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Abstract 

This thesis considers alternative statistical methods for cost-effectiveness analysis (CEA) that 

use cluster randomised trials (CRTs). The thesis has four objectives: firstly to develop criteria for 

identifying appropriate methods for CEA that use CRTs; secondly to critically appraise the 

methods used in applied CEAs that use CRTs; thirdly to assess the performance of alternative 

methods for CEA that use CRTs in settings where baseline covariates are balanced; fourthly to 

compare statistical methods that adjust for systematic covariate imbalance in CEA that use 

CRTs. 

The thesis developed a checklist to assess the methodological quality of published CEAs that use 

CRTs. This checklist was informed by a conceptual review of statistical methods, and applied in 

a systematic literature review of published CEAs that use CRTs. The review found that most 

studies adopted statistical methods that ignored clustering or correlation between costs and health 

outcomes. 

A simulation study was conducted to assess the performance of alternative methods for CEA that 

use CRTs across different circumstances where baseline covariates are balanced. This study 

considered: seemingly unrelated regression (SUR) and generalised estimating equations (GEEs), 

both with a robust standard error; multilevel models (MLMs) and a non-parametric 'two-stage' 

bootstrap (TS8). Performance was reported as, for example, bias and confidence interval (Cl) 

coverage of the incremental net benefit. The MLMs and the TSB performed well across all 

settings; SUR and GEEs reported poor Cl coverage in CRTs with few clusters. 
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The thesis compared methods for CEA that use CRTs when there are systematic differences in 

baseline covariates between the treatment groups. In a case study and further simulations, the 

thesis considered SUR, MLMs, and TSB combined with SUR to adjust for covariate imbalance. 

The case-study showed that cost-effectiveness results can differ according to adjustment method. 

The simulations reported that MLMs performed well across all settings, and unlike the other 

methods, provided Cl coverage close to nominal levels, even with few clusters and unequal 

cluster sizes. 

The thesis concludes that MLMs are the most appropriate method across the circumstances 

considered. This thesis presents methods for improving the quality ofCEA that use CRTs, to 

help future studies provide a sound basis for policy making. 
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1.1 Economic evaluation of health care 

Health economic evaluation aims to assist policy making by assessing the relative value of 

alternative health care technologies, public health interventions, and ways of organising health 

services (Gold, 1996; Drummond et al., 2005; Morris et al., 2007). It provides a structured 

framework which can help address the goal of maximising population health subject to available 

resources (Weinstein and Stason, 1977). Policy makers worldwide (e.g. CADTH, 2006; NICE, 

2008; PBCA, 2008; IQWIG, 2009) now use economic evaluation studies to inform decisions 

about, for example, which health interventions to fund. Methodological guidelines for economic 

evaluation of health care programmes are relatively well established and encourage the use of 

individual patient data (lPD) from randomised controlled trials (RCTs) (Gold, 1996; Willan and 

Briggs, 2006; Glick et al., 2007). It has become increasingly common for RCTs to collect IPD on 

resource use alongside health outcomes to help evaluate which interventions offer the best value 

for money. 

The availability of patient-level cost-effectiveness data has led to a greater focus on using 

appropriate statistical methods in cost-effectiveness analysis (CEA)i (Briggs et al., 2002). For 

example, methodological guidance emphasise the need for studies to use methods that can 

address the correlation between individual costs and health outcomes (O'Hagan and Stevens, 

2001; Hoch et al., 2002; Willan et al., 2004). Another important issue is that costs and outcomes 

may be collected from different health care settings (e.g. different countries). In these 

circumstances, methods must recognise that cost and outcome data may be more similar within 

than across settings due to, for example, patient case-mix and cost variation across countries 

I The term 'cost-effectiveness analysis' has a narrower application than 'economic evaluation' (Gold, 1996; 
Drummond et al., 2005), but these terms are used interchangeably throughout this thesis. 
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(Willke et aI., 1998; Grieve et aI., 2005). An additional concern in CEA is that cost data are 

typically skewed, with a small proportion of individuals incurring high costs (Barber and 

Thompson, 1998; Briggs and Gray, 1998; Thompson and Barber, 2000). The skewed nature of 

cost data may raise issues for methods which assume that data are Normally distributed. These 

methodological challenges have encouraged the development of statistical methods for CEA 

conducted alongside RCTs where individuals are randomly allocated to alternative treatment 

groups. 

To address some of the methodological challenges raised in CEA, statistical methods have been 

successfully transferred from other areas such as biostatistics and econometrics. For example, 

methods that respect the correlation between costs and outcomes have adapted bivariate models 

and seemingly unrelated regressions (SUR) (O'Hagan and Stevens, 200 I; Willan et aI., 2004; 

Nixon and Thompson, 2005) originally proposed in medical statistics (Anderson, 1984; Timm, 

2002) and econometrics (Wooldridge, 2002; Greene, 2003). More generally, these methods offer 

additional appeal for CEA in that they allow for covariate adjustment to help increase the 

precision of the estimates or perform subgroup analyses (Willan et aI., 2004; Nixon and 

Thompson, 2005). Other studies have adapted multilevel models, originally developed for 

education and health research (Leyland and Goldstein, 2001; Goldstein, 2003), to acknowledge 

the hierarchical nature of multicentre and multinational cost and cost-effectiveness data (Manca 

et aI., 2005; Nixon and Thompson, 2005; Grieve et aI., 2007). To handle skewed costs, methods 

that avoid distributional assumptions such as non-parametric bootstrapping (Efron and 

Tibshirani, 1993), or methods that can allow for a range of realistic parametric distributions such 

as generalised linear models (McCullagh and Nelder, 1989), have been adopted in CEA (Barber 

and Thompson, 2000; Manning, 2006; Mihaylova et aI., 2011). 
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Research funders such as the UK Medical Research Council and National Institute for Health 

Research have encouraged methodological developments in CEA to help studies provide sound 

evidence for policy making. It is anticipated that the methods developed can then 'feed into' 

methodological guidelines for CEA used by health decision makers such as NICE2 (NICE, 

2008), and lead to improvements in practice. A number of other areas have received relatively 

little attention in CEA and further methodological development has been advocated. For 

example, commentators have highlighted the need for additional work in methods for CEA that 

use cost-effectiveness data that are subject to censoring or missingness (Young, 2005; Noble et 

al., 20 I 0). Also, the characterisation of structural uncertainty in CEA is receiving increasing 

attention, and studies are advised to carefully address structural/model uncertainty in addition to 

parameter uncertainty (Claxton, 2008; Jackson et al., 2009). Another important area where the 

need for further methodological improvement has been recognised is in CEA that use cost­

effectiveness data from cluster randomised trials (Flynn and Peters, 2005a; Willan and Briggs, 

2006). This thesis will focus its attention on improving statistical methods in this area. 

1.2 Cluster randomised trials 

Economic evaluations of public health interventions often use cost-effectiveness data from 

cluster randomised trials (CRTs). In CRTs, the unit of random is at ion is the cluster, for example 

the hospital, not the individual patient. The cluster design is preferred in many situations (Donner 

and Klar, 2000; Hayes and Moulton, 2009). For instance, the intervention may be delivered at 

the group-level such as professional training for general practitioners in order to change their 

2 National Institute for Health and Clinical Excellence, UK. 
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behaviour towards their patients, or a prevention programme may be delivered at the hospital­

level. Cluster designs are also common when it is important to avoid contamination between 

individual patients of different treatment groups. For example, in a CRT to evaluate a smoking 

cessation intervention, it is important to prevent individuals in the treatment group telling the 

control group about the preventive strategy, otherwise dilution bias may arise. 

While CRTs can provide an appropriate design for many interventions, their analysis can pose 

specific challenges. A fundamental issue in the analysis of CRTs is that patients are more 

homogeneous in their outcomes within than between clusters. Hence, the use of standard 

methods such as OLS regression, that assume individual observations are independent, will be 

incorrect (Donner, 1998; Murray et aI., 1998). Cornfield who first brought to light the analytical 

implications of cluster randomisation stated (Cornfield, 1978): 

"Randomisation by cluster accompanied with an analysis appropriate to randomisation by 

individual is an exercise in self deception, however, and should be discouraged" 

In other words, methods that ignore the clustering assume they are using more information than 

they actually have, and will understate the uncertainty (Donner, 1998; Murray et aI., 1998). In 

circumstances where there is a relationship between the size of the cluster and the endpoints, 

ignoring clustering may lead to bias (Panageas et al. 2007). 

Another key concern with CRTs is that the cluster design may be prone to systematic differences 

in baseline covariates between treatment groups (Donner and Klar, 2000; Puffer et aI., 2005; 

Carter, 2010). 
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In CRTs, confounding3 can arise because many CRTs are unblinded, and hence, the recruiting 

centre is aware of the treatment assignment and patients' characteristics prior to their inclusion. 

Therefore, the CRT design can yield systematic imbalances in baseline characteristics; for 

example, there may be circumstances where older patients are less likely to participate in the 

treatment than the control group (Hahn et al 2005). Studies that fail to account for potential 

confounding on these observed factors will provide biased results (Puffer et aI., 2003; Hahn et 

aI., 2005; Eldridge et aI., 2008). 

Despite general improvements in methods for CEA alongside RCTs (Gold, 1996; Willan and 

Briggs, 2006; Glick et aI., 2007), methods for CEA that use data from CRTs have received 

relatively little attention (Flynn and Peters, 2005a). Commentators have recognised that this area 

can raise additional challenges for analysts and highlighted that additional methodological 

development is required (Klar and Donner, 2001; Flynn and Peters, 2005a; Willan, 2006). In 

CEA that use CRTs, it is crucial that methods address the issues that can arise with the cluster 

design such as the clustering and covariate imbalance, while acknowledging other important 

concerns in CEA such as the correlation between costs and outcomes. For example, Grieve and 

others (2010) suggest that ignoring the clustering can lead to inaccurate estimates of incremental 

cost-effectiveness and the accompanying uncertainty. While some methods, such as the non-

parametric bootstrap (Flynn and Peters, 2005b) and multilevel models (Grieve et aI., 2010), have 

been proposed for CEA that use CRTs, there is a lack of work comparing these alternative 

approaches. Only one study (Bachmann et aI., 2007) considers alternative methods for CEA that 

3 Here 'confounding' is defined as when there is an observed or unobserved baseline characteristic, which is 
correlated with both the treatment and the endpoint. This can lead to a biased estimate of the true treatment effect. In 
the health economics and econometrics literatures this problem is also referred as 'selection bias' or 'endegoneity'. 
This thesis considers approaches for handling this aspect of confounding due to observed characteristics (Jones and 
Rice 2011). 
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use cluster trials. This paper compares the methods in a single case-study with relatively ideal 

characteristics such as large number of clusters and equal cluster sizes. The study finds small 

differences across methods and fails to provide general insights on the relative merits of 

alternative methods. There have been no previous simulation studies that have compared the 

performance of alternative statistical methods across typical circumstances faced by CEA that 

use CRTs. Furthermore, it is unknown whether applied CEAs that use CRTs use appropriate 

methods and thus whether they can provide sound evidence for policy making. 

1.3 Aims and objectives 

The overall aim ofthis thesis is to identify appropriate statistical methods for CEA that use CRTs 

and to assess their relative performance across a wide range of realistic scenarios typically faced 

by CEA that use CRTs. The specific objectives are: 

1. To develop criteria for identifying appropriate statistical methods for CEA that use CRTs. 

2. To critically appraise the methods used in applied CEAs that use CRTs. 

3. To assess the relative performance of alternative statistical methods for CEA that use 

CRTs in settings where baseline covariates are balanced. 

4. To compare alternative methods to adjust for systematic covariate imbalance in CEA that 

use CRTs. 
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1.4 Conceptual framework 

To address these objectives, the thesis requires a clear conceptual framework, drawing on 

insights from general biostatistics and medical statistics. An important conceptual point, well 

established in the literature, is that the form of clustering inherent in CRTs is distinct (Donner, 

1998). Unlike individually-randomised multicentre trials, where individuals within each centre 

receive different treatments, in CRTs all patients within the cluster are assigned to the same 

treatment group. Another important concern is that cluster randomisation is more vulnerable to 

systematic imbalances in baseline covariates between treatment groups than individual 

randomisation (Puffer et aI., 2003; Hahn et aI., 2005; Eldridge et aI., 2008). This means that 

covariate adjustment may be required if potential prognostic factors are anticipated to confound 

the treatment effect. In addition to these, CRTs typically have few clusters and unequal numbers 

of individuals per cluster, which raises important considerations for the statistical analyses 

(Ukoumunne et aI., 1999; Eldridge et aI., 2004; Campbell et aI., 2007). While these fundamental 

issues are well recognised in the statistics literature, they have received little attention in the 

context ofCEA that use CRTs. 

To develop appropriate methods for CEA that use CRTs it is important to combine these 

methodological insights from biostatistics and medical statistics with conceptual ideas from the 

health economics literature. To transfer methods directly from one context to another is 

insufficient (Briggs et aI., 2002). Undertaking CEA raises issues beyond those that arise in the 

analysis of clinical outcomes, which need to be carefully addressed. Firstly, as cost function 

theory suggests, costs may be associated with high levels of within-cluster correlation due to 

large heterogeneity across clusters in resource use, unit costs, efficiency and patient case-mix 

(Raikou et aI., 2000; Morris et aI., 2007). The anticipation of relatively large heterogeneity 
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further encourages the use of methods that appropriately account for the clustering. Secondly, 

methodological guidelines for CEA emphasise that individual costs are often correlated with 

individual outcomes (Willan and Sriggs, 2006). Hence, methods that allow for the joint 

estimation of endpoints while addressing the clustering are required. Thirdly, unlike clinical 

outcomes, cost data are typically highly skewed, with heavy right tails and bounded by zero. In 

these circumstances, assuming Normality may not be plausible, and using methods that allow for 

an appropriate joint distribution of costs and outcomes may be preferred (O'Hagan and Stevens, 

2001; Nixon and Thompson, 2005). 

This thesis will undertake a conceptual review to examine methodological guidance in the 

medical statistics and health economics literature. The review will identify key methodological 

issues that analytical methods need to address in CEA that use CRTs. These criteria will then be 

used for two main purposes. Firstly they will help identify appropriate statistical methods for the 

empirical investigations, and secondly to inform the development of a checklist for critical 

appraisal of CEA that use data from cluster trials. 

The empirical investigation will include simulations and case-studies that draw on the concepts 

from the methods review. The simulations will allow a clear assessment of the statistical 

performance of each method against the true parameter values, for example the true incremental 

net benefit (INS). Methods will be compared across realistic scenarios, which will be informed 

by the conceptual review, a systematic review of the applied literature and available case-studies. 

Analysis of the case-studies will provide insights on whether the empirical differences between 

methods identified in the simulations can lead to differences in the cost-effectiveness results used 

to inform policy making. 
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1.5 Overall contribution of the thesis 

This thesis develops specific criteria for critical appraisal ofCEA that use CRTs. General 

checklists and methodological guidelines for CEA do not include specific criteria for critically 

appraising CEA that use cluster trials (Of man et aI., 2003; Drummond et aI., 2005; Evers et aI., 

2005; Philips et aI., 2006). In addition, it is unknown whether applied CEAs that use CRTs use 

appropriate statistical methods. Research paper 1 addresses these gaps in the literature by 

identifying fundamental statistical issues that need to be addressed in CEA that use CRTs. These 

criteria are used to help develop a checklist for critical appraisal of published CEAs that use 

CRTs. This checklist is applied in a systematic review of the applied literature and finds that 

applied CEAs that use CRTs often fail to use appropriate statistical methods. In particular, the 

review shows that most studies fail to account for the clustering or correlation between costs and 

health outcomes, possibly resulting in misleading inferences about the cost-effectiveness of 

health care interventions. The new checklist aims to complement more generic checklists and 

methodological guidance for CEA (Drummond et aI., 2005; Evers et aI., 2005). 

This thesis provides the first comparison of the relative performance of alternative statistical 

methods for CEA that use CRTs. Research paper 2 considers seemingly unrelated regression 

(SUR) and generalised estimating equations (GEE), both with robust standard errors, multilevel 

models (MLMs), and a non-parametric two-stage bootstrap (TSB). This paper firstly shows that 

methods which fail to account for key statistical issues such as clustering perform poorly, for 

example confidence interval (Cl) coverage is below 0.9, for a nominal level of 0.95. The paper 

considers SUR and GEEs with robust variance estimators for the first time in this context, and 
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finds that these may be inappropriate when there are few clusters. Unlike relatively complex 

MLMs proposed previously for CEA that use CRTs (Grieve et aI., 2010), the simulation study 

demonstrates that a simpler bivariate Normal MLM performed well across the scenarios 

considered. In addition, the paper extends the non-parametric TSB considered in previous studies 

(Flynn and Peters, 2004; 2005b) to recognise circumstances where there are unequal cluster 

sizes, and shows that this method performs relatively well throughout. 

Research paper 3 extends seminal work on covariate adjustment in CEA (Willan et aI., 2004; 

Nixon and Thompson, 2005) by investigating the relative merits of SUR, MLMs and non­

parametric TSB to address systematic covariate imbalance in CEA that use CRTs. This paper 

demonstrates that failing to adjust for confounding, even if small, leads to biased results. Unlike 

research paper 2, this study finds that SUR with robust variance may not perform well even with 

a moderate number of clusters. To handle the covariate adjustment, this paper extends the 

original TSB routine (Davison and Hinkley, 1997) and combines it with SUR to adjust for the 

covariates. This new TSB approach provides unbiased estimates, but it gives poor Cl coverage 

across the scenarios considered. The paper shows that MLMs provide good Cl coverage (close to 

nominal level), even in scenarios with few clusters, unequal cluster sizes and highly skewed data. 

The thesis concludes that methods which fail to account for important statistical issues in CEA 

that use CRTs can provide misleading cost-effectiveness results. It raises awareness of the poor 

methods used in practice, and provides methodological insights on the relative merits of 

alternative methods for CEA that use CRTs across a large number of realistic scenarios. The 

three research papers presented here provide methods for improving CEA that use CRTs to help 

future studies provide a stronger basis for decision making. 
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1.6 Structure of the thesis 

The remaining chapters of the thesis are as follows. Chapter 2 describes the conceptual review, 

which identifies the key statistical issues in CEA that use CRTs and assesses the appropriateness 

of prospective statistical methods against those criteria. This chapter then considers each of the 

statistical methods judged appropriate for CEA that use CRTs. Finally, the chapter examines the 

plausibility of the assumptions underlying each of these statistical methods and discusses their 

anticipated performance across different circumstances, in order to help inform the empirical 

investigation. 

Chapters 3 to 5 comprise the three research papers, each prefaced with a brief preamble. 

Research paper 1 develops a checklist for critical appraisal ofthe methodological quality of 

CEAs that use CRTs, and applies this checklist in a systematic review of published studies. 

Research paper 2 uses simulations and a case study to assess the relative performance of 

alternative statistical methods for CEA that use cluster trials in setting where baseline covariates 

are balanced. Research paper 3 evaluates the performance of alternative methods for covariate 

adjustment in CEA that use CRTs. The paper considers a motivating example with covariate 

imbalance and conducts further simulations to compare the methods in circumstances where 

systematic imbalances in baseline covariates can arise. 

Chapter 6 provides an overview of the main findings and contributions of the thesis. The chapter 

then acknowledges the limitations of the thesis, and identifies potential areas for future research. 

This chapter concludes by highlighting the implications ofthe findings for applied researchers 

and policy making. 
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1.7 Contribution of the candidate to the thesis 

The work conducted on this thesis was linked to a research grant funded by the Medical 

Research Council (MRC) methodology programme on improving analytical methods for CEA 

that use CRTs. Research paper 1 was designed by the candidate in collaboration with his 

supervisor Richard Grieve, and conducted independently from the project. In this study, the 

candidate carried out a conceptual review to develop a checklist for critical appraisal of CEA that 

use CRTs, applied this checklist in a systematic review of applied studies, and interpreted the 

findings. 

The research question for research paper 2 was linked to the MRC project and identified by the 

principal investigator, Richard Grieve. The candidate led the design of the simulations conducted 

for this paper while visiting the Modelling and Simulation group at Novartis Pharma 

(Switzerland), and was guided by Richard Nixon, researcher at Novartis and collaborator on the 

MRC project. Edmond Ng, the lecturer in statistics working on the project, helped the candidate 

write code for implementing the statistical methods. The candidate led on the interpretation of 

the results. 

The candidate led on the conception of the research question for research paper 3 in 

collaboration with his supervisor, Richard Grieve. The candidate was responsible for designing 

the simulations, writing additional code to implement the statistical methods, and conducting and 

interpreting the analyses. 

Other grantholders in the MRC project (lames Carpenter and Simon Thompson) also contributed 

to the analyses and interpretation of the empirical findings. Further details on more specific 
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contributions of the candidate and co-authors are described in the cover page of each research 

paper. The remaining chapters of the thesis are the sole work of the candidate. 

References 

Anderson, T. W. 1984. An introduction to multivariate statistical analysis, New York; 
Chichester, Wiley. 

Bachmann, M. 0., Fairall, L., Clark, A. & Mugford, M. 2007. Methods for analyzing cost 
effectiveness data from cluster randomized trials. Cost Eff Resour Alloc, 5, 12. 

Barber, 1. A. & Thompson, S. G. 1998. Analysis and interpretation of cost data in randomised 
controlled trials: review of published studies. British Medical Journal, 317, 1195-1200. 

Barber, J. A. & Thompson, S. G. 2000. Analysis of cost data in randomized trials: an application 
of the non-parametric bootstrap. Statistics in Medicine, 19, 3219-3236. 

Briggs, A. & Gray, A. 1998. The distribution of health care costs and their statistical analysis for 
economic evaluation. J Health Serv Res Policy, 3,233-45. 

Briggs, A. H., O'Brien, B. 1. & Blackhouse, G. 2002. Thinking outside the box: Recent advances 
in the analysis and presentation of uncertainty in cost-effectiveness studies. Annual 
Review of Public Health, 23, 377-401. 

Cadth 2006. Guidelines for the Economic Evaluation of Health Tecnologies: Canada. 3rd Ed. 
Canadian Agency for Drugs and Technologies in Health. , Ottawa, Canada. 

Campbell, M. J., Donner, A. & Klar, N. 2007. Developments in cluster randomized trials and 
Statistics in Medicine. Stat Med, 26,2-19. 

Carter, B. 2010. Cluster size variability and imbalance in cluster randomized controlled trials. 
Stat Med, 29,2984-93. 

Claxton, K. 2008. Exploring uncertainty in cost-effectiveness analysis. Pharmacoeconomics, 26, 
781-798. 

Cornfield, 1. 1978. Randomization by Group - Formal Analysis. American Journal of 
Epidemiology, 108, 100-102. 

Davison, A. C. & Hinkley, D. V. 1997. Bootstrap methods and their application, Cambridge, 
UK, Cambridge University Press. 

Donner, A. 1998. Some aspects of the design and analysis of cluster randomization trials. 
Applied Statistics, 47, 95-113. 

Donner, A. & Klar, N. 2000. Design and analysis of cluster randomization trials in health 
research, London, UK, Hodder Arnold Publishers. 

Drummond, M., Sculpher, M., Torrance, G. W., O'brien, B. J. & Stoddart, G. L. 2005. Methods 
for the Economic Evaluation of Health Care Programmes Oxford, UK, Oxford 
University Press. 

Efron, B. & Tibshirani, R. 1993. An introduction to Bootstrap, New York, US, Chapman and 
Hall. 

27 



Eldridge, S., Ashby, D., Bennett, c., Wakelin, M. & Feder, G. 2008. Internal and external 
validity of cluster randomised trials: systematic review of recent trials. British Medical 
Journal, 336, 876-880. 

Eldridge, S. M., Ashby, D., Feder, G. S., Rudnicka, A. R. & Ukoumunne, O. C. 2004. Lessons 
for cluster randomized trials in the twenty-first century: a systematic review of trials in 
primary care. Clin Trials, I, 80-90. 

Evers, S., Goossens, M., De Vet, H., Van Tulder, M. & Ament, A. 2005. Criteria list for 
assessment of methodological quality of economic evaluations: Consensus on Health 
Economic Criteria. Int J Technol Assess Health Care, 21,240-5. 

Flynn, T. & Peters, T. 2005a. Conceptual issues in the analysis of cost data within cluster 
randomized trials. J Health Serv Res Policy, 10, 97-102. 

Flynn, T. N. & Peters, T. J. 2004. Use of the bootstrap in analysing cost data from cluster 
randomised trials: some simulation results. Bmc Health Services Research, 4,33-43. 

Flynn, T. N. & Peters, T. J. 2005b. Cluster randomized trials: Another problem for cost­
effectiveness ratios. International Journal o/Technology Assessment in Health Care, 21, 
403-409. 

Glick, H. A., Doshi, J. A., Sonnad, S. S. & Polsky, D. 2007. Economic Evaluation in Clinical 
Trials, Oxford, UK, Oxford University Press. 

Gold, M. R. 1996. Cost-effectiveness in health and medicine, New York, Oxford University 
Press. 

Goldstein, H. 2003. Multi/evel Statistical Models, Oxford, UK, Oxford University Press. 
Greene, W. H. 2003. Econometric analysis, Upper Saddle River, NJ., Great Britain, Prentice 

Hall. 
Grieve, R., Nixon, R. & Thompson, S. G. 2010. Bayesian hierarchical models for cost­

effectiveness analyses that use data from cluster randomized trials. Med Decis Making, 
30, 163-75. 

Grieve, R., Nixon, R., Thompson, S. G. & Cairns, J. 2007. Multilevel models for estimating 
incremental net benefits in multinational studies. Health Econ, 16, 815-26. 

Grieve, R., Nixon, R., Thompson, S. G. & Normand, C. 2005. Using multilevel models for 
assessing the variability of multinational resource use and cost data. Health Econ, 14, 
185-96. 

Hahn, S., Puffer, S., Torgerson, D. 1. & Watson, 1. 2005. Methodological bias in cluster 
randomised trials. BMC Med Res Methodol, 5, 10. 

Hayes, R. & Moulton, L. 2009. Cluster Randomised Trials, Boca Raton - Florida, US, CRC 
Press, Taylor & Francis Group. 

Hoch, 1. S., Briggs, A. H. & Willan, A. R. 2002. Something old, something new, something 
borrowed, something blue: a framework for the marriage of health econometrics and 
cost-effectiveness analysis. Health Econ, 11,415-30. 

Iqwig 2009. Methods for assessment of the relation of Benefits to Costs in the German Statutory 
Health Care System. Institute for Quality and Efficiency in Health Care., Cologne, 
Germany. 

Jackson, C. H., Thompson, S. G. & Sharples, L. D. 2009. Accounting for uncertainty in health 
economic decision models by using model averaging. Journal of the Royal Statistical 
Society Series a-Statistics in Society, 172, 383-404. 

28 



Jones, A. & Rice, N. 2011. Econometric Evaluation of Health Policies. In: GLIED, S. & SMITH, 
P. (eds.) The Oxford handbook of health economics. Oxford, UK: Oxfors University 
Press. 

Klar, N. & Donner, A. 2001. Current and future challenges in the design and analysis of cluster 
randomization trials. Stat Med, 20,3729-40. 

Leyland, A. & Goldstein, H. 200 I. Multi/evel Modelling of Health Statistics, Chichester, UK, 
John Wiley & Sons, Ltd. 

Manca, A., Rice, N., Sculpher, M. 1. & Briggs, A. H. 2005. Assessing generalisability by 
location in trial-based cost-effectiveness analysis: the use of multilevel models. Health 
Econ, 14,471-85. 

Manning, W. 2006. Dealing with skewed data on costs and expenditures. In: JONES, A. (ed.) 
The EIgar Companion to Health Economics. Cheltenham, UK: Edward EIgar. 

Mccullagh, P. & Nelder, J. A. 1989. Generalized linear models, London, Chapman and Hall. 
Mihaylova, B., Briggs, A., O'H<agan, A. & Thompson, S. G. 2011. Review of statistical 

methods for analysing healthcare resources and costs. Health Econ, 20,897-916. 
Morris, S., Devlin, N. & Parkin, D. 2007. Economic analysis in health care, Chichester, Wiley. 
Murray, D. M., Hannan, P. J., Wolfinger, R. D., Baker, W. L. & Dwyer, J. H. 1998. Analysis of 

data from group-randomized trials with repeat observations on the same groups. Stat 
Med, 17, 1581-600. 

Nice 2008. Methods for Technology Appraisal. National Institute for Health and Clinical 
Excellence, London, UK. 

Nixon, R. M. & Thompson, S. G. 2005. Methods for incorporating covariate adjustment, 
subgroup analysis and between-centre differences into cost-effectiveness evaluations. 
Health Econ, 14, 1217-29. 

Noble, S. M., Hollingworth, W. & Tilling, K. 20 10. Missing data in trial-based cost-effectiveness 
analysis: the current state of play dagger. Health Econ. 

O'Hagan, A. & Stevens, J. W. 2001. A framework for cost-effectiveness analysis from clinical 
trial data. Health Econ, 10,303-15. 

Of man, J. 1., Sullivan, S. D., Neumann, P. J., Chiou, C. F., Henning, J. M., Wade, S. W. & Hay, 
J. W. 2003. Examining the value and quality of health economic analyses: implications of 
utilizing the QHES. J Manag Care Pharm, 9, 53-61. 

Pbca 2008. Guidelines for preparing submissions to the Pharmaceutical Benefits Advisory 
Committee. Australian Government - Department of Health and Ageing., Camberra, 
Australia. 

Philips, Z., Bojke, L., Sculpher, M., Claxton, K. & Golder, S. 2006. Good practice guidelines for 
decision-analytic modelling in health technology assessment: a review and consolidation 
of quality assessment. Pharmacoeconomics, 24, 355-71. 

Puffer, S., Torgerson, D. & Watson, J. 2003. Evidence for risk of bias in cluster randomised 
trials: review of recent trials published in three general medical journals. BMJ, 327, 785-
9. 

Puffer, S., Torgerson, D. J. & Watson, J. 2005. Cluster randomized controlled trials. J Eval Clin 
Pract, I 1, 479-83. 

Raikou, M., Briggs, A., Gray, A. & Mcguire, A. 2000. Centre-specific or average unit costs in 
multi-centre studies? Some theory and simulation. Health Economics, 9, 191-198. 

Thompson, S. G. & Barber, J. A. 2000. How should cost data in pragmatic randomised trials be 
analysed? British Medical Journal, 320, 1197-1200. 

29 



Timm, N. H. 2002. Multivariate Analysis, New York, US, Springer. 
Ukoumunne, O. C., Gulliford, M. c., Chinn, S., Steme, J. A. & Bumey, P. G. 1999. Methods for 

evaluating area-wide and organisation-based interventions in health and health care: a 
systematic review. Health Technol Assess, 3, iii-92. 

Weinstein, M. C. & Stason, W. B. 1977. Foundations of Cost-Effectiveness Analysis for Health 
and Medical Practices. New England Journal of Medicine, 296, 716-721. 

Willan, A. 2006. Statistical Analysis of cost-effectiveness data from randomised clinical trials. 
Expert Revision Pharmacoeconomics Outcomes Research, 6,337-346. 

Willan, A. & Briggs, A. 2006. Statistical Analysis of cost-effectiveness data, Chichester, UK, 
John Wiley & Sons, Ltd .. 

Willan, A. R., Briggs, A. H. & Hoch, J. S. 2004. Regression methods for covariate adjustment 
and subgroup analysis for non-censored cost-effectiveness data. Health Econ, 13,461-75. 

Willke, R. J., Glick, H. A., Polsky, D. & Schulman, K. 1998. Estimating country-specific cost­
effectiveness from multinational clinical trials. Health Econ, 7,481-93. 

Wooldridge, J. M. 2002. Econometric analysis of cross section and panel data, Cambridge, 
Mass., MIT Press. 

Young, T. A. 2005. Estimating mean total costs in the presence of censoring: a comparative 
assessment of methods. Pharmacoeconomics, 23, 1229-42. 

30 



Chapter 2 

Conceptual review of statistical methods for CEA 

that use CRTs 
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2.1 Introduction 

Statistical methods for CEA that use data from RCTs have received considerable attention in the 

last twenty years. Conceptual ideas from biostatistics, medical statistics and econometrics have 

stimulated the development of methods for CEA (Gold, 1996; Drummond et aI., 2005; Willan 

and Briggs, 2006; Glick et aI., 2007). Despite this methodological progress, commentators have 

identified areas where these studies still use inappropriate methods, and encouraged further 

methods development (Willan, 2006; Glick et aI., 2007). They highlighted that methodological 

flaws in applied studies can hinder their usefulness for policy making (Rennie and Luft, 2000; 

Willan, 2006). It is therefore essential that methods can address the key methodological issues 

faced by CEA when evaluating the cost-effectiveness of health interventions. 

One area where the lack of work on methods has been recognised is in CEA that use CRTs (Klar 

and Donner, 2001; Flynn and Peters, 2005a; Willan, 2006). A few studies (Flynn and Peters, 

2004; Bachmann et aI., 2007; Grieve et aI., 2010) have considered statistical methods for CEA 

that use CRTs such as the two-stage bootstrap (TSB) and multilevel models (MLMs), and 

illustrated their use in practice. However, these studies failed to tackle a number of fundamental 

questions, which this chapter seeks to address: Can these proposed methods address the key 

methodological challenges faced by CEA that use CRTs? Are the assumptions underlying these 

methods satisfied across different circumstances typically observed in CEA that use CRTs? Are 

additional potentially appropriate methods for CEA that use CRTs available? What are the 

anticipated relative merits of alternative methods for CEA that use CRTs? 
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The overall aim of this chapter is, therefore, to identify the key methodological issues faced by 

CEA that use CRTs and appropriate statistical methods that can address these concerns. The 

specific objectives of the chapter are: 

1. To describe the fundamental statistical issues that can arise in CEA that use CRTs 

2. To identify appropriate statistical methods for CEA that use CRTs in settings balanced 

covariates and systematic covariate imbalance 

3. To formulate hypotheses about the relative performance of alternative methods across a 

range of realistic circumstances in CEA that use CRTs. 

To address these objectives, a conceptual review was conducted to gather general 

methodological insights from medical statistics and health economics literature. The review 

covered relevant papers concerning the analysis ofCRTs and economic evaluation alongside 

clinical trials available from 1995 to 2010. A broad search of Medline, Scopus, EconLit and Web 

of Science databases was conducted by combining general search terms such as 'analysis' , 

'methods' and 'models' with 'cluster randomised trials' and 'group randomised trials '. In 

addition, the citations included in these studies were examined to identify further relevant 

methodological publications. Working papers databases such as RePec (Research Papers in 

Economics) and CSSS (Centre for Statistics and Social Sciences) were also considered to cover 

non-published literature. 

This review focused on fundamental issues for statistical analysis in CEA that use CRTs. Other 

aspects of CEA that use cluster trials such as those pertaining to study design, for example, 

sample size calculations, were not reviewed here but were considered in the critical appraisal of 

the applied literature (research paper 1). 
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The next section of this chapter identifies the main statistical issues that need to be addressed in 

CEA that use CRTs. Section 2.3 examines the appropriateness of potential statistical methods 

against the criteria developed in section 2.2. For those methods that are judged appropriate, i.e. 

can meet all criteria, this section critically assesses their underlying assumptions across different 

circumstances in CEA that use CRTs. Section 2.4 critically reviews previous evidence on 

alternative methods considered in the context ofCEA that use data from CRTs. The last section 

discusses the findings of the conceptual review and implications for the empirical investigation. 

2.2 Fundamental statistical issues in CEA that use CRTs 

The first objective ofthe conceptual review was to help identify key methodological concerns in 

CEA that use CRTs. The review combined general insights from biostatistics and medical 

statistics literature together with conceptual ideas from health economics and econometrics, and 

identified four key issues for statistical analysis in CEA that use CRTs: the clustering of 

individuals within clusters; the correlation between costs and health outcomes at individual and 

cluster-level; distributional assumptions for cost and outcome data; and systematic imbalances in 

baseline covariates. These are discussed in greater detail below. 

Firstly, methodological guidelines for the analysis of CRTs (Donner, 1998; Murray et aI., 1998; 

Donner and Klar, 2000; Hayes and Moulton, 2009) highlighted the tendency for patients to be 

more similar in their characteristics and the care they receive within clusters than between 

clusters. This means that individual costs and outcomes within a cluster are anticipated to be 

more homogenous than those in different clusters. In addition, economic theory emphasised that 

economic factors such as unit costs and resource use tend to be relatively heterogeneous across 
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clusters (Ukoumunne et aI., 1999; Klar and Donner, 2001; Flynn and Peters, 2004). For example, 

unit costs in teaching hospitals are typically higher than non-teaching hospitals. Hence, costs 

often exhibit high intra-cluster correlations (lCCst (Campbell et aI., 2005; Flynn and Peters, 

2005a). 

Another important conceptual point that studies need to recognise is that the clustering inherent 

in CRTs is distinct from that in individually-randomised multicentre trials (Donner, 1998; 

Murray et aI., 1998). In multicentre RCTs, the unit of randomisation is the individual and within 

each centre patients receive different treatments. On the other hand, when clusters are 

randomised, individuals within the cluster are allocated to the same treatment group, as described 

in Figure 2.1 below. Analytical methods are required that allow for this specific type of 

clustering, otherwise they can underestimate the statistical uncertainty and produce incorrect 

inferences (Feng et aI., 1996; Donner, 1998; Omar and Thompson, 2000; Spiegelhalter, 2001). In 

addition, when cluster size is correlated with the endpoints, methods that fail to account for 

clustering may provide biased results (Panageas et aI. 2007). 

Secondly, methodological guidance for economic evaluation highlighted that methods developed 

for analysing clinical outcomes in CRTs may not be directly applicable to CEA that use CRTs 

(Klar and Donner, 2001; Flynn and Peters, 2005a), which tend to have additional complexities. A 

key requirement identified in the review was that methods for CEA need to recognise the 

correlation between costs and health outcomes (Briggs et aI., 1999; Hoch et aI., 2002; Willan et 

aI., 2004; Nixon and Thompson, 2005). For example, patients who respond better to treatment 

may have shorter hospital lengths of stay and lower costs, which implies a negative correlation 

4 The degree of clustering is commonly summarised by the intra-cluster correlation coefficient, which indicates the 
proportion of total variance that is at the cluster level. 
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between individual costs and health outcomes. In CEA that use CRTs, correlation between costs 

and outcomes may also occur at the cluster-levels. For example, teaching hospitals are often 

associated with higher quality care and better health outcomes, but also higher mean costs. It is 

therefore important that methods can simultaneously allow for the clustering and correlation 

between endpoints, which poses specific requirements for the choice of analytical method 

(Turner et aI., 2006). 

Figure 2.1: Clustering inherent to 2-arm multicentre RCTs and CRTs. The unit of 

randomisation (in bold) is the individual in multicentre RCTs and the duster (e.g. hospital) 

in CRTs 

a) 11ulticentre RCI b)CRT 

Hospital A HospitulB HospitulA HospitalB 

HospitalC HospitalD HospitalC HospitalD 

• Control group JC Treatment group 

5 The correlation (corr) between costs and outcomes at the cluster-level can be calculated using the covariance (cov) 

and variance (var) of cluster-level mean costs (C) and outcomes (E): corr(C, E) = cov(C, E)I..jvar(C)var(E). 
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Thirdly, the review found that a general concern in CEA is to make appropriate distributional 

assumptions about cost and outcome data (Briggs and Gray, 1998; Briggs et al., 2005; Manning 

et al., 2005; Thompson and Nixon, 2005). Often statistical analyses of clinical outcomes are 

conducted based on the assumption that data are Normally distributed (Lumley et al., 2002; 

Mihaylova et al., 2011). However, as Nester (1996) emphasised in his Applied Statistician's 

Creed: 

"Many methods assume normality (. .. ) simply assert that such assumption is always false. (. .. ) No 

data are normally distributed'. 

In CEA in particular, a plethora of studies has urged analysts to recognise that cost data obtained 

for individual patients in health care interventions are typically highly skewed (Barber and 

Thompson, 2000; O'Hagan and Stevens, 2003; Nixon and Thompson, 2004; Briggs et al., 2005; 

Manning, 2006; Mihaylova et al., 2011). This happens because often a substantial fraction of 

patients are associated with low or zero costs, while a few patients incur very high costs. Hence, 

it is important that methods for CEA that use CRTs make appropriate assumptions about the 

distribution of the data while accounting for both the clustering, and the correlation between 

costs and outcomes. 

Fourthly, while CRTs may be preferred for many public health interventions, commentators have 

drawn attention to the fact that cluster designs can be vulnerable to systematic imbalances in 

both individual-level and cluster-level baseline covariates (Donner and Klar, 2000; Puffer et al., 

2005; Carter, 2010). Those identifying and recruiting individuals into clusters often have 

foreknowledge of both the treatment allocation and patient characteristics, and this may lead to 

systematic imbalance itl baseline characteristics (Puffer et al., 2003; Eldridge et al., 2008). For 
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example, patients with poor prognostic attributes are more likely to enter the control group 

(Hahn et aI., 2005). 

Unblinded CRTs can, therefore, cause systematic imbalances in important prognostic factors, 

potentially leading to biased results. This systematic imbalance is distinct from imbalance due 

simply to chance, which can arise, for example, when small numbers of clusters are randomised. 

Therefore, statistical methods for CEA that use CRTs are required that appropriately adjust for 

any anticipated systematic differences in baseline covariates. Even in settings without systematic 

covariate imbalance, adjusting for important prognostic factors is expected to correct for any 

potential chance imbalances and improve the precision of the estimates by explaining some of 

the sample variability (Senn, 1994; Po cock et aI., 2002). In addition, adjusting for covariates can 

allow the examination of potential subgroup cost-effectiveness effects, which are often of prime 

interest for policy makers (Sculpher, 2008). 

In summary, the conceptual review identified four important statistical issues faced by CEA that 

use CRTs. While it is recognised that analysts may be concerned with other methodological 

issues such as censoring or missing data, these were judged to be beyond the scope of this 

review. This review also focused on CEA that use individual patient data. The findings will help 

assess the appropriateness of different statistical methods for CEA that use CRTs, as presented in 

the next section. In addition, these criteria will inform the development of a checklist for critical 

appraisal of the methods used in practice (research paper 1). 
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2.3 Review of prospective statistical methods for CEA that use CRTs 

Using the criteria developed in the previous section, the conceptual review examined the 

methods literature to identify prospective methods for CEA that use CRTs (for further details on 

the review, please refer to section 2.1). The focus of the review was on statistical methods for 

analysing continuous endpoints, for example costs and QAL Y s, as these are typically of interest 

for health policy makers (Gold, 1996; Drummond et aI., 2005). 

2.3.1 Hypothesis tests and cluster-level methods 

Hypothesis tests are often used for analysing clinical outcomes from CRTs (Donner and Klar, 

2000; Hayes and Moulton, 2009). Conventional methods such as the Wilcoxon rank sum test, 

two-sample t-test and %2 -tests have been extended to account for the clustering inherent to CRTs 

(Donner, 1998; Murray et aI., 1998; Ukoumunne et aI., 1999). However, these standard methods 

exhibit a number of limitations which make them unlikely to meet all the key criteria for CEA 

that use CRTs. For example, they lack the flexibility to recognise the correlation between costs 

and outcomes or to perform covariate adjustment. In addition, previous studies highlighted the 

fact that hypothesis tests often require particular distributional assumptions such as Normality or 

equal variances, which are unlikely to be met, for example in the analysis of cost data (Briggs 

and Gray, 1998; Barber and Thompson, 2000; Mihaylova et aI., 2011). 

Cluster-level methods such as summary statistics combining data from different clusters and 

regression analysis at the cluster-level, can also account for the clustering in CRTs since the units 

of randomisation and analysis are the same. While these approaches are frequently used in 
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practice because they are relatively simple to implement, they do not appear appropriate for CEA 

that use CRTs. The key disadvantage of these methods is the loss of information from collapsing 

all individual observations within the cluster into a single measure (Donner and Klar, 2000). This 

poses specific limitations to the methods, for example in adjusting for individual-level covariates 

or accounting for the correlation between individual costs and outcomes. In addition, cluster-

level analyses are only appropriate for CRTs with many clusters and equal numbers per cluster. 

CRTs with these characteristics are not typically found in practice (Ukoumunne et aI., 1999; 

Eldridge et aI., 2004; Campbell et aI., 2007). 

2.3.2 Net-benefit regression 

One of the main limitations of the methods discussed in the previous section was the lack of 

flexibility to take into account the correlation between costs and outcomes. A simple approach to 

address this correlation is to collapse the endpoints into a single scale before conducting the 

estimation. For example, costs and health outcomes can be combined into a univariate measure 

such as the net monetary benefit (Stinnett and Mullahy, 1998). Then, an estimation method, for 

example linear regression, can be applied to this measure (Hoch et aI., 2002). Let cijand eij 

represent the costs and outcomes for the ith individual in the jth cluster. The individual net 

monetary benefit is determined asNBij = eij'A. -cij' where A. is the willingness-to-pay for an 

additional unit of outcome. A net-benefit regression framework can be described as follows 

(Hoch et aI., 2002): 

IINB = p,NB + pNBt . + NB 
rlJ 0 J J UJ 

(I) 
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where I) is the treatment indicator (1)=0 for control and I for treatment group). The net-benefit is 

assumed to follow a particular distribution with mean p;B and standard deviation a NB. This net-

benefit regression approach can allow for the clustering by incorporating a cluster-level random-

effect (U;B ), which accounts for the between-cluster variation. While different distributions can 

be chosen for the net-benefits, Model (l) does not provide sufficient flexibility to make different 

distributional assumptions for costs versus outcomes. This is an important limitation because 

costs are typically right skewed whereas outcomes, such as QAL Y s, may have distributions that 

are left skewed or Normal (Basu and Manca, 20 11). Making inappropriate assumptions about the 

parametric form of the data may lead to incorrect inferences (Briggs et aI., 2005; Thompson and 

Nixon, 2005; Nixon et aI., 20 10). In addition, while Model (I) can include covariates, it requires 

the set of variables for cost and outcomes to be the same (Willan et aI., 2004). In fact, a 

particular covariate may be expected to be an important prognostic factor for either costs or 

outcomes, but not necessarily for net-benefits. Furthermore, because the net-benefit measure is 

dependent on the ceiling ratio, separate analyses are required for alternative threshold values. 

1.3.3 Seemingly Unrelated Regression (SUR) 

The limitations of net-benefit regression suggest that a univariate framework is unlikely to 

satisfy the key criteria for CEA. A more flexible approach to allow for the correlation between 

costs and outcomes is to consider bivariate modelling (Timm, 2002; Greene, 2003). For example, 

methods guidance often proposes the use of a system of seemingly unrelated regression 

equations (SUR) that allows the error terms to be correlated (Zellner, 1962). The joint estimation 

of the equations makes full use ofthe available information and can lead to gains in statistical 

efficiency when compared with equation-by-equation estimation (Greene, 2003). By allowing 
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the equations to be linked by their error terms, SUR provides a flexible framework for CEA 

because it recognises the correlation between individual costs and outcomes as described in 

Model (2.1): 

(2.1) 

This SUR assumes that the individual error terms (&;,&;) follow a bivariate Normal distribution 

(BVN) with mean zero and variances a; and a; . Correlation between costs and outcomes is 

recognised through the parameter p . The parameters of interest, incremental costs (PlC) and 

incremental outcomes (Pt), can be estimated by ordinary least squares (OLS). SUR can also be 

estimated by generalised least squares (GLS), which provides identical estimates to OLS when 

the same covariates are included for costs and outcomes (Greene, 2003: page 343-344; Willan et 

aI., 2004). When different covariates are included for costs and outcomes, SUR estimation by 

GLS can improve statistical efficiency (precision) compared to OLS. 

To accommodate the clustering, SUR can be extended to include random effects (Singh and 

Ullah, 1974), but this is not readily available in conventional software packages. A practical 

alternative way of addressing the clustering in uncertainty estimates is to report robust standard 

errors (Wooldridge, 2002) (Appendix 2.1 provides further details on the robust variance 

estimator). The main purpose of robust methods is to produce estimators that are not markedly 

affected by departures from the key assumptions of classical statistical methods (Huber, 2004). 

However, a potential concern with using robust methods in CEA that use CRTs is that the 

asymptotic assumptions underlying the robust variance estimation may not be satisfied in CRTs 

with few clusters, particularly when there are unequal numbers per cluster (Donner, 1998; 
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Murray et aI., 1998; Omar and Thompson, 2000). Furthermore, another concern with SUR is 

whether estimates are still unbiased and precise when the model is misspecified, for example, by 

assuming the error terms to be Normally distributed when costs are highly skewed. 

When systematic imbalances are anticipated, covariate adjustment can be easily incorporated in 

Model (2.1). Unlike net-benefit regression, SUR can allow for the set of covariates to differ for 

costs and outcomes, but in Model (2.2) below the same individual ( Xii) and cluster-level (Zj) 

covariates are included for each endpoint: 

Model (2.2) can also incorporate interaction terms, for example, of treatment with a continuous 

individual-level covariate ( xi})' The covariate xi} can be centred on the mean so that ~ and Pt 

are the incremental costs and outcomes, at the covariate mean. 

2.3.4 Generalised Estimating Equations (GEEs) 

An alternative approach commonly advocated to acknowledge the clustering is to use 

population-averaged GEEs (Liang and Zeger, 1986). GEEs offer a flexible extension to 

likelihood-based generalised linear models for analysing correlated data, and have been generally 

used in the analysis ofCRTs (Donner and Klar, 2000; Hardin and Hilbe, 2003; Hayes and 

Moulton, 2009). GEEs can account for clustering by incorporating a working correlation matrix 

which treats the elements that define the within-cluster correlation structure as nuisance 

parameters (Liang and Zeger, 1986). Unlike SUR, GEEs take a marginal rather than a 
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conditional approach, i.e. they estimate marginal effects averaged over the population. 

Commentators argue, however, that for continuous outcomes, marginal and conditional analyses 

provide the same point estimates (Lee and Nelder, 2004). 

Multivariate GEEs have been developed to recognise potential correlation between two or more 

endpoints (Lipsitz et aI., 2009). A bivariate GEE for CEA that use CRTs, with an exchangeable 

correlation matrix can be written as: 

(3.1) 
Ac pc " c= 0+ I t .+& lj J lj 

elj = p; + pttj +&~ 

a a a L 

Where V [ ] is a symmetrical variance-covariance matrix for the jth cluster, with the } ",xrI, 

eTc~e] is the standard variance matrix for costs 
eTe 

and outcomes for the ith individual, and a = [::,:: ::::] , with a being the covariance 

between the individuals i and i ' ( i '# i '), for each end point. Model (3.1) considers an 

exchangeable correlation matrix, which assumes that the level of correlation between the 

different observations within the cluster is the same. However, more complex correlation 

structures could be assumed such as an unstructured matrix which allows for correlations 

amongst different individuals within each cluster to differ. 

While model (3.1) provides a flexible framework to account for the clustering and the correlation 

between costs and outcomes, its implementation can be complex and it is not currently available 
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in standard software packages. A simpler alternative is to consider a GEE model with 

independent estimating equations which stacks costs and outcomes into a single vector but still 

allowing separate, independent estimates of incremental costs and outcomes (Hardin and Hilbe, 

2001; Hardin and Hilbe, 2003). A bivariate GEE model with independent estimating equations 

can be described as, 

(3.2) 

This model structure relies on a general property of population-averaged GEEs, which is that the 

regression parameter estimates are asymptotically consistent, even if the working correlation 

matrix is misspecified (Hardin and Hilbe, 2003). This holds as long as the model, i.e. the 

relationship between the marginal mean and the linear predictor, is correct (Wang and Carey, 

2003). Model (3.2) also provides a flexible framework for covariate adjustment, and can include 

both individual and cluster-level covariates and interaction terms, as described previously for 

SUR. 

Parameter estimates can be obtained by maximum likelihood, assuming that the error terms 

follow Normal distributions, and provide the same point estimates as OLS estimation. Similar to 

SUR, a robust estimator for the variance can be considered to allow for clustering when reporting 

uncertainty (see Appendix 2.1 for further details). A key distinction between the SUR (2.1) and 

GEEs (3.2) is that the former accounts for correlation between costs and outcomes within the 

estimation of the parameters of interest. With GEEs, it is recommended that the correlation is 

acknowledged after the parameter estimation in the robust variance estimator (Williams, 2000; 

Hardin and Hilbe, 2003: page 30:-31). 
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However, these GEEs share some common concerns with SUR: Firstly, parameter estimates are 

obtained without acknowledging the clustering. Secondly, the asymptotic properties required for 

the robust variance estimation may also not be satisfied when there are few clusters (Feng et aI., 

1996; Bellamy et aI., 2000; Ukoumunne and Thompson, 2001). Thirdly, correlation between 

costs and outcomes at the individual and cluster levels are not separately identified. Fourthly, 

GEEs considered here also assume that both costs and outcomes are Normally distributed. 

2.3.5 Multi/evel models (MLMs) 

The hierarchical nature ofmultilevel models (MLMs) provides a suitable approach for analysing 

clustered data (Goldstein, 2003), and they have been recommended for the analysis ofCRTs 

(Omar and Thompson, 2000; Spiegelhalter, 2001; Turner et aI., 2001). Unlike the two previous 

approaches, MLMs explicitly take into account the clustering in the parameter estimation, by 

including additional cluster-level random effects (u; ,U;) as illustrated in Model (4l: 

Cij - dist(J1~,a;) 

eij - dist(J1;,a;) 
(4) 

6 When costs and outcomes are assumed to follow a bivariate Normal distribution, model (4) naturally extends the 
SUR model (2.1) as: 
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These random effects are typically assumed to have a joint Normal distribution, with mean zero 

and cluster-level variances r; and r; (Spiegelhalter, 2001; Turner et aI., 2007), but different 

specifications can be assumed (Pinheiro et aI., 2001). An advantage of these bivariate MLMs 

over applying a univariate MLM in net-benefit regression is that they can allow for distinct 

distributions for costs versus outcomes, with means J.l~, J.l~ and variances a;, a-; . For example, 

it may be reasonable to assume that QAL Y s follow a Normal distribution while allowing for 

more skewed distributions for costs. Unlike SUR and GEEs, individual-level (p ) and cluster­

level ('I' ) correlation between costs and outcomes are separately identified and incorporated in 

the parameter estimation. In model (4) the coefficients Pt and PIe still represent incremental costs 

and outcomes, after allowing for clustering. As with SUR and GEEs, MLMs can include 

individual and cluster-level covariates, and handle a different set of covariates for cost versus 

outcome equations. 

MLMs can be estimated and interpreted from a frequentist perspective, generally implemented 

with maximum likelihood (ML), or within a Bayesian approach typically using Markov Chain 

Monte Carlo (MCMC) methods. Current software options for MCMC estimation afford a wider 

choice of distributional assumptions (O'Hagan et aI., 2001; Nixon and Thompson, 2005). This 

can be an important advantage when, for example, cost data are highly skewed, and hence 

incorporating more complex distributions, such as Gamma and Lognormal, may be more 

plausible. Another strength of the Bayesian framework is that it readily enables more complex 

MLMs to be implemented, for instance, model (4) could be extended to consider different 

variances across clusters. It is, however, unclear whether MLMs, using either a ML or MCMC 

approach, converge when CRTs have few individuals per cluster (Rodriguez and Goldman, 
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1995; Austin, 201 Oa). An additional concern is that although MLMs do not require the same set 

of asymptotic assumptions to be met as in previous studies, the estimation of the variance­

covariance structure does still rely on asymptotic properties (Leyland and Goldstein, 2001). 

2.3.6 The non-parametric two-stage bootstrap (TSB) 

By allowing for a range of alternative parametric distributions of the data, MLMs can potentially 

make appropriate distributional assumptions. However, the usefulness of assuming a specific 

parametric distribution relies on the assumption that the chosen form is the true distribution of 

the data, otherwise results can be misleading (O'Hagan and Stevens, 2003; Nixon and 

Thompson, 2004; Briggs et aI., 2005; Thompson and Nixon, 2005). Non-parametric methods 

such as the bootstrap can avoid making distributional assumptions, and hence can offer great 

potential in this context (Barber and Thompson, 2000; Flynn and Peters, 2004; Nixon et aI., 

2010). The conceptual review identified two non-parametric bootstrap approaches potentially 

appropriate for CEA that use CRTs. The first procedure is the cluster bootstrap, where only 

clusters are resampled and individuals within the cluster are kept intact (Davison and Hinkley, 

1997: page 100). Although this approach can recognise the clustering, it is associated with 

similar limitations to other cluster-level methods described in section 2.3.1. A more promising 

non-parametric bootstrap approach proposed for clustered data involves resampling clusters as 

well as individuals within the resampled clusters. This non-parametric two-stage bootstrap 

(TSB) (Davison and Hinkley, 1997: page 100) can accommodate the correlation between costs 

and outcomes by sampling these endpoints in pairs. Davison and Hinkley proposed two distinct 

ways of implementing the TSB, which are discussed below. 
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TSE without shrinkage correction 

One TSB approach proposed by Davison and Hinkley (1997) requires resampling clusters, and 

then individuals within each resampled cluster, both with replacement. The resultant bootstrap 

samples are then used to calculate the statistics of interest, for example incremental net benefits 

(INB) and corresponding confidence intervals (Cls) (Nixon et aI., 2010). This approach has been 

considered for CEA that use CRTs (Bachmann et aI., 2007), and the full routine is given in 

Algorithm 1 below. 

Algorithm 1: Original TSB routine without the shrinkage correction (adapted/rom Davison 

and Hinkley, 1997: page 100-101) 

Suppose we have Mkclusters randomised to treatment (k=2) and control (k=I) groups, with nj 

individuals within each clusterj. 

I. For i in 1 to nj (individuals in cluster j). 

2. Forj in I to Mk (clusters in treatment group k). 

3. For k in I to 2 (treatment groups). 

4. Randomly sample (with replacement) Mk clusters in treatment group k. 

5. Within each of the resampled clusters, randomly select (with replacement) nj pairs of 
individual costs and outcomes to preserve the correlation between them. 

6. Compute the parameter of interest, INB = A * ~outcome- ~cost, where 

~cost = c,reatment - Ccontrol • and likewise for outcomes. 

7. Replicate steps 4 to 6 R times to obtain an estimate ofthe bootstrap distribution of the 
parameter of interest. 

S. Compute the bias-corrected and accelerated Cls around the mean INB. 

However. unless the CRT has many clusters and individuals per cluster. this routine can 

overestimate the variance. Resampling at the second stage is likely to double-count the within-
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cluster variance because the estimated cluster means from resampling at the first stage already 

incorporate both within and between-cluster variability (Davison and Hinkley, 1997: page 101; 

Flynn and Peters, 2005a). For example, resampling hospital-level mean costs already recognises 

the within-hospital homogeneity and further resampling of any deviations from the hospital-level 

mean costs (individual costs) will overestimate the within-hospital variance. 

TSB with shrinkage correction 

To provide an accurate estimation of the variance, Davison and Hinkley recommend a 'shrinkage 

estimator' (Davison and Hinkley, 1997: page 102). This procedure requires that shrunken cluster 

means and standardised individual residuals are calculated before any resampling, as described 

in steps 4 and 5 of Algorithm 2. Two-stage resampling (with replacement) is then performed by 

firstly resampling the shrunken cluster means, and secondly, resampling the standardised 

individual level residuals across all clusters (steps 6 and 7). Shrunken cluster mean costs and 

outcomes as well as standardised residual costs and outcomes, are resampled in pairs to preserve 

the individual and cluster-level correlation between costs and outcomes. Bootstrap data sets are 

constructed by combining the resampled shrunken cluster means and individual level residuals 

(step 8). As above, the parameter of interest (e.g. the INB) can be taken as average across the 

bootstrap samples and uncertainty can be reported by calculating bias-corrected and accelerated 

95% els. 
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Algorithm 2: Original TSB routine with the shrinkage correction (adapted/rom Davison and 

Hinkley, 1997: page 102) 

Suppose we have Mk clusters randomised to treatment (k=2) and control (k= 1) groups, with n} 

individuals within each cluster j. 

1. For i in 1 to n} (individuals in cluster j). 

2. Forj in 1 to Mk (clusters in treatment k). 

3. For k in 1 to 2 (treatments). 

4. Calculate shrunken cluster means, (xf and xj), for costs and outcomes7
• 

5. Calculate standardized individual-level residuals, (Zcost,ii and Zoutcome,ji), for costs and 

outcomes8
• 

6. Randomly sample (with replacement) Mk pairs of cluster means, (x;ost,j' and X~utcome,j')' 

from the shrunken cluster means calculated in step 4. 

7 Randomly sample (with replacement) L~kl nJ.' pairs of re si duals, (z* t" and z* t ,,), • J = cos ,1 ou come,l 

where i '=1... Lr~l ni" from the standardized residuals calculated in step 5. Note that the 

hierarchical structure is ignored in this step. 

8. Re-construct the sample, (Y;ost,j'i' 'Y~utcome,j'i')' by adding the shrunken cluster means 

from step 6 and the standardized residuals from step 7. For example, Y;ost,j'( = x;ost,j' + 
z* t" where i' = 1 ... n

J
,' and likewise for outcomes; call it a "synthetic" sample. cos ,1 

9. Repeat steps 4 to 8 for each stratum (treatment) and stack these 'synthetic' samples into a 

single bootstrap sample. 

10. Compute the parameter of interest, for example, INB = ~cost x A. - ~outcome, where 

~cost = Y;ost,treatment - Y;ost,control' and likewise for ~outcome. 

11. Replicate steps 6 to 10 R times to form a bootstrap distribution of INB, i.e. a distribution 

constructed by R replicates ofINB. 

12. Compute the bias-corrected and accelerated Cls around the mean INB. 

7 £~ = cy-C + (1 - c)YJ~ where c is given by (1 - C)2 = 2!.!L - sSw ; SSw= within-sum of squares and SSB 
) .. Mk-1 b(b-l)SSB 

= between-sums of squares, b = average cluster size (a formulation akin to the harmonic mean is used here; see page 
412 in Smeeth and Ng (2002). These are similarly calculated for effect and separately so for the two strata 
(treatments). Note that j' is the new cluster identifier (=1 to Mk) which may contain repeats ofthe old cluster 
identifier,}. All these calculations take place prior to sampling. 

8 Zcost,ji = )'eo~st,J. ,where Yeost,jt is the observed cost for the i-th individual in c1usterj. These are similarly 

calculated for effect and separately for the two strata (treatments). Again, all these calculations take place prior to 
sampling. 
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A common concern with any ofthe bootstrap routines described above is that they still rely on 

asymptotic properties and it is unclear whether these are satisfied with few clusters, particularly 

when data are not Nonnally distributed (O'Hagan and Stevens, 2003; Thompson and Nixon, 

2005). Moreover, Davison and Hinkley's original TSB routines were only proposed for clusters 

with equal sizes (Davison and Hinkley, 1997; Flynn and Peters, 2005a), which may make the 

method inappropriate for CEA that use CRTs with unequal numbers per cluster. 

Algorithm 2 extends the original TSB routine to recognise the variability in cluster size by 

considering a 'harmonic' mean of the cluster size distribution (see further details in step 4). This 

measure has been shown to provide a more accurate estimate of the sample mean than the 

arithmetic mean or median, when cluster sizes are highly variable (Donner and Koval, 1980; 

Donner and Klar, 2000: page 9). 

TSB combined with SURfor covariate adjustment 

When covariate adjustment is required, the TSB routine described in Algorithm 2 is insufficient. 

Davison and Hinkley's original resampling approach of combining each shrunken cluster mean 

with individual residuals drawn across all clusters (steps 7 and 8), does not preserve a 

relationship between the cluster mean and the covariate information within the cluster. To avoid 

this problem, Algorithm 2 needs to be modified so that the bootstrap samples respect the cluster 

membership. 
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Algorithm 3: New routine combing the extended TSB with SUR/or covariate adjustment 

Suppose we have Mkclusters randomised to treatment (k=2) and control (k=I) groups, with n 
individuals within each cluster j. 

1. For i in I to nj (individuals in cluster j). 
2. Forj in 1 to Mk (clusters in treatment k). 
3. For k in 1 to 2 (treatments). 
4. Calculate shrunken cluster means, (xf and xj), for costs and outcomes9

• 

5. Calculate standardized individual-level residuals, (Zcost,ii and Zoutcome,ii), for costs and 
\0 outcomes . 

6. Randomly sample (with replacement) Mt pairs of cluster means, (x;ost'/ and X~utcome./) 
from the shrunken cluster means calculated in step 4. 

7. Within each resampled cluster, randomly sample (with replacement) Lt!1 n/ pairs of 

residuals, (z;ost.i' and Z~utcome.i')' where i '=1 ... Lt!1 n/. from the standardized residuals 

calculated in step 5. 
8. Re-construct the sample, (Y;ost,/i' ,Y~utcome./()' by adding the shrunken cluster means 

from step 6 and the standardized residuals from step 7. For example, for costs Y· t .... = cos '/ l 

x;ost./ + z;ost.i' where ( = 1 ... nj" and likewise for outcomes; call it a "synthetic" 

sample. 
9. Incorporate the covariate wj'i' into each synthetic sample as follows: (Y;ost,j'( + wj'i' 

,Y~utcome,/( + wj'()' Note that the set of covariates can differ for cost and outcomes. 
10. Repeat steps 4 to 9 for each treatment arm and stack these 'synthetic' samples into a 

single bootstrap sample. 
11. Replicate steps 6 to 10 R times to construct R bootstrap samples. 
12. Apply SUR without robust SE to each bootstrap sample generated in step 11, to estimate 

mean and SE of incremental costs(~C), incremental outcomes (~) and the covariance 
(~C, ~), adjusted for potential confounders. 

13. Calculate the parameter of interest, e.g. INB, by averaging SUR estimates across the R 
replications: INB = a:~=16£r * A. - gr)/R, where A. is the willingness-to-pay for a 
QALY gain. 

14. Applying the CL T, CIs for INB can be constructed as INB ± 1.965£ (I N B) where, 

SE(lNB) = J[L~=1 SE(~r)2}..2 + SE(ACr)2 - 2}..cov(~r'~r)]/R 

9 x~ = cy-C + (1 - c)Y
J
c where c is given by (1 - C)2 = ~ - sSw ; SS",= within-sum of squares and SSB 

J .. Mk-1 b(b-l)SSB 

= between-sums of squares, b = average cluster size (a formulation akin to the harmonic mean is used here; see page 
412 in Smeeth and Ng (2002). These are similarly calculated for effect and separately so for the two strata 
(treatments). Note that j' is the new cluster identifier (=1 to Mk) which may contain repeats of the old cluster 
identifier,j. All these calculations take place prior to sampling. 

10 Zcost.il = YcosSst./. , where Ycost.it is the observed cost for the i-th individual in clusterj. These are similarly 

calculated for effect and separately for the two strata (treatments). Again, all these calculations take place prior to 
sampling. 
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For example, patient-level prognostic factors may determine the cluster-level mean outcome, 

and hence, individual residuals within a cluster need to be combined with the corresponding 

cluster-level mean. In the modified algorithm (see Algorithm 3), shrunken cluster means and 

standardised residuals are calculated as before, but each cluster mean is now combined with 

individual residuals drawn from that same cluster (see steps 7 and 8). Covariate adjustment 

can be conducted by applying, for example, the SUR model (2.2)11 to each bootstrap sample. 

Adjusted incremental costs and outcomes and INHs can then be averaged across the bootstrap 

replicates (steps 12-14). 

The SUR reports SEs for each incremental measure, without applying the robust estimator, 

because any clustering is expected to be recognised by the TSH routine. The standard errors 

are also averaged across the bootstrap replicates, to report 95% CIs. A potential concern is 

that while TSH avoids distributional assumptions, the SUR adjustment assumes that cost and 

outcome data in the bootstrap replicates are from bivariate Normal distributions. 

2.3.7 Summary 

The conceptual review identified four potentially appropriate methods for CEA that use 

CRTs: SUR and GEEs, both with robust standard errors, MLMs and the TSH. Each of these 

methods can address the main methodological challenges in CEA that use CRTs, as 

summarised in Table 2.1. This means that a method that accounts only for clustering in 

univariate analyses of costs and outcomes (e.g. hypothesis tests), or addresses correlation but 

not clustering (e.g. SUR without robust SE), will be insufficient. Methods are required that 

allow for both clustering and correlation in the estimation of incremental cost-effectiveness. 

11 GEEs or MLMs could also be combined with TSB to adjust for the covariates. 
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Methods also need to make appropriate distributional assumptions and address the covariate 

imbalance. For example, TSB alone is not able to adjust for potential confounders when these 

are anticipated. These criteria will provide an important basis for developing a checklist for 

critically appraising CEA that use data from cluster trials (Research paper 1). 

2.3.8 Generating hypotheses about alternative appropriate methods/or CEA that use CRTs 

After having identified prospective statistical methods for CEA that use CRTs, the review 

critically assessed the assumptions underlying these methods to pose hypotheses for the 

empirical investigation (Chapters 4 and 5). 

Table 2.1: The ability of each method to address the main statistical issues in CEA that 

useCRTs 

Account for Flexibility to 
Address 

the clustering 
Recognise the allow 

systematic correlation different of individuals 
between costs distributions imbalances in 

within and outcomes? for costs and baseline 
clusters? 

outcomes? covariates? 

Hypothesis tests & 
cluster-level Yes No No No 

methods 

Net-benefit 
Yes Yes No No 

regression 

SURt Yes Yes Yes Yes 

GEEst Yes Yes Yes Yes 

MLMs Yes Yes Yes Yes 

TSB Yes Yes Yes No 

TSB+SUR'" Yes Yes Yes Yes 

'with robust SE; ·other parametric methods such as GEEs and MLMs could also be combined with TSB. 
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In ideal settings, for example, with large numbers of clusters and individuals per cluster, equal 

cluster sizes, Normally distributed data and balanced baseline covariates, each method is 

anticipated to perform well. However, across more realistic circumstances typically found in 

CRTs, such as few clusters, unequal numbers per cluster and skewed data, differences in 

performance across methods may be expected. Table 2.2 summarises the anticipated 

appropriateness of the alternative methods across different circumstances in CEA that use 

CR Ts. The ensuing empirical investigations will test the hypotheses raised for each of the 

settings, and consider combinations of settings judged a priori to differentiate the 

performance amongst methods. 

One of the key features ofCRTs is that they tend to have a small number of clusters 

(Ukoumunne et al., 1999; Eldridge et aI., 2004). In these circumstances, the GEEs considered 

may be less appropriate because the asymptotics required for the robust estimation of the 

variance may not be satisfied (Feng et aI., 1996; Bellamy et aI., 2000; Ukoumunne and 

Thompson, 2001). Although less evidence is avai.1able on SUR using robust standard errors, 

this method is anticipated to have similar limitations (Wooldridge, 2002: pages 149-152). 

While TSB make a different set of asymptotic assumptions to the SUR and GEEs with robust 

variance estimators, it still works asymptotically (Davison and Hinkley, 1997: pages 100-

102). That is, the bootstrap distribution approximates the true sampling distribution as the 

original data increases, which may be less conceivable with few clusters (O'Hagan and 

Stevens, 2003). 

When there are few individuals per cluster, previous studies suggested that MLMs may fail to 

converge because there is little within-cluster information for the estimation of the cluster­

level random effects (Rodriguez and Goldman, 1995). When the MLMs are estimated by 

MCMC, the parameter estimates may be sensitive to prior information on the random effects 

(Browne and Draper, 2006; Austin, 2010b). 
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The non-parametric TSB identified in this review has been considered for CRTs with equal 

cluster sizes (Flynn and Peters, 2005b; Bachmann et aI., 2007). It is unclear how this method 

performs in circumstances where the CRTs have unequal cluster sizes. 

In settings where costs are highly skewed, the non-parametric TSB may be preferred to 

parametric approaches as it avoids distributional assumptions (Barber and Thompson, 2000; 

Flynn and Peters, 2004). SUR and GEEs assume that data are Normally distributed which 

may not be plausible under these circumstances. MLMs can allow for skewed distributions 

such as Gamma and Lognormal, and have been illustrated for CEA usually within a Bayesian 

framework (Grieve et aI., 2005; Nixon and Thompson, 2005). However, the true shape of cost 

data is still unknown and misspecification of its parametric form may lead to misleading 

results (Nixon and Thompson, 2004; Briggs et aI., 2005; Thompson and Nixon, 2005). 

ICCs can be high, particularly for cost data (Campbell et aI., 2005), and this may challenge 

SUR and GEEs with robust SE. In general, robust estimation is expected to provide unbiased, 

imprecise estimates when the deviation from the classical assumption (Le., that error terms are 

identical and independently distributed) is relatively small (Huber, 2004). This is unlikely to 

be the case with high ICCs. An additional concern with both SUR and GEEs considered here 

is that the correlation between costs and outcomes at the individual and cluster levels are not 

separately identified. 

In CEA that use CRTs where covariate imbalance is anticipated, the methods described in 

Table 2.2 should be able to adjust for potential confounders, otherwise they may provide 

biased estimates. The conceptual review suggested that parametric approaches, for example 

MLMs or SUR, may have more potential for addressing the systematic imbalances in CEA 

that use CRT as they can adjust for covariates that are anticipated to be confounders (Willan 

et aI., 2004; Nixon and Thompson, 2005). 
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Table 2.2: Anticipated appropriateness of methods proposed for CEA that use CRTs 

across typical drcumstances 

Characteristics of the CRT SUR GEEs MLMs 

Small number of clusters L L H 

Few individuals per cluster H H M 

Unequal cluster sizes H H H 

Highly skewed costs M M M 

High ICCs M M H 

Correlation between costs and outcomes M M H 

Note: H: Highly appropriate; M: Moderately appropriate; L: Less appropriate 

TSB 

M 

H 

M 

H 

H 

H 

Non-parametric bootstrap methods such as the TSB have typically less appeal for covariate 

adjustment (Barber and Thompson, 2000; Dinh and Zhou, 2006; Nixon et aI., 2010). One way 

of addressing this is to combine TSB with one of the parametric methods reviewed in Table 

2.2 to adjust for the covariates. While all adjusted methods are expected to provide unbiased 

results, they may differ in the estimation of the uncertainty across the circumstances presented 

in Table 2.2. For example, covariate-adjusted SUR and GEEs (with robust SE) are still 

anticipated to be less appropriate in settings with few clusters. Also, the combination ofTSB 

with a parametric method, for example SUR, means that this method will not be distribution­

free. However, the combination of the TSB with SUR may improve the precision of the 

estimates, compared with SUR alone, if there are few clusters. 
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2.4 Current evidence on methods proposed for CEA that use CRTs 

Informed by the criteria developed above, this section critically reviews current evidence on 

alternative methods proposed for CEA that use CRTs. The focus of the review was 

methodological, and did not include applied studies. The search strategy was similar to that 

described in section 2.1. The results are summarised in Table 2.3. 

The only study that used simulations, compared two alternative non-parametric bootstrap 

approaches for CEA that use CRTs (Flynn and Peters, 2005b). This paper assessed the 

performance of the cluster bootstrap and the TSB across different numbers of clusters, 

individuals per cluster and levels of correlation between costs and outcomes. The study shows 

that the cluster bootstrap performs poorly across most scenarios and seems an inappropriate 

method for CEA that use CRTs. The TSB provides better Cl coverage than the cluster 

bootstrap, but the results vary according to the number of clusters and level of correlation 

between costs and outcomes. This study has an important limitation in that the bootstrap 

approaches considered here were only appropriate for CRTs with equal cluster sizes, a feature 

that is not typical in practice (Eldridge et aI., 2004; Eldridge et al., 2006; Carter, 2010). In 

addition, this paper did not compare the performance of bootstrapping with that of alternative 

methods. 

Another study compared the TSB with MLMs and net-benefit regression, but did not draw on 

simulations (Bachmann et aI., 2007). Using a single case-study with relatively ideal 

characteristics such as moderate numbers of clusters, equal cluster sizes and low ICCs, 

Bachmann and colleagues compared these methods to estimate incremental cost-effectiveness 

ratios (lCER). However, the study found little differences across methods and no general 

methodological insights could be provided across more realistic circumstances. Another 
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limitation of the study was that the TSB considered did not apply the recommended shrinkage 

estimator (Davison and Hinkley, 1997: page 102). 

Grieve and others (2010) proposed a range ofMLMs for CEA that use CRTs. Firstly, they 

compared these MLMs with a method that did not account for clustering, simple OLS 

regression. The authors used a case study to illustrate that failing to take clustering into 

account can lead to different cost-effectiveness results. This study concluded that MLMs can 

provide a flexible framework for CEA that use CRTs but did not compare them to other 

potentially appropriate methods. 

Table 2.3: Evidence comparing appropriate statistical methods for CEA that use CRTs 

Fl~nn and Peters Bachmann et al. Grieve et al. 2010 2005 2007 

Methods considered 
Cluster bootstrap and MLMs, net-benefit 

MLMsandOLS 
TSB regression and TSB 

Type of study Simulations Case study Case study 

Parameter of ICER ICER INB 
interest 

Clusters: 12 and 24 Clusters: 40 Clusters: 70 
Cluster sizes: 25 and Cluster sizes: 50 Cluster sizes: 1 to 77 
50 ICCs ICCs of costs and ICCs of costs and 

Main CRT features of costs and outcomes: outcomes: 0.01 outcomes: 0.01 and 
considered 0.01 and 0.1 Costs: Costs: moderate 0.18 Costs: moderate 

moderate skew skew Covariate skew Covariate 
Covariate imbalance: imbalance: not imbalance: not 
not considered assessed assessed 

Cluster bootstrap 
Methods provide 

Bayesian MLMs seems 
performs worse than to provide a flexible 

Key insights TSB, particularly with 
similar cost-

framework for CEA 
few clusters 

effectiveness results 
that use CRTs 

Only compares Case-study with 
ideal characteristics Does not compare 

Major limitations 
bootstrap methods; 

not representative of MLMs to other 
considers equal cluster 

typical CEA that use potentially appropriate 
sizes 

CRTs methods 

60 



This review of current evidence on alternative methods in the context ofCEA that use CRTs 

identifies important gaps in the literature that this thesis aims to address. Firstly, there is no 

evidence about the methodological quality of published CEA that use CRTs. Secondly, 

further methodological work is required to assess the relative merits of alternative methods 

that are potentially appropriate for CEA that use CRTs. This requires simulation work that 

can test the performance of the methods across a wide range of circumstances, combined with 

case-studies to compare the methods in practice. Simulation studies will be grounded in the 

findings of the conceptual review and the results of the applied literature review. Thirdly, 

none of the studies reviewed in Table 2.3 considered SUR or GEEs, identified in the 

conceptual review as potentially appropriate methods for CEA that use CRTs. Fourthly, no 

attention has been devoted to statistical methods that can address systematic covariate 

imbalance in CEA that use CRTs and an assessment of alternative approaches is therefore 

warranted. 

2.5 Discussion 

The purpose of this chapter is threefold: to describe the fundamental statistical issues that can 

arise in CEA that use CRTs; to identify appropriate statistical methods for CEA that use 

CRTs in settings both where baseline covariates are balanced and where there is systematic 

covariate imbalance; and to formulate hypotheses about the relative performance of 

alternative methods across a range of realistic circumstances in CEA that use CRTs. The 

conceptual review identified four key requirements that statistical methods need to meet in 

CEA that use CRTs: to account for the clustering inherent in CRTs; to recognise the 

correlation between costs and outcomes; to make appropriate assumptions about the 

distribution of cost and outcome data; and to adjust for potential systematic imbalance in 
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baseline covariates. The second stage of the review found four statistical methods that were 

judged to satisfy these criteria for CEA that use CRTs: SUR and GEEs, both with robust 

standard errors; MLMs and a non-parametric TSB. For simplicity, all these methods were 

described for CEA that use CRTs with two treatment arms but the methods extend to 

evaluations with more than two randomised groups. SUR, GEEs and MLMs took the common 

approach of assuming linear additive effects for both cost and outcomes (O'Hagan and 

Stevens, 2001; Willan et aI., 2004; Nixon and Thompson, 2005). 

Under ideal circumstances, all these prospective methods are anticipated to be highly 

appropriate and perform well. However, the relative performance of alternative methods may 

differ across the more realistic circumstances seen in practice. The review highlighted that the 

proposed robust variance estimators for the SUR and GEEs rely on asymptotic properties 

which may not be satisfied in CRTs with few clusters (Feng et aI., 1996; Bellamy et aI., 2000; 

Ukoumunne and Thompson, 2001). Another important assumption made by these methods is 

that residuals are Normally distributed, which may not be reasonable for skewed cost data 

(Nixon and Thompson, 2005; Thompson and Nixon, 2005). MLMs are expected to perform 

better with few clusters (Omar and Thompson, 2000) but they still make asymptotic 

assumptions (Leyland and Goldstein, 2001). In addition, these methods may experience some 

convergence issues with few individuals per cluster, and also make distributional 

assumptions. The TSB is expected to perform reasonably well with few clusters (Flynn and 

Peters, 2004) and avoids parametric assumptions, and therefore, is appealing in settings with 

highly skewed costs (Barber and Thompson, 2000). However, TSB routines have previously 

only been proposed for CRTs with equal numbers per cluster (Davison and Hinkley, 1997) 

and it is unclear how they perform with unequal cluster sizes. Moreover, this method seems 

less appealing for covariate adjustment, and a' combination with a parametric method is 

required in these circumstances. 
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Although the review was intended to be general and comprehensive, it had some limitations. 

Firstly, it focused on statistical methods for continuous endpoints as these are often more 

informative for policy making (Neumann et aI., 2009). Health outcomes may assume other 

forms such as binary or count, but these were judged to be outside the scope of this review. 

Secondly, the review did not consider all potential statistical issues that can arise in CEA that 

use CRTs. For example, methods were not compared across circumstances where costs or 

outcomes are subject to censoring or missingness. Even when censoring and missing data are 

completely at random, i.e. not associated with any variables, ignoring these issues may lead to 

inconsistent results (Willan et aI., 2002; Briggs et aI., 2003). However, methods proposed 

here could be extended to address censoring or missing data. For example, when data are 

censored, Kaplan Meier (Lin et aI., 1997) and inverse probability weighting (Bang and 

Tsiatis, 2000) estimators could be used with, say MLMs and SUR (Lin, 2003; Willan et aI., 

2005; Liu et aI., 2007). With missing data, it is usually assumed that the data are missing at 

random, i.e. conditional on observed variables. Here, a common approach is to use multiple 

imputation to handle the missing values (Rubin, 1987). Then, different approaches for 

imputation can be combined with any of the methods identified in the review (Briggs et al., 

2003; Diggle et aI., 2007; Lambert et aI., 2008). 

Thirdly, the review identified other approaches that can help address systematic covariate 

imbalance in CEA that use CRTs when this is anticipated to be of concern. For example, to 

help balance observed baseline characteristics between treatment groups, propensity score 

matching could be applied (Rosenbaum and Rubin, 1983). Then, any of the methods 

identified above for covariate adjustment such as MLMs and SUR could be used after the 

propensity score matching to correct for any residual bias (Ho et aI., 2007; Abadie and 

Imbens, 2011) and to address clustering and correlation. In circumstances where unobserved 

confounders are anticipated, methods such as instrumental variables estimation (Angrist et al., 
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1996; Polsky and Basu, 2006) may be required to fully adjust for both observed (overt) and 

unobserved (hidden) confounding. However, these approaches rely on the availability of a 

plausible instrument, which may not be realistic in practice. 

This conceptual review provides important methodological underpinnings for the empirical 

work that will be reported in the ensuing chapters. Firstly, the review provides important 

conceptual insights to help construct specific criteria for critical appraisal of the 

methodological quality of CEAs that use CRTs (research paper 1). These criteria will 

supplement existing generic checklists that cover more general aspects of the design and 

interpretation of CEAs. Secondly, the review identified appropriate statistical methods for 

CEA that use CRT to be considered for the empirical investigations (research papers 2 and 3). 

The empirical investigation will consider simulations and case studies to assess the relative 

performance of alternative methods. This can help provide more general insights on the use of 

different methods across different circumstances. Thirdly, the review raised a number of 

hypotheses about the anticipated relative merits of alternative statistical methods across 

different settings. A priori reasoning will help identify key scenarios in which the 

performances of alternative method are expected to differ and where the empirical 

investigation should focus. 

This review concludes that CEA that use CRTs can place a number of specific requirements 

on statistical methods. Analytical methods are available to address these challenges but there 

is little evidence about their relative merits across the complex settings typically observed in 

CEA that use CRTs. The subsequent chapters provide methods for CEA that use cluster trials 

to help address the gaps in the literature identified in this chapter. 
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Appendix 2.1: Robust estimators of the variance for SUR and GEEs 

SUR 

Let the Model (A.l) below be a generalisation of the SUR model (2.1), described in section 

2.3.3 above, for costs (cif) and outcomes (elf) for the ith individual in thejth cluster. 

c 
cij = liJ) +wo +WI ZI.ij +W2Z2.ij + ... WkZk,ij +&ij 

(A.l) 
eij = liet) + Bo + 01 w1.ij + O2 W2.ij + ... Ok Wk.ij + &~ 

where tj is the treatment indicator (tj =0 for control and 1 for treatment group) as above. 

Z .. Z2 .. ""Z/c .. and W1 id W2 i;""W/c i; are the k covariates for costs and outcomes, respectively. 
1.1f'.1f .1) .,., ., 

The error tenns (:;) are independent and identically distributed (LLd.) with mean (~) and 

Model (A. 1 ) for N individual costs and outcomes can be written as a system of seemingly 

unrelated regression equations (Greene, 2003; Willan et aI., 2004) as 

y =XP+&, y=(:) p = ( ; ) & = ( :: ) (A.2) 
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The vector of parameters of interest (P) can be estimated by feasible GLS (Greene, 2003: 

chap. 14) as, /JGlS = (X' (l ® i;-I )Xrl X' (l ® i;-I)y, where I is the identity matrix of 

dimension N. The standard Huber-White sandwich estimator of the variance, which allows for 

heteroskedastic (non-identical) error terms (Wooldridge, 2002: chap. 7), can be determined as 

(A.3) 

However, this estimator assumes that the N individual observations are independent. In eRTs, 

individuals are nested within clusters, and individual observations are no longer independent. 

A modified (cluster-robust) sandwich estimator of the variance ( ~) that allows for the 

clustering have been proposed as follows (Davidson and MacKinnon, 1993, chap. 6): 

(A.4) 

Where Ne is the total number of clusters and ej = L,;~I X;i:-1i; , with nj being the total number 

of individuals in the jth cluster. This modified sandwich estimator relies on the assumption 

that the clusters are independent. 

GEEs 

Let Model (A. 1 ) also be a generalisation of GEE Model (3.2) described in the main methods 

section. Similarly to SUR, let Model (A. 1) be written as a system of estimating equations as 

above (A.2). The log-likelihood function can be described as I(P,y I X) = lnf(y I X;P). The 

parameters of interest (P ) can be obtained by maximizing the likelihood function, i.e. 
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satisfying the following condition,BML = Ol(P,y I X)/ ap = O. The standard sandwich estimator 

in this context can be written as (Liang and Zeger, 1986; Zeger et aI., 1988): 

(A.5) 

where Vi = a/(.)/ ap is the score statistic for the ith individual. As with SUR, this generic 

sandwich estimator of the variance needs to be modified to allow for the fact that individuals 

may be correlated within clusters, and hence the individual-level scores (V ij ) are no longer 

independent. A cluster-robust sandwich estimator for GEEs using independent estimation 

equations can be given by: 

(A.6) 

Here, 'V ij is the score statistic for the ith individual in the jth cluster, Ne is the total nwnber of 

clusters, and nj is the total number of individuals in the jth cluster. This estimation of the 

variance addresses the potential dependence structure of the observations within clusters and 

it has been shown to be an unbiased estimator for data correlated within clusters in a general 

setting (Williams, 2000; Hardin and Hilbe, 2003: pag. 30-31; Skrondal and Rabe-Hesketh, 

2004: pag. 260). In addition, this cluster-robust estimator of the variance can be scaled by 

(N /Ne-1) for use with small samples (Hardin and Hilbe, 2003, pag. 31). 
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Chapter 3 

Checklist for critical appraisal of CEA that use 

CRTs 
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3.1 Preamble to research paper 1 

In the previous chapter, the conceptual review identified key methodological issues that need 

to be addressed in CEA that use CRTs. Using these criteria, the review then assessed the 

appropriateness of potential methods for CEA that use CR Ts. While a number of statistical 

methods identified in the literature were judged potentially appropriate for CEA that use 

CRTs, it is unclear whether these methods are implemented in practice. General checklists 

and methodological guidelines have been proposed to appraise the methodological standards 

ofCEA studies (Drummond et aI., 2005, Evers et aI., 2005, Ramsey et aI., 2005b). However, 

these generic checklists do not include sufficient criteria to assess the quality of the methods 

used in applied CEAs that use CRTs. 

Research paper 1 aims to fill these gaps in the literature by developing a new checklist for 

critical appraisal ofCEA that use CRTs. The development of this checklist is informed by the 

conceptual review (Chapter 2) and includes criteria on key methodological issues in CEA that 

use CRTs, not covered in more general checklists. Methodological considerations from a 

panel of experts of different areas such as medical statistics, health economics and 

epidemiology are also integrated in the development of the checklist. For example, in addition 

to the key requirements identified in the conceptual review, it was judged important to 

consider whether the studies have recognised the need for sample size calculations to 

incorporate any clustering anticipated in costs and health outcomes (Campbell et aI., 2005, 

Donner, 1998, Ukoumunne et aI., 1999, Murray et aI., 2004). Conversely, the checklist does 

not include one element raised in the conceptual review which is on whether CEA that use 

CRTs address any systematic imbalance in baseline covariates. 

The checklist is applied in a review of applied literature, which follows the key 

recommendations of recently published guidelines for good quality systematic reviews 

(Moher et aI., 2009b). The methodological quality of the studies identified in the review is 
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critically appraised using both the new checklist and a more general checklist for CEA 

(Drummond et aI., 2005: page 30). To help the reviewer judge whether or not a paper meets 

the criteria of the new checklist, this paper provides a methodological guideline (Appendix 

3.1). Findings from the review will also help inform the subsequent empirical investigations 

comparing the performance of alternative methods for CEA that use CR Ts (chapters 4 and 5). 
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3.2. Research paper 1 

Statistical methods for cost-effectiveness analyses that use data from cluster randomised 

trials: a systematic review and checklist for critical appraisal. 

Manuel Gomes MSc!, Richard Grieve PhD!, Richard Nixon PhD2
, W. J. Edmunds PhD3 

!Department of Health Services Research and Policy, London School of Hygiene and Tropical 
Medicine, London, UK. 
2 Modeling and Simulation Group, Novartis Pharma AG, Basel, Switzerland. 
3 Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical 
Medicine, London, UK. 

Status: Published in Medical Decision Making (2012),32 (1): 209-220. 

Contributions: The candidate designed the research question and developed the checklist in 

collaboration with RG. The candidate conducted the systematic literature review and applied 

the checklist to the studies reviewed. RN contributed to the development of the checklist and 

the accompanying methodological guidance. JE also contributed to the design of the checklist 

and interpretation of the results. The candidate wrote the first draft of the manuscript. He 

managed each round of comments and suggestions from co-authors in collaboration with RG. 

All authors read and approved the final draft prior to journal submission and inclusion in the 

dissertation. 

The candidate( The supervisor 

76 



Abstract 

Introduction: The best data for cost-effectiveness analysis (CEA) of group-level 

interventions often come from cluster randomised trials (CRTs), where randomisation is by 

cluster, for example the hospital attended, not by individual. Methods for these CEA need to 

recognise both the correlation between costs and outcomes, and that these data may be 

dependent on the cluster. General checklists and methodological guidance for critically 

appraising CEA fail to address these issues. This paper develops a new checklist and applies it 

in a systematic review ofCEAs that use CRTs. 

Methods: We developed a checklist for CEA that use CRTs, informed by a conceptual review 

of statistical methods. This checklist included criteria such as whether the analysis allowed for 

both clustering and the correlation between individuals' costs and outcomes. We undertook a 

systematic literature review of full economic evaluations that Used CRTs. The quality of 

studies was assessed with the new checklist and by the 'Drummond checklist'. 

Results: We identified 62 papers that met the inclusion criteria. On average, studies satisfied 

nine out of the ten criteria for the Drummond checklist, but only 20% of criteria for the new 

checklist. More than 40% of papers adopted statistical methods that completely ignored 

clustering, and 75% disregarded any correlation between costs and outcomes. Only four 

studies employed appropriate statistical methods that allowed for both clustering and 

correlation. 

Conclusions: Most economic evaluations that use data from CRrs ignored clustering or 

correlation. Statistical methods that address these issues are available, and their use should be 

encouraged. The new checklist can supplement generic CEA guidelines and highlight where 

research practice can be improved. 
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Introduction 

Policy-makers worldwide require economic evaluations to help decide which health care 

technologies to provide (NICE, 2008, CADTH, 2006, PBCA, 2008, IQWIG, 2009). 

Economic evaluations are now also used to help identify which public health interventions are 

priorities (NICE, 2009), and to evaluate different ways of organising health services (Grieve 

et al. 2007, Hutchings et al . 2009) . Methods for the economic evaluation of health care 

programmes are relatively well established and encourage the use of data from randomised 

controlled trials (RCTs), where patients are individually randomised to alternative 

interventions (Drummond et aI., 2005, Glick et aI., 2007, Gold, 1996, Willan and Briggs, 

2006). However, for the evaluation of group-level interventions, a cluster randomised trial 

(CRT) may be preferred. Here the unit of random is at ion is the 'cluster', for example the 

hospital or primary-care physician, not the individual. A cluster design may be chosen 

because the intervention operates at a group rather than an individual level (e.g. changing 

incentives for providers), or if there is a high risk of ' 'contamination" amongst the 

individuals within clusters (e.g. evaluating different advertising strategies to encourage 

smoking cessation). 

A fundamental issue in CR Ts is that individuals within a cluster are likely to be relatively 

similar in their characteristics and the care they receive, compared to individuals in different 

clusters. Individual outcomes or costs within each cluster may therefore be more similar to 

each other than outcomes or costs from a different cluster. General methodological guidance 

for CRTs strongly encourages researchers to recognise this clustering in both the design and 

the analysis of these studies (Donner and Klar, 2000, Donner and Klar, 2004, Hayes and 

Moulton, 2009, Klar and Donner, 2001, Murray et aI., 2004, Ukoumunne et aI., 1999). 

Methods that accommodate clustering in the analysis of clinical outcomes are relatively well-
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established in the medical statistics literature (Campbell et aI., 2007, Omar and Thompson, 

2000, Spiegelhalter, 2001, Turner et aI., 2001). 

Cost-effectiveness analysis (CEA) that use data from CRTs can face particular 

methodological challenges. These studies require methods that address clustering in both 

costs and outcomes, recognise the correlation between individual and cluster-level costs and 

outcomes (Briggs and O'Brien, 2001, Hoch et aI., 2002, Nixon and Thompson, 2005, Willan 

et aI., 2004), and make appropriate assumptions about the distribution of these endpoints 

(Mihaylova et aI., 2010, Nixon and Thompson, 2004, Thompson and Nixon, 2005). Statistical 

methods for CEA that use CRTs have been proposed (Bachmann et aI., 2007, Flynn and 

Peters, 2005, Grieve et aI., 2010), but it is unknown whether suitable methods are used in 

practice; no previous paper has reviewed the methodological quality of these studies. This is a 

potential concern, because as a reanalysis of a CRT -based CEA demonstrated (Bachmann et 

aI., 2007, Flynn and Peters, 2005, Grieve et aI., 2010), use of methods that ignore clustering 

will underestimate statistical uncertainty and can lead to inaccurate point estimates. These 

methodological concerns face all CEA that use CRTs, whether they use data from a single 

CRT or combine that data with other evidence in a decision model (Philips et aI., 2006). 

General concerns about methodological standards in CEA have encouraged a plethora of 

methodological guidelines and critical appraisal criteria which aim to improve methods and 

reporting transparency (Drummond et aI., 2005, Puffer et aI., 2005, Graves et aI., 2002, 

Hjelmgren et aI., 2001, Ofman et aI., 2003, Philips et aI., 2006, Ramsey et aI., 2005a). 

However, these generic guidelines do not include sufficiently detailed criteria for CEA based 

on CRT and a more specific tool for appraising the quality of these studies is warranted. 
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This paper aims to develop a new checklist for improving methods in CEA that use CRTs, 

and applies these criteria in a systematic review of previous studies. This checklist is not 

intended to replace a generic checklist such as that reported in Drummond et al. (Drummond 

et aI., 2005) that covers important, general issues about the overall design and interpretation 

of a health economic evaluation. Instead, this checklist is proposed for use alongside such 

general checklists. It covers fundamental statistical issues that arise in CEA that use data from 

CRTs. The next section presents the key concepts, the new checklist, and the methods used in 

the systematic literature review. We then present the results of the review, and discuss the 

findings and the implications for future research. 

Methods 

We undertook a conceptual review that had two main purposes. Firstly, to develop criteria for 

assessing the methodological quality of economic evaluations that use data from CRTs, and 

secondly to identify appropriate methods. The review covered relevant methodological 

guidance for CRTs (Campbell et aI., 2007, Donner and Klar, 2000, Donner and Klar, 2004, 

Hayes and Moulton, 2009, Murray et aI., 2004), and statistical methods for CEA (Drummond 

et aI., 2005, Glick et aI., 2007, Gold, 1996, Willan, 2006, Willan and Briggs, 2006) and 

included methodological studies published from 1997 to 2009. 

The findings from this conceptual review highlighted that the form of clustering in CRTs is 

distinct from that in multicentre RCTs where patients are individually randomised, and hence 

alternative methods are required (Kim, 2010). In multicentre RCTs, although data may be 

clustered, individuals within each centre are randomised to different treatments; in a CRT all 

individuals within a cluster receive the same treatment. This specific form of clustering needs 
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to be anticipated, and accounted for in the sample size calculation, otherwise the study will be 

underpowered, i.e. it will have less than the nominal power against the study's alternative 

hypothesis (Donner, 1998, Hayes and Bennett, 1999). The statistical analysis must also 

recognise any clustering, otherwise type I errors will be higher than anticipated and inference 

will underestimate the statistical uncertainty (Feng et aI., 1996, Dmar and Thompson, 2000, 

Ukoumunne et aI., 1999, Ukoumunne and Thompson, 2001). If the CRT has unequal numbers 

per cluster (imbalance) and a relationship between cluster size and the mean endpoints in each 

cluster, methods that ignore clustering can provide biased estimates (Panageas et aI., 2007). 

Methods developed for analysing clinical outcomes in CRTs may not be directly applicable to 

CEA, which tend to have additional complexities (Glick et aI., 2007, Willan and Briggs, 

2006). Firstly, CEA would ideally use CRTs with sample sizes calculated according to 

variances of both costs and effects, with both variances inflated to anticipate clustering (AI et 

aI., 1998, Briggs, 2000). However, in CRTs (like RCTs) sample sizes are usually only 

calculated to detect differences between treatment groups in clinical endpoints rather than 

costs, where variation relative to the mean tends to be relatively large (AI et aI., 1998, Briggs, 

2000, Drummond and D'Brien, 1993, Williamson et aI., 2003). However, a relevant 

recommendation for CEA is that rather than basing power calculations on a single primary 

endpoint, studies should ideally present several sample size calculations and anticipated 

measures of uncertainty for incremental effectiveness, cost and measures of cost-effectiveness 

such as incremental net-benefit (INB) (Bland, 2009). 

Secondly, cost function theory and previous evidence suggests that resource use, unit costs 

and efficiency may vary widely across clusters leading to potentially higher intra-cluster 
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correlation coefficients (ICCS)12 for costs than for outcomes (Campbell et aI., 2005, Grieve et 

aI., 2005, Thompson et aI., 2006). Thirdly, CEA methods need to recognise correlation 

between costs and outcomes at both the individual and cluster level (Hoch et aI., 2002, Nixon 

and Thompson, 2005, O'Hagan et aI., 2001, Willan et aI., 2004). The size or direction of the 

correlation may differ according to whether it is at the individual or the cluster-level. For 

example, within clusters individuals with lower health status may incur higher costs, i.e. at the 

individual level there is a strong negative correlation. By contrast, clusters (e.g. hospitals) that 

have higher mean costs per patient may have on average better outcomes. Fourthly, allowing 

for clustering in separate, univariate estimation of incremental costs and effectiveness is 

insufficient for correct inferences; methods need to simultaneously recognise correlation and 

clustering when reporting incremental cost-effectiveness. For example, using a simple non­

parametric bootstrap approach that recognises correlation but ignores clustering would be 

inadequate. 

Finally, statistical methods including those that acknowledge clustering and correlation 

should make plausible assumptions about the distributions of both costs and outcomes (Briggs 

et aI., 2005, Manning et aI., 2005, Hoffman et aI., 2001, Nixon and Thompson, 2004, 

Thompson and Nixon, 2005). For CEA that use individual-patient data (IPD) from a CRT it is 

important that they carefully consider whether the results are sensitive to alternative 

assumptions about the distribution of the data. Likewise, for CEA that use endpoints from 

CRTs as parameters in a decision model, any probabilistic sensitivity analysis should 

carefully justify the distributional assumptions of these input parameters (Briggs et aI., 2005, 

Mihaylova et aI., 2010). 

12 The ICC reports the proportion of the total variation that is at the cluster rather than the individual level. 
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To summarise, statistical methods in CEA that use CRT should recognise clustering, 

correlation and make plausible distributional assumptions. Studies can be categorised 

according to whether the methods can accommodate clustering and correlation. We define a 

Type D study as one that either completely ignores clustering and correlation, or only allows 

for clustering in one of the univariate measures (e.g. incremental outcome). Type C refers to 

studies that account for correlation between cost and outcomes but ignore clustering using, for 

instance, methods such as seemingly unrelated regression (Willan et aI., 2004) without robust 

standard errors. By contrast, studies may account for clustering in both costs and outcomes, 

but assume they are uncorrelated, for example by estimating incremental costs and outcomes 

with separate multilevel models (type B). Ideally, studies should use a statistical method that 

simultaneously accommodates both clustering and correlation (type A) (Grieve et aI., 2007, 

Nixon and Thompson, 2005). 

The results ofCEA based on a CRT can differ according to these methodological choices. A 

re-analysis (Bachmann et aI., 2007, Flynn and Peters, 2005, Grieve et aI., 2010) ofa CRT 

(Morrell et aI., 2009) reported that if the analytical method recognised both clustering and 

correlation (type A study) the probability that the intervention was cost-effective was 0.52, 

but when the analysis ignored the clustering and correlation, the corresponding probability 

was 0.80 (type D study) (Table 3.1). 

For analyses that acknowledged clustering but ignored correlation (type B), or accommodated 

correlation but not clustering (type C) the probabilities of the intervention being cost-effective 

were 0.51 and 0.79, respectively. This example had low levels of correlation between 

individual costs and outcomes (rho=0.05), but moderate to high levels of clustering (ICCs of 

0.05 for outcomes and 0.18 for costs). Here methods that ignored clustering led to 

underestimation of uncertainty and also provided different point estimates. More generally, it 
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is unclear a priori whether the choice of method matters and hence analytical methods that can 

accommodate both clustering and correlation are required. We describe below several 

methods that can meet the criteria for type A studies. 

Table 3.1: Results from a CEA of a CRT (PoNDER), reanalysed according to whether 

the statistical methods accounted for clustering and correlation 

Clustering and Correlation? 

Neither Correlation Clustering Both 
(Type D) (Type C) (Type B) (Type A) 

Incremental cost (£) -72.0 -72.2 -21.4 -22.31 
(SE) (12.73) (12.64) (28.83) (29.85) 

Incremental QAL Y 0.00192 0.00189 0.00196 0.00177 
(SE) (0.0015) (0.0015) (0.0018) (0.0017) 

Incremental cost per -37 510 -38 175 -10715 -12605 
QALY (£) 

INB (A=£20 000) 110.3 110.0 61.46 57.61 
(SE) (31.93) (32.41) (44.46) (45.83) 

P (Cost-effective) 0.80 0.79 0.51 0.52 

Appropriate statistical methods for CEA that use CRTs 

Methods that recognise simultaneously the clustering and correlation between costs and 

outcomes in estimating incremental cost-effectiveness can either estimate incremental costs 

and effectiveness on their original scales (bivariate approaches) (Nixon and Thompson, 2005) 

or calculate a composite measure of net benefit for each individual (univariate approaches) 

(Hoch et aI., 2002). While either approach can accommodate clustering, the bivariate 

approaches are generally more flexible (Willan et aI., 2004). For example, they can make 
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appropriate distributional assumptions about the distributions of costs as distinct from 

outcomes. The conceptual review identified three main groups of bivariate methods able to 

handle clustering and correlation and make appropriate distributional assumptions: multilevel 

models (MLMs) (Goldstein, 2003, Leyland and Goldstein, 2001), generalised estimating 

equations (GEEs) (Hardin and Hilbe, 2003) and the two-stage non-parametric bootstrap 

(TSB) (Davison and Hinkley, 1997). While bivariate GEEs (Lipsitz et aI., 2009) are a recent 

development, the bootstrap method and bivariate MLMs have been available in the literature 

for some time. 

Multi/evel models (MLMs) 

MLMs can accommodate the hierarchical structure of cost-effectiveness data from CRTs 

(Bachmann et aI., 2007, Grieve et aI., 2010) (modell). Suppose that the costs (c) and effects 

(e) for the ith individual, within the jth cluster, in the kth trial arm, follows a certain 

distribution characterised by its mean (Pi}) and variance «(72). The clustering is explicitly 

recognised by including parameters (u~ , u; ) to account for the cluster-specific random-

effects. The correlation between the individual costs and effects is introduced through the 

parameter '1/. This bivariate model can then report incremental costs (Pt) and effects (Pt) 

after allowing for the clustering and correlation. 

C pc pc c Pi} = 0 + It j + u j 

e pe pet e ( C) Pi} = 0 + I j + U j + '1/ C i} - Pi} (1) 
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Model (1) can be estimated and interpreted with a frequentist approach, generally 

implemented by maximum likelihood (Grieve et aI., 2007), or from a Bayesian perspective 

typically implemented with Markov Chain Monte Carlo (MCMC) methods (Nixon and 

Thompson, 2005). Fitting MLMs by MCMC in WinBUGS offers a particularly flexible 

alternative since the wide range of parametric distributions available can help the study make 

more plausible distributional assumptions than estimating MLMs by maximum likelihood 

(Grieve et aI., 201 0). 

Generalised Estimating Equations (GEEs) 

GEEs are a flexible extension of likelihood-based generalised linear models (GLMs) that can 

accommodate clustered data (Hardin and Hilbe, 2003, Liang and Zeger, 1986), and are often 

used to analyse clinical outcomes in CRTs (Austin, 2007, Campbell et aI., 2007, Turner et aI., 

2007, Ukoumunne and Thompson, 2001). GEEs take a marginal rather than a conditional 

approach, i.e. they estimate marginal effects averaged over the population of individuals. 

Then, the estimated coefficients (e.g. treatment effect) report how the population-averaged 

outcome, rather than one individual's outcome, responds to the covariate (e.g. treatment 

indicator).13 Bivariate GEEs can recognise correlations between dependent endpoints and are 

a potential alternative for CEA that use CRT data (Lipsitz et aI., 2009). These GEEs rely on 

the general property of population-averaged GEE models in that they provide asymptotically 

consistent parameter estimates even if the working correlation matrix is misspecified as long 

as the model, the relationship between the marginal mean and the linear predictor, is correct. 

13 For (clustered) continuous outcomes, marginal and conditional analyses provide the same estimates (Lee and 
Nelder, 2004). 
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When the parametric assumptions underlying MLMs are not satisfied, GEEs can be relatively 

statistically efficient, i.e. they may report smaller variances. By contrast a GEEs may be less 

efficient than MLMs that make plausible parametric assumptions. A further concern with 

GEEs is that the asymptotic assumptions rely on the study having sufficient clusters. 

Methodological guidelines generally recommend that for the GEE to provide reliable 

estimates the CRT should have at least 20 clusters (Austin, 2007, Feng et aI., 1996, Omar and 

Thompson, 2000, Ukoumunne and Thompson, 2001). 

The non-parametric two-stage bootstrap (l'SB) 

The TSB proposed by Davison and Hinkley (Davison and Hinkley, 1997) involves re­

sampling clusters and then individuals (both with replacement). This two-stage process 

accounts for clustering by recognising that the sample variance is partitioned within and 

between clusters. Mean endpoints are then calculated arithmetically across the bootstrap re­

samples. The TSB can account for the correlation between costs and effects by re-sampling 

them in pairs (Briggs et aI., 1999). This algorithm was proposed for balanced clusters (equal 

numbers per cluster) and it is unknown from the methodological literature, whether the TSB 

performs well when the clusters are highly imbalanced. Similarly, it is unclear how the TSB 

performs when the number of clusters is small, in particular when costs are highly skewed 

(Flynn and Peters, 2005, Nixon et aI., 2010, O'Hagan and Stevens, 2003). 

Rather than keeping costs and outcomes on their original scales, net benefits (NB) can be 

calculated for each individual as either net monetary benefits (NMB) or net health benefits 

(NHB) (Hoch et aI., 2002). Clustering can then be recognised in univariate versions of any of 
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the bivariate methods listed above. For example, the MLM in equation (1) could be re-written 

as: 

"NB = RNB + pNB t + NB 
rij Po t j U j 

(2) 

The TSB algorithm described could also be implemented by re-sampling individual net 

benefits rather than pairs of costs and outcomes. A univariate GEE with net benefits as the 

dependent variable could be applied to estimate INBs. However, while these univariate 

models can allow for correlation and clustering, they are more restrictive (Willan, 2006, 

Willan et aI., 2004); for example, these methods do not allow for different covariates to be 

included in the estimation of incremental costs versus effectiveness (Nixon and Thompson, 

2005, Willan et aI., 2004). 

Cluster-level summaries and statistical tests 

Individual-level analyses using parametric or non-parametric statistical tests adjusted for 

clustering (e.g. adjusted two-sample t-test or adjusted X 2 -test), or cluster-level summary 

statistics (e.g. two-sample t-test, Wilcoxon rank swn test) are simple to implement and can be 

appropriate for the analysis of clinical outcomes in CRTs (Donner and Klar, 2000, Hayes and 

Moulton, 2009). However, for CEA these methods lack the flexibility required to address key 

statistical issues such as the correlation between individual costs and outcomes. 
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New checklist for economic evaluations that use data from CRTs 

Based on the conceptual review, we developed specific criteria for assessing how well CEA 

that use CRT address key methodological issues not covered in generic checklists. Provisional 

versions of the checklist were reviewed by a panel with relevant expertise (medical 

statisticians, health economists and epidemiologists). In addition, three researchers not 

involved in developing the checklist, piloted the tool on 15 papers. The final version of the 

checklist is reported in Table 3.2. The checklist gives 'credit' to those CEAs that met 

recommended practice and both used appropriate statistical methods and reported them 

transparently in the paper (Drummond et aI., 2005, NICE, 2008, Philips et aI., 2006, Ramsey 

et aI., 2005a). To ascertain whether a study uses appropriate methods but fails to report them 

in the main CEA paper, the checklist can also be applied using information from additional 

published sources such as the main CRT paper, previous CEA or reports such as those 

published by the National Institute of Health Research Health Technology Assessment 

Programme. 

Question 1 in the checklist assesses whether sample size calculations have incorporated any 

clustering anticipated in outcomes and costs (AI et aI., 1998, Briggs, 2000, Donner, 1998, 

Hayes and Bennett, 1999). Question 2 appraises whether clustering has been recognised in the 

univariate analysis of incremental costs and outcomes (Campbell et aI., 2007, Donner and 

Klar, 2000, Flynn and Peters, 2004, Hayes and Moulton, 2009, Omar and Thompson, 2000, 

Spiegelhalter, 2001). Question 3 assesses whether the statistical methods accounted for the 

correlation between individual costs and effects (Briggs et aI., 1999, Hoch et aI., 2002, Nixon 

and Thompson, 2005, Willan et aI., 2004). Even if a study has allowed for clustering in the 

univariate endpoints (Question 2) or correlation between costs and effects (Question 3), it 

may fail to recognise both clustering and correlation in the joint estimation of costs and 
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effects or in the estimation of INBs. Question 4 considers whether methods allowed 

simultaneously for clustering and correlation when estimating incremental cost-effectiveness 

(Bachmann et aI., 2007, Flynn and Peters, 2005, Grieve et aI., 2010). A study that uses 

methods that meet the criterion for Question 4, would also be assumed to satisfy the criteria 

for Questions 2 and 3. Question 5 considers whether the study has used statistical methods 

which made explicit, appropriate assumptions about the distribution of costs and outcomes 

(Briggs et aI., 2005, Manning et aI., 2005, Mihaylova et aI., 2010, Nixon and Thompson, 

2004, Thompson and Nixon, 2005). 

The checklist can be scored to give a total score for each paper. Each paper can be credited 

with one point for each criterion met (0.5 points for each sub-question), otherwise zero, with 

the scores then summed across the criteria to give a total score out of five. Appendix 3.1 

offers guidance on how to judge whether each criterion is met. 

Systematic Review of CEAs that use CRTs 

We conducted a systematic literature review of economic evaluations that used data from 

CRTs. The review included full economic evaluations (Drummond et aI., 2005) as they 

provide information on the relative tradeoffs between the effect of the intervention on costs 

and outcomes, and hence the most relevant information for health care decision-making 

(Briggs and O'Brien, 2001). The review satisfied the requirements of a systematic literature 

review, according to the updated PRISMA statement (Moher et aI., 2009a). 
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Table 3.2 - Proposed checklist for CEA that use CRTs 

Criteria 

1. Was the cluster design recognised in the sample size calculation for 
(44-47,50): 

a) outcomes? 

b) costs? 

2. Was clustering account for in the univariate analysis of (12, 14, 18-20, 
71): 

a) outcomes? 

b) costs? 

3. Did the statistical analysis account for the correlation between costs 
and outcomes (23-25, 68)? 

4. Did the study account for clustering and correlation in the estimation 
of incremental cost-effectiveness (29-31)? 

5. Did the study explicitly make appropriate assumptions about the 
distribution of (26-28, 55, 56): 

a) outcomes? 

b) costs? 

Search strategy 

Yes D NoD 

Yes D NoD 

Yes D NoD 

Yes D NoD 

YesD NoD 

YesD NoD 

YesDNo D 

YesD NoD 

A consistent and transparent literature search was undertaken over a wide range of databases 

in health economics, public health and medicine used in previous systematic reviews in 

economic evaluation (Briggs, 1999, Philips et aI., 2004, Sculpher et aI., 2004). The databases 

included Health Economic Evaluations Database (HEED), NHS Economic Evaluations 

Database (NEED), EconLit, EMBASE, PubMed, MedLine, Scopus and Web of Science. In 

addition, non-published literature was also searched in working papers databases (e.g. Ideas, 

NetEc, Econ WP A) and Conference Papers Index (CPI). The search strategy combined two 
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sets of free-text tenns related to: 1) "economic evaluations", where tenninology used in 

previous search strategies (Sculpher et aI., 2004, Puffer et aI., 2003) was extended; 2) 'cluster 

randomised trials', where the tenns 'cluster', 'group', 'community', 'clinic', 'centre' or 'area' 

were used to identify CRTs that included any of these tenns in the title or abstract. Appendix 

3.2 describes the search strategy for MedLine, which was slightly modified for the other 

databases. 

Inclusion criteria 

To minimise the risk of missing potentially relevant economic evaluations, the inclusion 

criteria were broad, and the search was conducted on all the available evidence up to the end 

of 2009. Titles and abstracts were screened to check whether the study met the following 

inclusion criteria: 

1 - Study must be undertaken alongside a CRT. 

2 - Paper must compare both cost and outcomes of alternative interventions. 

3 - Results must be reported on an incremental basis. 

4 - The paper must be a cost-effectiveness, cost-utility or cost-benefit analysis, but not a 

cost minimisation or cost-consequence analysis. 

5 -. Paper published in any language but with an abstract in English. 

6 - Several papers that use data from the same CRT can be included provided each of them 

reports results not published elsewhere. 
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The title and abstract screening were conducted by one reviewer. TQ check the reliability of 

the way the inclusion criteria were applied at the abstract screening stage, the abstracts for 

those articles excluded by the first reviewer were re-screened by a second reviewer. At the 

abstract and title screening stage both reviewers were blinded to the authorship. There were 

no disagreements in the articles excluded. Full-text review and data extraction were conducted 

by the first reviewer, who at this stage was not blinded to the authorship. The selected articles 

were critically appraised with the Drummond checklist (Drummond et aI., 2005), chosen 

because it has been commonly used to critically appraise CEA. The economic evaluation 

papers were critically appraised by both reviewers independently, using the cluster-specific 

checklist. The reliability of the checklist was good, the reviewers only disagreed on whether a 

certain criterion was met in 10 studie~ (kappa > 0.9). These disagreements were resolved in 

consultation with a third reviewer. Finally, to consider the possibility that studies that may 

have used appropriate methods but failed to report them in the main CEA paper, we re­

applied the cluster-specific checklist using additional information from further sources, such 

as the accompanying clinical paper or previous economic evaluations of the same study. 

The review reported the overall results of critically appraising the papers with both checklists. 

In addition, several prior hypotheses were considered concerning the context of the studies. 

To assess whether studies had improved since the pUblication of several key papers on 

relevant statistical methods, results were compared over time (post 2005 versus 2005 or 

earlier). Other pre-specified hypotheses were: whether the results differed according to the 

type of journal in which the CEA was published (medical versus other), and according to the 

overall study design (CEA that used IPD versus alternatives such as decision-models that 

used summary inputs from CRTs). 
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Results 

The database search strategy yielded 682 unique articles, 573 of which were excluded after 

screening the title and abstract and a further 47 after full text review. The most common 

reason for exclusion was that studies were either not based on CRTs or were not full 

economic evaluations (Figure 3.1). A total of 62 papers (54 CRTs) satisfied the inclusion 

criteria, and were included in the review (see Appendix 3.3 for a full list). For 45 of the 62 

papers we identified a relevant accompanying article for review such as the main clinical 

paper on the CRT. 

Figure 3.1: Study selection flow diagram 
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The selected papers were published from 1997 to 2009 (inclusive), mainly in medical and 

public health journals (Table 3.3). The economic evaluations covered a wide range of group-

level interventions: alternative ways of organising health care services (e.g. cost-sharing 

incentives programmes), different disease management programs, screening, health care 

promotion strategies, and evaluations of clinical guidelines. More than two thirds of papers 

were based on IPD from the CRT, the remaining studies used summary data in decision-

analytic models or simply reported aggregated, deterministic measures (Appendix 3.4 reports 

additional characteristics of the reviewed studies). 

Table 3.3: Characteristics of the studies included in the review (n=62) 

Characteristic 

Year 
2009 

2008 

2007 

2006 

2005 

Before 2004 

Journal 
Medical 

Health Economics 

Public Health 

Statistics 

Intervention type 
Health services 

Disease management 

Screening 

Prevention 

Guidelines 

Study design 
IPD 

Decision model 

Aggregate analysis 

95 

N(%) 

12 (19.4%) 

5 (8.1%) 

9 (14.5%) 

10 (16.1 %) 

7 (11.3%) 

9 (14.5%) 

36 (58.1 %) 

11 (17.7%) 

14 (22.6%) 

1 (1.6%) 

21 (33.9%) 

16 (25.8%) 

9 (17.7%) 

11 (14.5%) 

6 (8.1 %) 

42 (67.7%) 

8 (12.9%) 

12 (19.4%) 



On average the papers met 90% of the Drummond checklist criteria. When the studies were 

assessed using the cluster-specific checklist, 20% of the criteria were met, the median total 

quality score was lout of 5. Figure 3.2 describes the distributions of the criteria met for each 

checklist. The distribution of the criteria met is heavily left skewed for the Drummond 

checklist and right skewed for the cluster-specific checklist. 

Figure 3.2: Methodological quality of the selected papers using the Drummond checklist 

and our proposed checklist 
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Results from applying the checklists 

Table 3.4 presents disaggregated results according to whether the study met each criterion in 

the checklist, firstly according to the information reported in the main CEA paper and 

secondly according to additional information available from other sources. 

Table 3.4: Results from applying the CRT checklist to a) the economic evaluation paper, 

and b) the economic evaluation and supplementary sources. N(%) of studies that met 

each criterion and total score (n=62) 

Question Economic evaluation 

1. Clustering recognised in the sample size calculation 

for: 

a) outcomes 

b) costs 

2. Clustering accounted for in univariate analysis of 

a) outcomes 

b) costs 

3. Accounted for correlation between costs and 

outcomes 

4. Accounted for clustering and correlation for cost-

effecti vene ss 

5. Appropriate assumptions about the distribution of: 

a) outcomes 

b) costs 

Median (IQR) total score 

Mean (sd) total score 

97 

12 (19.4%) 

0(0%) 

32 (51.6%) 

20 (32.3%) 

16 (25.8%) 

4 (6.5%) 

10 (16.1%) 

17 (27.4%) 

1 (l.5) 

1.1 (1.0) 

Economic evaluation & 
supplementary papers 

38(61.3%) 

7 (11.3%) 

36 (58.1%) 

20 (32.3%) 

16 (25.8%) 

4 (6.5%) 

14 (22.6%) 

20 (32.3%) 

1.25 (l.5) 

1.41 (1.2) 



The results, in general, were similar across these two sets of sources apart from for the 

criterion on the sample size for outcomes; more than 80% of the economic evaluations did not 

report that clustering was recognised in sample size calculations whereas, once supplementary 

papers such as the corresponding clinical paper were considered, less than 40% of studies 

failed this criterion. 

More than 40% of papers completely ignored clustering in the analyses (37% when 

supplementary information was also considered). Almost 70% ignored clustering in the 

univariate analysis of costs and 50% in the univariate analysis of outcomes. Those studies that 

allowed for clustering tended to use multilevel models or GEEs. A total of 37 papers reported 

ICCs for outcomes, 5% suggested that levels of clustering were 'high' (ICC>O.1), 65%, that 

they were 'moderate' (0.01 <ICC<=O.l) and 30% that they were 'low' (ICC<=O.OI). 

More than 70% of papers neglected the correlation between costs and outcomes (Table 3.4). 

We found only four studies (6.5%) that used statistical methods (bivariate MLMs and TSB) 

that allowed for both clustering and correlation in the estimation of incremental costs and 

outcomes, of which three did not make appropriate distributional assumptions. Overall more 

than 60% of studies failed to make appropriate assumptions about the distribution of the costs 

or outcomes. 

Figure 3.3 summarises the main findings. The majority of papers (58%) were defined as 'type 

D' studies as they either ignored both clustering and correlation or neglected correlation and 

only accounted for clustering in one of the outcomes (costs or effects). One fifth of papers 

reported accounting for clustering in the univariate analyses of both costs and effects but did 

not allow for correlation (type B), and 15% recognised correlation but failed to correctly 
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acknowledge the clustering (type C). Only four studies appropriately accounted for both 

clustering and correlation in the estimation of cost and effects (type A). 

Figure 3.3: The proportions of papers that allow for clustering and correlation (n=62) 
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This study makes two important contributions to the methodological literature on CEA. 

Firstly, this paper presents a tool to assess and help improve the quality of economic 

evaluations that use data from CRTs. Secondly, our systematic review finds that although the 

methodological quality of papers was generally good when judged against the Drummond 

checklist, it was poor when assessed against the cluster-specific checklist. The main purpose 

of the cluster-specific checklist is to summarise how well studies address the key statistical 

issues at a particular point in 'time. This purpose is reflected in the way summary scores can 

be calculated with each item given equal weight (Ofman et aI. , 2003). The checklist could be 

used to assess whether studies improve over time, both by comparing the overall score but 

also specific components, such as the proportion of studies that allow for both clustering and 

correlation (type A studies). 
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This review followed previous recommendations for critical appraisal and judged study 

quality not just according to whether studies used appropriate methods but also whether they 

reported them transparently. It is conceivable that the studies used sound methods but did not 

report them in the main economic evaluation paper. We therefore considered additional 

papers in the critical appraisal, particularly, the main clinical paper reporting the CRT results. 

However, we did not find any significant improvement in the quality of the methods, which 

raises the question: were appropriate methods available? 

The conceptual review identified three groups of potential methods (MLMs, GEEs and the 

TSB) that can handle the specific form of clustering present in CRTs, correlation between 

costs and effects and skewed data. Methodological guidance on the use of these methods to 

analyse data from CRTs has been established for some time in the literature (Campbell et aI., 

2007, Davison and Hinkley, 1997, Donner and Klar, 2000, Hayes and Moulton, 2009, Turner 

et aI., 2006). However, these methods have yet to permeate applied health economic 

evaluations that use data from CRTs. Indeed we found no evidence that the use of these 

potentially appropriate methods improved over time. The most flexible way to implement 

these methods is in bivariate approaches that jointly estimate costs and effects. Alternatively, 

net benefits can be calculated for each individual, and then any of the above methods can be 

applied to allow for clustering in the net benefit estimates. While the latter approach lacks 

flexibility, allowing for clustering using any of the approaches outlined would improve on the 

status quo. 

The finding that, in practice most CEAs fail to use or report appropriate statistical methods is 

consistent with previous reviews on design and analysis ofCRTs and statistical methods in 

CEA based on RCTs (Puffer et aI., 2005, Briggs and Gray, 1999, Eldridge et al., 2004, 

Ukoumunne et al., 1999). The poor quality of CEAs based on CRTs may reflect the relative 
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lack of attention given to statistical methods for CEA that use CRTs. Only one study 

(Bachmann et aI., 2007) has attempted to compare alternative statistical methods for CEA 

from CRTs, but the study used a CRT with relatively 'ideal' characteristics, not representative 

of the majority of studies we reviewed. That CRT had many balanced clusters (n=50), and so 

the methodological comparison offered limited generalisability; For example, more than 70% 

of studies in our review had imbalanced clusters. Likewise, Flynn and Peters (Flynn and 

Peters, 2005) only considered the TSB for circumstances when CRTs have balanced clusters. 

A recent study proposed MLMs for economic evaluations of CRTs and suggested that this 

approach led to different cost-effectiveness results compared to methods that ignored 

clustering (Grieve et aI., 2010). However, this study did not consider alternative approaches 

(e.g. GEEs or TSB). Research is currently underway to investigate the relative merits of 

alternative statistical methods for CEA from CRrs across the range of circumstances 

representative of the studies reviewed. 

Although this paper has developed criteria for improving methods for economic evaluations 

that use CRTs and carefully applied them in a systematic literature review, it does have some 

limitations. Firstly, the checklist does not attempt to cover all the statistical issues that can 

arise when designing or analysing an economic evaluation alongside CRrs. For example, it 

does not include questions on whether the study accounted for missing or censored data 

(Manca and Palmer, 2005, Willan et aI., 2005). Indeed the cluster-specific criteria developed 

are intended to complement generic checklists and guidelines for statistical methods in CEA. 

Secondly, although a careful search strategy was undertaken to try and capture all published 

studies that used CRTs, if the article did not include appropriate index terms that enabled us 

to identify a CEA that used data from CRTs, a relevant study could have been omitted. 

However, to minimise this problem the search strategy did include many alternative search 

terms for CEA and CRr. Thirdly, when the reviewers applied the checklists they were not 
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blinded to the paper's title and authorship, and so the possibility for investigator bias cannot 

be ruled out. Fourthly, it is plausible that studies may have used appropriate methods but did 

not report them. Distinguishing between inappropriate methods and inadequate reporting of 

appropriate methods is a general challenge facing researchers who conduct critical appraisals 

(Puffer et aI., 2005, Philips et aI., 2006). Our findings suggest that there is room for 

improvement in both the methods used and the reporting of those methods in CEA that use 

CRTs. 

In conclusion, economic evaluations that use CRTs frequently ignore clustering in the data or 

correlation between costs and outcomes. Statistical methods that address these issues are 

available and their use should be encouraged to help these studies provide a sound basis for 

policy-making. Methodological guidelines for the evaluation of public health interventions 

(NICE, 2009) could incorporate the additional criteria developed. Our proposed checklist can 

help raise awareness of poor research practice, and provide a starting point for improving the 

quality of economic evaluations that use CRTs. The checklist can be updated to recognise 

future methodological developments. 
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Appendix 3.1: Guidance on the methods considered appropriate for a paper 

to meet each criterion of the proposed checklist 

The aim of this guidance is to help the reviewer to judge whether or not a paper meets each 
criterion of the cluster-specific checklist. Although the guidance aims to provide a broad set 
of examples of how each criterion can be met, it does not aim to provide an exhaustive list of 
potential methods. Moreover, this guidance, like the checklist, will need to be updated in 
response to methodological developments. 

Question 1- Was the cluster design recognised in the sample size calculation of: 
a) outcomes? Yes 0 No 0 
b) costs? Yes 0 No 0 

a) The paper would be defined to meet these criteria if it states that the sample size 
calculations were inflated a priori using anticipated measures of the intra-cluster correlation 
coefficient (ICC) for each endpoint (AI et aI., 1998, Briggs, 2000, Drummond and O'Brien, 
1993, Williamson et aI., 2003). Or if the sample size calculations have inflated the anticipated 
Cl widths for each endpoint to allow for the potential ICCs (Bland, 2009). 
b) The ICCs were anticipated to be zero, and adequate justification was provided, for example 
from a pilot study, or previous literature. 

Question 2 - Was clustering accounted for in the univariate analyses of 
a) outcomes? YesD No 0 
b) costs? YesD No 0 

Clustering should be accounted for in the univariate analysis of each endpoint. Methods that 
would be defined as recognising the clustering in the univariate (separate) analyses of 
incremental costs and outcomes are: 

a) Hierarchical, multilevel or random effects models (Goldstein, 2003, Leyland and 
Goldstein, 2001). 
b) Generalised estimating equations (Hardin and Hilbe, 2003). 
c) The non-parametric bootstrap when this is conducted in two-stages (first sample clusters 
and then individuals within the sampled clusters) (Davison and Hinkley, 1997). 
d) Cluster-level summary statistics (e.g. two-sample (-test or Wilcoxon rank sum test), unless 
the numbers per cluster are very small (::55) and the clusters are highly imbalanced (Donner 
and Klar, 1994, Donner and Klar, 2000, Hayes and Moulton, 2009, Ukoumunne and 
Thompson, 2001). 
e) Parametric tests adjusted for clustering (e.g. adjusted two sample (-test) when data are 
normally distributed (Donner and Klar, 1994, Donner and Klar, 2000, Feng et aI., 2001). 
t) For clinical outcomes, but not costs or QAL Vs, non-parametric tests adjusted for clustering 
equivalents (e.g. adjusted Z2 - test) when there are a sufficient large number of clusters (> 10) 
(Donner and Klar, 1994, Donner and Klar, 2000, Feng et aI., 2001). 
g) Robust standard errors (sandwich estimator) as long as the clusters are not highly 
imbalanced. 
b) Method does not allow for clustering but ICC is calculated and reported as zero. 
i) Paper uses method that allows for clustering and correlation (Question 4) would also be 
considered to have satisfied the criterion for this question. 
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Question 3 - Did the statistical analysis account for the correlation between costs and 
outcomes? Yes 0 No 0 

The paper is defined as having met this criterion if it is clear that the statistical method 
accommodated any correlation between individual costs and outcomes. The following 
approaches would be anticipated to meet this criterion: 

a) Bivariate regression analysis, which assumes that costs and outcomes are drawn from a 
bivariate distribution. For example, costs and effects can be modelled jointly in a set of 
regression equations, where the individual-level correlation is introduced parametrically 
(Nixon and Thompson, 2005, Willan et aI., 2004). 
b) Bivariate generalised estimating equations (Lipsitz et aI., 2009). 
c) Non-parametric bootstrap, if it is clearly stated that costs and outcomes were re-sampled in 
pairs, which ensures that the endpoints were drawn from a joint distribution (Efron and 
Tibshirani, 1993). The bootstrap is not considered to allow for correlation in circumstances 
when it is used only to calculate els around the leER (Flynn and Peters, 2005). 
d) A univariate measure of net benefit is calculated for each individual, and then for example 
a regression approach is taken to estimate incremental net benefits (net benefit regression) 
(Ho ch et aI., 2002). 
e) If costs and outcomes are analysed separately after clearly justifying that the correlation 
between costs and outcomes is indeed zero (for example the correlation coefficient is 
calculated and reported as zero). 
f) In a decision model where information from the eR T on the correlation between costs and 
effects is introduced as an aggregate input parameter to the model. 
g) If the paper used methods that meet the criterion for Question 4, it would also be 
considered to satisfy the criterion for this question. 

Question 4 - Did the study account for clustering and correlation in the estimation of 
incremental costs-effectiveness? YesD No 0 

To meet this criterion, statistical methods should simultaneously recognise the clustered 
nature of both costs and outcomes, and the correlation between the endpoints. The following 
methods would be anticipated to meet this criterion. 

a) Bivariate multi-level models (MLMs) (also called random-effects models or hierarchical 
models), which assume that costs and outcomes are drawn from a bivariate distribution and 
accommodate the hierarchical nature of the data through a random effect parameter (Grieve et 
aI., 2007, Manca et aI., 2007, Nixon and Thompson, 2005). 
b) Non-parametric bootstrap, if conducted in two stages (re-sampling clusters and then 
individuals within clusters) (TSB), provided it is clearly stated that costs and outcomes were 
re-sampled in pairs to allow for correlation between costs and outcomes (Bachmann et aI., 
2007, Flynn and Peters, 2005). 
c) Bivariate Generalised Estimating Equations (GEEs) (Lipsitz et aI., 2009). 
d) Univariate MLMs, the TSB or univariate GEEs applied to a univariate measure of net 
benefit for each individual (Grieve et aI., 2007). 
e) Robust standard errors (sandwich estimator) for joint models such as seemingly unrelated 
regression. 
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Question 5 - Did the statistical analysis make explicit, appropriate assumptions about 
the distribution of: 
a) outcomes? 
b) costs? 

The paper would be defined to meet these criteria if: 

YesD 
YesD 

NoD 
NoD 

a) The study assumed that the costs or outcomes data are drawn from normal distributions 
(e.g. MLMs assuming normality) and provided adequate justification (e.g. by presenting a 
histogram or Quantile-Quantile plot) (Briggs and Gray, 1998). 
b) A parametric model (e.g. GLMs, two-part models, mixture models) was used in the 
analysis, which assumed that individual level errors were drawn from a distribution other than 
the normal (e.g. GLM family), with adequate justification (for example relevant distributional 
plots) (Briggs et aI., 2005, Thompson and Nixon, 2005). 
c) The data were transformed in order to achieve normality with appropriate justification (e.g. 
a histogram was provided to justify that the data were lognormal). The data were then 
appropriately back transformed to give the arithmetic means on the original scale (Manning, 
1998, Hoffman et aI., 2001, O'Hagan and Stevens, 2003). 
d) Non-parametric methods were used and an adequate justification provided. For example, if 
the study invoked the Central Limit Theorem (CL T), then this could not be considered 
appropriate ifn<30 and the data were skewed (Nixon et aI., 2010, O'Hagan and Stevens, 
2003). Similarly, if the non parametric Bootstrap is used in the analysis, to meet the criteria 
the study would have to acknowledged that the method does rely on asymptotic properties, 
and offer justification that these were satisfied. In addition, if non parametric tests were 
chosen for statistical inference, then to be considered appropriate for incremental costs, then 
they should be based on means, rather than medians (e.g. Mann-Whitney tests) (Donner and 
Klar, 2000, Hayes and Moulton, 2009). 
e) For papers that report clinical outcomes that are binary, count, or survival then appropriate 
(non-linear) models should be chosen (for example, use logistic, Poisson or Cox regression 
models) and justification provided. 
f) If the study uses mean endpoints from the CRT as inputs to a decision model, then a 
probabilistic sensitivity analysis should provide an adequate justification for the distributional 
assumptions made. For example, reasonable justifications for assuming that mean costs have a 
gamma rather than normal distribution, is that the mean costs in each resample of the PSA 
should always take positive values (Briggs et aI., 2005, Mihaylova et aI., 2010). 

110 



Appendix 3.2: Search strategy for the database MedLine (March 1,2010) 

Set Search 
#1 (cluster randomi$ adj2 trial*).af 
#2 cluster RCT* .af 
#3 (group- adj 1 randomi$).af 
#4 (community- adj 1 randomi$).af 
#5 (cent$2- adj 1 randomi$).af 
#6 (area- adj 1 randomi$).af 
#7 (practice- adj 1 randomi$).af 
#8 Cost-effectiveness analy$.af 
#9 Cost-benefit analy$.af 
#10 Cost-utilityanaly$.af 
#11 Economic evaluation* .af 
#12 value for money.af 
#13 # 1 or #2 or #3 or #4 or #5 or #6 or #7 
#14 #80r#90r#100r#llor#12 
#15 #13 and #14 
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Appendix 3.3: List of the papers that satisfied the inclusion criteria 
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Appendix 3.4: Additional characteristics of the reviewed studies (N=62) 

Characteristic 

N umber of clusters per arm 

< 10 

~ 10 and < 20 

>20 

Cluster size 

Equal 

Unequal 

ICC (in outcomes) 

< 0.01 

~ 0.01 and < 0.1 

~ 0.1 

Not reported 

Baseline covariates 

Balanced 

Imbalanced 

Not reported 
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15 (24.3%) 

27 (43.5%) 

20 (32.2%) 

11 (17.7%) 

51 (82.3%) 

11 (17.7%) 

24 (38.7%) 

2 (3.3%) 

25 (40.3%) 

11 (17.7%) 

16 (25.8%) 

35 (56.5%) 



Chapter 4 

Assessment of the relative performance of 

alternative statistical methods for CEA that use 

CRTs in settings with balanced covariates 
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4.1 Preamble to research paper 2 

The conceptual review developed criteria for identifying appropriate statistical methods for 

CEA that use CRTs, and found several methods which could meet these criteria: SUR and 

GEEs, both with robust standard errors; MLMs; and a non-parametric TSB (chapter 2). The 

checklist developed in the previous chapter found that most applied CEAs that use cluster 

trials fail to use any of these methods in practice. In addition, the review highlighted the very 

limited amount of evidence about which methods are most appropriate across typical 

circumstances faced by CEA that use CRTs. To help address these concerns, this paper 

compares the relative performance of these methods judged appropriate for CEA that use 

CRTs across a range of realistic scenarios. The focus of the paper is on settings where 

baseline covariates are balanced. 

This study firstly considers simulations to allow the methods to be tested across a wide range 

of scenarios reflecting realistic situations observed in practice. The choice of scenarios 

investigated is made a priori, informed by hypotheses raised in the conceptual review 

(chapter 2). For example, characteristics such as the number of clusters, levels of cluster size 

variation and cost skewness were anticipated to influence the relative merits of the alternative 

methods. Similarly, the choice of parameter values is informed by the previous review of the 

applied literature. 

The paper also compares the methods in a case-study to assess the implications of the choice 

of methods practice. This paper provides general insights into which methods perform best 

across different circumstances, and makes specific recommendations for future studies. To 

encourage the dissemination of appropriate methods, this paper provides software code to 

assist future researchers. 
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Abstract 

Aim: Cost-effectiveness analysis (CEA) may use data from cluster randomized trials (CRTs) 

where the unit of randomization is the cluster not the individual. However, most studies use 

analytical methods that ignore clustering. This paper compares alternative statistical methods 

for accommodating clustering in CEA that use CRTs. 

Methods: Our simulation study compared the performance of statistical methods for CEA 

that use CRTs with two treatment arms. The study considered a method that ignored 

clustering: seemingly unrelated regression (SUR) without a robust standard error (SE), and 

four methods that recognized clustering: SUR and generalized estimating equations (GEE) 

both with robust SE, a 'two-stage' non-parametric bootstrap (TSB) with shrinkage correction, 

and a multilevel models (MLMs). The base-case assumed CRTs with moderate numbers of 

balanced clusters (20 per arm) and normally distributed costs. Other scenarios included CRTs 

with few clusters, imbalanced cluster sizes and skewed costs. Performance was reported as 

bias, root mean squared error (rMSE) and confidence interval (Cl) coverage for estimating 

incremental net benefits (INB). We also compared the methods in a case-study. 

Results: Each method reported low levels of bias. Without the robust SE, SUR gave poor Cl 

coverage (base-case 0.89 vs. nominal level 0.95). The MLMs and TSB performed well in 

each scenario (Cl coverage 0.92 to 0.95). With few clusters, the GEEs and SUR (with robust 

SE) had coverage below 0.90. In the case-study, the mean INB were similar across all 

methods but ignoring clustering underestimated statistical uncertainty and the value of further 

research. 

Conclusions: MLMs and the TSB are appropriate analytical methods for CEA that use CRTs 

with the characteristics described. SUR and GEEs are not recommended for studies with few 

clusters. 
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Introduction 

Cost-effectiveness analysis (CEA) of group-based interventions often use data from cluster 

randomized trials (CRTs) (Gomes et aI., 2011). A cluster design may be preferred in 

evaluations of interventions which operate at a group level (for example alternative incentives 

for health providers) or where there is a high risk of 'contamination' amongst the individuals 

within clusters (for example vaccination programs) (Donner and Klar, 2000, Hayes and 

Moulton, 2009). Agencies such as National Institute for Health and Clinical Excellence may 

use these CEAs especially when recommending which public health interventions should be 

provided (Williamson et aI., 2003). For these studies to provide a sound basis for decision­

making, appropriate statistical methods need to be developed and used (Eckermann and 

Willan, 2007, Williamson et aI., 2007). CEA based on randomized controlled trials (RCTs) 

where individual patients are randomized, have well-established methods (Glick et aI., 2007, 

Gold, 1996, Willan and Briggs, 2006). However, statistical methods for CEA that use CRTs 

have received limited attention (Willan, 2006). A review found that less than 10% of 

published CEAs that use CRTs adopted appropriate statistical methods (Gomes et aI., 2011). 

A distinct feature ofCRTs is that the unit ofrandomization is the cluster (for example the 

hospital), not the patient. Each patient within a cluster is randomized to receive the same 

treatment, and so the form of clustering differs from multicentre RCTs, where patients within 

a centre are randomized to different treatments. In CRTs, individuals within a cluster are 

likely to be somewhat similar in their characteristics and the care they receive, and therefore, 

individual outcomes or costs within the same cluster tend to be more homogeneous than those 

in different clusters. The extent of such clustering can be summarized by the intra-cluster 

correlation coefficient (ICC), which reports the proportion of the overall variation that is at 

the cluster level. For the analysis of clinical outcomes it is recognized that ignoring clustering 

underestimates statistical uncertainty (Campbell et aI., 2007, Donner and Klar, 2000, Hayes 
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and Moulton, 2009), encourages incorrect inferences (Austin, 2007, Feng et aI., 1996, Nixon 

and Thompson, 2003, Ukoumunne and Thompson, 2001), and can also lead to bias 

(Middleton, 2008, Panageas et aI., 2007). Appropriate methods for handling clustering in 

clinical outcomes are well-developed and can include multilevel models (MLMs) and 

generalized estimating equations (GEEs) (Omar and Thompson, 2000). 

CEA that use CRTs raise additional challenges for statistical methods. Here, methods are 

required that not only allow for clustering but also acknowledge the correlation between 

individual costs and outcomes (Briggs et aI., 1999, Nixon and Thompson, 2005, Willan et aI., 

2004) and make plausible assumptions about the distribution of costs and outcomes. Based on 

a conceptual review, we identified four main groups of statistical methods that may be 

appropriate for CEA that use CRTs: seemingly unrelated regression (SUR) (WiUan et aI., 

2004); GEEs (Upsitz et aI., 2009); the non-parametric two-stage bootstrap (TSB) (Davison 

and Hinkley, 1997) and MLMs (Nixon and Thompson, 2005). Each of these methods can 

accommodate both clustering and correlation in a bivariate approach. We did not consider 

univariate net benefit regression analysis, as this method has less flexibility: for example, it 

does not allow for separate distributional assumptions to be made for costs (which tend to be 

highly skewed) as opposed to outcomes. 

There is limited evidence comparing these alternative statistical methods for CEA that use 

CRTs. The TSB (Flynn and Peters, 2005) and MLMs (Grieve et aI., 2010) have been 

proposed for CEA that use CRTs, but the only study (Bachmann et aI., 2007) to compare 

these methods used data from a single CRT. A simulation study (Flynn and Peters, 2005) 

assessed the performance of the TSB but did not compare it to MLMs or GEEs, and assumed 

balanced clusters (equal numbers per cluster). It is therefore unclear which method performs 

best across the range of circumstances faced in CEA that use CRTs~ 
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The aim of this paper is to assess the relative performance of alternative statistical methods 

for CEA of two-arm CRTs. We address this by conducting an extensive simulation study and 

illustrate the practical use of the methods in a case-study. In the next section we describe each 

analytical method, the design of the Monte Carlo simulations and the case-study. We then 

present the results of the simulations and case-study. The last section discusses the key 

findings and outlines an agenda for further research. 

Methods 

Statistical methods for CEA that use CRTs 

We consider four methods for CEA that use CRI data. We use the following notation: let cij 

and eijrepresent the costs and outcomes for the ith individual in thejth cluster. For simplicity 

the models and the simulation study are described for CEA with two alternative treatments 

but the models extend to evaluations with more than two randomized treatments. Each 

method takes the common approach of assuming linear additive treatment effects for both 

costs and outcomes (Nixon and Thompson, 2005, O'Hagan and Stevens, 2001, Willan and 

Briggs, 2006, Willan et aI., 2004). 

Seemingly Unrelated Regression (SUR) 

SUR consists of a system of regression equations which can recognize the correlation 

between individual costs and outcomes (Willan, 2006, Willan and Briggs, 2006, Willan et al., 

2004). SUR model (1) allows the individual-level error terms (&) to be correlated through the 

parameter p : 

f.le pc c 
C ij = Po + I t j + & ij 

e = f.loe +/Jlet . +&~ IJ PI J IJ 

(1) 
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where tj is the treatment indicator (tj =0 for control and 1 for treatment group). The parameters 

of interest, the incremental costs (Pt) and outcomes (Pt), can be estimated by ordinary least 

squares (OLS). SUR assumes the individual error terms (& ) have a bivariate Normal 

distribution (BVN), with variances u; and u; . Conceptually SUR can be extended to 

accommodate clustering by including random effects (Singh and Ullah, 1974), but this cannot 

be readily implemented in conventional software packages. A practical way of allowing the 

uncertainty estimates to reflect clustering is to report robust SE by iterative feasible 

generalized nonlinear least squares (IFGNLS) (nlsur package, STAT A 11). Estimates are 

identical to OLS when the same covariates are included for costs and outcomes (Willan et aI., 

2004)14. 

A limitation of SUR is that its implementation in most standard statistical packages assumes 

the errors are normally distributed, which may not be plausible in the context of CEA that use 

CRTs. In addition, it is unclear whether the robust SE recognize the correlation at the cluster-

level, Le. between cluster-level mean costs and mean outcomes (Zellner and Ando, 2010b, 

Zellner and Ando, 201Oa). Finally, the asymptotic assumptions underlying the robust variance 

estimator may not hold in CRT with few clusters per treatment arm (Smeeth and Ng, 2002). 

The problem can be exacerbated by skewed outcomes (or costs) or imbalanced cluster sizes 

(Omar and Thompson, 2000). More details on the robust variance estimator are given in 

Appendix 4.1. 

Generalized Estimating Equations (GEEs) 

A similar approach for handling clustering is to use a GEE model with robust SE. In general 

GEEs offer a flexible extension of likelihood-based generalized linear models, and are 

commonly used to analyze clinical outcomes in CRTs (Donner and Klar, 2000, Hardin and 

Hilbe, 2003, Hayes and Moulton, 2009). While multivariate GEEs have been developed to 

14 Where different covariates are included for costs and outcomes, SUR estimation by IFGNLS can improve 
statistical efficiency (precision) compared to OLS. 
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recognize potential correlation between binary endpoints (Lipsitz et aI., 2009), they are 

complex to implement and have not been extended to continuous endpoints. As a practical 

alternative we used a GEE model with independent estimating equations, stacking costs and 

outcomes, into a single vector but still allowing separate, independent estimates of 

incremental costs and outcomes. A bivariate GEE model with independent estimating 

equations can be written as, 

(2) 

This structure relies on a general property of population-averaged GEEs ensuring 

asymptotically consistent regression parameter estimates, even if the working correlation 

matrix is misspecified. This holds as long as the model, i.e. the relationship between the 

marginal mean and the linear predictor, is correct. However, if the working correlation matrix 

is misspecified, the parameter estimates may be less statistically efficient. 

Parameter estimates can be obtained by maximum likelihood assuming that the errors have 

Normal distributions, and can provide the same point estimates to OLS estimation. As with 

SUR, we assumed that the error terms have a bivariate Normal distribution, although the 

model could be extended to allow for other distributions. We have used a robust estimator for 

the variance to allow for clustering when reporting uncertainty: see Appendix 4.1 for further 

details. However, the asymptotic properties required may not hold when there are few clusters 

(Bellamy et aI., 2000, Feng et al., 1996, Ukoumunne and Thompson, 2001). 

The non-parametric two-stage bootstrap (TSB) 

Non-parametric bootstrap methods can avoid parametric assumptions and are easy to apply in 

simple settings (for example, RCTs) (Briggs et al., 1999). However, the conventional non-

parametric bootstrap that resamples individuals has to be extended to recognize the clustering 
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inherent in CRTs. Davison and Hinkley (Davison and Hinkley, 1997) propose a two-stage 

routine for CRTs which resamples clusters as well as individuals, and this approach has been 

considered for CEA (Bachmann et aI., 2007, Flynn and Peters, 2005, Flynn and Peters, 2004). 

The TSB can recognize the individual-level correlation between costs and outcomes by 

bivariate resampling, and the resampling can also stratify by treatment group (Flynn and 

Peters, 2005). 

TSB without shrinkage correction 

One proposed TSB algorithm requires resampling clusters, and then individuals within each 

resampled cluster (both with replacement) (Davison and Hinkley, 1997). The resultant 

datasets are used to calculate the statistics of interest, for example incremental net benefits 

(INB) and confidence intervals (Cl). However, unless the CRT has many clusters and 

individuals per cluster, this routine can overestimate the variance. Resampling at the second 

stage is likely to double-count the within-cluster variance because the estimated cluster means 

from resampling at the first stage already incorporate both within and between-cluster 

variability (Davison and Hinkley, 1997, Flynn and Peters, 2005, Flynn and Peters, 2004). 

TSB with shrinkage correction 

Davison and Hinkley (Davison and Hinkley, 1997) recommend a 'shrinkage estimator' to 

correct for possible overestimation of the variance. Here before any resampling, cluster means 

are calculated with a shrinkage correction and individual level residuals estimated from the 

cluster means. Two-stage resampling (with replacement) is then performed by firstly 

resampling the shrunken cluster means, and secondly resampling the standardized individual 

level residuals across all clusters. Bootstrap data sets are compiled by combining the 

resampled shrunken cluster means and individual level residuals. Unlike the previous routine 
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where clusters and individuals are resampled from the original data, this routine resamples the 

shrunken means and residuals: see Appendix 4.2 for more details about the algorithms. 

Both bootstrap routines rely on asymptotic assumptions and it is unclear whether they are 

satisfied with few clusters, particularly if data are not Normal (O'Hagan and Stevens, 2003, 

Thompson and Nixon, 2005). Furthermore, the TSB routines described above were only 

proposed for balanced clusters (Davison and Hinkley, 1997, Flynn and Peters, 2005, Flynn 

and Peters, 2004), which may make the method inappropriate for CEA that use CRTs with 

imbalanced clusters (Gomes et aI., 2011). Our implementation therefore extends Davison and 

Hinkley's original algorithms to allow for imbalanced clusters (see Appendix 4.2). 

Multilevel models (MLMs) 

MLMs can allow for the correlation between costs and outcomes, and recognize clustering 

(Grieve et aI., 2010). Unlike SUR, MLMs can explicitly recognize clustering by including 

additional random terms, u~, u; which in model (3) below represent the differences in the 

cluster mean costs and outcomes from the overall means in each treatment group. These 

random effects are assumed to follow a bivariate Normal distribution, with variances T; and 

T; . MLMs acknowledge individual and cluster-level correlation between costs and outcomes 

through the parameters p and f//. The coefficients Pt and P: still represent incremental costs 

and outcomes after allowing for clustering. Like the SUR model, this particular MLM 

assumes that the individual error terms (E) are normally distributed but more generally, 

alternative distribution assumptions can be made for costs, outcomes or both. 
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MLMs can be estimated and interpreted from a frequentist perspective, generally 

(3) 

implemented with maximum likelihood, or with a Bayesian approach typically using Markov 

Chain Monte Carlo (MC MC) methods. Current software options for MCMC estimation afford 

a wide choice of distributional assumptions (Nixon and Thompson, 2005). A concern with 

either approach is that MLMs may fail to converge if the CRT has few individuals per cluster 

(Austin, 2010, Rodriguez and Goldman, 1995). 

Monte Carlo simulations 

Data generating process 

The simulation study was designed to test the methods across a wide range of circumstances 

typically found in CEA that use CRTs. Our conceptual review suggested it was important to 

allow the following to differ: number of clusters per treatment arm; number of individuals per 

cluster; level of cluster size imbalance; ICCs; skewness in the cost distribution; and 

correlation between costs and outcomes at both the individual and cluster level (see rationale 

in Table 4.1). To consider this range of settings required a flexible data generating process. 

Data were constructed to reflect the specific form of clustering found in CRTs (Austin, 2007, 

Austin, 2010, Turner et aI., 2007). The design allowed for a wide range of parameters to be 

varied and could accommodate different parametric distributions for costs and outcomes. As 

in previous simulation studies in economic evaluation, we assumed a linear additive treatment 

effect throughout (Flynn and Peters, 2005, Pinto et aI., 2005, Willan et aI., 2004). We 

simulated cost (c) and outcome data (e) from CRTs with M clusters per arm and nm (m = 
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1 ... M) individuals per cluster. Data were generated firstly at the cluster-level, and then at the 

individual-level according to model (4) below. 

Cluster-level means: 
f/J; - dist(P~ + ptt) , re) 

f/J; - distCP; + ptt) + YCf/J;' - CP~' + Ptt,» , re) (4) 

Individual-level data: 
Cl} - dist(f/J;', ac ) 

el} -dist(f/J; + BCcij -f/J;) , ae ) 

Cluster-level mean costs C tfJ;) and outcomes ( t/J;) were simulated for the jth cluster. These 

were assumed to follow a certain distribution characterized by the cluster means for the 

control (P~ ,P; + y(f/J; - P~')) and treatment (P~ + Pt, P; + Pt + y(rp; - CP~ + pttj )) groups, 

and the corresponding cluster-level standard deviations ( re' re)' This mechanism allowed 

costs and outcomes to be correlated at the cluster level through the parameter r, where 

y = lfI(re I re>. Costs (cij) and outcomes (eij) for the ith individual were simulated from 

distributions centered at the previously simulated cluster-level means, and with the 

corresponding individual-level standard deviations ( a c , a e ). Costs and outcomes were also 

allowed to be correlated atthe individual level through the termB, where () = p(ere / ere)' ICCs 

were set to recognize the proportion of the total variance at the cluster level, where for 

example for costs/CCe = 1',2 I(a; + 1';). The size of the clusters was assumed to follow a 

Gamma distribution according to a mean and a coefficient of variation ( cvimb ), which is 

obtained by dividing the SD of cluster size by its mean; so for balanced (equal) cluster sizes 

CV b =0. Im 
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Definition of scenarios 

The simulation study initially considered a base-case scenario, then one-way and multi-way 

sensitivity analyses, and finished with a final 'most realistic' scenario. Under the base-case 

scenario parameter values were chosen not only to be plausible, but also to represent 

circumstances where each method was anticipated to perform well. This scenario provided a 

benchmark for the subsequent sensitivity analyses (Table 4.1). The choices of which 

parameters to vary in the sensitivity analyses, and which scenarios to combine in the multi­

way sensitivity analyses, were informed by general insights from the methods literature. For 

each parameter, the range of values chosen was grounded in a systematic literature review of 

62 studies (Gomes et aI., 2011), previous methods papers and simulation studies (Briggs et 

aI., 2005, Eldridge et aI., 2006, Flynn and Peters, 2005, Nixon et aI., 2010), and eight case 

studies (Cheyne et aI., 2008, Davies et aI., 2008, Fairall et aI., 2005, Morgan et aI., 2003, 

Morrell et aI., 2009, Munro et aI., 2004, Murphy et aI., 2009, Oluboyede et aI., 2008). In the 

final scenario each parameter was set to its 'most realistic' value, taking median values from 

the literature review and case studies. For example, costs followed a Normal distribution in 

the base-case, but increasingly skewed Gamma distributions in the sensitivity analyses with 

coefficient of variation (cvcost) ranging from 0.25 to 3.0 (final case 0.5). 

Table 4.1 lists the parameters changed across the scenarios; other parameters such as the true 

incremental costs and outcomes (QALYs) were held constant throughout. For example, the 

'true' incremental costs, incremental QAL Ys and INB (assuming a threshold of £20000 per 

QAL Y) were £500, 0.075 and £1 000, respectively. 
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Implementation 

The performance of the different estimation methods was assessed according to mean (SE) 

bias, root mean squared error (rMSE), Cl coverage, the error rate for lower and upper Cl 

limits, and Cl width (see Appendix 4.3 for definitions). We used 2000 simulations for each 

scenario 1 s. The performance of each method in estimating incremental costs, incremental 

QAL Y s and INB was reported. 

MLMs, GEEs and TSB were implemented in R (R, 2011) and SUR in ST A T A (Kim, 2010). 

The SUR was estimated by IFGNLS, without and with a robust standard error. The GEEs was 

estimated with a robust SE, and the TSB before and then after shrinkage correction. The 

MLMs were estimated by maximum likelihood across all scenarios. For selected scenarios 

(base-case, 3 clusters per treatment and the final case) estimation was also carried out via 

MCMC by calling WinBUGS from R (Berger and Weinstein, 2004). The MCMC estimation 

consisted of 5000 iterations, 3 parallel chains with different starting values, and assuming 

diffuse priors (Kass and Wasserman, 1996). 

Case-study 

To consider the potential implications of the choice of methods in practice, we compared the 

methods in a case-study of a CEA alongside a CR T. This approach extends the simulation 

study as, for example, the cost and outcome data do not follow specified distributions; this 

allows for a more pragmatic comparison of the methods. 

IS This was judged to be sufficient to report Cl coverage with a margin of MC error of less than I %, i.e. for true 
coverage of 0.95, 2000 simulations would be 95% certain to give coverage rates of 0.94 to 0.96. 
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Table 4.1: Description, rationale and evidence for the parameter values allowed to vary across the different scenarios 

Parameter Rationale Base SA* Final Justification for parameter levels 
case case 

No. clusters per GEEs, SUR and TSB all rely on 
Base-case: 20 clusters per ann suggested for asymptotics to hold (Donner, 1998, 

arm asymptotic assumptions 20 3 to 30 15 Donner and Klar, 2000). SA: takes lower, upper quartiles from lit review. Final case: 
median no. clusters from lit review 

No. individuals MLMs may have convergence 
50 10 to 80 30 

per cluster issues with few cases per cluster Base-case: within the range of values from lit review. SA: the lower, upper quartiles 
from the lit review. Final case: median no. per cluster from the lit review 

Level of GEEs, SUR and TSB have not 
Base-case: Previous methods papers (Davison and Hinkley, 1997, Flynn and Peters, 

imbalance (cvw) been assessed with 0 o to I 0.5 
2005, Flynn and Peters, 2004) SA: Cluster size imbalance infonned by range of values 

of cluster size imbalanced clusters 
reported across case studies and previous study (Eldridge et aI., 2006). 
Final case: median from the case studies 

ICC for costs 
To assess if methods can handle 

0.01 o to 0.3 0.05 
Base-case: Start with low ICC as per previous methods papers (Flynn and Peters, 2005, 

high levels of clustering Flynn and Peters, 2004). SA: range of ICCs from case studies and previous study 
(Campbell et aI., 2005). Final case: median from case studies 

ICC for outcomes As above 0.01 o to 0.3 0.02 
Base-case: 30% of studies from lit review have ICCs for outcomes <=0.0 I SA: range 
from lit review and previous methods studies (Eldridge et aI., 2006). Final case: median 
from lit review 

Coefficient of SUR, our MLMs and GEEs Base-case: start with Nonnal distribution, no skewness as per previous simulation 
variation (cvcost) of assume errors follow a Nonnal 0.2 0.25 to 3 0.5 studies (Nixon and Thompson, 2004, Thompson and Nixon, 2005). SA: Gamma 

cost distribution distribution distribution, range for CVcOS/ from previous simulation studies (Briggs et aI., 2005, Nixon 
et aI., 2010). Final case: Gamma distribution, median CVcos/ from case studies. 

Individual level GEEs assumes costs and Base-case: plausible level of individual level correlation (Flynn and Peters, 2005, Nixon 
correlation of costs outcomes are independent 

0.2 -0.5 to +0.5 -0.2 et aI., 2010). SA: based on the range from case studies. Final case: median from the case 
and effects studies 

Cluster level 
GEEs as above. SUR ignores Base-case: Conservative value assuming no correlation at the cluster level (Flynn and 

correlation of costs 0 -0.5 to +0.5 0.1 
and effects 

cluster-level correlation. Peters, 2005). SA based on the range from case studies. Final case: median from case 
studies 

* SA - sensitivity analyses 
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We compare estimates of both relative cost-effectiveness and potential value of further 

research across the methods. The potential value of further research is the gain from resolving 

decision uncertainty, given the current state of knowledge. In other words, the expected value 

of perfect information (EVPI) is the increase in net benefits from taking the optimal decision 

after resolving current uncertainty (Claxton, 1999). 

The case-study consists of a CRT that evaluates an educational intervention intended to 

improve the management of lung disease in adults attending outpatient clinics in South Africa 

(Fairall et aI., 2005). The CRT included 40 balanced clusters (clinics) randomized to 

intervention or control. This re-analysis used complete data for 1851 patients. For each patient 

the study measured health service costs for three months consisting mainly of the costs of the 

educational intervention clinic, outpatient visits and drugs. EQ-5D data were recorded at 

three months follow-up and we calculated QAL Y s assuming that there was no mortality. The 

ICCs for costs and outcomes were both low (around 0.01). While the outcome data were 

approximately normally distributed, the costs were moderately skewed (cvcost= 1.6). Hence 

the characteristics of this study were fairly similar to those in the base-case scenario in the 

simulation. 

Each of the above statistical methods were used to report incremental costs, QAL Y s and INB, 

calculated at realistic levels of the ceiling ratio for the local South African context. We then 

used these estimates across the alternative methods to compare the EVPI per patient, as 

reported in other trial-based CEAs (Fenwick et aI., 2008, Hoffman et aI., 2001). EVPI was 

calculated assuming that the INB was normally distributed (Claxton, 1999). 
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Results 

Simulation study 

Base-case 

In the base-case each method reported low bias and similar rMSE for the INB (Table 4.2). 

The method that ignored clustering, SUR without the robust standard error (SE), performed 

poorly with Cl coverage below 0.9. 

Table 4.2: Bias, rMSE, Cl coverage and width of the mean INB for the base-case (true 

INB=£1000) 

SUR GEEs TSB 
Without With With Without With 

robust SE robust SE robust SE shrinkage shrinkage 
correction correction 

Mean bias -1.999 -1.999 -1.999 -2.108 -2.041 

(SE) (2.45) (2.45) (2.45) (2.45) (2.45) 

rMSE 109.45 109.45 109.45 109.52 109.52 

Cl coverage 0.891 0.940 0.933 0.981 0.943 

Mean Cl width 353.6 423.7 417.7 539.1 427.5 

Lower tail error rate 0.048 0.030 0.033 0.009 0.028 

Upper tail error rate 0.051 0.029 0.035 0.011 0.030 

* ML-Maximum likelihood. MLM estimated by MCMC in WinBUGS produced similar results. 

The TSB without shrinkage correction reported wide 95% Cls and coverage above the 

MLMs 
ML* 

-1.999 
(2.45) 
109.45 

0.950 

440.7 

0.024 

0.026 

nominal level, but with correction, coverage was similar to the other methods that recognized 

clustering. The MLMs had coverage close to the nominal level whether estimated by 

maximum likelihood (Table 4.2) or MC MC (Cl coverage of 0.94). The relative performance 

across methods was similar for incremental QAL Y s, incremental cost and INB calculated 

with alternative levels of the ceiling ratio. 

One-way sensitivity analysis 
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The bias was low across all scenarios; for example in the scenario with 3 clusters per 

treatment arm the mean (SE) biases for the estimated INB were -9.98 (6.05) for SUR, -6.93 

(6.28) for the MLMs and GEEs, and -7.15 (6.29) for the TSB with shrinkage correction (true 

INB=£1 000). The rMSE differed across scenarios but was similar for each method. For 

example, with 3 clusters per arm, rMSE was about 280 for all methods. 

Table 4.3 reports Cl coverage for the one-way sensitivity analyses. The bootstrap without 

correction reported Cl coverage above the nominal level for most scenarios, but the other 

methods generally reported good coverage, unless there were few clusters. Here Cl coverage 

remained good for the MLMs and TSB (following correction), but the SUR and GEEs, both 

with robust standard errors, reported poor coverage. 

Table 4.3: Cl coverage of the mean INB (nominal level is 0.95) for the one-way 

sensitivity analysis 

Base-case 
Few clusters per arm 
Few individuals per cluster 
Highly imbalanced cluster size 
High ICC for costs 
High ICe for outcomes 
Hilhl~ skewed Gamma costs 

ML-Maximum likelihood. 

(M=3) 
(nm=10) 
(cvimb=l) 
(ICCc=0.3) 
(ICCe=O.3) 

~cVcost=3l 

SUR 
With 

robust 
SE 

0.940 
0.856 
0.937 
0.919 
0.936 
0.941 
0.941 

GEEs 
With 

robust 
SE 

0.933 
0.841 
0.945 
0.916 
0.935 
0.941 
0.941 

TSB 
Without 

shrinkage 
correction 

0.981 
0.962 
0.991 
0.981 
0.980 
0.941 
0.982 

With 
shrinkage 
correction 

0.943 
0.941 
0.961 
0.960 
0.944 
0.943 
0.942 

MLMs 
ML 

0.950 
0.933 
0.958 
0.951 
0.953 
0.945 
0.952 

With high levels of cluster size imbalance, coverage levels for these latter two methods were 

also low. All the methods (except the TSB without correction) performed well in scenarios 

with few individuals per cluster, high ICCs, and highly skewed costs (Table 4.3). Cl coverage 
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also remained close to the nominal level with high levels of correlation at the individual or 

cluster level. 

Multi-way sensitivity analysis 

The multi-way sensitivity analyses combined variation in the number of clusters, levels of 

cluster size imbalance and cost skewness. Bias remained low (between -5 and 5) across all 

multi-way sensitivity analyses. While rMSE increased when fewer clusters were combined 

with high levels of imbalance, the differences between methods were small. 

Figure 4.1 reports Cl coverage for CRTs with decreasing number of clusters (20, 15, 10, 8, 5, 

and 3 clusters per treatment arm), moderate and high cluster-size imbalance (CVimb of 0.5 and 

1) combined with highly skewed costs (cvcosF3). 

In CRTs with moderate levels of imbalance, the performance of SUR and GEEs is worse than 

for the MLMs and TSB if there are eight or fewer clusters per treatment arm (Figure 4.la). 

With high levels of cluster size imbalance, the coverage levels for the SUR and GEEs are 

poor with fewer than 10 clusters per arm (Figure 4.1 b). For the MLMs and TSB (with 

shrinkage correction), the Cl coverage remains relatively good even when the study has few 

highly imbalanced clusters and highly skewed costs. In further scenarios that combined 

variation in cluster size imbalance and number of clusters with other parameters, such as 

different levels of individual and cluster level correlation, all methods performed well except 

in scenarios with few clusters, where SUR and GEEs reported poor coverage. 
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Figure 4.1: Cl coverage (nominal level is 0.95) for multi-way sensitivity analyses: high 

skewness of costs (cvcost = 3), decreasing number of clusters combined with a) moderate 

and b) high cluster size imbalance16 

a) Moderate imbalance (cvimb=0.5) 
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Final 'most realistic' scenario 

In the final scenario with all parameters set to their 'most realistic' levels (Table 4.1), bias and 

rMSE were again similar across methods (Table 4.4). The SUR without a robust SE, and the 

16 The Cl coverage is very similar for the GEE and SUR and hence their lines show considerable overlap. 
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TSB without correction reported levels of Cl coverage that diverged from the nominal, but the 

MLMs and TSB with correction both had good levels of Cl coverage. 

Table 4.4: Bias, rMSE, Cl coverage and width of the mean INB for the final case (true 

INB=£1000) 

SUR GEEs TSB MLMs 

Without With With Without With ML 
robust robust robust shrinkage shrinkage 

SE SE SE correction correction 

Mean Bias 6.63 6.63 6.63 7.10 6.85 7.95 
(SE) (4.40) (4.41 ) (4.40) (4.38) (4.38) (4.33) 

rMSE 197 197 197 196 196 194 
Cl coverage 0.858 0.921 0.920 0.978 0.944 0.938 
Mean Cl width 583 726 724 924 778 754 
Lower tail error rate 0.072 0.041 0.041 0.014 0.029 0.033 
Upper tail error rate 0.120 0.038 0.039 0.010 0.028 0.030 
ML-Maximum likelihood. 

Case-study 

Table 4.5 presents cost-effectiveness results from applying the alternative methods to the 

case-study. Each method reported that the intervention had positive incremental costs, 

negative incremental QALYs and negative INB. While the means were similar across 

methods, applying SUR without allowing for clustering led to standard errors that were 

substantially smaller than for the other methods. For SUR without the robust errors the EVPI 

(per patient) was more than 50% lower when compared to methods that accommodate 

clustering. 
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Table 4.5: Case-study results: incremental cost, incremental QAL Y, INB (threshold of 

RIOO 000 per QALy)17, and individual EVPI 

SUR GEEs TSB MLMs 
Without With With Without With ML 
Robust Robust Robust shrinkage shrinkage 

SE SE SE correction correction 

Incremental cost IZAR) 14.16 14.16 14.16 13.73 15.45 14.78 
(SE) (15.84) (19.49) (19.47) (24.67) (18.94) (19.27) 

Incremental QAL Y -0.057 -0.057 -0.057 -0.061 -0.059 -0.058 
(SE) (0.020) (0.046) (0.046) (0.051) (0.045) (0.046) 

INB IZAR) -5762 -5762 -5762 -6073 -5926 -5793 
(SE) (2003) (4651) (4647) (5127) (4529) (4583) 

INB IGBP) -824 -824 -824 -869 -848 -829 
(SE) (286) (665) (664) (733) (648) (656) 

EVPIIGBP) 114 266 265 293 280 262 

ML-Maximum likelihood. 

Discussion 

This study compares the relative merits of alternative statistical methods for CEA that use 

CRTs. The simulation study finds that each method reports low bias and similar MSE across 

the settings considered, with the MLMs and TSB (with correction) providing good levels of 

Cl coverage throughout. The simulation study highlights that robust methods (SUR and 

GEEs), which rely on asymptotic assumptions, can perform poorly for studies with few 

clusters. Both the simulation study and the case-study illustrate that methods that ignore 

clustering (for example, SUR without a robust SE) can seriously underestimate statistical 

uncertainty. As our empirical example illustrates, ignoring clustering can therefore understate 

the expected value of further research. Future studies should not attempt to justify statistical 

methods that ignore clustering on the basis oflow estimated ICCs. 

17 One Pound (GBP) corresponded to approximately 6.99 Rands (ZAR) in terms of purchasing power parity 
(OECD,2010). 
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This is the first paper to compare a range of statistical methods for CEA that use CRTs. 

Previous simulation studies (Flynn and Peters, 2005, Flynn and Peters, 2004) did not consider 

MLMs or GEEs, and other studies just compared the methods using a single case-study 

(Bachrnann et aI., 2007). The design of the simulation study is sufficiently general to 

consider the methods across common circumstances faced by CEA that use CRTs. In 

particular, the simulation includes scenarios with few clusters, unequal numbers per cluster 

(imbalance) and highly skewed costs. The choice of scenarios and parameters values are 

grounded in a previous review of methods and of published CEA that use CRTs (Gomes et 

aI., 2011). These features help ensure that the simulation study provides relevant insights on 

the choice of analytical method for future CEAs. While for illustrative purposes we consider 

two-armed CRTs, the findings extend directly to CRTs with three or more randomized 

treatments. 

The simulation study finds the TSB performs as well as the MLMs across the circumstances 

considered, once the shrinkage correction factor proposed by Davison and Hinkley is applied. 

A previous CEA used the TSB, but did not apply the shrinkage correction, and reported wide 

Cls compared to a MLM (26). We find that without the shrinkage correction the ISB 

overstates the uncertainty, but once the correction is applied the method gives good Cl 

coverage. Ihis finding contrasts with those of a previous simulation study (Flynn and Peters, 

2005) that only considered balanced clusters but reported relatively poor perfonnance for the 

ISB (even after correction). We extended the implementation to recognize cluster size 

imbalance and find that the method still perfonns well. To help improve the translation of 

appropriate methods into practice we are developing user-friendly software for implementing 

the ISB. Sample code for the ISB, GEEs and MLMs is included in Appendix 4.4. 

This paper considers GEEs for the first time in this context. We develop a robust variance 

estimator to account for the clustering that also allows for the joint distribution of individual 
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costs and outcomes. A general concern for such a robust variance estimator is that it relies on 

asymptotic assumptions which, in these circumstances, pertain to the number of clusters per 

treatment arm. Our work provides specific guidance for CEA that use CRTs on the number of 

clusters per treatment arm required for asymptotic assumptions to hold. Our findings suggest 

that between 8 and 15 clusters per arm are required, depending on the other features of the 

study; in particular more clusters are required when the cluster sizes are highly imbalanced. 

This is pertinent for CEA where about 40% of such studies have fewer than 15 clusters per 

treatment arm, and 15% less than 8 (Gomes et aI., 2011). The general literature on GEEs has 

reported similar sample size requirements for asymptotic assumptions to hold (Feng et al., 

1996, Omar and Thompson, 2000, Ukoumunne and Thompson, 2001), and the same 

requirements apply to the robust estimator for SUR. The simulation study also finds that the 

performance of these methods does not improve in CRTs with more individuals per cluster. 

Grieve and others (Grieve et al., 2010) proposed a flexible Bayesian hierarchical model to 

tackle the main statistical issues faced by CEA that use CRTs. However, such models are 

complex to implement and other more accessible MLMs may be required to improve practice. 

Our simulation showed that a MLM estimated by maximum likelihood, assuming a bivariate 

Normal distribution for costs and outcomes, can perform well even when costs are highly 

skewed. Although in a different context, this corroborates previous findings which suggest 

methods assuming normality may be quite robust to skewed cost data (Briggs et aI., 2005, 

Nixon et aI., 2010, Pinto et aI., 2005, Willan et aI., 2004). However, it would be worth 

investigating whether MLMs which better accommodate skewed costs would lead to gains in 

precision. 

This study has several limitations. While the simulation considers a wide range of 

circumstances and the case-study provides a useful illustration, in practice some CEAs face 

further complications. If for example there are baseline imbalances between the treatment 
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groups, or cost-effectiveness estimates are required for particular subgroups, the methods 

would need to consider covariates. The effects of baseline covariates, and indeed treatment 

group on costs and outcomes may be multiplicative, not additive (Thompson et aI., 2006). 

Also CEA may have more complex variance structures than those considered (Grieve et aI., 

2010, Turner et aI., 2001). These methods have not been tested under such circumstances, but 

MLMs may have more scope for adaptation to these broader settings than the other methods 

(Nixon and Thompson, 2005, Nixon et aI., 2010, Omar and Thompson, 2000, Willan et aI., 

2004). In addition, we have not considered censored or missing data, or combining CRT data 

with evidence from other sources in decision models. These are all avenues for further 

research. 

In conclusion, CEA that use CRTs may inform recommendations on the provision of area­

level or public health interventions. This study finds that MLMs and TSB (with correction) 

are appropriate analytical methods for CEA that use CRTs across a wide range of 

circumstances. While methods that use a robust variance estimator such as SUR and the GEE 

model considered here are simple to implement, they are not recommended for CEA that use 

CRTs with few (less than 10) clusters in each treatment arm. 
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Appendix 4.1: Robust variance estimator 

The robust variance estimator proposed by White (White, 1980) and Huber (Huber, 1967) allows 

for heteroskedasticity where data can be independent but not necessarily identically distributed 

(Ln.i.d) such as the stacked responses of individual costs «(1;) and outcomes «(1;). In other 

words, the data are assumed to be independent but with non-constant variances, (1l, for the ith 

observation. It is also known as the sandwich estimator due to its mathematical form of DMD 

where D is the conventional covariance estimator and M in the middle is a correction term. 

For independent observations, it can be written as 

(5) 

where ~i is the score statistic (= d~npLi , ), lnLi is the log-likelihood for the ith observation, 
(lXp) 

P = (f1g,pg,PLPf) and D = (X"X*)-\p'xp') is the traditional covariance estimate. X* (nxp) is 

the covariate matrix, p' the total number of parameters in the cost and outcome models, n the 

total number of observations (= two responses x number of individuals). 

For grouped data such as costs and outcomes from individuals nested within general practices in 

eRTs, the observation-level scores are no longer independent and a simple modification of the 

robust variance estimator that relies on the assumption of independent clusters is required. The 

modification allows for an arbitrary dependence structure of the observations within clusters 

(Williams, 2000) and has been described in «Hardin and Hilbe, 2003), page 30-31), «Kim, 

2010), page 362) and «Berger, 2005), page 260). Williams (Williams, 2000) presents a proof 

that the robust variance estimator is unbiased for data correlated within clusters in a general 

setting. 
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The modified robust variance estimator is given by 

individual in thejth cluster, ,ne the total number of clusters and Cj the total number of 

individuals in cluster j. The rest are similarly defined as in (5). Since clusters are assumed to be 

independent, observation-level scores within clusters can be summed to form independent 

cluster-level scores and the same formula can be applied on the cluster-level scores for the robust 

variance estimator. Here the modification works by simply replacing the observation-level 

scores, L\j, in (5) by the sum ofthe scores from clusterj, (L~~l L\ij) , to form cluster-level scores. 

The k subscript has been omitted in the calculation for simplicity sake. The outer summation of 

.Et:1 goes from first to the last cluster irrespective to treatment assignment and the estimate is 

scaled by (~) for use with small samples. 
nc-1 
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Appendix 4.2: Algorithms for the non-parametric two-stage bootstrap 

Suppose we have Mkclusters randomized to treatment (k=2) and control (k=I) groups, with nj 

individuals within each clusterj. 

Algorithm 1 - Routine without the shrinkage correction 

1. For i in 1 to nj individuals in clusterj. 

2. For j in 1 to Mk clusters in treatment group k. 

3. For k in 1 to 2 treatment groups. 

4. Randomly sample (with replacement) Mk clusters in treatment group k. 

5. Within each of the resampled clusters, randomly select (with replacement) nj pairs of 

individual costs and effects to preserve the correlation between them. 

6. Compute the parameter of interest, INB = ~effect x "A. - ~cost where ~cost = yfreatment -

ygontrol and likewise for ~effect. 

7. Replicate steps 4 to 6 R times to obtain an estimate of the bootstrap distribution of the 

parameter of interest. 

8. Compute the bias-corrected and accelerated CIs around the mean INB. 

Algorithm 2 - Routine with the shrinkage correction 

I. For i in 1 to nj individuals in cluster j. 

2. Forj in 1 to Mk clusters in treatment k. 

3. For k in 1 to 2 treatments. 

4. Calculate shrunken cluster means, xf and xj, for cost and effect 1 
8. 

5. Calculate standardized individual-level residuals, Zcost,ji and Zeffect,ji' for cost and 

effect l9
• 

18 ~~ = cy-e + (1 - c)y)~ where c is given by (1 - C)2 = 2!!L - (ss~ ; SSw= within-sum of squares and SSB 
J " Mk- 1 b b-l SSB 

= between-sums of squares, b = average cluster size (a formulation akin to the harmonic mean is used here; see page 
412 in Smeeth and Ng (Smeeth and Ng, 2002). These are similarly calculated for effect and separately so for the two 
strata (treatments). Note thatj' is the new cluster identifier (=1 to Mk) which may contain repeats of the old cluster 
identifier,j. All these calculations take place before sampling. 
19 Yeast, I-Yeast, ' h . th b d t Co th . th' d' 'd I' I . Th . '1 I it}'" = ,were Yeastj! IS eo serve cos lor e 1- to IVI ua to c uster}. ese are slml ar y eas. l-b-1 • 

calculated for effect and separately for the two strata (treatments). Again, all these calculations take place before 

sampling. 
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6. Randomly sample (with replacement) Mk pairs of cluster means, X;ost,/ and X;ffect./' 

from the shrunken cluster means calculated in step 4. 

7. Randomly sample (with replacement) L~~l nj' pairs of re si duals, Z;ost,i' and Z;ttect,t" 

where i '=1 ... L~~l nj' , from the standardized residuals calculated in step 5. Note that 

the hierarchical structure is ignored in this step. 

8. Re-construct the sample (Y;ost,j'( 'Y;ttect,j'() by adding the shrunken cluster means from 

step 6 and the standardized residuals from step 7, i.e. Y;ost,/( = X;ost,j' + Z;ost.i' where 

i' = 1 ... nj' and likewise for effects; call it a "synthetic" sample. 

9. Repeat steps 4 to 8 for each stratum (treatment) and stack these 'synthetic' samples into a 

single bootstrap sample. 

10. Compute the parameter of interest, INB, by INB = ~effect x A. - ~cost where ~cost = 

Y;ost,treatment - Y~ost,contTol and likewise for ~effect. 

11. Replicate steps 6 to 10 R times to form a bootstrap distribution of INB, i.e. a distribution 

constructed by R replicates ofINB. 

12. Compute the bias-corrected and accelerated Cls around the mean INB. 
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Appendix 4.3: Definition of performance measures for a given parameter of interest (9) 

Measure 

Bias 

SE of bias 

rMSE 

Cl coverage 

LL error rate 

UL error rate 

Mean Cl width 

Definition 

L~~~m(8k - 9) 

n.sim 

SE(bias) = SD(8)/v'n. sim 

where SO(8) = L~~~m(8k - 8)2 /(n.sim -1) 

n.sim 

L~~~m 1 [LL(8k) ~ 9 ~ UL(8k)] 

n.sim 
L~~~m 1[9 < LL(8k)] 

n.sim 
L~~~m 1[9> UL(8k)] 

n.sim 
L~~~m[UL(8k) - LL(8k)] 

n.sim 

Best performance 

Bias = 0 

Lowest SE 

Lowest rMSE 

Nominal level (0.95) 

Nominal LL error rate 
(0.025) 

Nominal UL error rate 
(0.025) 

Smallest Mean Cl 
~dth 

Median Cl Median value of [UL(8k) - LL(8k)] for k= 1 ... n.sim Smallest Median Cl 
~ili ~~ 

Note: 9 = true parameter; 8 = estimator for 9; n.sim = total number of simulations; SE = 

standard error; SD = standard deviation; rMSE = root mean square error; Cl = confidence 
interval; UL = Cl upper limit; LL = Cl lower limit; 1 ( ] an indicator function for the event in 
brackets 
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Appendix 4.4: R code for implementing GEEs, MLMs and TSB 

These following sets of R code were used to obtain the results shown in Tables 4.2 to 4.5 and 

Figure 4.1 in our manuscript. 

1. GEEs with independent estimating equations and robust standard errors 

The following excerpt shows the derivation of the regression parameter estimates and the robust 

standard errors for the GEE models that we described in the GEEs section of our manuscript. 

******************************************************************** 
11 Excerpts of R code for GBEs with iDdepeDdent estimatiDg equatioDs with (modified) 
11 robust st&D4&rd errors (see page 30-31 of HardiD &Dd Bilbe, 2003). 

## 
## Descriptions of objects: 
## While the number of responses (R) in our manuscript is 2, the code has been 
generalised to the mu1tivariate case where there can be more than 2 responses. 
## 
## 
## 
## 

Xlw: response-specific covariate matrix with dimension, (R*N,tot.P). 
where R no. of responses 

N = total no. of individuals 
## tot.P = no. of unique regression parameters in the mu1tivariate model 
## y1: stacked response (e.g. cost and outcome) vector of dimension, (R*N,l) 
## Nc: Total no. of clusters 
## beta: regression parameters 
## sandwich_varcov_b: robust variance estimator 
## sandwich_se_b: robust standard errors 
## fit mu1ti-variate model ## 
mvglm <- glm.fit(X1w,yl,fami1y=gaussian() ,intercept=F) 
beta <- coef(mvglm) 
# Save fitted values 
fvl <- Xlw %*% beta # fvl - fitted values held in long format 
## Calc u's for each subject (record for each subject is split in R rows) 
ul <- matrix(NA,R*N,tot.P) 
o.res <- yl - fvl # o.res = observed residuals 
for (i in 1: (tot.P)) { 

ul[,i] <- o.res * X1w[,i] 
} 
# Collapse rows for each subject into one 
u <- matrix(NA,N,tot.P) 
ii <- 1 
for (i in l:N) ( 

u[i,] <- co1Sums( u1[ii: (ii+R-1),] ) 
ii <- R*i+1 

} 
# Calculate scores within clusters and total cluster scores 
J <- tapply(rep(l,N),cid,sum) 
u.k <- rep(NA,tot.P) 
S <- matrix(O,tot.P,tot.P) 
ii <- 1 
for (k in l:Nc) { 

if (J[kl==l) ( 
u.k <- u[ii:cumsum(J) [k],] 

else { 
u.k <- colSums(u[ii:cumsum(J) [k],]) # sum of subject's scores 

s <- S + u.k %*% t(u.k) # rolling sum of products of cluster scores 
ii <- cumsum(J) [kl+1 
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} 
# Finally, put the sandwich estimator together 
D <- solve(t(Xlw)%*%Xlw); dim(D) 
sandwich_varcov_b <- Nc/(Nc-l)*D%*%S%*% D 
sandwich_se_b <- sqrt(diag(sandwich_varcov_b)) 
***************************** End of GEE ******************************* 

2. Multilevel models (MLMs) 

The following excerpt shows how to use the function, lme, in the package, nlme, for fitting a 

bivariate Normal multilevel model (Model 3). 

******************************************************************** 

II Excerpt of R code for fitting MLK u.ing lme from the package, DIme. 

I1 see .ection 4.3 in Rg (2005) for technical d.tail. on fitting 

It multivariate Rormal re.pon •• model. u.ing lme in R &Dd B,plu. (mv, 3005) 

I1 
## 
## 
## 
## 
## 
## 
## 
## 
## 
## 
## 
## 
## 
## 
## 
## 
## 

Descriptions of objects: 
datalong: A dataframe containing observed data matrix. Observed data 

(including responses, covariates, cluster and individual ids) are 
re-structured into a single matrix such that the two responses (cost 
and outcome) are stacked to form the first (leftmost) column, yl, 
in datalong. The rightmost 2 columns are cluster and individual 
identifiers, cidl and indl. The columns in between are those for 
the response-specific covariates. For the example given below, 
the four response-specific covariates are cons.l, treat.I 
(constant and treatment terms for cost), cons.2 and 
treat.2 (likewise for outcome). 

cidl: cluster identifier (long formatted) 
indl: Individual identifier (long formatted) 
beta: beta 
varcov_beta: variance-covariance matrix for beta 
se beta: standard errors for beta 

library (nlme) 
# control setting for lme 
lmc<-lmeControl( 
msTol=le-7,tolerance=le-6,msMaxIter=3000, msMaxEval=3000, 
opt="optim" ,optimMethod="SANN" , # NOTE: non-default optim method used! 
msVerbose = TRUE) 

mlm <- lme(yl--l+cons.l+treat.l+cons.2+treat.2, 
random=--1+cons.l+cons.2Icidl, 
weights=varIdent(form=-llcons.l), 
corr=corCompSymm(form=-llcidl/indl) , 
data=datalong, 
control=lmc) 

beta <- mlm$coeff$fixed 
varcov_beta <- mlm$varFix 
se_beta <- sqrt(diag(mlm$varFix)) 
****************************** End of MLM ********************************** 

3. Two-stage bootstrap (TSB) with shrinkage correction 
The following code can be used to implement the routine described in Algorithm 2, Appendix 

4.2. The function tsbshrink performs a two-stage bootstrap sampling routine with shrinkage 
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correction as described in Davison and Hinkley (Davison and Hinkley, 1997). The statistic of 

interest is supplied to tsbshrink through user fun (see cestats.r). The options corrbystrat and 

tssampling are experimental and should be kept at their default values. Finally, bias-corrected 

and accelerated confidence intervals are calculated on the bootstrap sample of the statistic of 

interest using npciJ.3.r (see below). 

######################################################################## 
•• tsbsbrink - functiOD to perform two-stage bootstrap with sbrinkag • 
• , correction (Davison aDd Binkley, 1997 page 100-102). 
tsbshrink <­
function(cost=cost,qaly=qaly,cid=cluster,strata=treat,user.fun,unbalclus="donner",corr 
bystrata=T,tssampling="varystratumsize",warning=T,seed.value) { 
### OPTIONS ############################################### 
# 'unbalclus' - estimator to use for average cluster size 
# 'corrbystrata' - shrinkage correction performed by strata 
########################################################### 
### sampling, shrinkage correction, standardising deviations ### 
count <- 0 
n.strata <- length(unique(strata)) 
# stop if !=2 strata 
if (n.strata!=2) { stop("procedure designed for 2 strata only.") } else {} 
data<-data. frame(cost,qaly, cid/strata) 
shrunk.data <- cl) 

# use predetermined seed if specified; else do nothing 
if (!missing(seed.value)){ 
set.seed(seed.value) 

} else { } 
# Option for performing correction by strata or not 
if (corrbystrata){ 

} else { 
n.strata<-l 

} 
while (count<n.strata){ 

count <- count+l 
if (corrbystrata){ 
datal <- data. frame (data [data$strata==unique (data$strata) [count),)) 

} else 
datal <- data.fram(data) 

} 
clus.size <- table (datal$cid) 
# calc cluster means 
cost.x <- tapply(datal$cost,datal$cid,mean) 
qaly.x <- tapply(datal$qaly,datal$cid,mean) 
# STANDARDIZE Z: calc b for standardizing z 
a <- length(unique(datal$cid)) 
if (var(clus.size)==O){ 
b <- unique(clus.size) 
} else { 
if (unbalclus=="donner"){ 
ifelse(warning/print(" 'average' clus size Donner") ,NA) 
n <- sum(clus.size) 
b <- (n-(sum(clus.size A 2)/n))/(a-l) 

} else if (unbalclus=="median") { 
ifelse(warning/print(" 'average' clus size median") ,NA) 
b <- median(clus.size) 

} else if (unbalclus=="mean"){ 
ifelse(warning,print(" 'average' clus size mean"),NA) 
b <- mean(clus.size) 

} else {} 
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} # End of 'else' 
# standardize z using cluser means (dfm = deviation from cluster mean) 
cost.dfm <- datal$cost-rep(cost.x,times=clus.size) 
qaly.dfm <- datal$qaly-rep(qaly.x,times=clus.size) 
cost.z <- (cost.dfm)/sqrt(l-l/b) 
qaly.z <- (qaly.dfm)/sqrt(l-l/b) 
# SHRINKAGE: calc c for shrinking x 
cost.ssw <- sum(cost.dfmA2); qaly.ssw <- sum(qaly.dfmA 2) 
cost.ssb <- sum«cost.x-mean(cost.x))A2); qaly.ssb <- sum«qaly.x-mean(qaly.x))A2) 
cost.rhs <- a/(a-l) - cost.ssw/(b*(b-l)*cost.ssb) 
qaly.rhs <- a/(a-l) - qaly.ssw/(b*(b-l)*qaly.ssb) 
ifelse(cost.rhs<O, cost.c<-l, cost.c<-l-sqrt(cost.rhs)) 
ifelse(qaly.rhs<O, qaly.c<-l, qaly.c<-l-sqrt(qaly.rhs)) 
## re-calc x 
cost.x <- cost.c*mean(datal$cost) + (l-cost.c)*cost.x 
qaly.x <- qaly.c*mean(datal$qaly) + (1-qaly.c)*qaly.x 
# TWO-STAGE SAMPLING & RE-CONSTRUCT OBS WITH SHRUNKEN MEANS AND STANDARDIZED 

RES I DUAL S 
# gen random clus (order) id with replacement 
sampled.x.cid <- sample(1:length(unique(data1$cid)) ,replace=T) 
if (tssampling=="varystratumsize") ( 
sampled.z.iid <- sample(1:length(cost.z) ,sum(clus.size[sampled.x.cid)) ,rep lace=T) # 

chosen ind ids for varying stratum sizes 
sampled. cost <­

rep(cost.x[sampled.x.cid),times=clus.size[sampled.x.cid))+cost.z[sampled.z.iid) 
sampled.qaly <­

rep(qaly.x[sampled.x.cid),times=clus.size[sampled.x.cid))+qaly.z[sampled.z.iid) 
# bind data from multiple strata together 
shrunk.data <- as.data.frame(rbind(shrunk.data,cbind(sampled.cost,sampled.qaly, 

rep (unique (datal$cid) [sampled.x.cid),times=clus.size[sampled.x.cid)), 
rep (unique (data$strata) [count),times=sum(clus.size[sampled.x.cid)))))) 

} else if (tssampling=="fixedstratumsize") ( 
sampled.z.iid <- sample (1: length(datal$cid) ,replace=T) # chosen ind ids for fixed 

stratum size (=original data) 
sampled.cost <- rep(cost.x[sampled.x.cid),times=clus.size)+cost.z[sampled.z.iid) 
sampled.qaly <- rep(qaly.x[sampled.x.cid),times=clus.size)+qaly.z[sampled.z.iid) 
# bind data from multiple strata together 
shrunk. data <-

as.data.frame(rbind(shrunk.data,cbind(sampled.cost, sample d.qaly,data1$cid,data1$strata 
)) ) 

} 
} # end of while 
colnames(shrunk.data) <- c("cost","qaly", "cid","treat") 
# apply user-provided function 
tsb.shrunk. inb<-user. fun (shrunk.data,warning=F) 
return(tsb.shrunk.inb) 
} 
######################## End of tsbshrink ################################### 

Excerpt of "cestats.r" for calculating incremental net benefit (INB) 
The following excerpt shows the function, calcinb, within cestata.r, for calculating the parameter 

of interest, the INB. calcinb is called by tsbshrink above for obtaining a bootstrap distribution of 

INB using the two-stage bootstrap method. 
############################################################################### 

### calcinb - function to calculate INB with a single input argument (data) ### 
calcinb <- function(data,lambda=20000,warning=T){ 
### Data checking ### 
# 1. check if expected vars are all present in data 
cea.names <-c("cost", "qaly" , "treat") 
count<-O 
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for (name in cea.names) ( 
count <- count+any(names(data)==name) 

} 
if (count!=3){ stop("Not all of the expected variable names (cost, qaly and treat) 
present in data.") } 
# 2. is 'data' a data. frame 
stopifnot(is.data.frame(data» 
# 3. Non-all values in treatment variable 
if (warning) { 
if ((length(unique(data$treat» !=2) I I (min(data$treat) !=Olmax(data$treat) !=l»{ 
cat (" \n", 
"Warning: Either values in 'treat' are not all or number of unique values in 'treat' 

is not two.","\n", 
Function assumes the lower of the two values in 'treat' to represent the 

control ", "\n", 
group and the higher the treatment group.", "\n") 

} else {} 
} else {} 
### End of data checking ### 
### Calc INB ### 
inc.qaly <- by(data$qaly,data$treat,mean) [2]-by(data$qaly,data$treat,mean) [1] 
inc.cost <- by(data$cost,data$treat,mean) [2]-by(data$cost,data$treat,mean) [1] 
inb <- inc.qaly*lambda - inc.cost 
return (inb) 
} 
############################# End of 'calcinb'################################ 

npcil.3.r - constructing non-parametric confidence intervals 
This function can be used to construct the bias-corrected and accelerated (Sea) confidence 

intervals, using the observed data and the bootstrap distribution of the statistic of interest. 

############################################################################## 
## npcix.x.r - Non-Parametric Confidence Intervals 
## Use this to calculate the upper and lower limits of non-parametric confidence 
## intervals using the percentile ("perc"), bias-corrected ("bcor" and 
## bias-corrected and accelerated ("bca") methods described by Carpenter and 
## Bithell (Carpenter and Bithell, 2000). 
################################################################################### 
### npci - Function to return lower and upper limits of BCa confidence interval ### 
npci <- function(orig.data,bsample,user.fun,twosided.alpha=0.05,type,interpolate=T) { 
half.alpha <- twosided.alpha/2 
ul <­

ulnpci(orig.data,bsample,user.fun,upp.alpha=half.alpha,type=type,interpolate=interpola 

te) 
11 <- ulnpci(orig.data,bsample,user.fun,upp.alpha=l-

half.alpha,type=type,interpolate=interpolate) 
return (c (11, ul) ) 

} 
### End of 'npci' ### 
################################################################################### 
### ulnpci - function to calc upper limit of non-parametric Cl ### 
ulnpci <- function(orig.data,bsample,user.fun,upp.alpha=0.025,type,interpolate=T){ 
### 1. Data checking ### 
# 1. Missing 'type' 
if (missing(type»{ 
stop ("Warning: 'type' of confidence interval not specified.") 

} else {} 
# 2. Missing 'orig.data' if type!='perc' 
if (type!="perc" && missing (orig.data) ) ( 
stop ("Warning: original data not specified.") 

} else {} 
### End of data checking ### 
############################ 
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if (type!="perc"){ 
# calc statistic of interest 
theta.obs <- user.fun(orig.data) 
### calc b ### 
p <- sum(bsample<theta.obs) 
B <- length (bsample) 
b <- qnorm(p/B) 
### calc a ### 
theta. jack <- cl) 
for (i in l:dim(orig.data) [l]){ 
theta.jack[i] <- user.fun(orig.data[-i.]) # jackknife estimate of user-supplied 

function 
} 
theta.tilda <- mean (theta. jack) 
a.top <- sum«theta.tilda-theta.jack)A3) 
a.btm <- 6*(sum«theta.tilda-theta.jack)A2)Al.5) 
if (type=="bca"){ 

a <- a.top/a.btm 
} else if (type=="bcor"){ 

a <- 0 
} 

### calc q ### 
z.upp.alpha <- qnorm (upp. alpha) 
q <_(B+l)*pnorm(b-(z.upp.alpha-b)/(l+a*(z.upp.alpha-b») 
q.tilda <- floor(q) 
q.a <- floor(q) 
q.b <- q.a+l 
### Handling extreme values of q.tilda ### 
if (q.a==O){ # extreme low value of q.tilda 
warning("Integer part of Q_tilda=O! Cl limit replaced by lowest value of bootstrap 

sample. 
Interpolation not carried out.") 

return(min(bsample» 
} else {} 
if (q.a==B){ # extreme low value of q.tilda 
warning("Integer part of Q_tilda=size of bootstrap sample! Cl limit replaced by 

largest value of bootstrap sample. 
Interpolation not carried out.") 

return(max(bsample» 
} else {} 
### End of handling extreme q.tilda values ### 
theta.a <- sort (bsample) [q.a] 
theta.b <- sort (bsample) [q.b] 
if (interpolate){ 
ql<-qnorm(q/(B+I» 
q2<-qnorm(q.b/(B+l}} 
q3<-qnorm(q.a/(B+l}} 
theta.q = theta.a + «ql-q3}/(q2-q3) )*(theta.b-theta.a) 
return(theta.q} 
} else { 
return (theta. a) 

} 
### percentile Cl ### 
} else if (type=="perc"){ 

B <- length (bsample) 
theta.q <- sort (bsample) [(l-upp.alpha}*(B+l)] 
return(theta.q} 

} } 
### End of 'ulnpci' ### 
######################## End of npcil.3.r ################################## 
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Chapter 5 

Comparison of alternative methods for covariate 

adjustment in CEA that use CRTs. 
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5.1 Preamble to research paper 3 

The conceptual review (chapter 2) highlighted the fact that the cluster design can encourage 

systematic imbalances in both individual and cluster-level baseline covariates between the 

treatment groups (Eldridge et aI., 2008, Hahn et aI., 2005, Morgan et aI., 2003, Puffer et aI., 

2003). In those circumstances, the methods considered in research paper 2 are insufficient to 

allow for the potential confounding arising from the systematic covariate imbalance. No previous 

work has considered methods to address this issue in the context ofCEA that use CRTs. This 

study extends research paper 2 by comparing alternative methods for CEA that use cluster trials 

across settings with covariate imbalance. This paper considers the following methods: SUR with 

robust standard errors, MLMs, and a method combining the non-parametric TSB with SUR to 

adjust for the potential confounding. 

This paper firstly considers an empirical application (the PoNDER study) with covariate 

imbalance to illustrate the implications of the choice of method for covariate adjustment. The 

study followed general methodological guidance on covariate adjustment (Altman, 2005, Imai et 

aI., 2008) and limited the adjustment to those covariates that were anticipated a priori to be 

important prognostic factors. The case-study also illustrates circumstances where different 

prognostic relationships between treatment groups are anticipated, a concern often raised more 

generally (Assmann et aI., 2000, Gelman and Pardoe, 2007, Po cock et aI., 2002). 

This paper considers new simulations motivated by the case study, and grounded in the 

conceptual review. For example, it was judged important to allow for scenarios with different 

levels of baseline imbalances and levels of correlation between the covariates and the endpoints, 

and to allow for prognostic relationships to differ between treatment groups. As in research paper 
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2, methods were compared under other common settings, where differences amongst methods 

were anticipated, such as in CRTs with few clusters and unequal numbers per cluster. 
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Abstract 

Statistical methods have been developed for cost-effectiveness analysis (CEA) of cluster 

randomised trials (CRTs) where baseline covariates are balanced. However, CRTs may show 

systematic differences in individual and cluster-level covariates between the treatment groups. 

This paper presents three methods to adjust for imbalances in observed covariates: seemingly 

unrelated regression (SUR) with a robust standard error, a 'two-stage' bootstrap (TSB) approach 

combined with SUR, and multilevel models (MLMs). We consider the methods in a CEA of a 

CR T with covariate imbalance, unequal cluster sizes and a prognostic relationship that varied by 

treatment group. The cost-effectiveness results differed according to the approach for covariate 

adjustment. 

A simulation study then assessed the relative perfonnance of methods for addressing systematic 

imbalance in baseline covariates. The simulations extended the case study and considered 

scenarios with: different levels of confounding, cluster size variation and few clusters. 

Performance was reported as bias, root mean squared error and confidence interval (Cl) coverage 

of the incremental net benefit. Even with low levels of confounding, unadjusted methods were 

biased, but all adjusted methods were unbiased. MLMs perfonned well across all settings, and 

unlike the other methods, reported Cl coverage close to nominal levels even with few clusters of 

unequal sizes. 
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1. Introduction 

Econometric evaluation often uses observational data to estimate 'average treatment effects' 

(ATEs). In non-randomised studies, baseline characteristics may be correlated with both 

treatment choice and the endpoints of interest, i.e. the distribution of potential confounders (both 

observed and unobserved) can differ across treatment groups. Approaches such as regression, 

instrumental variables estimation, matching and inverse probability weighting have been 

advocated for reducing selection bias in observational studies (Basu and Rathouz, 2005, Sekhon 

and Grieve, 2011, Jones and Rice, 2011). In cost-effectiveness analysis (CEA), many studies use 

data from clinical trials where individual patients are randomised. Here, if the randomisation is 

properly conducted, systematic differences in baseline characteristics between the treatment 

groups can be avoided, and the resultant estimates will be unbiased (lmai et aI., 2008, Senn, 

1989). For CEA of clinical trials, regression approaches have been proposed for the purposes of 

improving precision or conducting pre-specified subgroup analyses, (Barber and Thompson, 

2004, Briggs, 2006, Hoch et aI., 2002, Manca et aI., 2005, Nixon and Thompson, 2005, Willan 

and Briggs, 2006, Willan et aI., 2004). 

For CEA of interventions that operate at a group rather than an individual-level (e.g. changing 

incentives for providers), or where there is a high risk of contamination amongst individuals 

within a geographical setting (e.g. alternative strategies for containing an infectious disease), a 

cluster randomised trial (CRT) may be preferred. Here the unit of random is at ion is the cluster, 

for example the primary care physician, not the patient. The CRT can be designed to try and 

avoid selection bias, for example by concealing treatment allocation, and also recruiting 

individuals before cluster randomisation. 
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A general concern with CRTs is that studies tend to be unblinded, with individuals recruited after 

treatment allocation is known (Donner, 1998, Donner and Klar, 2000, Puffer et aI., 2005). Those 

recruiting individuals into clusters often know both the treatment allocation and patients' 

characteristics prior to their inclusion. CRTs with this design are prone to differences between 

the treatment groups in patient and cluster-level baseline characteristics that are systematic, 

rather than due simply to chance (Eldridge et aI., 2008, Puffer et aI., 2003). For example, 

potential participants with poor prognostic characteristics may be more likely to enter the control 

group once assignment is known. Hence, the CRT design can yield systematic imbalances in 

baseline characteristics, which if associated with endpoints, can lead to biased results (Eldridge 

et aI., 2008, Hahn et aI., 2005). An additional concern is that CRTs typically have clusters of 

unequal size, for example due to different recruitment rates (Carter, 2010). If cluster size is 

correlated with an endpoint, such as costs, for example due to (dis)economies of scale, then this 

can lead to biased estimates (Panageas et aI., 2007). Furthermore, baseline covariates may have 

prognostic relationships that differ by treatment group (Gelman and Pardoe, 2007, Liu and 

Gustafson, 2008); this may occur if for example, the study protocol is less rigid for the control 

than the treatment group. 

Hence, for CEA that use CRTs to provide unbiased estimates, analytical methods are required to 

adjust appropriately for systematic differences in observed baseline covariates. This raises the 

issue of which covariates to include and how best to undertake the adjustment (Austin et aI., 

2010). Methodological guidance emphasises that covariate adjustment should be limited to those 

variables anticipated to be strongly associated with the endpoints of interest (Altman, 2005, Imai 

et aI., 2008). Consideration should also be given to non-linear terms and covariate by treatment 

interactions if these are anticipated to be important (Assmann et aI., 2000, Gelman and Pardoe, 
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2007). Hence, the choice of covariates for adjustment should not simply be according to whether 

or not there are statistically significant baseline differences between the treatment groups (lmai 

et aI., 2008). 

In CEA that use CRTs, little attention has been given to analytical methods (Gomes et aI., 

201 la). A recent paper presented methods that allow for clustering and the correlation between 

costs and outcomes: these were seemingly unrelated regressions (SUR) and generalised 

estimating equations (GEEs) both with a robust variance estimator, multilevel models (MLMs) 

and a two-stage non-parametric bootstrap (TSB) (Gomes et aI., 2011b). The study assumed that 

baseline covariates were balanced between the treatment groups. Indeed, the potential for 

selection bias seems to be generally ignored in CEA that use CRTs. Our review (Gomes et aI., 

2011a) found that of62 published CEAs that use CRTs, about 60% did not report an assessment 

of covariate balance, and of the 27 studies reporting baseline information, only 16 adjusted for 

any baseline imbalances. The remaining 11 studies justified reporting unadjusted results by the 

lack of any statistically significant baseline differences. 

The aim of this paper is to assess the relative performance of alternative methods for CEA that 

use CRTs when there are systematic imbalances in individual and cluster-level baseline . 

covariates. This paper considers alternative approaches for CEA that use CR T in an empirical 

application and an extensive simulation study. We consider regression-based methods such as 

MLMs and SUR, and extend a non-parametric TSB to handle covariate adjustment. We do not 

consider net benefit regression because the approach lacks flexibility (Nixon and Thompson, 

2005, Willan et aI., 2004), nor GEEs as these performed poorly in studies with few clusters 

(Gomes et aI., 2011b). We estimate ATEs, as these are of prime interest for policy makers 

(Claxton, 1999, Imbens and Wooldridge, 2009, Jones and Rice, 2011). In the next section, we 
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outline the methods under comparison. Section 3 presents the motivating example. Sections 4 

and 5 report the design and results ofthe simulation study. The last section discusses the findings 

and suggests areas for further research. 

2. Statistical methods for covariate adjustment in CEA that use CRTs 

In CEA that use CRTs, statistical methods are required that adjust for covariate imbalances while 

accounting for the clustering and the correlation between costs and health outcomes. We 

consider three methods: SUR with robust standard errors (SE), MLMs, and an approach that 

combines the TSB with SUR (TSB+SUR). 

We use the following notation: let Ci} and ei} represent the costs and outcomes for the ith 

individual in the jth cluster. For simplicity the models and the simulation study are described for 

CEA with two alternative treatments but the models extend to evaluations with more than two 

randomised groups. Each method is illustrated assuming linear additive effects for treatment and 

covariates (Nixon and Thompson, 2005, Willan and Briggs, 2006). For simplicity, we illustrate 

adjustment for one individual-level ( xi}) and one cluster-level (Zj) covariate. 

Seemingly unrelated regressions (SUR) 

SUR consists of a system of regression equations with residuals that are allowed to be correlated 

(Zellner, 1962). The set of covariates can differ for each endpoint, but in Model (1) below we use 

the same individual ( xi} ) and cluster-level (Zj) covariates for each endpoint. 
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(1) 

where I} is the treatment indicator (I) =0 for control and I for treatment group). The incremental 

costs (Pt) and outcomes (pn, can be estimated by ordinary least squares (OLS). SUR can also 

assume that the individual error terms (&) follow a bivariate Normal distribution (BVN), with 

mean zero and variances 0'; and 0'; . The correlation between costs and outcomes, conditional 

on covariates, is recognised through the parameter p. Model I can also include covariate by 

treatment interaction terms. The covariates can be centred on their means so that ~ and p~ are 

the incremental costs and outcomes, at the mean level of each covariate. The uncertainty 

estimates can account for clustering with robust SE (Wooldridge, 2002). However, potential 

concerns with SUR are: (i) parameters estimates are obtained without acknowledging the 

clustering; (ii) correlation between costs and outcomes at individual and cluster levels are not 

separately identified; (iii) the asymptotic assumptions required for the robust variance estimation 

may not be satisfied in CRTs with few clusters, particularly when there are unequal numbers per 

cluster (Gomes et ai., 201Ib). 

Mullilevel models (MLMs) 

Unlike SUR, MLMs can explicitly recognise clustering in the parameter estimation by 

incorporating the cluster-level random effects ( u~ , u; ), while adjusting for cluster and 
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individual-level covariates (Nixon and Thompson, 2005). For example, an MLM that includes 

one individual-level covariate ( xi}) and one cluster-level (Zj) and can be described as: 

~=~+~0+~~+~~+~+~ 

~=~+~0+~~+~~+~+~ 

(~J-Bm((~}(~; ~nJ 

( :} Bm( (~J{'; ~T;;. J J 

which as above can be extended to include treatment by covariate interactions. Model (2) 

(2) 

acknowledges separately individual and cluster-level correlations between costs and outcomes, 

conditional on the covariates, through the parameters p and 1//. This particular MLM (2) 

assumes the error terms are normally distributed but alternative distributions such as a Gamma 

distribution for costs could be chosen (Grieve et aI., 2007, Nixon and Thompson, 2005). A 

general concern with MLMs or SUR is whether estimates are unbiased and precise if the 

distribution model is misspecified, by for example, assuming that the individual-level residuals 

are normally distributed when cost data are highly skewed. Unlike SUR, MLMs do not require 

the same set of asymptotic assumptions to be met, but the estimation of the variance-covariance 

structure still relies on asymptotic properties (Leyland and Goldstein, 2001). 

Two-stage bootstrap (TSB) 

We also considered a non-parametric TSB, which can accommodate clustering and the 

correlation between costs and outcomes, but avoids making distributional assumptions. We 
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provide an overview below, and define the steps taken in the algorithm (Appendix 5.1) but for 

full details of the TSB approach readers are referred elsewhere to (Gomes et aI., 20 11 b) 

A simple TSB resamples clusters and then individuals within each resampled cluster. However, 

to provide an accurate estimation of the variance, Davison and Hinkley advocate a 'shrinkage 

correction'. This procedure requires that shrunken cluster means and standardised individual 

residuals are calculated before any resampling. Bootstrap datasets are then constructed by 

combining resampled shrunken means with resampled individual-level residuals. The ATE of 

interest, for example the incremental net benefit (lNB), can be taken as the mean of the INBs 

across the bootstrap replicates. Uncertainty can be reported by calculating bias-corrected and 

accelerated 95% Cls (Nixon et aI., 2010). This approach can provide unbiased estimates of the 

INB and good Cl coverage, even with few clusters of unequal size, if baseline covariates are 

balanced (Gomes et aI., 2011b). We use this approach for the TSB without covariate adjustment. 

When systematic imbalances are anticipated and covariate adjustment is required, the TSB 

described above may be insufficient. The previous resampling approach of combining each 

shrunken cluster mean with individual residuals drawn across all clusters, does not preserve a 

relationship between the cluster mean and the covariate information within the cluster. To avoid 

this problem we modify Davison and Hinkley's original resampling routine so that the bootstrap 

datasets respect the cluster membership. In the modified algorithm, shrunken cluster means and 

standardised residuals are calculated as before, but each cluster mean is now combined with 

individual residuals drawn from that same cluster (see Appendix 5.1 for further details). 

We then adjust for covariate imbalances by applying SUR (model 1) to each bootstrap resample, 

to report adjusted incremental costs and outcomes and INBs, which are then averaged across the 
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bootstrap replicates. The SUR reports SEs for each incremental measure, without applying the 

robust estimator, because any clustering is recognised by the bootstrap routine. The SEs are then 

also averaged across the bootstrap replicates, to report 95% CIs. A potential concern is that while 

the TSB avoids distributional assumptions, the SUR adjustment assumes that the cost and 

outcome data in the bootstrap replicates are from bivariate Normal distributions. 

3. Motivating example 

Design and description 

This CEA of a CRT evaluated alternative interventions for preventing postnatal depression 

(PoNDER) (Morrell et aI., 2009). The CRT included 2659 patients attending 101 GP practices 

(clusters), and as is typical (Gomes et aI., 201 la), the number of patients per cluster varied 

widely (from 1 to 77). Intra-cluster correlation coefficients (ICCs) were moderate for quality­

adjusted life years (QALYs) (ICCe=0.04), but high for costs (/CCc=0.17). While QALYs were 

approximately Normally distributed, costs were moderately skewed. 

In PoNDER, prior to patient recruitment, clusters were randomly allocated to usual care (control) 

or a psychological intervention delivered by a health visitor (treatment). The intervention 

consisted of health visitor training to identify and manage patients with postnatal depression. 

Baseline measurements were recorded for variables anticipated a priori to be potential 

confounders (Morrell et aI., 2009). Previous studies suggest that cluster size, the number of 

patients randomised in each cluster, may be a confounder (Campbell et aI., 2000, Omar and 

Thompson, 2000). In PoNDER, because clinical protocols were less restrictive in the control 
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than treatment group, it was anticipated that any relationship between the cluster size and the 

endpoints would be stronger in the control group. Hence, models were considered a priori that 

included an interaction of treatment with cluster size. This analysis used baseline and 6 month 

endpoints for 1,732 patients (70 clusters) with complete information. 

Table 5.1 describes covariate balance between treatment arms, reported as percent standardised 

mean differences, which allows comparison across different types of variables (e.g. continuous, 

binary) and is invariant to sample size (Austin, 2009). For a continuous covariate (x), the 

standardised mean difference is calculated as dx = (x] -xo)/ ~(v~+var~)/2 *100, with x] ,xo 

and var~, var~ the means and variances for each group. There is no consensus on the level of 

imbalance that is of concern, but if a standardised difference exceeds 10% this has been judged 

meaningful (Austin, 2009, Rosenbaum and Rubin, 1985). 

In PoNDER, a cluster-level covariate, cluster size, and some individual-level covariates were 

relatively imbalanced (Table 5.1). Cluster size was strongly correlated with costs and QAL Ys 

but only for the control group. When the full data set was considered rather than the subset with 

complete information, covariate imbalance was similar. 

We compare the analytical approaches described above, in pre-specified analyses: i) without 

covariate adjustment ii) with adjustment for main covariate effects and iii) with adjustment that 

includes main effects and a treatment by cluster size interaction. SUR was estimated in ST A T A 

by iterative feasible generalized least squares with a robust SE. The bivariate Normal MLM was 

implemented by maximum likelihood (in R). 
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Table 5.1: The PoNDER case-study. Covariate balance for baseline characteristics, and 

correlation of those covariates with end points. 

Control Treatment 
Standardised 

Covariates group group 
difference (%) 

Correlated with end points 
(n=495) (n=1237) 

Cluster-level 

35.2 39.8 
ro

cos 1 = 0.46 rtOst = -0.03 
Cluster size (21.08) (19.71) 26.3 roqaly = 0.29 lJ.Qa1y = 0.05 

Individual-level 
32.0 31.3 

13.8 
roCOSI = 0.03 r\cost = -0.04 

Age (5.12) (5.03) roqaly = -0.04 rt1y = -0.02 

Baseline QAL Y 
0.256 0.259 

7.4 
roCOSI = -0.12 rtOSI = -0.19 

(0.035) (0.034) rt'Y = 0.77 rt1y = 0.76 

6.85 6.57 
5.7 

roCOSI = 0.10 lJ.eos t = 0.30 
Depression score (4.95) (4.81 ) roqaly = -0.56 rt1Y =-0.54 

Economic status 
345 876 

2.3 
ro

cos
/ = 0.03 rtOSI = 0.02 

(69.8%) (70.8%) rt'Y = 0.08 rt1y =0.01 

202 492 
2.1 

roCOSI = -0.02 rt
ost = 0.05 

Major life events (40.8%) (39.8%) roqaly = -0.16 rt1Y = -0.17 

Previous depression 
40 107 

2.1 
roC051 = -0.02 rtOSI = 0.11 

(8.1%) (8.6%) rt'Y = -0.09 rt1y = -0.16 

Living alone 
22 44 

4.5 
ro

COS1 = -0.06 r\cost = 0.04 
(4.4%) (3.6%) rt'Y = -0.05 rt1y = -0.13 

Note: continuous covariates reported as Mean (SO) and binary covariates as N (%), r - correlation between the covariate 
and endpoint. 

An MLM that allowed costs to take a Gamma distribution was fitted using Markov Chain Monte 

Carlo Methods (MC MC) by calling WinBUGS from R (Spiegehalter et aI., 2003). The MCMC 

estimation was with 5000 iterations, three parallel chains with different starting values and 

assuming diffuse, vague priors (Lambert et aI., 2005). 
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The unadjusted TSB was implemented with Davison and Hinkley's shrinkage correction 

(Davison and Hinkley, 1997). For covariate adjustment after the TSB, we combined our new 

TSB routine with SUR, but without a robust SE. Bootstrap methods were implemented in R, with 

1000 replicates. We reported mean (SE) incremental costs, QAL Ys and INBs (at a ceiling ratio 

of £20000 per QAL V), and accompanying Akaike Information Criteria (AIC)2o. 

Case study results 

The treatment group had lower mean costs, higher mean QAL Y s, a positive INB and a high 

probability of being cost-effective (above 0.9) (Table 5.2). Without covariate adjustment, the 

MLMs reported a less negative incremental cost than the other methods; the MLMs gave 

relatively high weight to smaller clusters which in the control group had relatively low costs; 

hence the mean cost for the control group was lower for the MLMs versus SUR (£272 vs £303). 

After each model adjusted for main covariate effects, the estimated INBs were about 50% lower, 

with substantially smaller SEs, and the AICs were much reduced. Once the models included the 

treatment by cluster size interaction, SUR and the MLMs gave similar estimates, and lower 

AICs. When the MLMs were specified with Gamma rather than Normal costs, the estimated INB 

was similar, but model fit improved further. The TSB combined with SUR provided relatively 

similar point estimates to the other methods but with substantially smaller SEs. The differences 

across methods motivates the simulation study described in the next two sections, which aims to 

20 For SUR the AIC is computed from the least squares statistics and does not take into account the robust 
estimation. For TSB+SUR, the AIC is also taken from the same least squares statistics and averaged over the 
bootstrap samples. 
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provide generalisable conclusions about which methods are most appropriate across different 

circumstances. 

4. Monte Carlo simulations 

Data generating process (DGP) 

The simulation study was designed to test the methods across a range of settings where 

systematic imbalances in baseline covariates may be anticipated in CEA that use CRTs. The 

choice of scenarios was based on the PoNDER case-study, a systematic review of published 

CEAs that use CRTs (Gomes et aI., 2011a) and previous methodological studies (Campbell et aI., 

2005, Eldridge et aI., 2006, Flynn and Peters, 2005, Pocock et aI., 2002, Senn, 1994, Turner et 

aI., 2007). It was judged important to allow the following to differ: the level of covariate 

imbalance, the correlation of each covariate (individual and cluster-level) with cost and QAL Y 

endpoints, the ICCs, the variation in cluster size and the number of clusters per treatment arm. 

We designed a flexible DGP that incorporated baseline imbalances and correlations between 

covariates and endpoints, while recognising clustering, and correlation between costs and health 

outcomes. Briefly, costs and outcomes were simulated from a bivariate distribution in two stages, 

at the cluster then the individual level, to reflect the clustering inherent in CRTs. The DGP 

allowed for a wide range of parameters to be varied, and for each endpoint to have different 

parametric distributions. The DGP considered linear additive effects for both treatment and 

covariates (Turner et aI., 2007). 
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Table 5.2: PoNDER case-study. Mean (SE) incremental cost (£), incremental QAL Y, INB (l=£20 000) for models without and 

with covariate. adjustment. 

SUR MLM TSB 

No Adjusted 
With No 

Adjusted 
With No 

Adjusted 

adjustment} for key 
interaction3 adjustmentl for key 

interaction3 adjustmentl for key 
covariates2 covariates2 covariates2 

Incremental -63.4 -67.5 -86.4 -21.4 -19.9 -78.4 
-61.7 (45.7) 

-37.2 
cost (50.2) (45.0) (29.1) (25.3) (25.2) (29.7) (10.1) 

Incremental 0.0043 0.0019 0.0021 0.0044 0.0019 0.0021 0.0042 0.0027 
QALY (0.0020) (0.0012) (0.0013) (0.0021) (0.0013) (0.0013) (0.0024) (0.0011) 

INB 149.4 (70.1) 105.5 127.8 
109.0 (50.0) 

58.1 119.7 
146.1 (65.3) 

91.7 
(57.9) (47.8) (36.8) (42.4) (25.5) 

Ale 16886 15 110 14808 16630 14936 14742 16894 15090 

With 
interaction3 

-43.0 
(l0.4) 

0.0028 
(0.0012) 

99.6 
(28.8) 

14840 

IModel without covariates; zModel adjusted for cluster size, socio-economic status, age and other key clinical factors (Morrell et aI., 2009); 3Model with previous 

covariates plus a treatment interaction with cluster size, results reported at the mean cluster size. 
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We illustrate below a simple DGP with one continuous cluster-level covariate21 and one 

contrnuous individual-level covariate (equations 3.1 and 3.2). We simulated cost (c) and 

outcome (e) data from a potential CRT with Mclusters per arm and nm(m = 1, ... M) individuals 

per cluster. We firstly generated cluster-level mean costs and outcomes (iP; ,iP;) that followed 

distributions with means (!-le ,!-le ) and cluster-level standard deviations ( re' re). Then, individual-

level data ( cij' eij) were simulated from distributions centred at the cluster-level means, and with 

individual-level standard deviations (tTe ,tTe)' Costs and outcomes were allowed to be correlated 

at both the cluster ('If) and individual-level ( p ). The level of clustering was defined by the 

ICCs; for example for costsICG = r; /(d; +r;). The number of individuals per cluster was 

drawn from a Gamma distribution defined by a mean and coefficient of variation, which ensured 

cluster size remained positive (Eldridge et aI., 2006). 

Cluster-level means: 

(3.1) 

Individual-level data: 

Cij - dist(;; + P;xij' O'c) (3.2) 

eij - dist(;; + P;xij + p(cij -(;; + P;xij» , O'e) 

21 In PoNDER, the imbalanced cluster level covariate was cluster size. To afford more flexibility in the simulation 
study, a different cluster-level characteristic was assumed imbalanced between the treatment groups. 
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We incorporated the cluster-level covariate (Zj) when simulating the cluster-level mean costs 

and outcomes, and the individual-level covariate (xi) when simulating individual-level data
22

. 

Both cluster and individual-level covariates were assumed to be continuous and drawn from 

The OGP introduced systematic baseline imbalances by allowing the covariate means to differ 

across treatment arms set according to standardised mean differences (Austin, 2009i3
• For the 

individual (Pi' ,P;) and cluster-level (~ ,p;) covariates, coefficients were simulated as a 

function of the correlation coefficient (r) between each covariate and the corresponding 

endpoint (Turner et aI., 2007). For instance, the coefficient of the individual-level covariate 

(Normal) on health outcomes (Normal) was determined as P; = U e ~ re2 
/ (1 - r}) , and the 

U x 

corresponding coefficient on costs (Gamma) as p; = /-Lc ~(l / shape Jrc2 / (1- rc2) • The OGP 
U x 

easily extends to allow the prognostic strength of a covariate to differ by treatment group, by 

including treatment by covariate interaction terms. 

Definition of scenarios 

Table 5.3 lists parameters allowed to vary across the scenarios. Other parameters, such as the 

level of correlation between costs and health outcomes (0.2), mean cluster size (50) and true INB 

22 As individuals within a cluster tend to be relatively similar, the covariate was allowed to be clustered. 
23 The standardised mean differences assumed constant variance across treatment arms. 
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(£1 000; ceiling ratio £20 000 per QALY), were held constant across scenarios. Covariates xlj 

and z were assumed to follow Normal distributions (mean 50 and SD 20) throughout. 
.I 

The first group of scenarios (Table 5.3, S I-SS), considered different levels of imbalance for an 

individual-level covariate, and confounding just for health outcomes. In the initial scenario, 

baseline imbalance and the correlation between the covariate and health outcome were both set 

to zero (SI). We then simulated scenarios with increasing levels of baseline imbalance and 

correlation with health outcomes (S2-S5). For these scenarios, we reported the performance for 

each method before and after adjustment. The scenario, S5, characterised by high levels of 

imbalance and confounding, was taken as the base case for subsequent scenarios. 

The second group of scenarios, considered the choice of adjustment method across a broader set 

of circumstances (Table 5.3, S6-S 11). These scenarios allowed for confounding in the cost 

endpoint, assumed to follow a Gamma distribution (S6). Subsequent scenarios allowed: for 

imbalance in a cluster-level covariate, assumed correlated with both endpoints (S7); high ICCs 

(S8); unequal cluster sizes (S9); and few clusters (S 1 0). In addition to the change described, each 

scenario incorporated the characteristics of the preceding setting. The final scenario (S 11), 

motivated by PoNDER, and anticipated in CRTs more generally (Campbell et aI., 2000), allowed 

the prognostic relationship of a cluster-level covariate to differ by treatment arm. 

Implementation 

For each scenario, each method estimated INBs before and after covariate adjustment. MLMs 

and the TSB were implemented in R (R, 2011) and SUR in ST AT A (ST A T A, 2009). SUR was 
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estimated by iterative feasible generalized least squares with a robust SE, and the bivariate 

Normal MLMs by maximum likelihood. The TSB was implemented before, and after adjustment 

with SUR (no robust SE) as in the case study. We conducted 2000 simulations for each 

scenari024 . The relative performance of the alternative methods was assessed according to mean 

(SE) bias, root mean squared error (rMSE), variance, confidence interval (Cl) coverage, and Cl 

width of the INB (ceiling ratio of £20000 per QALY). We reported performance before and 

after adjustment (S 1-6, S 11), and across the adjusted methods (S6-1 0). 

Table 5.3: Description of the main parameter values allowed to vary across the different 

scenarios in the simulation study 

Scenario Individual-level covariate Cluster-level covariate Costs ICCs CVimb M 

d re re d re '"c 

SI 0 0 0 0 0 0 Normal 0.01 0 20 

S2 0 0.1 0 0 0 0 Normal 0.01 0 20 

S3 5 0.1 0 0 0 0 Normal 0.01 0 20 

S4 5 0.3 0 0 0 0 Normal 0.01 0 20 

S5 20 0.3 0 0 0 0 Normal 0.01 0 20 

S6 20 0.3 -0.3 0 0 0 Gamma 0.01 0 20 

S7 20 0.3 -0.3 20 0.3 -0.3 Gamma 0.01 0 20 

S8 20 0.3 -0.3 20 0.3 -0.3 Gamma 0.2 0 20 

S9 20 0.3 -0.3 20 0.3 -0.3 Gamma 0.2 1 20 

SIO 20 0.3 -0.3 20 0.3 -0.3 Gamma 0.2 1 3 

Sll 20 0.3 -0.3 20 0.3t _0.3t Gamma 0.2 1 20 
Notes: d- standardised difference; re-correlation between covariate and outcomes; ",.- correlation between 

covariate and costs; CVrmb - coefficient of variation of the cluster size; M-no. of clusters per arm; tcorrelation was 
50% higher for treatment arm (differential prognostic strength). 
The choice of parameter values was informed by previous systematic and conceptual reviews (Gomes et aI., 201 la), 
and from data extracted from eight case studies (Gomes et aI., 2011b). 

242000 simulations provide coverage rates of 0.94 to 0.96 (for true coverage ofO.95) with 95% confidence. 

180 



5. Simulation results 

Table 5.4 reports the results for the first set of scenarios where an individual-level baseline 

covariate had different levels of imbalance and correlation with health outcome. Even with low 

levels of baseline imbalance and correlation (S3), methods without adjustment produced slightly 

biased results. At increased levels of imbalance and correlation (S5), the unadjusted approaches 

reported high bias (>10%) and low Cl coverage (below 0.9 for a nominal level of 0.95). 

All adjusted approaches reported unbiased estimates of the INB, including the new TSB routine 

combined with SUR25
• However, the Cl coverage for the TSB combined with SUR was lower 

than for the other methods (0.91 vs 0.94) across all scenarios. 

In the scenario without imbalance and confounding (S 1) covariate adjustment increased the 

variance of the INB (after covariate adjustment with the MLMs, the average variance was 12 125 

vs 12027 before adjustment). By contrast, if the covariate was balanced but correlated with 

outcome (S2), the corresponding variance was slightly smaller after adjustment (12 122 vs 12 

227). 

For the scenarios with confounding on costs (S6), an imbalanced cluster-level covariate 

correlated with both endpoints (S7), high ICCs (S8), cluster size variation (S9) and few clusters 

(S 1 0) all unadjusted methods reported biased estimates and low Cl coverage (below 0.9). 

Following covariate adjustment, each method provided unbiased estimates of the INB (Appendix 

5.2). 

25Using Davison and Hinkley's original TSB routine, combined with SUR provided biased results; for example for 
SS the mean (SE) bias was 23.6 (2.56). 
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Table 5.4: Bias (SE) of the INB for a set of scenarios (SI-SS) which allow for increasing levels of baseline imbalance for an individual­

level covariate, and increasing levels of correlation of that covariate with health outcome (QALYs, true INB=£1 000) 

SUR MLM TSB 

Baseline 
Correlation Without With Without With Without With 

Scenario between covariate covariate covariate covariate covariate covariate covariate 
imbalance 

and outcome adjustment adjustment adjustment adjustment adjustment adjustment 

SI None None 
0.14 0.56 0.14 0.56 0.13 0.43 

(2.46) (2.50) (2.46) (2.50) (2.47) (2.47) 

S2 None Low (0.1) 
0.26 0.11 0.26 0.11 0.24 0.11 

(2.47) (2.46) (2.47) (2.46) (2.48) (2.46) 

S3 Low (5) Low (0.1) 
9.79 0.07 9.79 0.07 9.81 0.04 

(2.47) (2.46) (2.47) (2.46) (2.48) (2.46) 

S4 Low (5) High (0.3) 
30.9 0.08 30.9 0.08 31.0 0.02 

(2.58) (2.46) (2.58) (2.46) (2.58) (2.46) 

S5 High (20) High (0.3) 
125.3 0.01 125.3 0.01 125.3 0.03 
(2.58) (2.47) (2.58) (2.47) (2.58) (2.47) 
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However, as Figure 5.1 shows, Cl coverage differed across methods. The combination of the 

TSB with SUR gives poor Cl coverage (0.91 or less) under each scenario. The Cl coverage with 

SUR is lower than for the MLMs, when the numbers per cluster vary26 (S9) and there are few 

clusters (S 1 0). For these scenarios, MLMs also reports lower variance and rMSE than SUR (see 

Appendix 5.2 for further details). For scenario S10, characterised by imbalanced individual and 

cluster-level covariates correlated with endpoints, high ICCs, few clusters (8 per arm) and cluster 

size variation, the adjusted MLMs still gives reasonable coverage (0.93). 

Figure 5.1: Cl ~overage of the INB (nominal level is 0.95) for adjusted methods for the 

following s~enarios: base ~ase (SS); ~onfounding on ~osts (S6); imbalanced ~Iuster-Ievel 

~ovariate (S7); high ICCs (SS); high cluster size variation (S9); few clusters (S10)* 

~ 
t 
~ = Col 

.., 

0.97 • 
0.95 ---------I------- Jl -------lI----------------------• • • • 
0.93 • • 
0.91 • 
0.89 

0.R7 

0.85 • 
0.83 

S5 S6 S7 ss Sl) SlO 

Scenarios 

*Each scenario includes the other characteristics of the preceding scenario. 

-MLM 

eS'CR 

.t.TSB-SUR 

26 Here, for cluster size we assumed a coefficient of variation of I. Even with a coefficient of variation of 0.5, SUR 
reports variance and rMSE that are 20% higher than for the MLM. 
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Table 5.5: Bias, variance, rMSE Cl coverage and width of the INB for a scenario (SU) with a cluster-level prognostic relationship that 

differs by treatment arm (true INB=£l 000) 

SUR 

Without Adjust for 
covariate main 

adjustment effect only 

Mean (SE) 421.9 167.9 
bias (28.9) (9.4) 

variance 1 673434 176655 

rMSE 1 361 453 

Cl coverage 0.808 0.879 

Mean Cl width 1 742 1472 

Adjust for 
interaction* 

3.93 
(28.0) 

183833 

438 

0.885 

1 352 

Without 
covariate 

adjustment 

422.3 
(27.9) 

1 555618 

1 317 

0.790 

1 711 

MLM 

Adjust for 
main 

effect only 

167.5 
(7.6) 

116477 

380 

0.919 

1343 

Adjust for 
interaction 

3.51 
(22.3) 

112697 

367 

0.947 

1 194 

Without 
covariate 

adjustment 

423.9 
(29.1) 

1 695850 

1369 

0.809 

1 749 

TSB 

Adjust for Adjust for 
main interaction 

effect only 

168.2 4.71 
(9.0) (26.2) 

162577 158030 

437 425 

0.875 0.881 

1482 1401 

* ATE is reported at the covariate mean. This scenario is characterised by high ICCs (0.2), unequal numbers per cluster, and 20 clusters per treatment arm 
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Table 5.5 reports the results for the last scenario (S 11), where the prognostic relationship for a 

cluster-level covariate differed by treatment arm, there were unequal numbers per cluster, high 

ICC (0.2), but moderate numbers of clusters (20 per ann)27. The results show that unless the 

treatment by covariate interaction is incorporated, each method reported biased estimates of the 

INB and low Cl coverage. After including the interaction term, each method provided unbiased 

estimates, lower rMSE and improved Cl coverage. The MLMs with the interaction term reported 

the lowest rMSE and was the only approach that reported Cl coverage close to the nominal level. 

6. Discussion 

This study presents alternative methods for CEA that use CR T where baseline covariates differ 

between treatment groups. These adjusted methods address systematic imbalances in both 

individual and cluster-level covariates. The case study illustrates that in CEA that use CRT, cost-

effectiveness estimates can differ according to method. The simulation extends the case study, 

and shows that without adjustment, CEA can report biased estimates even with Iow levels of 

confounding. 

By contrast, each adjustment method provides unbiased estimates. Of the alternative methods, 

the MLMs report Cl coverage close to nominal levels across all the circumstances considered (Cl 

coverage of 0.93 to 0.95). In settings with unequal numbers per cluster and few clusters, SUR 

with a robust variance estimator, reports low Cl coverage and high rMSE compared to the 

MLMs. The TSB and SUR approach proposed gives low Cl coverage in each setting considered. 

27 We also considered a scenario where the interaction of treatment is with an individual-level rather than a cluster­
level covariate, but the results were similar to those presented for S 11. 
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This is the first paper to consider analytical methods for addressing systematic covariate 

imbalance in CEA that use CRT. A previous simulation study (Gomes et aI., 2011 b) suggested 

that MLMs or a TSB approach were appropriate for CEA that use CRTs, but only considered 

circumstances with balanced covariates. Our paper shows that where the CRT has systematic 

baseline differences between the treatment groups, methods that assume covariate balance are 

insufficient. We consider a simple approach to adjusting for systematic imbalances in patient or 

cluster-level covariates, which is to apply SUR with a robust SE. Previous work reported that 

SUR performed well for CEA that use CRTs unless the number of clusters was small (Gomes et 

aI., 2011 b). By contrast, our paper shows that when there are unequal numbers per cluster, 

adjusted SUR can report poor coverage even with a moderate number of clusters (20 per 

treatment arm). This is an important concern, as a previous review reported that 75% of studies 

have uneven numbers per cluster, and of these about 50% have fewer than 20 clusters per arm 

(Gomes et aI., 2011a). While improved robust estimators have been proposed for setting with 

few clusters (Pan and Wall, 2002, Skene and Kenward, 2010), it is unclear how they would 

perform with unequal cluster sizes. 

Rather than relying on the asymptotics required for robust variance estimation, or the 

distributional assumptions made by MLMs, we extend a previous TSB algorithm and combine it 

with SUR. While this new approach performs well in terms of bias and rMSE, it provides too 

narrow CIs, as observed in the case study. Hence, TSB appears less appealing for CEA when 

covariate adjustment is required. While one alternative would be to combine the TSB with a 

SUR or GEE that has a robust variance estimator, as our results show the asymptotic 

assumptions required are unlikely to be satisfied by the numbers of clusters commonly in CRTs. 
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An alternative approach to avoiding distributional assumptions about the end points, would be to 

bootstrap individual and cluster-level residuals from adjusted MLMs (Carpenter et aI., 2003). 

The MLMs proposed have more general appeal for CEA that use CRTs. The MLMs that assume 

bivariate Normality, perform relatively well even with highly skewed costs; this corroborates 

previous findings suggesting that methods that assume Normality may be reasonably robust to 

skewed cost data (Nixon et aI., 2010, Willan et aI., 2004). In the case study, the MLM extended 

to assume a Gamma distribution for costs, and as in previous studies, this slightly improved the 

precision ofthe estimates (Grieve et aI., 2010). The MLMs presented here can be easily extended 

to report multiplicative treatment effects (Thompson et aI., 2006) or A TEs for each subgroup of 

policy-interest (Vaness and Mullahy, 2006). 

In addressing systematic imbalances, issues beyond the choice of estimation method warrant 

careful consideration. In particular, pre-specified analysis plans for CEA should consider a priori 

what form the potential confounding may take, informed by theory, previous literature and 

expert opinion. In our case-study, as may be present more generally in CEA, adjusting for main 

effects was judged insufficient. Here, it was important that each method recognised that a 

prognostic relationship can differ by treatment group. Indeed, the simulation highlighted that 

ignoring a more complex prognostic relationship can bias the overall cost-effectiveness 

estimates. 

This research does have some limitations. The methods proposed allow for systematic 

differences in potential confounders that were observed. The CRT design may also lead to 

systematic imbalances in unobserved characteristics. Hence methods such as instrumental 

variable estimation that can address unobserved differences also warrant careful consideration 
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(Basu et aI., 2007, Polsky and Basu, 2006). Some CRTs may be designed so that the only 

baseline imbalances are by chance; our study does not apply to these circumstances. The MLMs 

proposed performed well across a range of settings including skewed cost data, but the 

simulation study did not consider some complexities that can arise including variances that differ 

across clusters, or non-Normal distributions for cluster-level residuals, In principle, the MLMs 

presented could be extended to allow for such complexities, but previous research suggest the 

improvements in inference may be relatively small (Grieve et aI., 2010). 

This paper opens up several areas for further research. In particular, it would be useful to extend 

the methods to handle nonlinear relationships between covariates and endpoints, missing and 

censored data. A complementary approach, which can offer protection against misspecification 

of the covariate adjustment model would be to extend the MLMs to doubly robust estimation 

(Bang and Robins, 2005). Here, a model for treatment choice, a propensity score, could be 

estimated including covariates anticipated to be potential confounders, with the MLMs weighted 

according to the inverse probability of treatment (lmbens, 2004). Such doubly robust estimators 

are consistent as long as either the treatment or the endpoint model is correctly specified (Bang 

and Robins, 2005). Another area for further research is to consider circumstances where missing 

data are a concern. In the context ofCEA that use CRTs, the use ofmultilevel multiple 

imputation may be warranted (Carpenter et aI., 2011). This approach extends conventional 

multiple imputation (Rubin, 1987) to reflect the multilevel structure of the original data. 

This paper extends the literature examining the relative merits of hierarchical models (Cameron 

and Trivedi, 2005, Jones, 2009), robust variance estimation (Greene, 2003, Wooldridge, 2010), 

and non-parametric bootstrap approaches for covariate adjustment. In a context where 

adjustment methods are required to address systematic differences between treatment groups as 
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well as accommodate clustering and the correlation of costs with health outcomes, we find that 

MLMs perform well. While any of the adjustment methods proposed reports unbiased estimates, 

the MLMs can provide more precise estimates with better Cl coverage than the other approaches. 
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Appendix 5.1: Algorithm for the non-parametric TSB combined with SUR 

Suppose we have Mk clusters randomised to treatment (k=2) and control (k= 1) groups, with nj 

individuals within each cluster j. 

13. For i in 1 to nj (individuals in clusterj) 
14. Forj in 1 to Mk (clusters in treatment k) 
15. For k in 1 to 2 (treatments) 
16. Calculate shrunken cluster means, xf and xj, for cost and outcome

28
• 

17. Calculate standardized individual-level residuals, Zcost,ji and Zeffect,jil for cost and 
29 outcome. 

18. Randomly sample (with replacement) Mk pairs of cluster means, x;ost,{ and x;ffecti' 

from the shrunken cluster means calculated in step 4. 

19. Within each resampled cluster, randomly sample (with replacement) L~~l nJ' pairs of 

standardized residuals (step 5), Z;ost,( and Z;ffect,(' where i '=1 ... L~~1 nj" 

20. Re-construct the sample (Y;ost,j'( 'Y;ffect.j'() by adding the shrunken cluster means from 

step 6 and the standardized residuals from step 7, i.e. Yc*ostj"" = x" t" + z .. t" where ,l cos ,j cos ,l 

i' = 1 ... nj' and likewise for effects; call it a 'synthetic' sample. 

21. Incorporate the covariate set (w/i') into each synthetic sample: 

(Y;ost'/( + w/(, Y;ffect'/( + wj'(). Covariates can be different for costs versus outcomes. 

22. Repeat steps 4 to 9 for each treatment arm and stack these 'synthetic' samples into a 
single bootstrap sample. 

23. Replicate steps 6 to 10 R times to construct R bootstrap samples. 
24. Apply SUR without robust standard error to each bootstrap sample generated in step 11, 

to estimate mean and standard error (SE) of incremental costs (~C), incremental 
outcomes (~) and the covariance (~C,~), adjusted for potential confounders. 

25. Calculate the parameter of interest, e.g. !NB, by averaging SUR estimates across the R 
replications: INB = (L:=1 ~r A - 6Cr) fR, where A is the willingness-to-pay for a 
QALY. 

26. Applying the Central Limit Theorem, Cls for INB can be constructed as [NB ± 
1.96SE(iNB) (Nixon et al., 2010) where, 

SE(fNB) = a::=1 SE(~r)2 A2 + SE(6Cr)2 - 2ACOV(KEr,aEr)]fR. 

28 fJ = cY.C + (1 - c)yj where c is given by (1- C)2 = M:~l - b(bs:.~SSB; SSw= within-sum of squares and SSB 

== between-sums of squares, b = average cluster size (a formulation akin to the harmonic mean is used here (Smeeth 

and Ng, 2002». 
29 i }I = Yeost. I-Yeost .. , where Yeost JI is the observed cost for the i-th individual in cluster}. These are similarly 

cost, l-b-1 ' 

calculated for outcomes, and separately for the two treatment arms. 
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Appendix S.2: Bias (True INB=£l 000), variance and rMSE of the INB for adjusted 

methods, across scenarios SS-SlO* 

Bias Variance 

SUR MLM TSB+SUR SUR MLM TSB+SUR 

Base-case (SS) 
0.04 0.01 0.26 

12 168 12 172 12 174 (2.47) (2.47) (2.47) 

Confounding on costs (S6) 1.77 1.78 1.59 
14092 14092 14073 (2.65) (2.65) (2.65) 

Cluster-level covariate (S7) 0.06 0.06 3.24 
14475 14468 14258 (2.69) (2.69) (2.67) 

High ICCs (S8) 
7.84 8.11 8.25 

99431 99549 99431 (7.06) (7.05) (7.05) 

High cluster size variation (S9) 10.3 2.04 9.07 
182 142 120300 169880 (9.54) (7.76) (9.22) 

Few clusten (SlO) 
0.15 0.56 1.48 

478875 329378 422329 
~15.5~ (12.8) ~14.5~ 

• Each scenario includes the other characteristics ofthe preceding scenario. 

195 



Chapter 6 

Discussion 

196 



6.1 Introduction 

Health policy makers are increasingly using CEA to inform resource allocation decisions. For 

CEA of many public health interventions, the best cost-effectiveness data come from CRTs. 

The analysis of patient-level cost-effectiveness data from CRTs raises many challenges 

which need to be addressed so that studies can provide sound evidence for policy making. 

Despite methodological progress in CEA (Glick et al., 2007, Willan and Briggs, 2006), the 

conception of this thesis recognised that little attention had been given to statistical methods 

for CEA that use CRTs (Flynn and Peters, 2005a, Willan, 2006). This thesis has helped 

address this gap in the literature. 

The overall aim of the thesis was to identify appropriate statistical methods for CEA that use 

CRTs and assess their relative performance across a wide range of realistic settings. The 

specific objectives were: 

1. To develop criteria for identifying appropriate statistical methods for CEA that use 

CRTs. 

2. To critically appraise the methods used in applied CEAs that use CRTs. 

3. To assess the relative performance of alternative statistical methods for CEA that use 

CRTs in settings where baselines covariates are balanced. 

4. To compare alternative methods to adjust for systematic covariate imbalance in CEA 

that use CRTs. 

The next section discusses the overall findings from the thesis. Sections 3 and 4 address the 

general contributions to the literature. Sections 5 and 6 summarise the limitations and identify 

areas for future research. Sections 7 and 8 discuss the implications for applied researchers 

and policy making. The last section provides the conclusion. 
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6.2 Overall findings of the thesis 

Firstly, the conceptual review highlighted that statistical methods for CEA that use CRTs 

were required to address key statistical issues such as the clustering, correlation between 

costs and outcomes, skewed nature of cost data; and systematic imbalances in baseline 

covariates (research paper 2). The findings from the review informed a checklist for critical 

appraisal of the applied literature. This checklist found that most economic evaluations of 

cluster trials failed to adopt appropriate statistical methods (research paper 1). More 

specifically, the majority of applied CEAs using cluster trials did not recognise clustering in 

costs or health outcomes. Studies often justified the use of statistical methods that ignored 

clustering on the basis of low estimated ICCs. Research paper 2 demonstrated that methods 

that ignored clustering could underestimate uncertainty, even with low levels of clustering, 

and therefore that justification is inappropriate. Similarly, most of the studies did not 

recognise the correlation between costs and health outcomes, by conducting separate analyses 

of costs versus outcomes. Importantly, only four out of the 62 reviewed studies accounted for 

both clustering and correlation in the estimation of incremental costs and outcomes. 

Secondly, while the review revealed that poor methods were being used in practice, the 

conceptual review identified four groups of methods that could address the main challenges 

in CEA that use CRTs: SUR and GEE, both using a robust estimation of the variance, MLMs, 

and a non-parametric TSB. The methods were first compared across a range of realistic 

scenarios with balanced covariates (research paper 2). While each method reported low levels 

of bias, methods differed in terms of Cl coverage. MLMs and the TSB with a shrinkage 

correction performed well with Cl coverage close to nominal levels across the scenarios 

considered. SUR and GEEs reported low Cl coverage when the CRT had few clusters. 
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Thirdly, the methods were compared in circumstances where systematic differences in 

baseline characteristics were anticipated (research paper 3). The motivating example showed 

that cost-effectiveness estimates could differ according to the adjustment method. For 

example, the INB decreased by more than 50% once key anticipated confounders were 

adjusted for. After adjustment, methods reported similar mean cost-effectiveness estimates, 

but different uncertainty estimates. Simulations compared SUR, MLMs and the TSB 

combined with SUR for the covariate adjustment. All covariate-adjusted methods provided 

unbiased estimates across all scenarios considered. The TSB combined with SUR reported 

lower Cl coverage than the other methods throughout. SUR reported lower rMSE and Cl 

coverage than MLMs, in particular when the CR T had unequal cluster sizes, few clusters or 

there was a covariate by treatment interaction. MLMs performed best, reporting lower rMSE 

than the other methods and Cl coverage close to nominal levels. 

6.3 Main contributions of the thesis 

6.3.1 Developing criteria/or identifying appropriate methods/or CEA that use CRTs and 

critical appraisal 0/ applied literature 

This thesis developed a new checklist to critically appraise the methodological quality of 

CEA that use eRTs. By identifying important methodological flaws, this checklist provided a 

starting point for improving the methods used in practice. The checklist was accompanied by 

a methodological guideline to help future reviewers and researchers to judge the 

appropriateness of the methods adopted. The review also highlighted that there is room for 

improvement, not only in the methods used in practice, but also in the way potentially 

appropriate methods are reported. 
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6.3.2 Methodological insights on the relative merits of alternative methods for CEA that 

use CRTs with balanced covariates 

This thesis provided the first simulation study comparing alternative appropriate methods for 

CEA that use CRTs. A previous study (Flynn and Peters, 2005b) also conducted simulations 

in the context of CEA that use cluster trials but only considered bootstrap methods. Only one 

study has previously attempted to compare different methods for CEA that use CRTs 

(Bachmann et aI., 2007). However, this study compared the methods in a case-study with 

many clusters, equal numbers per cluster and small ICCs. The simulations conducted in this 

thesis provided a more comprehensive testing ground for the methods and provided novel 

results, for example, showing differences across methods in settings with few clusters or 

unequal cluster sizes (research paper 2). 

This thesis examined robust methods for the first time in the context ofCEA that use CRTs. 

Research paper 2 considered SUR and GEEs with robust variance estimators, and showed 

that although these methods can be simple to implement, they may only be appropriate for 

CRTs which have at least a moderate number of clusters (15 per arm). 

6.3.3 Comparative assessment of alternative methods for CEA that use CRTs with 

systematic imbalance in baseline covariates 

No previous work has addressed systematic covariate imbalance in CEA that use cluster 

trials. This thesis added to previous work on covariate adjustment for CEA based on RCTs 

(Nixon and Thompson, 2005, Willan et al., 2004, Hoch et aI., 2002). A key contribution of 

this study is to consider circumstances where bias can arise in a systematic way, not by 

chance as considered in previous papers (Manca et al., 2005, Nixon and Thompson, 2005, 

Willan et aI., 2004). When imbalance occurs by chance, adjustment is generally 
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recommended only when the predictor is anticipated to be strongly related to endpoints 

(Pocock et aI., 2002) such as the baseline QAL Y (Manca et aI., 2005). Unlike these findings, 

research paper 3 demonstrated that methods were required that adjust for systematic covariate 

imbalance even when the prognostic strength of the confounders is low, otherwise the results 

may be biased. 

6.4 Other general methodological contributions emerging from the thesis 

Findings from this thesis also contributed to current methodological debate on a number of 

more general themes in CEA. Specific insights were added to the following areas of 

knowledge: the use of robust methods in the analysis of hierarchical data; 2) methods that 

assume Normal distributions in settings with skewed cost data; and 3) non-parametric 

bootstrap methods for CEA. 

6.4.1 The use of robust methods in the analysis of hierarchical data 

The plausibility of assumptions underlying robust variance methods for the analysis of 

hierarchical data depends largely on the sample size (Huber, 2004). In the context ofCRTs, 

the crucial factor is the number of clusters randomised to each treatment arm. Research paper 

2 found that in the context of CEA that use cluster trials, the robust methods generally 

required at least 10 clusters per arm to provide Cl coverage above 0.9. Previous studies 

examining robust variance estimators for analysing clinical outcomes in CRTs, reported that 

a similar number of clusters were required for asymptotic properties to hold (Feng et aI., 

1996, Omar and Thompson, 2000). However, this thesis found circumstances where 10 

clusters per arm were insufficient. For example, in CRTs with unequal cluster sizes, robust 
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estimators required at least 15 clusters per arm to report reasonable (above 0.9) Cl coverage 

(research paper 2). This is an important finding as most applied CEAs that use cluster trials 

have unequal numbers per cluster (research paper 1). Research paper 3 also showed that 

when covariate adjustment is required, SUR with the robust SE provided poor Cl coverage 

(below 0.9) even with 20 clusters per treatment arm. 

6.4.2 Methods that assume Normal distributions in settings with skewed cost data 

The conceptual review emphasised that methods which assume data are Normally distributed 

may not be appropriate for the analysis of skewed costs (Jones, 2000, Mihaylova et aI., 2011, 

Briggs et aI., 2005, Manning, 2006). By contrast, this thesis showed that methods which 

assume a Normal distribution for costs in the context of CEA that use CR Ts performed 

relatively well. For example, research paper 2 and 3 found that a bivariate Normal MLM 

provided good Cl coverage even when costs were highly skewed. Research paper 3 

demonstrated that when the bivariate MLMs allowed for a Gamma distribution for costs, it 

led to little improvement in Cl coverage or precision. Similarly, the performances of SUR 

and GEEs, which have also assumed Normal costs, were fairly similar between scenarios 

with skewed and Normal costs. This adds to previous findings suggesting that, in CEA, 

methods that assume data are from a Normal distribution may be quite robust to skewed costs 

(Thompson and Barber, 2000, WiIlan et aI., 2004). 

6.4.3 Non-parametric bootstrap methods in CEA 

This thesis provided important methodological insights to the current debate on the 

appropriateness of non-parametric bootstrap methods for CEA (Barber and Thompson, 2000, 
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Nixon et aI., 2010, O'Hagan and Stevens, 2003, Flynn and Peters, 2005b). Research paper 2 

extended seminal work on the non-parametric TSB (Davison and Hinkley, 1997) to allow for 

circumstances where there was variation in the cluster size. Unlike previous findings (Flynn 

and Peters, 2005b), this method provided good Cl coverage, even when the CRT had few 

clusters. The TSB proposed here was implemented with a shrinkage correction, 

recommended more generally to improve the precision of the estimates (Davison and 

Hinkley, 1997: page 102). The simulations showed that when, as in a previous study 

(Bachmann et al., 2007), the TSB is applied without the shrinkage estimator, it overestimates 

the variance. 

A rationale for using non-parametric bootstrap methods in CEA is that they can avoid 

distributional assumptions, which may have particular advantages when the parametric form 

of the data is unknown, as is typical for costs (Briggs et al., 1999, Chaudhary and Steams, 

1996, Mullahy and Manning, 1994). Research paper 2 showed that the TSB reported good Cl 

coverage, even if costs were highly skewed. Previous studies have considered TSB only for 

the estimation of confidence intervals to characterise the uncertainty around cost­

effectiveness estimates (Flynn and Peters, 2004, Flynn and Peters, 2005b). The TSB 

considered here is used to estimate both the mean (Barber and Thompson, 2000) and 

corresponding Cls of the parameter of interest (INB). The simulations demonstrated that the 

means calculated from the bootstrap samples were unbiased estimates of the mean INB. 

Research paper 3 considered, for the first time, a non-parametric bootstrap method for 

covariate adjustment in CEA. This study showed that when covariate adjustment was 

required to adjust for systematic covariate imbalance, the non-parametric bootstrap 

performed poorly. This paper proposed a combination ofTSB with a regression-based 

method, for example SUR to adjust for the confounding. While this improved approach 
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provided unbiased estimates of the parameter of interest, the Cl coverage remained poor 

across the scenarios considered. 

6.5 Limitations 

While this thesis presented a comprehensive assessment and comparison of alternative 

methods for CEA that use CRTs, it has some limitations. In this section, I acknowledge 

general weaknesses of the thesis regarding the criteria for critical appraisal of CEA that use 

CRTs, breadth of methods, and range of circumstances considered. 

6.5.1 Criteria/or critical appraisal o/CEA that use CRTs 

This thesis developed a checklist for critical appraisal of CEA that use CR Ts based on a 

conceptual review of the methods literature conducted at the outset. As with more general 

methodological guidelines, the checklist should be updated to recognise future 

methodological developments. For example, it was recognised later in the conceptual review 

that CEA that use CRTs needed to assess whether there was any anticipated systematic 

imbalance in baseline covariates. To consider this point, the following criterion could be 

added to a future update of the checklist developed in research paper 1: 

"Did the study assess the balance of baseline covariates a priori anticipated as potential 

confounders, and use an appropriate method to correct for anticipated confounding?" 

The conceptual review also identified other specific issues that could arise in the statistical 

analyses. For example, data may be subject to censoring (e.g. individuals lost to follow-up) or 

missing (e.g. due to patient non-response). However, the aim ~f the checklist is to critically 
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appraise whether central statistical issues arising in CEA that use CRTs have been adequately 

addressed and did not attempt to cover all aspects of the analyses. The checklist is therefore 

intended to supplement rather than replace more general methodological guidelines for trial­

based CEA (Glick et aI., 2007, Willan and Briggs, 2006), where particular issues such as 

censoring and missing data are addressed. 

6.5.2 Range of methods considered for assessment 

The thesis identified a comprehensive range of methods for empirical investigation. Each 

method could address all key statistical issues faced by CEA that use CRTs, and hence was 

judged potentially appropriate for this context. The review also identified other methods that 

satisfied only some of the criteria but could still improve current practice. For example, the 

net benefit regression framework (Ho ch et al., 2002) could be implemented with a robust 

estimation of the variance or with cluster-level random effects to account for the clustering. 

However, as the conceptual review highlighted, the assumptions underlying this approach are 

less plausible than the methods considered for CEA that use CRTs. 

The non-parametric TSB considered here was one of many possible alternative non­

parametric bootstrapping approaches. For example, another bootstrap approach could be to 

sample individual and cluster-level residuals from the bivariate MLM (Carpenter et aI., 

2003). However, this approach also requires the use of a shrinkage correction, which can be 

complex to implement for bivariate models (Carpenter et aI., 2003). 

In circumstances where covariate adjustment is required, the methods considered in this 

thesis assumed no unobserved confounding. Methods such as the instrumental variable 

estimation (Basu et al., 2007, Heckman and Navarro-Lozano, 2004), which could adjust for 
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systematic imbalances in unobserved baseline characteristics, may warrant future 

investigation. 

6.5.3 Range of circumstances considered 

This thesis compared the alternative methods across a wide range of settings typically 

observed in CEA that use CRTs. However, it did not cover all possible circumstances that 

could potentially arise in CEA that use CRTs. For example, the design of the simulations 

considered constant variances for costs and outcomes between treatment groups and across 

clusters. Costs and outcomes often exhibit systematic variations across clusters that may not 

be fully captured in the cluster-level random effects (Turner et aI., 2001). In these 

circumstances, allowing the variances to differ by treatment or across clusters may be more 

appropriate (Grieve et aI., 2010). Another source of the heterogeneity across clusters is when 

the treatment or covariates act multiplicatively on endpoints; for example, the covariate effect 

multiplies the endpoints by a cluster-specific factor (Barber and Thompson, 2004, Manning 

and Mullahy, 2001). Unlike the linear additive models considered across all scenarios, 

multiplicative models might have been more appropriate, for example to address high 

heterogeneity in skewed cost data (Thompson et aI., 2006). 

Another limitation in the estimation of costs is that the methods considered in this thesis 

accounted for the clustering in the overall estimation of the incremental cost. However, 

clustering may affect each cost component differently. For example, there may be 

circumstances where although clinical protocols encourage high level of variation between 

patients, clusters may manage particular groups of patients similarly, and hence, yielding a 

low ICC for some resource use items. By contrast, there may be different financial incentives 

between clusters, leading to a high level of variation in unit costs across clusters. Modelling 
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different health care resource use items before applying unit costs may improve the estimate 

of individual cost components (Gauthier et aI., 2009). Another potential advantage is that it 

can allow for alternative models for different types of resource use (e.g. continuous and count 

endpoints) (Conti et aI., 2007). The MLMs considered in this thesis could be extended to 

allow for the estimation of individual cost components, and implemented in a Bayesian 

framework using WinBUGs. However, the joint estimation of individual cost components 

and health outcomes can prove difficult. This would require complex Bayesian methods, 

which can address the correlation across cost components, the correlation between costs and 

health outcomes and the clustering (Lambert et al 2008). In addition, it has been highlighted 

that while modelling resource use has potential to improve estimation of individual cost 

components, it is unclear whether combining these estimates will provide an unbiased 

estimate of the mean total cost (Gauthier et aI2009). 

Both case-studies and simulations in research papers 2 and 3 only compared the methods 

across scenarios with complete cost and outcome data. However, cost-effectiveness data from 

CRTs may be incomplete, for example missing due to individual non-response. Comparing 

methods under complete-case analysis may only be appropriate when data are missing 

completely at random, i.e. the missing mechanism does not depend on either observed or 

unobserved factors (Little and Rubin, 1987). However, data are often missing at random, i.e. 

when the missing mechanism depends on observable variables, and here applying complete 

case-analysis may lead to incorrect inferences (Briggs et al., 2003). Accounting for missing 

data in CEA that use CRTs can be difficult because the missing mechanism may differ 

between clusters or treatment groups, and assuming the same imputation model for the whole 

sample may be incorrect (Little and Rubin, 1987). In addition, missingness may be associated 

with both endpoints, and handling the missing data in the joint estimation of costs and 

outcomes can be complex (Lambert et aI., 2008). 
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Methods were compared in terms of their ability to estimate the overall average treatment 

effect (ATE), as policy makers often make recommendations about a particular intervention 

for the overall population (Claxton, 1999, Imbens and Wooldridge, 2009, Jones and Rice, 

2011). However, there may be circumstances where heterogeneous subgroups of patients 

respond differently to treatment, and making the same recommendation the whole population 

based on the overall ATE may not be appropriate (Vaness and Mullahy, 2006, Sculpher, 

2008). Research papers 2 and 3 did not consider settings where treatment effects differed by 

subgroups of patients. While research paper 3 considered prognostic relationships that differ 

by treatment group (Gel man and Pardoe, 2007, Liu and Gustafson, 2008), the aim was still to 

provide an overall A TE rather than effects by subgroups. Nonetheless, any of the methods 

considered in this thesis could allow for the estimation of different subgroup effects. 

6.6 Areas of further research 

This thesis identified some areas that were potentially worthy of further investigation: 

comparison of the methods under more complex circumstances; assessment of the impact of 

method choice on long-term cost-effectiveness using decision models; and development of a 

general analytical strategy for CEA that use CRTs. 

6.6.1 Comparison of the methods under more complex circumstances 

The nature of cost-effectiveness data from CRTs can pose further challenges, which may 

need to be taken into consideration in future research on methods for CEA that use CRTs. For 

example, comparing methods in circumstances where variance varies across clusters or 

between treatment arms may be warranted (Omar and Thompson, 2000, Turner et al., 2001). 
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Similarly, correlation between costs and outcomes may be different between treatment arms. 

Methods that can better accommodate these more complex variance structures, such as 

MLMs (Grieve et aI., 2010) may provide relative advantages over alternative approaches. 

In addition, both costs and outcomes are assumed to be continuous and defined as linear 

functions of treatment and other covariates, across all scenarios. Investigation of the 

performance of the methods when endpoints are binary and show non-linear relationships 

with covariates is warranted. More specifically, when the distribution model form is a 

concern, more complex Bayesian model-averaging approaches may be preferred to address 

this structural uncertainty (Conigliani and Tancredi, 2009). In addition, a method which can 

offer protection against misspecification of the structural model for endpoints would be to 

extend the MLMs to doubly robust estimation (Bang and Robins, 2005, Imbens, 2004). 

Methodological concerns raised by ignoring missing data in CEA that use CRTs, encourage 

further research on this area. In the context ofCEA that use CRTs, the use ofmultilevel 

multiple imputation (Carpenter et al., 2011) may be required to take into account the full 

uncertainty associated with the missing values. Multilevel multiple imputation is an extension 

of standard multiple imputation (Rubin, 1987) which allows for the variability of the imputed 

data to reflect the multilevel structure of the data. Another alternative in the context of 

clustered data is to use weighted estimators, usually implemented with GEEs (Rotnitzky and 

Robins, 1997). 

6.6.2 Assessment of the impact of method choice on long-term cost-effectiveness using 

decision models 

The conceptual review highlighted the fact that the key methodological concerns in CEA that 

use CRTs affect not only studies that used data from a single CRT, but also studies that 
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combined that data with other evidence in a decision model. The scope of the empirical 

investigations was, however, limited to CEA that used data from a single CRT. Differences 

between alternative statistical methods for analysing patient-level cost-effectiveness data are 

likely to translate directly into differences in both the mean and uncertainty for input 

parameters in decision models (Briggs et aI., 2006). These differences would also be expected 

to impact on the expected value of information, as illustrated in the case study of research 

paper 2. The use of Bayesian methods, which can incorporate prior evidence when estimating 

the parameters of interest, may be preferred in this context. 

6.6.3 Development of a general analytical strategy for CEA that use CRTs 

This thesis used two case-studies to examine whether discrepancies between methods 

identified in the simulations are translated into different cost-effectiveness inferences. The 

results demonstrated that the choice of method could matter in practice. There is scope to 

consider further case-studies which may exhibit additional pragmatic circumstances such as 

complex data distributions or further levels of the hierarchy (e.g. GP practices within cities). 

Additional studies would offer further insights to help develop an analytical strategy for CEA 

that use CRTs. Such a strategy should help inform, for example, the circumstances in which 

more complex methods are more appropriate than simpler alternative approaches. 

6.7 Recommendations for applied researchers 

Grounded in the conceptual review and appraisal of applied studies, research papers 2 and 3 

offered an assessment of alternative methods across a wide range of realistic scenarios 

commonly seen in practice. This broad testing allowed the thesis to provide methodological 
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insights and practical recommendations for applied analysts on the future use of alternative 

methods in CEA that use CR Ts. 

This work provides specific guidance on the use of robust methods in the context of CEA that 

use CRTs. These are not recommended unless the CRT has at least 10 clusters per treatment 

arm. However, larger samples may be needed when the CRT has unequal cluster sizes or 

when systematic covariate imbalance is anticipated. Recent studies have proposed an adjusted 

robust estimator for small samples (Skene and Kenward, 2010, Pan and Wall, 2002), which 

can help improve precision. 

This thesis also offers some insights about the use of methods based on assuming Normal 

distributions for both costs and outcomes. It is suggested that the bivariate Normal MLMs 

perform well for CEA that use cluster trials, even when costs are skewed. This has practical 

advantages as these methods are relatively simple to implement and are available in a wider 

range of statistical packages. While the scenarios considered aimed to reflect realistic settings 

(Bachmann et aI., 2007, Grieve et al., 2010), some interventions may have more complex cost 

structures, for example, with heavier tails. In these circumstances, applied researchers should 

assess whether more appropriate distributions, such as the Lognormal and inverse Gaussian, 

can lead to more precise estimates. 

To encourage the use of appropriate statistical methods in practice, user-friendly software for 

implementing alternative methods is provided in research paper 2 (Appendix '4). The SUR 

was implemented in ST AT A because the cluster-robust estimator is readily available to use 

with the method (package nlsur). All other methods were implemented in R but they can be 

used with conventional software. For example, code for implementing TSB in ST ATA has 

also been developed. Similarly, bivariate MLMs considered here can be applied in ML Win 

(Rasbash et al., 2004) or STATA (package g//amm), Each method is relatively easy to 
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implement, and is not computationally expensive. The non-parametric TSB, even with 2000 

replications, takes less than 10 minutes to complete the estimation. 

6.8 Implications for policy making 

CEA that use CRTs can provide valuable evidence to help inform decision making about 

resource allocation in health care. Decision makers should, however, be aware that studies 

which fail to use appropriate methods may produce misleading results and lead to 

inappropriate decisions. This thesis provides methods to help improve CEA that use CR Ts so 

that future studies can better inform policy making. 

Decision makers such as NICE provide methodological guidelines for the evaluation of 

health care interventions (NICE, 2008), but these do not offer guidance on how issues raised 

in CEA that use CRTs should be addressed. Decision makers should incorporate the new 

criteria developed in the cluster-specific checklist into future methodological guidelines. For 

example, one area where the criteria developed here can be integrated is in the evaluation of 

public health interventions (NICE, 2009), where methods guides have received relatively less 

attention than for health care technologies appraisal (Weatherly et aI., 2009, Kelly et al., 

2005). 

Although the main focus of the thesis was on issues concerning the statistical analyses in 

CEA that use CRTs, some considerations can be drawn for the design of future eRTs. For 

example, one of the main challenges for analysts is that CRTs typically have few clusters. 

Simulation work suggested that the gains from increasing the number of clusters randomised 

to each treatment arm seem larger than increasing the number of individuals recruited for 

each cluster. Another important consideration is the variation in the size of the clusters. 
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Future cluster trials are encouraged to avoid the cluster sizes to be too uneven, particularly 

when the actual dimension of the cluster is anticipated to be associated with the endpoints. 

6.7 Conclusion 

The overall aim of the thesis was to help address the lack of work on methods for CEA that 

use CRTs. A primary objective of the thesis was to develop criteria for critical appraisal of 

economic evaluations that use data from CRTs. The checklist showed that applied studies 

adopted poor statistical methods. The conceptual review highlighted that unless these 

methods were improved, these studies would not provide a strong basis for policy making. 

The thesis identified potentially appropriate statistical methods for CEA that use CRTs and 

assessed their relative performance across a wide range of realistic settings. The results from 

simulations and case studies provide convincing evidence that MLMs are the most 

appropriate method for CEA that use CRTs. The thesis also offers specific recommendations 

on when alternative methods such as robust variance methods or bootstrap approaches could 

perform well. The thesis provides an important contribution to the development of analytical 

methods for CEA that use CRTs, and identifies potentially fruitful areas for future research. 
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