from global[n] to each 
processor n. 

3. Release the temporary area and 
return to caller. 

Upon entry to the algorithm, (1) cproc is not O. (2) local is vector of w elements to send to the 
master processor. At exit, the data have been sent. 

int MPSubordinateSend(double local[][]' int w) 
{ MPCGather(local, w, MPCDOUBLE, 

return 0; I 

(doublet<)O, 0, MPCDOUBLE, 
0, MPCCOMM_WORLD); 

I. Send data to processor O. 

2. Return to caller. 
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