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Abstract 

Missing data are common wherever statistical methods are applied in practice. They 

present a problem by demanding that additional untestable assumptions be made about 

the mechanism leading to the incompleteness of the data. Minimising the strength of 

these assumptions and assessing the sensitivity of conclusions to their possible violation 

constitute two important aspects of current research in this area. 

One attractive approach is the doubly robust (DR) weighting-based method proposed 

by Robins and colleagues. By incorporating two models for the missing data process, 

inferences are valid when at least one model is correctly specified. The balance be

tween robustness, efficiency and analytical complexity is one which is difficult to strike, 

resulting in a split between the likelihood and multiple imputation (MI) school on one 

hand and the weighting and DR school on the other. 

We propose a new method, doubly robust multiple imputation (DRMI), combining the 

convenience of MI with the robustness of the DR approach, and explore the use of our 

new estimator for non-monotone missing at random data, a setting in which, hitherto, 

estimators with the DR property have not been implemented. We apply the method 

to data from a clinical trial comparing type II diabetes drugs, where we also use MI as 

a tool to explore sensitivity to the missing at random assumption. Finally, we study 

DRMI in the longitudinal binary data setting and find that it compares favourably 

with existing methods. 
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Nothing is wrong with making assumptions; on the contrary, they are the 

strands that join the field of statistics to scientific disciplines. The quality 

of these assumptions, not their existence, is the issue. 

Little and Rubin (2000) 



Part I 

Preliminaries 



Introduction 

1.1 Background 

Missing data are common wherever statistical method are applied in practice. The 

problems they present are manifested in different ways in different contexts, but can 

be summarised by the following observation: if some data are missing, additional as

sumptions must be made about the mechanism leading to th incompl tenes of th 

data and the relationship between the observed and unob erved data . These as ump-

27 
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tions are inherently untestable and no amount of sophisticated mathematics can save 

us from this fact. 

A common example of missing data in medicine is patient dropout in a clinical trial. 

Some examples of assumptions that might be made about the missing data in this 

context are 

A. that the outcome of interest for patients who drop out is, on average, equal to 

the outcome of interest for patients who remain in the study, or 

B. that the outcome of interest for those who dropped out, had they not dropped 

out, would have remained constant at the last observed value. 

Both of these are now considered to be implausible and unnecessarily strong in most 

settings, and over the last two decades, much work has been done to develop meth

ods that rely on weaker assumptions than these. For example, a weaker version of 

assumption A is that 

A'. if two subjects exhibit identical behaviour up to some point, whereafter one 

continues in the study but the other drops out, then the subsequent (unobserved) 

behaviour of the latter is, in distribution, equal to the subsequent behaviour of 

the former. 

It transpires that given a fully-parametric model for the (unobserved) full data, models 

for the incomplete data based on assumption A' are identifiable from the observed data 

alone, and lead to valid inferences if the full-data model is correct and the assumption 

holds. Furthermore, assumption A' is minimal in this respect, in the sense that any 

model for the incomplete data based on a weaker assumption, such as 
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A". if two subjects exhibit identical behaviour up to some point, whereafter one 

continues in the study but the other drops out, then the subsequent (unobserved) 

behaviour of the latter is, on average, worse than or equal to the subsequent 

behaviour of the former, 

cannot be identified from the observed data alone. Informally, the matter of 'how much 

worse?' in assumption A" is one which cannot be determined from the observed data. 

Even if we are prepared to make assumption A', the validity of our inferences remains 

reliant on the correct specification of a model for the full data. This, of course, is the 

case for any statistical analysis, but if these assumptions are violated, the consequences 

(for example, induced bias) are more serious for incomplete data than they are for fully

observed data. Informally, when there are missing data, we compensate by relying more 

heavily on the assumptions of our full data model. This has led to the view, held by 

many in this field, that full-data models should be more robust (e.g. semiparametric) 

when the data are incomplete. 

As is common to all areas of statistics, however, there is a trade-off between robustness 

and efficiency, and exactly where the correct balance lies is a matter of considerable 

contention. This has led to two broad schools of thought, as Molellberghs explains in 

response to Davidian et al. (2005): 

" ... the academic research community is divided between two rather op

posing schools: the likelihood-oriented school of Rubin and co-workers, on 

the one hand, and the weighting-based school of Robins, Rotnitzky and 

co-workers, on the other hand. Exchanges between these two schools can 

certainly be entertaining, but when the debates are too fierce and go on 

too long, the winner is likely to be a third party. In this case, the third 

party may well be last observation carried forward (LOCF), complete case 

analysis (CC) and related simplistic methods." 
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LOCF and CC are, respectively, the names given to assumptions B and A above. Rubin 

and Robins would no doubt agree that the broad aims of any researcher embarking on 

the analysis of an incomplete dataset should be 

1. to understand and make explicit the assumptions made, 

2. to minimise the strength of these &')sumptions wherever possible, whilst preserv

ing other desirable properties of the analysis, such as efficiency and computational 

manageability, and 

3. to investigate the sensitivity of any conclusions drawn to possible violations of the 

assumptions made. 

Any disagreement between the two would be confined to the second of these aims and 

to where exactly the line should be drawn. 

1.2 Outline of this thesis 

Robins and his colleagues have introduced an attractive set of methods based on inverse 

probability weighting, the idea being that the bias induced by missing observations can 

be mitigated by weighting up the subjects most similar to those who are missing. By 

incorporating, in addition to the model for these weights, a model for the relationship 

between the observed and missing data, estimates are doubly robust (DR) in the sense 

that inferences are valid when at least one of the two models is correctly specified. The 

fact that these two additional models are specified allows the model for the full data to 

be less restrictive than might otherwise be the case, and the full-data models proposed 

by Robins and colleagues are semiparametric or even nonparametric, leading to the 

commonly used label of semiparametric for methods following this approach. Within 

their specified semi parametric (or nonparametric) classes, Robins and colleagues have 

shown their proposed estimators to be asymptotically optimally efficient. 
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On the other hand, one of the main methods proposed and advocated by Rubin, 

multiple imputation (MI), is also attractive. In MI, rather than weighting observed 

values, the focus is on filling in the missing values with appropriate 'guesses', whilst 

taking this into account in the subsequent inference so as not to fall into the trap of 

'counting the same information more than once'. MI uses only one of the two additional 

models employed in DR procedures: a model for the missing data conditional on the 

observed. A model for the weights is not contemplated. The method relies therefore on 

the correct specification of the model for the missing data conditional on the observed 

data for valid inferences, causing MI to be less robust than RDbins's DR methods. 

However, MI's great strength is its flexibility and convenience in practice. Whereas 

DR methods need, in general, to be derived individually for each situation, MI is 

largely a 'one size fits all' approach, where, once the imputations have been drawn, 

valid inferences are obtained using a few simple general formulre. 

In this thesis, we propose a new method, doubly robust multiple imputation (DRMI), 

which combines the convenience of MI with the robustness of the weighting-based ap

proach. Our aim is to use the computational flexibility of MI to provide a general 

framework for constructing DR estimators, extending to settings where, hitherto, esti

mators with this property have not been implemented. We apply the new method to 

data from the RECORD study, a clinical trial comparing type II diabetes drugs. 

This thesis is divided into six parts. The remaining chapter of part 1 introduces the 

RECORD study dataset used in the remainder of the thesis. Part 2 lays down the 

mathematical foundations for the work contained in the thesis, and gives a detailed 

account of existing methods in the missing data literature, focussing on those methods 

which form the basis for this research. In part 3, we introduce our new method, 

doubly robust multiple imputation, and exhibit its properties both theoretically and 

using simulations. In part 4 (Chapter 10) we apply DRMI to the RECORD study 

dataset and (in Chapter 11) we then explore these data further, using MI to assess 

the sensitivity to the assumptions made about the missing data mechanism. Part 5 

focusses on repeated binary data, exploring DRMI in this context, but also explaining 

theoretically some aspects of other methods hitherto not well understood. The final 
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part summarises the main conclusions of the thesis and suggests possible avenues of 

further research emanating from this work. Proofs, tables and figures considered not 

to be central to the main thrust of the arguments presented have been moved to the 

appendices at the end of the thesis, along with the computer code for any novel analysis. 



The RECORD study: background 

A clinical trial in type II diabetes mellitus patients carried out by GlaxoSmithKline 

motivates much of the work presented in this thesis. We introduce this example here. 

Two well-established drugs prescribed to patients with type II diabetes are Metformin 

(Met) and Sulfonylurea (Su). The progressive nature of the disease, coupled with the 

setting of more stringent HbA1c targets by practitioners, means that an increasing 

number of patients are taking combination therapies, such as both Met and Suo The 

primary aim of the RECORD (Rosiglitazone Evaluated for Cardiac Outcomes and 

33 
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Randomisation ~ HbAtc>8.5% If HbA t e>8.5% 

Figure 2.1: A summary of the design of the RECORD trial 

Regulation of glycaemia in Diabetes) study was to evaluate the safety (by looking at 

cardiac outcomes) of a third drug, Rosiglitazone (Rosi) , when used in combination with 

either Met or Suo See, for example, the article by Nissen and Wolski (2007) for some 

background on these cardiovascular safety concerns. However, a secondary analysis 

was also planned, to assess the efficacy of Rosi as regards glycaemic control. It is with 

this secondary analysis, in particular the measurement of HbA1c (a measure of the 

average level of glucose in the blood over the 8- 12 weeks prior to measurement), that 

we are concerned. 

The RECORD trial recruited 4458 patients from 330 centres in 23 countries, all of 

whom were taking either Met or Su (monotherapy) prior to the start of the trial. The 

Met and Su arms were subsequently treated as two separate strata, with patients in 

the Met arm randomised to receive either additional Su or addit ional Rosi, and pa

tients in the Su arm randomised to receive either additional Met or additional Rosi. 

If dual therapy proved not to be effective (HbAlc~ 8 .5% in two consecutive measure

ments > 1 month apart and at least 8 weeks from titration to maximum dose of study 

medication) , patients in the Met+Rosi or Su+ Rosi arm would be given additional Su 

or Met respectively, whereas patients in the two non-Rosi arms would be put straight 

onto insulin; that is, the protocol for the Rosi and non-Rosi arms differed. This is 

summarised in Fig. 2.1. 
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HbAlc was collected on patients at baseline, and at 8 further follow-up visits: at 2, 4, 

6, 8, 10, 12, 15 and 18 months. Patients who left dual/triple therapy were considered 

to belong only to the CV-outcome phase of the trial from the date at which they ceased 

dual/triple therapy, and only one subsequent HbA lc measurement was taken on these 

patients: at 12 months after randomisation. 

Since recruitment was on-going, it was specified that the first 1122 patients randomiscd 

(those randomised before 15 April 2002) would form the cohort for this 18-Illonth 

analysis. The aim was to investigate whether or not Rosi in combination with Met or 

Su is as good as Met+Su for achieving glycaemic control. The pre-specified endpoint 

(see Home et al., 2005) was to look at the change in mean HbAlc from ba.'leline at 18 

months after randomisation, but any difference in the trajectories between the different 

combination therapies is also of interest. The non-inferiority criterion (upper band 95% 

CI of difference) was set at 0.4%. 

As in almost all longitudinal studies, there were patients lost to follow-up and also 

patients who failed to comply with their treatment protocol for the duration of the 

follow-up time. The original analysis of these data (Home et al., 2007) made certain 

assumptions about the mechanisms leading to the dropout and noncompliance. In 

Chapter 11 we assess the robustness of their conclusions to possible violations of these 

assumptions. 

HbAlc in type II diabetic patients, as it is a measure of glycaemic control, is likely to 

fall outside the range considered to be normal in the general population. However, the 

nature of the disease means that HbAlc levels in type II diabetic patients are far more 

likely to be abnormally high than abnormally low. As such, we may expect HbAlc 

measurements in this population to be non-normal and to exhibit some right skewness. 

The original analysis carried out by Home et al. (2007) assumed multivariate normality 

for the repeated HbAlc measurements conditional on baseline HbAlc . In Chapter 10, 

we assess the sensitivity of their conclusions by relaxing the multivariate normality 

assumption, an assumption which carries extra weight when the data are incomplete. 



Part II 

Literature review &. theoretical foundations 



Notation and basic definitions 

3.1 Full data and associated quantities 

Definition 3.1 (Full-data model). The full data are the data we would oUect in an 

ideal setting, if there were no missing data. Following the notation used by Tsiatis 

(2006), we write these full data as 

{ Zi : i = 1, . . . , n } 

37 
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where n is the number of subjects and Zi is the full data for subject i. We assume* that 

the Zi'S are independent and identically distributed random vectors from a parametric 

model with true density of the form 

pz (z, 0) 

for some true value 80 of the q-dimensional parameter o. 

Our aim is usually either to make inference about 8, a subset 1/J of 8, or a fUIlction 

1/J (0) of O. 

We will often distinguish between outcomes (Y) and covariates (X), where Zi = 
(X[, YT) T. Occasionally we will further distinguish between the covariates of interest 

(X) and the auxilliary covariates (V), and write Zi = (Xr, Vr, ynT. 

Definition 3.2 (Saturated model). If the covariates Xi on which we are conditioning 

are all categorical, and 8 (or a transformation of 8) contains a separate parameter for 

the mean of Yi for every possible combination of the categorical covariates, then the 

model is said to be saturated. 

The subscript i E {I, ... ,n} always indexes subjects, with j E {I, ... ,J} and t E 

{I, ... ,T} used to index the constituent random variables of Zi, e.g. Zi = (Zl,i, ... , Zj,i, 

... ,zJ,if. t is reserved for longitudinal data, and j is used either for cross-sectional 

data, or in the general case where we do not wish to specify whether the data are 

longitudinal or cross-sectional. That is, {Zt,i : 1 :S t :S T} are repeated measurements 

of the same outcome on a given subject, and {Zj,i : 1 :S j :S J} could either be differ

ent variables measured on the same subject simultaneously, or either of the two cases 

when we do not wish to specify. In the longitudinal setting, Zt,i (or Zj,i) could be 

vector-valued, and denoted by Zt,i (or Zj,i). 

*Even when using a semiparametric or nonparametric approach, we assume that there is some 
parametric distribution that gave rise to the data under consideration, even if we choose not to 
postulate the form of pz (z, 8). 
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Unless specified otherwise, the superscript .T is used to denote matrix tram;pose and 

should not be mistaken for T, the upper bound of t. 

Definition 3.3 (Full-data score). The full-data score vector, S: (Z, 0), is defined as: 

SF(Z 0) = 8 log fpz (Z,O)] 
() , 88 

Definition 3.4 (Full-data information). The full-data info7ination matrix, 1:9 (0), is 

defined as: 

IF (8) = I8 {_ 8
2 

log [Pz (Z, O)]} = I8 {_ 8 [S: (Z,O)T] } 
99 8888T 80 

where the expectation is with respect to the true distribution of Z. 

Definition 3.5 (Asymptotically linear estimator). An asymptotically linear· estimator 

On of 8 is one that satisfies the following: 

n 

n1 (On-Oo) =n-1Lep(Zi)+op(1) 
i=l 

where ep (Zi) is called the ith influence function of On and must satisfy the following: 

E [ep (Zi)] = 0 

I8 [ep (Zi) ep (Zif] < 00 

Definition 3.6 (Regular asymptotically linear (RAL) estimator). Under certain reg

ularity conditions (see Tsiatis, 2006), all asymptotically linear estimators share the 

property that 
1 (~ ) 'D n'i 8n - 80 ~ N (0, E) (3.1.1) 

as n ~ 00, where E.. is used to mean tends in distribution in the mea.")ure-theoretic seIlse 

as described by Williams (1991). We will call such estimators regular asymptotically 

linear or RAL. Conversely, it can be shown that any estimator that satisfies (3.1.1) is 
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RAL. Furthermore, this association between RAL estimators and influence functions 

is one-to-one. 

3.2 Coarsened data 

The notion of coarsened data was first introduced by Heitjan and Rubin (1991). 

Definition 3.7 (Injective function). A function f : Rm ~ Rn is injective if f (x) = 

f(y) =} x = y for any X,y E Rm. 

Definition 3.8 (Non-injective function). A function f : IR,m ~ Rn which is not injec

tive is called non-injective. That is, f is non-injective if there exist at least one pair 

x, y E Rm such that xi- y and f (x) = f (y). 

Definition 3.9 (Coarsened data). Suppose that, for each i = 1, ... , n, instead of 

observing Zi, we observe a coarsening indicator Ci E Z+ U {a, oo}, together with 

GCi (Zi), where Gc; (Zi) is a non-injective function of Zi' Then 

are known as the coarsened data. We will also refer to these as the observed data and 

write the observed-data density as PC,Gc(Z) (c, gc, 8, e), where e is a set of additional 

parameters that govern the distribution of C given Z. 

Intuitively, we can use Fig. 3.1 to conceptualise coarsened data. Consider a dis

crete (and finite) example where the sample space n consists only of 25 possible 

one-dimensional values (labelled pl-p25). Now suppose that n is divided into sub

spaces AI, A2, ... ,A8, and that rather than directly observing Zi = Zi, we observe 

only the subspace (AI, A2, ... , or A8) in which Zi lies. For example, if Zi = p14, 

then G
Ci 

(Zi) = A6. For each observation, a different partition of the sample space is 

allowed and these different partitions are indexed by c E Z+ U {a, oo}. 

We use C = 00 to denote the case where we observe the full data, i.e. Goo (Z) = Z. 
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A4 
ep10 ep11 ep20 ep21 

ep2 
AS 

ep9 ep12 ep19 ep22 

A3 
.p3 epa ep13 .p18 ep23 

ep4 ep7 e p14 e p17 ep24 

Figure 3.1: A visual depiction of coarsened data 

3.3 Missing data as a special case of coarsening 

Suppose Zi = (Zl,i, Z2,i,.··, ZJ,i)T, then we can view missing data as a special case 

of coarsening if we let {Gc (Zi) : c = 0, ... ,2J - I} be all possible subvectors of Zi, 

indexed by c. A conventional way of ordering the subveetors is to let Go (Zi) = 0 and 

G2J -1 (Zi) = Zi so that G2J -1 (Zi) = Goo (Zi). 

In the case where Zi = Zi is univariate, each member of the population i~ either 

observed (Ci = 00) or not observed (Ci = 0). Fig. 3.2 illu~trates missing data as a 

special case of coarsened data for univariate Zi' In this case, pl-pl5 are all observed 

(Gc; (Pk) = Ak = Pk for k = 1, ... ,15), whereas GCi (Pk) = A16 for k = 16, ... ,25, 

and all we observe is that Ci = 0 Vk E {16, ... , 25}. So for subject i, if Zi = Pk, 

k E {I, ... , 15} then Ci = 00 but if Zi = Pk, k E {16, ... , 25} then Ci = O. For 

two different subjects, these two sets ({I, ... ,15} and {16, ... , 25}) could be defined 

differently. 

Definition 3.10. Sometimes it is also useful to consider the set 
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Figure 3.2: A visual depiction of missing data as a special case of coarsening 

which we call the unobservable data. These have density 

PC,Z (c, Z, 8, e) (3.3.1) 

3.4 Observed data quantities 

The observed-data score vector and observed-data information matrix are defined in 

an analogous way to the full-data equivalents. 

Definition 3.11 (Observed-data score). The observed-data score vector, 

88 [C, Gc (Z) ,8, e]' is defined as: 

8 [
c G (Z) (J c] = Blog [pC,Gc(Z) (c,gc,8,e)] 

8 , c " "" 8(J 

Definition 3.12 (Observed-data information). The observed-data information matrix, 

188 (8), is defined as: 
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where the expectation is with respect to the true distribution of [G, Gc (Z)]. 

3.5 Missingness indicators 

Although it will sometimes be useful to derive results under the more general notion 

of coarsening and subsequently apply these results to the special case of missing data, 

coarsened data are not the direct focus of any part of this thesis. For this reason, it is 

useful to define missingness indicators as well as the coarsening indicator Gi . 

As we have seen, the observed data as a function of the full data Zi can be unambigu

ously described using the univariate coarsening indicator Ci E Z+ U {O, oo}. However, 

often more useful in practice is the following: 

Definition 3.13 (Missingness indicator vector). Let Zi = (Zl,i, Z2,i, ... ,zJ,if. The 

missingness indicator vector, ~ is given by 

~ = [1 (Zl,i is observed) ,1 (Z2,i is observed) , ... ,1 (ZJ,i is observed)f 

and Rj,i is the ph element of ~, i.e. Rj,i = 1 (Zj,i is observed). 

Thus, whenever the condition Ci = Ci is used in the coarsened data formulation, 

it can be translated as ~ = ri in the missing data formulation. Correspondingly, 

[Gi , GCi (Zi)], the observed data in the coarsened data formulation, can be translated as 

(~,Zibs) in the missing data formulation, where Zibs = {Zj,i: Rj,i = I} (and Zris = 
{Zj,i : Rj,i = O}). 

Furthermore, if { (Gi , Zi) : i = 1, ... ,n} are the unobservable data under coarsening, 

then { (~, Zi) : i = 1, ... , n} are the unobservable data under missingness, with asso

ciated density 

PR,Z (r, z, 0, ') (3.5.1) 
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3.6 Monotonicity and dropout 

Definition 3.14 (Monotone missing data pattern). If 

and there exists a permutation {PI, P2, ... ,PJ} of {I, 2, ... , J} with 

such that if Rpj,i = 0 then Rpk,i = 0 for all k > j, then the missing data pattern is said 

to be monotone. 

Definition 3.15 (General missing data pattern). If the misHing data pattern is not 

monotone, then it is said to be general. 

Monotonicity implies that the variables can be ordered as shown in Fig. 3.3. The 

condition trivially holds if only one variable is incomplete and can otherwise occur in 

clinical trials where data are only misHing because of loss-to-follow-up, where patients 

leave and never return, in which case the variables would be ordered with increasing 

time. For cross-sectional data with more than one incomplete variable, Illonotonicity 

is unlikely to hold. 

Definition 3.16 (Dropout indicator). Under monotonicity, ~ E {O, l}T (where T is 

the upper bound of t and not used here to denote matrix transpose) is restricted to a 

vector which must contain a series of Di - 1, say, ones, followed by T - Di + 1 zeros. 

Di E {I, ... , T + I} is called the dropout indicator and represents the first time at 

which subject i was not observed. 

Definition 3.17 (History). For any vector Wi = (WI,i, W2,i, . .. , WK,i)T, let the history 

of Wi up to time k be 

Under monotonicity, with Di = di , Zibs = Zdi-I,i. 
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Figure 3.3: A diagrammatic depiction of a monotone missing data pattern (the shaded areas 
are unobserved) 

It is common to impose the additional restriction Di > I- that every subject in the 

dataset is observed on at least one occasion. 

3.7 Semiparametric model 

Definition 3.18 (Semiparametric model). Implicit in our definition (3.5. 1) of the 

unobservable data density PR,Z (r , z , 8 , ( ) is that 8 and ( are both finite-dimensional. 

In a semiparametric model, this assumption is relaxed, and either 8 or ( (or both) can 

be infinite-dimensional. Usually, the parameter of interest is finite-dimensional, e.g. 

if 8 = ({3T,1{ )T and 8 is infinite-dimensional, then {3, the parameter of int rest , is 

finite-dimensional, and '17 , the nuisance parameter , is infinit.e-dimensional. We us S 
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to denote this broad class of semiparametric models. 

Definition 3.19 (Semiparametric model for incomplete data). Models for incomplete 

data often require (in addition to a model for the full data) the specification of either 

a model for the probability of observing the data conditional on the observed data 

or a model for the full data conditional on the observed data, or~ -in some cru;es

both. When a method for analysing incomplete data relies on a model for the full 

data conditional on the observed data, the method can be semi parametric in the sense 

that the distribution of the full data given the observed data (or the aspect of this 

distribution needed for the analysis) is estimated non-parametrically from t.he observed 

data. The full-data model remains parametric. We use Ie S to denote t.his subclass 

of semi parametric models. An example is given in §7.2. 

Definition 3.20 (Restrict.ed moment. model). We use n c S to denote the subclass 

of semi parametric models when only the mean of the distribution is modelled, bot.h in 

the full-data model and (in an incomplet.e data problem) the model for the full data 

conditional on the observed. 

Definition 3.21 (Parametric submodel). Let F denote a family of unobservable semi

parametric densities of t.he form PR,Z (r, z, 000 , (00) where 000 and <00 are potentially 

infinite-dimensional. In truth, the data have been generated from a parametric density 

Po = PR,Z (r, z, 0o, (0) where 0o and <0 are finite-dimensional. A pammetric 8ubmodel 

FOI,(I is a family of unobservable parametric densities of the form PR,z (r, Z, 01 , <I) 

where Of and <f are finite-dimensional such that 

Definition 3.22 (Semiparametric-efficient est.imat.or). Within each parametric sub

model FOI,(I of a semiparametric family F, let. v be t.he variance of the most efficient. 

estimator in the family. Then t.he semipammetric efficiency bound (Newey, 1990) is 

the supremum of v across all parametric sub models of F and a semipammetric-efficient 

estimator is an est.imat.or with asymptotic variance achieving this bound. 



Missing data modelling frameworks 

and mechanisms 

4.1 Modelling frameworks 

Recall that the unobservable data { (~ , Zi) : i = 1, ... ,n } have density P R ,Z (r, z , 8 , () . 

Three different modelling approaches arise from three diff rent factorisation of this 

density. 

47 
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• Selection modelling (Heckman, 1976), where 

PR,z(r,z,8,,) =PZ(Z,8)PRIZ (rlz ,,) 

As we see in the next section, under certain circumstances, PRlz (r Iz , ') can be 

ignored in the analysis, making this framework appealing. 

• Pattern-mixture modelling (Little, 1993), where 

PR,Z (r, z, 8, ') = PZIR (z Ir ,8) PR (r, ') 

This is arguably the most natural framework in longitudinal studies. For example, 

in the RECORD study, where patients attend a clinic every few months to be 

measured, we could think of their data as being generated in two stages. First, 

the patient decides on the morning of the visit whether or not he or she will 

attend. Then, given that the patient attends, an HbA1c measurement is taken and 

observed. If the patient does not attend, we imagine a counter factual observation: 

that which would have been observed had the patient attended. 

• and shared parameter modelling (Wu and Carroll, 1988), where 

PR,Z (r,z,8,,) = lpZ,B (z Ib ,8)PRIB (r Ib ,')PB (b,w)db 

Here, B is a set of latent random effects (with realisations b) governing the 

distribution of both the full data and the missingness mechanism. Z and Rare 

conditionally independent given B. 

4.2 Missing and coarsened data mechanisms 

The classification of missing data as Missing Completely at Random (MCAR), Missing 

at Random (MAR) and Missing Not at Random (MNAR) dates back to Rubin (1976) 

and is most naturally described in the selection modelling framework of the previous 
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section. 

Informally, the classification can be thought of as follows. If the probability of obRerv

ing a particular data point is completely independent of all other observations in the 

dataset (observed and unobserved), then the missing data are Raid to be MCAR. If 

the probability of observing a particular data point depends on other observed data, 

but (after conditioning on the observed data) is independent of the unobserved data, 

then the missing data are MAR. If, even after conditioning on the observed data, the 

probability of observing a particular data point depends on the unobserved data, then 

the missing data are MN AR. 

More generally, an analogous clasRification for coarsened data (Heitjan and Rubin, 

1991) can be formally defined as follows: 

Definition 4.1 (Coarsening completely at random (CCAR)). If IP (C = clZ) = 7r, the 

data are said to be coarsened completely at random. 

Definition 4.2 (Coarsening at random (CAR)). If 1P (C = clZ) = 7r [c, Gc (Z)], the 

data are said to be coarsened at random. 

Definition 4.3 (Coarsening not at random (CNAR)). If 1P (C = clZ) = 7r (c, Z), the 

data are said to be coarsened not at random. 

This classification has remained at the heart of almost all the work in the missing 

data area since its introduction in 1976. MCAR is often implausible, and analyses 

assuming only MN AR are usually difficult to implement and often rely on additional 

information, external to the data. This means that the MAR assumption has become 

a central part of much of the literature on missing data methods. This is not to say 

that the assumption is justified as often as it is used. In fact, justifying the MAR 

assumption from the observed data alone is impossible: a premise formally shown by 

Gill et al. (1996) and further explored by MolenberghR et al. (2008). Whether or not the 

missingness mechanism depends intrinsically on the unobserved data after conditioning 

on the observed data is counter factual in the sense that it cannot be determined without 
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knowing what the unobserved data wO'uld have been had we observed them. This means 

that in order to proceed, additional assumptions must be made, and consequently, the 

sensitivity of any conclusions to violations of the additional assumptions should be 

investigated. 

Acquiring an intuitive feel for the MAR assumption is easiest when considering monD

tone missing data. In this setting, the MAR assumption states that if two subjects, 

il and i 2 , exhibit identical behaviour up to some point d - 1, whereafter subject il 

continues in the study, while subject i2 drops out, then the subsequent (unobserved) 

behaviour of subject i2 is identical in distribution to the subsequent behaviour of sub

ject i 1. More formally, as was shown by Molenberghs et al. (1998), 

Proposition 4.1 (MAR under dropout). Under the MAR assumption, if the non

response is monotone, 

Pz z z Iz- D(Zd,Zd+l, ... ,ZTlzd-l,D=d) 
d, d+l,"" T d-b 

= Pz z z Iz- D (Zd, Zd+1, ... , ZT IZd-l, D > d) d, d+l,"" T d-l> 

We must first prove the following lemma: 

Lemma 4.2. Under MAR and monotonicity, PRdiz (Rd = 11 z) 'lS independent of 

Proof (by induction). Suppose that PRd-11z (Rd - 1 = 11 z) IS independent of 

Zd-l, Zd, ... , ZT· Then, 

PRdlZ (Rd = liz) =PRdlz,Rd-l (Rd = 1Iz,Rd- 1 = l) PRd_llz (Rd- 1 = liz) 

= [1 - PRdlz,Rd_
1 

(Rd = 01 Z, Rd- 1 = 1)] PRd-dz (Rd- 1 = 11 z) 

= PRd-dz (Rd- 1 = 11 z) - PRlz (Rd- 1 = 1, Rd = 01 z) (4.2.1) 
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The first term in (4.2.1) is independent of Zd-l,.·., ZT (and hence Zd,.'" ZT) by the 

inductive step, and the second term is independent of Zd,' .. ,ZT by the MAR assump

tion. 

PRdz (Rl = 11 z) is usually assumed to be 1 (hence independent of z), but even when 

this convention is not followed, 

which must be independent of z by the MAR assumption. o 

Now we prove Proposition 4.1. 

Proof. 

Pz z z Iz- D (Zd, Zd+l, ... ,ZT IZd-l, d) 
d, d+b"" T d-J, 

= PZd,Zd+ ll ... ,zTlzd-l,R (Zd, Zd+l,' .. ,ZT IZd-l, Rd- I = 1, Rd = 0) 

PZ,R (z, Rd- I = 1, Rd = 0) 

PZd_I,R (Zd-I, Rd-I = 1, Rd = 0) 

PRlz (Rd-I = 1, Rd = 01 z) pz (z) 
PRIZd_J (Rd- I = 1, Rd = 01 Zd-I) PZd _ 1 (Zd-I) 

PRlzd_1 (Rd- 1 = 1, Rd = 01 Zd-l) pz (z) 

PRIZd_1 (Rd-I = 1, Rd = 01 zd-d PZd- 1 (zd-d 

pz (z) 

by the MAR assumption. 

(4.2.2) 
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Similarly, 

Pz Z z. Iz- D (Zd, Zd+1,' .. , ZT IZd-l, D > d) 
d, d+l,"" T d-l, 

= PZd,Zd+1, ... ,zTlzd-l,Rd (Zd, Zd+l, ... , ZT IZd-l, Rd = 1) 

PZ,Rd (z, Rd = 1) 

PZd-1,Rd (Zd-l, Rd = 1) 
PRdi z (Rd = 11 z)pz (z) 
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(4.2.3) 

In (4.2.2) we use the subscript R, whereas in (4.2.3) we use the subscript Rd. This 

is since {Rd-l = 1, Rd = O} completely specifies R, but Rd = 1 does not. This means 

that we cannot immediately use the MAR assumption to write 

(4.2.4) 

However, (4.2.4) holds by Lemma 4.2. Thus, 

Pz Z Z Iz- D (Zd, Zd+l, ... , ZT IZd-l, D > d) 
d, d+l>"" T d-l, 

PRdlzd-l (Rd = 11 Zd-l) PZ (z) 
- ----~~----------------

PRdlzd_l (Rd = 11 Zd-l)PZd _ 1 (Zd-l) 

PZ (z) 

D 
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Stage 1 Stage 2 Stage 3 Stage 4 

q q 

Figure 4.1: A Markov randomised monotone missingness process for J = 3. Dependence on 
X is implicit. 

4.2.1 Randomised monotone missingness (RMM) processes 

We have seen here how the MAR assumption--expressed in the selection modelling 

framework--translates into the pattern-mixture language when the data are mono

tone (Molenberghs et al., 1998). Such a translation does not exist in general for non

monotone missing data patterns. 

The appropriateness of the MAR assumption for non-monotone missing data ha.<; been 

questioned (see Robins and Gill, 1997). These authors introduce a new mechanism, 

randomised monotone missingness (RMM)-a subset of MAR --and argue that this 

is the only plausible non-monotone MAR mechanism that is not MCAR. They show 

(in Gill and Robins, 1996) that there exist mechanisms that are MAR but not RMM, 

but that in order for a computer to generate data under such a mechanism, it requires 

knowledge of the unobserved data which is then 'concealed' later in the process. They 

call this phenomenon 'MAR is more than it seems' and say: 
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"We have been unable to conceive of a plausible social, economic, physical 

or biological process that would generate MAR processes that are not RMM 

representable, due to the subtle and precise manner in which the data 

must be 'hidden' to insure that the process is MAR. That is, we believe 

that natural missing data processes that are not representable as RMM 

processes will be [MNAR]." 

54 

Write the full data Zi for subject i as Zi = (Xf, ynT
, where Xi is observed with 

probability 1 and Yi = (Yl,i, Y2,i, ... , YJ,if may be incompletely observed. The RMM 

process for subject i is described by Robins and Gill as follows. We start by observ

ing Xi' Then, we either observe one of Yj,i (j = 1, ... , J) with probabilities Pj,i (Xi) 

(j = 1, ... , J), respectively, or we quit, having only observed Xi with probability 

1 - Ef=lPj,i (Xi)' Suppose we in fact observe YJI,i' Now, at the next stage, we either 

observe one of YJ,i (j = 1, .. ·,jl -1,jl + 1, ... J) with probabilities pj,i(Xf,YJI,i) 
(j = 1, ... ,)1 - I,ll + 1, ... J), respectively, or we quit, having only observed Xi 

and YJJ,i with probability 1 - Ejof)J Pj,i (X[, YJ),i)' Suppose that after m stages 

of this algorithm, we have observed (Xf, YJ),i, YJ2,i,"" YJm-),i)' At the next stage, 

we either observe one of YJ,i (j E {I, ... , J} \ {jl,h,··· ,jm-d) with probabilities 

Pj,i (xf, YJI,i,"" YJm-l,i) (j E {I, ... , J} \ {jl;j2, ... ,jm-d)' respectively, or we quit 

with probability 1 - L.jofjl, ... ,jm-l Pj,i (Xr, Yjl,i, ... , 1Jm-l,i)' 

Markov randomised monotone missingness (MRMM) is a special case of RMM in which 

the probability of observing a given variable conditional on the previom; outcomes 

observed is independent of the order in which these variables were observed. Thus, 

for example, Pj,i (Xr, Yj),i, Yj2,i) = Pj,i (Xr, 1J2,i, Yjl,i). Gill and Robins (1996) prove 

that any MAR mechanism representable as RMM is also representable as MRMM. The 

MRMM process when J = 3 is shown in Fig. 4.1. 



4 MISSING DATA MODELLING FRAMEWORKS AND MECHANISMS 55 

Stage 1 Stage 2 Stage 3 Stage 4 

Figure 4.2: A Markov randomised monotone missingness process for longitudinal data 

Notice that (omitting the subscript i), for example, 

1P (YI , Y2 both observed, 1'3 missing) = [PI (X) P2 (XT, Yi) + P2 (X) PI (XT, Y2)] 
. [1- P3 (XT, YI , Y2 )] 

where PI (X) P2 (XT, YI ) and P2 (X) PI (XT, Y2) are not constrained to be equal. Thus, 

the order in which the variables were observed is needed to estimate the probabilities 

Pj (. )-even in an MRMM process-but this order is never observed. Robins and Gill 

(1997) describe a method for estimating these probabilities, where the unobserved 

orderings are treated as missing data. 

Intuitively, by allowing the partially-observed variables to be observed in a variety of 

different orderings, a non-monotone mechanism can be viewed (within a given ordering) 

as a dropout mechanism. In a situation (such as longitudinal repeated measures) when 

there exists only one plausible ordering (such as a temporal ordering), MRMM reduces 

to a very special case (shown in Fig. 4.2) where the probability of observing 1'3, say, 

is dependent on Y2 if and only if Y2 has been observed. As Vansteelandt et al. (2007) 
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argue, it is implausible in most settings that the probability of observing Y3 only 

depends on Y2 if Y2 happens to have been observed and that therefore, MAR is rarely 

a sensible assumption for non-monotone repeated measures. However, as a point of 

departure for sensitivity analyses it is useful to be aware of the form of this ignorable 

mechanism. Estimating the parameters of the mechanism shown in Fig. 4.2 is much 

more straightforward than in the general case (as shown in Fig. 4.1) as the order in 

which the variables were observed is always known. 

Furthermore, Robins and Gill (1997) describe a statistical test of the hypothesis that, 

given that the mechanism is MAR, it is also RMM. They argue that if this hypothesis 

is not supported by the data, MAR should be ruled out even in situations when it 

might be deemed plausible a priori. 



Simple methods 

One of the reasons that missing data pose a problem is that they destroy the rect

angular structure (or balance) of the dataset necessary for many statistical analy es 

(e.g. multiple linear regression, ANOVA). Because of this, most simple methods for 

handling missing data involve deriving a rectangular dataset from a non-rectangular 

one, either destructively or constructively, i.e. either by deleting incomplete lines of 

data or by imputing data in place of the missing values. 
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5.1 Complete case (CC) analysis 

Removing all the subjects in the dataset except for those with complete data on all 

variables, and analysing the data that remain, is known as a complete case (CC) 

analysis. It is dearly inefficient, especially in a dataset with a large number of variables. 

Suppose, for example, that 20 variables are collected on 1,000 subjects, and that. 5% 

of the data on each variable are missing. If the missing data are dist.ributed uniformly 

across subjects and independently for each variable, even though only 5% of t.he data 

are missing, only (.95)20 . 100 = 36% of the cases can be used in a CC analysis--Iess 

than 38% of the observed data. 

Furthermore, except for the case when the missing data are MCAR, a CC analysis is 

biased. Assuming that the full-data analysis would have consisted of solving a score 

equation of the form 
n 

LS: (Zi,On) = 0 
i=l 

then, the CC estimator of () is the one that solves 

The solution to (5.1.1) is consistent if and only if 

(Cox and Hinkley, 1974). Under the CCAR assumption, 

lE [11 (Ci = (0) S: (Zi, (}o)] = E {E [11 (Ci = (0) S: (Zi' (}o) IZi]} 

= 1E [JP'(Ci = OOIZi) S: (Zi, (}o)] 

= E [7r (OO,Zi) S: (Zi,(}O)] 

= 7rlE [S: (Zi, (}o)] = 0 

(5.1.1) 

(5.1.2a) 

(5.1.2b) 

(5.1.2c) 

(5.1.2d) 
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since E [S~ (Zi' 80 )] = o. 

But the penultimate step relies on the CCAR assumption that 7r (00, Zi) = 7r, indepen

dently of Zi, which is not the case under CAR. Hence, CC estimators are inconsistent 

under CAR. 

5.2 Inverse probability weighted complete case (IPWCC) analysis 

The way in which the CC estimator is inconsistent motivates the inveTse pTObability 

weighted complete case (IPWCC) estimator, the estimator which solves 

First introduced by Horvitz and Thompson (1952), the idea of weighting each fully

observed subject by the probability of observing that subject is intuitively sensible. 

Informally, subjects who have only a probability of ~ of being observed are weighted 

twice as much as those who are certain of being observed. We can think of these 

people as contributing twice: once for themselves, and once for their 'twin' who wa..'> 

not observed. This is analogous to using sampling weights in surveys with unequal 

sampling probabilities. 

Following a similar argument to (5.1.2a-5.1.2d), we can show that 

and the estimator is consistent under MAR, making IPWCC considerably better than 

CC estimator. The weighting has corrected the bias, but the inefficiency remains. 
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5.3 Single imputation methods 

Since discarding incomplete lines of data results in a loss of precision, an alternative, 

popular approach is to impute data for the missing values and then analyse the aug

mented data as if they were the original fully-observed dataset. 

The main single imputation procedures are: 

• Mean imputation, where a missing Zj,i is replaced by the mean value of Zj across 

all observed subjects, (I:~1 Rj,iZj,i) / (I:~=1 Rj,i); 

• Regression imputation, where a missing Zj,i is replaced by 1E (Zj,iIZibs), where 

this conditional expectation is calculated using a regression model of Zj on the 

variables included in Zibs, fitted to those subjects on whom all these variables 

were observed; 

• Stochastic regression imputation, where a missing Zj,i is replaced by a random 

draw from the distribution of Zj,i given Zibs, estimated from the same regression 

model as above; and 

• Last observation carried forward, used in repeated measures analyses. As the 

name suggests, LOCF simply replaces any missing value by the last observed 

value for that variable on that subject: each Zt,i, for t ~ Di is replaced by 

Mean imputation can be biased-even under MCAR-depending on the analysis. For 

example, suppose that Zi = (Xi, }i)T and that the parameters of interest are those 

from the linear regression of Y on X. Suppose that there are missing data on Y alone, 

and that these data are missing completely at random. If we replace the missing Y

values by (I:~=1 RiYi) / (I:~1 R i ) (which, under MCAR, has expectation equal to the 

marginal mean of Y), we shrink the estimate of the slope towards O. Intuitively, this 

can be seen in Fig. 5.1. 
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Figure 5.1: The bias introduced by mean imputation on the outcome in a linear regression 
model with outcomes missing completely at random 

Regression imputation, too, can be biased under MCAR. Suppose that Y is fully

observed, X is missing completely at random for some subjects and we impute the 

missing X -values using their conditional expectation given Y as determined from the 

complete case regression of X on Y. We know that the parameters of this regression are 

consistently estimated in a complete case analysis since the missing data are M CAR. 

Thus, asymptotically, this is equivalent to setting Xi, the value of X in the imputed 

dataset equal to 

where J1 x, J1 y, (J x x , (Jyy are the true marginal means and variances of X andY 

respectively, and p Xy is the true correlation between X and Y. 

The slope parameter is estimated from the imputed dataset as 

(JXY 

(Jxx 
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where o-xy is a moment-based estimator of O"XY, the covariance of X and Y, and o-xx 

is a moment-based estimator of O"xx. The fact that this estimator is biased follows 

from the observations that o-XY is unbiased and axx is biased: 

= O"XY 

where 7f = IE (Ri lXi, Yi), which we assume to be independent of Xi and Yi. 

IE [ (Xi - /tx f] = E [Ri (Xi - /tX)2 + (1- Ri) P~Y ::~ (Yi - /ty)2] 

= 7fO"xx + (1 - 7f) piyO"xx 

= 0" x X [1 - (1 - 7f) (1 - piy)] 

with equality if and only if either 7f = 1 or P~y = 1, i.e. if and only if either there are 

no missing data or X and Yare either perfectly correlated or perfectly anti-correlated. 

Otherwise, O"xx will be underestimated, and the slope parameter in the regression of 

Y on the imputed X -values will be overestimated. 

This bias applies only to missing covariates. Regression imputation is consistent for 
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missing outcomes, although naive estimates of precision from such an analysis will be 

biased. 

LOCF is also, in general, biased even under MCAR (see Molenberghs et al., 2004). The 

claim that LOCF always leads to conservative estimates is shown by these authors to 

be false. A paper by Shao and Zhong (2004) claims that 

" ... the LOCF one-way ANOYA test is actually asymptotically valid (that 

is, its asymptotic size is equal to the nominal size) in the special but impor

tant case where only two treatments are compared and the two treatment 

groups have the same number of patients, regardless of whether drop-out 

is informative or not." 

However, Carpenter et al. (2004) point out that the alleged validity applies only when 

the hypothesis being considered is that at the last observed occasion, the effect of both 

treatments is the same. It is not surprising that LOCF is valid in this scenario-indeed, 

as far as this hypothesis is concerned, no data are missing! Carpenter ct al. (2004) 

argue that this hypothesis is of no clinical interest. 

Furthermore, all naIve estimates of precision following non-stochastic imputation meth

ods are biased, since the imputations are deterministic and are thus less variable than 

the (unobserved) observations they are replacing. What we have seen above is that 

this reduction in variability can also affect parameter estimates, depending on the r61e 

played by the imputed variable(s) in the analysis. 

Stochastic regression imputation is an attempt both to correct the residual bias of 

regression imputation, and to correct the bias in the estimation of standard errors. It 

succeeds in the former but not the latter. There are two sources of uncertainty in a 

missing data imputation problem: that due to the original variance in the data, and 

that due to the missing data. Regression imputation takes into account neither of these 

(hence the shrinkage of f7xx seen in the imputations above), and stochastic regression 
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imputation takes into account only the former, leading to consistent effect estimates, 

but biased estimates of precision. As we see in §6.7, it is possible to take both sources 

of uncertainty into account, and this can lead to valid inference. 



Fully-parametric methods 

In the next two chapters, we turn to more principled methods for handling coarsened 

or missing data. These methods are broadly divided into fully- and semiparametric 

methods. The choice between these can be based both on philosophical and practi

cal considerations and is the subject of considerable debate in the current literature 

(Davidian et al., 2005; Kang and Schafer, 2007). 
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6.1 The direct likelihood approach 

Suppose we assume CAR and pose a parametric model for the coarsening mechanism 

as follows: 
JP(C = clZ) = 7r(c,Ge (Z) ,e) 

where e is a set of parameters governing the coarsening mechanism. To make in

ference about (J using the observed data, we must write the observed-data density 

PC,Gc(Z) (c, ge, (J, e) in terms of the full-data parameter (J. 

PC,Gc(Z) (c, ge, (J, e) = j Pc,Z (c, z, (J, e) dz 
{z:Gc(z)=gc} 

= j JP (C = cl Z = z, e) pz (z, (J) dz 
{ z:Gc(z)=gc } 

= 7r (c, ge, e) f pz (z, (J) dz 
J{ z:Gc(z)=gc } 

(6.1.1) 

due to the CAR assumption. So we see that the CAR assumption means that the 

coarsening parameter e and the full-data parameter (J separate, making likelihood 

methods simpler. If the function J{ z:Gc(z)=gc} pz (z, (J) dz could be maximised by a par

ticular value iJ of (J, then iJ would be a maximum-observed-likelihood estimator. In 

other words, when making inference about (J, provided that (J and e are distinct (i.e. 

that the parameter space of the full vector ((JT, eT ) T is the product of the individ

ual parameter spaces), the part of the likelihood involving e can be ignored and the 

missingness mechanism need not be modelled. Within the likelihood framework, the 

CAR (or MAR) assumption, coupled with the distinct parameter assumption is called 

ignorability. 

Although ignorability simplifies the task, it is still necessary to integrate (directly or 

indirectly) the full-data likelihood over the missing data. Anderson (1957) was the 

first to show how this could be achieved in the bivariate normal casc. Suppose that 

only r out of n of the X -values are observed and that Y is fully-observed. By first 

noting that the parameters (J.tx, J.ty, axx, aXY, ayy) can be isomorphically mapped 
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onto (¢, " O'xIY, /-ty, O'YY) , where ¢, I and O'xlY are the parameters associated with the 

regression of X on Y, what Anderson showed was that in this case the observed-data 

likelihood factorises as: 

(6.1.2) 

The parameters separate, the two factors can be maximised separately, and a maximum 

likelihood solution is obtained. Furthermore, (6.1.2) can be generalised to any number 

of variables (see Little and Rubin, 2002, p. 145) if the missing data pattern is monotone. 

When the missing data pattern is non-monotone, an iterative algorithm of one sort 

of another is required. The Expectation-Maximisation (EM) algorithm is a popular 

method-not restricted to multivariate Gaussian data-and will be discussed in §6.2. 

For multivariate Gaussian data, by writing the model in terms of random effects (i.e. 

a linear mixed model), a method for maximising the observed-data likelihood under a 

flexible range of model restrictions is widely used and is discussed in §6.3. When this 

model is not expressed in terms of random effects, the same iterative estimation tools 

are used, and the model is known as the multivariate linear model. 

Likelihood methods are not restricted to Gaussian data. Indeed, as (6.1.1) suggests, 

they can be conceived of whenever a parametric likelihood for the full data can be 

expressed. The generalised linear mixed model is an extension to non-Gaussian out

comes of the linear mixed model and will be discussed in §6.4. This is a 8u~iect-specific 

model. Other formulations include the Dale model (Dale, 1986) for categorical data, 

the Bahadur model (Bahadur, 1961) for binary data and and the method proposed by 

Fitzmaurice and Laird (1993), also for binary data. These are examples of marginal 

models. Let us look more closely at this distinction. 
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Subject-specific versus marginal models for non-Gaussian data 

We denote by yt,i the tth outcome on the ith subject, where 1 ::; t ::; Di - 1 ::; T and 

1 ::; i ::; n. Let Xi, V1,i, V2,i ... , Vp- 1,i be a set of p time-stationary covariates mea.<;ured 

on subject i, where Xi is the covariate of interest (e.g. treatment group). If T = 1, 

then we fit an ordinary univariate regression model: 

for some suitable link function 1 (.), such as the logit or probit function if Y is binary. 

However, when T > 1, we must take into account the fact that repeated measurements 

on the same subject are not independent. We can do this by introducing a random 

subject effect, Ui, into the linear predictor: 

Often, interest lies in the treatment effect at the final timepoint. Looking at one specific 

subject, i, this is: 

18 (YT,ii Xi = 1, Vi,i, V2,i,' .. , Vp-l,i, Ui) - I8 (YT,ii Xi = 0, Vi,i, V2,i.,· .. , Vp- 1,i, Ui) 

= 1-1 (aT + (3T + /'1,TV1,i + ... + /'p-l,TVp-l,i + Ui) 

- 1-1 (aT + /'1,TV1,i + ... + /'p-l,TVp-l,i + Ui) (6.1.3) 

We could fit this model to find an estimate of: 

1-1 (aT + i3T + 1'1,TVi,i + .. , + /'p-l,TVp-l,i + Ui) 

- 1-1 (aT + /'1,TV1,i + ... + /'P-l,TVp-l,i + Ui) 

and we would be doing a subject-specific analysis. In other words, we would be looking 

at the effect of Xi on 18 (YT,iiUi), conditional on Vi,i,"" Vp-l,i' The key here is the 

fact that the expectation is conditional on the random effect Ui, and so the effect being 

measured is the effect on a particular subject, given his/her value of the random effect. 
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We might instead be interested in the effect of Xi on the marginal expectation 18 (YT,i), 

conditional on V1,i, ... , Vp-l,i, in which case the analysis would be maryinal or 

population-averaged. The equivalent of equation (6.1.3) is then: 

Eu; [18 (YT,il Xi = 1, V1,i, V2,i, ... , Vp-l,i, Ui) -18 (YT,il Xi = 0, V1,i, V2,i, ... , Vp-l,i, Ui )] 

= 18u; [1-1 (aT + i3T + I'I,TV1,i + ... + I'p-l,TVp- 1,i + Ui) 

- 1-1 (aT + I'I,TVi.,i + ... + I'p-l,TVp-l,i + Ui )] (6.1.4) 

In general, (6.1.3) and (6.1.4) are not equal. For Gaussian data, 1 (.) is the identity 

function, the two Ui terms cancel, and this issue doesn't arise. Thus, for continuous, 

Gaussian outcomes Yj,i, the effect of Xi on a particular subject, and t.he effect of 

Xi averaged over the whole population are equal. Another special case is that of 

Poisson data with Gaussian random effects when the log link is used. In this case the 

population-averaged and subject-specific effects differ only by a multiplicative offset 

(Young et al., 2007). But in general we must decide which of the two types of effects 

is of interest. 

In general, whether we choose to estimate marginal or subject-specific effects, addi

tional computational methods are required to integrate and then to maximise (6.1.1), 

and it is to these methods that we turn our attention next. The approach can either 

be purely based on likelihood, or based on the likelihood via a Bayesian analysis. Fre

quentist methods (not based on likelihood) do not possess the ignorability property 

and thus must be adapted if they are to be valid under MAR. These are discussed 

further in Chapter 7. 
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6.2 Expectation-Maximisation algorithm 

Under a general (non-monotone) missing data pattern, evaluating the integral in (6.1.1) 

analytically is often impossible. Orchard and Woodbury (1972) were the first to de

scribe a method, which later became known as the Expectation-Maximisation (EM) 

algorithm, when the full data can be assumed to be from a multivariate normal dis

tribution. The method has since been extended to a much wider range of full-data 

models (see Dempster et ai., 1977). The basic principle is as follows: 

1. Start by computing an initial estimate {)(1) of 0, e.g. from a complete case anal

ysis, or one of the other simple methods already discussed. Within some loose 

regularity conditions, this can be both biased and inefficient, although the less 

biased and more efficient it is, the more quickly the algorithm is likely to converge. 

2. The E-step: Using the current parameter estimate, {)(c), calculate 

This is made easier if logpz (z) is linear in zmis. 

3. The M-step: Find {)(c+l) that maximises q (0 I {)(c) ) and return to step 2., 

iterating until convergence. 

It has been shown (see Dempster et at., 1977) that under certain regularity conditions, 

this algorithm always converges to the maximum observed-data likelihood estimate. 

The direct likelihood approach achieves this in one step: the observed-data likelihood 

is calculated, and then maximised. When using the EM algorithm, we use our cur

rent (incorrect) estimate of 0 to estimate the observed-data likelihood, and then we 

maximise this to obtain a better estimate of e. 
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6.3 The linear mixed model and the multivariate normal linear 

model 

In the multivariate normal case, assuming we're interested in the regression of the 

(J x 1) multivariate outcome Y i on a (J x p) matrix of covariates Xi, we can write 

the full-data model as: 

independently and identically for each i E {I, ... , n}, with no restriction on V. We 

call this the multivariate linear model (MLM). 

Laird and Ware (1982) suggested the following formulation of a special case of the 

MLM: 
(6.3.1) 

where f3i is a (q xl) vector of random effects with distribution 

independently and identically for each i, with associated design matrix Zi, and 

It follows from this definition that 

This is known as a mixed model since it contains a mixture of population fixed effects 

(0:) and subject-specific random effects (f3i)' More specifically, since the expectation 

of the vector of repeated measurements is assumed to be a linear function of these 

parameters, the model is known as the linear mixed model. This model is discussed 

extensively by Verbeke and Molenberghs (1997), Diggle et al. (2002) and Brown and 
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Prescott (2006). 

Often, the restriction R = a 2IJ is imposed, i.e. that, conditional OIl f3i, the repeated 

observations on subject i are independent. If sufficiently many random effects are in

cluded however, it is possible not to impose any restriction on the implied structure 

for V, and thus the linear mixed model formulation is equivalent to the multivariate 

linear model, with the sole restriction that the variance-covariance matrix is the same 

for each subject, independently of the covariates. This restriction can be relaxed to 

allow for different variance-covariance matrices in different groups of subjects (com

plex variation) but it is still the case that the matrix cannot vary continuously with 

continuous covariates. Of course, a less general set of random effects can be posited, 

whence emerges the flexibility of this formulation. Alternatively, varying the number 

and structure of the random effects can be viewed directly as imposing a structure on 

V. 

Even when the data are incomplete and non-monotone, the observed-data likelihood 

can be maximised either by maximum likelihood (ML) or restricted maximum likeli

hood (REML) (see Patterson and Thompson, 1971), using iterative Newton-Raphson 

procedures. Asymptotically, ML and REML estimates converge, but when p is not 

negligible compared with n, the estimates can disagree, the difference occurring in 

the estimates of variance and covariance parameters. For these parameters, the small

sample bias is, in general, smaller for REML estimates than for ML estimates (Verbeke 

and Molenberghs, 1997). However, since both ML and REML are ba..,ed on the likeli

hood, ignorability under MAR applies under both procedures. 

6.4 The generalised linear mixed model 

For univariate data, linear models for Gaussian data were extended to generalised linear 

models for non-Gaussian data by NeIder and Wedderburn (1972) and McCullagh and 

NeIder (1989). In a generalised linear model, Yi is assumed to come from a distribution 
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(not necessarily Gaussian) belonging to the exponential family of distributions, i.e. that 

the density function of Yi satisfies 

where 'ljJi is the parameter of interest, ¢ is a nuisance parameter and a (¢) > O. A link 

function f (.) relates 'ljJi to the covariates such that 

The generalised linear model and the linear mixed model of §6.3 can be combincd 

to form the generalised linear mixed model (GLMM), where, conditional on random 

effects (3i the elements Yj,i of Y i are independent observations from a dcnsity satisfying 

where 

f ( ~/, .. ) = X· .0: + Z· . r.l. 
'P),l ),l ),~fJ~ 

and 

Unlike the linear mixed model, there is no general solution to the problem of inte

grating these densities over the distribution of the random effects. Thus, approximate 

techniques for finding maximum likelihood estimates are needed. For more details, see 

Breslow and Clayton (1993), Engel and Keen (1994), and Molenberghs and Verbeke 

(2005). 
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6.5 Hierarchical generalised linear models 

An alternative approach, using Laplace approximations to avoid the integration prob

lem, is a method based on the hierarchical likelihood proposed by Lee and Nelder 

(1996). In this method, the random effects are assumed to have exponential hun

ily distributions conjugate to those of the outcome variable (such as normal ~nonnal, 

Poisson -gamma, binomial- beta). The authors propose an efficient algorithm for find

ing approximate solutions, making the method an attractive candidate for sensitivity 

analyses when the number of models to be fitted is higher than would be feasible under 

the more computationally-intensive GLMM approach (see Yun et ai., 2007). 

6.6 Bayesian methods 

Given on the one hand the attractive property of ignorability of the missingness model 

afforded by likelihood methods under MAR, coupled with the computational difficulty 

of obtaining such maximum likelihood estimates in practice on the other, Bayesian 

methods which approximate likelihood procedures are a useful tool. For example, 

Clayton (1996) and Zeger and Karim (1991) both suggest Bayesian solutions to the 

estimation of GLMMs. The distinct parameter condition now translates to the a.'Isump

tion that the prior distributions for the full-data parameters (9) and the parameters 

of the coarsening mechanism (e) are independent. 

Bayesian approaches are also useful in MNAR sensitivity analyses, where the MAR 

assumption is relaxed, and parameters governing the dependence of the selection model 

on the unobserved data are introduced. Given that information on the values of these 

parameters is not contained in the data, subjective priors for the sensitivity parameters 

are naturally introduced. 
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6.7 Multiple imputation 

6.7.1 Motivation 

Integrating the function J{ z:Gc(z)=gc) PZ (z, 8) dz in (6.1.1) and then maximising with 

respect to 8, as we have noted already in this chapter, can be very difficult to do 

analytically. The EM algorithm and Bayesian methods can be used to overcome this 

problem; multiple imputation is another solution. 

Based on the principle that full-data densities are easier to deal with than observed

data densities, multiple imputation (MI), (first suggested by Rubin, 1978) is a method 

in which (provided the CAR assumption holds) only the full-data model need be con

sidered, but implemented in such a way that the inference about 0 is valid. It also 

extends naturally to CNAR mechanisms, a property which sets it apart from the EM 

algorithm, and which we explore in Chapter 11. 

Suppose that the true value 00 of 0 were known to us, along with the true density of the 

full data given the observed data, PZIC,Gc(Z) (zlc, ge, ( 0 ). Then, given the observed data 

{ (Gi , GCi) : i = 1, ... ,n}, the full data {Zi : i = 1, ... ,n} could be generated using 

PZIC,Gc(Z) (zlc, ge, 80). 

Of course, 80 is not known to us. By definition, the observed data are generated 

using the true observed-data likelihood. The only difference is that, assuming that the 

posited density PZIC,Gc(Z) (zlc, ge, 8) be of the correct form, if we were to try to generate 

{Zi : i = 1, ... ,n } using PZIC,Gc(Z) (zlc, ge, 8), we would substitute an estimate {} of 8 

for 8, as opposed to substituting the true value, 80 . 

For this reason, imputed datasets cannot have a distribution identical to that of the 

full data. An adjustment is therefore required to any inference based on imputed data. 

Oue way of making this adjustment easier, is to impute the data, not once, but several 

times. Hence the name: multiple imputation. 
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6.7.2 A formal description 

In order to be able to describe the work of Chapters 8 and 9, a rigorous formulat.ion 

of MI is needed, such as t.hat. adopt.ed by Tsiatis (2006), Wang and Robins (1998) 

and Robins and Wang (2000), where the frequent.ist. properties of MI est.imators are 

derived. 

Given some init.ial est.imator of e, (more det.ails t.o follow), for each observed-dat.a point 

rei, Gc; (Zi)], we sample at random from t.he conditional dist.ributioll, PZIC,Gc(Z) (zlc, ge), 

m t.imes to obtain 

{ Zij : i = 1, ... ,n, j = 1, ... , m } 

The jth estimator, {j~j' is obtained by solving the full-data likelihood equatioll 

n 

L S: (Zi j ' {j~j) = 0 
i=l 

That is, we use the data from the jth imputed set and treat them as if they were full

dat.a to obtain the full-data maximum-likelihood estimat.or, {j~j' Then, the proposed 

multiple imputation estimator is 

m 

{j* = m-1 "{j* . 
n L- nJ 

j=l 

Rubin argues that., under appropriate conditions, this estimator is consistent and 

asymptotically normal. That is, 

1 (A ) V n'2 e~ - eo ~ N (0, E*) 

Furthermore, he suggests that the asymptot.ic variance E* be est.imat.ed by 
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That is, an average of the estimates of the full-data asymptotic variance, using the in

verse of the full-data observed information matrix over the imputed full-data sets, plus 

the sample variance of the imputation estimators multiplied by a 'finite m' correction 

factor, gives us the asymptotic variance of the MI estimator. 

The issue remains of how to obtain the initial estimator of 8. There are two approaches: 

1. Improper imputation: This is a frequentist approach in which an initial esti

mator 8~ is obtained from the coarsened data, and the imputations Zij (8;) are 

obtained by sampling from PZIC,Gc(Z) (zlc, gc, 8~). 

2. Proper imputation: This is a Bayesian approach (and the one advocated by 

Rubin) in which the data are generated from the predictive distribution 

PZIC,Gc(Z) [zICi, Gc; (Zi)] 

= J PZIC,Gc(Z) (zICi, Gc; (Zi), 8) P8IC,Gc(Z) [8ICi, Gc; (Zi)] dJ.L8 (8) (G.7.2) 

where P8IC,Gc(Z) [OICj , Gc; (Zi)] is the Bayesian posterior distribution of 8 given 

the observed data. 

6.7.3 Improper vs. proper imputation 

Improper imputation 

We shall assume that the initial estimator is RAL and inefficient. That is, 

n 

n ~ (8; - (0 ) = n - ~ L: q [Ci , G C; (Zi)] + op (1) 
i=l 

where q [Ci, Gc; (Zi)] is the ith influence function of the estimator 8~. 
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It can be shown that 

where 'Peff [Gi , Gc; (Zi)] is the efficient influence function defined by 

and 

Tsiatis (2006) proves that 

Theorem 6.1 (Variance of improper MI estimator). 

where 

~* = [188 (90)r1 + m-1 [1~8 (90)J -1 [1~8 (90) -'- 188 (90)J [1~8 (90)J-
1 

+ [1:8 (90) J -1 [1:8 (90) - 188 (90) J Var {h [Gi , Gc; (Zi)]} . 

78 

(6.7.3) 

[1:8 (90 ) - 188 (90)] [1:8 (90)] -1 (6.7.4) 

and h [Gi , Gc; (Zi)] is as given in {6.7.3}. 

Remark 6.1. The asymptotic variance of the most efficient estimator of 9 (i.e. the 

estimator that arises from maximising the observed-data likelihood) is [188 (90) ]-1. 

Clearly, there is a loss of efficiency with the use of multiple imputation. 

Remark 6.2. We see from the second term in (6.7.4) that the asymptotic variance 

decreases as the number of imputations, m, increases. 

Remark 6.3. If 8~ were an efficient estimator, i.e. if q [Gi , Gc; (Zi)] = 'Peff [Gi , Gc; (Zi)], 

then we see that the third term in (6.7.4) vanishes. In this case, the second term 

represents the loss of efficiency due to multiple imputation. This vanishes as m ---+ 00. 
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Remark 6.4. The variance of the initial estimator 9~ IS [188 (80)r 1 + 
Var {h [Gi , GCi (Zi)]}. Comparing this with (6.7.4) as m - 00 yields a difference of 

Var {h tn, GCi (Zi)]} - [1:8 (80)r1 [1:8 (80 ) - 188 (80 )] Var {h [Gi , GCi (Zi)]}· 

[1~8 (80 ) - 188 (80 )] [1~8 (80 )]-1 

which can be shown to be positive definite. Therefore, if the number of imputationH 

is sufficiently large, the multiple imputation estimator will be more efficient than the 

initial estimator. 

Proposition 6.2. The expression on the RHS of (6·7.4) can be rewritten as 

[1:8 (80)r1 + (m ~ 1) [1:8 (80)r1 [1:8 (80 ) - 188 (80 )] [1:8 (80)r1 

+ [1:8 (80 )] -1 [1:8 (80 ) - 188 (80)] Var {q [Gi , Gc; (Zi)]}· 

[1:8 (80) - 199 (80 )] [1:8 (80)] -1 (6.7.5) 

Tsiatis (2006) then goes on to prove the following theorem: 

Theorem 6.3 (Rubin's variance formula for improper MI). The (~:Epression on the 

RHS of (6. 7.1) is an asymptotically unbiased estimator of 

(6.7.6) 

Remark 6.5. This is precisely the 1st two terms in (6.7.5) and hence Rubin's variance 

formula, when used with improper multiple imputation will tend to underestimate 

variances, leading to anti-conservative inferences. 
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Proper imputation 

Lct us assume that the sample size is large enough to approximate the posterior distri

bution of (J by the sampling distribution of 8~, the initial estimator of (J used for the 

improper imputation. Therefore, mimicking the Bayesian proper imputation, at the 

jth imputation, we sample (J(j) from 

and then randomly choose Zij from the conditional distribution with conditional dCll

sity PZIC,Gc(Z) (zIGi , GCi (Zi) , (J(j)). The jth imputed estimator is the solution to the 

equation 

and the final estimator is 
m 

8* = m-1 
" 8* . n .LJ nJ 
j=1 

Tsiatis (2006) proves the following results: 

Theorem 6.4 (Variance of proper MI estimator). 

1 (~ ) 1) n 2 (J~ - (Jo ~ N (0, E*) 

where 

E* = [1:9 ((Jo) r1 + (m; 1) [1:9 (00 ) r1 [1:9 ((Jo) - 199 ((Jo)] [1:9 ((Jo) r1 

+ (m; 1) [1:9 ((Jo) r 1 [1:9 ((Jo) - 199 ((Jo)] Var {q [Gi , GCi (Zd]) 

. [1:9 ((Jo) - 199 ((Jo)] [1:9 ((Jo)] -1 (6.7.7) 

Theorem 6.5 (Rubin's variance formula for proper MI). The expression on the RHS 
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of (6.7.1) is an asymptotically unbiased estimator of 

[1:8 (00)r
1 + (m~ 1) [1:8 (90 )]-1 [1:8 (90 ) -188 (80 )] [1:8 (90)r

1 

( m+1)[F ]-I[F ] + ~ 188 (00 ) 188 (00 ) - 188 (90 ) 

. Var {q [Gi , GCi (Zi)]} [1:8 (90 ) - 199 (00 )] [1:8 (90)J- 1 

Remark 6.6. This is precisely (6.7.7) and hence Rubin's variance formula, when used 

with proper multiple imputation correctly estimates the asymptotic variance. 

By comparing (6.7.5) with (6.7.7) we see that improper MI (where the initial estimator 

is fixed across imputations) results in a more efficient estimator than proper MI (where 
. . I d f N (ill var{q[Ci,GC(Z;)]}) £ I . .) the initial estImator IS samp e rom un' n ' lor eae 1 lluputatlOll . 

As m - 00, however, the asymptotic variance of the proper MI estimator converges 

to that of the improper MI estimator. 

Rubin's variance estimator underestimates the asymptotic variance when uHcd with 

improper imputation but correctly estimates the asymptotic variance when used with 

proper imputation. By 'correctly estimates' we mean that the variance estimator con

verges in expectation to the asymptotic variance, i.e. that it is asymptotically unbiased 

for any fixed m. As m - 00, however, Rubin's estimator is also consistent for improper 

MI. 

Consistent estimators can be derived in other ways for either of the MI estimators 

(and Tsiatis (2006) explicitly suggests some), but the advantage that Rubin's variance 

formula (used with proper MI) has over other estimators is its simplicity: it is easy 

to implement and can be applied to a large range of situations, without need for 

adaptation. This is reflected in the fact that routines for the implementation of MI are 

now available in most standard statistical software packages. 

One feature of Tsiatis's formulation is that the initial estimator is always of 9, i.e. the 
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full parameter vector. When we use MI in practice, this is often not the case. For 

example, consider the bivariate normal regression example discussed ill §5.3. In this 

example, supposing that the parameters of interest are those from the regression of 

Y on X: a, (3 and O"YIX, we would impute the missing X-values using the estimated 

parameters J, l' and axlY from the regression of X on Y, and then use the imputed 

datasets to make inference about a, (3 and O"Ylx. Of course, it is always possible to re

formulate into Tsiatis's formulation, by using the relationships between the parameters. 

For example, 

6.7.4 Multiple imputation using chained equations (MICE) 

Thus far, in our discussion of multiple imputation, we have assumed that a para

metric model for the joint distribution of the full data and the joint distribution of 

the coarsened data can be specified. There are many situations in which this might 

not be feasible, such as in a large dataset with a mixture of coutinuous, binary and 

categorical variables and/or when the missingness is non-monotone. An approach to 

multiple imputation which does not require specification of such joint distributions is 

multiple imputation using chained equations (MICE), first suggested by van Buuren 

et al. (1999). This approach works by first filling in the missing observations in an ad 

hoc fashion using randomly sampled observed values. Then, a univariate regression 

model is fitted to the first variable conditional on all the others, after discarding the 

ad hoc imputations for the first variable and the missing values are properly imputed 

based on this model. Next, the ad hoc imputations are discarded from the second 

variable and the second variable is regressed on all other variables. The missing val

ues for the second variable are then imputed using this second regressioll model. The 

process continues until each variable in turn has had its ad hoc imputatiolls replaced 

by the conditional regression imputations. This completes the first cycle. The process 

is repeated until a fixed number of cycles have been completed. In the second cycle, 

the imputed values from the first cycle are used instead of the ad hoc imputations, but 
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these too are discarded whenever the variable in question is the outcome variable in 

the regression, i.e. each univariate regression has on its left-hand side only observed 

values, but may include imputed values on the right-hand side. The imputed dataset 

at this final cycle constitutes the first imputed dataset in the MI procedure. A total 

of m imputed datasets are constructed in the same way, where for each imputation 

the process starts afresh with a new set of ad hoc imputations, and continues for the 

designated number of cycles. 

This method is practically very attractive as it can deal with missing data on a large 

number of variables with different univariate distributions and without requiring that 

the missing data pattern be monotone. However, a full theoretical argument for the 

validity of this method has not been presented to date. Indeed, it is unlikely that such 

a proof exists except in the multivariate normal case, since a collection of univariate 

regression models-not all linear-cannot correspond to a well-defined joint distribu

tion. The imputation model is inherently uncongenial, i.c. the stat.ionary distribution 

to which the Gibbs sampler attempts to converge does not exist. However, simula

tion studies suggest that the bias caused by the uncongeniality is likely to be small in 

practice (Gelman and Raghunathan, 2001; van Buuren et al., 2006). 



Semiparametric methods 

7.1 Introduction 

All the methods described in the previous chapter are likelihood methods, valid under 

MAR, when the model is correctly specified. The computational complexity of the 

numerical algorithms needed to find approximations to these estimates is one disad

vantage, but with modern processors, this problem is fast diminishing in many cases. 

84 
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Another disadvantage, which cannot be overcome by increased computing power, is 

the necessity to specify the full-data likelihood fully-parametrically. For example, a 

linear mixed model assumes that the full data have a multivariate normal structure. 

Missing data issues aside, it is now well-known that many common statistical methods 

that assume normality are in fact extremely robust to violations of this assumption, 

e.g. the t-test (Rasch and Guiard,' 2004). However, in missing data problems, the 

multivariate normality assumption plays a far greater role in the subsequent inference, 

because, not only is it assumed that each variable is marginally normally distributed, 

but also that the conditional distribution of each variable given any other variable 

is normally distributed. For example, in a repeated measures setting (such as the 

RECORD trial) with T timepoints, suppose that a patient drops out after just one post

baseline measurement of the outcome variable, then, at each subsequent timepoint, the 

linear mixed model implicitly assumes that the present observation, conditional on the 

past observations, is normally distributed. In an analysis based on the final timepoint, 

any effect due to the violation of the normality assumption is compounded T - 1 times 

for this patient. 

Things are even worse for marginal discrete-data models, where there are problems 

in addition to the dependence on intractable modelling assumptions. The 8ahadur 

model (8ahadur, 1961), for example, being based on correlations (pairwise and higher 

order) is easy to write down, but difficult to conceptualise, given our lack of intuitioIl 

for (particularly higher order) correlations between binary variables. Furthermore, the 

model places heavy restrictions on the parameter space, and this problem intensifies 

as the number of timepoints increases. Intuition for whether these restrictions are 

plausible in practice is usually impossible to acquire in all but the simplest of settings, 

and in the presence of missing data the assumptions cannot be fully tested. 

A less restrictive semipammetric approach is therefore an attractive alternative. The 

class of semiparametric models is vast and in §3.7 we defined two important subclasses, 

I and R. In §7.2 we give an example (the mean score method) of a method belonging 

to I. 
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An important example of a method belonging to R is Gcncralised Estimating Equa

tions (GEE) (Liang and Zeger, 1986) and this is introduced in §7.3. However, since 

this is not a likelihood procedure, in general it is only valid under MCAR, and some 

further modelling of the missing value mechanism is necessary for the analysis to be 

valid under MAR. Many extensions of GEE for MAR mechanisms have been proposed, 

and we describe these in §7.4 and §7.5 of this chapter. In §7.6 we look at the efficiency 

of semi parametric methods under MAR according to the general framework proposed 

by James Robins and his colleagues. In particular, we describe the estimator similar 

to the GEE estimator proposed by Robins and Rotnitzky (1995), which is both con

sistent under MAR and semi parametric-efficient in a class which contains GEE and its 

variants. 

Given our interest (in Chapters 12 and 13) in binary data, when discussing non

Gaussian outcomes, we will focus on binary outcomes, but the theory applies more 

generally. 

7.2 Mean score method: an example of a method belonging to I 

Recall that the observed-data density (6.1.1) under the CAR assumption can be written 

as 

PC,Gc(Z) (c, ge, 8, e) = 71' (c, ge, e) 1 pz (Z, 8) dz 
{ z:Gc(z)=gc } 

(7.2.1) 

Thus the observed-data score function can be written as 
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= 0 + Ie J{ z:Gc(z)=gc } pz (z, 8) dz 

J{ z:Gc(z)=gc} pz (z, 8) dz 

J{ z:Gc(z)=gc} iBPz (z, 8) dz 
-

J{ z:Gc(z)=gc} pz (z, 8) dz 

-.: J{z:Gc(z)=gc} Ie log [pz (z, 8)] pz (z, 8) dz 

J{ z:Gc(z)=gc } pz (z, 8) dz 

IE [8: (Z, 8)1 G, Gc (Z)] 

J{ z:Gc(z)=gc} pz (z, 8) dz 

Thus the observed-data score equation is 

or, equivalently, 
n 

LIE [8: (Zi' 8)1 Gi , GCj (Zi)] = 0 
i=l 

For missing data problems, this can be written as 

n L {] (Gi = 00) 8: (Zi' 8) +] (Gi < 00) IE [8: (Zi' 8)1 Z?bs]} = 0 
i=l 
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(7.2.2) 

Solving this observed-data score equation to find estimates of 8 is exactly equivalent 

to maximising (7.2.1) and hence is a fully-parametric approach. But this requires that 

18 [S: (Zi' fJ)1 Z?bs] be determined analytically as a function of Z?bs and fJ. 

Suppose instead that we solve 

n L {] (Gi = 00) S: (Zi, fJ) +] (Gi < 00) 18 [S: (Zi,fJ)1 Z~bS]} = 0 (7.2.3) 
i=l 
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where 18 [S: (Zi' 6) I Zibs ] is estimated semiparametrically (or non-parametrically), 

then the resulting estimator belongs to 'I. 

Reilly and Pepe (1995) suggested that when Zi consists entirely of discrete random 

variables, 18 [S: (Zi' 6) I Zibs ] should be estimated as the mean of S: (Zi, 6) for subjects 

who share the same values of Zibs as the subject for whom S: (Zi, 6) is missing. This 

is known as the mean score method. 

7.3 Generalised estimating equations (GEE): an example of a 

method belonging to R 

Suppose that (YI,i' Y2,i, ... , YD;-l,i) are Di - 1 ::; T correlated outcomes measured on 

each of i 1, ... ,n subjects with fully-observed time-stationary covariates 

(Xl,i," ., Xp,i)' Let Xi be a [(Di - 1) x (p + 1) T] covariate matrix for subject i, con

structed as follows: 

• Row 1 is the row vector (1, XI,i,' .. , Xp,i) followed by (p + 1) (T - 1) zeros 

• Row 2 starts with p + 1 zeros, then the row vector (1, Xl,i,' .. ,Xp,d followed by 

(p + 1) (T - 2) zeros 

• 
• Row Di-1 starts with (p + 1) (Di - 2) zeros, then the row vector (1, Xl,i"'" Xp,i) 

followed by (p + 1) (T - Di + 1) zeros 

Let {3j = (f3j,O,/3j,1,"" /3j,pf be a [(p + 1) x 1] parameter vector for time j, such that 

lE (Yj,i IXl,i" .. ,Xp,i) = J-Lj,i = j-l (17j,i) = j-l (f3j,O + f3j,lXl ,i + ... + /3j,pXp,i)' and let 

f3 = (f3f, ... , f3f)T. Let Di be a [(Di - 1) X (Di - 1)] diagonal matrix with (k, k)th 

element 
8J-Lk,i 

817k,i 
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The reader is asked to note the distinction between D i , the matrix of partial derivatives, 

and Di , the dropout indicator. The convention of using a boldface Di for the former and 

not for the latter will be maintained throughout. Let C i be the [(Di - 1) X (Di - 1)] 

correlation matrix of (Yl,i, Y2,i, ... , YDi-I,i), 

Vi = diag [Var (Y1,i) , ... , Var (YD,-l,i)] , 

Y,l . ,z 

Y;2 . ,z 

YD;-l,i 

and 

Then the GEE estimate of f3 is the solution to: 

n 

L X;DiWil (Yi - #Li) = 0 (7.3.1) 
i=l 

For multivariate Gaussian outcomes, the multivariate distribution of Y i is entirely 

specified by the lst_ and 2nd-order moments, f (-) is the identity and (7.3.1) becomes 

n 

L X;Wil (Yi - J.ti) = 0 
i=l 

which can be shown to be equal to the observed-data score equation and thus (assuming 

that the model is correctly specified and the parameters of the correlation matrix 

consistently estimated), th(~se estimates are fully-efficient. 
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However, for non-Gaussian data, this is not true. Some information about the joint 

distribution of the outcomes is contained in the 3rd and higher order moments, which 

are not included in the model and therefore (7.3.1) is not a score equation, and the 

procedure is not a maximum likelihood procedure. This means that estimates are not 

fully-efficient. However, it can be easily shown (Liang and Zeger, 1986) that GEE esti

mates are consistent (asymptotically unbiased) as long as the missing data arc MCAR, 

by showing that the summand in the left hand side of (7.3.1) has zero expectation. 

The GEE procedure is viewed favourably in the trade off between efficiency, practicality 

and the robustness which comes with the reduction from parametric to semiparametric 

modelling assumptions. 

7.3.1 Working correlation structure 

Another way in which non-Gaussian outcomes differ from Gaussian outcomes is that 

their variance is a function of their mean. This is why Wi, the variance-covariance 

matrix, is split into two components- Vi, which is a function of the mean vector /-ti, 

and C i the correlation matrix, which is functionally independent of /-ti~- as follows: 

We are rarely directly interested in C i , and it is thus common to assume a 'working' 

structure for this matrix, which mayor may not be correct. This is legitimate since 

it can be shown that our estimates of /-ti are consistent under MCAR even when C i 

is misspecified, although correctly specifying C i leads to greater efficiency (Liang and 

Zeger, 1986). Thus GEE belongs to the subclass 'R of semiparametric models. 

Common choices for C i are: 

• Independence: C i is the identity matrix. GEE with the independence working 

correlation matrix is often called Independence estimating equations or lEE. 
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1 P P P 

P 1 P P 

• Exchangeable: C i = 

P P 

P P 

• First-order auto-regressive: C i = 

1 Pl,2 

Pl,2 1 

• Unstructured: C i = 

Pl,Di-2 

Pl,Di-1 

1 

P 

1 

P 

P 

1 

Pl,3 

P2,3 

P p2 

1 P 

pDi - 2 

pDi -3 

P 
1 

Pl,Di-1 

P2,Di-l 

PDi-3,Di-2 1 PDi-2,Di-l 

PDi-3,Di-l PDi-2,Di-1 1 
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Once a structure has been chosen, the parameters of C i are estimated. The original 

method proposed by Liang and Zeger (1986) uses the Pearson residuals 

y.. - r,·· 
A ),t r),t 
rj,i = 

Jv~,j) 

where v~,j) is the (j, j)th element of Vi. For example, in the exchangeable structure, 

p is estimated by: 

n A A 

A _ ""' ""' TtTt' P- L-tL-t n 1 
i=l t>t' Li=l "2 (Di - 1) (Di - 2) - p + 1 

Smith and Kenward (2000) and Lipsitz et al. (2000) argue against this so-called avail

able pairs method of estimating C i when data are missing, and suggest a more prin-
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cipled alternative, based on quadratic estimation (Crowder, 1985, 1992). Using the 

notation of Smith and Kenward (2000), if ri = (r1,i' ... ,rD;-l,if is the vector of Pear

son residuals for the ith subject, then these are approximately normally distributed 

with zero mean and variance-covariance matrix C i , a fUIlction of the parameters 

P = (PI, ... ,Prf. P is obtained from the estimating equations 

7.3.2 Algorithm for fitting GEE 

Assuming a working structure for C i , in order to solve (7.3.1), we expand the summand 

in a Taylor series about /3 - /3*, where /3 is the estimate that satisfies (7.3.1) and (J* is 

dose to t3. This gives rise to the following Fisher scoring procedure for solving (7.3.1): 

1. Choose an initial estimate (J(1), for example, by fitting a lea.qt squares regression 

of the observed Y on X independently for each timepoint. 

2. Calculate J.t?) = 1-1 (Xi /3(l») and C i for each i, using one of the methods out

lined in §7.3.1. 

3. Calculate /3(2) as 

(3(2) = (3(1) + {t. X[Di [(3(1)] Wi' [(3(1)] Di [(3(1)] X. } -1 

n 

. L XfDi [/3(1)] Wi 1 [(J(l)] {Yi - J.ti [/3(1)] } 
i=l 

4. Substitute /3(2) for (J(1). 

5. Repeat steps 2. -4. until the absolute difference between (J(2) and /3(1) is smaller 

than some pre-specified tolerance. 
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7.3.3 Estimating precision using the sandwich estimator 

If the structure of C i is correctly specified, and its parameters consistently estimated, 

it can be shown that the 8..'lymptotic variance of (3 is given by: 

However, as we are unlikely ever to be certain that the structure of C i is correctly 

specified, Liang and Zeger (1986) suggest using the following sandwich estimator of 

variance, where the residuals are used to correct for any misspecification of C i : 

( tXfDiW;lDiXi)-1 [tXfDiW;l (Yi - {ti) (Yi - iLifW;lDiXi] 
1=1 1-1 

. (t XfDiW;IDiXi) -1 (7.3.2) 
1=1 

7.4 Weighted GEE 

As we have already mentioned, GEE as described above is only valid in general under 

MCAR. One method for eliminating the asymptotic bias of GEE under MAR is inverse

probability weighting as introduced in §5.2. The weighting can be done either at the 

subject level or at the observation level. 

Consider the following modification of (7.3.1): 

(7.4.1) 

This formulation was suggested by Fitzmaurice et al. (1995). Using a method by 
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Rotnitzky and Wypij (1994) for calculating asymptotic bias, Fitzmaurice et ai. argue 

that their method (known a'i cluster-weighted GEE) is asymptotically unbiased under 

MAR when the inverse-probability-of-dropout weights are consistently estimated. 

In order to apply this met hod we first estimate the inverse-probability-of-dropout 

weights from a series of logistic regression models as follows: 

• The first logistic regression model estimates JP (D j = 11Xd =: Pf,i' (This is often 

assumed to be zero for all subjects). 

• The second logistic regression model estimates JP (D j = 2 lXi, Y1,j' D j > 1) =: P~i' , 

· .,. 
• The kth logistic regression model estimates 

· .,. 
• The rth logistic regression model estimates 

P (Di = T IXi . Y1,i' ... , YT-1,i. Di > T - 1) =: P~,i 

• P~+l,i = 1 by definition. 

• Then, we put these together to get the marginal probabilities as follows: 

PM '_pC 
l,i'- l,i 

and for k > 1, 

P~~i := P (Di = k IXi . Y1,i' ...• Yk-1,i) 

= P (Di = k IXi . Yl,i •... • Yk-1,i, Di > k - 1) 

. P (Di > k - 11X j • Y1,i' ...• Yk-1,i) 
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= P (Di = k IXj . YI,j,"" Yk-l,i, D j > k - 1) 

. [1 - P (Dj :S k - llX j • YI,i, ... , Yk-l,i)] 

= pL (1 - p~~j - P~~i - ... - pr-l,i) 

where throughout we are making the ~IAR assumption. 
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We add a cluster-level weight variable to the dataset, where the weight for subject i is 

1 
pM 

Ii, ,j 

and the parameters of the model are estimated using the algorithm described in §7.3.2. 

Now let 1rt,i = P (Rt,j = 1 !Yl,i, ... , Yt-l.i, Xi) and 

. (RI,i RT,j) 
~i =dlag -, .... --

7rl.i 1rT,i 

and consider the following modificatioIl of (7.3.1): 

(7.4.2) 

where Xj, D i , Wi, Yi and ji.i are the cOlmterfactual T-dimensional versions of Xi, 

D
i

, W h Y i and JLi, which would have been used in a GEE with all the data fully

observed. Note that Yi is the only OIle of these which involves unobserved data, since 

the other quantities are all functions only of (XI,i, ... ,Xp,i) which are always observed. 

Furthermore, any unobserved element of Y i correspond" to a column of zeros in ~i' 

hence the left-hand side of (7.4.2) is a fUllction only of the observed data and is thus 

well-defined. 

This is known as observat ion-weighted GEE and belongs to the class of estimators 

proposed by Robins et al. (1995) (although the~v advocate the use of a more efficient 
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estimator in the same class). 

The weights are calculated by taking the inverse of the following estimated probabilities: 

p~,li-O := P (Rj,i = 1 lXi, Y1,i, ... , YJ-l,i) 

= P (Di > j lXi, Y1,i' ... , YJ-l,i) 

= 1 - P (Di :::; j lXi, Yi,i'" . , YJ-l,i) 

= 1 - P~lf - P2M _ ... _ pM 
,1.1 ),1 

where the P~ are as defined in the cluster-level weighting procedure described above. 

The equation (7.4.2) now rf>presents a full-data GEE as far as estimation is concerned, 

since all the matrices and vectors are of full-data dimension. We have re-weighted the 

values of (Yi - JLi), and "padded out" the vector with zeros so that it is of full-data 

dimension. 

If the means model is saturated (see Definition 3.2), the estimates obtained will be the 

same, irrespective of the choice of C j (O'Brien et ai., 2006), and thus we can carry out 

the analysis using the independence correlation matrix. The independence assumption 

means that data from previous timepoints are not involved in the estimation of the 

effect of interest at the final timepoint and observation-level weighted GEE is thus 

(in this case, when the means model is saturated) equivalent to a weighted univariate 

logistic regression at the final timepoint. using the observation-level weights. 

7.4.1 High variability in the weights 

If our estimate of the probability of dropout (for cluster-weighted GEE) or the proba

bility of being observed (for observation-weighted GEE) is 0, then by definition, there 

are no examples in the dataset of such a subject dropping out or being observed, re

spectively, at that time. This lIlt>ans that at no point is there a practical problem with 
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infinite weights. However, if our model predicts values of the probabilities which are 

very close to 0, then some observations may have extremely large weights. This can 

lead to efficiency problems, with a few observations dominating the analysis, effectively 

reducing the sample size. All weighting procedures work best if the weights are mod

erate and not too variable (see Kang and Schafer, 2007, and the contribution to the 

discussion by Robins et al.). 

7.5 MI-GEE 

We noted in §6.7 that MI is a flexible method applicable in a wide variety of settings. 

MI-GEE (Paik, 1997) is ont' such setting. Under monotonicity, the imputation step 

is done sequentially: for each occasion we can impute the current outcome based on 

the values of the outcome on all previous occasions and the covariates. Then we fit a 

GEE to each completed dataset ~Uld combine the results using Rubin's rules. When 

applying MI to repeated binary data in this way there is one theoretical issue which 

we now consider. 

Implicit in §6.7 is that the imputation and substantive models are both correctly speci

fied. Otherwise, the MI estimates would be inconsistent. In the case of MI-GEE, a logis

tic regression is an obvious candidate for the imputation model, and also (marginally 

at each timepoint), for the substantive model. Note that the substantive model is 

marginal: it is the logistic regression of the outcome at each timepoint conditional 

only on the covariates, whereas the imputation model is a series of logistic regressions 

in which the outcome is always viewed conditionally on the covariate and all previous 

outcomes. 

If one replaced 'logistic' with "linear' in the above paragraph, there would be no prob

lem, because if a collection of variables ha...., a multivariate Gaussian distribution, then 

each 'of the variables has a marginal univariate Gaussian distribution, and the distri

bution of anyone of the variables conditional on any selection of the others is also 
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univariate Gaussian. However, the equivalent does not hold for binary data under lo

gistic regression. Indeed, if each outcome variable marginally obeys the assumptions of 

a univariate logistic regression, then it is impossible for the assumptions of the logistic 

regressions to hold conditionally on previous outcomes and vice versa. However, evi

dence suggests that only in extreme ca'>eS does this un congeniality lead to a noticeable 

bias in practice. For more on this issue see ~Ieng (1994), where it is shown that having 

as full and rich an imputation model as possible helps to protect against the possible 

biases introduced by uncongeniali ty. 

Once the imputations have been drawn, the subsequent GEE analyses are performed 

on complete datasets, and therefore, if the means model is saturated, the choice of 

covariance structure is irrel('vant, and ~II-GEE is equivalent to ~n-IEE. 

7.6 Improved efficiency and double robustness 

7.6.1 Augmented inverse probability weighted (AIPW) estimator (I-type) 

Recall that in §5.2, we derived the IP\VCC estimator, the estimator that solves 

~ 1 (Cj = x) SF (Z. OIPWCC) = 0 
L..t JP (C = oolZ) 9 I' 
i=l t I 

We commented on its consistency, but also its inefficiency. Robins, Rotnitzky and 

their co-workers have published many papers on how to improve the efficiency of tlus 

estimator by using information on the incomplete cases to augment the IPWCC estima

tor. The resulting estimator is known as the Augmented Inverse Probability Weighted 

(AIPW) estimator. See for example Robins and Rotnitzky (1992), Robins et al. (1994) 

and Tsiatis (2006). 
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Consider the alternative estimating equation 

(7.6.1) 

where 4> [Gi , Gc; (Zi) ,9] is---for the time being~just an arbitrary function. This is a 

sensible equation to consider because 

under the CAR assUlllption. and therefore the consistency of the IPWCC estimator is 

preserved. 

The Hilbert Space/Influence Function theory that underpins most of the work carried 

out by Robins et al. in this field can be used to exhibit the optimum (i.e. most effi

cient) choice of 4> [Gi , GCt (Zd .9]. Loosely speaking, a Hilbert space is an extension of 

Euclidean space that allows for potentially infinite dimensions, and the set of influence 

functions for RAL estimators forms a Hilbert space. The advantage of thinking about 

estimators in this way is that the length of influence functions as defined by the distance 

metric in this Hilbert space is related to the variance of the associated estimator, and 

therefore the search for an f'fficient estimator can be translated into a geometry prob

lem and the extensive theory of Hilbert spaces (for example, the Projection Theorem) 

can be exploited to find answers to our RAL estimator problems. 

This theory tells us that the most efficient estimator of this form is found by choosing 

(7.6.2) 
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Therefore, the AIPW estimator is the solution to: 

(7.6.3) 

If 18 [S~ (Zi' 9) I Gi , Gc. (Zi)] is estimatro semiparametrically or non-parametrically, 

then this estimator is semipru'ametric ruld belongs to the subclass I of semiparrunetric 

models. 

7.6.2 Double robustness 

b . . f 9~ AIPW fir t bt .. f In order to 0 tam an estImate 0 , we must s ,0 ,run estImates 0 

(7.6.4) 

and of 
(7.6.5) 

Robins and his colleagues have shown that the AIPW estimator has a property known 

as double robustness: 

Theorem 7.1. If either the model that gives {7.6·4} or the model that gives {7.6.5} 

(but not both) is incorrectly specified. then the AIPW estimator rema'ins consistent. 

Proof. Let 1r [Gi , Gc. (Zj)] be the true value of P (Gj = OOIZi) and let 7T [Cj, GCi (Zi)] be 

its estimate under the model for (7.6.4). Similarly, let E [ S~ (Zi' 8AIPW
) I Ci, GCi (Zj)] 

be the estimate of E [S~ (Zj, 8AIPW
) I C i • GC, (Zd]. 
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For consistency, we need that 

Assuming only that the model for (7.6.4) is correct, 

Assuming only that the model for (7.6.5) is correct. 
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(
7r [Gj, Gc• (Zj)] [F ( 8) I G G ( )] 

= E i [G
j

, Gc; (Zj)] E So Zj. 0 j. Ci Zj 

{ 
7r[Gi,GC;(Zj)]} ~ [ F I ) + 1 - i [G

i
• Gc; (Zj)] E So (Zi,80 ) Gi , Gc; (Zi)] 

= E (E [8: (Zj,80 )1 Gi,Ge, (Zd] 

{ 

7r [Gj , Gc; (Zi)j 7r [Gj • Ge; (Zi)] } [F I ]) 
+ i [G

i
, Gc; (Zj)] - ir [G

j
, Gc. (Zi)] E 86 (Zi,80 ) Gi , GCi (Zi) 

= E {E [8: (Zj, 80 )1 Gi • Ge, (Zi)]} 

= E [8: (Zj, 80 )] 

=0 

o 

By comparing (7.6.3) with (7.2.2), we see how double robustness is gained at the ex

pense of efficiency. If the model for estimating (7.6.5) is correct, then the asymptotic 

efficiency of (7.2.2) is the same as the asymptotic efficiency of the corresponding max

imwn likelihood estimate, but if the model is incorrect, (7.2.2) is inconsistent. When 

both models are correct, (7.6.3) is less efficient than (7.2.2), but if the model for esti

mating (7.6.5) is incorrect. then, as long as the model for estimating (7.6.4) is correct, 

(7.6.3) is consistent. If the model for (7.6.5) is incorrect and the model for (7.6.4) is 

correct, then the efficiency of (7.6.3) decreases relative to (7.2.2), but (7.6.3) remains 

consistent. 

What happens to (7.6.3) when both models are incorrect remains a contentious issue 

in the literature, with Kang and Schafer (2007) claiming that 

" ... at least in some settings, two wrong models are not better than one." 

For more on double robustness, see the article (and discussion, in particular the con

tributions by Tsiatis and Davidian and by Robins et al.) by Kang and Schafer (2007). 
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7.6.3 AIPW estimator fR.-type) 

In §7.6.1, we started by assuming that had we observed the full data we would estimate 

8 by solving the full-data score equation 

n 

2:s: (Zion) = 0 
i=l 

However, supposing that we wish to relax these assumptions about the full-data density, 

we could instead propose 
n 

2:V9 (Zi.n) = 0 
i=l 

where V8 (.) is any function satisfying 

(7.6.6) 

It is trivial that such a function exists. Suppose that E (Zi) = 1/J, then 1/J must be a 

function of 8, otherwise 8 would not fully describe the distribution of Zi, and thus 

is one possible (non-parametric) choice. 

Whatever the choice of VB (-) (as long as it satisfies (7.6.6)), it follows that 

~ 11 (C = (0) V (Z. nIPWCC) = 0 
L..t P(C = (0) 9 ,. 
i=l 1 

leads to consistent estimates under CAR. 
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It also follows that, by considering estimating equations of the form 

(7.6.7) 

the efficiency could be incn·ased. 

Robins et al. show that, for a particular choice of V8 (Zi, 8), 

(7.6.8) 

is the optimal choice for <!> [C. Ge. (Zi) ,8], and hence, the more general AIPW esti

mating equation is given by 

(7.6.9) 

The double robustness property carrie$ through, the only difference now being that 

when we compare (7.6.9) with (7.2.2), the comparative efficiency of (7.6.9) is lower 

than when we compared (7.6.3) with (7.2.2), since not only are we introducing inverse 

probability weights, but V 8 (.) is suboptimal in terms of efficiency. Again, however 

there is a trade-off between dependence on modelling assumptions and efficiency. 

If V8 (Zi' 8) poses parametric restrictions only on E (Zi) (and no higher moments), 

then the semiparametric estimator belongs to R. Note that (7.6.9) is only the most 

efficient estimator of the form given in (7.6.7), i.e. for a particular choice of V8 (Zi' 8). 

Rotnitzky and Robins (1997) show how to choose V8 (Zi' 8) to achieve the most effi

cient estimator in a given semi parametric class (such as R). In general, the optimal 

Ve (Zi' 8) is non-obvious, ill the sense that it doesn't correspond to an estimating 
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equation (such as GEE) in common use. Moreover, in many situations the optimal 

VB (Zi' 8) does not have a dosed-form representation and an iterative algorithm is re

quired to achieve the semiparanletric efficiency bound (see, for example Tsiatis, 2006, 

ch. 10). In many situations, the difference in efficiency between the IPWCC and a 

sensibly-chosen AIPW estimator is far greater than the difference in efficiency between 

this AIPW estimator and the semiparametric-efficient estimator. This, coupled with 

the often intractable form of the semi parametric-efficient estimator means that these 

optimal estimators are rarely used ill practice. 

7.6.4 Regression formulation from Bang and Robins 

Although AIPW methods have very attractive properties, one feature that has proba

bly severely restricted their usc in practice is that no general method exists for their 

derivation. The paper by Bang and Robins (2005), where a reasonably general method 

is described for three situations (cross-sectional univariate missing data, longitudinal 

data with monotone dropout and marginal structural models) is therefore a very impor

tant addition to the literature on this topic. First, we describe the Bang and Robins 

approach in the univariate cross-sectional setting before describing the extension to 

longitudinal data with monotone dropout. 

7.6.4.1 Cross-sectional univariate missing data 

Let the full data Zi = (Xf, Y;( for subject i E {I, ... , n} be a fully-observed vector 

of covariates Xi and a scalar outcome Y; which could be missing (Ri = 0) or observed 

(~ = 1) and interest lies is in estimating f.1 = E (Yi). 

Under the MAR assumption, consistent estimators of J1 could in theory be obtained in 

two ways. First, an IP\VCC estimator 
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n Ri 
L lP (R- = 1IX.) (Yi - J1-) = 0 
i=1 ~ ~ 

and second, a regression estimator 

n 

L [E(Yi IXd - J1-1 = 0 
i=1 

The first would require a model for the inverse probability weights and the second 

would require a model for Yi conditional on Xi· 

Bang and Robins (2005) suggest combining these two ideas 8..'> follows. First a suitable 

regression model (such as logistic regression) is chosen for R conditional on X we 

call this the 1T-model. Let a be the parameter estimates from this regression and 

let * (Xi, &) be the predicted probabilities (that Ri = 1) from this model. Then 

we fit a generalised linear model for Y conditional on X and *-1 (i.e. with the inverse 

probability weights included as a covariate in the linear predictor) to those subjects who 

have complete data. We call the corresponding model without the inverse probability 

weights, i.e. 

the y-model, where lJI is the canonical link function from an appropriate GLM and 

s (X, (3) is a known function. We call 

the extended y-model. 

Let 
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be the predictions from the extended y-model. Note that although the extended y

model was fitted to the complete cases only, e (Xr,~, ¢) can be calculated for all 

subjects. Finally, the proposed estimator is the solution {tOR to 

t [e (xr,~,¢) - /lOR] = 0 
i=l 

Theorem 7.2 (DR cross-sectional estimator). The estimator {tOR is doubly mbust. 

That is, if either the 7r-model or the y-model is incorrectly specified, but not both, 

{tOR is a consistent estimator of JL. Furthermore, its asymptotic efficiency is optimal 

amongst estimators which put no parametric restriction on the distribution of Y. 

Proof. Let us write ei for e (xr,~,J» and 7ri for 7r(Xi,6). The DR estimating equa-

tion n 

L (ei - JLOR) = 0 (7.6.10) 
i=l 

can be rewritten as n 

L [ei - JLDR + Ri7r;l (Yi - ei)] = 0 (7.6.11) 
i=l 

This follows from the fact that E~=l ~7r;1 (Yi - ei) is numerically zero since we in

cluded -rr;l in our GLM for t.he extended y-model. 

But we can rewrite (7.6.11) as 

n 

L [Ri1T;l (Yi - JLOR) + (1- Ri'Tr;l) (ei - JLOR)] = () 

i=l 

which we immediat.ely recognise as being of the same form as (7.6.9) and thus must be 

consistent when the 7r-modcl is correctly specified. 

Showing that {tDR is a consistent estimator of JL when the y-model is correctly specified 

is straightforward. We must show that the expectation of the summand in the LHS 

of (7.6.10), at the true paramet.er-values, is zero. But when the y-Illodel is correctly 
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specified, the true value of ¢ is 0, and ej reduces to (the unexteuded) W [8 (Xi, ,8)]. 

Thus, by the MAR assumption, and the consistency of a correctly specified GLM, {tDR 

is a consistent estimator of JJ when the y-model is correctly specified. 

Asymptotic efficiency follows from the fact that ei is a consistent estimator of IE (Yi IXi ), 

the orthogonal and optimal choice defined in (7.6.8). 0 

7.6.4.2 Longitudinal data with monotone missingness 

Let us now suppose that the full data Zi = (XL yn T 
for subject i E {l, ... , n} 

consist of a fully-observed vector of covariates Xi and a vector of repeated measures 

Y i = (Y1,i, ... , YT,i)T subject to monotone dropout and that interest lics is ill estimating 

J.L = :IE (Yi,T)' Let Ri = (R1,i, . .. , RT,i{ be the vector of missingness indicators with 

Rt,i = 11 (Yt,i is observed), and let Di-the earliest t for which Rt,i = 0 be the dropout 

indicator. 

The IPWCC estimator is the solution to: 

This represents one way in which we might obtain a consistent (albeit. inefficient) 

estimator of J.L under MAR. We would calculate IP (RT,i = llXi , Y1,i"'" YT-1,i) under 

the MAR assumption, by fitting a series of models to estimate 

Then, the marginal probabilities 7rt,i = IP (Yt,i is observed lXi, Y1,i, ... , Yt-l,i) 
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P (Di > t lXi, YI,i,' .. ,yt-1,i) are estimated as 

t 

7rt,i = IT [1 - A (j lXi, YI,i, ... , l'j-1,i)] 
j=1 
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However, there is an alternative regression estimator, aJlalOgous to the cross-sectional 

ca."le, which-in the longitudinal settillg--is best described recursively. Let HT,i = YT,i 

if RT,i = 1 (HT,i is not defined for RT,i = 0) and, for t < T, Ht,i = 

E (Ht+I,il Xi, YI,i,"" yt,i, Di ~ t + 2) (again, with Ht,i undefined if Di :::; t + 1). Upon 

quick inspection of these recursive functions, we see that, under MAR, 1E (HI,d = j..l, 'Vi. 

This leads to the following alternative estimating equation for j..l: 

t ( H1,i - J-l) = 0 
i=l 

In the first representation, models (such as logistic regression) must be chosen for 

estimating each 

and in the second representation models (such as linear regression if yt,i is continuous, 

logistic regression if Yt,i is binary) must be chosen for estimating each 

Bang and Robins (2005) go on to show how a doubly robust estimator may be derived 

by combining these two representations. The algorithm is as follows: 

1. Fit a series of parametric regression models to estimate A (t lXi, YI,i, ... , Yt-I,d, 
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from the observed data, and from these obtain estimates 

2. Let HT,i = YT,i. 

t 

irt,i = II [1 - ~ (j lXi, Yi,i, ... , YJ-l,i)] 
j=2 

3. For t = T - 1, T - 2, ... ,2, 
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(a) For subjects with Di ~ t + 1, fit a parametric regression model with Ht,i a.'l 

the outcome and Xi, Y1,i, Y2,i, ... , Yt-l,i and irt=-\i as predictors. 

(b) For subjects with Di ~ t, let Ht-1,i be the predicted values from the regres

sion in (a). 

4. The doubly robust estimator of J-L is given by n-1 L~I HI,i' 

The proof that this estimator is both doubly robust and asymptotically optimally 

efficient (amongst estimators which pose no parametric restriction on the distribution 

of Y) is similar to the proof given above for the cross-sectional case (see the appendix 

of Bang and Robins (2005)). 

No variance estimator exists for these regression-formulated DR estimators and Bang 

and Robins (2005) suggest using the bootstrap to obtain variance estimates. 

7.6.5 A semi parametric-efficient GEE-type estimator 

We return to the repeated binary outcome case described in §7.3, and to the problem 

of finding a consistent (under MAR) estimator which is more efficient than weightcd

GEE but with the same semiparametric restrictions. More formally, we use a daRs of 

weighted estimating equations to which GEE belongs, as described by Robins et al. 

(1995). This class of estimating equations is given by 
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(7.6.12) 

where each quantity is defined as in (7.4.2), except for D;, which is any ((p + 1] TxT) 

matrix of functions of Xi and /i Although c])i is thought of as the matrix of observation

level weights, by setting all the weights (wrongly) to 1 and setting D; = XfDi, we 

see that ordinary unweighted GEE belongs to this cla..'ls as well 8..-' observation-level 

weighted GEE. Furthermore, by setting all the weights for subject i to be [JP (Di = di)r 1
, 

we see that cluster-level weighted GEE also belongs to this class. 

Many references to Robins et al. (1995) and Robins and Rotnitzky (1995) in the liter

ature fail to recognise the distinction between (7.4.2) and (7.6.12), and Robins et ai. 

are often wrongly claimed to advocate the use of (7.4.2). Although (7.4.2) belongs to 

the class described by (7.6.12), it is not the most efficient estimator in this class. 

Robins and Rotnitzky (1995) derive the most efficient estimator in the (7.6.12) class 

and prove that its efficiency attains the semiparametric efficiency bound for this class. 

They describe an adaptive procedure for its estimation, which we now describe. 

In addition to the notation introduced in §7.3 and §7.4, let 

Then the procedure is as follows: 

1. Calculate ~, an initial (inefficient) estimator of f3 e.g. from a suitable non

augmented IPWCC estimating equation. 
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2. Specify a regression model (such as logistic) for 

and estimate its parameters using maximum likelihood. Let ).j,t,i be the estimate 

of 1P (Rj,i = lIRt-l,i = 1, Yt-I,i' Xd from this model. Monotonicity dictates that 

).j,t,i = 1 if j < t. 

3. Use the estimates ).j,t,i to calculate estimates 

t 

irt,i = II ).k,k-I,i 

k=2 

4. Let Kj,t,i = irt,iir;] (Yj,i - pj,i) and specify a regression model for 

Let K,j,t-I,i be the estimate of E (Kj,t-I,i IRj,i = 1, Yt-l,i' Xi) from this model. 

5 Let OJ· t' = )'J. t iK,J· t-I i be an estimate of GJ· t i· • "41",, " 

6. Let Qt,i be a column vector with jth element irt:/Oj,t,i if j ~ t and 0 otherwise. 

8. Let Vi = ~i (Yi - Ai) where ~i is calculated using irt,i and P,i is calculated 

using /3. 

9. Estimate 

by multivariate least squares. 

10. Let Dr be the estimate of D; = XrDi obtained when substituting /3 for {3. 

11. Let St,i = D;AQt,i' 
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12. Find W, the partial maximum likelihood estimate of w in 

(7.6.13) 

13. Update ~i using A~~~li (w). , , 

14. Finally, solve 
11 

LD:A~i (Yi - Ai) = 0 
i=l 

to find i3adap, the adaptive semiparametric-efficient estimator of {3. 

The result as it appears in Robins and Rotnitzky (1995) is more general, since it 

relaxes the time-stationary constraint on the covariates and includes an additional set of 

covariates (also time-updated) Vi,i, ... , VDi-1,i for each subject, where the substa.ntive 

model is the regression of Yon X, without conditioning on these additional covaria.teg. 

The authors in Robins et al. (1995) derive a consistent sandwich estimator for the 

variance of {3adap. 

Note that this estimator is not the augmented version of weighted-GEE. Such all 

estimator would improve the efficiency of weighted-GEE, but is not optimally efficient 

amongst estimators in the class defined above. Robins and Rotnitzky (1995) have 

chosen the optimal semiparametric estimating function U (.), which is not the GEE 

estimating function, and the estimator they derive is its augmented counterpart. 

This estimator differs from the estimator we would obtain from the Bang and Robins 

(2005) procedure described in §7.6.4.2 since the former imposes a parametric restric

tion on the marginal means of the outcomes whereas the latter is in this sense nOll

parametric. In the special case where the marginal means model in the fonner is 

saturated, we would expect the two methods to converge. 



Part III 

Multiple imputation for doubly robust estimation 



Doubly robust multiple imputation 

8.1 Motivation 

As w noted in §7.6.1 , a consistent, efficient and doubly robust e timator is giv n by 

th solution to the following estimating equation: 

115 
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(8.1.1) 

Other than in a few simple situations, however, calculating the conditional expecta

tion in the second term analytically is difficult. Doubly Robust Multiple Imputation 

(DRMI) is a novel method which tries to overcome the difficulty associated with this 

step using MI. 

8.2 Description of the method 

We start by describing the method in the special case where the full data Zi = 

(Vi, Un T for subject i consist of a (d x 1) vector U i which is always observed and 

a univariate Vi which is observed only for nc of the n subjects. As usual, Ri = 1 if Vi 
is observed, and Ri = 0 otherwise. Let 

be (after re-ordering) the data for the complete cases and let 

where Zi = (-, Un T and· denotes a missing value. Then define an augmented data 

matrix 
Z* = (zcT, Z_T) T 

Thus Z* has n + nc rows, nc of which are complete. Let V* be the first colulllll of Z* 

and U* the remaining d columns. 
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Let 7ri = 1P (Ri = 1) and define weights for the augmented matrix Z* as follows: 

W?=! 
~ 7ri 

Wi- = Ri (1 -:J + (1 - Ri ) 

We = (W~, W~, ... , W~,,)T 

w- = (W1-, W2-, •.• , W;)T 

W* = (weT, W-T) T 

The missingness indicator for the augmented dataset is 

if V:* is observed 

if V:* is missing 
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Our proposed method uses multiple imputation to make inference about 8 in a weighted 

analysis on the augmented data, Z*, weighted by W*, where 8 is the parameter of 

interest, governing the distribution of the original full data, Z. We assume for now that 

the probabilities 7ri are known. The relationship between the original and augmented 

datasets is illustrated in Fig. 8.1. 

As described in §6.7, in multiple imputation, an estimator 8; is obtained from each 

of m imputed datasets and the ~I estimator is given by 8M
! = m-1 L;l iJ;. In t.he 

situation described above, each 8; is the solution to 

(8.2.1) 

where iJY) is some initial estimator of 8 (which could be different for each j, depending 

on whether the imputations are proper or improper), and Zij [8}j)] is equal to Zi if 
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Z W Z* W· 

VI VI ~ Vi 11"1 

V2 V 2 
1 V2 11"2 

VI 
V 2 

J 
11"1 
.l 
11"2 

VnC Vnc _1_ Vnc 
11"nr Vn" 

_1_ 
n-"Ir 

V nc+1 
~ 

V nc+2 

7I"nr+1 

7I"n c+ 2 

VI 
V 2 

1 - 1 
71"1 

1 - 1 
11"2 

Vn 1 
11"n Vn" 1 - _1_ 

'lrn · 

V nc+! 1 
V nc+2 1 

Un 1 

Figure 8.1: A diagrammatic representation of the robust MI formulation 

R; = 1 and iij = ('Cij,v i ) if R'; = 0, where 'Cij, is the imputed value of the missing 

Y:* as imputed in the jth of the m datasets. 

Equation (8.2.1) can be rewritten as 

L
n 

(RiSF (Z~ fr) + (1- Ri) SF {Z~. [8(j)] 8~}) = 0 9 ~'J '1T" 9 ZJ I 'J ' Jr' ,,' 
i=! Z Z 

(8.2.2) 

which is very similar to (8.1.1). Recall (from §6.7) that 'Ci; = 1E [Vi lUi, 8jj )] + Cij, 

where Cij has zero expectation. Thus the main difference between (8.1.1) and (8.2.2) 

is the fact that the expectation in (8.1.1) has been taken inside the score fUllction in 

(8.2.2). This is analogous to the difference between the observed-data score equation 

(7.2.2): 
n 

L {Ri S: (Zi' fJ) + (1- R i ) 1E [8: (Zi' fJ)1 Z?bs]} = 0 
i=1 



8 DOUBLY ROBUST MULTIPLE IMPUTATION 119 

and the ordinary multiple imputation estimating equation (for imputed data set j): 

n 

L [Ri S: (Zi' 8) + (1 - ~) S: (Zi' 8)] = 0 
i=l 

Because of this, we wouldn't expect robust MI to perform as well in finite samples 

as analytically-derived doubly-robust estimating procedures. It should, however, be 

much easier to implement, especially in complex situations, and the effect of taking 

the expectation inside the score function diminishes as the sample size increases for 

the same reasons (see Wang and Robins, 1998; Robins and Wang, 2000; Tsiatis, 2006) 

that ordinary multiple imputation estimators are consistent. 

We carried out a simulation study (results not shown) to assess the properties of this 

proposed robust MI estimator. To facilitate comparison, we used the simple bivariate 

normal example, where the AIPW estimator can be analytically derived. 

In this example, we let 

and looked at the parameters the regression of Y on X, with Y fully-observed for a.ll 

individuals, but X missing for some individuals. 

In simulations, the robust MI procedure performed very well and a.lmost 8.''; well a .. 'l 

the doubly-robust estimator in terms of bias and precision. However, Rubin's va.ria.nc{~ 

formula for ordinary MI, when applied to robust MI is considerably bia."le<i even with 

a sample size of 10,000. It is not surprising that Rubin's variance formula fails: the 

data are far from being i.i.d. and a model that would generate the 'full' data in our 

augmented dataset is inconceivable. 

It is clear that a better variance formula is needed if this procedure is to be of USf~ in 
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practice. This requires a careful derivation of the true variance of the robust multiple 

imputation estimator. 

8.3 Variance estimation 

This section is closely based on Tsiatis (2006), Chapter 14, but what Tsiatis shows for 

ordinary multiple imputation is adapted here to robust multiple imputation. To sim

plify the derivations, we assume for the remainder of this chapter that the missillglless 

probability 7ri is a known, fixed value, specific to each subject, and not a function of 

the data. 

Lemma 8.1. If irfOb is the 1'Obust MI estimator of (J, then 

:. n! (9"Ob -110) = n-! t [It;, (lIoW1 [m-1 t S:[Z:j (110), 110] 

+ (1 :.7ri) {m- 1 t S~ [Z;j ((Jo) ,(Jo] - m-1 t S~ [Z:j ((Jo) ,(Jo] } 
';=1 ;=1 
m 

+m-1 L: S~ {Z;j [BY)] ,(Jo} 
j=l 

m 

j=l 

The proof of this Lemma is given in Appendix A.I. 

Lemma 8.2 (Influence function for improper robust multiple imputation). The ith 
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influence function for the improper robust improper imputation estimator- is 

F -1 1 1 F * 1 - 7ri 1 F - * 
{ 

m () m 
[188 (80)] 7ri m- f; 88 [Zij (80 ) ,80] - 7ri m- f; 88 [Zij (80 ) ,80] 

+ [I:;' (90) - I .. (90)] q [ll;, G R; (Z,)] - C :, "') [I:;' (90) - 1M. (90)] q [ll;, G R; (Z,)] } 

(8.3.1) 

The proof of this Lemma is given in Appendix A.2. 

Lemma 8.3 (Variance of the ith influence function for improper robust multiple im

putation). The variance of the ith influence function (8.3.1) is given by 

[1%8 (80)r1 
(:; {m- 1 [1:8 (80 ) - 188 (80 )] + 188 (80 )} 

+ C :,"'), {m-I [/:;'(90 ) - 1M. (90 )] +lM.(90 )} 

+ [1:8 (80 ) - 189 (80)] Var {q [Ri' GR. (Zi)]} [1%6 (80 ) - 166 (80 )] 

--~2 

+ (1 :i 7ri) [1:6 (80 ) - 1~ (80)] Var {q [Ri' GR. (Zi)]} [1%8 (80 ) - 1~ (80 )] 

-2 (1 ~t7ri) {m-1 [1:6 (80 ) - 196 (80)] + 1~ (80 )} + :i [1:9 (80 ) - 166 (80)J 

2 (1 -7ri) [ F U ()] 1 -7ri U [ F ] -1 [ F ] 
- 7ri 7ri 168 (80 ) - 196 80 - 7ri 196 (80 ) 166 (80 ) 199 (80 ) - 196 (80 ) 

_ 1 - 7ri [1%8 (80 ) _ 198 (80 )J [1%9 (80 )] -1 1~ (80 ) 

7ri 

+2 C :,"') C :, '" ) 1M. (90) [I:;' (90WI [I:;' (90) - 1M. (90)] 

- (~) [1:9 (80 ) - 188 (80 )] Var {q [Ri' GR. (Zi)]} [1:9 (80 ) - 1~ (80 )] 

-C :, "') [I%. (90) - 1M. (90)] Var {q [ll;, G R; (Z,)j) [I:;' (90) - I .. (90)]) [I:. (90W
I 

(8.3.2) 
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The proof of this Lemma is given in Appendix A.3. 

Claim 8.4. The mean of the variances of the n influence function is asymptotically 

equal to the variance of n! (o*rob - (Jo) . 

Proof. From Definition 3.5, we have that 

n 

n! (e HOb 
- (Jo) = n-! L cp (Zi) + op (1) 

i=l 

where", (Zi) is the ith influence function of e*rob. 

Usually we require that {cp (Zi) : i = 1, ... ,n} be Li.d. but in the way we have con

structed ep (Zi), they are independent but not identically distributed. 

Thus, 
n 

Var [n~ (OHOb - (Jo)] ~ n-1 LVar [ep (Zi)] 
i=l 

o 

This means that if we can evaluate (8.3.2) from the data, then we know the asymptotic 

variance of the improper robust MI estimator. In order to do this, we must estimat.e 

Var {q [Ri' G~ (Zi)]), 1%8 (80 ),188 (80 ) and Ilk (80 ). 

Seeing as {h comes from a simple analysis on the complete cases, all est.imate 

Var {q [Ri' G ~ (Zi)]} of Var {q [Ri' G ~ (Zi)]} should be readily available. Also, Tsi

atis (2006) shows that we can use 

to estimate 1%8 ((Jo). 
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As for 166 (00 ), he suggests using 

i=l 

f { S: [Z:j ((h) ,0;] - S~ (0*) } { S: [Z:j (01) ,0;] - S~ (0*) } T 

j=l 

to estimate 1:6 (00 ) - 168 (00 ). 

Analogously, we suggest using 

i=1 

to estimate 1:6 (00 ) - Ille (00 ). 

In the case where OY) is sampled from the posterior distribution p [OIRi , GR, (Zi)]. We 

will assume that the sample is large enough for oy) to be from 

Lemma 8.5 (Variance of the proper robust multiple imputation estimator). The vari

ance of n! (o*rob - (0) for robust proper Ml is given by 

1 ~ [ F ] -1 ( 1 { -1 [ F ] } n- 2 t:t 199 (00 ) 7T; m 196 (00 ) - 199 (00 ) + 169 (00 ) 

+ C :,"'), {m-1 [I%., (80) - I~(80)1 +I~(80)} 

P.T.O. 
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+ (m; 1) [1%8 ((}o) - 188 (80)] Var {q [Ri' GRi (Zd]} [1%0 ((0 ) - 108 ((}o)] 

--~'2 

+ (m; 1) (1 ~i7ri) [1%e {(}o) - 1:lo ((}o)] Var {q [Ri' GR; (Zi)]} [1%e ((}o) - 1:lo ((}o)] 

-2 (T) {m-1 [1%0 ((}o) - le8 ((}o)] + 1:le ((}o)} + ~i [1%8 ((}o) - 189 ((}o)] 

2 (1 -7ri) [ F U)] 1 -7ri U [ F ] -1 [ F 
- 7ri --;:- 108 ((}o) - 166 ((}o - ---;:-166 (80 ) 186 ((}o) 186 {(}o) - 188 (80 )] 

_ 1 - 7ri [1%6 ((}o) - 160 ((}o)] [1%6 ((}0)r
1 1:lo ((}o) 

7ri 

+2 C ~. ".) C ~. ".) I,? (00 ) [It;, (OoW
I 

[It;, (00 ) - I,? (00 )] 

_ (m; 1) C :. "') [I%. (00 ) - I •• (00 )] Var {q Ill;, Gll; (Z.)]} [It;, (00 ) - I,? (00)] 

-(m; 1) C :, ".) [I%. (00 ) - I,? (00 )] Var {q Ill;, Gll; (Z,)]} [It;, (00 ) - I .. (00 )] ) 

[ F (() )]-1 . 108 0 

The proof of this Lemma is given in Appendix A.4. 

8.4 Discussion 

The basic idea of using multiple imputation in the way described above to obtain 

approximate doubly-robust estimates is very appealing and simulations (not shown) 

demonstrate that the bias and precision of the estimates compare well with the true 

doubly-robust procedure. 

We have failed, however, to derive a Rubin-type variance estimator, i.e. a variance 

estimator similar to (6.7.1), even for proper imputation. The fact that (8.3.2) is so 

complicated and would take many steps for the user to calculate, probably means that 
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the method as it stands is not of much use in practice. 

It should be possible to obtain valid estimates of variance using the bootstrap, but 

combining bootstrapping with multiple imputation would be computationally very 

intensive. As will be seen in the next chapter, going down this roa.d is not necessary 

since by re-formulating doubly-robust estimation using the regression representa.tion 

proposed by Bang and Robins (2005), multiple imputation for doubly-robust estimation 

can be much more successful. 



Robust multiple imputation: an 

alternative formulation 

9.1 Introduction 

In §7.6.4, we described the method proposed by Bang and Robins (2005) for con

structing doubly robust (DR) estimators. One limitation of their approach is that 

th bootstrap is required to obtain estimates of variance. Another limitation is that 

126 
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the method does not extend to non-monotone missingness patterns. One further (and 

smaller) limitation is that when the number of partially-observed variables is greater 

than one and these partially observed variables are binary or categorical, their claim 

that the method can be applied using 'off-the-shelf regression software' is not quite 

true. We return to this point in Chapters 12 and 13 on binary data. Finally, for 

longitudinal monotone patterns, we discuss an important feature not made explicit by 

Bang and Robins in their paper, namely that their formulation requires the specifi

cation of suitable regressions for later outcome variables, conditional OIl some earlier 

outcomes, margin ali sed over intermediate values of the outcome. We consider this to he 

unnatural and potentially difficult when the form of the conditional distrihution of the 

later variable given all previous outcomes is a non-linear function of the illtennediate 

variables. 

In the previous chapter, we suggested using multiple imputation to facilitate the ap

proximation of doubly robust estimators, but the method failed to be practical because 

of the intractable form of the variance of this estimator. In this chapter we pro

pose an alternative formulation of doubly robust MI---based on the nang and Robins 

formulation-with the aim of overcoming all the limitations listed above. The proposed 

method can be implemented using existing MI software and is very flexible. We start by 

describing doubly robust multiple imputation (DRMI) in the cases described by nang 

and Robins (2005) before going on to describe DRMI in broader settings. Finally, we 

confirm the theoretical properties of our estimator using simulation studies. 

9.2 The proposed method 

9.2.1 Univariate ignorable missing data 

Let the full data Zi = (X[, Yi)T for subject i E {I, ... ,n} be a fully-observed vector 

of covariates Xi and a scalar outcome Yi which could be missing (Ri = 0) or observed 

(~ = 1) and interest lies is in estimating J-l = I8 (Yi). 



9 ROBUST MULTIPLE IMPUTATION: AN ALTERNATIVE FORMULATION 128 

Following the same idea as proposed by Bang and Robins (2005), first a suitable re

gression model (such as logistic regression) is chosen for R conditional 011 X the 

7r-model. Let & be the parameter estimates from this regression and let ft (Xi, &) he 

the predicted probabilities (that Ri = 1) from this model. 

Next, we fit a suitable regression model for Y conditional on X and ft- 1 to those 

subjects who have complete data. We call the corresponding model without the inverse 

probability weights, i.e. 

(9.2.1) 

the y-model, where \It-I (.) is the canonical link function from an appropriate GLM 

and s (X, (3) is a known function of {3 and X. We call 

the extended y-model. 

Let us write fti for -IT (Xi, &) and let 

be the predictions from the extended y-model. 

Now we draw m > 1 imputations for each of the missing values of Y based on the 

extended y-model. For example, if Y is continuous, and the y-model a linear regression, 

let i(.8,¢) be the estimated variance-covariance matrix of (.8, ¢) and VYIX,*-l be the 

estimator from the extended y-model of 

We draw m times from the large-sample approximation to the posterior distribution 
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and m times from the large-sample approximation to the posterior distribution of 

VYIX ,1i"-l: 

(j) .. d ~ 1 1 V, 1.1. . V; 2-' 1 
YIX,7i-- 1 rv YIX,ir-1 X nc-p' J = , ... , m nc - p 

where nc = E~=l Ri and p is the number of parameters estimated in t.he extended 

y-model. 

m imputed datasets are then generated with ~(j) replacing Y in the jth dataset where 

d (j) Li.d. N [0 u(j) ] an Ei rv ,vYIX,ir-l' 

When the y-model is not a linear regression model, the imputations are drawn p'rOpedy 

according to the appropriate imputation distribution. 

Finally, our proposed estimator is the solution J1.DRMI to 

m n 

L L [~(j) - JlDRMI] = 0 
j=l i=l 

Theorem 9.1 (Multiply imputed DR univariate estimator). The estimator J1.DRMI is 

doubly 'rObust. That is, if at least one of the two models (the 7r-model and the y-model) 

is correctly specified (but not necessarily both), J1.DRMI is a consistent estimator' of Jl. 
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Sketch proof. The consistency of PDRMI when the y-model is correctly specified follows 

(as in the proof of Theorem 7.2) from the fact that the true value of ¢ is zero. If the 

7r-model is correctly specified, but not the y-model, it is slightly less evident that PDRMI 

remains consistent. 

We continue to write rri for rr (Xi, a). The DRMI estimating equation 

can be rewritten as 

m n 

L L [Rili + (1- Ri)fi(j) - PDRMI] = 0 
j=1 i=1 

t t {Ri [Ii - e (X;, (3, J, ir;1)] + Riir;1 [Yi - e (X;,~, J, ir;1)] 
j=l i=l 

+(1 - ~) [fi(j) - e (X;' t3, J, ir;1)] + e (X;',8, J, ir;l) - PDRMI} = 0 (9.2.2) 

This follows from the fact that 2:7=1 2:~=1 Riir;1 (li - ed is numerically zero since we 

included rr;1 in our extended y-model GLM. 

2:7=1 2:~=1 Ri [Ii - e (XL (3, J, ir;1 )] is also numerically zero, assuming that a con

stant term is included in our GLM. Furthermore, (1- Ri) [~(j) - e (X;,~,J,ir;I)] 
has zero expectation, since the proper imputations have been drawn from the posterior 

predictive distribution with mean e (XL (3, J, ir;1) (see (6.7.2)). Thus we can rewrite 

(9.2.2) as 

m n 

L L { Riir;1 (li - PDRMI) + (1 - ~ir;l) [e (x;,~, J, ir;1) - PDRMI] 

j=1 i=1 

which we immediately recognise as being of the same form as (7.6.9) with the added 

term (1- Ri) [~(j) - e (Xr,,8,J,ir;1)] which has zero expectation, even when the 

y-model is incorrect. Thus, PDRMI is consistent whenever the 7r-model is correctly 

specified. 0 
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We propose that Var (J1,DRMI) be estimated using Rubin's variance formula (sec §6.7) 

as 

(9.2.3) 

However, this variance estimator has two important drawbacks: 

1. It treats the weights as just another covariate in the imputation model. Thus the 

variance estimator is conditional on *-1 (Xi, &) and ignores the fact that these 

weights are estimated from the data. 

2. Putting this problem to one side, when the y-model is correctly specified, the 

fact that the weights are treated as just another covariate justifies the use of 

Rubin's variance formula. In other words, if the weights were not estimated, the 

correct specification of the y-model would render (9.2.3) a consistent estimator of 

the variance of J1,DRMI, by the standard argument for the consistency of Rubin's 

variance formula in (non-DR) ordinary multiple imputation. However, if the y

model is misspecified, but the 7r-model correctly specified, there is no rea.',on to 

suppose that (9.2.3) remains consistent. Hence, our proposed variance formula 

is (ignoring the added problem noted in 1.) singly robust, but does not inherit 

the DR property of the estimator itself. 

9.2.2 Longitudinal ignorable missing data 

The same idea can be extended to the case of multivariate missing data, alldulllike 

the Bang and Robins (2005) approach-the pattern need not be monotone. 

Let the full data Zi = (Xr, ynT 
for subject i E {I, ... , n} consist of a fully

observed vector of covariates Xi and a vector of partially-observed outcome variables 
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Yi = (Y1,i,"" YT,if and that interest lies in estimating f.-t = 18 (Yi,T). Let ~ = 
(R1,i, ... ,RT,i)T be the vector of missingness indicators with Rt,i = 11. (Yt,i is obHerved). 

We first describe the DRMI method for monotone longit.udinal dat.a before moving to 

the case of non-monotone longitudinal dat.a in §9.2.2.2. 

9.2.2.1 Monotone longitudinal data 

When the mlssmgness pattern is monotone, we can easily estimate 7rt.i 

p (Rt,i = llZi) = lP (Rt,i = 1 lXi, Y t - 1,d at each time t, as described in §7.6.4.2, for 

example by fitting a logistic regression model to Rt conditional 011 Xi, Y t - 1 ,i to those 

subjects with Rt- 1 = 1. The marginal probabilities 7rt,i are then obtained a..<; a product 

of these conditional probabilities, as described in §7.6.4.2. 

We proceed by fitting the model using MI. The y-model is postulated sequentially by 

first specifying a model for Y1 given X, and then a model for Y2 given Y1 and X etc. To 

construct an extended y-model, for each t E {I, ... , T}, Tr;} 
1P (Rt,i = 1 lXi, Y1,i, ... , Yt-1,i )-1 is included as an additional covariate, additional to X 

and Yt - 1 , in the model for Yt,i. Starting with Y1, any missing values in Y1 are multiply 

imputed, with the imputations drawn from the extended y-model for Y1 conditional on 

X and 7r11. Next, any missing values in Y2 are multiply imputed, with the imputations 

drawn from the extended y-model for Y2 conditional on Yi., X and 7r;-1; for subjects 

with Y1 also missing, the imputed value of Y1 from the jth imputed dataset. is used to 

impute 12 in the jth imputed dataset, and so on. 

By starting with Y1 and working upwards in this way, we encounter a problem which 

does not arise in the method proposed by Bang and Robins (2005), which starts with 

YT and works downwards. The problem is that 7rt,i can only be calculated for subjectH 

who have Yt-l,i observed, but (unlike Bang and Robins (2005)), we require that 7rt,i be 

known for all subjects. 
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Suppose a particular subject, iI, drops out after being observed at time t - 2. At time 

t - 1, in the jth imputed dataset, a value f;~LI of Yt-I,iI is imputed, based on Xii' 

Yt- 2,iI' and 7rt-l,iI , which are all observed. But at the next timepoint, t, we would like 

to impute the missing Yt,iI using XiI' Yt-2,iJ, f;~LiI' and 7rt,i!. The marginal probability 

nt,iI is the product of nt-I,i! and ~ (t IXill Yt-I,i!), the estimate of the conditional 

probability that Rt,il = 1, conditional on XiI' Yt-I,i), and Rt-I,il = 1, as defined on 

page 108. It is this latter conditional probability which cannot be estimated directly 

for this subject. However, as a function of the missing Yt-I,il' it is known. Thus our 

proposed method works by imputing a value for 7rt,il' based on nt-I,il' ~ (t lXiI' Yt-I,il ) 

and f;~Ll as follows: 

In other words, no additional model is fitted to obtain the imputation 7ri~)I' a.nd no 

additional draws (for ni~)l)' nor additional draws from the Bayesian posterior distribu

tion of any additional parameters are made. Rather, ni~~ is imputed as a deterministic 

function of nt-I,i! and ~ (t lXiI, Y t - 2,ill f;~L!), which, as function of Xi and Yt-I,i, 

is estimated using subjects who have Yt-I observed, as previously. This deterministic 

imputation is analogous to the way in which quadratic functions of covariates, say, 

are dealt with in ordinary multiple imputation. If X and X2 are both covariates ill 

the analysis model, multiple imputations X?) of any missing Xi are obtained in the 

ordinary way, but then the imputed value of Xl is simply [X?)] 2, the square of the 

imputation. 

Similarly, for subject i 1 at time t + 1, our proposed method works by first imputing a 
~ ~ (') ~ I -) -(j) - (') 

value for 1T't+I,it, based on 1T't~I' >. (t + 1 Xi!, Yt,iJ '~-I,iI and ~L as follows: 

d h y; .. d' X Y- v(j) Y,(j) d ~ (j) an t en t+l,iI IS Impute usmg iI' t-2,il' 1 t-l,iI , t,il an 1T't+1,il' 
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Finally, jJ,DRMI can be calculated as the solution to 

m n 

LL [yXl- JlDRMI] = 0 
j=1 i=1 

(9.2.4) 

and a variance estimate analogous to (9.2.3) obtained using Rubin's variance formula. 

The same caveats that this variance estimator does not acknowledge the uncertainty 

due to the fact that the weights have been estimated, and (even ignoring this problem) 

is only singly robust, applies equally here as in the univariate casc. 

Let Ht (Xi, Yt,i' 7rt,i' ~, ;p) be the predictions from the Bang and RDbins procedure 

for longitudinal monotone data (as described in §7.6.4.2) after T - t iterations of step 

3(a). Let t (YT,i lXi, Yt,i' 7rt,i) be the mean of the distribution from which the DRMI 

imputations for YT,i, for a subject who drops out after time t, are drawn. 

Lemma 9.2. 

where expectations are taken with respect to the true distribution of (Xi, Y T,i). 

Sketch proof. That Lemma 9.2 is true is immediate if the y-model is correct, since 

both Ht (Xi, Yt,i' 7rt:l, /3, ¢) and 1E (YT,i lXi, Yt,i' 7rt,i) are consistent estimators of 

E (YT,i lXi, Yt,i). However, the argument (see Tsiatis, 2006, ch. 14) showing that 

multiple imputation recovers the full-data distribution when the imput.ation model is 

correctly specified can also be used to show that when it is incorrectly specified, the 

incorrect distribution it recovers is equivalent to the hypothetical full-data distribution 

implied by that incorrectly specified imputation distribution. o 

Theorem 9.3 (Multiply imputed DR monotone longitudinal estimator). The estima

tor jJ,DRMI is doubly robust. That is, if at least one of the two models (the 7r-model 

and the y-model) is correctly specified (but not necessarily both), Jl,DRMI is a consistent 

estimator of Jl. 
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Proof. As for the univariate case, that [lORMI is consistent when only the 7l"-lIlodd 

is rnisspecified is intuitively obvious. We therefore concentrate on the consistency of 

[loRMI when only the y-model is misspecified. 

Assuming that Yi. is always observed, that Di is the dropout indicator (as defined in 

Definition 3.16), and that Zt,i denotes the history of Zi up to and including t (as defined 

in Definition 3.17), the general form of the AIPW estimating equation (as descrihed 

hy Tsiatis, 2006, p.208) can be written a.', 

~ { :n (Di = T + 1) (Y, ) 
L- 1P (D. = T 11 X . y.) T,i - !JAIPW 
i=l t + t, T,t 

+ t:n (Di ~ t) [:n (Di = t) - 1P (Di = t IDi ~ t, Xi, Yt-l,d] ht (Xi, Yt-I,i' !JAIPW) } 

t=l 

= 0 (9.2.5) 

and the optimal choice of the functions ht (.) is given by 

( 
- ) IS (YT,i lXi, Yt-l,i) - !JAIPW 

ht Xi, Yt-l,i,!JAIPW = 1P (R . = 11x. Y .) 
t,t t, t-l,t 

This is not shown here but can be found both in Tsiatis (2006) and in Rohins (1999). 

In our notation, (9.2.5) can be rewritten as 

L
n 

[RT'i (y, . _ )+LT 
R _ . ( ITt,i _ R .) IS (YT,i lXi, Yt-I,i) - !JAIPW] = 0 

~ T,t !JAIPW t l,t ~ t,2 , 
7l"T' 7l"t l' 7l"t' i=l ,t t=l - ,t ,2 

(9.2.6) 

which is equivalent to 

t { E (YT" lX" Y 1,.) -I'AIPW+ t ~,; [E (YT" lx" Y",) - IE (YT" lX" Yt-l,,) 1 } = 0 

(9.2.7) 

Our estimator (9.2.4) can be rewritten as 
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and this is equivalent to 

t. t, { IE (YT" IX,) - I'DRMI 

T 

+ L Rt,i [IE (YT,i lXi, Yt,i' 7ft,d - IE (Y1',i lXi, Yt-I,i, 7ft-I,d] 
t=1 

To show that jtDRMI is a doubly-robust estimator of j.,l, we must show that 

1E(t {1E(YT'i IXi ) - j.,lDRMI 

3=1 

T 

+ L Rt,i [IE (YT,i lXi, Yt,i, 7ft,i) - IE (YT,i lXi, Yt-I,i, 7ft-I,d] 
t=l 

- (j) ~ -""-
T }) + ~ Rt-l,i (1 - Rt,i) [YT,i - 1E (YT,i lXi, Yt-I,i, 7l"t-l,i)] = 0 

when at least one of the y- and 1T-models is correctly specified, where the outer expec

tation is with respect to the true distribution of Xi, Y T,i' 
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The final term is zero (by the definition of lE (YT,i lXi, Yt,i, 7tt ,i) as the mean of the 

distribution from which y,.Xl is drawn) and thus our requirement becomes that 

E ( t { IE (YT" IX,) - I'DRMI 

+ tRt,i [18 (YT,i lXi, Yt,i, 7ft,d -lE(YT,iIXi,Yt-l,i,7tt-1,i)]}) =0 
t=1 

when at least one of the y- and 7r-models is correctly specified, or, equivalently: 

E{ IE (YT" IX;) - I'DRMI 

+ t Rt,i [18 (YT,i lXi, Yt,i, 7ft,i) - 18 (YT,i lXi, Yt-I,i, 7ft-l,i)] } = 0 
t=1 

By Lemma 9.2, this can be rewritten as 

E{ Ho (xI,;},,j,) - I'DRMI 

+ t Rt,i [ H t (X;, Yt,i, 1rt,i'~' ¢) - H t - 1 (X;, Yt-1,i, 1rt-l,i'~' ¢)] } = 0 (9.2.8) 
t=l 

which is the same as 

E{ Ho (Xr,;}) -I'DRMI 

T } Rt,i T - -'" ~ ~ T - ~ ~ ~ 
+ L 7f . [ Ht (Xi' Yt,j, 7rt,i, (3, 4» - Ht- I (Xi' Yt-I,i, 7rt-l,i, (3, 4»] = 0 (9.2.9) 

t=1 t,~ 

since both the second term in (9.2.8) and (9.2.9) are numerically zero (a..""snming that 

a constant term was included in the extended y-model). 
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Then we are done, since the expression inside the expectation in (9.2.9) is the same as 

the summand in (9.2.7). In other words, that the equality (9.2.9) holds whenever at 

least one of the y- and IT-models is correctly specified follows from the double robustness 

of [J,AIPW. 0 

9.2.2.2 Non-monotone longitudinal data 

For non-monotone missingness patterns, we recommend first testing the hypothesis that 

the missing data mechanism belongs to the randomiscd monotone missingness (RMM) 

sub-class described in §4.2.1 using the test described by Robins and Gill (1997). If 

the data do not support this hypothesis, then MAR should be rejected as implausible; 

even in this case, however, an analysis which assumes ignorability might bc required 

as a point of departure for subsequent sensitivity analyses. 

Under the assumption that the data are RMM, the parameters shown in Fig. 4.2 (or 

the appropriate extension thereof to more timepoints) can be easily cstimated. In this 

example (where there are three outcome variables, but the argument easily extends to 

any number of outcome variables) we start by defining a 'stage 2' variable, S2,i taking 

the value S2,i where 

S2,i = inf {I, 2, 3 : Ys2 ,i is observed} 

or the value 0 if none of {YI,i, Y2,i, Y3,i} is observed. A multinomiallogit model is fitted 

to S2,i, conditional on the covariates, and the probabilities PI (Xi), P2 (Xi)' and P3 (Xi) 

(as shown in Fig. 4.2) are estimated. Then, a 'stage 3' variable, S3,i, is defined to take 

the value S3,i - 1 where 

S3,i = inf {2, 3 : Ys3 ,i is observed and Yk,i is observed, where k < S3} 

or the value 0 if only one of {YI,i, Y2,i, }3,i} is observed. For each level S2,i of S2,i, 

a multinomial logit model is fitted to S3,i conditional on Ys2,i,i and the covariates. 

The probabilities P2 (Xi, Y1,i), P3 (Xi, Y1,i), and P3 (Xi, Y 2,i) (as shown in Fig. 4.2) are 

estimated. The models are fitted using only the subjects for whom S2,i = S2,i' 
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Finally, a 'stage 4' variable, S4,i, taking the value S4,i where 

{ 
1 

S -4,i - 0 
if Y1,i, Y2,i, Y3,i are all observed 

otherwise 

is defined and, for each pair {S2,i, S3,i}, a logistic regression is fitted to S4,i conditional 

on Ys2 ,;,i, Ys3 ,;,i and the covariates. The probabilities P3 (Xi, Y1,i, Y2,i) are estimated. 

These models are fitted using only the subjects for whom {S2,i, S3,d = {S2,i, S3,i}. 

From these estimated probabilities, we would like to estimate each of 

JP (R1,i = 11Xi ) = pdXi ) 

JP (R2,i = llXi, Y1,i) = PI (Xi) P2 (Xi, YI,i) + P2 (Xi) 

(9.2.10) 

(9.2.11) 

1P (R3,i = 1 lXi, Yi,i, Y2,i) = PI (Xi) P2 (Xi, Yi,i) P3 (Xi, YI,i, Y2,i) + PI (Xd P3 (Xi, Y1,i) 

+ P2 (X) P3 (X, Y2,i) + P3 (Xi) (9.2.12) 

Note that even in this non-monotone setting, since the data are longitudinal, it remains 

the case that irt,i = 1P (Rt,i = 11 Zd = JP (Rt,i = 1 lXi, Yt-I,i), i.c. that the missingncsH 

probabilities at each timepoint depend only on past measurements of Y. 

There is no problem with (9.2.10) but (9.2.11) and (9.2.12) are undefined for some 

subjects. For example, if subject i has only Y2 observed then P2 (Xi, YI,i) cannot be 

calculated. Upto a function of the unknown Y1,i, it can, however, be spccified and in 

such cases (9.2.11) and (9.2.12) are specified as known functions of the unknown Y1,i 

or Y2,i' This completes the description of the 1r-model. 

We proceed by fitting the model using MI, and to cope with the non-monotone pat

tern, MI using chained equations (MICE) as described in §6.7.4 is used. As with the 

monotone case, for each t E {I, ... , T}, ir~l is included as an additional covariate (ad

ditional to the specified Y-Illodel) when imputing yt,i. As we noted above, irt~/ itself, 

in general, is missing for some subjects, and is therefore imputed (deterministically) as 
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a function of the (possibly imputed) YI,i' ... , "Yt-1,i' 

Although when generating such data, we would only need to consider the distribution 

of each outcome variable yt conditional on the covariates and the previous t - 1 out

come variables (since the future cannot determine the past), for the analysis model 

(the y-model), it will be ncccssary---in this non-monotone case to postula.te the ilIl

plied models for yt given all future outcome variables as well, and the future outcome 

variables must be included in the imputation models, e.g. Y2 must be included in thc 

imputation model for Y1. Thus, the extended y-model in the non-lIlollotonc case differs 

from that of the monotone case, since the imputation model for yt conditions on all 

past and future values of Y, as well as X and IT;l. 

Finally, itDRMI is again calculated as the solution to 

m n 

LL [Y~:l- PDRMI] = 0 (9.2.13) 
j=l i=l 

and a variance estimate (subject to the same caveats as above) obtained using Rubin's 

variance formula. 

Conjecture 9.4 (Multiply imputed DR non-monotone lOllgitudinal estimator). The 

estimator jLDRMI is doubly robust. That is, if at least one of the two models (the 7r-model 

and the y-model) is correctly specified (but not necessarily both), jLDRMI is a consistent 

estimator of p. 

Sketch proof. The general form of the AIPW estimating equation (Tsiatis, 2006, p.173) 
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for non-monotone data can be written as 

~ ~ (Y ) 2:
n 

{ R1·· .. RT · 
JP (R .... R . = liX. y.) T,i - /-tAIPW 

i=l l,~ T,~ z, T,~ 

'" [] (R . = r R. = r ) _ R1,i'" RT,iJP (R1,i = rl,···, RT,i = rT)] 
+ L...J l,~ 1,"" T,~ T lP(R · ... R .=IIX . y .) 

T""TT#l l,~ T,~ ~, T,~ 

. 9 [rl,'" ,rT,G", ... ,~r (X" YT,,) ,I'AIPW] } ~ () (9.2.14) 

where the functions 9 (.) could be any functions of the observed data. 

As we have already noted, although in the general formula given in (9.2.14) the response 

probabilities are conditional on all outcomes, since we are restricting our consideration 

to non-monotone longitudinal data under a RMM mechanism, it remains in our case 

that 

For ease of writing, let us drop the subscript i and consider a simple example with only 

three timepoints and no X. Suppose that Y1 is always observed, but that Y2 and Y3 

are both subject to missingness, in a non-monotone pattern. 

Also for ease of writing, let W2 be the inverse of the probability that Y2 is observed, 

conditional on Y1; let W3 be the inverse of the probability that Y3 is observed, condi

tional on Y1 and Y2; and let W23 be the inverse of the probability that both Y2 and Y3 
are observed, conditional on Y1 and Y2. 

Consider the subjects with intermittent missingness, i.e. the subjects who have Y3 

observed but Y2 missing. Consider the hypothetical dataset which consists of all 

the observed data together with the true unobserved values of Y2 for these sub

jects with intermittent missingness. The pattern of missingness in this hypothetical 

dataset is clearly monotone. Let H t be the hypothetical predictions from the Bang 
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and Robins procedure for longitudinal monotone data (as described ill §7.6.4.2) after 

T - t iterations of step 3{a), applied to this hypothetical monotone dataset. That is 

H3 (Y3) = Ya, H 2 (YI ,Y2,W3 ) = E(H3 IYI,Y2,W3 ) and HdYi,W2 ) = E(H2 IY1 ,W2 ). 

Let H2 = H2 YI , Y2 , W3 YI ,1';1 . Finally, let E2 be the mean (over the impu--(j) (-(j) ( -C»)) 
tation distribution) of iI~j). 

We can rewrite (9.2.14) as 

(9.2.15) 

since W2 (H2 - HI) + HI, W3 (Y3 - E 2 ) + HI and HI are functions only of the observed 

data for subjects with only (YI , Y2), (Y1, Y3 ) and Y1 observed, respectively. 

Using similar arguments to those already used, for example that 

is numerically zero, we can show that the expectation of the summand ill (9.2.13) is 

equal to the expectation of the summand in (9.2.15). The DR property of the solution 

to the latter therefore implies the DR property of P,ORMI, which completes the (sketch) 

proof. 0 

9.2.3 Non-monotone cross-sectional ignorable missing data 

The arguments above could be extended to the case where the data are not constrained 

to be longitudinal, but this would require a method for estimating the weights when tlw 
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order in which the variables were observed is not known. Although Rohim; and Gill 

(1997) propose a method for calculating the complete-case weights ill a randomised 

monotone missingness setting using an EM algorithm with the pat.h followed by a 

particular subject through Fig. 4.1 treated as a missing value, they also prove that t.he 

same method cannot be used to identify the individual path prohabilities, suggesting 

that the timepoint-specific missingness probabilities cannot be determined either. 

9.2.4 A closer look at Bang and Robins for longitudinal data 

In section 3 of their paper, when describing the algorithm for constructing the DR. 

estimator for longitudinal data, Bang and Robins write 

For subjects with C 2:: m, specify and fit by IRLS a parametric regression 

model em-l (Lm - l ; .8m-l, <Pm-I) = \II [Sm-l (Lm - l ; .8m-l) + <Pir;;'/_1 (a)] for 

the conditional expectation 18 [ if m (f.-t) I C 2:: m, Lm - l ] . 

Allowing for slight differences in notation, this corresponds to step 3(a) in our descrip

tion in §7.6.4.2. The focus for us is the function 8m-l (.) which specifies the fUllctional 

form of the linear predictor for the chosen regression. In section 3.1 they describe a 

simulation study and write 

Let L = (Lf, L2, L3)T represent the full data with Ll = (Vll , V12 , V13f 
and L3 = Y. So the censoring variable C takes a value in {I, 2, 3}. Vii 

(i = 1,2,3) were generated independently from a standard normal, L2 from 

N [SI (L l ;.8), 1], and Y from N [S2 (L2;.8) ,1] as presented in Table lC. 

Referring to Table 1 C, we see that the functions 81 (.) and S2 (.) are defined a.<.; follows: 
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where 112 = L 2 · 

Although not stated in so many words, the implication here is that the functiolls 5. (.) 

used to generate the data are the exact same functions 5. (.) used in step 3 ( a) a.c.; the 

linear predictor for the chosen GLMs. Further thought, however, reveals that (except 

for the regression of HT , i.e. the regression which uses 52 (.) in this example) the two 

sets of functions do not, in general, coincide and that the example chosen by the authors 

for their simulation study is an example in which the 51 (.) needed for the analysis is 

quite different from the 81 (.) (relabelled 81 (.) to differentiate it from 51 (.)) used to 

generate the data. In this example, where every variable is normally distributed, it 

is relatively straightforward to derive the function needed for the ana.lysis a."l we now 

show. It should come as no surprise that 81 (.) is not equal to 81 (.) in general, since 

the former is E (Y ILl) and the latter is IE (L2ILl)' 

The conditional distribution of L21Ll is 

and the conditional distribution of Y I L2 , is 

Thus the conditional expectation of Y ILl, is 

- 3V1
2
I + 3Vi2 + 1 + (3Vu - 2Vll Vi3)2 - 2Vi2 (3Vll - 2Vll V13 ) 

= 1 + 3V12 + 6V1
2
I - 6Vil Vi2 - 12~21 VI3 + 4Vll VI2Vi3 + 4VI

2
1 VI; 

Thus, when carrying out the simulation study under the 'both models correct' scenario, 

the authors must have used 1, V12 , ~2I' Vu V12 , VI
2
I Vi3, Vu VI2V13 , ~2I VI~ a.<; the covariatcs 

for the second linear regression stage, as opposed to 1, ViI, ViI V13 as the paper strongly 
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suggests. In the Gaussian case, this additional step is straightforward, but when the 

data are non-Gaussian, a suitable function 81 (-) could be difficult. (or even impossible) 

to derive even if functions 82 (.) and 81 (.) could be easily postulated. 

We note that the corresponding issue does not apply in DRMI, since our imputation 

model is formulated for each variable individually conditional on the other variables. 

The expectation of Y given L1 for a subject with L2 and Y missing is calculated 

sequentially by first estimating the distribution of L2 given L1 and then the distribution 

of Y given L1 and the imputed value (conditional on L1) of L2 • We have already noted 

this feature of DRMI, since it gives rise to the need to impute the margiual missingllcss 

probability at time t for subjects who dropped out before time t - 1. Thus, we now 

sec that the feature which, earlier in our description of the method, seemed to be a 

disadvantage when compared with the method of Bang and Robins (2005), the same 

feature also offers an advantage here, namely that it is not necessary to postulate 

models for Y given L 1 marginalised over L2 · 

9.3 Simulation studies 

9.3.1 Univariate ignorable missing data 

First we repeat the first simulation study carried out by Bang and Robins (2005), 

adding our DRMI estimator as a fourth estimator to be compared with the IPWCC 

estimator, the outcome regression (OR) estimator and the Bang and Robins doubly 

robust (DR) estimator. 

The OR estimator is the solution to 
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where e (xr,,a) are the predictions from the (non-extended) y-model (9.2.1). This is 

equivalent to a maximum likelihood analysis. 

In this simulation study, X = (Xl, X 2 , X 3 ) is always fully-observed and generated from 

a trivariate normal distribution with mean (0,0,0) and variance-covariance matrix 

equal to the (3 x 3) identity matrix. Y is normally distributed with mean Strue (X, f3) 

and unit variance, where Strue (X, f3) = f3 (1, X;, X 2, X 2X 3 )T and f3 = (0,1,2.5,3). 

R is generated from the following logistic regression: 

where a = (-1,1,0,0, -1) and It stands for] (Xl> 0). 

To investigate the double robustness property, an incorrect 7T-lllOdel and a.n incorrect 

y-model are specified as follows: 

logit [7Tfalse (X, a)] = a (1, h, 13)T 

The simulation study is based on a sample size of 500 and 1,000 simulations, with the 

doubly robust MI procedure based 011 10 imputations. The results are shown ill Table 

9.1. 

9.3.2 Longitudinal monotone ignorable missing data 

Next, we repeat the longitudinal monotone simulation study carried out by Bang and 

Robins (2005), again adding our DRMI estimator as a fourth estimator to be compared 

with the IPWCC estimator, the OR estimator and the DR estimator. 
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Estimator Bias True Estimated Coverage 
variance variance probability 

/-lIPWCC -0.01 0.11 
{JOR -0.00 0.04 

/-lDR -0.00 0.04 
/-lDRMI -0.00 0.04 0.04 0.95 
{J IPWCC'7r -false -0.36 0.13 
{J DR-7r-false -0.00 0.04 
/-lDRMI'7r-false -0.01 0.04 0.04 0.95 
{JOR.y-false -0.35 0.12 

/-lDR·y-false -0.01 0.11 

/-lDRMI·y-false -0.02 0.12 0.12 0.93 
{JDR-7r$y-false -0.35 0.13 

IlDRMI'7r$y-false -0.35 0.14 0.12 0.79 

Table 9.1: The results of the first simulation study performed by Bang and Robins (2005) 
with doubly robust multiple imputation (DRMI) included in the comparison. No subscript 
indicates correct specification of the relevant model(s). 11' - false indicates tlHlt the esti
mator used an incorrectly-specified 11'-rnodel, y - false indicates that the estimator used an 
incorrectly-specified y-rnodel and 11' EEl Y - false indicates that both the 11'- and y-models were 
incorrectly specified. 

The OR estimator is now the solution to 

t [Ho (X;,r3) - IlOR] = 0 
i=l 

where Ho (Xf, (3) is as defined in §9.2.2. 

As before, X = (Xl, X 2 , X3) is always fully-observed with Xl, X 2, X3 independent 

and identically distributed standard normal variables. Yl is normally distributed with 

mean sirue (X, .81) and unit variance, where sirue (X, .81) =.81 (1, Xl, X 1X3)T and f31 = 

(0,3,2). 12 is normally distributed with mean s;rue (X, Yl , .82) and unit variance, where 

s;rue (X, Yl , (32) = .8d1, Xr, X 2, Y12, X2Yl { and f32 = (0, -3,3,1, -2). The implied 
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slrue (X, /3d (as we showed in §9.2.4) is 

Rl is generated from the following logistic regression: 

where 01 = (1, -1, -1, 1, 1) and Ilx stands for] (Xl> 0). Conditional on Rl = 1, R2 

is generated from the following logistic regression: 

where 02 = (0, -1, -1,0,1,0,2) and Ii stands for] (Yl > 0). If Rl = 0 then R2 = o. 

To investigate the double robustness property, an incorrect 7r-lIlodel and an incorrect 

y-model are specified as follows: 

S~lse(x, Y1,/3) = /3 (1,Xl,x~,xi, y1)T 

logit [7T~alse(x,o)] = 0 (I,If,If)T 

logit [7T~alse (X, 0)] = 0 (1, I[)T 

The simulation study is based on a sample size of 500 and 1,000 simulations, with the 

DRMI procedure based on 10 imputations. The results are shown ill Table 9.2. 
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Estimator Bias True Estimated Coverage 
variance variance probability 

J-lIPWCC -0.11 10.98 

J-lOR 0.06 1.92 

J-lDR 0.06 1.92 

PDRMI 0.07 1.91 1.83 0.94 

J-lIPWCC'1T-false -3.21 5.87 

J-lDR1I'-false 0.06 1.92 

J-lDRMI'1T-false 0.08 1.92 1.83 0.93 
J-lORy-false -4.99 3.51 

PDRy-false -0.36 10.51 

J-lDRMI·y-false -0.37 10.63 4.28 0.74 

J-lDR1I'EBy-false -2.35 8.13 

jlDRMI'1Tffiy-false -2.37 7.38 3.67 0.G7 

Table 9.2: The results of the monotone longitudinal simulation study performed by Bang and 
Robins (2005) with doubly robust multiple imputation (DRMI) included in the comparison. 
No subscript indicates correct specification of the relevant model(s). 7r - false indicates that 
the estimator used an incorrectly-specified 1I"-model, y-false indicates that the estimator used 
an incorrectly-specified y-model and 11" EB Y - false indicates that both the 11"- and y-models 
were incorrectly specified. 

9.3.3 Longitudinal non-monotone ignorable missing data 

Next, we consider a longitudinal non-monotone simulation study. In this case, neither 

the OR nor the DR estimator can be used and thus we compare our DRMI estimator 

with the IPWCC estimator and an ordinary multiple imputation (MI) estimator, i.e. an 

estimator identical to the DRMI estimator but without the inverse probability weights 

as additional covariates. 

In this simulation study, X (univariate) is always observed and generated from a stan

dard normal distribution. Yi is normally distributed with mean sirue (X, /3d and unit 

variance, where sirue (X, /3d = !31 (1, x2f and /31 = (0,1). Y2 is normally distributed 

with mean s~rue (X, Y1, /32) and unit variance, where s~rue (X, Y1, (32) = i32 (1, X, y1)T 
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q 

Figure 9.1: The MRMM longitudinal process used for the longitudinal IlOIl-monot.one sirn
ulation study. 

and /32 = (0,-1,2). The implied sirue (X,}2,.81) is 

Note that 81 (.) is now a function of Y2. This is essential, since some subjects have }2 

but not Y1 observed. If Y2 is omitted from the imputation model for Y1, the resulting 

estimator is, in general, biased since the stationary distribution to which the Gibbs 

sampler in the MICE procedure converges is not the correct full-data distribution, 

even under MAR. 

The missingness model is illustrated in Fig. 9.1. 
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PI (X) and P2 (X) are defined by the following multinomiallogit model: 

exp [all (1, v\Xf) T] 
p~rue (X, 011,012) = ----;;-----=-------=----=--=--------

1 + exp [011 (1, v\Xf) T] + exp [012 (1, v\Xf) T] 

exp [012 (1, JlXT) T] 
p~rue (X, 011, 0 12) = ----;;-----=-----=----=--=--------

1 + exp [Oll (1, ViXl) T] + exp [012 (1, JlXT) T] 

where 011 = (2, -1) and 012 = (0,0.5). Conditional on Y1 being observed at the first 

stage, P2 (X, Y1) is generated from the following logistic regression: 

where 02 = (0, -2,0.5). 

~ true (X ) true (X ) 1T1 ,011,012 =P1 ,011,012 

~ true (X y; ) true (X ) + true (X ) true (X y; ) 1T2 ,10 11,012, 02 = P2 ,011,012 PI ,011,012 P2 , 1,02 

Thus, *~rue (X, Y10 11 , 012, 02) is missing for all subjects for whom Y1 is missing and 

should be imputed (after Y1 and before Y2 in each chained equations cycle) determin

istically based on the current imputed value of Y1 . The code is given in the Appendix 

in §C.2. 

To investigate the double robustness property, an incorrect 1T-IllOdcl and an incorrect 

y-model are specified as follows: 
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Estimator Bias True Estimated Coverage 
variance variance probability 

/-tIPWCC 0.00 0.07 

/-tMI -0.01 0.03 

PDRMI -0.02 0.03 0.03 0.95 

PIPWCC'7r-false -0.59 0.05 

jl.DRMI'7r-false -0.03 0.03 0.03 0.94 

/-tMI.y-false 3.07 X 1031 2.16 X 1065 

/-tDRMI.y-false 0.00 0.04 0.06 0.97 
/-tDRMI'7rEBy-false 2.32 123.55 5.27 x 108 0.94 

Table 9.3: The results of the non-monotone longitudinal simulation study where doubly 
robust multiple imputation (DRMI) is compared with IPWCC and ordinary MI. No sub
script indicates correct specification of the relevant model(s). 11' - false indicates that the 
estimator used an incorrectly-specified 1I'-model, y - false indicates that the estimator used 
an incorrectly-specified y-model and 11' EEl y - false indicates that both the 11'- and y-modcls 
were incorrectly specified. 

false (X f\; r., ) _ exp (au) 
PI , U 11 , '-" 12 - - () () 1 + exp au + exp 0'12 

false (X ) exp (0'12) 
P2 , all, 0'12 = () () 1 + exp au + exp 0'12 

logit [p~rue (X, Yl, (2)] = 02 (1, X, Yif 

The simulation study is based on a sample size of 500 and 1,000 simulations, with 

the doubly robust MI procedure based on 10 imputations and 10 cycles of the chained 

equations procedure (see §6.7.4). The results are shown in Table 9.3. 
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Figure 9.2: The MRMM longitudinal process used for the longitudinal non-monotone sirn
ulation study. 

9.3.4 Cross-sectional non-monotone ignorable missing data 

Finally, we consider a cross-sectional non-monotone simulation study. Again, ndther 

the OR nor the DR estimator can be used and thus we compare our DRMI estimator 

with the IPWCC estimator and an ordinary MI estimator. 

As in the previous simulation study, X (univariate) is always observed and generated 

from a standard normal distribution. Yi. is normally distributed with mean s~rue (X, (31) 

and unit variance, where syue (X, ((1) = {31 (1, X2)T and (31 = (0,1). Y2 is normally 

distributed with mean s~rue (X, Yb {(2) and unit variance, where s~rue (X, Y1,(32) = 

{32 (1, X, y1)T and {32 = (0, -1,2). The implied strue (X, Y2, {3d is 

The missingness model is illustrated in Fig. 9.2. 
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PI (X) and P2 (X) are defined by the following multinomiallogit model: 

exp [ou (1, X, X2)T] 
true (X ) - ___ -:;--__ ----..2:=--_=--__ .,.,.......:. ____ _ 

PI ,
0

11,
0

12 - 1 + exp [011 (1, X, x2f] + exp [012 (1, X, X2)T] 

exp [012 (1, X, X2)T] 
true (X ) - ----=----""------.-,-~-----

P2 ,011,012 -1+exP [011(I,X, X2f] +exP [012(I,X,X2)T] 

where 011 = (1, -0.5,0.2) and 012 = (0,0.5, -0.3). 

Conditional on Y1 being observed at the first stage, P2 (X, Y1) is generated from the 

following logistic regression: 

where 022 = (0, -1,0.3). 

Conditional on Y2 being observed at the first stage, PI (X, Y2) is generated from t.ho 

following logistic regression: 

where 0:21 = (0, -1,0.3). 

In this case, neither ~yue(x,011,0:12,021) nor n-~rue(X'YI011,012,0:22) is fully

observed for all subjects and would need to be imputed deterministically based on 

t.he current imputed values of Y1 and Y2· However, because of the difficulty associated 
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with estimating the marginal weights (discussed in §9.2.3), we cannot obtain reliahle 

estimates of 7iyue (X, all, a12, (21) and 7i-~rue (X, Y1all, a12, (22) even for the complete 

cases. For the purposes of this simulation study, therefore, we will mle the true (known) 

weights. 

To investigate the double robustness property, an incorrect y-model is specified as 

follows: 
sia1se (X, Y2, .81) = .81 (1, x 2

, y2)T 

S~alse (X, Y1, .82) = .82 (1, y1)T 

Since the true weights are being used, no '7l'-model' exists. To investigate the double 

robustness property, we therefore define *~alse = J *irue and 7i-~alse = vi *~rue. 

The simulation study is based on a sample size of 500 and 1,000 simulatiolls, with the 

MI and doubly robust MI procedures based on 10 imputations and 10 cycles of the 

chained equations procedure. The results are shown in Table 9.4. 

9.4 Discussion 

We have seen that in both the univariate cross-sectional and longitudinal monotone 

cases, where the Bang and Robins (2005) method can be applied, its performance 

and our estimator's performance are very similar. In addition, the variance estimates 

obtained using Rubin's variance formula perform well when both models are correctly 

specified. As expected, the variance estimates do not share the double robustness 

property possessed by the estimates themselves. Our proposed variance estimator 

does not take into account the variability of the estimated weights but, at least in our 

simulations, this effect is negligible. It should in principle be possible to incorporate 

this variability using a sandwich estimator. Further work is needed on this. 
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Estimator Bias True Estimated Coverage 
variance variance probability 

PIPWCC 0.01 0.07 

/-lMI 0.00 0.03 

/-lDRMI -0.00 0.03 0.03 0.95 

/-lIPWCC'1T-false 0.25 0.06 

PDRMI'1T-false 0.00 0.03 0.03 0.95 

/-l MI .y-false 0.49 0.05 

/-lDRMI.y-false -0.04 0.03 0.03 0.95 
/-lDRMI'11'EBy-false 0.22 0.04 0.04 0.80 

Table 9.4: The results of the non-monotone cross-sectional simulation study where doubly 
robust multiple imputation (DRMI) is compared with IPWCC and ordinary MI. The known 
(true or Jtrue) probability weights were used in the IPWCC and DRMI methods. No 
subscript indicates correct specification of the y-model and weights (where applicable). 7T

false indicates that the square root of the weights were used, y - false indicates that the 
estimator used an incorrectly-specified y-model and 7T $ Y - false indicates that both the 
weights and y-model were incorrect. 

When the missing data are longitudinal but non-monotone, the Bang and Robins 

(2005) method can no longer be used, but our estimator works very well: it exhibit.s 

the desired double robustness property as well as improved efficiency compared wit.h 

IPWCC. The loss of efficiency relative to OR and MI is negligible in our simulation 

studies. Furthermore, our method is easily implemented in standard software packages 

such as ice in Stata. 

We have also shown that DRMI could in principle be applied to general (noll

longitudinal) non-monotone data. However, the problem of estimating the variable

specific inverse probability weights needs first to be resolved. Unfortunately, the 

method proposed by Robins and Gill (1997) for est.imating the complete-case weights 

can not be used to identify the variable-specific weights. We have shown, by substi

tuting the known true weights, that if a method were developed for estimating these 

probabilities, DRMI could be used and would perform very well. 

Although our focus has been on examples where the aim is to estimate the marginal 
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mean of one of the variables, DRMI can be used much more generally (for example to 

estimate the parameters of a regression of one variable on another) and 8." easily to 

any appropriate analysis of the imputed data. 

We have used proper imputation throughout for the simple rea.'-lon that Rubin's varia.nce 

formula can then be used. More efficient estimates could in principle be obtained by 

imputing improperly, but bespoke variance estimators would then be required. 



Part IV 

The RECORD study 



, 
Doubly-robust MAR analysis 

10.1 Introduction 

In Chapter 9, we developed a new method, doubly robust multiple imputation (DRMI) , 

for constructing doubly robust estimates. One of our method's main advantages is the 

conjectured extension to the non-monotone setting. In Chapter 11 , we perform MNAR 

sensitivity analyses on the RECORD study data (see Chapter 2 for some backgroulld 

159 



10 DOUBLY-ROBUST MAR ANALYSIS 

-2 o 2 
Residuals 

160 

4 6 

Figure 10.1: A histogram showing the distribution of the residuals from a linear regression of 
HbA1c on treatment group and baseline HbA1c for the observed data at the final timepoint. 

to this study and §1l .2 for a brief description ofthe missing data patterns). As a point 

of departure for our sensitivity analyses, we plan to use a direct likelihood approach 

under multivariate normality and MAR. Before we do this , however , it is important 

to explore whether or not the Gaussian direct likelihood is an appropriate choice of 

analysis for this purpose. The possible non-normality of the HbA1c outcome variable 

in the RECORD data (see Fig. 10.1) suggests that a more robust analysis might be 

needed. In this chapter, we use the method developed in the previous chapter to 

perform a doubly robust analysis of the RECORD data under the MAR as umption 

and we compare it with the direct likelihood approach. 

10.2 Methods 

For the direct likelihood analysis, we use PROC MIXED in SAS. Time is included as 

a categorical variable with a fixed and random effect included at each visit. The 
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Method 

Linear mixed model 
Doubly robust 1-H 

Estimated difference in mean HbAlc 

[M+R]-[M+S] [S+R]-[S+M] 
0.087 (0.08) 0.066 (0.08) 
0.017 (0.09) 0.033 (0.07) 

161 

Table 10.1: A comparison of the results (estimates and standard errors) from the linear 
mixed model and the doubly robust MI estimator. 

covariance of these random effects is unstructured and is allowed to differ by treatment 

group (complex variation). Treatment group and visit-by-treatment-group interactions 

are included as fixed effects. Baseline HbAlc and its interaction with treatment group 

are also included as fixed effects. 

Then, we apply to the same dataset the DRMI procedure described in §9.2.2. The 

missingness model corresponding to Fig. 9.1 is appreciably more complex with 8 vari

ables rather than 3. It is clear that some reduction in the dimensionality of the problem 

must be made if the weights are to be estimated efficiently. There is a trade-off be

tween efficiency and robustness, but this is necessary in practice with this number of 

timepoints. We will impose the restriction that, conditionally on the most recently 

observed outcome, the choicc of which outcome will be the next non-missing outcome 

is independent of all other observed outcomes. Apart from this, the mcthod is identical 

to the one described in the simulation study in §9.3.3. 

10.3 Results and conclusions 

The results are shown in Table 10.1. We see that the results from DRMI are similar 

(but not identical) to those from the direct likelihood analysis. Certainly as regards the 

pre-specified non-inferiority criterion of 0.4%, neither method supports the rejection of 

non-inferiority. 

Figs. 10.2-10.5 show the profiles for each treatment group as predicted by the two 
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Figure 10.2: A comparison of the HbA1c profiles predicted from the direct likelihood analysi 
and those predicted from the doubly robust multiple imputation analysis for the Met+Su 
arm. The green and red error bars show ± the standard errors for the likelihood and DRMI 
analyses respectively. 

2 4 6 8 10 12 15 18 

Months after randomisation 

A Met· Ros' (Ikelihood) - - -0- - - Met. Rosl (OR) I 

Figure 10.3: A comparison of the HbA1c profiles predicted from the direct likelihood analysis 
and those predicted from the doubly robust multiple imputation analysis for the Met+Rosi 
arm. The green and red error bars show ± the standard errors for the likelihood and DRMI 

analyses respectively. 
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models and Figs. 10.6-10.7 show the differences between these profiles for the two 

arms separately ([Met+Rosi]-[Met+Su] in Fig. 10.6 and [Su+Rosi]-[Su+Met] in Fig. 

10.7). Again, we find that the profiles are similar but not identical. The differences 

are substantively very small and unlikely to be important in practice. If anything, 

the DRMI approach suggests a lower HbA1c for the Rosi groups compared with the 

corresponding estimates from the direct likelihood method, whereas the estimates for 

the standard groups show less of a difference between the two methods. As a result, Rosi 

compared with standard looks to be slightly better under the DRMI analysis suggesting 

that the direct likelihood analysis is (in this particular case) slightly conservative in 

the sense that it is more likely to conclude that Rosi is inferior. 

The reason for there being only a small difference between the two approaches is 

probably that the non-normality (as suggested by Fig. 10.1) is very small. We notice 

that what little difference there is increases over time. This could be due to the 

increased dependence on modelling assumptions in the direct likelihood approach as 

the number of missing observations increases. 

Given that the skewness (seen in Fig. 10.1) is positive, we would expect an analysis 

based on an assumption of normality to 'impute' higher values for the missing observa

tions than would be suggested by a more robust approach. This explains the pattern 

seen in Figs. 10.2-10.5: that the DR predictions are somewhat lower than the corre

sponding direct likelihood predictions. However, as we have already mentioned, these 

differences are small. 

In summary, we conclude from this analysis that the direct likelihood is sufficiently 

robust to the small departures from normality seen in the RECORD study for a more 

robust analysis of these data to be unnecessary as a point of departure for the sensitivity 

analyses in the next chapter. We have also seen that the DRMI method proposed in 

the previous section can be applied easily in a real example with non-monotone missing 

data and many timepoints. 
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Figure 10.4: A comparison of the HbA1c profiles predicted from the direct likelihood analysis 
and those predicted from the doubly robust multiple imputation analysis for the Su+Met 
arm. The green and red error bars show ± the st andard errors for the likelihood and DRMI 

analyses respectively. 

2 4 6 8 10 12 15 18 

Months after randomisation 

A Su + Rosi Oikelihood) - - -0- - - Su + Rosi (DR) I 

Figure 10.5: A comparison of the HbA1c profiles predicted from the direct likelihood analysis 
and those predicted from the doubly robust multiple imputation analysis for the Su+Rosi 
arm. The green and red error bars show ± the standard errors for t he likelihood and DRMI 

analyses respectively. 



10 DOUBLY-ROBUST MAR ANALYSIS 165 

2 4 6 8 10 12 15 18 
Months after randomisation 

1-- Likelihood -- DR I 

Figure 10.6: The differences between the HbA1c profiles for the Met+Rosi and Met+Su 
arms. The solid green and red lines show the predicted differences from the likelihood and 
DRMI analyses respectively, and the dotted lines show ± the pointwise standard errors for 

these differences. 
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Figure 10.7: The differences between the HbA1c profiles for the Su+Rosi and Su+Met arms. 
The solid green and red lines show the predicted differences from the likelihood and DRMI 
analyses respectively, and the dotted lines show ± the pointwise standard errors for these 

differences. 



MNAR sensitivity analyses 

11.1 Aims and outline 

Th aim of the work presented in tills chapter is to assess the potential impa t of mi s

ing data and non-compliance on the conclusions drawn from the IS-month RECORD 

glycaemic analysis. In particular, having studied (in the previous chapter) th robu t

ness of these conclusions to the multivariate normality a sumption, w now look at 

robustness of a different kind: that to the MAR assumption inherent in the dire t 
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likelihood approach. 

In §11.2 we give the results of some simple analyses of the patterns of non-compli~Ulce 

and missing data found in the RECORD 18-month data. 

Section 11.3 comprises a discussion of the possible research questions we could ask in 

this setting. The issue of non-compliance is key here, and the way in which the preferred 

question should be answered is inextricably linked to the missing data mechanism and 

the longitudinal structure of the data. Thinking carefully about the precise questiou 

to be answered before formulating a particular analysis is necessary for meaningful 

interpretation of the results, and, in the presence of non-compliance and missing data, 

even more care is needed. 

In §11.4 we present the results of a series of sensitivity analyses carried out to ass(~ss the 

robustness of the results of the direct likelihood analysis a.'I carried out by Home ct al. 

(2007) to possible violations of the inherent assumptions (namely missing at random 

and compliance at random) made when using this approach. 

11.2 Patterns of missing data and non-compliance in the lO-month 

RECORD data 

A logistic regression of non-missingness at the final time point, with age, gender, race, 

and baseline HbAlc as predictors provided little or no evidence of an association be

tween age and non-missingness (p = 0.7), race and non-missillgness (p = 0.2) or sex 

and non-missingness (p = 0.4). However, there was evidence of all association between 

treatment group and the probability of being observed (p = 0.02) and between baseline 

HbA1c and the probability of being observed (p = 0.01). After controlling for ba.'.;e

line HbA1c , those on Su+Met had a 51% reduction in their odds (95% CI: 20% 70%) 

of being observed as compared with those on Met+Su. After controlling for treat

ment group, an absolute increase of 1 unit (Le. 1%) in baseline HbAlc was associated 
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with a reduction of 28% (95% CI: 8%-43%) in the odds of being observed at the final 

timepoint. 

A similar analysis, but this time including non-compliance as a form of missingncss, 

showed again that there was little or no evidence of an association betwecn age and non

missingness (p = 0.4), race and non-missingness (p = 0.3) or sex and non-missingncss 

(p = 0.5). The association between treatment group and the probability of being 

observed (and complying) was stronger (p = 0.002). After controlling for ha"cline 

HbA1c , those on Met+Rosi had a 47% reduction in their odds (95% CI: 29% 76%) of 

being observed as compared with those on Met+Su, with the corresponding reductions 

for Su+Met being 50% (95% CI: 31%-81%) and for Su+Rosi 46% (95% CI: 29% 

73%). After controlling for treatment group, an absolute increase of 1 unit (i.e. 1%) in 

baseline HbA1c was associated with a reduction of 64% (95% CI: 52% 78%) ill the odds 

of being observed (and complying with protocol) at the final timcpoint (p < 0.0(1). 

This association is also stronger than for loss-to-follow-up alone. 

11.3 What are the questions and how can we answer them? 

Before we can decide on an appropriate analysis plan, we must be clear on precisely 

what are the questions to which we wish to find answers. 

11.3.1 Treatment vs. assignment to treatment 

The possible questions can be divided into two broad categories: 

1. questions about the actual biological effect of a treatment, and 

2. questions about the effect of being assigned to a treatment. 
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Sometimes, the effect of being assigned to a treatment is what is of interest to us: when 

we wish to use the data to choose the best (in public health terms) policy for treating 

patients. In most other circumstances, the actual biological effect of a treatment is 

more likely to be of interest. 

An intent-to-treat (ITT) analysis allows us to answer questions of type 2., but is often 

used when 1. is of interest. The reason for this is that a valid ITT analysis (when 

there are no missing data) is usually straightforward, since the randomisation can he 

relied upon to eliminate bias. Valid analyses that answer questions of type 1. are less 

common, apart from in the special case where everyone complies fully to the ralldomised 

treatment, with no loss-to-follow-up, in which case 1. and 2. are the same, and an ITT 

analysis will answer both. 

In summary, if interest lies in a question of type 2., then we can analyse as 7nndomiscd 

(or by intention to treat), which deals with the issue of non-compliance. In all other 

circumstances we have to choose between attempting to answer the appropriate ques

tion 1., running the risk that the effect of non-compliance ha.c.:; not been adequately 

taken into account, or answering correctly the other question (i.e. question 2.), which 

we didn't really want to ask. 

11.3.2 Populations 

Assuming that we know what it is we would like to a.'lk, there is still the problem 

of "about whom do we want to ask it?". For the RECORD study, here are some 

possi bili ties: 

1. All type II diabetics 

2. All type II diabetics for whom single therapy is insufficient 
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3. All type II diabetics for whom single therapy is insufficient and for whom double 

therapy is sufficient 

4. All type II diabetics for whom single therapy is insufficient at a particular point 

in time (e.g. the beginning of the trial) 

5. All type II diabetics for whom single therapy is insufficient and for whom double 

therapy is sufficient at a particular point in time (e.g. the beginning of the trial) 

6. All type II diabetics who would choose to take double therapy were it to be 

offered to them 

An added complication is that, for example, 2. and 3. do not defiue a population 

independently of time, but rather the population they define varies over time. III other 

words, double therapy may be sufficient for a certain patient in April, but by May it 

could cease to be so. 

11.3.3 Objectives of the RECORD l8-month analysis 

The primary objective of the 18-month Glycaemic Control analysis of the RECORD 

data was given as: 

If 

"to test whether the 18-month mean change from baseline HbA1c for the 

intention-to-treat (ITT) population (all randomised, treated and with at 

least one data point post-randomization) with rosiglitazone oral combi

nation therapy was at least as good as the respective controls receiving 

metformin + sulphonylurea." (Home et al., 2007) 
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i. every member of the randomised population had remained on his Iher a..'lsigued 

treatment protocol for the entire I8-month follow up, and 

11. there were no missing data 

then an ANCOVA using the HbA1c results at the 18-month observation, adjusted 

for baseline, would be the obvious choice of analysis. However, neither of the above 

conditions holds in this dataset. This means that in any analysis we choose to ca.rry 

out, some assumptions will have to be made about both 

i. the mechanism which determines which subjects leave the assigned treatment pro

tocol, and 

11. the mechanism which determines which observations are missing. 

Let us turn first to the issue of missing data, before turning to the issue of nOll

compliance in §11.3.3.2. 

11.3.3.1 Missing data 

In their monograph Missing Data in Randomised Controlled Trials· a Practical GU'ide, 

Carpenter and Kenward (2008) compare two of the main MAR approaches to handling 

missing data in clinical trials, namely direct likelihood (or modelling) and multiple 

imputation (MI). They make the following remark: 

"[Ilt is worth noting that, as the imputation model is multiva.riate normal, 

as are the models we fit here, treatment effects can always, in principle, 

be estimated directly through modelling. The advantages of modelling are 

that it is quicker (our largest models fitted within 10 minutes), involves 
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fewer judgments (such as whether the an MCMC sampler has converged) 

and yields a unique maximum likelihood estimate. By contrast, inferences 

from MI are slightly different each time. Where the precise answer is critical 

for decision making, a substantial number of imputations may he necessary 

to get the Monte-Carlo variability acceptably low. We therefore advocate 

direct modelling, if possible." 
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When the dataset is sufficiently large for the gains in efficiency offered by a more par

simonious model to be very small, Carpenter and Kenward (2008) go on to advocate 

the use of direct likelihood, with a separate unstructured covariance structure in each 

treatment group (complex variation), and an unstructured means model which includes 

the baseline measurement, baseline-by-visit interaction, and baselinc-by-treatnwnt in

teraction. 

This is precisely the method adopted in the RECORD I8-month analysis (Home d al., 

2007). In terms of the analysis at the final timepoint, observations from earlier timc

points on incompletely observed individuals can be used-in a principled way, given 

the MAR assumption~-to provide information on the possible values which may have 

been observed on these subjects had they been observed at the final timcpoint. In 

addition, the use of an analysis which models the longitudinal profile of individuals 

over time means that should we be interested in anything other than the analysis at 

the final timepoint, this information is available to us. 

Molenberghs and Kenward (2007) similarly advocate the use of direct likelihood, in the 

general sense described above, but both books go on to give a very important caveat. 

For example, Molenberghs and Kenward (2007) say: 

"[Rjegardless of the elegance and beauty of the direct likelihood analysis, 

MN AR can almost never be ruled out as a mechanism and therefore one 

ought to consider the possible impact of such mechanisms as well." 
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In §11.4 we assess the sensitivity of the results of the direct likelihood analysis as 

applied to the 18-month data on HbA1c to possible violations of the MAR assumption. 

11.3.3.2 Non-compliance 

The analysis originally undertaken of these data by Home et al. (2007) censored (i.e. 

treated as missing) any observations from subjects who had left dual therapy, fwm the 

point at which they stopped taking dual therapy. Some of these subjects went on to 

receive triple therapy, some started receiving insulin injections and others returned to 

the monotherapy they were taking before the trial commenced. 

Except for two subjects, once a subject leaves dual therapy, he/she never returns. III 

other words, the induced missing data (induced by the adopted censoring policy) are 

monotone. 

When the missing data are induced by non-compliance, the MAR a.<;sumption says: 

If two subjects, A and B, exhibit identical behaviour up to some point t, 

whereafter A continues on dual therapy, while B changes to some other 

therapy, then the subsequent behaviour of B, had B stayed 011 dual ther

apy (something which we have not observed) is assumed to be identical in 

distribution to the subsequent behaviour of A. 

We will refer to this as Non-compliance At Random (or NAR), since it asSUIIlCS that, 

after conditioning on a subject's observations whilst on dual therapy, the probability 

of leaving dual therapy is independent of those observations which would have been 

observed on dual therapy, had the patient not changed to another treatment. 

Ignoring for the time being the issue of missing data beyond that which is potentially 

induced by non-compliance, there are two broad approaches to handling the issue of 
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non-compliance. The first is to analyse the data from all subjects according to the 

treatment protocol to which they were randomised, irrespective of whether or not they 

adhered to this protocol. This is called intent-ta-treat (or ITT). This ha..<; the advau

tages of preserving the effect of randomisation, and of allowing the practical effects of 

implementing such treatment policies to be assessed. For example, if a treatment ha...., 

an undesirable side effect which causes many patients to withdraw from taking it, this 

will be reflected in the conclusions. On the other hand, if our main intcrest is iu the 

biological efficacy of one treatment compared with another, then we might choose the 

alternative approach, which is to include in the analysis only those who adhered to the 

protocol to which they were assigned. This is called per protocol (or PP). 

In his seminal book Clinical Trials: A Pmctical Approach, Pocock (1983) writes: 

"[Should patients] with protocol deviations be included ill the main treat

ment comparisons or should they simply be noted as being deviates and be 

excluded from subsequent results? In most circumstances I think the first 

approach is required; that is, all eligible patients, regardless of complianc:c 

with protocol should be included in the analysis of results whenever possi

ble. This 'pmgmatic approach' is sometimes called 'analysis by 'intention to 

treat' and is normally preferred since it provides a more valid (l.,,",sessmcnt 

of treatment efficacy as it relates to actual clinical practice. The alterna

tive 'explanatory approach' would confine analysis to patients who received 

therapy according to protocol, i.e. 'analysis of compliers only', hut this can 

distort treatment comparisons." 

However, in a longitudinal setting, where a subject may be observed on protocol up 

to a certain point, after which s/he is observed as having deviated from the protocol, 

we are faced with a slightly different situation. The main objection to a standard PP 

analysis is that to analyse only those subjects who do not deviate from the protocol 

makes the (often implausible) assumption that those who do not deviate from the 

protocol form a random subset of the whole. Following the above taxonomy, this could 
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be thought of as Non-compliance Completely At Random (or NCAR). In a repeated 

measures setting, by including observations from subjects up to the point at which 

they deviate from the protocol, we assume only NAR (not NCAR), and the objections 

are less strong. However, in cases where the NAR assumption is violated, a PP-NAR 

analysis (such as the one carried out on these data by Home et al., 2(07) could give 

rise to a biased estimate of the true biological treatment effect. 

This (together with the possible deviations from the MAR a,'lsumption cliHcusscd in 

§11.3.3.1) provide the rationale for the work described in §11.4, but first, let us look 

at what a true ITT analysis entails when there are missing data. 

11.3.4 ITT analyses with missing data 

11.3.4.1 Background 

If we restrict ourselves to an ITT analysis, we automatically include in the analysis 

all the observations censored in the PP-NAR analysis. Specifically, this means that 

the data for those who changed to triple therapy, but who remained to be assessed a.t 

2-monthly intervals, will be included. 

However, there remains the problem of how to deal with the data that are truly missing. 

By design, any subject leaving dual therapy but not moving to triple therapy (for 

example, those from the Met+Su and Su+Met arms who went on to take insulin, or 

who returned to monotherapy) were moved to the CV outcomes stage of the trial, in 

which HbAlc was only measured on a yearly basis. We have thorough records of the 

treatments taken by these subjects during this time. Furthermore, there are other 

subjects who genuinely dropped out and for whom we have no further data (neit.her 

for HbAlc nor the treatments they were taking). The question now is, what does a.ll 

ITT analysis entail in this situation? 
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The first thing to note is that a MAR analysis is likely to be inappropriate, unless those 

who drop out (or who move to the CV outcomes phase) continue to take the treatment 

to which they were originally assigned. We know by definition that this cannot he 

the case for those who move to the CV outcomes phase; also, for those who drop out 

completely, it is not possible for them to continue to take the additional treatment to 

which they were randomised once they withdraw from the trial. Thus, we arc fac(~d 

with a situation similar to the one described by Little and Yau (1996). The aut.hors 

of this paper advocate the use of multiple imputation as a way of carrying out. MNAR 

sensitivity analyses in this sort of situation. In the next section, we describe how MI 

may be used in ITT sensitivity analyses with missing data. 

11.3.4.2 Multiple imputation and intent-to-treat 

If, instead of fitting a model to the incomplete RECORD data by direct likelihood, we 

use multiple imputation to complete the data several times, and then fit direct likeli

hood model to the completed datasets, combining parameter estimates using Rubin's 

rules, then, provided we use the same model for the imputation as we use for t.he a.nal

ysis, the results from both methods (MI and direct likelihood) will t.end to t.he same 

parameter estimates (and standard errors) as the number of imputed datascts tends 

to infinity. Roughly speaking, this follows from the fact that multiple imputation is a 

Bayesian procedure, and Bayesian and likelihood analyses coincide as the sample size 

tends to infinity. However, varying the imputat.ion model-specifically, allowing for 

an effect due to unobserved variables-allows us to fit a MNAR IIlodel. The idm is 

particularly natural in our setting, where we know (or can guess) what. treatment is 

taken by those subjects for whom we have missing observations. 

Our aim is first to impute the missing values using multiple imputation where the 

imputation model reflects the treatment actually taken by the subject with missing 

observations. Following this, the completed datasets are analysed as randomised and 

the results combined according to Rubin's rules in the usual way. Until we paUHC to 

think about this, we may not be entirely happy that this is a true ITT analYHis, since 
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the first part of the analysis (the imputation step) is "as treated" and only the final 

part is "as randomised". But this is exactly what we mean by an ITT analysis in t.he 

presence of missing data. Intuitively, we can think of the imputation step 8." imputing 

the sort of behaviour we would have expected to see from those who dropped out. had 

they been observed, keeping all ot.her factors const.ant. This means that. if SOllwone 

stops taking treatment altogether and hence experiences a sharp rise in his/her HhA1c , 

say, this should be reflected in the imputation. When t.he imputation ha.<; been carried 

out in a way that reflects the actual or posited treatment compliance, the imputed 

data can be analysed "as raudomised" . 

11.4 Sensitivity analyses 

As we saw in the last section, an ITT analysis of these data requires that any data cen

sored due to non-compliance must be reintroduced into the analysis. An ITT analysis 

assuming MAR would then impute the (genuinely) missing data using a multiple lincar 

regression imputation model with observed data and true treatment profile included 

as predictors. Our aim now is to assess the sensitivity of these results to the MAR 

assumption through the introduction of sensitivity parameters into the imputation 

model. This is described in detail in §11.4.1. 

For the per protocol analysis, the direct likelihood analysis carried out by Home 

et al. (2007), represent.s the missing at random (MAR) and nOll-compliance at. rau

dom (NAR) model. We can use a similar imputation approach to assess the sensitivity 

of this model to violations of both the MAR and N AR assumptions. This is described 

in detail in §11.4.2. 
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11.4.1 Strategy for MNAR ITT analyses on the 18-month RECORD data 

A treatment profile for each individual was extracted from the various data available on 

treatments taken. Those who were not censored from the analysis carried out by HOllW 

et al. (2007) were assumed to be on dual therapy. A "triple therapy flag" variahl<~ was 

used to identify those on triple therapy, and the profiles for those in the CV outcomes 

phase were deduced from the (detailed) information available on the treatments taken 

at various times. For those lost-to-follow up, a profile which returned to monothcrapy 

(equal to their original background therapy) was assumed. 

For the censored individuals, and those who were lost-to-follow up, dateH for their Hched

uled clinic visits were imputed simply by adding 61 (or 91 for the la. ... t two timepointH) 

days to their previous clinic visit. This was necessary in order that the treatment 

profile could be converted into treatments taken at different visits. 

If we had observed data corresponding to each of the treatment profiles followed hy the 

subjects with missing data, we could fit one MNAR analysis which used the observed 

data from the appropriate treatment profile to impute the missing observations. This 

is the case for those on dual or triple therapy. Unfortunately, for treatment profiles 

involving insulin or monotherapy, there are some timepoints for which no-one ha. ... 

observed data corresponding to these profiles. This means that to impute the data for 

these subjects, we will need to 'borrow' imputations from a different treatment profile, 

but we can allow the actual imputations to vary from the borrowed imputations by a 

constant parameter, and we can assess the sensitivity of our results to the value taken 

by this parameter by carrying out the imputations under several different values for 

this parameter. 

The strategy can be summarised as follows: 

1. Impute (5 times) intermediate missing values for those who have not deviated 

from the protocol (128 measurements on 32 subjects) a.<;suming MAR conditional 
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only on the past. This is not fully-efficient but is still a valid approach and allow:; 

us to carry out all the imputations in Stata using the regression method with 

large-sample normal approximations to the Bayesian posterior distributions of 

the parameters, without any need for MCMC chains etc. For each tiuwpoint 

in turn, the dependent variable in the linear regression imputation model is the 

HbAlc measurement at. that visit, and the independent variables are all previous 

measurements of HbA1c , and the treatments actually taken for the previolls 2/3 

months. 

2. Impute (5 times) monotone missing values for those who have not deviated from 

the protocol (163 measurements on 40 subjects) assuming MAR and the regres

sion imputation method in Stata, as described above. 

3. Impute (5 times) missing values for those who have moved to triple therapy (163 

measurements on 19 subjects) using the observed data from subjects OIl triple 

therapy. For these imputations, to increase precision, use data from subjects 011 

both background Met and background Su who have moved to triple therapy. 

4. Impute (5 times) missing values for those who have moved onto insulin (48 mea

surements on 16 subjects) using the observed data from subjects on triple t.herapy 

but adding a constant "Y1 at each timepoint. Those who move onto insulin lllay 

have a lower HbA1c , due to insulin being more effective than anti-diabetic drugs; 

in which case, we would expect 1'1 to be negative. On the other hand, if those 

who move onto insulin do so because of poor control, it is also plausible that 1'1 

be positive. 

5. Impute (5 times) missing values for those who have moved back to monothempy 

(4 measurements on 2 subjects) using the observed data from subjects on 11011-

experimental dual therapy Met+Su but adding a constant 1'2 at each timepoi11t. 

Those who return to monotherapy may have a higher HbA1c , if one therapy is 

less effective than two; in which case, we would expect 1'2 to be positive. 

6. Some people in the CV outcome phase receive and additional ant.i-diabet.ic drug 

which is not Met, Su nor Rosi. Impute (5 times) missing values for those who 

have moved to Met+Other or Su+Other (7 observat.ions on 5 subjects) using 
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the observed data from subjects on Met+Su but adding a constant 13 at each 

timepoint. 

7. Analyse and combine the 5 completed datasets using PROC MIXED and PIlOC 

MIANALYZE, separately in the two arms and analysing "as ralldomised". 

8. Carry out steps 1. to 7. for ('1,,2,,3) = (0,0,0), (-0.25,0.25,0), ( 0.5,0.5,0), 

(-1,1,0), (0.25,-0.25,0), (0.5,-0.5,0), (1, 1,0). 

9. Use the fact that HbAlc is measured on some people in the CV outcomes pha .. "l(~ 

at 12 months to attempt to choose a "best" combination of (,1,,2,,3). Calculate 

multiply imputed values for this measurement as if it had not been observed, un

der each combination of 7 different values for (,1, /'2,'1'3), 

(,j E {-0.6,-0.4,-O.2,O,0.2,0.4,0.6}), making 73 = 343 combinations in tot.al. 

Calculate the mean squared difference between the imputed and observed values 

to try to decide 011 a "best" set of ('1,,2,,3), i.e. the set that leads to t.he miui

mum mean squared difference between the imputed and the observed out COUleS 

at the 12-month timepoint. 

10. Repeat steps 1. to 7. using this "best" combination. 

11. Compare the results from each model with regards to the estimate and inference 

for the treatment difference at the final time point and compare the profiles 

implied by each model. 

11.4.2 Strategy for MNAR/NNAR PP analyses on the IS-month 

RECORD data 

In the previous two sections, we described how MNAR intent-te-treat sensitivity anal

yses could be carried out to assess the robustness of the MARIN All per protocol 

model (the direct likelihood approach, with individuals censored at the point of non

compliance) to violations of the MAR and NAR assumptions. There is no reason why 

these sensitivity analyses need be limited to the ITT setting. Supposing instead that 
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we are interested in true difference in biological effect between the therapies, we can 

again use MI to fit alternative models that allow for MNAR and NNAR mechanisllls. 

The strategy differs from that of §11.4.1 in a few important ways: 

1. The observations that were censored in the direct likelihood analysis !'emaiu 

censored. 

2. The 12-month observations for those in the CV outcollle phase can no louger he 

meaningfully compared with the imputations. This is because the objective of 

the imputation stage has changed in moving from ITT to PP. The imputations 

now aim to reflect what would have been observed in these patients had they 

cont'inued to comply with the dual-therapy protocol to the end of the 18-111onth 

follow-up. This means that we expect the imputations to differ from the observed 

12-month measurements. 

We draw the imputations (5 times) from a normal linear regression imputation model 

which exactly matches the analysis model (and thus includes all previous measurements 

of the outcome and the combination therapy to which the patient was randomised), 

Combining (using Rubin's rules) the results from a direct likelihood analysis on these 

completed datasets would lead to a MAR/NAR per protocol analysis, equivalent (as 

the number of imputations and the sample size tend to infinity) to the direct likeli

hood approach on the original incomplete dataset. However, to form the sensitivity 

analyses, we introduce four sensitivity parameters, (81,82 ,83,84), 61 is added to each of 

the MAR/NAR imputations for those individuals lost to follow-up, 62 is added to each 

of the MARIN AR imputations for those individuals who went on to triple therapy, 

83 is added to each of the MAR/NAR imputations for those individuals who went on 

to insulin, and 84 is added to each of the MAR/NAR imputations for those remain

ing individuals who left dual therapy but did not receive triple therapy nor insulin. 

In other words, (81,82,83,64) represent deviations from the MARIN AR assumptions, 

and--if positive-represent the degree to which the condition of those who were lost 



11 MNAR SENSITIVITY ANALYSES 182 

to follow-up or who left the protocol would have been worse (over and above what is 

predicted by the MAR/NAR assumption) than those who complied, had they stayed 

on dual therapy. It is important to note that the MAR/NAR model allows the HbA1c 

of those lost to follow-up or those who did not comply with the protocol to he higher 

than that of the other patients, up to the level predicted by the previolls measure

ments, and therefore ((h,82 ,63 ,64 ) represent the additional increa."le Hot picked up hy 

the previous measurements. For completeness, even though ICHs plausible, we will also 

consider negative values for these parameters. 

We experiment with different values of the sensitivity parameters: 

(0,0,0,0) 

(0.25,0.25,0.25,0.25) 

(0.5,0.5,0.5,0.5) 

(1,1,1,1) 

(0.25,-0.25,--0.25,0.25) 

(0.5,-0.5,--0.5,0.5) 

(1,-1,-1,1) 

( -0.25,0.25,0.25,-0.25) 

(-0.5,0.5,0.5, -0.5) 

(-1,1,1,-1) 

(-0.25,-0.25,--O.25,-D.25) 

(-0.5,-0.5,-0.5, -0.5) 

(-1,--1,-1,-1) 

If it transpires that none of the above combinations leads to a conclusion of inferiority 

of Rosiglitazone (according to the pre-specified non-inferiority margin of 0.4%), more 

extreme combinations will be considered until a combination is found which does imply 

inferiority of Rosiglitazone in at least one of the two arms of the trial. In other words, 

our aim is to find a tipping point, described in terms of our sensitivity paramctcrs, 

where if the missingness mechanism is further from MAR than this point, our final 

conclusions are affected. A clinical expert in diabetes could then give his/her opinion 
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on whether or not such a departure is plausible. S/he could give a (~·;ubjective) opinion 

on whether or not such a difference between compliers and nOll-compliers or between 

observed and unobserved subjects is plausible. By definition, we CfUlllot usc the datn 

to answer this question. 

11.4.3 Results 

11.4.3.1 ITT 

The top half of Table B.1 summarises the final timepoint analyses uuder each of the 

different ITT models. Step 10. in the strategy (see §11.4.1) gave risc to a combina

tion (r1,12,,3) = (0.2,0.4,0) and the agreement between the observed HbA1c a.nd the 

imputed HbA1c at the 12-month timepoint as imputed using this combination is ilhlH

trated in Fig. B.g. Fig. B.1 shows the profiles under the MAR per protocol ana.lysis, 

while Figs. B.2-B.8 and 8.10 show the profiles under each of the different MNAR ITT 

sensitivity models. 

11.4.3.2 Per protocol 

The bottom half of Table B.1 summarises the final timepoint analyses under each of the 

different PP models. None of the pre-specified combinations of sensitivity parameters 

led to a conclusion of inferiority of Rosi and (after increasing the sensitivity parameters 

in steps of 0.2), the first model to conclude Rosi to be inferior (in the background Met 

arm only) was the one in which (81,82 ,83 ,84 ) = (3,3,3,3). Fig. B.1 shows the profiles 

under the MAR per protocol analysis, while Figs. B.11-B.24 show the profiles uuder 

each of the different MNAR/NNAR per protocol sensitivity models. 



11 MNAR SENSITIVITY ANALYSES 184 

11.4.4 Discussion 

It should be stressed that the sensitivity analyses reported here account for only a small 

proportion of the huge number of sensitivity analyses that could have beell cOllsidered. 

For example, in the ITT analyses we assume throughout that any deviation from the 

MAR assumption is purely due to a change in treatment on withdrawal. We lllay 

have reason to believe that those who drop out exhibit further deviations from the 

observed subjects, beyond what can be explained by treatment. Also, steps 4. to 7. 

ill the strategy described in §11.4.1 may be too simplistic. We are implicitly assuming 

that, for example, the Met+Su and Met+Other arms deviate by a constant mnoullt 

over time. Another assumption made in the ITT sensitivity analyses was that the 

treatment profile for any subject who dropped out from the trial completely changed 

down to monotherapy at the point at which drop-out occurred. This lllay not be valid, 

as some subjects presumably moved onto insulin or other additional therapies ill thiH 

group also. There is no limit to the number of scenarios one could investigate in a . 

sensitivity analysis setting, and at best we hope to select a few pertinent examples 

that may be representative in some way of the changes that might be seen. 

The fact that some patients in the CV outcomes phase had data at the 12-111onth 

timepoint at least gave us some scope for checking how plausible our choices of ('"'fl, /2, /3) 

in the ITT sensitivity analyses might be. This method suggested that our more extreme 

choices (such as (1,-1,0)) were not plausible. Table B.1 and FigH. B.1 B.8 and 3.10 all 

demonstrate that the results are somewhat sensitive to our choice of model. Only uuder 

the model (/1,/2,/3) = (-1,1,0) would a conclusion of inferiority of Rosiglitazolle be 

made according to the pre-specified non-inferiority margin of 0.4%. This is illustrated 

on the left hand side of Fig. B.5, where the results are consistent (at a 5% level) with 

a difference of 0.4% in favour of Met+Su. However, when we inspect the resultH from 

our "best" model, the only slight difference is that the direction of the estimat.e of the 

difference in the background Su arm has reversed, i.e. if anything, Rosiglit.azonc looks 

better under this model than under the original MAR/NAR per protocol analysis. 

Note that the standard errors for our estimates of the treatment differences look to he 
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larger for ('/'l,,2,,3) = (-1,1,0) and (rb,2,,3) = (1,--1,0). This supports tlw suggetltion 

that these imputation models are incorrect, and that spurious variation is heillg ill

jected into the imputations, due to the overinflated deviations betweeu the borrowt~d 

imputations and the missing observations. 

To sum up, it seems from these sensitivity analyses that a conclusiou of non-inferiority 

is relatively stable to model changes that allow for a MN AR ITT allalysis and eVCll 

more stable to model changes that allow for a MNAR/NNAR per protocol ana.lysis. 

In order for the non-inferiority conclusion to be challenged, it was necessary for tlw 

MAR/NAR model to underestimate the unobserved HbAlc by as much as 3%. Given 

that all the observed differences in HbAlc observed in the trial were less than 1 % over 

the entire follow-up period, it seems implausible that the MAR/NAR model should 

underestimate the HbAlc of the non-compliers and those who left the trial by this 

amount. However, by varying the assumptions of the MNAR/NNAR models, SOUle 

differences were seen in the implied profiles and the resulting final timepoillt analysis, 

even if these differences were of the same order of magnitude a.~ (or smaller than) the 

associated standard errors in all models except for one. The results therefore should not 

be seen as casting doubt on the conclusions of the 18-month MAR/N AR per protocol 

analysis in this case, but they do illustrate the need to consider sensitivity ana.lyses 

in this kind of setting. Certainly, had the clinical interest het:m in, say, the difference 

between therapies after 12 months, Figs. B.1 to B.24 suggest that the results would 

have been considerably more sensitive to violations of the MAR/N AR assumptions. 

It is worth noting that if a true ITT analysis is required, then ceasing to collect data on 

subjects who deviate from the protocol but who remain in the trial (a.~ was the c~l.~e for 

the subjects in the CV outcomes phase in RECORD) is not sensible. Information on 

these subjects could have been very useful in drawing imputations for those who were 

completely lost to follow-up and this would have allowed the ITT sensitivity analyses 

to be more reliable. 

We also note that in almost every model considered here, the only noticeable profile 

differences occurred in the background Met arm. This suggests that it is the pwsence 
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or absence of Su (as opposed to Rosi) which ha.o;; the largest effect. This is echoed in 

the results of §11.2 where we noted that the largest difference in loss-to-follow-up WH.'" 

between the Met+Su and Su+Met arms. Is it possible that Met and Rosi are similar, 

with Su being better than both of them? This would explain both the difference in 

the (early) profiles between Met+ Rosi and Met+Su, and might also explain why mow 

people in the Su+Met ann chose to withdraw than in the Met+Su ann, where the add

on treatment was more to the patients' satisfaction. It is well-documented (CharhOlllld 

et al., 2005) that the early profile of Su is steeper than that of Met (or Rosi), and this 

effect may be the dominating factor in what we see over the first 18 months. Therefore, 

when it comes to later analyses of the RECORD data (after a longer follow-up), the 

patterns seen might be quite different. However, the approach described here could 

be applied in exactly the same way to provide sensitivity analyses for tlw pla.lllwd 

PP-NAR analysis. 

Future work could involve combining the work of the previous chapter with this one to 

carry out sensitivity analyses within the doubly robust framework. Since our methods 

in both chapters use multiple imputation at their centre, combiuing the two idea..., 

should be possible. However, for every MNAR model considered here iu the patteru

mixture framework, an equivalent selection-model representation would be wquired in 

order that the weights be modelled in an analogous way to the outcomes. 



Part V 

Comparing methods for incomplete longitudinal binary 

data 



Motivation and simulation studies 

12.1 Introduction 

Principled methods for analysing incomplete continuous longitudinal data und r thc 

MAR assumption are well-understood and increasingly widely-us d in medi al tudies. 

However, when the repeated outcome of interest is binary (or , more gCllerally, discret ), 

the best approach to take is often harder to determine and t h relativ meri ts of dif

ferent methods are less clearly understood. In the literature review, we discuss dome 

188 
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of the additional complexities (such as subject-specific versus population-avera.ged ef

fects) which arise when analysing longitudinal binary data, and described several ofthe 

methods (likelihood methods, GEE, MI-GEE, weighted GEE and the semiparametric

efficient generalisation of GEE) that are advocated for use in this setting. In this 

chapter, we concentrate on the many population-averaged approa.ches to cUlalysillg 

incomplete longitudinal binary data. 

Many simulation studies in the literature have compared the perfoI'lnance of some or 

all of these methods; see, for example, Fitzmaurice et al. (1995), Fitzmaurice d al. 

(2001 ), Li et al. (2006), Li psi tz et al. (2000), Beunckells et al. (2008) and Preisser ct ai. 

(2002). Inconsistencies in some aspects of the results between different simulation 

studies suggest a need for a more theoretical approach to comparing these methods. 

In this chapter, we give some motivation for this work using our own simulation st.udy 

comparing the methods described in Chapter 7. Then, in Chapter 13, we derive some 

theoretical results, confirming some findings suggested by our simulation study. We 

hope that by studying the theoretical properties of the various methods for analysing 

incomplete binary data, we can present a clearer picture than has been presented to 

date of the relationships between the available methods and their relative merits. 

12.2 Simulation study 

12.2.1 Methods 

We consider three binary outcome variables, Yi, Y2 and Ya, and two covariates Xl and 

X 2 . The marginal distributions of YI , Y2 and Y3 conditional on Xl and X2 are given 
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by: 

. 1 
IOglt [IP (YI = 1 lXI, X 2 )] = Xl - 2XIX2 

logit lIP (}2 = 1 lXI, X 2)] = -1 + ~XI + ~X2 - X IX 2 

logit [IP (Y3 = 1 lXI, X 2)] = -Xl + ~X2 - X IX2 

190 

In the first two of our three sets of simulations, Xl and X 2 are both biuary with 

IP (Xl) = 0.5 and IP (X2 ) = 0.25. In the third scenario, Xl is binary with IP (Xd = 0.5 

and X 2 "-' U (0, 1). 

As we require YI , }2 and Y3 to be correlated, we simulate them from a Bahadur 

distribution (Bahadur, 1961; Molenberghs and Verbeke, 2005). In the first and t.hird 

sets of simulations, the pairwise correlation matrix of (YI , Y2 , Y3 ) is 

( 

1 

0.3 

-0.15 

0.3 -0.15) 
1 0.3 

0.3 1 

and the higher-order correlation term, P123, is given by 

In the second set of simulations, the pairwise correlation matrix of (YI ,}2, Y3 ) is 

and the higher-order correlation term Pl23 = -0.173. 

The missing data pattern is set to be monotone with Yi observed 011 all subjects. 
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Conditional on YI , Xl and X 2 

This leads to approximately 20% and 60% missing data 011 Y2 and Y3 wHped.ivdy. The 

code for the first set of simulations can be found in Appendix C.3. 

A sample size of 500 is used, and 1,000 independent simulated datasets are gencrated 

under each of the three scenarios. 

The methods to be compared are: 

• GEE (with unstructured covariance structure) 011 the whole data.~et; 

and, on the incomplete data: 

• lEE (independence structure) 

• GEE (unstructured) 

• cluster-level weighted GEE (unstructured) 

• observation-level weighted GEE (unstructured) 

• MI-GEE (unstructured) 

• semiparametric-efficient estimator as proposed by Robins and RotuitJl:ky (1995) 

• regression-based doubly robust estimator as proposed by Bang and Robins (2005) 

• doubly robust MI-GEE as we proposed in Chaptcr 9 
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To assess the robustness of these methods to misspecification of the incomplete da.ta 

models, in addition to the correct models for the conditional distributions of 

(Y3IX1, X 2, Y1 , Y2), (Y2IX1 , X 2, Y1 ), (R3IXI' X 2, Y1 , Y2, R2 = 1) and (R2IXI' X2, Y1 ), 

the following incorrect models are also defined: 

logit [IP (Y3 = l1X1, X2, Yi, Y2)] = ao + alX1 + a2X2 + a3XI X2 + a4Yl 

+ a5X I Yl + a6Y2 + a7X I Y2 

logit [IP (Y2 = l1X1 , X 2 , Y1 )] = (30 + (31X1 + (32Yl + (33X IYl 

logit [IP (R3 = l1X1, X 2, Y1, Y2, R2 = 1)] = fO + fIX! + f2 X l Y1 

logit [IP (R2 = l1 X I, X 2, Y1 )] = 60 + 6l X I + 62X 2YI 

In each case, the parameter of interest is taken to be the coefficient of Xl in the marginal 

(final timepoint) logistic regression of Y3 on Xl, X2 and X1X2 . As in Chapter 9, we 

refer to these conditional outcome and missingness models a..., the y- and IT-models, 

respectively. 

12.2.2 Discussion of results 

The results comparing the different methods of estimating our parameter of interest ill 

each of the three sets of simulations are summarised in Tables 12.1 12.3 and further 

illustrated using kernel density plots in figures 12.1--12.12. In each of the three tahles, 

bias refers to the mean bia.." over all simulations and true SE refers to the standa.rd 

deviation of the parameter estimates over all simulations. Z-score for bias is the ratio 

of the first and second columns and should be used to gauge the comparative severity 

of the bias from methods with different efficiency. The final column, # successful 

simulations, gives the number of simulations for which the method converged and 

a parameter estimate was obtained. This is the number of simulations on which the 

estimates of the previous three columns are ba."ed. 
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As we would fully expect, there is a loss of information due to the missing data, reflected 

in the fact that the standard error of the parameter estimate from the full data is 

consistently smaller than the corresponding standard errors from any of the methods 

applied to the incomplete data. Again, as we would expect, the Z-scorcs for bia • ..., in both 

the cluster- and observation-level weighted GEE analyses increa.<;c whcn the 7r-lllodel is 

misspecified. Correspondingly, the Z-score for bias in the MI-GEE analysis incmases 

when the y-model is misspecified. Finally, the lEE analysis is bia.<;ed, suggesting that 

our chosen MAR mechanism represents a non-negligible dcparture from MeAn.. While 

these aspects of the results agree with existing theoretical predictions, others require 

further explanation. We describe these aspects here and investigate them more fully 

(where necessary) in the next chapter. 

12.2.2.1 Convergence problems with the Robins and Rotnitzky (1995) estimator 

One noticeable feature of the results is that in as many as 30% of our simulations, 

the Robins and Rotnitzky estimator fails to converge. The iterative Fisher scoring 

algorithm was set to a tolerance of 10-5 . This means that for convergence, the absolute 

difference between successive parameter estimates has to be less than 10-5 for a.ll 

parameters. To ensure a manageable computational time for the simulations, the 

number of iterations was limited to 100. Inspection of the parameter estimates after 

100 iterations for the simulations in which the method failed to converge suggests that 

given further iterations the method would have converged; this is inferred from the 

fact that the paranleter estimates after 100 iterations were-in most casesciose to 

the correct values, and that the cases in which the algorithm had clearly diverged were 

few in number. 

It is possible that by updating our estimate of A (step 9. of the algorithm described 

in 7.6.5) with every iteration of the Fisher scoring algorithm as opposed to using the 

original fixed estimate of A, the convergence rate could have been improved, but the 

additional computational time involved in re-calculating A would far ontweigh the 

time saved. In the first simulation study, the mean value of the BtUlg and Robins (BR) 
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estimate ~BR when the Robins and Rotnitzky (RR) estimator failed to converge is 

-0.875, which is 0.125 higher than the true parameter value of -1. This could explain 

the downward bias seen in ~RR in Table 12.1. 

12.2.2.2 Superiority of doubly robust MI over the other doubly robust proce

dures 

In contrast with the results of Chapter 9, in this simulation study doubly rohm.;t MI 

consistently outperforms the Bang and Robins (2005) estimator with respect to both 

bias and precision (see Figs. 12.22--12.24). This is a consequence of the fact that the 

data are binary and the different ways in which the conditional outcome distrihutions 

are computed in the two approaches in the case of non-Gaussian data. This is discussed 

in greater detail in the next chapter. 

12.2.2.3 Lack of bias in unweighted GEE 

As we have already mentioned, lEE is biased as theory predicts when the mechanism 

is MAR. Theory also predicts (Liang and Zeger, 1986) that ullweightcd GEE be biased 

under MAR. In our simulations, however, this bias is much smallpr for GEE com

pared with lEE, with the bias being particularly small in the second simulation study 

(see Figs. 12.13-12.15). This feature is explained by the theoretical work in the next 

chapter. 

12.2.2.4 Differences between cluster- and observation-level weighting 

Observation-level weighted GEE appears to be more efficient than cluster-level weighted 

GEE, but the difference is very small in the first two simulation studies, where the 

means model is saturated, and more pronounced in the third simulation study, where 
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the means model is not saturated (see Figs. 12.16-12.18). This will be explored iu the 

next chapter. 

12.2.2.5 Imputation versus weighting 

Comparing imputation and weighting has been the subject of many reccut papers 

ill the literature e.g. Carpenter et al. (2006); Wang et al. (2007); Beullckcus ct al. 

(2008). Figs. 12.19-12.21 show the comparison between MI-GEE and observation-level 

weighted GEE in our simulations. MI-GEE is more efficient, with the difference again 

more pronounced for the non-saturated means model. In the next chapter we study 

this comparison in more detail. 

12.2.2.6 Doubly robust methods with both models misspecified 

The final feature of our simulation results is that when both the y- aud 7r-lllodels a.re 

misspecified, the bias in the doubly robust estimators remains quite small. This is ml 

artifact of the particular incorrect models chosen, where the bias created by the fonnel" 

is effectively cancelled out by the bias (in the opposite direction) due to the latter. 
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Estimator Bias True Z-score # successful 
SE for bias simulations 

fJfull -0.078 0.229 -0.340 1000 

fJIEE 0.330 0.391 0.845 998 

fJGEE -0.164 0.395 -0.414 998 

~CWGEE -0.120 0.434 -0.276 998 

fJOWGEE -0.100 0.428 -0.232 996 

~MI-GEE -0.051 0.402 -0.128 998 

~RR -0.136 0.435 -0.312 748 

!3BR 0.054 0.467 0.116 1000 

!3DRMI -0.019 0.396 -0.049 998 

~CWGEE-7r-false -0.292 0.421 -0.693 996 

fJoWGEE'7r-false 0.348 0.396 0.879 997 

~RR'7r-false -0.199 0.482 -0.413 967 

~BR'7r-false 0.047 0.470 0.100 1000 

!3DRMI'7r-false -0.038 0.402 -0.094 998 

~MI-GEE.y-false -0.171 0.385 -0.446 998 

~RR.y-false -0.118 0.439 -0.269 682 

fJBR.y-false -0.141 0.437 -0.322 992 

~DRMI.y-false -0.041 0.402 -0.101 998 

~RR'7r$y-false -0.103 0.442 -0.232 965 

~BR'7r$Y-faISe -0.131 0.410 -0.318 1000 

!3DRMI'7r$y-false -0.069 0.426 -0.163 998 

Table 12.1: The results of the first longitudinal binary simulation study, whem the means 
model is saturated. In each case, f3 refers to the log odds ratio for Xl at the third timepoint. 
The abbreviations used are: CWGEE (cluster-level weighted GEE), OWGEE (observation
level weighted GEE), RR (method proposed by Robins and Rotnitzky (1995)), BR (method 
proposed by Bang and Robins (2005)) and DRMI (doubly robust MI). No subscript indicates 
correct specification of the relevant model(s). 7r - false indicates that the estimator used 
an incorrectly-specified 7T-model, y - false indicates that the estimator used an incorreetly
specified y-model and 7T EB y - false indicates that both the 7r- and y-models were incorrectly 

specified. 
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Estimator Bias True Z-score # successful 
SE for bias simulations 

.Bfull -0.045 0.222 -0.202 1000 

.BIEE 0.197 0.384 0.514 998 

fiGEE -0.077 0.398 -0.194 998 

.BCWGEE -0.075 0.426 -0.177 998 

.BOWGEE -0.063 0.421 -0.151 996 

.BMI-GEE -0.005 0.390 -0.013 998 

.BRR -0.082 0.429 -0.192 7G2 

.BBR -0.036 0.423 -0.085 1000 

.BDRMI 0.023 0.395 0.057 998 

.BcWGEE'7l'-false -0.180 0.417 -0.432 998 

.BoWGEE'7l'-false 0.194 0.386 0.502 996 

.BRR'7l'-false -0.199 0.501 -0.398 979 

.BBR'7l'-false -0.039 0.422 -0.092 1000 

.BDRMI'7l'-false 0.000 0.402 0.001 998 

fiMI-GEE.y-false -0.112 0.388 -0.288 998 

.BRRy-false -0.088 0.434 -0.203 777 

.BBRy-faise -0.161 0.404 -0.399 989 

fiDRMI.y-false -0.011 0.398 -0.026 998 

~R'7l'$y-false -0.104 0.448 -0.233 979 

~BR'7l'$y-false -0.103 0.389 -0.264 1000 

.BDRMI'7l'$y-false 0.001 0.420 0.002 998 

Table 12.2: The results of the second longitudinal binary simulation study, where the means 
model is saturated but the correlation structure is different from the one used ill the first 
set of simulations. In each case, .B refers to the log odds ratio for Xl at the third timepoiut. 
The abbreviations used are: CWGEE (cluster-level weighted GEE), OWGEE (observation
level weighted GEE), RR (method proposed by Robins and Rotnitzky (1995)), DR. (method 
proposed by Bang and Robins (2005)) and DRMI (doubly robust MI). No subscript indicates 
correct specification of the relevant model(s). 7r - false indicates that the estimator llsed 
an incorrectly-specified 1l'-model, y - false indicates that the estimator used an incorrectly
specified y-model and 7r ED y - false indicates that both the 7r- and y-models were incorrectly 

specified. 
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Estimator Bias True Z-score # successful 
SE for bias simulations 

.6full -0.049 0.386 -0.127 1000 

.6IEE 0.338 0.672 0.503 1000 

.6GEE -0.174 0.662 -0.263 1000 

.6CWGEE -0.137 0.832 -0.165 1000 

.60WGEE -0.091 0.785 -0.116 1000 

.BMI-GEE -0.065 0.651 -0.100 1000 

.BRR -0.079 0.813 -0.097 691 

.6BR 0.093 0.802 0.116 993 

.BDRMI -0.011 0.673 -0.016 100(} 

.BcWGEE-7r-false -0.299 0.740 -0.404 987 

.BoWGEE'7r-false 0.332 0.710 0.468 1000 

.6RR'7r-false -0.162 0.873 -0.185 910 

.BBR'7r-faise 0.065 0.747 0.087 998 

.6DRMI'7r-false -0.050 0.654 -0.076 1000 

~MI-GEE.y-false -0.256 0.511 -0.501 1000 

~RR.y-false -0.087 0.795 -0.110 623 

~BR,y-faise -0.268 0.636 -0.421 996 

~DRMI.y-false -0.037 0.666 -0.056 1000 

.6RR-7rEBy-faise -0.083 0.869 -0.095 887 

~BR-7rEBY-false -0.293 0.488 -0.601 1000 

.6DRMI '7rEBy-false -0.085 0.677 -0.126 1000 

Table 12.3: The results of the third longitudinal binary simulation study, where the means 
model is not saturated. In each case, .6 refers to the log odds ratio for Xl at tlw t.hird 
timepoint. The abbreviations used are: CWGEE (cluster-level weighted GEE), OWGEE 
(observation-level weighted GEE), RR (method proposed by Robins and Rotnitzky (1995)), 
BR (method proposed by Bang and Robins (2005)) and DRMI (doubly robust MI). No 
subscript indicates correct specification of the relevant model(s). 7r - false indicates t.hat. t.he 
estimator used an incorrectly-specified 7r-model, y - false indicates that the estimator used 
an incorrectly-specified y-model and 7r EB y - false indicates t.hat both the 7r- and y-models 

were incorrectly specified. 
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Figure 12.1: Kernel density plots for the sampling distributions of 9 different estimators of 
the log odds ratio for Xl at the final timepoint. These estimates are from the first set of 
simulations with both models correctly specified. 
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Figure 12.2: Kernel density plots for the sampling distributions of 9 different estimators of 
the log odds ratio for Xl at the final timepoint. These estimates are from the first set of 
simulations with the 7l'-model incorrectly specified. 
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Figure 12.3: Kernel density plots for the sampling distributions of 9 different estimators of 
the log odds ratio for X I at the final timepoint. These estimates are from the first set of 
simulations with the y-model incorrectly specified. 
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Figure 12.4: Kernel density plots for the sampling distributions of 9 different estimators of 
the log odds ratio for Xl at the final timepoint . These estimates are from the first set of 
simulations with both models incorrectly specified. 
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Figure 12.5: Kernel density plots for the sampling distributions of 9 different estimator of 
the log odds ratio for Xl at the final timepoint. These estimates are from the second set of 
simulations with both models correctly specified. 
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Figure 12.6: Kernel density plots for the sampling distributions of 9 different estimators of 
the log odds ratio for Xl at the final timepoint. These estimates are from the second set of 

simulations with the 7l'-model incorrectly specified. 
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Figure 12.7: Kernel density plots for the sampling distributions of 9 different estimators of 
the log odds ratio for Xl at the final timepoint. These estimates are from the second 'et of 
simulations with the y-model incorrectly specified. 
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Figure 12.8: Kernel density plots for the sampling distributions of 9 different estimators of 
the log odds ratio for Xl at the final timepoint. These estimates are from the second set of 
simulations with both models incorrectly specified. 
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Figure 12.9: Kernel density plots for the sampling distributions of 9 different estimators of 
the log odds ratio for Xl at the final timepoint. These estimates are from the third set of 
simulations with both models correctly specified. 
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Figure 12.10: Kernel density plots for the sampling distributions of 9 different estimators 
of the log odds ratio for Xl at the final timepoint. These estimates are from the third set of 
simulations with the 7r-model incorrectly specified. 
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Figure 12.11 : Kernel density plots for the sampling distributions of 9 different estimators 
of the log odds ratio for Xl at the final timepoint. These estimates are from the third set of 
simulations with the y-model incorrectly specified. 
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Figure 12.12: Kernel density plots for the sampling distributions of 9 different estimators 
of the log odds ratio for X I at the final timepoint. These estimates are from the third set of 

simulations with both models incorrectly specified. 
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Figure 12.13: Kernel density plots comparing unweighted and observation-level weighted 
GEE. These estimates are from the first set of simulations with both models correctly speci-

fied. 
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Figure 12.14: Kernel density plots comparing unweighted and observation-level weighted 
GEE. These estimates are from the second set of simulations with both models correctly 

specified . 
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Figure 12.15: Kernel density plots comparing unweighted and observation-level weighted 
GEE. These estimates are from the third set of simulations with both models correctly 

specified. 
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Figure 12.16: Kernel density plots comparing cluster- and observation-level weighted GEE. 
These estimates are from the first set of simulations with both models correctly specified. 
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Figure 12.17: Kernel density plots comparing cluster- and observation-level weighted GEE. 
These estimates are from the second set of simulations with both models correctly specified. 
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Figure 12.18: Kernel density plots comparing cluster- and observation-level weighted GEE. 
These estimates are from the third set of simulations with both models correctly specified. 
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Figure 12.19: Kernel density plots comparing MI-GEE and observation-level weighted GEE. 
These estimates are from the first set of simulations with both models correctly specified. 
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Figure 12.20: Kernel density plots comparing MI-GEE and observation-level weighted GEE. 
These estimates are from the second set of simulations with both models correctly specified. 
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Figure 12.21: Kernel density plots comparing MI-GEE and observation-level weighted GEE. 
These estimates are from the third set of simulations with both models correctly specified. 
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Figure 12.22: Kernel density plots comparing the three doubly robust procedures. These 
estimates are from the first set of simulations with both models correctly specified. 
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Figure 12.23: Kernel density plots comparing the three doubly robust procedures. The e 
estimates are from the second set of simulations with both models correctly specified. 
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Figure 12.24: Kernel density plots comparing the three doubly robust procedures. These 
estimates are from the third set of simulations with both models correctly specified. 



Theoretical comparison of GEE and 

related methods 

13.1 Aims and outline 

In this chapter we bring together different strands of theoretical work appearing in 

the literature on marginal models for repeated binary data, and derive some further 

theoretical results of our own, with the aim of presenting a clearer pictur of th rela-

211 
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tionships between the available methods and their relative merits. We arc motivated 

throughout by the results of the simulation studies described in the previous chapter. 

We start, in §13.2, with a result which underpins much of the following results, namely 

the numerical equivalence of observation-level weighted GEE, augmented observation

level weighted GEE and nonparametric mean quasi score imputation under certain 

special conditions. This extends the work done by Wang ct al. (2007). In §13.3 

we derive conditions under which unweighted GEE is consistent and scmiparametric

efficient under MAR, extending results given in Robins and Rotnitzky (1995) and 

Lipsitz et at. (2000). In §13.4 we show that observation-level weightiug is always 

at least as good as cluster-level weighting, and in §13.5 we argue that MI-GEE is 

approximately equivalent to observation-level weighted GEE when the means model is 

saturated. Finally, the difference between doubly robust (DR) MI and the other DR 

procedures is explained in §13.6, justifying our preference for the fonner over the latter 

for non-Gaussian data. 

13.2 Conditions under which observation-level weighted GEE, aug

mented observation-level weighted GEE and nonparametric 

mean quasi score imputation are numerically equivalent 

The situation considered by Wang et al. (2007) is one in which Y is the (univariate) 

outcome variable for the regression analysis of interest, X are partially observed covari

ates, Z are always-observable covariates, and Ware observable surrogates for X, with 

Y and W conditionally independent given (X, Z). They show that in this situation, 

nonparametric mean score imputation, IPWCC and AIPW are numerically equivalent. 

By following their argument closely, we show a similar result for the longitudinal binary 

case. More explicitly, we prove the following theorem. 

Theorem 13.1 (Numerical equivalence of OWGEE, AIPW and nonparametric llleall 

quasi-score imputation). Using the notation of §7·4 we assume that all covariates 
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are discrete, that the means model is saturated and that the mzsszng data rrwcha

nism is monotone and MAR. Under these conditions, OWGEE, AIPW and nonpam,

metric mean quasi-score imputation, where the quasi-scor'e function Q (Xi, Yi, J1,) = 

XrDiW;l (Yi - J1,i) r'eplaces S~ (Zi' 8) in (7.2.8), give numerically identical results, 

provided that the weights in OWGEE and AIPW are also estimated nonparamdrically. 

Proof. We consider each covariate combination separately and the OWGEE equation 

(7.4.2) simplifies to 
n 

L 4-i ("Vi - {Li) = 0 (13.2.1) 
i=l 

applied to distinct subsets of the data corresponding to each covariate combination. 

Without loss of generality, we continue as if there were only one covariate combination 

without explicitly stating at each stage that we are dealing with the distinct subsets 

of the data separately. 

(13.2.1) can be rewritten as 

"It (13.2.2) 

Also, since 7rt,i is estimated nonparametrically, we can write 

A _ l:j=l Rt,j] (Yt-I,j = Yt-1,i) A 

7rt,i - "n ( ) 7rt-l,i 
~k=l] Yt-I,k = Yt-I,i 

which in turn means that the LHS of (13.2.2) can be rewritten as 

L
n Rt,i E~=l ] (Yt-I,k = Yt-I,i) (Y; ) 

A n _ t,i - J1.t 
i=1 7rt-l,i l:j=1 Rt,j] (Yt-I,j - Yt-1,i) 

= ~ ~ Rt,i] (Yt-I,k = Yt-I,i) {}'; . _ ) 
L- L- A "n R ] (Y Y-) t,t J-Lt 
i=1 k=l 7rt-l,i ~j=1 t,j t-I,j = t-I,i 
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= t I:~=1 R t,i1l. (Yt- l ,k = Y t- l ,i) (Yt,i - !-Lt) 

k=1 nt-l,k I:;=1 Rt,j 11. (Yt - l ,j = Y t- l ,k) 

= t Rt-l,k:IE (Qt,k \~t-l,k = 1, Yt- l ,k ) 

k=1 7rt-l,k 

where Qt,i = Qt (Xi, Vi, J-t) is the tth element of Q (Xi, Vi, J-t) and:IE (.) is the nOllpara

metric estimator of 18 ( . ). 

Thus we have shown that 

(13.2.3) 

We can iterate this to show that 

where at each stage IE (.) is defined sequentially and nonparametrically in the sense 

that :IE (Qt,k \Rl,k = 1, Y1,k) is the nonparametric estimator of 

Thus observation-level weighted GEE is equivalent to solving 

n 

L:IE (Qt,k) = 0 "It (13.2.5) . 
k=1 

Using again the fact that the means model is saturated and using the same sequential 
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nonparametric estimator of IE (Qt,k I RI,l = 1, YI,k ), the sequential non parametric mean 

quasi-score imputation estimating equation is equivalent to 

n 

L [Rt,iQt,i + (1 - Rt,i) IE (Qt,i IRi' y?bS)] = () Vt (13.2.6) 
i=l 

Since Qt,i = 18 (Qt,i IR, Yibs ) when each component of Yt,i is observed, Rt,iQt,i 

Rt,iE (Qt,i IR, Yibs ) and therefore (13.2.6) can be simplified to 

n 

2::18 (Qt,i IR, y?bs) = 0 Vt (13.2.7) 
i=l 

We can write 18 (Qt,i I~, Yibs ) as 

IE (Qt,i I~, y?bs) = Rt,iQt,i + Rt-l,i (1 - Rt,i) 18 (Qt,i IRt-l,i = 1, Yt-l,d + ... 
... + Rl,i (1 - R2,i) IE (Qt,i IRI,i = 1, YI,i) + (1 - R1,i) 1E (Qt,i) 

= Rt,i [E (Qt,i IRt,i = 1, Yt,d - IE (Qt,i IRt-I,i = 1, Yt-I,i)] 

+ Rt-I,i [18 (Qt,i IRt-l,i = 1, Yt-1,d - 18 (Qt,i IRt- 2,i = 1, Y t- 2,d] 
+ ... + R1,i [IE (Qt,i IR1,i = 1, Y1,d - IE (Qt,i)] + IE (Qt,i) 

But due to our sequential definition of the non parametric mean quasi-score, we can 

show that L:~=l RI,i [IE (Qt,i IRI,i = 1, Yl,i) - 18 (Qt,i IRI-I,i = 1, VI-I,d] = 0 for alll 

between 1 and t, as follows: 

n 

2:: RI,jIE (Qt,i IRI-I,i = 1, VI-I,i ) 
i=l 
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= t t RI,iRI,j 1l (VI:l,j = VI-I,i) E (~t,j I RI,j = 1, VI,j ) 

i=l j=l Lk=l RI,k ll (YI- l ,k - YI-l,i) 

L
n ~ I - )"~ 1 RI .; II (VII)' = VII') = R. IE (Q . R . = 1 y. L.Jt= ,. - , - ,t 

I,) t,) I,) ,I,) "n R II (Y Y) 
j=1 L.Jk=1 I,k I-l,k = I-I,i 

n 

= L RI,jE (Qt,j IRI,j = 1, VI,j) 
j=1 

n 

=} L RI,i [18 (Qt,i IRI,i = 1, VI,d - E (Qt,i IRI- l ,i = 1, VI-I,i)] = 0 
i=l 

And thus (13.2.7) can be rewritten as 

n 

LE(Qt,i) = 0 "'It 
i=l 

which is identical to (13.2.5). That is, when the means model is saturated, ohscrvat.ioIl

level GEE and sequential non parametric mean quasi-score lead to numcrically idcnt.ical 

estimates. 

Now we consider the augmented version of (13.2.2). From (9.2.6), this can be written 

as 

n [Rt. ~ (Rk-l i Rki) ~ (I -)] L ~Qt,i + L- ~ - n '. E Qt,i Rk-l,i = 1, Yk-l,i = 0 
i=l 1ft,t k=l k-l,t k,t 

"'It (1:3.2.8) 

But by (13.2.4), 

~ [~ (Rk-l i Rk i) ~ (I -)] L- L- n _ '. - n '. IE Qt,i Rk - l ,i = 1, Yk-I,i = 0 
i=l k=1 k l,t k,t 

"'It 

and thus (13.2.8) reduces to (13.2.2), which completes the proof of this thcorem, that 

when the means model is saturated, observation-level GEE, augmented obscrvat.ioll

level GEE and sequential nonparametric mean quasi-score all lead to numerically iden-

tical estimates. o 
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This numerical equivalence is not precisely reflected in our simulations for a llUlllber of 

reasons. First, mean quasi-score in its exact form was not included in the sillmlatioll 

study. However, MI-GEE is related to mean quasi-score and the equivalence between 

mean quasi-score and OWGEE gives rise to a near equivalence between MI-GEE and 

OWGEE, which is discussed further in §13.5. 

As for the equivalence between OWGEE and its augmented counterpart, we would 

expect to see this manifested in the comparison between OWGEE and the estimators 

of Robins and Rotnitzky (1995) and Bang and Robins (2005). We do indeed see a 

greater difference between these methods and OWGEE when the means model is not 

saturated: for example, BR is more efficient than OWGEE only in the third set of 

simulations. The fact that they are not numerically the same when the nWl:U1H model 

is saturated is due in part to the fact that the model for the probability weights is 

not saturated. The weights are generated from a model which contains no interactions 

between the covariates and the previous outcomes and this is reflected in the model 

used to estimate the weights; in other words the coefficients for the interaction terms 

are fixed at their true values of zero. This is enough to cause the final estimates to differ 

slightly in their exact numerical values, although they are asymptotically equivalent. 

In the third set of simulations-when the means model is non-saturated--BR is more 

efficient than OWGEE, since it uses the information on the incomplete ca.<.;cs to learn 

about the parameters of the semiparametric model for the observed data distribution, 

but when this model is nonparametric, there is nothing to learn. 

When the RR model converges, its estimates are very similar to those from OWGEE 

and the main difference between the results from these two methods comes as a result 

of the poor convergence of the RR method. If the probability weights model were 

saturated then we would expect the augmented estimating equation and the 11011-

augmented OWGEE to share the same root, but we would not necessarily expeet the 

two methods to converge to this root at the same rate and with the same success, 

which is a point made by V\lang et al. (2007). 

We wouldn't expect DRMI to be numerically equivalent to OWGEE, si11ce DRMI is 
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merely an approximation to BR, as was discussed at length in Chapter 9. 

13.3 Unweighted GEE: conditions for consistency and semipara

metric efficiency 

When there are no missing data and assuming throughout that the true correlatioll 

matrix is known, (7.3.1) can be written as 

where the - above each matrix is used to emphasise its full-data dimension. 

When some components of Vi are missing, we can write Vi as (YObS;, ymisi) T. Con

sistent estimates of j1, could t.hen in theory be obtained by solving 

which is equivalent to 

(13.3.1) 

As pointed out by Lipsitz et al. (2000), the GEE method of Liang and Zeger (1986) can 

be viewed as an approximate solution to (13.3.1) where the true conditional expectation 

18 ( Yi I Yibs , Xi) is replaced by its approximation under the assumption of multivariate 

normality. 

More specifically, as shown in the appendix of Lipsitz et al. (2000), if we partition Wi 
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as 

_ ( Y!D
is 

) (W!D W·=Var ~ x· = ~ 
~ Yibs ~ W~,oT 

then, under an assumption of multivariate normality, 

Substituting in (13.3.1), 

(B.3.2) 

Using the form of the inverse of a partitioned matrix (Seber, 2008, p. 293), the left-haud 

side of (13.3.2) can be re-written as 

n _ _ [( W!D-1Wm,OWO-1 ) (_W!D-1W~'O) 
= """x!n· I I ~ + I I • 

L..J ~ I 0 I 
i=l 
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= ~ x!f). ( 0 ) (y?bs _ H<?bS) 
~ t t W<?-l t rt 

i=l t 

n 
= ~ xoTDowo-1 (yobs _ u.0bs) 
~ t t t t rt 

i=l 

This explicitly confirms the observation made by Lipsitz et al. (2000) that ullweighted 

GEE under MAR corresponds to an assumption of multivariate normality when the 

true correlation matrix is assumed known. This is also consistent with the frequently 

quoted property of GEEs--that they give consistent estimates under MAR for GaussicUl 

data when the correlation structure is correct and its parameters consistently estimated. 

A corollary for binary data is that if, conditional on Xi and each variable in Yfbs , 

18 (Yiis ) is independent of all pairwise and higher-order interactions between variables 

in Yfbs , then the 'multivariate normality assumption' holds and GEE gives consistent 

estimates under MAR, again under the assumption that the working correlation struc

ture is the true one. We refer to this condition henceforth as the linearity conditioll. 

In our simulation studies in the previous chapter, the true correlation structure wa....; 

changed between the first and second sets of simulations in order to investigate this. 

In the logistic regression of Y3 on Xl, X2 XI X2 , YI , Y2 and YIY2 , the coefficient of 

Y
I
Y2 is zero in the second set of simulations, compared with 1.75 ill the first set. Cor

respondingly, we see that the bias in GEE is smaller in the second set of simulations. 

The small residual variance could be a consequence of the inconsistency in estimat

ing the parameters of the correlation matrix which could be reduced using quadratic 

estimation as described in §7.3.1. 

In Section 4 of Robins and Rotnitzky (1995), the paper which exhibits the 

semiparametric-efficient estimator, which we refer to as RR, the authors derive the 

condition needed under MCAR for GEE to be semiparametric-efficicnt among all es

timators belonging to the restricted moment class R (see Definition 3.20), lmd this 

condition is precisely the linearity condition described above. Their argument appeals 
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to the same multivariate normality assumption described above and the MCAR con

dition is only necessary to ensure consistency. Now that we have established that the 

linearity condition leads to consistency under MAR, we have the following result: 

Theorem 13.2 (Conditions for the consistency and semiparametric efficiency of GEE). 

The solution to 

i=l 

is a consistent estimator of JL under MAR if 

• The correlation structure zs correctly specified and its pararrwten; consistcntl:1J 

estimated . 

• Conditional on Xi and each variable in Yibs
, IE (Yiis

) is independent of all 

pairwise and higher-order interactions between variables in Yibti
. 

Furthermore, under these conditions, the asymptotic variance of it attains the semi

parametric efficiency bound for all estimators in the restricted moment class R. 

13.4 Cluster- versus observation-level weighting 

If we consider the simplest case of cluster- versus observation-level independence es

timating equations (CWIEE and OWIEE, respectively), we see that CWIEE is intu

itively less satisfactory than OWIEE. Under the independence structure, the parameter 

estimates are equivalent to estimates from separate logistic regression analyses, one for 

each timepoint, and all available observations contribute to both CWIEE and OWIEE. 

These available observations are weighted differently, however, in the two analyses, ex

cept for the final timepoint, since--under monotonicity--the probability of dropping 

out after the final timepoint is equal to the probability of being observed at the fi

nal timepoint, and the cluster- and observation-level weights coincide. However, the 
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analyses at the other two timepoints are, in general, different. At the first timepoiut, 

when we assume that all subjects are observed, the OWIEE analYRis weights each sub

ject equally, whereas the CvVIEE analysis weights the subjects differently according to 

their subsequent dropout pattern. This doesn't make CWIEE inconsiRtent, since (for 

example, when there are three timepoints): 

and 

as n -+ 00. 

However, the comparison between CWIEE and OWIEE can be thought of a.<.; a compar

ison between two sets of weighted logistic regressions, where, at every timepoillt except 

for the final one, the former uses weights which are a 'noisier' version of the weights 

used by the latter. For example, for the second timepoint (again, iu au example where 

there are three timepoints), when the weights used in OWIEE are W2 = :2' the weights 

d · CWIEE W' W2 l·f Y l·S obser ed' 1" W2 th use III are 2 = IP(R3=1IR2=1) 3 V ,all( w2 = IP(R:\=OIR2=1) () cr-
wise. If we consider the weighted average Y2 for two subjects who both share identical 

values of the covariates and Y1 , then they will also both share the same observatioll

level weight, W2· However, if one of these two has an observed value of Y3 , wherea.<.; 

the other subject's Y3 is missing, they will have two different values (w~ and w~) of the 

cluster-level weight, where both w~ and w~ are greater than W2. If the variance of Y2 

is (12 then the variance of the weighted average of these two observations will be 
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Figure 13.1: The variance of the weighted average of two second timepoint observations 
from a three timepoint CWIEE. The corresponding OWIEE variance occurs when w = 1. 

in the OWIEE analysis, and 

where w = ~ and, without loss of generality, we can assume that w > 1. There is 
11'2-11'3 

no loss of generality here, since, if w < 1, we could redefine w = 11'2;111'3 and 

A graph of the function f(w) = (~!:;2 is shown in Fig. 13.1 and this shows that the 

relative efficiency of CWIEE gets worse as w gets larger and the optimal efficiency is 

at w = 1, which corresponds to the OWIEE analysis. This argumcnt generaliscs to 

n subjects and to any of the T timepoints, leading to the conclusion that OWIEE is 
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always at least as efficient as CWIEE. 

We have already made the observation that at the final timepoint, CWIEE and OWIEE 

coincide. There is another special case in which CWIEE and OWIEE coincide at all 

timepoints, and this is when the covariates are categorical, the means model saturated 

and the weights estimated non parametrically, as we will now show. 

Theorem 13.3 (Numerical equivalence of CWIEE and OWIEE). We ass'urrw that 

all covariates are discrete, that the means model is satumted and that the missing data 

mechanism is monotone and MAR. Under these conditions, CWIEE and OWIEE, giv(~ 

numerically identical results, provided that the weights in both methods a7'(~ estimated 

nonparametrically. 

Proof. Since we are assuming a saturated means model, it is sufficient to show that 

cluster- and observation-level weighted averages of Yt are equal, i.e. we need to show 

that 

(13.4.1) 

By (13.2.3), we have that 

nRY; n Rt n . . .Y; . R .Y;. 
~ t;t t,t = ~ A+1,t t,t = ... = ~ :,t t,t 
~ 7l't' ~ 7l't+l' ~ 7l'T' i=l ,I i=l ,t i=I ,t 

which also implies that, by setting Yt,i = 1, 

non R n R L ~ = L A HI,i = ... = L A T,i 

i=l 7l't,i i=l 7l't+l,i i=I 7l'T,i 

We can re-write the other terms using 

(13.4.2) 
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and 

A A 

7rk,i - 7rk+l,i 
AI 
7rk+l,i 

where Dk+l,i is the dropout indicator for dropping out at time k + 1 and 7rk+1,i is the 

probability of dropping out at time k + 1, conditional on Yk,i' 

But the sum over i of (13.4.2) can be rewritten as 

(13.4.3) 

which also implies that, by setting Yt,i = 1, 

n D n 
"'" k+1,i = L Rk,j 
~ AI A 

7r. 7rk . 
i=l k+l,t j=1 ,J 

and thus both the numerator and the denominator on the RHS of (13.4.1) are (T - t + 1) 

times the corresponding numerator and denominator on the LHS, which proves the re-

~h. 0 

Corollary 13.4 (Numerical equivalence of CWIEE and OWGEE). Assuming again 

that all covariates are discrete, that the means model is saturated and that the missing 

data mechanism is monotone and MAR, then CWIEE and OWGEE give numerically 

identical results, for any choice of covariance structure, pmvided that the weights in 

both methods are estimated nonparametricaily. 



13 THEORETICAL COMPARISON OF GEE AND RELATED METHODS 226 

Proof. This follows trivially from Theorem 13.3 and the fact, that when the means 

model is saturated, full data GEE is equivalent to full data lEE for all choices of the 

covariance structure for GEE (O'Brien et al., 2006). As was discussed in §7.4, the way 

in which OWGEE is formulated creates what is effectively a full data structure from 

the incomplete data. This proves the corollary. 0 

It remains now to compare OWIEE and CWGEE when the means model is saturated 

and finally to compare OWGEE and CWGEE when the means model is not saturated. 

Lemma 13.5. Let Cd be the upper left (d x d) block of the cor-,.elation rnatri:E fOT 

{Y1,i, Y2,i' ... ,YT,d and hd be the first d - 1 elements of the lfh column of Cd· Then 

Proof. This follows immediately from repeated applications of 

(
An A12) -1 = (All 0) + ( -AliI A12 ) A-I (-A A-I I) 
A21 A22 0 0 I 22·1 21 11' 

(Seber, 2008, p. 293), where A 22.1 = A22 - A21A I"l A 12 , and 
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(Harville, 1997, p. 189). o 

Lemma 13.6. Under the assumption that all covariates are discr'ete, that th(~ mmn.'i 

model is saturated and that the missing data mechanism is monotone and MAR, then 

the expression 

~ Rt,i - Rt+l,i (Y. . _ ) 
L ~ ~ S,t /1s 
i=l 7rt,i - 7rt+l,i 

has numerically exactly the same value for all t and s satis/1Jing t ~ s. 

Proof. This follows automatically from (13.4.3) and (13,2.4). o 

Theorem 13.7 (Numerical equivalence of CWGEE and OWGEE). Assuming again 

that all covariates are discrete, that the means model is saturated and that the missing 

data mechanism is monotone and MAR, then CWGEE and OWGEE give numerically 

identical results, for any choice of covariance structure (correct or incor",.ect), pm'lJided 

that the weights in both methods are estimated nonparametrically. 

Proof. Recall the cluster-weighted estimating equation (7.4.1): 

When the means model is saturated, without loss of generality, by considering each 

covariate combination as a separate dataset, this can be rewritten a..-. 

Note that, unlike observation-level weighting, Wi l is not constant for cluster-level 

weighted GEE. Since Di is a diagonal matrix, its effect is to multiply each row, t, on 
1 

the LHS by a constant factor /1t (1 - /1t) and thus the combined effect of Di Vi-2 is to 

multiply each row by V /1t (1 - /1t). Thus we can rewrite CWGEE as T sepa.rate scalar 
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equations: 

~ ~ ]. (Di = d + 1) (C-1) e. = 0 
L- L- AI d (s) d,t 
i=1 d=s 7fd+l,i 

\::/s E {I, ... , T} (13.4.4) 

where ft:i+l,i = ftd,i - ftd+1,i is the nonparametric estimator of lP (Di = d + IIVd,i), Cd 

is the upper left (d x d) block of the correlation matrix for (Y1,i, Y2,i, ... ,YT,i), (A)(s) 
is the sth row of A and 

Y1,i-J.ll 

VJ.ll(1-J.LJ) 
Y2,i-J.l2 

VJ.l2(1-J.l2) 

Yd.i-J.ld 

VJ.ld(I-J.ld) 

By Lemma 13.5, the LHS of (13.4.4) can be rewritten as 

~{ (~ ]. (Di = k + 1)) det C s- 1 (_bT C-1 _ ) 
L- L- A I d t C s s-1 es-l + Cs 
i=1 k=s 7f k+1,i e s 

(

;-. ]. (Di = k + 1)) det C s [( -1 T -1) - (-1 ) ] + L- AI detC C s b s+1bs+1C s (s)e S - C s b s+1 (s)CS+1 + ... 
7fk+1 i '8+1 

k=s+1 ' 

]. (Di = T + 1) det C T - 1 [( -1 T -1) - (-1) ] } 
+ ft~+1,i det C

T 
CT - 1 bT bT CT _ 1 (8) eT-1 - CT - 1 bT (s) CT 

n T T 
"""" "" ]. (Di = d + 1) 

= L- L- L- ad+1,t A, (Y;,i - I-"t) 
i=1 t=1 d=max{t,s} 7f d+1,i 

where ad+l,t are constants, not dependent on i. 

By Lemma 13.6, this can be rewritten as 

n T ]. (Di = t + 1) T L L A, (Y;,i - I-"t) L ad+1,t 
i=1 t=1 7f t+1,i d=max{t,s} 



13 THEORETICAL COMPARISON OF GEE AND RELATED METHODS 229 

which, by (13.4.3), can be rewritten as 

n T R T 

L L -n-:,t (Yt,i - I-tt) L ad+1,t 

i=l t=l'~ d=ma.x{t,s} 

But this proves that the O\VIEE estimator is also a root of the cluHter-weighted esti

mating equation (7.4.1) in the saturated means case, which~-if we ignore t.he possibilit.y 

of multiple roots (Heyde and Morton, 1998)--together with Corollary 13.4 proves the 

resuU. 0 

It remains now to compare OWGEE and CWGEE when the lllCallS model is not sat.

urated. 

Recall that the cluster-weighted estimating equation (7.4.1) is: 

n 

LWiXfDiWil (Yi - Xi,BfWGEE) = 0 
i=1 

where 

Treating the weights as fixed (rather than estimated) and uHing the variance formula 

derived by Robins et ai. (1995), the variance-covariance matrix of ,BCWGEE nUl be 

estimated using the following sandwich estimator: 

[ (t.WiXTDiWi'DiXi) -r 
[t.w;XiDiWi' (Yi - Xi.8;""GEE) (Yi - X,,8f'"GEEf Wi'D,X,] 

. (twixfDiWilDiXi)-1 
~=1 
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Similarly, the variance-covariance matrix of ,B0WGEE, the estimator which solves 

n 

L X[Di W;l~i (Vi - Xi.BPWGEE) = 0 (13.4.5) 
i=l 

can be consistently estimated using the following sandwich estimator: 

[ (t XiD,Wjl+,D,X,) _1] T 

. (t X[DiW;l.pi (Vi - Xi~PWGEE) (Vi - Xi~PWGEE) T .piW;lDiXi) 
~=l 

(~ ~ T ~ ~ -1 ~ ~)-1 
. L...t Xi DiWi .piDiXi 

t=l 

To show that OWGEE is always at least as efficient as CWGEE, we must show the 

following: 

Proposition 13.8. 

E( {[ (tw,xiD,WjlD,X,)-r 

. [~W?X!D'W:-1 (y. - X.~CWGEE) (y. - X.~CWGEE)T W:-1D.X.] L...t t t t t t tfJt t tfJt t t t 

i=1 

. (~w,xiD, Wi 1 D,X;) -1 } _ { [ (~XiD, W;I+,D,X,) -1] T 

[~X-TD.W:-1.p.(V. - x.?t~WGEE) (V. - X.?t~WGEE)T .p·W-1D~ .X- .] L...t itt t t ~fJt t tfJt tit t 

i=l 

. (~xrD'Wil+'D'X') -I}) (13.4.6) 

is non-negative definite. 



13 THEORETICAL COMPARISON OF GEE AND RELATED METHODS 231 

Demonstration using computer simulations. Due to the complex nature of (13.4.(j), we 

have not been able to prove Proposition 13.8 mathematically. However, for 2, 3 and 

4 timepoints, we can demonstrate the results in reasonable generality using computer 

simulations, as we now describe. 

First we generate two independent covariates, Xl and X 2 , each from a N (0,1) distri

bution. Then we generate each Yj,i from a Bahadur distribution with 

where each Cj,k is generated independently and at random from a U (-1,1) distrihution, 

and correlations Ph,jz, Ph,j2,j3' ... also generated from U (-1, 1) distributions. The 

algorithm searches for combinations of these coefficients and correlations which give 

rise to a well-defined joint distribution, i.e. one in which 

for each i and j. 

The data are then subjected to monotone missingness according to a MAR mechanism, 

for example: 

1P (R3,i = 1IY2,i, X1,i, X 2,i, R 2,i = 1) = 

( 

C3,4 + C3,5X l,i + C3,6 X 2,i + C3,7X l,i X 2J + C3,SY1,i + C3,9X l,iY1,i + C3,lQX2,i Y l,i ) 

exp +C3,llX1,i X 2,jY1,i + C3,12 Y2,i + C3,13X l,iY2,i + C3,14X2,iY2,i + C3,15 X l,i X 2,jY2,i 

+C3,16Yl,iY2,i + C3,17 X l,iY l,iY2,i + C3,lSX2,iY l,iY 2,i + C3,19 X l,i X 2,jY1,iY2,i 

( 

C3,4 + C3,5 X l,i + C3,6 X 2,i + C3,7 X l,iX2,j + C3,SYi,i + C3,9 X l,i Y l,i + C3, lO X 2,i Yl,i ) 

1 + exp +C3,U X 1,iX 2,jY1,i + C3,12Y2,i + C3,13X l,iY2,i + C3,14X 2,i Y2,i + C3,15X1,i X 2,jY2,i 

+C3,16 Yl,iY2,i + C3,17X l,iYl,iY2,i + C3,lSX2,iY l,i Y2,i + C3,19X l,iX 2,j Y1,iY2,i 

where each C3,4-C3,19 is generated independently and at random from a U (-1,1) dis

tribution. 
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(13.4.7) 

is then evaluated using the true (known) values of Wi, ~i and /3, using the t.rue (kuown) 

pairwise correlations to evaluate Wi and Wi. 

A sample size of 10,000 is used, to keep the Monte Carlo error low. The eigenvalues of 

(13.4.7) are then evaluated using Mathematica®. This is repeated for 1,000 data.'.;ets 

with 2 timepoints, 1,000 datasets with 3 timepoints and 1,000 datasets with 4 time

points. The eigenvalues are plotted in Figs. 13.2-13.4. Although some eigenvalues are 

negative, the magnitude of these is sufficiently small to be explained by Monte Carlo 

error. These plots constitute strong evidence that the eigenvalues of (13.4.6) are all 

non-negative, which implies (see Harville, 1997, p. 543) that (13.4.6) is non-negative 

defimte. 

o 

The decreased efficiency of cluster-level weighting compared with observation-level 

weighting can also be seen in Figs. 13.5 and 13.6. Since cluster-level weights are 

inverse probabilities of dropout, as opposed to inverse probabilities of being observed, 

the problem gets worse as the number of timepoints increases and the probability of 



13 THEORETICAL COMPARISON OF GEE AND RELATED METHODS 

If) 
Q) 

" ~ c 
Q) 

.~,,! 

.' . 

•· ..... 111 
2 3 4 5 6 7 8 

233 

Figure 13.2: The 8 eigenvalues of (13.8) with 2 timepoints evaluated for 1,000 different 
datasets. 

dropping out at the exact time of dropout decreases. This can be seen in Fig. 13.4 

where the eigenvalues increase as the number of timepoints increases. 

In summary, we feel that there is never a reason to prefer cluster- over observation-level 

weighting, and (except for the equivalence situations described above) observation- is 

more efficient than cluster-level weighting. 

13.5 MI-GEE and its relationship with observation-level weighted 

GEE 

In the saturated means model case, if the imputations in MI are drawn nonparamet

rically, then, in the limit as the number of imputations tends to infinity, the estimates 

from MI-GEE are equivalent to those from nonparametric sequential mean quasi-score. 
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Figure 13.3: The 12 eigenvalues of (13.8) with 3 timepoints evaluated for 1,000 different 
datasets, with the 8 eigenvalues for the 2 timepoints case superimposed. 

This follows from the fact that- in the saturated case- imputation of th quasi- cores 

is equivalent to the imputation of the missing outcomes, since the only part of the 

score which need be considered is Y - J-L . As the number of imputations increases, the 

proportion of imputed ones will tend to the corresponding nonparametric estimate of 

the expectation of that outcome. Thus, given Theorem 13.1, in the case where the im

putations are drawn nonparametrically, we would expect MI-GEE to be approximately 

equivalent to OWGEE, with a slight reduction in efficiency due to a finite number of 

imputations. In our simulation results, however, MI-GEE appears to be more efficient 

than OWGEE, even in the case when the means model is saturat d . This is due to 

the fact that our imputations were not drawn nonparametrically, but rather from the 

correct parametric model (when the y-model is correct) . This increases the efficiency, 

but of course there is a corresponding decrease in robustness, as can be seen in the 

simulations when the y-model is incorrect. 
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Figure 13.4: The 16 eigenvalues of (13.8) with 4 timepoints valuated for 1,000 different 
datasets, with the 12 eigenvalues for the 3 timepoints case and the 8 eigenvalue for the 2 

timepoints case superimposed. 

13.6 A comparison of doubly robust M I and other doubly robust 

procedures 

As we explained in Chapter 9, DRMI is an approximation to BR and we would not 

have expected it to perform as well in the examples where BR can be applied. However, 

in our simulations, DRMI was less biased and more efficient . We believe that this is 

partly due to a limitation of BR (and RR) which is overcome in DRMI, but is also due 

to the way in which we chose to implement BR and RR. 

Let us consider an example (similar to our simulations) in which there are three time

points. The BR implementation involves fitting a 'suitable regression model' to the 

predictions :IE (Y3 IY1 , Y2 ) on Y1 and the RR impl mentation involves fi tting a 'suitable 

regression model' to the weighted residuals Kj,t,i = irt,(irj] (Yj,i - /-lj ,i) . In both cas , 

these quantities are not binary and yet a lin ar regression is certainly not ensible. 
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Figure 13.5: A comparison of the cluster-level and observation-level weights for the first 
simulation in the first set. 

Robins and Rotnitzky (1995) point this out by saying "let fy) be the (possibly non

linear) least squares estimator of Tit)". However , Bang and Robins (2005) make no 

reference to this problem and claim that their method can be implemented using only 

"standard off-the-shelf regression software" . Since the predictions in the BR method 

come from a logistic regression, and lie strictly between 0 and 1, it would be possible 

in theory to use the logistic regression Fisher scoring algorithm to obtain estimates 

under the correct nonlinear model, but (at least in Stata) this requires some tweaking 

of the logistic regression command, and thus the claim that only "off-the-shelf" soft

ware need be used is not strictly true. For this reason, we decided in our simulation 

study to use linear regression at this stage in the procedure (and in the corresponding 

stages in the RR procedure). Vve believe that this is the reason for the small bias 

seen in these methods compared with DRMI. In DRMI, IE (Y3 IY1 ) is estimated by first 

drawing binary imputations 172 from IE (Y2 IY1 ) and then fitting a logistic regression to 

IE (Y3 \Y1 , Y2 ) and this reversal produces in the order of the imputation leads to less 

biased and more stable estimates of IE (Y3IY1 ) . For this reason, we believe that DRMI 

offers advantages over BR and RR in the non-Gaussian case. This is in addition to the 
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Figure 13.6: A comparison of the cluster-level and observat ion-level weights for the first 
simulat ion in the third set . 

superiority of the convergence of the algorithm when compared with RR.. 



Part VI 

Discussion 



Discussion 

14.1 Main conclusions 

The main achievement of this thesis has been to show that multiple imputation (MI) 

can be used as a tool to obtain doubly robust (DR) estimators. This has bllilt on the 

work done by Bang and Robins (2005), and, in our opinion, offers some advantag " 

such as an easily computable variance formula courtesy of Rubin's rules for MI. A larger 

advantage, as we showed in Chapter 9, is the conjectured extension to non-monotone 

239 
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MAR data. In practice, however, the approach is limited to non-monotone longitudinal 

data, where a method for identifying the inverse probability weights exists. We have 

demonstrated, by repeating the simulation studies carried out by nang and Robins 

(2005) that in settings where their method can also be applied, DRMI is only slightly 

inferior, as the theory would predict. A general method for obtaining DR est.imators for 

MAR non-monotone data has not previously been proposed. In her recently published 

overview of inverse probability weighted methods in Fitzmaurice et al. (2008), Andrea 

Rotnitzky (under the heading Discussion: A look into the future) writes: 

"in some models, such as CAR models with non-mollotone data, doubly ro

bust estimators could in principle be constructed, but their implementation 

is not clear." 

It is important to note, however, that a method for obtaining DR m,timators ill llOll

ignorable non-monotone longitudinal data has been proposed by Vanstedandt d al. 

(2007), and for reasons discussed on page 55 of this thesis, the mechanism considered 

by Vansteelandt et al. (2007) is usually more realistic in the nOll-lIlonotone longitudinal 

setting than the RMM mechanism considered here. 

In Chapters 12 and 13 we have shown that for binary data, DRMI outperforms the two 

existing methods for constructing DR methods in this setting. This is a consequence 

both of the computational power of MI, and the natural way in which it approximates 

conditional distributions when the data are not Gaussian. To estimate 18 (Y3IY1 ) using 

either of the methods proposed by Bang and Robins (2005) and Robins and Rot

nitzky (1995), one must first estimate 18 (Ys IYI, Y2) and then fit a linear regression to 

18 (Y3IYl, Y2 ) conditional on YI . But since the predictions are not Gaussian, this leads 

to bias and instability in the estimates. In DRMI, however, 18 (Y3 1Y1 ) is estimated by 

first drawing binary imputations Y; from 18 (Y2 IYI ) and then fitting a logistic regres

sion to lE (Y31 YI , Y2 ). Essentially, this reversal produces less biased and more stable 

estimates of lE (Y3 IYd· 
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14.2 Other conclusions 

During the course of this thesis, we have also drawn several ot.her conclusions. III 

Chapter 11 we demonstrated another unconventional usc of MI, which is ill sensit.ivity 

analyses. The basic principle here was introduced by Little and Yau (199G) awl it 

exploits the fact that the imputation and analysis models need not be the sauw. 13y 

varying the imputation model, we can vary the assumptions made ahout til(' lIliss

ing data mechanism. While Little and Yau (1996) cOllcentrated on analyses within the 

intent-to-treat framework, we applied the same idea to per protocol analyses, where the 

additional potential violations of the 'noncompliance at random' (NAR) a.<';sulllptioll 

were investigated. The conclusions as regards the findings of the glycaemia analysis 

from the RECORD study were that the original analysis, assuming lllultivariate nor

mality, MAR and NAR, was reliable and not unduly sensitive to possible departures 

from the assumptions made. 

In Chapter 13, we combined the results of Lipsitz et al. (2000) and Robins aBci Rot

nitzky (1995) in order to derive conditions under which an unweighted GEE analysis 

gives consistent estimates under MAR. We also extended the result of Wang ct at. 

(2007) to the monotone longitudinal case (for binary data, but the re~mlt automat

ically applies to any discrete-data GLM). In particular, we showed that ill the lon

gitudinal setting, the augmented estimating equation introduced by Robins a.nd his 

colleagues gives numerically identical results to its nOll-augmented counterpa.rt when 

the means model is saturated. This should not be surprising: double robustness and 

augmentation are intrinsically linked to the different smoothing implied by the different 

models. When these modelling assumptions are potentially incorrect, we gain robust

ness by protecting ourselves using two different sets of smoothing a.'lsurnptions. When 

no such assumption is being made (as in the nonparametric case), there is llO protection 

needed, and correspondingly no efficiency can be gained. In sUlllmary, we concluded 

that cluster-level weighting need never be used and that augmentation should only be 

contemplated when the means model is not saturated. For small samples, we concluded 

that even in saturated means models MI-GEE is more efficient than OWGEE, but that 
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as the sample size increases, the difference reverses and OWGEE becomes superior. In 

our simulations, a sample size of 5,000 was needed to see this reversal. When the means 

model is saturated, we see that MI-GEE is more efficient than OWGEE, hut it. is of 

course also less robust to model misspecification. In our simulation studies DRMI wa.s 

only slightly less efficient than MI-GEE but it exhibited double robustness. For WH."iOllS 

outlined above, we believe that DRMI is the best and most practicably useable of the 

three DR estimators considered, and would recommend its use above other methods 

in this setting. 

In Chapter 9, we also drew attention to a practical problem with the Bang a.nd Robins 

(2005) method for constructing DR estimators for longitudinal da.ta, namely that a 

model for 1E (Y3IYi) is required but might not he easily postulated. 

14.3 Future work 

Although DRMI has been shown to be a promising new approach, several limitations 

remain. First, in practice it is not possible to apply the method to non-Illonotone data 

except in the special case of longitudinal data, and even then, the claimed double

robustness has not been rigorously proved. If a method could be developed for calculat

ing marginal inverse probability weights in general randomised monotone missingllcss 

mechanisms, DRMI estimators could be explored in this more general setting. 

DRMI for general non-monotone patterns relies on MICE, a method which although 

shown to be very effective in simulations-does not have a firm theoretical justification. 

Any developments in this area would be highly relevant to strengthen the theoretical 

justification for DRMI. 

In this thesis, we have used MI in two different ways: to construct DR estimators and 

to carry out sensitivity analyses for parametric models. A possible extension would 

be to combine these two approaches and to use MI to construct sensitivity analyses 
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within a DR framework. 

In the chapters on binary data, the conditions for the consistency and asymptotic 

efficiency of GEE were derived for any means model (saturated or otherwise), a.s was 

the comparison between cluster- and observation-level weighted GEE, but the other 

results derived related only to the case when the means model is saturated. This is 

a good starting point for understanding how these methods relate to each other, but 

more needs to be done on the comparisons in the non-saturated casco 

Also, Chapters 12 and 13 considered only monotone missing data patterns. M()n~ work 

is needed on the comparison of methods for non-monotone incomplete binary data, but 

this work is likely to be mathematically more challenging. 

A possible extension of the work on binary data is to consider the case when panUlle

ters are shared across timepoints. The theory in this case would be more complex, hut 

potentially a two-stage process could be envisaged, where first models are fitted with 

distinct parameters at each timepoint and then, using a lea..,t squares or similar pro

cedure, inference could be made about a suitable weighted average of these considered 

to approximate the shared parameter. Asymptotic properties of the different methods 

could then be derived using the two-stage approximation. 

In our motivation for the work on binary data, we considered examples in which there 

were only three timepoints. As the number of timepoillts increases, there is likely to 

be perfect prediction, the phenomenon in which estimated conditional probabilities 

(such as :IP (Yt,i = 1!Yt - 1,i)) are either 0 or 1. This can cause problems, particularly in 

methods that use multiple imputation since the normal approximation to the Bayesian 

posterior distribution of the parameters becomes very poor in the extremes of the 

distribution. The latest version of ice in Stata incorporates a solution to this problem, 

but some further work to investigate how this influences the comparisons between the 

various methods would be useful. 

Finally, this research has been largely confined to problems in missing data. Many 
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aspects of the problems described are more generally encountered in the field of cam;a1 

inference. We believe that some of our proposed methodology, for example DUMI, 

could be adapted for use in this wider setting. 
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Proofs omitted from the main text 

A.1 Proof of Lemma 8.1 

The estimating equation for the jth imputed dataset in ordinary MI is 

n 

L S: (Zij) O~jrd) = 0 
i= l 

254 
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but for robust MI is 

~ (Ri SF (Z~ e~rOb) + (1 - Ri) SF {Z~' [e(j)] enOb}) - 0 
~ Jr' 8 z' J Jr' 8 ZJ 1 'J -
i=l Z Z 

which we can re-wri te as 

t [8: {Z;j [ey>] , erb
} 

+ (1 ~i Jri) (S~ { Z:j [BY)] ,B;rob } - s~ {Z:j [B}j)] ,B;rob } )] = 0 

[ ~ 0] - [ ~ ( ')] where Z:j 8/ and Z:j 8/ are as defined above. 

Expanding in a Taylor series about 80 : 

=0 
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= nI%o (Bo) (O;rOb - Bo) + op ( n-~ ) 

:. n~ (timb -110) = n-~ t [I;;' (1I0WI [m- l t s: {z:; [liyl] ,1I0} 

+ C ~,,,,) (m- l t s: {z;; [liyl] ,1I0} - m- l t, s: {z;; [tin 1I0}) 1 + op (1) 

= n- l t [1%. (lIo)rl [m- l t s: [z1; (110),110] 

+ (1 :.1Ti) {m-1 t S: [Z;j (Bo) ,Bo] - m-1 t S: [Z;j (Bo) ,Bo] } 
l )=1 )=1 

m 

+ m-1 2: S: {Z:j [oy)] ,Bo} 
j=l 

+ C ~i"i) ( m-l t, s: {z:; [tiyl] ,1I0} - m-
l t, s~' {z:; [tiyl] ,110 } ) 

m 

_m-1 L s: [z:j (Bo) , Bo] 
j=l 

-C ~i"i) {m- l t, s: [z:; (110),110] - m- l t, s: [Z1; (110),110] }] + 0. (1) 
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Now, if R = 1, 

and if R = 0, 

and 

m 

+m-1 2: S: {Z:j [oy)] ,eo} 
j=1 

m 

_m- 1 2: s: [z:j (eo) ,eo] 
j=1 

-C ~i"i) ( m-
1 ~s: {Z:j [llY)] ,9.} -m-

1 ~sH Z:j ]9.1,9.})] + 0. (1) 

o 
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A.2 Proof of Lemma 8.2 

We know (see Tsiatis, 2006, Theorem 14.3 on p.350) that, for ordina.ry improper MI 

n 

= n-~ L [1%8 (00 ) - 188 (00 )] q [Ri' GRi (Zi)] + op (1) (A.2.1) 
i=l 

and, provided the response probabilities, 7ri, are bounded away from zero, for rohm;t 

improper MI 

(A.2.2) 

where (l~;i) is the mean of (l~;i) over all i, and 

where 
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Thus, 

This means that the ith influence function for the robust improper multiple imputatioll 

estimator is: 

[I&;, (9.W! ( m-! t SnZ'j (9.), 9.] 

+ C :,"') { m-! t SnZ'j (9.),9.] - m-! t S:[Z;j (9.),9. 1 } 

+ [I&;, (9.) - I •• (9.)] q [R;, G" (Z,)] - C :, "') [1%. (9.) - I~ (9.)] q [R;, GR. (Z,)]) 

Term1 Term2 __ ------A A 

= [1%8 (80)r1 
r 1. m-1 f S: [Z;j (80) ,80]' _ '( 1 -.7fi) m-! f S: [Zij (9.) ,9. i 
7fl j=l 7fl j=l 

+ JI&;' (9.) - I.., ~~~! q [R;, G" (Z,l[ - r--;? ) [I&;, (9.) -: (9.)] q [R,. G" (Z')~) 
Term4 

(A.2.3) 

[J 
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A.3 Proof of Lemma 8.3 

The variance of the ith influence function (A.2.3) is given by 

[1%8 (80)] -1 [Var (Terml) + Var (Term2) + Var (Term3) + Var (Ten1l4) 

_ IE (Terml . Term2T) + 18 (Terml . Term3T) - 18 (Term1 . Term4T) 

_ IE (Term2 . Terml T) - 18 (Term2 . Term3T) + 18 (Tenn2 . Ten1l4T) 

+ 18 (Term3· TermlT) - 18 (Term3· Term2T) - 18 (Term3. Term4T) 

2GO 

-JE (Term4· Term1T) + JE (Term4. Tcrm2T) -JE (Term4· Term3T)] [1%6 (80)]-1 

Some of these are evaluated by Tsiatis (2006) (pp. 355 -357), and the others follow hy 

similar arguments, giving the required expression for the variance of the it.h illfhwnc(~ 

fUIlction. 

[J 

A.4 Proof of Lemma 8.5 

Tsiatis (2006) shows that if the initial estimator is proper, (A.2.1) hecomes 

n 

= n-~ L [1%8 (80 ) - 188 (80 )] q [Ri' GRi (Zi)] 
i=l 
m 

+ m-1 L [1%8 (80 ) - 188 (80 )] n! [oy) - o~mproper] + op (1) (A.4.1) 
j=1 
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Analogously, (A.2.2) becomes 

(A.4.2) 

Since the variation of the jth initial estimate of (J about itH mean iH illdepelld(~llt of 

the first term (in both (AA.l) and (AA.2)), the variance of n~ (e*rob - (Jo) for rolmHt 

proper MI is as required. 

o 



Further tables and figures 

The tables and figures excluded from the main text are given h reo 

262 
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Model Background Treatment 
Met Su 

[M+R]-[M+S] SE [S+R]-[S+M] SE 
MARPP 0.087 0.08 0.066 0.08 

MNAR ITT, ("/'1,')'2,')'3) = 
(0,0,0) 0.068 0.08 0.067 0.07 

( -0.25,0.25,0) 0.101 0.08 0.121 0.08 
( -0.5,0.5,0) 0.133 0.09 0.173 0.10 

(-1,1,0) 0.197 0.13 0.280 0.16 
(0.25,-0.25,0) 0.036 0.08 . 0.013 o.ms 

(0.5,-0.5,0) 0.004 0.09 0.041 0.10 
(1,-1,0) -0.060 0.12 0.149 0.16 

(0.4,0.2,0) 0.090 0.08 -0.110 0.08 
MNARjNNAR PP, (81.<52.<53,84 ) = 

(0,0,0,0) 0.078 0.09 0.029 0.08 
(0.25,0.25,0.25,0.25) 0.100 0.08 ·0.003 0.08 

(0.5,0.5,0.5,0.5) 0.112 0.08 0.003 O.()S 
(1,1,1,1) 0.127 0.09 ·0.031 O.OS 

(0.25,-0.25,-0.25,0.25) 0.107 0.08 0.020 0.07 
(0.5,-0.5,-0.5,0.5) 0.112 0.09 0.005 O.OS 

(1,-1,-1,1) 0.126 0.09 0.034 0.09 
(-0.25,0.25,0.25,-0.25) 0.097 0.08 O'()54 0.09 

(-0.5,0.5,0.5,-0.5) 0.088 0.08 D.043 O.OS 
( -1,1,1,-1) 0.074 0.08 0.076 0.08 

( ---0.25,·-0.25,-0.25,-0.25) 0.097 D.08 0.049 0.08 
( -0.5,-0.5,-0.5,-0.5) 0.092 0.08 0.0~l3 0.07 

(-1,-1,-1,-1) 0.096 0.08 0.099 O.OS 
(3,3,3,3) 0.179 0.12 0.139 0.12 

Table B.1: Estimates and SEs of the treatment difference (change in HbA1c from ba:';clinc 
to 18 months) between Met+Rosi and Met+Su, and Su+Rosi and Su+Met, respectively, for 
each of the models considered. 
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o 

o 2 4 6 8 10 12 15 18 o 2 4 6 8 10 12 15 18 

Months after randomisation Months after randomisation 

1 __ Met + Su --6 - . Met+Rosll 1- Su + Met - -<1 - . Su + Rosl 1 

Figure B.1: The profiles (mean ± SE) implied by the MAIl per protocol alHl.lysis 
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Figure B.2: The profiles (mean ± SE) implied by t he MNAR ITT analysis with ('Yl,,2 ,3) = 
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Figure B.3: The profiles (mean ± SE) implied by the MNAR ITT analysis wi th ('"Yl,/2,/3) = 
(- 0.25,0.25,0) 

0 

'~ 
Q) 

.S \ Qj 
Ul \ IV 

~~ \ 
\ ,g 

\ /k ~ 
0 

~~ 
:1: ' 

\1'1"1' 
£; 

B 
c 
e! 
Q) 

~~ 
Q) 

:; 
0 
Ul 

~ 
CX) 

o 2 4 6 8 10 12 15 18 

Months after randomisation 

1 _____ Met + Su - -6 - . Met + ROSII 

0 

Q) 

.S 
Qj 
Ul 
IV 
.0 

EN 
,g ' 

~ 
0 

~ 
:I: 
.!;;"': 

B 
c 
e! 
~ 
"0 
Q) 

:;\0 
o· 
Ul 

~ 

CX) 

-1 

o 2 4 6 8 10 12 15 18 

Months after randomisation 

1-- Su+Met - -0-. sU+RoSII 

Figure B.4: The profiles (mean ± SE) implied by the MNAR ITT analysi. with (,1,/2,/3 ) = 

(- 0.5,0.5,0) 



B FURTHER TABLES AND FIGURES 

0 

OJ 
.£ 
~ .. 
D 

E'" ,g 
C 
u 

:c 
~"It; 
.£ 
8 
" ~ 
~ 
"o<c! 
.S! 
::> 
0 
II) 

:i! 

~ 

'~ 

/l'l 
\ 
\ 
\ 
\ 
\ 

Lf, yf 'f/ 

o 2 4 6 8 10 12 15 18 

Months after randomisation 

1 __ Met+Su --4-. Met + Rosl 1 

266 

'" 
., 
.£ 

~o 
D 

E ,g 
~ 

-1 ~'" 
~ 
J: 
.£ 
8 
~": 
OJ 
II: 
"0 

J<C! 

CI) 

o 2 4 6 8 10 12 15 18 

Months efter randomisation 

1-- Su+Met - -(] _. SU+ROSII 

Figure B.5: The profiles (mean ± SE) implied by the MNAR ITT analy::;is with h'1.12,')'3) = 
(- 1,1 ,0) 

0 

OJ 
.£ a; 
II) 

,g~ 
E 
,g 
~ 
~ "ft; 
<{ 
.0 
J: 
.~ 

8 
~~ 
OJ 
II: 
"0 
OJ 
:; 
0 
II)CI) 

:i! 

\ 
\ 
\ 
\ 
\ 

t 

o 2 4 6 8 10 12 15 18 

Months after randomisation 

1 __ Met + Su - -4 - . Met+ Rosl l 

0 

., 
.£ a; 
II) 

.3~ 
E ,g 
~ 
~.q; 
~ 
J: 
.£ 
8 
"co ~ . 
OJ 
II: 
"0 

.S! 
::> 

~~ 

o 2 4 6 8 10 12 15 18 

Months after randomlsalion 

1-- Su + Met - -(]_. Su + Rosl I 

Figure B.6: The profiles (mean ± SE) implied by the MNAR ITT analy is with h'1,12,')'3) = 

(0.25,- 0.25,0) 



B FURTHER TABLES AND FIGURES 267 

0 0 

Q) Q) 

.£ .£ 

m m 
CON J'l"l D . 

E E 
,g ,g 

~ ~ 

~~ 
';;'~ 

~ ~ 
J: J: 

.£ .£ 

8 fl", 
c'" c . 
~ . ~ 

~ 
Q) 

it 
'0 '0 
Q) 

~cc :; 
~ co o . 

III 

~ ~ -- --
o 2 4 6 8 10 12 15 18 o 2 4 6 8 10 12 15 18 

Months after randomisation Months after randomisation 

I~ Met + Su - .... -. Met + Rosl 1 1-- Su + Met - -<l - ' Su + Rosil 

Figure B.7: The profiles (mean ± SE) implied by the MNAR. ITT analysis with ('1,/2,/ 3) = 

(0.5,- 0.5,0) 

0 

-~ 
0 

Q) Q) 

.5 \ .5 
Qj 

\ 
Qj 

III III 

~"i \ ~ 
E \ E 
,g \ ,g 

C \ ~"1 
~~ i, u 

c( ~ D 
J: , J: 
.£; 

't, 
.£; 

8 8 
~~ 

c 
~ 

:@ 
, 

~ ~ 
'0 

, '0 

~ 
, 

~ 
" --~ CX) '0 

~ ~ 

o 2 4 6 6 10 12 15 16 o 2 4 6 6 10 12 15 16 

Months after randomisation Months after randomisation 

I~ Met+ Su - .... - . Met + Rosll 1-- Su + Met --0-. SU+Rosl l 

F igure B.8: The profiles (mean ± SE) implied by the MNAR. ITT analysis with ('1,/2,/3) = 

(1,- 1,0) 



B FURTHER TABLES AND FIGURES 

II> 

'" 

4 6 8 
Observed HbA1c (%) at 12 months 

26 

10 12 

Figure B.9: HbA lc at the 12-month timepoint: imputed vs. ObS -iV d for t he "b st' olllbi

nation, ('/'1,1'2,1'3) = (0.4,0.2,0) 
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Figure B.lO: The profiles (mean ± SE) implied by the MNAR ITT analysis with (,1,1'2,1'3) = 

(0.4,0.2,0) 
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Figure B.ll: The profiles (mean ± SE) implied by the MNAU/NNAR PP analy is with 
((h,82,83 ,84 ) = (0,0,0,0) 
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Figure B.12: The profiles (mean ± SE) implied by t he MNAR/NNAR PP analysis with 
(81,82 ,83,84) = (0.25 ,0.25,0.25,0.25) 
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Figure 8.13: The profiles (mean ± SE) implied by the MNAR/NNAR PP anulysb with 
((h,52,53,54) = (0.5,0 .5,0.5,0.5) 
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Figure B.14: The profiles (mean ± SE) implied by the MNAR/NNAR PP analysis with 

(51 ,52 ,53 ,54) = (1,1,1,1) 



B FURTHER TABLES AND FIGURES 

o 

o 

~ .. 
J: ' 
.!: 

1:l 
c 
2! 
'" !E<.O 
'0 . 

.s! 
:l 

~ 

o 2 4 6 8 10 12 15 18 

Months after randomisation 

1--6-- Mat + Su - -4 - . Met + Rosil 

271 

o 

o 2 4 6 8 10 12 15 18 

Months after randomisation 

1- Su + Met - -{J -. Su + Rosil 

Figure 8.15: The profiles (mean ± SE) implied by the MNAR/NNAR PP alll1iYHis with 
(h ,62,63,64) = (0.25,- 0.25,- 0.25,0.25) 
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Figure B.17: The profiles (mean ± SE) implied by the MNARjNNAR PP analysis with 
(61,62 ,63,64) = (1 ,- 1,- 1,1) 
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Figure B.18: The profiles (mean ± SE) implied by the MNARjNNAR PP analysis with 

(61 ,62 ,63 ,64) = (- 0.25,0.25,0.25,- 0.25) 
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Figure B.19: The profiles (mean ± SE) implied by the MNAR/NNAIl PP analysis wit h 
(h,82,83,84 ) = (- 0.5 ,0.5,0.5,- 0.5) 
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Figure B.20: The profiles (mean ± SE) implied by t he MNAR/NNAR PP fl.na ly is with 

(81h,83 ,84) = (- 1,1,1,- 1) 
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Figure B.21: The profiles (mean ± SE) implied by the MNARjNNAR PP allftlys is with 
(81,82 ,83,84) = (- 0.25,- 0.25,- 0.25,- 0.25) 
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Figure B.22: The profiles (mean ± SE) implied by the MNARjNNAR PP analysis with 

(81 ,82 ,83 ,84) = (- 0.5,- 0.5,- 0.5,- 0.5) 
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Figure B.23: The profiles (mean ± SE) implied by the MNARjNNAR PP allalysis wi th 

(61,62,63,64) = (- 1,- 1,- 1,- 1) 
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Figure B.24: The profiles (mean ± SE) implied by the MNARjNNAR PP analysis wi th 

(61 ,62 ,63 ,64) = (3,3,3,3) 
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C.1 Robust multiple imputation: original formulation 

C.l.l Improper 
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* Assume we have y and x, both full, and xmis, the * 
* observed portion of x, saved in a file called * 
* 'incomplete'. Also in the file 'incomplete' are * 
* the (known) probabilities, pi, and the missingness * 
* indicator, R. * 
* obs is a local macro containing the sample size of * 
* the full data and imps is a global macro containing * 
* the number of imputed datasets * 
******************************************************** 

qui drop if xmis==. 
qui drop xmis 
qui save top, replace 
use incomplete, clear 
egen wO=mean(pi) 
egen w1=mean(l/pi) 
egen w2=mean ( (i-pi )./pi) 
egan w3=mean(1/(pi~2» 
egen w4=mean«i-pi)/(pi~2» 
egen w5=mean«(1-pi)~2)/(pi~2» 
qui gen w=1/pi 
qui replace w=i if xmis==. 
qui replace w=i-w if xmis!=. 
qui drop x xmis 
qUi gen X=. 
qui save bottom, replace 
use top, clear 
append using bottom 
qui gen Rstar=(x!=.) 
qui gen S=l-R 
qui gen Sstar=l-Rstar 
sort Sstar S, stable 
qui drop S Sstar 
qui gen cons=l 
qui regress x [pw=w] 
local muX=_b[_cons] 
local sXX=e(rmse)~2 
qui regress y_tamp x [pw=w] 
local a=_b[_cons] 
local b=_b[x] 
local sYgX=e(rmse)~2 
local p=('muX'*'sYgX'-'a'*'b'*'sXX')/('sXX'*'b'~2+'sYgX') 
local g=('b'*'sXX')/('sXX'*'b'~2+'sYgX') 
local e=sqrt('sYgX'*'sXX'/('sXX'*'b'~2+'sYgX'» 
qui regress y_tamp x [pw=w] 
mat Vq='obs'*swap*e(V)*swap 
qui save robust, replace 
forvalues j=l (1) $imps { 
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qui gen ximp'j'=x 
qui replace ximp'j'='p'+'g'*y+'e'*invnorm(uniform(» if X==. 

} 
global n=_N 
proel 
local alphaMI=betaMI[l,l] 
local betaMI=betaMI[2,1] 
qui save imp, replace 
qui drop if (R==l & Rstar==O) 
qui save impmod, replace 
use imp, clear 
qui drop if Rstar==1 
forvalues j=1 (1) $imps { 

rename ximp'j' ximpb'j' 
} 

qui drop x 
merge using impmod 
qui drop v Rstar _merge 
mat IFinv=(O,O\O,O) 
forvalues j=l (1) $imps { 

} 

qui regress y ximp'j' 
mat Var'j'='obs'*svap*e(V)*svap 
mat IFinv=IFinv+Var'j' 

mat IFinv=IFinv/$imps 
mata: proc2('obs') 
mata: proc3('obs') 
local vO=vO 
local v1=v1 
local v2=v2 
local v3=v3 
local v4=v4 
local v5=v5 
mata: proc4('vO', 'v1', 'v2', 'v3', 'w4', 'v5') 
local SEalphaMI=sqrt(Varlmp[1,1]/'obs') 
local SEbetaMI=sqrt(Varlmp[2,2]/'obs') 
local uba='alphaMI'+invttail('obs'-2,O.025)*'SEalphaMI' 
local lba='alphaMI'-invttail('obs'-2,O.025)*'SEalphaMI' 
local ubb='betaMI'+invttail('obs'-2,O.025)*'SEbetaMI' 
local lbb='betaMI'-invttail('obs'-2,O.025)*'SEbetaMI' 
if 'uba'<1 I 'lba'>1 { 

local cova=O 
} 

else { 
local cova=1 

} 

if 'ubb'<2 I 'lbb'>2 { 
local covb=O 
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} 

else { 
local covb=1 

} 

capture program drop proc1 
program define proc1 
mat betaMI=(O,O,O)' 
forvalues j=1(1)$imps { 

} 

gen wx=w*ximp'j' 
gen wxx=w*(ximp'j'-2) 
gen wy=w*y 
gen wxy=w*y*ximp'j' 
egen sw=sum(w) 
egen swx=sum(wx) 
egen swxx=sum(wxx) 
egen swy=sum(wy) 
egen swxy=sum(wxy) 
local sw=sw 
local swx=swx 
local swxx=swxx 
local swy=swy 
local swxy=swxy 
mat A=('sw','swx' \ 'swx'.'swxx') 
mat B=('swy'.'swxy'), 
mat beta=invsym(A)*B 
local al=beta[1,1] 
local be=beta[2,1] 
gen y_m_yhat=y-'al'-'be'*ximp'j' 
gen wy_m_yhat_sq=w*(y_m_yhat-2) 
egen swy_m_yhat_sq=sum(wy_m_yhat_sq) 
local sYgX=($n/($n-2»*swy_m_yhat_sq/sw 
mat beta'j'=(beta'.'sYgX')' 
mat betaMI=betaMI+beta'j' 
drop wx-swy_m_yhat_sq 

mat betaMI=betaMI/$imps 
end 

mata: 
real matrix proc2(obs) 
{ 

beta1=st_matrix (lbeta1") 
beta2=st_matrix (lbeta2") 
beta3=st_matrix(lbeta3") 
beta4=st_matrix (lbeta4") 
beta5=st_matrix(lbeta5") 
beta6=st_matrix (lbeta6") 
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beta7=st_matrix ("beta7") 
beta8=st_matrix ("beta8") 
beta9=st_matrix ("beta9") 
beta10=st_matrix("beta10") 
betaMI=st_matrix ("betaMI") 
st_view(X1=.,.,("cons","ximp1"» 
st_view(X2=.,.,(" cons ","ximp2"» 
st_view(X3=.,.,("cons","ximp3"» 
st_view(X4=.,.,("cons l ,"ximp4"» 
st_view(X5=.,.,(lconsl,lximp5"» 
st_view(X6=.,.,("cons","ximp6"» 
st_view(X7=.,.,(" cons ","ximp7"» 
st_view(X8=.,.,("cons","ximp8"» 
st_view(X9=.,.,("cons l ,"ximp9"» 
st_view(X10=.,.,("cons","ximp10"» 
st_view(x1=.,.,("ximp1"» 
st_view(x2=.,.,("ximp2"» 
st_view(x3=.,.,("ximp3"» 
st_view(x4=.,.,(lximp4"» 
st_view(x5=.,.,(l ximp5"» 
st_view(x6=.,. , ("ximp6"» 
st_view(x7=.,.,("ximp7"» 
st_view(x8=.,.,("ximp8"» 
st_view(x9=.,.,("ximp9"» 
st_view(x10=.,.,(lximp10"» 
st_view(Y=.,.,"y") 
V1=(O,O,1)*beta1 
V2=(O,O,1)*beta2 
V3=(O,O,1)*beta3 
V4=(O,O,1)*beta4 
V5=(O,O,1)*beta5 
V6=(O,O,1)*beta6 
V7=(O,O,1)*beta7 
V8=(O,O,1)*beta8 
V9=(O,O,1)*beta9 
V10=(O,O,1)*beta10 
VMI=(O,O,1)*betaMI 
beta1=(1,O,O\O,1,O)*beta1 
beta2=(1,O,O\O,1,O)*beta2 
beta3=(1,O,O\O,1,O)*beta3 
beta4=(1,O,O\O,1,O)*beta4 
beta5=(1,O,O\O,1,O)*beta5 
beta6=(1,O,O\O,1,O)*beta6 
beta7=(1,O,O\O,1,O)*beta7 
beta8=(1,O,O\O,1,O)*beta8 
beta9=(1,O,O\O,1,O)*beta9 
beta10=(1,O,O\O,1,O)*beta10 
betaMI=(1,O,O\O,1,O)*betaMI 
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} 

end 

Sl=(l/Vl)*(Y-Xl*betal) 
S2=(1/V2) * (Y-X2*beta2) 
S3=(1/V3) * (Y-X3*beta3) 
S4=(1/V4)* (Y-X4*beta4) 
SS=(l/VS)*(Y-XS*betaS) 
S6=(1/V6) * (Y-X6*beta6) 
S7=(1/V7) * (Y-X7*beta7) 
SS=(l/VS) * (Y-XS*betaS) 
S9=(1/V9) * (Y-X9*beta9) 
S10=(1/Vl0)*(Y-Xl0*betal0) 
Tl=xl:*Sl 
T2=x2:*S2 
T3=x3:*S3 
T4=x4:*S4 
T5=x5:*S5 
T6=x6:*S6 
T7=x7:*S7 
T8=x8:*SS 
T9=x9:*S9 
TlO=xl0:*S10 
Sl=(Sl,T1), 
S2=(S2,T2), 
S3=(S3,T3), 
S4=(S4,T4), 
S5=(S5,T5), 
S6=(S6,T6), 
S7=(S7,T7), 
S8=(S8,T8), 
S9=(S9,T9), 
S10=(S10,Tl0), 
SavA=(Sl+S2+S3+S4+S5+S6+S7+S8+S9+S10)/10 
IFmllA=(Sl-SavA)* (Sl-SavA), 
IFmI2A=(S2-SavA)* (S2-SavA), 
IFmI3A=(S3-SavA)* (S3-SavA), 
IFmI4A=(S4-SavA)* (S4-SavA), 
IFmI5A=(S5-SavA)* (S5-SavA), 
IFmI6A=(S6-SavA)* (S6-SavA), 
IFmI7A=(S7-SavA)* (S7-SavA), 
IFmI8A=(S8-SavA)* (S8-SavA), 
IFmI9A=(S9-SavA)* (S9-SavA), 
IFmll0A=(S10-SavA)* (S10-SavA), 
IFmIA=(1/9)*(1/obs)*(IFmllA+IFmI2A+IFmI3A+IFmI4A+IFmI5A+IFmI6A+IFmI7A 

+IFmI8A+IFmI9A+IFml10A) 
return(st_matrix(IIFmI",IFmIA» 

mata: 
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real matrix proc3(obs) 
{ 

betal=st_matrix ("betal") 
beta2=st_matrix (lbeta2") 
beta3=st_matrix (lbeta3") 
beta4=st_matrix(lIbeta4") 
beta5=st_matrix (" beta5") 
beta6=st_matrix ("beta6") 
beta7=st_matrix (llbeta7") 
beta8=st_matrix (llbeta8") 
beta9=st_matrix ("beta9") 
betal0=st_matrix ("betal0") 
betaMI=st_matrix("betaMI") 
st_view(Xl= .•.• (lcons l • l ximpbl"» 
st_view(X2= .•.• (lcons"."ximpb2"» 
st_view(X3= .•.• (lconsl."ximpb3"» 
st_view(X4= .•.• (l cons "."ximpb4"» 
st_view(X5= .•.• ("cons"."ximpb5"» 
st_view(X6= .•.• (lconsl."ximpb6"» 
st_view(X7= .•.• (lcons"."ximpb7"» 
st_view(X8= .•.• ("cons"."ximpb8"» 
st_view(X9= .•.• ("cons"."ximpb9"» 
st_view(Xl0= .•.• ("cons". "ximpbl0"» 
st_view(xl= .•.• ("ximpbl"» 
st_view(x2= .•.• ("ximpb2"» 
st_view(x3= .•.• ("ximpb3"» 
st_view(x4= .•.• (lximpb4"» 
st_view(x5= .•.• (" ximpb5"» 
st_view(x6= .•.• (" ximpb6"» 
st_view(x7= .•.• (lIximpb7"» 
st_ view(x8= .•.• ("ximpb8"» 
st_view(x9= .•.• (lximpb9"» 
st_view(xl0= .•.• ("ximpbl0"» 
st_view(y= .•.• "y") 
Vl=(O.O.l)*betal 
V2=(O.O.1)*beta2 
V3=(O.O.1)*beta3 
V4=(O.O.1)*beta4 
V5=(O.O.1)*beta5 
V6=(O.O.1)*beta6 
V7=(O.O.1)*beta7 
V8=(O.O.1)*beta8 
V9=(O.O.1)*beta9 
Vl0=(O.O.1)*betal0 
VMI=(O.O.l)*betaMI 
betal=(1.0.0\O.1.0)*betal 
beta2=(1.0.0\O.1.0)*beta2 
beta3=(1.0.0\O.1.0)*beta3 
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beta4=(1,O,O\O,1,O)*beta4 
beta5=(1,O,O\O,1,O)*beta5 
beta6=(1,O,O\O,1,O)*beta6 
beta7=(1,O,O\O,1,O)*beta7 
beta8=(1,O,O\O,1,O)*beta8 
beta9=(1,O,O\O,1,O)*beta9 
betal0=(1,O,O\O,1,O)*beta10 
betaMI=(l,O,O\O,l,O)*betaMI 
Sl=(l/Vl)*(Y-Xl*betal) 
S2=(1/V2)*(Y-X2*beta2) 
S3=(1/V3) * (Y-X3*beta3) 
S4=(1/V4)* (Y-X4*beta4) 
S5=(1/V5) * (Y-X5*beta5) 
S6=(1/V6)*(Y-X6*beta6) 
S7=(1/V7) * (Y-X7*beta7) 
S8=(1/V8)*(Y-X8*beta8) 
S9=(1/V9) * (Y-X9*beta9) 
S10=(1/V10)*(Y-X10*beta10) 
T1=x1:*Sl 
T2=x2:*S2 
T3=x3:*S3 
T4=x4:*S4 
T5=x5:*S5 
T6=x6:*S6 
T7=x7:*S7 
T8=x8:*S8 
T9=x9:*S9 
T10=x10:*S10 
Sl=(Sl, Tl)' 
S2=(S2,T2), 
S3=(S3,T3), 
S4=(S4,T4), 
S5=(S5,T5), 
S6=(S6,T6), 
S7=(S7, T7)' 
S8=(S8,T8), 
S9=(S9,T9), 
S10=(S10,Tl0), 
SavA=(Sl+S2+S3+S4+S5+S6+S7+S8+S9+S10)/10 
IFmllA=(Sl-SavA)*(Sl-SavA), 
IFmI2A=(S2-SavA)* (S2-SavA), 
IFmI3A=(S3-SavA)* (S3-SavA), 
IFmI4A=(S4-SavA)* (S4-SavA), 
IFmI5A=(S5-SavA)* (S5-SavA), 
IFmI6A=(S6-SavA)* (S6-SavA), 
IFmI7A=(S7-SavA)* (S7-SavA), 
IFmI8A=(S8-SavA)* (S8-SavA), 
IFmI9A=(S9-SavA)* (S9-SavA), 
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IFmI10A=(S10-SavA)*(S10-SavA)' 
IFmIA=(1/9)*(1/obs)*(IFmI1A+IFmI2A+IFmI3A+IFmI4A+IFmI5A+IFmI6A+IFmI7A 

+IFmI8A+IFmI9A+IFmI10A) 
return(st_matrix(IIFmIY",IFmIA)) 

} 

end 

mata: 
real matrix proc4(real scalar wO, real scalar w1, real scalar w2, 

real scalar w3, real scalar w4, real scalar w5) 
{ 

IFinv=st_matrix(IIFinv") 
IFmI=st_matrix("IFmI") 
IFmIY=st_matrix (" IFmIY") 
IF=invsym(IFinv) 
I=IF-IFmI 
IY=IF-IFmIY 
Vq=st_matrix(IVq") 
Varlmp=IFinv*(w3*«1/10)*IFmI+I)+w5*«1/10)*IFmIY+IY)+(IFmI*Vq*IFmI) 

+(w2-2)*(IFmIY*Vq*IFmIY)-2*w4* «1/10) * (IF-wO*IFmIY) 
+(9/10)*IY)+2*w1*(IFmI)-2*w1*w2*(IFmIY) 
-w2*(IY*IFinv*IFmI) 
-w2*(IFmI*IFinv*IY)+2*(w2A2)*(IY*IFinv*IFmIY) 
-w2*IFmI*Vq*IFmIY-w2*IFmIY*Vq*IFmI)*IFinv 

return(st_matrix(IVarlmp",Varlmp)) 
} 

end 

C.1.2 Proper 

use robust, clear 
qui regress x [pw=wJ 
local muX=_b[_consJ 
local semuX=_se[_cons] 
local sXX=e(rmse)A2 
qui regress y_tamp x [pw=w] 
local a=_b[_consJ 
local b= _ b [x] 
local sYgX=e(rmse)A2 
qui regress y_tamp x [pw=w] 
mat Vq='obs'*swap*e(V)*swap 
mat Vq2=Vq/'obs' 
forvalues j=1 (1) $imps { 

local a'j'='a'+sqrt(Vq2[1,1])*invnorm(uniform()) 
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} 

local b'j'='b'+(Vq2[1,2]/Vq2[1,1])*('a'j"-'a') 
+sqrt(Vq2[2,2]-«Vq2[1,2]h2)/Vq2[1,1]» 
*invnorm(uniform(» 

local sYgX'j'='sYgX'*invchi2('completers'-2,uniform(»/('completers'-2) 
local muX'j'='muX'+'semuX'*invnorm(uniform(» 
local sXX'j'='sXX'*invchi2('completers'-2,uniform(»/('completers'-2) 
local p'j'=('muX'j"*'sYgX'j"-'a'j' '*'b'*'sXX')/('sXX'*'b,h2+'sYgX') 
local g'j'=('b'*'sXX')/('sXX'*'b,h2+'sYgX') 
local e'j'=sqrt('sYgX'*'sXX'/('sXX'*'b,h2+'sYgX'» 
qui gen ximp'j'=x 
qui replace ximp'j'='p'j"+'g'j' '*y+'e'j"*invnorm(uniform(» if x==. 

global n=_N 
proel 
local alphaMI=betaMI[l,l] 
local betaMI=betaMI[2,1] 
qui save imp, replace 
qui drop if (R==l & Rstar==O) 
qui save impmod, replace 
use imp, clear 
qui drop if Rstar==l 
forvalues j=l (1) Simps { 

rename ximp'j' ximpb'j' 
} 

qui drop x 
merge using impmod 
qui drop w Rstar _merge 
mat IFinv=(O,O\O,O) 
forvalues j=l (1) Simps { 

} 

qui regress y ximp'j' 
mat Var'j'='obs'*swap*e(V)*swap 
mat IFinv=IFinv+Var'j' 

mat IFinv=IFinv/$imps 
mata: proc2('obs') 
mata: proc3('obs') 
local wO=wO 
local wl=w1 
local w2=w2 
local w3:w3 
local w4=w4 
local w5=w5 
mata: proc7('wO','wl','w2','w3', 'w4','w5') 
local SEalphaMI=sqrt(Varlmp[l,l]/'obs') 
local SEbetaMI=sqrt(Varlmp[2,2]/'obs') 
local uba='alphaMI'+invttail('obs'-2,O.025)*'SEalphaMI' 
local lba='alphaMI'-invttail('obs'-2,O.025)*'SEalphaMI' 
local ubb='betaMI'+invttail('obs'-2,O.025)*'SEbetaMI' 
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local lbb='betaMI'-invttail('obs'-2,O.025)*'SEbetaMI' 
if 'uba'<l I 'lba'>l { 

local cova=O 
} 

else { 
local cova=l 

} 

if 'ubb'<2 I 'lbb'>2 { 
local covb=O 

} 

else { 
local covb=l 

} 

mata: 
real matrix proc7(real scalar wO, real scalar wi, real scalar w2, 

real scalar w3, real scalar w4, real scalar w5) 
{ 

} 

end 

IFinv=st_matrix(IIFinv") 
IFmI=st_matrix(IIIFmI") 
IFmIY=st_matrix(IIFmIY") 
IF=invsym(IFinv) 
I=IF-IFmI 
IY=IF-IFmIY 
Vq=st_matrix ("Vq") 
Varlmp=IFinv*(w3*«1/10)*IFmI+I)+w5*«1/10)*IFmIY+IY) 

+(11/10)*(IFmI*Vq*IFmI) 
+(li/10)*(w2~2)*(IFmIY*Vq*IFmIY) 

-2*w4*«1/10)*(IF-wO*IFmIY) 
+(9/10)*IY)+2*wl*(IFmI)-2*wl*w2*(IFmIY) 
-w2*(IY*IFinv*IFmI)-w2*(IFmI*IFinv*IY) 
+2*(w2~2)*(IY*IFinv*IFmIY) 

-(11/10)*w2*IFmI*Vq*IFmIY 
-(li/10)*w2*IFmIY*Vq*IFmI)*IFinv 

return (st_matrix ("Varlmp " , Varlmp)) 

C.2 Robust multiple imputation: alternative formulation 
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#delimit ; 
ice x xsq p1 p2 p12a p12b w1 y1 y1sq p12 w2 y2, 

eq(y1:x xsq y2 w1,y2:x y1 w2) 
passive(y1sq:y1 ~2 \ p12 : (exp(p12a+p12b*y1sq) / (1+exp (p12a+p12b*y1sq») 
\ tw2:(1!(p2+pl*p12))) 
m(10) cycles(10) saving(DRMlcc_RMM_longit) replace orderasis 

C.3 Binary simulation study: scenario 1 

clear 
set mem 745m 
set obs 500 
local yly2_int=1 
qui gen full_11=. 
qui gen iee_11=. 
qui gen gee_11=. 
qui gen cwgee_11=. 
qui gen owgee_11=. 
qui gen migee_11=. 
qui gen br _11=. 
qui gen rr_11=. 
qui gen drmi_11=. 
qui gen full_10=. 
qui gen iee_10=. 
qui gen gee_10=. 
qui gen cwgee_10=. 
qui gen owgee_10=. 
qui gen migee_10=. 
qui gen br_10=. 
qui gen rr_10=. 
qui gen drmi_10=. 
qui gen full_01=. 
qui gen iee_01=. 
qui gen gee_01=. 
qui gen cwgee_01=. 
qui gen owgee_Ol=. 
qui gen migee_Ol=. 
qui gen br_01=. 
qui gen rr_01=. 
qui gen drmi_01=. 
qui gen full_OO=. 
qui gen iee_OO=. 
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qui gen gee_OO=. 
qui gen cwgee_OO=. 
qui gen owgee_OO=. 
qui gen migee_OO=. 
qUi gen br_OO=. 
qUi gen rr_OO=. 
qui gen drmi_OO=. 
forvalues wei=O(l)l { 
local weights=l-'wei' 
forvalues cond=O(l)l { 
local conditional=l-'cond' 
forvalues sim=1(1)1000 { 
di 'sim' " .. " _c~nt 
set seed 'sim' 
keep full_* iee_* gee_* cwgee_* owgee_* migee_* br_* rr_* drmi_* 
gen xl=uniform()<O.5 
gen x2=uniform()<O.25 
gen piyl=exp(xl-0.5*xl*x2)/(1+exp(xl-0.5*xl*x2» 
gen piy2=exp(-1+0.25*xl+0.25*x2-xl*x2)/(1+exp(-1+0.25*xl+0.25*x2-xl*x2» 
gen piy3=exp(-xl+0.5*x2-xl*x2)/(1+exp(-xl+0.5*x2-xl*x2» 
if 'yly2_int'==1 { 

} 

gen g12=O.3 
gen g13=-O.15 
gen g23=O.3 
gen g123=-O.1 

else { 

} 

gen g12=O.2 
gen g13=O 
gen g23=O.2 
gen g123=-.173 

gen yl=uniform()<piyl 
gen el=(yl-piyl)/(sqrt(piyl*(l-piyl») 
gen piy2gyl=piy2*(1+g12*el*(1-piy2)/sqrt(piy2*(1-piy2») 
gen y2=uniform()<piy2gyl 
gen e2=(y2-piy2)/(sqrt(piy2*(1-piy2») 
#delimit ; 
gen piy3gyly2=piy3*(1+g12*el*e2+(g13*el+g23*e2+g123*el*e2)*«1-piy3) 
/sqrt(piy3*(1-piy3»»; 
#delimit cr 
gen y3=uniform()<piy3gyly2 

*full 
gen xlx2=xl*x2 
gen id=_n 
qui reshape long y, i(id) jet) 
gen tl=(t==l) 
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gen t2=(t==2) 
gen t3=(t==3) 
gen tixl=tl*xl 
gen tix2=tl*x2 
gen tlxlx2=tl*xl*x2 
gen t2xl=t2*xl 
gen t2x2=t2*x2 
gen t2xlx2=t2*xl*x2 
gen t3xl=t3*xl 
gen t3x2=t3*x2 
gen t3xlx2=t3*xlx2 
#delimit ; 
qui xtgee y tl tlxl tlx2 tlxlx2 t2 t2xl t2x2 t2xlx2 t3 t3xl t3x2 t3xlx2, 
i(id) t(t) family(binomial) link(logit) corr(unstr) vce(robust) nocons; 
local full=_b[t3xl]; 
keep full_* iee_* gee_* cwgee_* owgee_* migee_* br_* 
rr_* drmi_* id t y xl x2 xlx2; 
#delimit cr 
qui reshape wide y, i(id) j(t) 
qui replace full_'conditional"weights'='full' in 'sim' 

gen pir2=exp(O.5*xl-0.5*x2+3*yl)/(1+exp(O.5*xl-0.5*x2+3*yl)) 
#delimit ; 
gen pir3g2=exp(-O.5-0.5*xl+0.5*x2+xl*yl-yl*y2+4*y2*xl)/ 
(1+exp(-O.5-0.5*xl+0.5*x2+xl*yl-yl*y2+4*y2*xl)); 
#delimit cr 
gen rl=l 
gen r2=uniform()<pir2 
qui gen r3=uniform()<pir3g2 if r2==1 
qui replace r3=O if r2==O 
qui replace y2=. if r2==O 
qui replace y3=. if r3==O 

*iee 
qui reshape long y r, i(id) jet) 
gen tl=(t==l) 
gen t2=(t==2) 
gen t3=(t==3) 
gen tlxl=tl*xl 
gen tix2=tl*x2 
gen tlxlx2=tl*xl*x2 
gen t2xl=t2*xl 
gen t2x2=t2*x2 
gen t2xlx2=t2*xl*x2 
gen t3xl=t3*xl 
gen t3x2=t3*x2 
gen t3xlx2=t3*xlx2 
#delimit ; 
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capture qui xtgee y tl tlxl tlx2 tlxlx2 t2 t2xl t2x2 t2xlx2 t3 t3xl 
t3x2 t3xlx2, i(id) t(t) family(binomial) link(logit) corr(ind) 
vce(robust) nocons; 
#delimit cr 
if abs(e(dif))<e(tol) { 
local check=l 

} 

else { 
local check=O 

} 

local iee=_b[t3xl] 
#delimit ; 
keep full_* iee_* gee_* cwgee_* owgee_* migee_* br_* rr_* drmi_* 
id t y r xl x2 xlx2; 
#delimit cr 
qui reshape wide y r, i(id) jet) 
if 'check'==l { 
qui replace iee_'conditional"weights':'iee' in 'sim' 

} 

qui gen yly2=yl*y2 
qui gen xlyl=xl*yl 
qui gen xly2=xl*y2 
qui gen x2yl=x2*yl 
if 'weights'==l { 

} 

qui logit r3 xl x2 xlyl yly2 xly2 if r2==1, asis 
qui predict p3g2 
qui gen lp3g2a=_b[_cons]+_b[xl]*xl+_b[x2]*x2+_b[xlyl]*xl*yl 
qui gen lp3g2b=_b[yly2]*yl+_b[xly2]*xl 
qui logit r2 xl x2 yl, asis 
qui predict p2 
qui gen w2=1/p2 
qui gen p3=p3g2*p2 
qui gen w3=1/p3 
qui gen cw=w3 if r3==1 
qui replace cw=w2/(1-p3g2) if r3==O 
qui replace cw=1/(1-p2) if r2==O 

if 'weights'==O { 
qui logit r3 xl xlyl if r2==1, asis 
qui gen lp3g2a=_b[_cons]+_b[xl]*xl+_b[xlyl]*xl*yl 
qui gen lp3g2b=O 
qui predict p3g2 
qui logit r2 xl x2yl, asis 
qui predict p2 
qui gen w2=1/p2 
qui gen p3=p3g2*p2 
qui gen w3=1/p3 
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qui gen cw=w3 if r3==1 
qui replace cw=w2/(1-p3g2) if r3==O 
qui replace cw=1/(1-p2) if r2==O 

} 

*gee 
qui reshape long y r, i(id) j(t) 
gen tl=(t==l) 
gen t2=(t==2) 
gen t3=(t==3) 
gen tlxl=tl*xl 
gen tlx2=tl*x2 
gen tlxlx2=tl*xl*x2 
gen t2xl=t2*xl 
gen t2x2=t2*x2 
gen t2xlx2=t2*xl*x2 
gen t3xl=t3*xl 
gen t3x2=t3*x2 
gen t3xlx2=t3*xlx2 
#delimit ; 
capture qui xtgee y tl tlxl tlx2 tlxlx2 t2 t2xl t2x2 t2xlx2 t3 t3xl 
t3x2 t3xlx2, i(id) t(t) family(binomial) link(logit) corr(unstr) 
vce(robust) nocons; 
#delimit cr 
if abs(e(dif))<e(tol) { 
local checkl=l 
local gee=_b[t3xl] 
qui predict mu 
mat b=e(b) 
mat b=b' 
mat corr=e(R) 

} 

else { 

} 

local checkl=O 
qui gen mu=. 

*cluster-level weighted gee 
#delimit ; 
capture qui xtgee y tl tlxl tlx2 tlxlx2 t2 t2xl t2x2 t2xlx2 t3 t3xl 
t3x2 t3xlx2 [pw=cw], i(id) t(t) family(binomial) link(logit) corr(unstr) 
vce(robust) nocons; 
#delimit cr 
if abs(e(dif))<e(tol) { 
local check2=1 
local cwgee=_b[t3xl] 

} 

else { 
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local check2=0 
} 

#delimit ; 
keep full_* iee_* gee_* cwgee_* owgee_* migee_* br_* rr_* drmi_* 
id t y xl x2 xlx2 r w2 w3 cw mu yly2 p3 p2 p3g2 lp3g2a lp3g2b; 
#delimit cr 
qui reshape wide y r mu, i(id) jet) 
if 'checkl'==l { 
qui replace gee_'conditional"weights'='gee' in 'sim' 

} 

if 'check2'==1 { 
qui replace cwgee_'conditional"weights'='cwgee' in 'sim' 

} 

*observation-level weighted gee 
if 'checkl'==l { 
qui gen pyl=yl-mul 
qui gen py2=w2*(y2-mu2) 
qui gen py3=w3*(y3-mu3) 
qui replace py2=0 if py2==. 
qui replace py3=0 if py3==. 
qui gen dl=mul*(l-mul) 
qui gen d2=mu2*(1-mu2) 
qui gen d3=mu3*(1-mu3) 
qui replace d2=0 if d2==. 
qui replace d3=0 if d3==. 
qui gen r12=corr[1,2] 
qui gen r13=corr[1,3] 
qui gen r23=corr[2,3] 
mat r=(l,r12[1],r13[1]\r12[1] ,1,r23[1]\r13[1] ,r23[1] ,1) 
qui gen nul=O 
qui gen nu2=0 
qui gen nu3=0 
local absdiff=l 
local count=O 
local check_ow=l 
local check_ow2=1 
while 'absdiff'>le-5 & 'count'<500 & 'check_ow'==l & 'check_ow2'==1 { 
mat ssl=J(12,12,0) 
mat ss2=J(12,1,0) 
forvalues sub=1(1)500 { 
if 'check_ow'==l { 
#delimit ; 
mat x=(1,0,0\x1['sub'],0,0\x2['sub'],0,0\xlx2['sub'],0,0\ 

0,1,0\0,x1['sub'],O\O,x2['sub'] ,O\0,x1x2['sub'] ,0\ 
O,O,1\O,O,x1['sub']\0,0,x2['sub']\0,0,x1x2['sub'])'; 

#delimit cr 
mat d=(dl['sub'] ,O,O\0,d2['sub'] ,0\O,O,d3['sub']) 
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mat vhalf=(sqrt(d1['sub']),O,O\O,sqrt(d2['sub']),O\O,O,sqrt(d3['sub'])) 
mat w=vhalf*r*vhalf 
if matmissing(w)==O { 

mat invw=invsym(w) 
} 

else { 

} 
} 

local check_ow=O 

if 'check_ow'==l { 
mat py=(py1['sub']\py2['sub']\py3['sub']) 
mat s2=x'*d*invw*py 
mat sl=s2*s2' 
mat ssl=ssl+s1 
mat ss2=ss2+s2 
} 
} 

if 'check_ow'==l { 
if matmissing(ssl)==O { 
mat diff=invsym(ssl)*ss2 
} 

else { 
local check_ow2=O 
} 

if 'check_ow2'==1 { 
local absdiff=abs(diff[l,l]) 
forvalues j=2(1)12 { 

if 'absdiff'<abs(diff['j',l]) { 
local absdiff=abs(diff['j',l]) 

} 

} 

mat b=b+diff 
forvalues sub=1(1)500 { 

#delimit ; 
mat x=(l,O,O\xl['sub'] ,O,O\x2['sub'] ,O,O\xlx2['sub'] ,0,0\ 

O,l,O\0,x1['sub'] ,0\O,x2['sub'] ,O\O,x1x2['sub'] ,0\ 
O,O,l\O,O,xl['sub']\O,O,x2['sub']\O,O,xlx2['sub'])'; 

#delimit cr 
mat nu=x*b 
qui replace nul=nu [1,1] in 'sub' 
qui replace nu2=nu[2,l] in 'sub' 
qui replace nu3=nu[3,1] in 'sub' 

} 

qui replace mul=exp(nul)/(l+exp(nul)) 
qui replace mu2=exp(nu2)/(1+exp(nu2)) 
qui replace mu3=exp(nu3)/(1+exp(nu3)) 
qui replace py1=y1-mul 
qui replace py2=w2*(y2-mu2) 
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qui replace py3=w3*(y3-mu3) 
qui replace py2=O if py2==. 
qui replace py3=O if py3==. 
qui replace d1=mu1*(1-mu1) 
qUi replace d2=mu2*(1-mu2) 
qui replace d3=mu3*(1-mu3) 
qui replace d2=O if d2==. 
qui replace d3=O if d3==. 
} 

} 

local count='count'+l 
} 

if 'count' >499 { 
qui replace owgee_'conditional"weights'=. in 'sim' 

} 

else { 
if 'check_ow'==l & 'check_ow2'==1 { 
qui replace owgee_'conditional"weights'=b[10,1] in 'sim' 
} 

} 

} 

*Robins & Rotnitzky (1995) 
qui save thesis_ch12_sat, replace 
mat b=(1,-.5,-.75,-.75,-1,-.5)' 
qui drop if x1==O 
local totsub=_N 
local check_rr=l 
local check_rr2=1 
if 'checkl'==l & 'check_ow'==l & 'check_ow2'==1 { 
if 'weights'==l { 
qui logit r3 yl x2 

} 
if 'weights'==O { 
qui legit r3 yl 

} 

qui predict p3g1 
qui gen k21=w2*(y2-mu2) 
qui gen k31=w3*(y3-mu3) 
qui gen k32=p2*w3*(y3-mu3) 
if 'conditional'==l { 

} 

qui regress k21 y1 x2 
qui predict kap21 
qui regress k31 y1 x2 
qui predict kap31 
qui regress k32 yl y2 y1y2 x2 
qui predict kap32 
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if 'conditional'==O { 
qui regress k21 yl 
qui predict kap21 

} 

qui regress k31 yl x2 
qui predict kap31 
qUi regress k32 yl y2 x2 
qui predict kap32 

qui gen g22=p2*kap21 
qui gen g32=p3gl*kap3l 
qui gen g33=p3g2*kap32 
qui gen q22=w2*g22 
qui gen q32=w2*g32 
qui gen q33=w3*g33 
qui replace q22=O if q22==. 
qui replace q32=O if q32==. 
qui replace q33=O if q33==. 
qui gen P2=(r2-p2)*q22 
qui gen P3=(r2-p2)*q32+(r3-r2*p3g2)*q33 
qui gen UmPl=pyl 
qui gen UmP2=py2-P2 
qui gen UmP3=py3-P3 
qui gen UmPUmPll=UmPl~2 
qui gen UmPUmP12=UmPl*UmP2 
qui gen UmPUmP13=UmPl*UmP3 
qui gen UmPUmP22=UmP2~2 
qui gen UmPUmP23=UmP2*UmP3 
qui gen UmPUmP33=UmP3~2 
qui regress UmPUmPll x2 
qui predict 111 
qui regress UmPUmP12 x2 
qui predict 112 
qui regress UmPUmP13 x2 
qui predict 113 
qui regress UmPUmP22 x2 
qui predict 122 
qui regress UmPUmP23 x2 
qui predict 123 
qui regress UmPUmP33 x2 
qui predict 133 
qui gen s12=dl*112*q22+dl*113*q32 
qui gen s22=d2*122*q22+d2*123*q32 
qui gen s32=d3*123*q22+d3*133*q32 
qui gen s13=dl*113*q33 
qui gen s23=d2*123*q33 
qui gen s33=d3*133*q33 
qui gen logit3g2=log(p3g2/(1-p3g2)) 
qui gen logit2=log(p2/(1-p2)) 
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qui logit r3 s13 s23 s33 if r2==1, no cons offset(logit3g2) 
qui predict p3g2new 
qui logit r2 s12 s22 s32, nocons offset(logit2) 
qui predict p2new 
qui gen w2new=1/p2new 
qui gen p3new=p2new*p3g2new 
qui gen w3new=1/p3new 
qui replace py2=w2new*(y2-mu2) 
qui replace py3=w3new*(y3-mu3) 
qui replace py2=0 if py2==. 
qui replace py3=0 if py3==. 
local absdiff=1 
local count=O 
while 'absdiff'>1e-5 & 'count'<100 & 'check_rr'==1 & 'check_rr2'==1 { 
mat ss1=J(6,6,0) 
mat ss2=J(6,1,0) 
forvalues sub=1(1)'totsub' { 
#delimit ; 
mat x=(1,0,0\x2['sub'] ,0,0\ 
0,1,0\O,x2['sub'] ,0\ 
O,O,1\O,O,x2['sub'])'; 

#delimit cr 
mat d=(d1['sub'] ,O,0\O,d2['sub'] ,0\O,0,d3['sub']) 

#delimit ; 
mat 1=(I11['sub'] ,I12['sub'] ,I13['sub']\I12['sub'] ,122['sub'] ,123['sub'] 

\I13['sub'] ,123['sub'] ,133['sub']); 
#delimit cr 

if matmissing(I)==O { 
mat invl=invsym(l) 
} 

else { 
local check_rr=O 
} 

if 'cbeck_rr'==1 { 
mat py=(py1['sub']\py2['sub']\py3['sub']) 
mat s2=x'*d*invl*py 
mat s1=s2*s2' 
mat ss1=ss1+s1 
mat ss2=ss2+s2 
} 

} 

if 'cbeck_rr'==1 { 
if matmissing(ss1)==O { 
mat diff=invsym(ss1)*ss2 
} 

else { 
local cbeck_rr2=O 
} 
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if 'check_rr2'==1 { 
local absdiff=abs(diff[l,l]) 
forvalues j=2(1)6 { 

if 'absdiff'<abs(diff['j' ,1]) { 
local absdiff=abs(diff['j',l]) 

} 

} 

mat b=b+diff 
forvalues sub=1(1)'totsub' { 

#delimit j 

} 

mat x=(l,O,O\x2['sub'] ,0,0\ 
O,1,O\O,x2['sub'] ,0\ 
O,O,1\O,O,x2['sub'])'j 

#delimit cr 
mat nu=x*b 
qui replace nul=nu[1,1] in 
qui replace nu2=nu[2,1] in 
qui replace nu3=nu [3 ,1] in 

'sub' 
'sub' 
'sub' 

qui replace mu1=exp(nul)/(1+exp(nul» 
qui replace mu2=expCnu2)/(1+exp(nu2» 
qui replace mu3=expCnu3)/(1+expCnu3» 
qui replace pyl=y1-mul 

} 

qui replace py2=w2new*Cy2-mu2) 
qui replace py3=w3new*Cy3-mu3) 
qui replace py2=0 if py2==. 
qui replace py3=0 if py3==. 
qui replace d1=mu1*(1-mul) 
qui replace d2=mu2*C1-mu2) 
qui replace d3=mu3*(1-mu3) 
qui replace d2=O if d2==. 
qui replace d3=O if d3==. 
} 
} 

local count='count'+l 

if 'count'>99 { 
local rr_lcheck=O 

} 

else { 

} 

if 'check_rr'==l & 'check_rr2'==1 { 
local rr_lcheck=l 
local rr_l=b[5,l] 
} 

else { 
local rr_lcheck=O 
} 
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} 

qui use thesis_ch12_sat, replace 
mat b=(O,O,-1,.25,O,.5)' 
qui drop if xi==i 
local totsub=_N 
local check_rr=l 
local check_rr2=1 
if 'check1'==i & 'check_ow'==l & 'check_ow2'==1 { 
if 'weights'==i { 
qui logit r3 yl x2 

} 
if 'weights'==O { 
qUi logit r3 yl 

} 
qui predict p3g1 
qui gen k21=w2*(y2-mu2) 
qui gen k31=w3*(y3-mu3) 
qui gen k32=p2*w3*(y3-mu3) 
if 'conditional'==1 { 

} 

qui regress k21 yl x2 
qui predict kap21 
qui regress k31 yl x2 
qui predict kap31 
qui regress k32 yl y2 yly2 x2 
qui predict kap32 

if 'conditional'==O { 
qui regress k2i yl 
qui predict kap21 

} 

qui regress k31 yl x2 
qui predict kap31 
qui regress k32 yl y2 x2 
qui predict kap32 

qui gen g22=p2*kap21 
qui gen g32=p3g1*kap31 
qui gen g33=p3g2*kap32 
qui gen q22=w2*g22 
qui gen q32=w2*g32 
qui gen q33=w3*g33 
qui replace q22=O if q22==. 
qui replace q32=O if q32==. 
qui replace q33=O if q33==. 
qui gen P2=(r2-p2)*q22 
qui gen P3=(r2-p2)*q32+(r3-r2*p3g2)*q33 
qui gen UmPl=pyl 
qui gen UmP2=py2-P2 
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qui gen UmP3=py3-P3 
qui gen UmPUmPll=UmPl~2 
qui gen UmPUmP12=UmPl*UmP2 
qui gen UmPUmP13=UmPl*UmP3 
qui gen UmPUmP22=UmP2-2 
qui gen UmPUmP23=UmP2*UmP3 
qui gen UmPUmP33=UmP3-2 
qui regress UmPUmPll x2 
qui predict 111 
qui regress UmPUmP12 x2 
qui predict 112 
qui regress UmPUmP13 x2 
qui predict 113 
qui regress UmPUmP22 x2 
qui predict 122 
qui regress UmPUmP23 x2 
qui predict 123 
qui regress UmPUmP33 x2 
qui predict 133 
qui gen s12=dl*112*q22+dl*113*q32 
qui gen s22=d2*122*q22+d2*123*q32 
qui gen s32=d3*123*q22+d3*133*q32 
qui gen s13=dl*l13*q33 
qui gen s23=d2*l23*q33 
qui gen s33=d3*l33*q33 
qui gen logit3g2=log(p3g2/(1-p3g2» 
qui gen logit2=log(p2/(1-p2» 
qui logit r3 s13 s23 s33 if r2==l, nocons offset(logit3g2) 
qui predict p3g2new 
qui logit r2 s12 s22 s32, nocons offset(logit2) 
qui predict p2new 
qui gen w2new=1/p2new 
qui gen p3new=p2new*p3g2new 
qui gen w3new=1/p3new 
qui replace py2=w2new*(y2-mu2) 
qui replace py3=w3new*(y3-mu3) 
qui replace py2=0 if py2==. 
qui replace py3=0 if py3==. 
local absdiff=l 
local count=O 
while 'absdiff'>le-5 & 'count'<100 & 'check_rr'==1 & 'check_rr2'==1 { 
mat ssl=J(6,6,O) 
mat ss2=J(6,l,O) 
forvalues sub=l(l)'totsub' { 
#delimit ; 
mat x=(l,O,O\x2['sub'] ,0,0\ 
O,l,O\O,x2['sub'] ,0\ 
O,O,l\O,O,x2['sub'])'; 
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#delimit cr 
mat d=(dl['sub'] ,0,0\0,d2['sub'] ,0\0,0,d3['sub']) 
#delimit ; 
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mat l=(lll['sub'] ,l12['sub'] ,l13['sub']\l12['sub'] ,l22['sub'] ,l23['sub'] 
\l13['sub'J ,l23['sub'],l33['sub']); 
#delimit cr 

if matmissing(l)==O { 
mat invl=invsym(l) 
} 

else { 
local check_rr=O 
} 

if 'check_rr'==l { 
mat py=(pyl['sub']\py2['sub']\py3['sub']) 
mat s2=x'*d*invl*py 
mat sl=s2*s2' 
mat 551=551+51 
mat ss2=ss2+s2 
} 

} 

if 'check_rr'==l { 
if matmissing(ssl)==O { 
mat diff=invsym(ssl)*ss2 
} 

else { 
local check_rr2=0 
} 

if 'check_rr2'==1 { 
local absdiff=abs(diff[l,l]) 
forvalues j=2(1)6 { 

if 'absdiff'<abs(diff['j',l]) { 
local absdiff=abs(diff['j' ,1]) 

} 

} 

mat b=b+diff 
forvalues sub=l(l)'totsub' { 

#delimit ; 

} 

mat x=(1,0,0\x2['sub'] ,0,0\ 
0,1,0\0,x2['sub'],0\ 
0,0,1\0,0,x2['sub'])'; 

#delimit cr 
mat nu=x*b 
qui replace nul=nu[l,l] in 
qui replace nu2=nu [2, 1] in 
qui replace nu3=nu[3,1] in 

'sub' 
'sub' 
'sub' 

qui replace mul=exp(nul)/(l+exp(nul» 
qui replace mu2=exp(nu2)/(1+exp(nu2» 
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} 

qui replace mu3=exp(nu3)/(1+exp(nu3» 
qui replace py1=y1-mu1 
qui replace py2=w2new*(y2-mu2) 
qui replace py3=w3new*(y3-mu3) 
qui replace py2=O if py2==. 
qui replace py3=O if py3==. 
qui replace d1=mu1*(1-mu1) 
qui replace d2=mu2*(1-mu2) 
qui replace d3=mu3*(1-mu3) 
qui replace d2=O if d2==. 
qui replace d3=O if d3==. 
} 
} 

local count='count'+1 

if 'count' >99 { 
local rr_Ocheck=O 

} 
else { 
if 'check_rr'==1 & 'check_rr2'==1 { 
local rr_Ocheck=1 
local rr_O=b[5,1] 
} 

else { 
local rr_Ocheck=O 
} 

} 

} 

qui use thesis_ch12_sat, clear 
if 'rr_lcheck'==1 & 'rr_Ocheck'==1 { 
qui replace rr_'conditional"weights'='rr_1'-'rr_O' in 'sim' 

} 

*MI-gee 
qui save thesis_ch12_sat, replace 
qui drop if x1==O 
if 'conditional'==l { 

#delimit ; 

} 

qui ice yl y2 yly2 y3 x2, eq(y2:x2 yl, y3:x2 yl y2 yly2) 
passive(y1y2:yl*y2) m(10) cycles(10) 
saving(thesis_ch12_sat_x1e1_MIGEE) replace; 
#delimit cr 

if 'conditional'==O { 
#delimit ; 
qui ice y1 y2 y3 x2, eq(y2:y1, y3:x2 y1 y2) m(10) cycles(10) 
saving(thesis_ch12_sat_xlel_MIGEE) replace; 
#delimit cr 
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} 

qui use thesis_ch12_sat, clear 
qui drop if xl==l 
if 'conditional'==l { 

#delimit ; 

} 

qui ice yl y2 y1y2 y3 x2, eq(y2:x2 y1, y3:x2 y1 y2 y1y2) 
passive(yly2:yl*y2) m(10) cycles(10) 
saving(thesis_ch12_sat_xleO_MIGEE) replace; 
#delimit cr 

if 'conditional'==O { 
#delimit ; 

} 

qui ice yl y2 y3 x2, eq(y2:yl, y3:yl y2) m(10) cycles(10) 
saving(thesis_ch12_sat_x1eO_MIGEE) replacej 
#delimit cr 

use thesis_ch12_sat_xlel_MIGEE, clear 
gen idnew=_n 
drop y1y2 
capture drop py1-nu3 
capture drop k21-w3new 

qui reshape long y r, i(idnew) jet) 
gen tl=(t==l) 
gen t2=(t==2) 
gen t3=(t==3) 
gen tlx2=ti*x2 
gen t2x2=t2*x2 
gen t3x2=t3*x2 
#delimit ; 
capture qui micombine xtgee y tl t1x2 t2 t2x2 t3 t3x2, 
i(idnew) t(t) family(binomial) link(logit) corr(unstr) vce(robust) nocons; 
#delimit cr 
if abs(e(dif»<e(tol) { 
local migeel=_b[t3] 
local check_migee1=1 

} 

else { 
local check_migeel=O 

} 

use thesis_ch12_sat_xleO_MIGEE, clear 
gen idnew=_n 
drop yly2 
capture drop pyl-nu3 
capture drop k21-w3new 

qui reshape long y r, i(idnew) jet) 
gen t1=(t==l) 
gen t2=(t==2) 
gen t3=(t==3) 
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gan tix2=t1*x2 
gan t2x2=t2*x2 
gan t3x2=t3*x2 
#delimit ; 
capture qui micombine xtgee y tl tlx2 t2 t2x2 t3 t3x2, 
i(idnew) t(t) family(binomial) link(logit) corr(unstr) vce(robust) nocons; 
#delimit cr 
if abs(e(dif))<e(tol) { 
local migeeO=_b[t3] 
local check_migeeO=l 

} 

else { 
local check_migeeO=O 

} 

use thesis_ch12_sat, clear 
if 'check_migeel'==l & 'check_migeeO'==l { 
qui replace migee_'conditional"weights'='migeel'-'migeeO' in 'sim' 

} 

*Bang & Robins (2005) 
qui gen h3=y3 
if 'conditional'==l { 
qui logit h3 x2 yl y2 yly2 w3 if r3==1 & xl==l 

} 

if 'conditional'==O { 
qui logit h3 x2 yl y2 w3 if r3==1 & xl==l 

} 

qui predict h2 if r2==1 & xl==l 
if 'conditional'==l { 
qui logit h3 x2 yl y2 yly2 w3 if r3==1 & xl==O 

} 

if 'conditional'==O { 
qui logit h3 x2 yl y2 w3 if r3==1 & xl==O 

} 

qui predict h20 if r2==1 & xl==O 
qui replace h2=h20 if xl==O 
drop h20 
if 'conditional'==l { 
qui regress h2 yl x2 w2 if r2==1 & xl==l 

} 

if 'conditional'==O { 
qui regress h2 yl w2 if r2==1 & xl==l 

} 

qui predict hl if xl==l 
if 'conditional'==l { 
qui regress h2 yl x2 w2 if r2==1 & xl==O 

} 
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if 'conditional'==O { 
qui regress h2 yl w2 if r2==1 & xl==O 

} 

qui predict hl0 if xl==O 
qui replace hl=hl0 if xl==O 
drop hl0 
qui regress hl x2 if xl==l 
local ml=_b[_cons] 
qui regress hl x2 if xl==O 
local mO=_b[_cons] 
#delimit ; 
qui replace br_'conditional"weights'=log«'ml'*(1-'mO'»/ 
«l-'ml')*'mO'» in 'sim'; 
#delimit cr 

*Doubly robust MI 
qui save thesis_ch12_sat, replace 
qui drop if xl==Q 
qui save thesis_ch12_sat_xlel, replace 
if 'conditional'==l { 
if 'weights'==1 { 
#delimit ; 

} 

qui ice yl x2 p2 w2 lp3g2a lp3g2b y2 yly2 p3g2 p3 w3 y3, 
eq(y2:x2 yl w2, y3:x2 yl y2 yly2 w3) 
passive(yly2:yl*y2 \ p3g2:(exp(lp3g2a+lp3g2b*y2)/ 

(1+exp(lp3g2a+lp3g2b*y2») \ p3:p2*p3g2 \ w3:l/p3) 
m(10) cycles(10) saving(thesis_ch12_sat_xlel_DRMI) replace; 
#delimit cr 

else { 
#delimit 

} 

} 

qui ice yl x2 w2 y2 y1y2 w3 y3, 
eq(y2:x2 yl w2, y3:x2 yl y2 yly2 w3) 
passive(yly2:yl*y2) 
m(10) cycles(10) saving(thesis_ch12_sat_xlel_DRMI) replace; 
#delimit cr 

if 'conditional'==O { 
if 'weights'==l { 
#delimit ; 

} 

qui ice yl x2 p2 w2 lp3g2a lp3g2b y2 p3g2 p3 w3 y3, 
eq(y2:yl w2, y3:yl y2 x2 w3) 
passive (p3g2: (exp(lp3g2a+lp3g2b*y2)/(1+exp(lp3g2a+lp3g 2b*y2») 

\ p3:p2*p3g2 \ w3:l/p3) 
m(10) cycles(10) saving(thesis_ch12_sat_x1el_DRMI) replace; 
#delimit cr 

304 



C COMPUTER CODE 

else { 
#delimit 

} 

} 

qui ice yl x2 w2 y2 w3 y3, 
eq(y2:yl w2, y3:yl y2 x2 w3) 
m(10) cycles(10) saving(thesis_ch12_sat_xlel_DRMI) replace: 
#delimit cr 

qUi use thesis_ch12_sat, clear 
qui drop if xl==l 
qui save thesis_ch12_sat_xleO, replace 
if (conditional'==l { 
if (weights'==l { 
#delimit : 

} 

qui ice yl x2 p2 w2 lp3g2a lp3g2b y2 yly2 p3g2 p3 w3 y3, 
eq(y2:x2 yl w2, y3:x2 yl y2 yly2 w3) 
passive(yly2:yl*y2 \ p3g2:(exp(lp3g2a+lp3g2b*y2)/ 

(1+exp(lp3g2a+lp3g2b*y2») \ p3:p2*p3g2 \ w3:1/p3) 
m(lO) cycles(10) saving(thesis_ch12_sat_xleO_DRMI) replace: 
#delimit cr 

else { 
#delimit 

} 

} 

qui ice yl x2 w2 y2 yly2 w3 y3, 
eq(y2:x2 yl w2, y3:x2 yl y2 yly2 w3) 
passive(yly2:yl*y2) 
m(10) cycles(10) saving(thesis_ch12_sat_xleO_DRMI) replace; 
#delimit cr 

if (conditional'==O { 
if (weights'==l { 
#delimit ; 

} 

qui ice yl x2 p2 w2 lp3g2a lp3g2b y2 p3g2 p3 w3 y3, 
eq(y2:yl w2, y3:x2 yl y2 w3) 
passive (p3g2: (exp(lp3g2a+lp3g2b*y2)/(1+exp(lp3g2a+lp3g 2b*y2») 

\ p3:p2*p3g2 \ w3:1/p3) 
m(10) cycles(10) saving(thesis_ch12_sat_xleO_DRMI) replace; 
#delimit cr 

else { 
#delimit 

} 

} 

qui ice yl x2 w2 y2 w3 y3, 
eq(y2:yl w2, y3:x2 yl y2 w3) 
m(10) cycles(10) saving(thesis_ch12_sat_xleO_DRMI) replace; 
#delimit cr 
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use thesis_ch12_sat_x1el_DRMI, clear 
gen idnew=_n 
drop yly2 
capture drop py1-nu3 
capture drop k21-w3new 

qui reshape long y r, i(idnew) jet) 
gen t1=(t==1) 
gen t2=(t==2) 
gen t3=(t==3) 
gen t1x2=t1*x2 
gen t2x2=t2*x2 
gen t3x2=t3*x2 
#delimit ; 
capture qui micombine xtgee y t1 t1x2 t2 t2x2 t3 t3x2, 
i(idnew) t(t) family(binomial) link(logit) corr(unstr) vce(robust) nocons; 
#delimit cr 
if abs(e(dif))<e(tol) { 
local drmil=_b[t3J 
local check_drmi1=1 

} 

else { 
local check_drmi1=O 

} 

use thesis_ch12_sat_x1eO_DRMI, clear 
gen idnew=_n 
drop y1y2 
capture drop py1-nu3 
capture drop k21-w3new 

qui reshape long y r, ieidnew) jet) 
gen t1=(t==1) 
gen t2=(t==2) 
gen t3=(t==3) 
gen tlx2=ti*x2 
gen t2x2=t2*x2 
gen t3x2=t3*x2 
#delimit ; 
capture qui micombine xtgee y tl tlx2 t2 t2x2 t3 t3x2, i(idnew) t(t) 
family (binomial) link(logit) corr(unstr) vce(robust) nocons; 
#delimit cr 
if abs(e(dif))<e(tol) { 
local drmiO=_b[t3] 
local check_drmiO=l 

} 

else { 
local check_drmiO=O 

} 

use thesis_ch12_sat, clear 
if 'check_drmi1'==1 & 'check_drmiO'==1 { 
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} 

} 

} 

} 

qui replace drmi_'conditional"weights'='drmil'-'drmiO' in 'sim' 

qui save thesis_ch12_sat, replace 
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