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Abstract

Missing outcomes are a commonly occurring problem in cluster randomised trials, which

can lead to biased and inefficient inference if ignored or handled inappropriately. Han-

dling missing data in CRTs is complicated due to the hierarchical structure of the

data. Two approaches for analysing such trials are cluster-level analysis and individual-

level analysis. An assumption regarding missing outcomes in CRTs that is sometimes

plausible is that missingness depends on baseline covariates, but conditioning on these

baseline covariates, not on the outcome itself, which is known as a covariate dependent

missingness (CDM) mechanism. The aim of my thesis was to investigate the validity

of the approaches to the analysis of CRTs for the three most common outcome types:

continuous, binary and time-to-event, when outcomes are missing under the assumption

of CDM. Missing outcomes were handled using complete records analysis (CRA) and

multilevel multiple imputation (MMI).

We investigated analytically, and through simulations, the validity of the different com-

binations of the analysis model and missing data handling approach for each of the three

outcome types. Simulations studies were performed considering scenarios depending on

whether the missingness mechanism is the same between the intervention groups and

whether the covariate effect is the same between the intervention groups in the outcome
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model. Based on our analytical and simulations results, we give recommendations for

which methods to use when the CDM assumption is thought to be plausible for missing

outcomes. The key findings of this thesis are as follows.

Continuous outcomes

• Cluster-level analyses using CRA are in general biased unless the intervention

groups have the same missingness mechanism and the same covariate effects on

outcome in the data generating model.

• In the case of individual-level analysis, the linear mixed model (LMM) using CRA

adjusted for covariates such that the CDM assumption holds gives unbiased es-

timates of intervention effect regardless of whether the missingness mechanism is

the same or different between the intervention groups, and whether there is an

interaction between intervention and baseline covariates in the data generating

model for outcome, provided that such interaction is included in the model when

required.

• There is no gain in terms of bias or efficiency of the estimates using MMI over

CRA as long as both approaches use the same functional form of the same set of

baseline covariates.
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Binary outcomes

• The adjusted cluster-level estimator for estimating risk ratio (RR) using full data

is consistent if the true data generating model is a log link model, the functional

form of the baseline covariates is the same between the intervention groups, and

the random effects distribution is the same between the intervention groups.

• Cluster-level analyses using CRA for estimating risk difference (RD) are in general

biased. For estimating RR, cluster-level analyses using CRA are valid if the true

data generating model has log link and the intervention groups have the same

missingness mechanism and the same functional form of the covariates in the

outcome model.

• In contrast, MMI followed by cluster-level analyses gives valid inferences for esti-

mating RD and RR regardless of whether the missingness mechanism is the same

or different between the intervention groups, and whether there is an interaction

between intervention and baseline covariate in the outcome model, provided that

such interaction is included in the imputation model when required.

• In the case of individual-level analysis, both random effects logistic regression

(RELR) and generalised estimating equations (GEE) give valid inferences using

both CRA (adjusted for covariates such that the CDM assumption holds) and

MMI regardless of whether the missingness mechanism is the same or different

between the intervention groups, and whether there is an interaction between

intervention and baseline covariate in the outcome model, provided that such

interaction is included in both the imputation model and the analysis model when

required.
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• Like continuous outcomes, in the absence of auxiliary variables, there is no benefit

in performing MMI rather than doing CRA in terms of bias or efficiency of the

estimates.

Time-to-Event outcomes

• In the case of censored data, the unadjusted cluster-level analysis for estimating

rate ratio (RaR) is consistent when the event rates are small and the covariate

effects are the same between the intervention groups. In contrast, the adjusted

cluster-level analysis for estimating RaR is consistent for any event rates when the

the covariate effects are the same between the intervention groups.

• The gamma shared frailty model as an individual-level analysis underestimates

the standard errors (SEs) of the estimates when each intervention group has small

number of clusters.

• The Williams approach performs better than the Greenwood approach for esti-

mating the SEs of Kaplan-Meier (KM) estimates unless the event rate is low and

the value of intraclass correlation coefficient is very small.
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Chapter 1

Cluster Randomised Trials

This chapter gives an overview of cluster randomised trials (CRTs). In Section 1.1,

we outline a brief introduction to CRTs including advantages over standard trials and

the consequences of intraclass correlation in such trials. Section 1.2 explains the most

common types of outcome in CRTs. Finally, in Section 1.3, we review the approaches

to the analysis of data from CRTs. In the following chapter, we discuss the issue of

missing data in CRTs.
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Chapter 1. Cluster Randomised Trials

1.1 Introduction

Cluster randomised trials (CRTs) are experiments in which clusters of individuals such

as villages, schools, or medical practices, rather than individuals, are randomly allo-

cated to intervention and control groups, while individual-level outcomes of interest are

observed within each cluster. The number of clusters may vary between control group

and intervention group; and the number of individuals in each cluster, known as cluster

size, may also vary from cluster to cluster. CRTs with equal number of clusters in each

intervention group in addition to constant cluster size are known as balanced CRTs.

Examples of CRTs include: (i) communities in a developing country, such as a village

or a district, selected as the randomization unit to measure the effectiveness of improved

water supplies on childhood diarrhoea, (ii) schools selected as the unit of randomization

to evaluate new educational guidelines directed by the ministry of education, and (iii)

hospitals selected as the randomization unit to measure the effect of a training program

for doctors on the quality of diagnosis and treatment of a specific type of disease. CRTs

have been increasingly accepted in the fields of health promotion and health service re-

search by public health researchers. Reasons for this popularity may include the nature

of the intervention that itself may dictate its application at the cluster level, less risk of

intervention contamination, and greater administrative convenience [1]. However, it is

well known that the power and precision of CRTs are lower relative to trials that indi-

vidually randomise the same number of participants. In spite of having this limitation

in terms of statistical power and precision of the parameter estimates, the advantages

associated with CRTs are sometimes perceived by researchers to outweigh the resulting

cost in statistical power and precision. The reduction in precision due to using CRTs is

a function of the variance inflation factor (VIF), also known as the design effect (DF)
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[2], which measures how much the sampling variability differs due to clustering from

the sampling variability of individual randomisation. In the case of a balanced CRT,

the VIF is given by

VIF = 1 + (m− 1)ρ,

where m is the constant cluster size and ρ is the intraclass correlation coefficient (ICC)

which measures how much more similar the outcomes of individuals in the same cluster

are compared to the outcomes of the other clusters. This can also be interpreted as the

usual pair-wise correlation coefficient between any two outcomes of the same cluster.

The VIF increases with the cluster size and with the intraclass correlation coefficient.

The case ρ = 0 implies that there is no linear dependency among the individuals in the

same cluster. In this case individuals within the same cluster are not more similar com-

pared to the individuals in the others clusters. On the other hand, ρ = 1 corresponds to

perfect dependence among the individuals in the same cluster. In this case all outcomes

of individuals in the same cluster are identical and so the total information provided by

a cluster is no more than that provided by an individual in that cluster. In practice,

the resulting value of ICC is usually small and typically ranges from 0.001 to 0.05 in

primary care and health research; and it is rare to have ICCs above 0.1 [3]. A small

value of ICC can lead to substantial VIF and should not be ignored in the design and

analysis of CRTs [4].

1.2 Types of outcome in CRTs

In most health service and epidemiological research, the three most common types of

outcome are:
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• Continuous outcome: A quantitative variable either discrete or continuous is

measured on each individuals studied in the trial. The difference in mean between

control and intervention groups is usually the parameter of interest, although

other possibilities may include difference in median or in quartile. An example

is the difference in mean number of sexual partners in each group in a sexually

transmitted diseases prevention program. The data obtained from the trial are

used to estimate the true means of the control and intervention groups and the

difference between them.

• Binary outcome: occurs when each individual either does or does not satisfy

certain criteria. For example, in a trial of a smoking cessation program, the out-

come from each individual is either “yes” or “no” depending on whether he/she

stopped smoking by the end of the study. The parameter of interest may be risk

difference or risk ratio. The risk difference is defined as the difference between the

true proportions of individuals who stopped smoking in the control and interven-

tion groups, whereas the risk ratio is defined as the ratio of the true proportions

of the control and intervention groups.

• Time-to-event outcome: All individuals in the trial are followed until they

experience the event of interest or they are censored. The parameter of interest is

usually the rate ratio of the event of interest, although one may have interest on

difference between the event rates of the control and intervention groups instead.

Examples might include the difference between incidence rates of polio per 1000

persons-years of two groups of a polio vaccine trial.
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1.3 Analysis of CRTs

As described earlier, outcomes of individuals in the same cluster in CRTs are usually

correlated. Standard methods of analysing data from randomised trials assume that the

outcomes are statistically independent but this assumption is violated when clusters of

individuals are randomised into control and intervention groups. Therefore, special

methods are required to analyse CRTs that take into account the correlation between

outcomes in the same cluster. The two main approaches to the analysis of CRTs are:

1. Cluster-level analysis, and

2. Individual-level analysis.

1.3.1 Cluster-level analysis

This approach is conceptually very simple as the clusters are the experimental units in

CRTs. It is reasonable to obtain a relevant summary measure of the outcome variable

for each of these units and to compare these summary measures between the control

and intervention groups. This approach can be explained as a two stage process.

In the first stage, a relevant summary measure of the outcome variable is calculated

for each cluster based on all outcomes of individuals in that cluster. This might be

the mean, proportion or other cluster level statistic. For example, in a trial of systolic

blood pressure (SBP) control, a relevant summary measure might be the mean SBP in
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each cluster or the proportion of individuals in each cluster who has SBP less than 120

mmHg. The total number of observations in each group is then equal to the number of

clusters in that group.

In the second stage, the two sets of cluster specific summary measures obtained in the

first stage are compared using appropriate statistical methods. The most common one is

the standard t−test for two independent samples since the resulting summary measures

are statistically independently, which is a consequence of the clusters being independent

of each other. The corresponding non-parametric methods could be Wilcoxon rank sum

test or permutation test [5].

The cluster-level approach with t−test is robust in terms of type I error and confidence

interval with approximately correct coverage [5], but it may not be efficient in terms of

precision and power when cluster sizes vary widely which is very common in practice.

The reason behind this is that equal weight is given to each cluster-level summary

ignoring the variation in cluster sizes. Furthermore, the equal variance assumption may

be violated if the cluster sizes vary substantially [5].

In CRTs, baseline covariates that may be related to the outcome of interest are often col-

lected and incorporated into the analysis. These baseline covariates could be measured

at cluster-level or individual-level. The main purposes of adjusting for covariates is to

increase the credibility of the trial findings by demonstrating that any observed interven-

tion effect is not attributable to the possible imbalance between control and intervention

groups in terms of baseline covariates, and to improve the statistical power [6]. Ran-

domisation ensures that the control and intervention groups are balanced on average in

terms of baseline covariates. In practice there will be some imbalance by chance, when
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the number of clusters is small [5]. This imbalance could, by chance, be quite large.

To adjust for baseline covariates in cluster-level analysis, an individual-level regression

analysis of the outcome of interest is carried out at the first stage of analysis ignoring

the clustering of the data, which incorporates all covariates into the regression model

except the intervention indicator [5, 7]. Then individual-level or cluster-level residuals

are calculated depending on the type of outcome and the parameter of interest. The

residuals from the control and intervention groups are then compared using the stan-

dard t−test. In the absence of an intervention effect, the residuals are expected to be

similar on average between the control and intervention groups. However, if there is an

intervention effect, the residuals should differ systemically between the two groups.

1.3.2 Individual-level analysis

As cluster-level analysis may be less efficient in the case of variable sized clusters, more

power as well as precision could be obtained by weighting the cluster specific summaries

according to the amount of information provided by each cluster. An individual-level

analysis, which is essentially a single-stage method, takes into account cluster size and

intraclass correlation by performing individual level regression analysis. A wide range

of regression models have been proposed in the literature depending on the type of out-

come. Two widely accepted regression models are random effects models estimated by

maximum likelihood methods and population averaged model estimated by generalised

estimating equations (GEE).

31



Chapter 1. Cluster Randomised Trials

Random effects models take into account between-cluster variability using cluster-level

effects which follow a specified probability distribution. The parameters of this distri-

bution are estimated using maximum likelihood methods together with the fixed effect

coefficients corresponding to intervention effect and other covariates effects, if any. De-

pending on the parameter of interest and type of outcome, the most commonly used

random effects models are linear mixed model (LMM) for quantitative outcomes, ran-

dom effects logistic regression model (RELR) for binary outcomes and random effects

Poisson regression model for time-to-event outcomes. These regression methods will be

explained in the following chapters.
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Missing Data in CRTs

In this chapter, we describe the issue of missing data in CRTs. In Section 2.1, we

explain why missing data is a big issue in the analysis of CRTs. Section 2.2 describes

Rubin’s framework for missingness mechanisms in general and in the context of CRTs

with missing outcomes. Finally, in Section 2.3, we review the methods which are most

commonly used to handle missing data in CRTs with their pros and cons.

2.1 Is missing data a big issue in CRTs?

Attrition is common in CRTs, leading to missing outcome data that often create a

problem in the analysis of such trials. Not only do they cause a loss of information

and as a result usually reduce the power of a study, but also they might be a potential
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source of bias in the parameter estimates, which itself may lead to statistical tests

of the null hypothesis of no intervention effect to be invalid [8, 9]. Handling missing

data in CRTs is complicated compared to that of standard trials by the fact that data

are clustered in CRTs, that is, the outcomes of individuals within the same cluster

are more likely to be similar to each other than those from different clusters, which

is usually quantified by the intraclass correlation coefficient. Most of the standard

missing data methods like multiple imputation (MI) assume non-clustered data, so do

not automatically accommodate this clustering. Ignoring this clustering in general gives

biased estimates, as well as having invalid variance estimates [10]. A systematic review

was performed by DiazOrdaz et al. [11] to see how missing data are handled and

reported in CRTs published in 2011. They found that 95 (72%) trials out of 132 trials

had missing values either in outcome or in covariates or in both. Only 32 (34%) trials

out of 95 reported how they handled missing data. Another recent systematic review by

Fiero et al [12] on handling of missing data in CRTs found that 80 (93%) trials out of

86 trials reported missing outcome data at the individual-level. The median percent of

individuals with missing outcome was 19%, with a range of 0.5 to 90%. Of those trials

reporting missing data, only 30 (38%) trials reported how they handled missing outcome

data. Despite missing data being very common in CRTs, these two systematic reviews

show that handling missing data in CRTs remains suboptimal. One of the key reasons

may be that methodological development for dealing with missing data in CRTs has

been relatively slow in spite of the increasing popularity of CRTs. Therefore, methods

for handling missing data in CRTs need more attention.
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The main reasons for having missing outcomes include dropout, withdrawal or lost to

follow-up. Withdrawals could occur due to perceived/actual lack of efficacy of inter-

vention, due to condition improving or worsening, and adverse events and therefore no

longer wanting to participate in the trial. For example, in a systolic blood pressure

(SPB) control trial, younger people may be more likely to withdraw themselves from

the study in the sense that they might think high SBP is a problem for older people.

2.2 Missingness mechanism

In statistical analysis, if there are missing values, an assumption must be made about the

missingness mechanism, which refers to the relationship between the probability of data

being missing and the underlying values of the variables involved in the analysis [13].

The mechanisms which caused the data to be missing can be classified into three broad

categories introduced by Rubin [14]. These are missing completely at random (MCAR),

missing at random (MAR), and missing not at random (MNAR). Although we do

not know the true mechanism for missing values, we assume that there exists a true

underlying missingness mechanism, and given a set of variables, we can define what it

means for that mechanism to be one of these three categories.

Data are said to be MCAR if the probability of a value being missing is independent of

the observed and unobserved data. It implies that causes of missingness are not related

to the data. It is generally a very restrictive assumption of missingness and unlikely

to hold in many studies. A more realistic assumption of missingness mechanism than

MCAR for many studies is MAR where, conditioning on observed data, the probability
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of a value being missing is independent of the unobserved data. Data are defined to

be MNAR if the probability of a value being missing depends on both observed and

unobserved data.

In CRTs, an assumption regarding missing outcomes that is sometimes plausible is

that missingness depends on baseline covariates, but conditioning on these baseline

covariates, not on the outcome itself. We refer to this as covariate dependent missingness

(CDM). This is an example of MAR when baseline covariates are fully observed. A

further possibility in CRTs is that whole clusters can be missing. This can occur for

example if a cluster withdraw itself from the study. However, in this thesis, we restrict

out attention to missing individual outcomes under CDM assumption, and assume that

all baseline covariates are fully observed.

2.3 Methods used to handle missing data in CRTs

The impact of missing data on estimation and inference of a parameter of interest

depends on the mechanism that caused missing data, the method used to handle missing

data, and the choice of statistical methods used for data analysis. The systematic review

done by DiazOrdaz et al. [11] revealed that 32 trials out of 95 trials explained how they

handled missing data. Twenty two of them used a variety of single imputation, namely

regression imputation, mean imputation and last observation carried forward (LOCF)

for quantitative data and best/worst case for binary data, 8 used multiple imputation
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without considering the clustering, and 2 used likelihood-based complete case analysis

assuming MAR. We now describe the most commonly used methods that are used in

CRTs to handle missing outcome data with their advantages and disadvantages.

2.3.1 Complete records analysis

In complete records analysis (CRA), often referred to as complete case analysis, only

individuals with complete data on all variables in the analysis are considered. CRA

is widely used because of its simplicity and it is usually the default method of most

statistical software packages. Discarding individuals might be a potential source of

loss of information, which leads to loss of precision in the parameter estimates. It is

well known that CRA is valid when the missing data mechanism is MCAR. In the

case of individual-level regression based analysis, CRA is also valid if, conditioning on

covariates, missingness is independent of outcome and the outcome model being fitted

is correctly specified [13]. Greonwold et al. [15] showed that, in the event of missing

outcome under MAR for individually randomised trials, CRA with covariate adjustment

gives unbiased estimates with coverage close to nominal level.

2.3.2 Single imputation

If a data set contains a large number of variables then discarding incomplete cases corre-

sponding to each variable may result in a very small data set. This is because observed

values of a particular variable are deleted when they belong to cases that have missing

values for other variables. Instead of discarding incomplete cases, single imputation
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imputes a single value for each missing value and creates an artificial complete data set.

There are several possible choices for single imputation in the missing data literature,

but here we present briefly some of them that are commonly used to the analysis of

CRTs. It is important to note that a problem common to all single imputation methods

in general is that the subsequent confidence intervals and tests are not valid because no

allowance is made for the imputation uncertainty.

2.3.2.1 Last observation carried forward

Last observation carried forward (LOCF) method is usually used in longitudinal studies

where repeated measures are taken from each individual at a series of planned follow-

up visits. Missing outcome values are replaced with the corresponding individual’s last

observation, assuming that the missing value for an individual is exactly the same as the

previous measurement of that individual. It is usually implausible that an individual’s

outcome would remain same after withdrawal from the study. The method LOCF has

been shown to be invalid in general in non-clustered trials [16], and therefore one cannot

expect it to be valid in CRTs either.

2.3.2.2 Mean imputation for continuous outcome

In this case, in general, missing values of a variable are substituted by the mean of the

available observed values of that variable. As a result, the mean of the variable remains

same but other features (for example, variance, skewness, kurtosis and so forth) of its

distribution are changed. Clearly, this method leads to underestimation of the variance
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since, for each imputed value, the squared deviation from its mean is zero but the

number of observations is increased. However, one can fix estimators of the variance

by modifications to account for the mean imputation, for example, by adjusting the

degrees of freedom for the imputed values.

Two choices for mean imputation for missing outcomes that have been considered in

CRTs are intervention group mean imputation and cluster mean imputation. In the first

case, missing outcomes in each intervention group are replaced by the mean calculated

using the observed outcomes pooled across clusters of that group. By imputing the

intervention group mean for missing outcome values, the variability among the cluster

means is reduced [17]. Thus, group mean imputation may give inflated type I error to

the null hypothesis. In the latter case, missing outcomes in each cluster are replaced

by the mean calculated using the observed outcomes of that cluster. In this case, the

imputed cluster means are identical with the observed cluster means.

Cluster mean imputation for missing continuous outcomes has been suggested as a good

approach for handling missing outcome data in CRTs by Taljard et al [17]. They demon-

strated the impact of cluster mean imputation on the validity and power of adjusted

t−test (describe in Chapter 4) for intervention effect using individual-level outcome

data.
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2.3.2.3 Regression imputation

In regression imputation, missing outcome values are predicted from the individual’s

observed, for example, baseline covariates using a model based on observed cases. The

fundamental assumption is that missing outcomes can be estimated by the individuals’

observed covariate values. In the case of individually randomised trials, this method

provides unbiased estimate under MAR [11] but underestimates the standard error like

other single imputation methods [8].

2.3.3 Multiple imputation

Multiple imputation (MI), first proposed by Rubin (1987) [18], is a method for filling in

the missing values multiple times by simulating from an appropriate model. The aim

of imputing multiple times is to allow for the uncertainty associated with the imputed

values due to the fact that the imputed values are sampled draws for the missing values

instead of the actual values. This uncertainty is taken into account by adding between-

imputation variance to the average within-imputation variance.

Multiple imputation method can be summarised in three steps as

1. Imputation step: A sequence of T imputed data sets are obtained by replacing

each missing value by a set of T ≥ 2 imputed values that are simulated from an

appropriate distribution or model.
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2. Analysis step: Each of the T data sets are then analysed as a completed data

set using the full data analysis method.

3. Combination step: The results obtained in the analysis step are combined for

inference using Rubin’s rules [18].

We now describe Rubin’s rules for estimating parameter θ. After analysing T imputed

data sets, we have T estimates of θ, denoted here as θ̂1, θ̂2, . . . , θ̂T , with their asso-

ciated variance estimates V̂ar(θ̂1), V̂ar(θ̂2), . . . , V̂ar(θ̂T ), respectively. As described by

Rubin [18], the combined estimate of θ can be calculated as

θ̂MI =
1

T

T∑

t=1

θ̂t.

The variance of this combined estimator has two parts: within-imputation variance

and between-imputation variance. The average within-imputation variance, denoted

by W̄MI , and the between-imputation variance, denoted by BMI , are calculated as,

respectively,

W̄MI =
1

T

T∑

t=1

V̂ar(θ̂t) and BMI =
1

T − 1

T∑

t=1

(
θ̂t − θ̂MI

)2
.

Then the total variability of θ̂MI, denoted by σ2
MI, is estimated by

σ̂2
MI = W̄MI + (1 + T−1)BMI ,

where the term (1 + T−1) is an adjustment for finite T , the number of imputations.
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MI produces valid inferences in general under MAR, provided that the imputation model

is correctly specified. One advantage of MI is that it can provide consistent estimates

with valid confidence interval with a low number of imputations [19]. However, it is

recommended to use a higher number of imputations for a precise estimate by reducing

the Monte-Carlo error, leading to a reduction in standard error of the estimate. One

important feature of MI is that the imputation model and the analysis model do not

have to be the same. However, in order for Rubin’s rules to be valid, in general, the

imputation model needs to be compatible or congenial with the analysis model in the

sense that the imputation model has to contain the analysis model [20]. There may be

two possible kinds of uncongenial models. First, the imputation model is simpler than

the analysis model. For example, the imputation model is linear, but the analysis model

includes interactions and non-linearities. In this situation, Rubin’s variance formula is

invalid and arguably more importantly the parameter estimates from the analysis model

are not consistent. Second, the imputation model is richer than the analysis model. For

example, the imputation model uses auxiliary variables that are not involved in the

analysis model. In this case, the variability of the MI estimator may be overestimated

by Rubin’s variance formula.

There are at least four different types of MI that have been used in CRTs [11]. These are

standard MI, also known as single-level MI, which ignores clustering in the imputation

model, fixed effects MI which includes a fixed effect for each cluster in the imputation

model, random effects MI where clustering is taken into account through a random

effect for each cluster in the imputation model, and within-cluster MI where standard

MI is applied within each cluster. From now, we refer to random effects MI as multilevel

multiple imputation (MMI).

42



Chapter 2. Missing Data in CRTs

In the case of missing continuous outcome in CRTs, Andridge [10] showed that the true

MI variance of group means are underestimated by single-level MI, and are overestimated

by fixed effects MI. She also showed that MMI is the best among these three methods

and recommended its use for practitioners. DiazOrdaz et al. [21] showed that for

bivariate outcomes MMI gives coverage rate close to nominal level, whereas single-level

MI gives low coverage and fixed effects MI gives overcoverage.

Gomes et al. [22] investigated the performance of MMI in cost-effectiveness analy-

sis (CEA) compared to single-level MI and CRA. In their study, missingness was in

both cost and outcome variables, but covariates were fully observed. They assumed

that the error terms of the imputation models for costs and outcomes follow a bivari-

ate normal distribution; and, in addition, the cluster-specific random effects for costs

and outcomes follow a bivariate normal distribution. Different scenarios of missingness

were considered under MCAR, MAR and MNAR. They also considered both cluster-

level and individual-level covariates that predicted missing values in cost and outcome

variables. They concluded that the point estimates of cost-effectiveness and standard

errors using MMI were close to those estimates using fully observed data, under MAR

and MNAR, compared to single-level MI and CRA. However, it is not clear whether the

CRA was adjusted for the fully observed covariates. Under MCAR, the estimates of

cost-effectiveness for each approach were similar to those from the fully observed data.

DiazOrdaz et al. [23] also presented MMI as a better approach for handling missing

values in CEAs compared to single-level MI and CRA. The study was illustrated with

CEAs that use data from CRTs with missingness in both cost and outcome variables.

They considered bivariate normal distribution to represents random cluster effects for
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cost and outcome variables. The incremental cost, incremental quality-adjusted life-

years and incremental net benefit were estimated for each approach and compared. The

results showed that the estimates obtained using CRA are biased.

Taljaard et al. [17] examined the performance of MI for missing continuous outcomes

in CRTs in a simple setup where there is no covariates except intervention indicator.

They used standard MI and MMI. They also considered the Approximate Bayesian

Bootstrap (ABB) procedure, proposed by Rubin and Schenker [24], as non-parametric

MI. In ABB, sampling from the posterior predictive distribution of missing outcomes is

approximated by first generating a set of plausible contributors drawn with replacement

from the observed data, and then imputed values are drawn with replacement from the

possible contributors. Two types of ABB in CRTs investigated were pooled ABB and

within-cluster ABB, where the set of possible contributors are sampled from all observed

values across the clusters in each intervention group or from observed values in the same

cluster, respectively. They showed that none of these four MI procedures tend to yield

better power compared to the power of adjusted t−test using no imputation or cluster

mean imputation under MCAR. In the case of missing outcome under MAR in non-

clustered trials, Groenwold et al. [15] showed that CRA with covariate adjustment

and MI give similar estimates so long as the same functional form of the same set of

predictors of missingness are used.

In the case of missing binary outcomes in CRTs, Ma et al. [25] examined within-cluster

MI, fixed effects MI and MMI under CDM mechanism in CRTs. They showed that

all these strategies give similar performance in terms of bias with low percentages of

missing data or with small value of ICC. With high percentage of missing data, they
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concluded that within-cluster MI underestimated the variance of the intervention effect

which result in inflated Type I error rate. In two subsequent studies, Ma et al. [26, 27]

compared the performance of GEE and RELR with missing binary outcomes using

standard MI and within-cluster MI. Results showed that GEE performs well when using

standard MI and the variance inflation factor (VIF) is less than 3; and using within-

cluster MI when VIF ≥ 3 and cluster size is at least 50. Ma et al. [27] concluded

that RELR does not perform well using either standard MI or within-cluster MI. Caille

et al. [28] compared different MI strategies through a simulation study for handing

missing binary outcomes in CRTs assuming CDM. They showed that MMI with RELR

and single-level MI with standard logistic regression give better inference for intervention

effect compared to CRA in terms of bias, efficiency and coverage.

2.4 Outline of the thesis

In this thesis, we will review the literature in greater detail and evaluate the methods

for each of the three outcomes types in CRTs, where outcomes are missing under CDM

mechanism. Part-II consists of three chapters, and deals with continuous outcomes.

Part-III has two chapters and deals with binary outcomes. Part-IV deals with time-to-

event outcomes. Part-V summarises the findings of this thesis and discusses possible

extensions and future work.
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Continuous Outcomes



Chapter 3

Review of Analysis Methods with Full

Data

In this chapter, we discuss the terminology and define the necessary notation to be

used in the next two chapters for continuous outcomes, and describe the methods for

handling missing continuous outcomes in CRTs. Section 3.1 defines the notation for

the variables involved. In Section 3.2 and Section 3.3, we describe standard t−test

and adjusted t−test for testing intervention effect in CRTs with full data. Section 3.4

explains LMM as the individual-level analysis. In Section 3.5, we conclude the chapter

by outlining what we will investigate in the next two chapters for continuous outcomes.
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3.1 Notations

Consider a two arm CRT. Let Yijl be a continuous outcome for the lth (l = 1, 2, . . . ,mij)

individual in the jth (j = 1, 2, . . . , ki) cluster of the intervention group i (i = 0, 1), where

i = 0 corresponds to control group, i = 1 corresponds to active intervention group.

Let each outcome Yijl be generated by a linear mixed model (LMM)

Yijl = µi + δij + εijl, (3.1)

where µi is the mean of the ith intervention group and δij ∼ N(0, σ2
b ) independently of

εijl ∼ N(0, σ2
w). Then Ejl(Yijl) = µi, Var(Yijl) = σ2

b +σ2
w(= σ2), and Cov(Yijl, Yijs) = σ2

b

for l 6= s, where σ2
b and σ2

w denote the between-cluster variability and the within-

cluster variability, respectively, and σ2 denotes the total variance. The quantity µ1−µ0

represents the size of the intervention effect. Note that model (3.1) does not contain

any baseline covariates. We will consider baseline covariates in the following chapters.

In the following two sections we explain the standard t−test and adjusted t−test in the

absence of missing data.

3.2 Standard t−test

In the cluster-level analysis methods, the standard t−test for two independent samples

(here referred to as cluster-level t−test) is the most commonly used method to compare

the means of the control group and intervention group. Suppose Ȳij is the mean of
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outcome Yijl in the (ij)th cluster, defined by,

Ȳij =
1

mij

mij∑

l=1

Yijl.

Assuming Ȳij follows normal distribution with mean µi(i = 0, 1) and common variance

σ2
c , a test statistic for the null hypothesis of no intervention effect, symbolically H0 :

µ1 = µ0, is given by

t =
µ̂1 − µ̂0

S
√

1
k0

+ 1
k1

∼ t(k0+k1−2), (3.2)

where µ̂i is the estimated mean of the ith intervention group and S2 is the pooled

estimate of the common variance σ2
c computed as, respectively,

µ̂i =
1

ki

ki∑

j=1

Ȳij and S2 =

1∑

i=0

ki∑

j=1

(
Ȳij − µ̂i

)2

k0 + k1 − 2
.

Note that, in the calculation of µ̂i, equal weights are given to the cluster means ignoring

the variation in cluster sizes. The validity of this test depends on the underlying as-

sumption Ȳij ∼ N (µi, σ
2
c ) for i ∈ {0, 1}, that is, cluster means are normally distributed

with mean depending on i (intervention group index) and with common variance across

the intervention groups. The normality assumption is guaranteed by the central limit

theorem if the cluster sizes are sufficiently large. Also it has been shown by simulation

that the t−test is robust in terms of deviations from normality when the intervention

groups have the equal number of clusters, even for small number of cluster [5]. Under

the null hypotheses, the assumption that the variance is constant across the interven-

tion groups is guaranteed by the random allocation of clusters between the intervention

groups [5].
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3.3 Adjusted t−test

The adjusted t−test, proposed by Donner and Klar (2000) [2], is an alternative approach

to test the intervention effect for quantitative outcomes using individual-level data. This

test is a simple extension of standard t−test.

Let Mi =
∑ki

j=1mij be the total number of individuals in the ith intervention group.

Also let M =
∑1

i=0Mi and K =
∑1

i=0 ki be the total number of individuals and the

total number of clusters, respectively, in the study. Then assuming Yijl is normally

distributed with mean µi and variance σ2 = σ2
b + σ2

w, a test for H0 : µ1 = µ0 based on

standard t−test adjusted for intraclass correlation is given by [2]

tA =
µ̃1 − µ̃0

ŜE(µ̃1 − µ̃0)
∼ tK−2 (3.3)

where

µ̃i =
1

Mi

ki∑

j=1

mij∑

l=1

Yijl =

∑ki
j=1mijȲij

Mi

, i = 0, 1

is the estimated mean of the ith intervention group, which is calculated by taking the

cluster size as weight for each cluster mean, and

ŜE(µ̃1 − µ̃0) =

√
S2
P

(
V̂IF1

M1

+
V̂IF0

M0

)
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is the estimated standard error of (µ̃1 − µ̃0), where S2
P = S2

w +S2
b is the pooled estimate

of total the variance σ2 = σ2
b + σ2

w and V̂IFi = 1 + (Ai − 1)ρ̂ is the variance inflation

factor for intervention group i (i = 0, 1) [29] with Ai =
∑ki

j=1m
2
ij/Mi and

ρ̂ =
MSC−MSW

MSC + (m0 − 1)MSW
,

where MSW and MSC are the within-cluster mean square error and between-cluster

mean square error, respectively, and m0 =
(
M −∑1

i=0Ai
)
/(K − 2). An equivalent

expression for ρ̂ can be written as ρ̂ = S2
b /(S

2
w+S2

b ), where S2
b = (MSC−MSW)/m0 and

S2
w = MSW are the analysis of variance (ANOVA) estimates of σ2

b and σ2
w, respectively,

and

MSW =
1

M −K
1∑

i=0

ki∑

j=1

mij∑

l=1

(
Yijl − Ȳij

)2

and

MSC =
1

K − 2

1∑

i=0

ki∑

j=1

mij

(
Ȳij − µ̃i

)2
.

3.4 Linear Mixed Model

The linear mixed model (LMM) takes into account between-cluster variability using

cluster-level effects which are assumed to follow a specified probability distribution.

The parameters of that distribution are estimated using maximum likelihood methods

together with intervention effect and other covariates effects. However, the variances of

the fixed effect parameters estimates, which are calculated based on their asymptotic

distributions, are known to be underestimated for small sample size [30]. In practice, for

testing hypotheses about fixed-effects parameters, the resulting downward bias is often
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handled by using approximate t−statistic and F−statistic [31]. An approximate test can

be obtained by approximating the distribution of the test-statistics by a t−distribution.

Satterthwaite [32] proposed an approximation, known as Satterthwaite’s approximation,

to calculate the degrees of freedom of the t−distribution. For testing hypotheses of

the form H0 : Lβ = 0, where β is a vector of fixed-effects parameters and L is any

known matrix, Kenward and Roger [30] suggested a scaled Wald statistic as well as an

F approximation of its sampling distribution that performs well for small sample size.

The suggested statistic uses an adjusted estimate of the variance-covariance matrix that

has minimum bias due to small sample size. The numerator degrees of freedom of the

approximate F−distribution equals rank(L) and the denominator degrees of freedom is

calculated via a Satterthwaite-type approximation [31]. As far as we are aware no study

has been done to use these two approximations in CRTs. Both these approximation

are applicable for LMM and related multivariate normally based models [33]. Kenward-

Roger’s approximation essentially recovers Satterthwaite’s approximation when there is

only one fixed effect in the model [30].

3.5 Summary

In Chapter 4, we investigate (a) the impact of cluster mean imputation for missing

continuous outcome values on the variance components estimates, and (b) the impact

of small number of clusters in each intervention groups on the validity of LMM with full

data, CRA and cluster mean imputation.
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Chapter 5 is a published paper that investigates the performance of cluster-level anal-

yses and individual-level analysis under CDM in continuous outcomes in terms of bias,

average estimated standard error and coverage rate.
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Cluster Mean Imputation

This chapter investigates the impact of cluster mean imputation for missing continuous

outcomes on the variance components estimates. In addition, it investigates the impact

of small number of clusters in each intervention group on the validity of LMM analysis

with full data, CRA and cluster mean imputation. Section 4.1 explains cluster mean

imputation method for handling missing outcomes in CRTs. Section 4.2 describes two

different examples of MCAR and one example of MAR for missing outcomes in the

context of CRTs. In Section 4.3, we investigate analytically the validity of the ANOVA

estimators of the variance components with cluster mean imputation for missing con-

tinuous outcomes. Section 4.4 describes a simulation study and presents the results to

support the derived analytical results in Section 4.3. We compare analytically cluster-
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level t−test, adjusted t−test and LMM under balanced CRT in Section 4.5. In Section

4.6, we conduct another simulation study to investigate the impact of CRA, cluster

mean imputation for missing outcomes on the validity and power of cluster-level t−test,

adjusted t−test and LMM under MCAR and MAR. Section 4.7 concludes this chap-

ter with some discussion. Note that in this chapter we do not consider any baseline

covariate except the intervention indicator.

4.1 Cluster mean imputation

Suppose the outcome variable is partially observed. In cluster mean imputation, missing

continuous outcomes in each cluster are replaced by the observed mean calculated using

the observed values of that cluster. Define an indicator variable Rijl such that

Rijl =





1, if Yijl is observed

0, if Yijl is missing.

(4.1)

Let Ȳ obs
ij be the observed mean of the (ij)th cluster calculated as

Ȳ obs
ij =

1

Wij

mij∑

l=1

RijlYijl,
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where Wij =
∑mij

l=1 Rijl is the number of observed outcomes in the (ij)th cluster. The

observed cluster mean imputation results in a complete dataset Y∗ = (Y ∗ijl) such that

Y ∗ijl =





Yijl, Rijl = 1

Ȳ obs
ij , Rijl = 0,

(4.2)

where ∗ refers to the completed data through cluster mean imputation. Then the im-

puted cluster means (Ȳ ∗ij) are identical with the observed cluster means (Ȳ obs
ij ) due to

cluster mean imputation.

Taljaard et al. [17] investigated Type I error and power of the adjusted t−test for

intervention effect, considering balanced CRT, using cluster mean imputation under

MCAR. They found that cluster mean imputation yields acceptable Type I error and

suggested it may be a good approach for missing outcome data in CTRs. However,

it might give lower power compared to other imputation procedures when the cluster

sizes are small and cluster follow-up rates are varied highly. Moreover, they did not

consider the consequence of this imputation to the parameter estimates of within-cluster

variance and between-imputation variance. One might have interest to the estimates

of the variance components as well. Furthermore, they did not mention any advantage

of using adjusted t−test over cluster-level t−test and LMM using CRA in the case of

balanced CRTs with no covariates except intervention indicator.
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4.2 Missingness mechanism in CRTs

In CRTs, the missingness of an individual’s outcome may depends on the characteristics

of the individual, intervention and cluster or the other individuals of the same cluster.

Let Yij = (Yij1, Yij2, · · · , Yijmij)′ be the vector of mij values that were intended to be

observed in the jth cluster of the ith intervention group. Assume that Yij is partially

observed. The missingness mechanism for an outcome Yijl can be represented by the

conditional probability P (Rijl = 0|Yij). Then

• Data are said to be MCAR if

P (Rijl = 0|Yij) = P (Rijl = 0) ∀i, j, l. (4.3)

For example, in a trial of a weight reduction program, a measurement may be

missing due to running out of batteries in the weighing scale. In this case, the

missingness mechanism is plausibly independent of both the intervention and the

outcomes.

Let πijl be the probability that individual l in the jth cluster of the ith intervention

group will have their outcome observed. Then

Rijl ∼ Bernoulli(πijl).

In CRTs, one possibility of MCAR could be that each cluster has the same follow-

up rate (here referred to as MCAR1) regardless of the intervention group. Another

possibility could be that cluster follow-up rates vary randomly and independently
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of the intervention groups and Yij (here referred to as MCAR2). If π (0 < π < 1)

is the constant follow-up rate in each cluster and if πij (0 < πij < 1) is the follow-

up rate for the (ij)th cluster which varies randomly and independently of the

intervention group and Yij, then data are said to be

MCAR1 if πijl = π ∀i, j, l (4.4)

and

MCAR2 if πijl = πij ∀i, j, l (4.5)

• Data are said to be MAR if

P (Rijl = 0|Yij) = P (Rijl = 0|Yobs
ij ) ∀i, j, l (4.6)

where Yobs
ij denotes the vector of observed outcomes in the jth cluster of the

ith intervention group. Consider a trial of systolic blood pressure (SBP) control

where a measurement on SBP may be missing depending on whether an individual

receives intervention in a sense that individuals in the intervention group are

more likely to have observed SBP measurement. One of the reasons may be that

individuals in the intervention group are usually enthusiastic to check their SBP

level. Therefore, after conditioning on intervention group, missingness in SBP

measurement is independent of the value of SBP measurement. An example of an

MAR mechanism could be

P (Rijl = 0|Yij) = 1− πi ∀i, j, l (4.7)
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where πi(0 < πi < 1) is the constant follow-up rate in the ith intervention group.

In this example, since missingness only depends on the intervention groups but

not on the outcome, it is essentially an example of MCAR within each intervention

group.

4.3 Validity of S2
w and S2

b with cluster mean imputation

This section investigates the unbiasedness of the ANOVA estimators of variance com-

ponents, within-cluster variance (σ2
w) and between-cluster variance (σ2

b ), with cluster

mean imputation when outcomes are missing under MCAR or MAR mechanism given

in equations (4.4) and (4.7), respectively. For simplicity, we restrict our attention to

balanced CRTs without any covariates except intervention indicator.

Considering the model as given in equation (3.1), the mean of (ij)th cluster can be

written as

Ȳij =
1

m

m∑

l=1

Yijl

= µi + δij +
1

m

m∑

l=1

εijl

= µi + δij + ε̄ij.

and the mean of the ith intervention group is

Ȳi =
1

k

k∑

j=1

Ȳij.
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The variance of Ȳij and Ȳi are then given by

Var(Ȳij) = σ2
b +

σ2
w

m
and Var

(
Ȳi
)

=
1

k

(
σ2
b +

σ2
w

m

)
.

Suppose the outcome Yijl is partially observed. Then the observed mean of the (ij)th

cluster can be calculated as

Ȳ obs
ij =

1

Wij

m∑

l=1

RijlYijl

= µi + δij +
1

Wij

m∑

l=1

Rijlεijl

= µi + δij + ε̄obsij ,

where Wij =
∑m

l=1Rijl is the number of observed outcomes in the (ij)th cluster. The

observed mean of the ith intervention group is then calculated as

Ȳ obs
i =

1

k

k∑

j=1

Ȳ obs
ij .

The conditional mean and variance of Ȳ obs
ij , given Wij, is

Ej(Ȳ
obs
ij |Wij) = µi for i ∈ {0, 1} (4.8)

Varj(Ȳ
obs
ij |Wij) = σ2

b +
σ2
w

Wij

for i ∈ {0, 1}. (4.9)

The unconditional variance of Ȳ obs
ij can be found by averaging over Wij as

Varj(Ȳ
obs
ij ) = Ej

[
Varj(Ȳ

obs
ij |Wij)

]
+ Varj

[
Ej(Ȳ

obs
ij |Wij)

]
, i ∈ {0, 1}.

(4.10)
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The second term of the right hand side of (4.10) becomes zero since, from equation

(4.8), Ej

(
Ȳ obs
ij |Wij

)
is constant for i ∈ {0, 1}. Then, plugging the result in equation

(4.9) into equation (4.10), we get

Varj(Ȳ
obs
ij ) = Ej

(
σ2
b +

σ2
w

Wij

)

≈ σ2
b +

σ2
w

Ej(Wij)
, i ∈ {0, 1}, (4.11)

using delta method which will be valid if Varj(Wij) is small.

Under MCAR1, defined in (4.4), Wij ∼ Bin(m,π) and, hence, E(Wij) = mπ,∀i, j.

Therefore, the variance of Ȳ obs
ij can be written as

Varj
(
Ȳ obs
ij

)
MCAR1

≈ σ2
b +

σ2
w

mπ
, i ∈ {0, 1} (4.12)

Under MAR, defined in (4.7), Wij ∼ Bin(m,πi) and, hence, E(Wij) = mπi,∀i, j. Then

the variance of Ȳ obs
ij can be written as

Varj
(
Ȳ obs
ij

)
MAR

≈ σ2
b +

σ2
w

mπi
, i ∈ {0, 1} (4.13)

In the case of balanced CRTs, the ANOVA estimators of σ2
w and σ2

b are, respectively,

given by

S2
w = MSW and S2

b = (MSC−MSW)/m,

60



Chapter 4. Missing Continuous Outcomes

where MSW and MSC are the within-cluster mean square error and between-cluster

mean square error, respectively, and can be written as

MSW =
1

2k(m− 1)

1∑

i=0

k∑

j=1

m∑

l=1

(
Yijl − Ȳij

)2

and

MSC =
m

2(k − 1)

1∑

i=0

k∑

j=1

(
Ȳij − µ̂i

)2
,

where µ̂i, the mean of the cluster means in the ith intervention group, is an estimate

of µi, the true mean of ith intervention group. With observed cluster mean imputation

for missing outcomes, the MSW can be rewritten as

MSW =
1

2k(m− 1)

1∑

i=0

k∑

j=1

m∑

l=1

(
Y ∗ijl − Ȳ ∗ij

)2

=
1

2k(m− 1)

1∑

i=0

k∑

j=1

m∑

l=1

[
Rijl

(
Yijl − Ȳ ∗ij

)2
+ (1−Rijl)

(
Ȳ obs
ij − Ȳ ∗ij

)2
]

=
1

2k(m− 1)

1∑

i=0

k∑

l=1

m∑

l=1

Rijl

(
Yijl − Ȳ obs

ij

)2
,

since the imputed cluster means (Ȳ ∗ij) are identical with the observed cluster means

(Ȳ obs
ij ) due to cluster mean imputation. Then

E (MSW) =
1

2k(m− 1)

1∑

i=0

k∑

j=1

E

[ m∑

l=1

Rijl

(
Yijl − Ȳ obs

ij

)2
]
. (4.14)
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The term Rijl

(
Yijl−Ȳ obs

ij

)2
is non-zero for Wij observed outcomes and zero for remaining

(m − Wij) missing outcomes. Therefore, the expectation of
∑m

l=1Rijl

(
Yijl − Ȳ obs

ij

)2

depends on Wij, which is a variable. Conditioning on Wij, we can write

E

[ m∑

l=1

Rijl

(
Yijl − Ȳ obs

ij

)2 ]
= E

[
E

( m∑

l=1

Rijl

(
Yijl − Ȳ obs

ij

)2∣∣∣Wij

)]

= E

[
E

( m∑

l=1

Rijl

(
εijl − ε̄obsij

)2∣∣∣Wij

)]
.

For a given (ij)th cluster,
∑m

l=1Rijl

(
εijl − ε̄obsij

)2
is the sum of Wij squared devia-

tions of εijl from its observed mean ε̄obsij . Therefore, E
(∑m

l=1Rijl

(
εijl − ε̄obsij

)2∣∣∣Wij

)
=

(Wij − 1)σ2
w, where σ2

w is the variance of εijl. Finally, we get

E
[ m∑

l=1

Rijl

(
Yijl − Ȳ obs

ij

)2]
= E(Wij − 1)σ2

w.

Plugging this result into equation (4.14), we get

E(MSW) =
1

2k(m− 1)

1∑

i=0

k∑

j=1

E(Wij − 1)σ2
w. (4.15)

Now with cluster mean imputation, the MSC can be written as

MSC =
m

2(k − 1)

1∑

i=0

k∑

j=1

(
Ȳ ∗ij − µ̂∗i

)2
,

where µ̂∗i is the mean of imputed cluster means Ȳ ∗ij in the ith intervention group. Then

E (MSC) =
m

2(k − 1)

1∑

i=0

k∑

j=1

E
(
Ȳ ∗ij − µ̂∗i

)2
. (4.16)
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We can write

Ȳ ∗ij − µ̂∗i = Ȳ ∗ij −
1

k

k∑

j=1

Ȳ ∗ij

=

(
1− 1

k

)
Ȳ ∗ij −

1

k

k∑

s6=j
s=1

Ȳ ∗is

=

(
1− 1

k

)
Ȳ obs
ij − 1

k

k∑

s6=j
s=1

Ȳ obs
is , (4.17)

since the imputed cluster means (Ȳ ∗ij) are identical with the observed cluster means

(Ȳ obs
ij ) due to cluster mean imputation. Then

E
(
Ȳ ∗ij − µ̂∗i

)2
= Var

(
Ȳ ∗ij − µ̂∗i

)
, since E

(
Ȳ ∗ij − µ̂∗i

)
= 0

=

(
1− 1

k

)2

Var
(
Ȳ obs
ij

)
+
k − 1

k2
Var

(
Ȳ obs
ij

)

=

(
1− 1

k

)
Var

(
Ȳ obs
ij

)
(4.18)

• Case I: MCAR1 missingness mechanism

Under MCAR1, defined in (4.4), Wij ∼ Bin(m,π) and, hence, E(Wij) = mπ,∀i, j.

Therefore, from (4.15), we have

E
(
S2
w

)
=
mπ − 1

m− 1
σ2
w 6= σ2

w.

From (4.18), we can write, using (4.12),

E
(
Ȳ ∗ij − µ̂∗i

)2
=

(
1− 1

k

)(
σ2
b +

σ2
w

mπ

)
,
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and plugging this result into (4.16), we get

E (MSC) =
2mk

2(k − 1)

(
1− 1

k

)(
σ2
b +

σ2
w

mπ

)

= mσ2
b +

1

π
σ2
w.

Then

E
(
S2
b

)
=

1

m

[
E (MSC)− E (MSW)

]

=
1

m

(
mσ2

b +
1

π
σ2
w −

mπ − 1

m− 1
σ2
w

)

= σ2
b +

(
1

π
− mπ − 1

m− 1

)
σ2
w

m
6= σ2

b .

Hence, S2
w and S2

b are biased estimators for σ2
w and σ2

b , respectively, with cluster

mean imputation under MCAR1. Since for m > 0 and 0 < π < 1,

mπ − 1

m− 1
< 1 and

1

π
− mπ − 1

m− 1
> 0.

Hence, S2
w is downward biased for σ2

w, whereas S2
b is upward biased for σ2

b . Also

since

mπ − 1

m− 1
=
π − 1

m

1− 1
m

→ π as m→∞

and

1

m

(
1

π
− mπ − 1

m− 1

)
=

(
1

mπ
− π − 1

m

m− 1

)
→ 0 as m→∞,

we deduce E (S2
w) ≈ πσ2

w and E (S2
b ) ≈ σ2

b for large m. Therefore, with large

cluster size, σ2
w is underestimated by a factor approximately equal to the constant

follow-up rate π and S2
b is approximately unbiased for σ2

b .
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• Case II: MAR missingness mechanism

Under MAR mechanism, defined in (4.7), Wij ∼ Bin(m,πi) and, hence, E(Wij) =

mπi,∀i, j. From equation (4.15), we can write

E (MSW) =
σ2
w

2k(m− 1)

k∑

j=1

[
E (W0j − 1) + E (W1j − 1)

]

=
σ2
w

2k(m− 1)

k∑

j=1

[
mπ0 +mπ1 − 2

]

=
m (π0 + π1)− 2

2(m− 1)
σ2
w.

Hence

E
(
S2
w

)
=
m (π0 + π1)− 2

2(m− 1)
σ2
w 6= σ2

w.

From (4.18), for i = 0, we can write

E
(
Ȳ ∗0j − µ̂∗0

)2
=

(
1− 1

k

)(
σ2
b +

σ2
w

mπ0

)
, using (4.13).

Similarly, for i = 1, we have

E
(
Ȳ ∗1j − µ̂∗1

)2
=

(
1− 1

k

)(
σ2
b +

σ2
w

mπ1

)
.
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Hence from (4.16), we can write

E (MSC) =
m

2(k − 1)

k∑

j=1

[
E
(
Ȳ ∗0j − µ̂∗0

)2
+ E

(
Ȳ ∗1j − µ̂∗1

)2 ]

=
mk

2(k − 1)

(
1− 1

k

)(
2σ2

b +
σ2
w

mπ0
+

σ2
w

mπ1

)

= mσ2
b +

(
π0 + π1
2π0π1

)
σ2
w

= mσ2
b +

1

π̃
σ2
w,

where π̃ is the harmonic mean of π0 and π1. Then

E
(
S2
b

)
=

1

m

[
E (MSC)− E (MSW)

]

=
1

m

(
mσ2

b +
1

π̃
σ2
w −

m (π0 + π1)− 2

2(m− 1)
σ2
w

)

= σ2
b +

(
1

π̃
− m (π0 + π1)− 2

2(m− 1)

)
σ2
w

m
6= σ2

b .

Therefore, S2
w and S2

b are biased estimators for σ2
w and σ2

b , respectively, with

cluster mean imputation under MAR. Since, for m > 0 and 0 < π0, π1 < 1, we

have 0 < π0 + π1 < 2 and π̃ < 1; and

m (π0 + π1)− 2

2(m− 1)
< 1 and

(
1

π̃
− m (π0 + π1)− 2

2(m− 1)

)
> 0.

Hence, S2
w is downward biased for σ2

w, whereas S2
b is upward biased for σ2

b . Also

since

m(π0 + π1)− 2

2(m− 1)
=

(π0 + π1)− 2
m

2− 2
m

→ π̄ as m→∞
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and

1

m

(
1

π̃
− m (π0 + π1)− 2

2(m− 1)

)
=

(
1

mπ̃
− (π0 + π1)− 2

2(m− 1)

)
→ 0 as m→∞,

we deduce E (S2
w) ≈ π̄σ2

w and E (S2
b ) ≈ σ2

b for large m. Therefore, with large

cluster size, σ2
w is underestimated by a factor approximately equal to the average

of the follow-up rates π0 and π1, and S2
b is approximately unbiased for σ2

b .

4.4 Simulation study I

A simulation study was conducted to investigate the consequence of cluster mean im-

putation to the unbiasedness of the ANOVA estimators of variance components. The

simulation study was designed to mimic data from a worksite obesity intervention trial

used by Taljaard et al. [17]. In this simulation study, we considered balanced CRTs.

4.4.1 Data generation

Data was generated using the model defined in equation (3.1). Parameters were fixed

as σ2 = 225, µ1 = µ2 = 75, and ρ = 0.1. Parameters that were varied in generating

the data include the number of clusters in each group k = (5, 10, 15, 20, 30) and the

cluster size m = (30, 50, 100, 250). The values of σ2
w and σ2

b were then determined by

the relation ρ = σ2
b/(σ

2
b + σ2

w). Missing data indicators Rijl were generated under the

two different examples of MCAR ( MCAR1 and MCAR2, defined in equations (4.4)

and (4.5), respectively ) and under MAR, defined in equation (4.7). For MCAR1, we
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set constant follow-up rate π = 0.7. For MCAR2, we set variable but independent

follow-up rates as πij ∼ Uniform(0.4, 1). For MAR, we fixed follow-up rates π0 = 0.6

in the control group and π1 = 0.8 in the intervention group. We chose follow-up rates

under MCAR2 and MAR so that the average follow-up rates in both situations were

equal to the constant follow-up rate under MCAR1. Missing values indicators were then

imposed on each generated full data to get the incomplete data.

4.4.2 Imputation and analysis

We imputed missing outcomes with cluster mean imputation. The resulting imputed

datasets were then used to evaluate S2
w and S2

b , the ANOVA estimators of σ2
w and σ2

b ,

respectively. Note that, the ANOVA estimators S2
w and S2

b with full data are unbiased

for σ2
w and σ2

b , respectively.

4.4.3 Results

The average estimates of the variance components over 1000 simulation runs are pre-

sented in Table 4.1. The average estimates of the within-cluster variance were much

lower compared to the true value under MCAR1, MCAR2 and MAR, as expected. As

we showed analytically, a better estimates of the within-cluster variance can be obtained

by dividing the within-cluster variance estimates in Table 4.1 by the average follow-up

rates. The between-cluster variance was overestimated for small cluster size. However,

the between-cluster variance estimates tended to be close to the true value as the cluster

size went up. These results support our derived analytical results in Section 4.3, where
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Table 4.1: Average estimates of within-cluster variance (σ2
w) and between-cluster vari-

ance (σ2
b ) over 1000 simulation runs using cluster mean imputation for missing outcomes

under (a) MCAR1 with π = 0.7 (b) MCAR2 with πij ∼ Uniform(0.4, 1), and (c) MAR
with π0 = 0.6 and π1 = 0.8. The true values are σ2

w = 202.5 and σ2
b = 22.5.

Within-cluster variance (σ2
w = 202.5) Between-cluster variance (σ2

b = 22.5)
m = 30 50 100 250 m = 30 50 100 250

(a) MCAR1
k = 5 139.92 140.59 141.34 141.78 27.32 25.22 24.44 23.32

10 139.77 140.99 141.15 141.60 27.78 25.89 23.88 22.80
15 139.89 140.53 141.15 141.62 27.65 25.71 24.37 23.13
20 139.75 140.69 141.41 141.56 27.97 25.93 24.21 23.14
30 139.65 140.62 141.17 141.52 27.97 25.49 24.22 23.28

(b) MCAR2
k = 5 140.20 141.14 141.58 141.49 28.41 26.45 24.15 23.08

10 139.93 140.73 141.42 141.32 28.25 26.24 23.97 23.36
15 139.71 140.46 140.88 141.69 28.47 26.51 23.92 23.19
20 139.65 140.93 140.97 141.56 28.57 26.14 24.44 23.32
30 139.58 140.62 141.23 141.62 28.32 26.05 24.35 23.10

(c) MAR
k = 5 139.65 140.67 141.37 141.73 27.58 25.42 24.53 23.31

10 139.94 140.84 141.23 141.53 27.89 25.84 23.92 22.77
15 140.05 140.70 141.13 141.57 27.87 25.82 24.43 23.15
20 139.59 140.62 141.38 141.55 28.27 26.07 24.34 23.19
30 139.59 140.71 141.15 141.52 28.17 25.61 24.26 23.32

we showed that the ANOVA estimators of the variance components are biased under

particular MCAR and MAR mechanisms with cluster mean imputation. For fixed m

and follow-up rates, the average variance components estimates across simulations re-

mained almost same as the value of k increases since the expected value of S2
w and S2

b

do not depend on k.
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4.5 Cluster-level t−test, adjusted t−test and LMM under balanced

CRT

We described the cluster-level t−test and adjusted t−test in general in Section 3.2 and

Section 3.3, respectively. In the case of balanced CRT with ki = k and mij = m, the

cluster-level t−test is given by

t =
µ̂1 − µ̂0

S
√

2/k
∼ t(2k−2). (4.19)

Referring to the Section 3.3, it can be shown that, for balanced CRT, µ̃i = µ̂i, m0 =

A0 = A1 = m, and V̂IF0 = V̂IF1 = 1 + (m − 1)ρ̂. Hence, the adjusted t−test is given

by

tA =
µ̂1 − µ̂0

ŜE (µ̂1 − µ̂0)
∼ t2k−2 (4.20)

where

ŜE (µ̂1 − µ̂0) =

√
2S2

P

km
[1 + (m− 1)ρ̂]

=

√
2

km
(S2

P + (m− 1)ρ̂S2
P )

=

√
2

km
(S2

w + S2
b + (m− 1)S2

b )

=

√
2

km
(S2

w +mS2
b )

=

√
2

km
MSC

= S
√

2/k,

which is exactly the same standard error of µ̂1 − µ̂0 used in test (4.19). This proves

that the adjusted t−test and the cluster-level t−test are identical for balanced CRTs.

In the case of missing outcomes in a balanced CRT, these two tests are identical with
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cluster mean imputation since after imputation the cluster sizes becomes constant and

the cluster means remain unchanged. Also the cluster-level t−test with CRA and with

cluster mean imputation are identical because cluster mean imputation does not change

the cluster means. Therefore, with a balanced design, the cluster-level t−test with

CRA is identical with cluster-level t−test and the adjusted t−test with cluster mean

imputation.

As we described in Section 1.3.2, LMM is used as an individual-level analysis for con-

tinuous outcomes. In LMM, the estimated mean of the ith intervention group, denoted

by µ̂lmm
i , is calculated as

µ̂lmm
i =

∑ki
j=1 vijȲij∑ki
j=1 vij

, where vij =
(
S2
b + S2

w/mij

)−1

In the case of balanced CRT, this mean is exactly the same as the intervention groups

means calculated in cluster-level t−test and adjusted t−test.

4.6 Simulation study II

A simulation study was conducted to investigate the impact of CRA and cluster mean

imputation for missing outcomes on the validity and power of cluster-level t−test, ad-

justed t−test and LMM under MCAR and MAR. We also investigate the power of these

approaches when cluster follow-up rates are highly variable. In this simulation study,

we considered balanced CRTs.
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4.6.1 Data generation

Data was generated using the model defined in equation (3.1). Parameters were fixed

as σ2 = 225, µ1 = µ2 = 75 to report Type I error and µ2 − µ1 = 5 to report power

values. Parameters that were varied in generating the data include the number of

clusters in each group k = (5, 10, 15, 20, 30), the cluster size m = (30, 50, 100, 250), and

the intraclass correlation coefficient ρ = (0.001, 0.01, 0.05, 0.1). The values of σ2
w and

σ2
b were then determined by the relation ρ = σ2

b/(σ
2
b + σ2

w). Missing data indicators

Rijl were generated under MCAR1 ( defined in equation (4.4)) with constant follow-up

rate π = 0.7, under MCAR2 (defined in equation (4.5)) with variable but independent

follow-up rates πij ∼ Uniform(0.4, 1), and under MAR (defined in equation (4.7)) with

follow-up rates π0 = 0.6 in the control group and π1 = 0.8 in the intervention group. We

chose follow-up rates under MCAR2 and MAR so that the average follow-up rates on

both situations were equal to the constant follow-up rate under MCAR1. To investigate

the power with higher variation among cluster sizes, we considered another example of

MCAR, here referred to as MCAR3, where cluster follow-up rates πij ∼ Uniform(0, 1)

and each cluster has at least one observed value.

4.6.2 Imputation and analysis

At first, each full dataset was used to test the hypothesis of no intervention, with

α = 0.05, for comparison purpose using both cluster-level analysis and individual-level

analysis. We used cluster-level t−test for cluster-level analysis, whereas z−test and

Wald t−test ( with Satterthwaite’s approximation for DF ) were used for individual-level
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analysis with LMM. After imposing missing values, the same analyses were performed

using CRA. We explored adjusted t−test only for CRA since after imputation the cluster

sizes become constant in which case this test is identical with the cluster-level t−test.

Then we imputed missing outcomes with observed cluster mean. The resulted imputed

datasets were then analysed using LMM to test the same hypothesis.

4.6.3 Results: Type I error

The cluster-level t−test and the adjusted t−test gave Type I error rate very close to

nominal level (0.05) using full data, CRA and cluster mean imputation (results not

presented here). This is expected because cluster-level t−test is robust in terms of

Type I error rate even with small number of clusters in each group [5] and, in the case

of balanced CRT, the cluster-level t−test and the adjusted t−test are equivalent. Also

Taljaard et al. [17] showed that adjusted t−test gives acceptable Type I error rate

using CRA and cluster mean imputation under MCAR. Because of this, the results of

Type I error rate of cluster-level t−test and adjusted t−test are not presented in this

thesis. Empirical Type I error rates of z−test and Wald t−test over 1000 simulation

runs using full data, CRA and cluster mean imputation under MCAR1 are presented

in Table 4.2. The z−test tended to have inflated Type I error rates for small number

of clusters (k ≤ 10) using full data, CRA and cluster mean imputation for missing

values. This is due to the fact that inferences for fixed effects using z−test are based on

their asymptotic distribution which is insufficient for smaller number of clusters in each

group. The error rates were close to the nominal level for higher number of clusters

(k ≥ 15) in each group. We used Satterthwaite’s approximation to calculate the degrees

of freedom of Wald t−test for intervention effect since it is the only fixed effect in our
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analysis. The Wald t−test gave Type I error rates close to the nominal level at all

considered values of k,m and ρ. Both tests resulted in acceptable Type I error rate

for k > 15 and so the results are not presented in the table for k > 15. Qualitatively

similar results of Type I error were observed under MCAR2 and MAR (see Table A1

and Table A2, respectively, in Appendix A.)

4.6.4 Results: power values

Empirical power estimates of the cluster-level t−test , adjusted t−test and Wald t−test

for intervention effect are shown in Table 4.3 using full data, CRA and cluster mean

imputation for missing outcomes under MCAR1. The power values of adjusted t−test

using full data are not presented because the cluster-level t−test and the adjusted

t−test are identical under balanced CRTs. Also, since the cluster-level t−test with

CRA is identical with cluster-level t−test and the adjusted t−test with cluster mean

imputation, the results of these tests are not presented under cluster mean imputation.

The power values for z−test were not calculated since it gives inflated Type I error rates

for small number of clusters in each group (see Table 4.2).

As expected, the power values using CRA went down compared to that of using full

data. All three considered tests tended to have similar power with CRA. It was not

surprising due to the fact that the variation among cluster sizes was very low with a

constant follow-up rate. The LMM with cluster mean imputation did not gain extra

power compared to that of LMM using CRA. The power values showed an increasing

trend at all values of ρ for higher values of k and m. However, they increased more

rapidly for higher values of k compared to that of higher values of m. It was expected
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as the power depends on the number of clusters in each group to a great extent than

on the cluster size [2]. Qualitatively similar results of power values are observed under

MCAR2 and under MAR (see Table A3 and Table A4, respectively). One of the reasons

for this might be the selection of follow-up rates in our simulation setup, where we chose

the follow-up rates in such a way that the average follow-up rates remained same under

MCAR1, MCAR2 and MAR. A large variation in cluster sizes could result in improved

power for adjusted t−test and LMM.

The empirical power values of cluster-level t−test, adjusted t−test and LMM using CRA

under MCAR3 are presented in Table 4.4. The adjusted t−test and LMM tended to

have higher power compared to the power of cluster-level t−test as the value of ρ went

down. This is due to the fact that cluster sizes are taken as weights in adjusted t−test,

and in LMM weights are a function of cluster size as well as variance components. On

the other hand, in cluster-level t−test, equal weights are given to the cluster means

ignoring the variation in cluster sizes. Therefore, in cluster-level t−test with a small

value of ρ, which measures the similarity between two observations in the same cluster,

cluster mean with very few observation may not accurately represent the true mean of

that cluster.
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Table 4.2: Empirical Type I error rate over 1000 simulation runs of LMM with the
z−test and the Wald t−test (using Satterthwaite’s approximation for degrees freedom)
for intervention effect using full data, CRA and cluster mean imputation under MCAR1.

k m ρ Full data CRA Cluster mean
imputation

z− Wald z− Wald z− Wald

test t−test test t−test test t−test
5 30 0.01 4.8 3.6 6.4 4.7 9.3 6.2

0.05 7.6 4.2 8.3 5.0 9.1 5.5
0.10 8.3 5.1 8.5 4.7 8.7 4.8

50 0.01 6.8 4.6 5.9 4.0 7.5 4.4
0.05 9.0 5.8 7.7 5.1 7.5 5.0
0.10 8.9 5.2 8.2 4.7 7.9 4.6

100 0.01 6.2 4.3 6.7 4.8 7.9 4.9
0.05 7.9 3.7 8.4 4.8 8.7 5.0
0.10 7.9 4.1 8.8 4.7 8.7 4.8

250 0.01 8.5 5.4 6.9 4.3 8.7 5.1
0.05 8.6 4.6 9.3 5.0 9.4 5.1
0.10 8.6 4.4 9.3 5.0 9.2 5.0

10 30 0.01 5.8 5.0 4.4 3.3 5.8 4.5
0.05 7.6 6.4 6.6 5.0 6.8 5.3
0.10 7.4 6.0 7.1 4.9 7.5 4.8

50 0.01 5.5 4.8 6.3 5.7 6.8 5.1
0.05 7.4 5.3 6.6 5.3 6.7 5.6
0.10 7.3 5.6 6.4 4.7 6.4 5.0

100 0.01 5.0 3.7 6.8 5.1 8.3 5.9
0.05 5.9 4.0 7.7 5.8 7.4 5.9
0.10 5.9 4.6 6.9 5.5 6.8 5.5

250 0.01 4.7 3.4 7.0 5.1 9.1 7.4
0.05 5.6 4.4 8.1 5.8 8.1 5.9
0.10 5.7 4.6 7.7 5.5 7.6 5.5

15 30 0.01 5.5 4.9 5.1 4.4 5.6 4.3
0.05 6.1 5.5 5.1 4.8 5.4 4.8
0.10 5.9 5.3 5.6 4.9 6.0 4.9

50 0.01 6.4 5.4 6.7 6.1 5.3 4.8
0.05 5.5 4.9 6.0 5.2 6.2 5.5
0.10 5.7 4.6 6.2 5.3 6.1 5.5

100 0.01 5.1 4.1 6.1 5.4 6.3 5.4
0.05 5.4 4.4 5.6 4.6 5.6 4.5
0.10 5.6 4.4 4.7 4.1 4.7 4.0
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Table 4.3: Empirical power values of the cluster-level t−test, adjusted t−test and LMM
with Wald t−test for intervention effect over 1000 simulation runs using full data, CRA
and cluster mean imputation for missing outcomes under MCAR1.

k m ρ Full data CRA LMM
Cluster LMM Cluster Adjusted LMM with

level approach level t−test approach cluster mean
t−test t−test imputation

5 30 0.01 63.8 60.9 49.4 49.4 48.9 49.4
0.05 38.0 38.2 33.4 33.9 33.6 33.4
0.10 25.6 26.6 23.5 23.6 23.6 23.5

50 0.01 76.6 74.8 66.7 67.1 67.6 66.6
0.05 42.9 39.6 39.3 39.8 39.7 39.3
0.10 28.3 25.0 27.4 28.0 27.4 27.4

100 0.01 90.5 89.2 83.2 83.4 85.7 83.2
0.05 48.7 46.8 43.3 43.2 43.3 43.3
0.10 28.7 29.3 27.7 27.6 27.9 27.7

250 0.01 97.3 97.2 95.5 95.7 95.0 95.5
0.05 54.2 51.7 51.9 51.8 51.8 51.9
0.10 31.6 33.0 31.4 31.6 31.4 31.4

10 30 0.01 92.0 93.4 83.5 83.9 83.0 83.4
0.05 68.2 71.0 62.9 62.6 62.9 62.9
0.10 50.7 51.2 47.2 46.8 46.9 47.2

50 0.01 98.4 97.7 95.6 95.4 94.6 95.6
0.05 76.4 77.6 70.7 70.7 70.6 70.7
0.10 52.1 54.8 49.5 48.9 49.7 49.5

100 0.01 99.7 99.8 99.4 99.4 99.5 99.4
0.05 82.7 84.1 80.1 80.1 80.3 80.1
0.10 57.3 58.9 55.0 55.0 54.9 55.0

20 30 0.01 99.8 100 98.6 98.5 99.1 98.6
0.05 94.3 96.0 90.4 90.4 90.7 90.4
0.10 80.0 80.9 75.8 74.9 75.4 75.8

50 0.01 100 100 100 100 100 100
0.05 97.0 97.1 96.3 96.0 96.2 96.3
0.10 84.0 86.1 83.0 82.8 82.9 83.0

100 0.01 100 100 100 100 100 100
0.05 98.4 98.9 97.8 98.1 97.8 97.8
0.10 87.3 87.0 86.1 86.1 86.1 86.1
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Table 4.4: Empirical power of the cluster level t−test, adjusted t−test and Wald t−test
using CRA under MCAR3.

k m ρ Cluster-level Adjusted LMM
t−test t−test approach

5 50 0.001 40.4 50.7 54.6
0.005 38.8 49.4 52.4
0.010 37.1 46.2 48.3
0.050 25.2 28.6 29.6
0.100 18.1 19.7 20.9

100 0.001 62.2 80.3 81.1
0.005 58.3 74.5 75.1
0.010 55.1 67.4 68.1
0.050 36.3 39.3 40.9
0.100 25.8 25.5 27.3

250 0.001 85.3 98.7 98.3
0.005 82.9 94.5 94.9
0.010 76.9 87.0 88.8
0.050 43.2 42.1 45.5
0.100 28.0 25.2 28.4

10 30 0.001 48.4 71.1 73.4
0.005 46.9 68.3 69.9
0.010 45.9 66.3 66.1
0.050 38.0 48.1 48.5
0.100 31.3 35.6 35.9

100 0.001 83.9 99.4 99.6
0.005 81.8 98.7 98.6
0.010 80.1 96.3 96.6
0.020 76.1 89.7 90.5
0.050 61.2 67.6 70.8
0.100 45.1 45.7 50.0

15 30 0.001 65.3 88.3 89.6
0.005 64.4 87.5 87.7
0.010 63.1 85.9 86.5
0.020 60.7 81.5 82.5
0.050 55.7 69.3 71.5
0.100 48.1 53.7 56.8
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4.7 Summary

First, this chapter showed analytically and through simulations that the ANOVA esti-

mators of the variance components are biased with cluster mean imputation. In the case

of large cluster size, within-cluster variance is underestimated by a factor approximately

equal to the average of the follow-up rates, and the between -cluster variance estimator

is approximately unbiased. Hence the estimate of total variance, which is the sum of

between-cluster variance and within-cluster variance, is also biased, and the estimate

of ICC is also biased since it is calculated as the proportion of total variability that is

attributed to between-cluster variability. Therefore, we do not recommend cluster mean

imputation, since the variance components and ICC are often of interest.

Second, this chapter showed analytically that cluster-level t−test and adjusted t−test

are identical under balanced CRTs. In the case of missing outcome in a balanced CRT,

cluster-level t−test with CRA is identical with cluster-level t−test and adjusted t−test

with cluster mean imputation.

Third, in LMM with small number of clusters in each intervention group, the Wald

t−test with Satterthwaite’s approximation for DF yielded acceptable type I error rate,

whereas the z−test tended to have inflated type I error. However, both tests gave

acceptable type I error with large number of clusters in each intervention groups. When

cluster sizes do not vary largely, cluster-level t−test, adjusted t−test, and LMM with

Wald t−test gave similar power with full data, CRA and cluster mean imputation under

the considered examples of MCAR and MAR. Therefore, in this situation, cluster-level

t−test could be an attractive option because of its simplicity compared to the other
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two test procedures. However, if the cluster sizes vary considerably, which partly could

arise because of varying follow-up rates between clusters, adjusted t−test and LMM

gave better power compared to that of cluster-level t−test using CRA at small values

of ICC.
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Chapter 5. Research Paper I

Summary of Research Paper I

Title: Missing continuous outcomes under covariate dependent missingness in cluster

randomised trials.

This research paper investigates the validity of unadjusted and adjusted cluster-level

analyses and LMM for analysing CRTs when the outcomes are continuous and only

outcomes are missing under CDM assumption. The methods of CRA and MI are used

to handle missing outcomes. We show that the unadjusted and adjusted cluster-level

analyses are in general biased unless the intervention groups have the same missingness

mechanism and the same covariate effects in the data generating model for the outcome,

which is arguably unlikely to hold in practice. The LMM using CRA adjusted for co-

variates such that the CDM assumption holds give unbiased estimates of intervention

effect regardless of whether the intervention groups had the same missingness mecha-

nism, and whether there is an interaction between intervention and baseline covariate in

the data generating model for the outcome, provided that such interaction is included

in the model when required.

We compare the results of LMM using CRA adjusted for covariates such that the CDM

assumption holds with the results of MI. We find that there is no gain in terms of bias

or efficiency of the estimates using MI over CRA adjusted for covariates, when both

approaches used the same functional form of the same set of baseline covariates and

the same modelling assumptions. In conclusion, in the absence of auxiliary variables,
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Chapter 5. Research Paper I

LMM using CRA adjusted for covariates such that the CDM assumption holds can be

recommended as the primary analysis approach for CRTs with missing outcome if one

is willing to make the CDM assumption for outcomes.
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Attrition is a common occurrence in cluster randomised trials which leads to missing outcome data. Two
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1 Introduction

In cluster randomised trials (CRTs), identifiable clusters of individuals such as villages, schools,
medical practices – rather than individuals – are randomly allocated to each of intervention and
control groups, while individual-level outcomes of interest are observed within each cluster. The
number of clusters and/or the cluster sizes in each intervention group might be different. CRTs with
equal number of clusters in each intervention group with constant cluster size are known as balanced
CRTs. One important characteristic of CRTs is that the outcomes of individuals within the same
cluster may exhibit more similarity compared to the outcomes of individuals in the other clusters,
which is quantified by the intraclass correlation coefficient (ICC), denoted by �. In practice, the value
of ICC typically ranges from 0.001 to 0.05 and it is rare for clinical outcomes to have ICC above
0.1.1 Small values of ICC can lead to substantial variance inflation factors and should not be
ignored.2,3 CRTs are being increasingly used in the fields of health promotion and health service
research. Reasons for such popularity include the nature of intervention that itself may dictate its
application at the cluster level, less risk of intervention contamination and administrative
convenience.4 It is well known that the power and precision of CRTs are lower relative to trials
that individually randomise the same number of individuals.2 In spite of this, the advantages
associated with CRTs are perceived by researchers to outweigh the potential loss of statistical
power and precision in some situations.

Attrition is a common problem for CRTs, leading to missing outcome data. This not only
reduces the statistical power of the study but may result in biased intervention effect estimates.5

Handling missing data in CRTs is complicated by the fact that data are clustered. Inadequate
handling of the missing data may result in misleading inferences.6 A systematic review7 revealed
that, among all CRTs published in English in 2011, 72% of trials had missing values either in
outcomes or in covariates or in both. Among them only 34% of CRTs reported how they handled
missing data. One of the reasons may be that the methodological development for dealing with
missing data in CRTs has been relatively slow in spite of the increasing popularity of CRTs.
Cluster mean imputation has been suggested as a valid approach for handling missing outcome
data in CRTs.8

The impact of missing data on estimation and inference of a parameter of interest depends on the
missing data mechanism, the method used to handle the missing data, and the choice of statistical
methods used for data analysis. In this paper, we study the validity of three analysis methods –
unadjusted cluster-level analysis, adjusted cluster-level analysis and linear mixed model (LMM) –
when there is missingness in the continuous outcome, and this missingness depends on baseline
covariates, and conditional on these baseline covariates, not on the outcomes itself. We compare the
performance of these methods on complete records and multiply imputed datasets. In addition, we
investigate the validity of cluster mean imputation, as proposed by Taljaard et al.,8 under the same
missingness assumption.

This paper is organised as follows. Section 2 presents a brief review of the approaches to the
analysis of CRTs with complete data. In Section 3, the assumed missingness mechanism for CRTs is
described. Section 4 describes methods of handling missing data in CRTs. In Section 5, we
investigate the validity of complete records analysis of CRTs. Section 6 describes a simulation
study and presents the results. We conclude the study with some discussion in Section 7.

2 Analysis of CRTs with complete data

We begin by describing the two broad approaches to the analysis of CRTs in the absence of missing
data. These are cluster-level analysis and individual-level analysis.
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2.1 Cluster-level analysis

Cluster-level analysis can be done in two ways: unadjusted cluster-level analysis and baseline
covariate adjusted cluster-level analysis. This approach can be explained as a two-stage process.
In the first stage of unadjusted analysis, a relevant summary measure of outcomes is calculated for
each cluster. Then, in the second stage, the cluster-specific summary measures of the control and
intervention groups obtained in the first stage are compared using appropriate statistical methods.
The most common one is the standard t-test for two independent samples (here referred to as cluster-
level t-test) with degrees of freedom (DF) equal to the total number of clusters in the study minus
two. The basis of using this test is that the resulting summary measures are statistically independent,
which is a consequence of the clusters being independent of each other. In the case of baseline
covariate adjusted analysis, an individual-level regression analysis is carried out at the first stage
including all covariates as explanatory variables, except for the intervention indicator, and ignoring
the clustering of the data.4,9 The individual level residuals from the first-stage model are then used to
calculate the cluster-specific summary measures for the control group and the intervention group,
which are then compared using cluster-level t-test in the second stage of analysis to evaluate the
intervention effect adjusted for baseline covariates. The main purposes of adjusting for baseline
covariates are to increase the credibility of the trial findings by demonstrating that any observed
intervention effect is not attributed to the possible imbalance between the intervention groups in
term of baseline covariates and to improve the statistical power.10

2.2 Individual-level analysis

In individual-level analysis, a regression model is fitted to the individual-level outcomes, allowing for
the fact that observations within the same cluster are correlated. LMM is widely used as individual-
level analysis for CRTs with continuous outcomes. The LMM takes into account between-cluster
variability using cluster-level effects which are assumed to follow a specified probability distribution.
The parameters of that distribution are estimated using maximum likelihood methods together with
intervention effect and other covariates effects. Generalised estimating equations are an alternative
approach, but for continuous outcomes and an exchangeable correlation matrix, estimates are
identical to those from LMM with a random intercept.11

The adjusted t-test, proposed by Donner and Klar,2 is an alternative approach to test the
intervention effect for quantitative outcomes, which involves calculating the mean of the
individual outcome values in each intervention group. These means are then compared using
a t-test in which the standard error (SE) is adjusted to account for the intracluster correlation.
The adjusted t-test and the cluster-level t-test are identical for balanced CRTs.

3 Missingness mechanism assumptions for CRTs

In this paper, we will consider the common setting where the outcomes are continuous, and only
outcomes are missing. In statistical analysis, if there are missing values, an assumption must be made
about the missingness mechanism, which refers to the relationship between missingness and the
underlying values of the variables in the data.12 According to Rubin’s framework,13 a missingness
mechanism can be classified as (i) missing completely at random (MCAR), where the probability of a
value being missing is independent of the observed and unobserved data; (ii) missing at random
(MAR), where conditioning on the observed data, the probability of a value being missing is
independent of the unobserved data; and (iii) missing not at random (MNAR), where the
probability of value being missing depends on both observed and unobserved data.
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In CRTs, an assumption that may sometimes be plausible is that missingness in outcomes
depends on covariates measured at baseline and conditional on these baseline covariates, not on
the outcome itself. We refer to this as covariate dependent missingness (CDM). For example, blood
pressure outcome data could be CDM if missingness in blood pressure measurement depends on
covariates (e.g. age, BMI or weight), but given these, not on the blood pressure measurement itself.
CDM is an example of a MAR mechanism when covariates are fully observed.

Let Yijl be a continuous outcome of interest for the lth ðl ¼ 1, 2, . . . ,mijÞ individual in the jth
ð j ¼ 1, 2, . . . , kiÞ cluster of the intervention group i ði ¼ 1, 2Þ, where i¼ 1 corresponds to control
group and i¼ 2 corresponds to intervention group. We assume that the Yijl follow a LMM given by

Yijl ¼ �i þ �iXijl þ �ij þ �ijl ð1Þ

where �i is a constant for ith intervention group, Xijl is a baseline covariate value for ðijl Þth
individual, �i is the effect of baseline covariate X on Y in intervention group i, �ij is the ðij Þth
cluster effect and eijl is the individual error term. We also assume that the cluster effect ð�ijÞ and
the individual error ð�ijlÞ are statistically independent, and E �ij

� �
¼ 0, Var �ij

� �
¼ �2b and

E �ijl
� �
¼ 0, Var �ijl

� �
¼ �2w, where �2b and �2w are the between-cluster variance and within-cluster

variance, respectively. Later we will sometimes make normality assumptions on these random
effects/random errors. Suppose the baseline covariate X has mean �x. Then

E �Yi

� �
¼ �i þ �i�x ¼ �i

where �Yi ¼ ð1=kiÞ
Pki

j¼1 ð1=mijÞ
Pmij

l¼1 Yijl ¼ ð1=kiÞ
Pki

j¼1
�Yij. Here, �Yi and �Yij are the mean outcome of

the ith intervention group and the ðij Þth cluster, respectively. With complete data, the cluster-level

analysis estimate of the intervention effect, say 	̂, is then calculated as

	̂ ¼ �Y1 � �Y2

With complete data, this estimator is unbiased for the true intervention effect, that is

Eð	̂Þ ¼ �1 � �2

Suppose there are some missing values for outcome Y. Define a missing data indicator Rijl such
that

Rijl ¼
1, if Yijl is observed

0, if Yijl is missing

�

Then
Pmij

l¼1 Rijl is the number of observed outcomes in the ðij Þth cluster. The CDM assumption can
then be expressed as

PðRijl ¼ 0jYij,XijÞ ¼ PðRijl ¼ 0jXijlÞ

where Yij ¼ ðYij1,Yij2, . . . ,Yijmij
Þ and Xij ¼ ðXij1,Xij2, . . . ,Xijmij

Þ are the vectors of the outcomes and
the baseline covariate values, respectively, in the ðij Þth cluster. In other words, the missingness of the
ðijl Þth individual’s outcome Yijl depends only on that individual’s baseline covariate value Xijl.
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4 Methods of handling missing data in CRTs

Common approaches for handling missing data in CRTs include complete records analysis (CRA),
single imputation and multiple imputation (MI). This section describes these approaches. In this
paper, we focused on CRA and MI since they are the most commonly used methods for handling
missing data.

4.1 CRA

In CRA, often referred to as complete case analysis, only individuals with outcome observed are
considered in the analysis, while individuals with missing outcome are excluded. It is widely used
because of its simplicity and is usually the default method of most statistical packages. It is well
known that CRA is valid if data are MCAR or if missingness is independent of the outcome,
conditional on covariates.12 Likelihood-based CRA is valid under MAR, if missingness is only in
the outcome and all predictors of missingness are conditioned on in the model.12 CRA is also valid
under MNAR mechanisms where missingness in a covariate is dependent on the value of that
covariate, but is conditionally independent of outcome.14,15

4.2 Single imputation

Single imputation imputes a single value for each missing outcome and creates a complete dataset. In
general, single imputation is not recommended, since estimates of uncertainty are biased
downwards, leading to anti-conservative inferences. However, for CRTs two choices for single
imputation are group mean imputation and cluster mean imputation.8 In the first case, missing
outcomes in each intervention group are replaced by the mean outcome calculated using complete
records pooled across clusters of that group. This approach reduces the variability among the
clusters means and, therefore, gives inflated Type I error.8 In cluster mean imputation, missing
outcomes in each cluster are replaced by the mean outcome calculated using complete records of
that cluster. This approach has been suggested as a good approach for handling missing outcomes
by Taljaard et al.8 They showed that cluster mean imputation gives Type I error close to nominal
level under MCAR, using adjusted t-test with balanced CRTs. However, under MAR or CDM,
adjusted t-test with cluster mean imputation may not be valid. We note that, with balanced CRTs,
the cluster-level t-test and the adjusted t-test are identical with cluster mean imputation since after
imputation the cluster sizes become constant and the cluster means remain unchanged by the
imputation. Consequently, our later results for the validity of cluster level t-test can also be
applied to infer the validity of results after using cluster mean imputation. One additional
problem with cluster mean imputation is that it distorts the estimates of between-cluster
variability and within-cluster variability, which often are of interest.

4.3 MI

MI, first proposed by Rubin,16 is a method of filling in the missing outcomes multiple times by
simulating from an appropriate model. The aim of imputing multiple times is to allow for the
uncertainty about the missing outcomes due to the fact that the imputed values are sampled
draws for the missing outcomes. A sequence of Q imputed datasets is obtained by replacing each
missing outcome by a set of Q � 2 imputed values that are simulated from an appropriate
distribution or model. Each of the Q datasets is then analysed as a completed dataset using a
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standard method. The results from the Q imputed datasets are then combined using Rubin’s rules.16

The combined inference is based on a t-distribution with DF given by


 ¼ ðQ� 1Þ 1þ
Q

Qþ 1

WMI

BMI

� �2

ð2Þ

where BMI is the between-imputation variance and WMI is the average within-imputation variance.
This formula for DF is derived under the assumption that the complete data DF, 
com, is infinite.

17

In CRTs, 
com is usually small as it is based on the number of clusters in each intervention group
rather than the number of individuals. For unadjusted cluster-level analysis and individual-level
baseline covariate adjusted cluster-level analysis, 
com is calculated as k1 þ k2 � 2 for statistical
inference using cluster-level t-test4 and adjusted t-test.8 An adjustment is made to the 
com to
adjust for cluster-level baseline covariates using cluster-level analysis. In this case, we reduce the
complete data DF from 
com ¼ k1 þ k2 � 2 to 
com ¼ k1 þ k2 � 2� p, where p is the number of
parameters corresponding to the cluster-level baseline covariates in the first-stage regression model.4

When 
com is small and there is a modest proportion of missing data, the repeated-imputation
DF, 
 (given in equation (2)), for reference t-distribution can be much higher than 
com, which is not
appropriate.17 In such a situation, a more appropriate DF, 
adj, proposed by Barnard and Rubin,17

is calculated as


adj ¼
1



þ

1


̂obs

� ��1
� 
com ð3Þ

where


̂obs ¼ 1þ
Qþ 1

Q

BMI

WMI

� ��1 
com þ 1


com þ 3

� �

com ð4Þ

At least four different types of MI have been used in CRTs.7 These are standard MI which ignores
clustering, fixed effects MI which includes a fixed effect for each cluster in the imputation model,
random effects MI where clustering is taken into account through random effects in the imputation
model and within-cluster MI where standard MI is applied within each cluster. Andridge18 showed,
with balanced CRTs under MCAR and MAR missingness in a continuous outcome with a single
covariate in addition to intervention indicator, that MI models that incorporate clustering using
fixed effects for cluster can result in a serious overestimation of variance of group means and this
overestimation is more serious for small cluster sizes and small ICCs. This overestimation of
variance results in a decrease in power, which is particularly dangerous for CRTs which are
often underpowered.18 MI using random effects for cluster gave slight overestimation of variance
of group means for very small values of �. Andridge also showed that using an MI model that
ignores clustering can lead to severe underestimation of the MI variance for large values of �
(>0.005). This underestimation of variance leads to inflated Type I error.

Taljaard et al.8 examined the performance of MI in a simple setup considering balanced CRTs
where there are no covariates except intervention indicator using standard regression imputation,
which ignores clustering, and random effects MI which does account for intraclass correlation. They
also considered the Approximate Bayesian Bootstrap (ABB) procedure, proposed by Rubin and
Schenker,19 as a non-parametric MI. In ABB, sampling from the posterior predictive distribution of
missing data is approximated by first generating a set of plausible contributors drawn with
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replacement from the observed data, and then imputed values are drawn with replacement from the
possible contributors. Two possible uses of ABB in CRTs are pooled ABB and within-cluster ABB,
where the set of possible contributors are sampled from all observed values across the clusters in
each group or from observed values in the same cluster, respectively. They showed that none of these
four MI procedures tend to yield better power compared to the power of adjusted t-test using no
imputation and cluster mean imputation under MCAR.

We note that in the case of missing outcome under MAR for individually randomised trials,
Groenwold et al.20 showed that CRA with covariate adjustment and MI give similar estimates so
long as the same set of predictors of missingness is used. It can be anticipated that similar result
holds for CRTs. An obvious advantage of CRA over MI is that it is much easier to apply, and
therefore in situations where they are equivalent, CRA is clearly preferable.

5 Validity of CRA of CRTs

In this section, we describe the unadjusted cluster-level analysis, baseline covariate adjusted cluster-
level analysis and LMM analysis methods using complete records, and derive conditions under
which they give valid inferences under the CDM assumption.

5.1 Unadjusted cluster-level analysis using complete records

The mean of the observed outcomes in the ith intervention group can be calculated as

�Yobs
i ¼

1

ki

Xki
j¼1

�Yobs
ij

where �Yobs
ij ¼ 1=

Pmij

l¼1 Rijl

� �Pmij

l¼1 RijlYijl is the observed mean of ðij Þ th cluster. The estimate of
intervention effect is given by

	̂obs ¼ �Yobs
1 �

�Yobs
2 ð5Þ

In Appendix 1, we show that

E 	̂obs
� �

¼ �1 � �2 þ �1 �x11 � �xð Þ � �2 �x21 � �xð Þ ð6Þ

and

Var 	̂obs
� �

¼
X2
i¼1

1

ki
�2i �

2
�xi1
þ �2b þ

�2w
�i

� �
ð7Þ

where �xi1 is true mean of the baseline covariate X in the ith intervention group among those

individuals with observed outcomes, �2�xi1 is the variance of the cluster-specific means of X among

those with observed outcomes and 1=�i ¼ E 1=
P

l Rijl

� �
. From equation (6), it follows that the

unadjusted cluster-level analysis using CRA will be unbiased if

�1 �x11 � �xð Þ ¼ �2 �x21 � �xð Þ, or equivalently ,
�1
�2
¼
�x21 � �x

�x11 � �x
ð8Þ

A sufficient condition for equation (8) to hold is that �1 ¼ �2 (i.e. there is no interaction between
baseline covariate and intervention group in the outcome model) and that the missingness
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mechanisms are the same in the two intervention groups, so that �x11 ¼ �x21. It can also be seen
from equation (6) that, when there is no missing data, �x11 ¼ �x21 ¼ �x, and hence the unadjusted
cluster-level analysis results in unbiased estimates of intervention effects even when �1 6¼ �2.

5.2 Adjusted cluster-level analysis using complete records

Recall that the first step of the adjusted cluster-level analysis involves fitting a regression model
for Y with X as covariate, but ignoring the intervention indicator and clustering of the data.
The residual �̂ijl is then given by

�̂ijl ¼ Yijl � Ŷijl

where Ŷijl ¼ � þ Xijl is the predicted outcome for the ðijl Þth individual based on the first-stage
model fit. The mean of the observed residuals of the ith group is given by

�̂�obsi ¼
1

ki

Xki
j¼1

�̂�obsij

where �̂�obsij ¼ 1=
Pmij

l¼1 Rijl

� �Pmij

l¼1 Rijl�̂ijl is the mean of observed residuals of the ðij Þth cluster. The
baseline covariate adjusted estimator of intervention effect is given by

	̂obsadj ¼
�̂�obs1 �

�̂�obs2 ð9Þ

We show in Appendix 2 that

E 	̂obsadj

� �
¼ �1 � �2 þ �1 �x11 � �xð Þ � �2 �x21 � �xð Þ þ  �x21 � �x11ð Þ ð10Þ

Hence, the estimator (9) will be unbiased if (i) �1 ¼ �2 and �x11 ¼ �x21, or if (ii)  ¼ �1 ¼ �2.
Equation (10) is derived (see Appendix 2) assuming fixed values of � and  instead of their
estimates. In practice, � and  are unknown and must be estimated by fitting the first-stage
regression model for the observed outcomes. We are not worried about the estimate of the
intercept parameter � since the expression (10) is independent of �. If  is estimated consistently,
then 	̂obsadj will be a consistent estimator of intervention effect when in truth  ¼ �1 ¼ �2. The
estimator of , say ̂, is calculated using complete records and will be unbiased (and therefore
consistent) if Rijl??YijljXijl. This is true only when the two intervention groups have the same
missingness mechanisms and have the same baseline covariate effects on outcome in the outcome
model. Therefore, assuming CDM, the baseline covariate adjusted cluster-level analysis is consistent
only if the two intervention groups have the same covariate effects on outcome in the outcome model
and the same missingness mechanisms. We also note that with no missing data �x11 ¼ �x21 ¼ �x,
hence, equation (10) guarantees that the adjusted cluster-level analysis, which assumes that the
covariate effect on outcome is the same in both groups, is unbiased, regardless of whether the
covariate effect is the same in the intervention groups.

The variance of the estimator (9) can be written as (see Appendix 2 for derivation)

Var 	̂obsadj

� �
¼
X2
i¼1

1

ki
�i � ð Þ

2�2�xi1 þ �
2
b þ

�2w
�i

� �
ð11Þ
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This shows that when �1 ¼ �2 and the missingness mechanisms are the same in the two
intervention groups, in order for the estimator ð55Þ to have minimum variance one should replace
the unknown  by an estimate of �1 ¼ �2 ¼ �.

5.3 LMM using complete records

Let Z be the intervention indicator which is zero for control group and is one for intervention group.
When it is assumed that the two intervention groups have the same covariate effects on outcome, we
fit a LMM with fixed effects of X and Z, and a random effect for cluster. Then the estimate of the
coefficient of Z will be the estimated intervention effect accounting for X.

If one thinks that the baseline covariate effects on outcome could be different in the two
intervention groups and there are missing outcome values, an interaction of X and Z must be
included in the model. This implies that the intervention effect varies with X. Then the estimate
of the intervention effect at the mean value of X is an estimate of the average intervention effect. Let
X� denote the empirically centred variable X� �X, where �X is the mean of X calculated using data
from all individuals. If the baseline covariate effects on outcome are assumed to be different in the
two groups, we fit a LMM, using complete records, with fixed effects of X�, Z and their interaction,
and a random effect for cluster. The estimate of the coefficient of Z will then be the estimated
average intervention effect. One may need to account for the centring step in the variance
estimation. We will investigate in the simulations whether ignoring this has any negative impact
on CI coverage.

In the general theory of LMM, the variances of the fixed effects parameter estimates, which are
calculated based on their asymptotic distributions, are known to be underestimated for small sample
sizes.21 In this paper, we used quantiles from t-distribution with DF k1 þ k2 � 2 rather than the
quantiles form the standard normal distribution to construct the confidence interval for the
intervention effect, as this has been used in other papers for individual-level analysis using mixed
models for CRTs.22,23

6 Simulation study

A simulation study was conducted to investigate the performance of unadjusted cluster-level
analysis, baseline covariate adjusted cluster-level analysis and LMM using CRA under baseline
CDM in outcomes. We also investigated whether there is any gain using MI over CRA. The
average estimate of intervention effect, its average estimated SE and coverage probability were
calculated and compared. We considered balanced CRTs, where the two intervention groups
have equal number of clusters ðki ¼ kÞ and constant cluster size ðmij ¼ mÞ.

6.1 Data generation and analysis

For each individual in the study a single covariate value X was generated independently as
X � Nð0, 1Þ. Since �2x ¼ 1, we can write the coefficient of X in equation (1) as �i ¼ �i�y, where �

2
y

is the total variance of Y within each intervention group and �i is the correlation coefficient between
Y and X in intervention group i. We fixed �2y ¼ 100, �1 ¼ 20 and �2 ¼ 25. Then the outcome Y was
generated using the model

Yijl ¼ �i þ �i�yXijl þ �ij þ �ijl
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where �ij � Nð0, ��2yÞ and �ijl � Nð0, ð1� �2i � �Þ�
2
yÞ. We chose the cluster size m¼ 30 for each

cluster. Parameters that were varied in generating the data include the number of clusters in each
group, k ¼ ð5, 10, 20, 30Þ and the unconditional ICC, � ¼ ð0:001, 0:05, 0:1Þ. The missing data
indicators Rijl under CDM assumption were generated, independently for each individual,
according to a logistic regression model

logit Rijl ¼ 0jYij,Xij

� �
¼ �i0 þ �i1Xijl

The intercept �i0 and slope �i1 were chosen so that Ejl Rijl

� �
¼ pi, where pi is the desired proportion of

observed values in intervention group i. The degree of correlation between missingness and baseline
covariate depends on the value of �i1. We used �11 ¼ �21 ¼ 1, which gives the odds ratio for having a
missing outcome ðYÞ is 2.72 associated with a one unit increase in the covariate ðXÞ value. Missing
data indicators were then imposed to each generated complete data to get the incomplete data.

Four possible scenarios were considered:

(1) �10 ¼ �20 ¼ �1 and �1 ¼ �2 ¼ 0:5: missingness mechanism is the same between the intervention
groups and there is no interaction between intervention group and baseline covariate in the
outcome model.

(2) �10 ¼ �1, �20 ¼ 0:5 and �1 ¼ �2 ¼ 0:5: missingness mechanism is different between the
intervention groups and there is no interaction between intervention group and baseline
covariate in the outcome model.

(3) �10 ¼ �20 ¼ �1 and �1 ¼ 0:4, �2 ¼ 0:6: missingness mechanism is the same between the
intervention groups and there is an interaction between intervention group and baseline
covariate in the outcome model.

(4) �10 ¼ �1, �20 ¼ 0:5 and �1 ¼ 0:4, �2 ¼ 0:6: missingness mechanism is different between the
intervention groups and there is an interaction between intervention group and baseline
covariate in the outcome model.

In the first and third scenarios, there was 30% missing outcomes in both the intervention groups.
In the second and fourth scenarios, there was 30% missing outcomes in the control group and 60%
missing outcomes in the intervention group. Each generated incomplete dataset was then analysed
using unadjusted cluster-level analysis, baseline covariate adjusted cluster-level analysis and LMM
using complete records. We included the interaction between intervention and covariate into the
LMM in the third and fourth scenarios, where the two intervention groups have different covariate
effects on outcome in the data-generating model for outcome.

The R package jomo24 was used to multiply impute each generated incomplete dataset using MI
with number of imputations 20. A random intercept LMM was used as the imputation model so that
the imputation model was correctly specified. We used 200 burn-in iterations and 10 iterations
between two successive draws after examining, respectively, the convergence of the posterior
distributions of the parameters estimates of the imputation model and the plots of their
autocorrelation functions. The completed datasets were then analysed using LMM. An
interaction between intervention and baseline covariate was included in both the imputation
model and the analysis model when the two intervention groups have different covariate effects
on outcome in the data-generating model. We always used restricted maximum likelihood
estimation method to fit the LMM. The Wald t-test with adjusted DF, given in equation (3), with

com ¼ 2ðk� 1Þ was used to test the null hypothesis of intervention effect. We had maximum 50
convergence warnings in 10,000 simulations when LMM was fitted using the R package lme4.25
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6.2 Results

Empirical average estimates of intervention effect, average estimated SEs and coverage probabilities
of nominal 95% confidence interval over 10,000 simulation runs for each of the four scenarios are
presented in Tables 1 to 4, respectively.

When the missingness mechanism is the same between the intervention groups and there is no
interaction between intervention and baseline covariate in the outcome model, both the unadjusted
and adjusted cluster-level analyses gave unbiased estimates of intervention effect with coverage
probabilities very close to the nominal level (see Table 1). However, these two methods gave
biased estimates of intervention effect if the two intervention groups had either different
missingness mechanisms or there was an interaction between intervention and covariate in the
outcome model or both (see Tables 2 to 4). In scenario 2, (two-stage) adjusted cluster-level
analysis was very slightly downwardly biased (see Table 2). Under scenario 2, the two
intervention groups have the same covariate effects ð�1 ¼ �2Þ but the missingness mechanism is
different between the intervention groups, implying �x11 6¼ �x21. However, although
Rijl??YijljXijl,Zi, Rijl 6??YijljXijl, where Zi is the intervention indicator. Therefore, the estimate of
regression coefficient ðÞ of the first-stage analysis using CRA was biased as the regression model
was fitted without considering Zi, the intervention indicator. Consequently, the second-stage
analysis gave slightly biased estimates of intervention effect. These results support our derived
conditions explained in Sections 5.1 and 5.2, respectively, for unadjusted and adjusted cluster-
level analyses to be unbiased using CRA, where we showed that these two methods are unbiased
only if the missingness mechanism is the same between the intervention groups and there is no
interaction between intervention and baseline covariate in the data-generating model for the
outcome. These results also imply that cluster mean imputation, as proposed by Taljaard et al.8

Table 1. Simulation results-missingness mechanism is the same between the intervention groups and there is no

interaction between intervention and baseline covariate in the data-generating model for outcome. Empirical average

estimates of intervention effect, average estimated SEs and coverage probabilities of nominal 95% confidence interval

over 10,000 simulation runs for unadjusted cluster-level analysis (CL(unadj)), baseline covariate adjusted cluster-level

analysis (CL(adj)) and linear mixed model (LMM), using CRA and MI. Monte Carlo errors for average estimates and

average estimated SEs are all less than 0.023 and 0.016, respectively. The true value of the intervention effect is 5.

Average Estimate Average estimated SE Coverage (%)

� k CL(unadj) CL(adj) LMM MI CL(unadj) CL(adj) LMM MI CL(unadj) CL(adj) LMM MI

0.1 5 4.98 4.99 4.99 4.98 2.31 2.21 2.23 2.19 95.2 95.1 95.2 96.3

10 5.01 4.98 5.00 4.99 1.66 1.59 1.60 1.59 95.1 95.3 95.3 95.5

20 4.99 4.99 4.99 4.99 1.18 1.14 1.14 1.14 94.9 95.0 94.9 94.8

30 5.01 5.00 5.01 5.01 0.97 0.93 0.93 0.93 95.0 95.0 94.9 95.0

0.05 5 5.00 4.98 5.00 5.00 1.88 1.76 1.78 1.76 95.2 95.1 95.6 96.2

10 5.01 5.00 5.01 5.01 1.35 1.28 1.28 1.26 95.1 95.2 95.1 95.4

20 5.01 5.00 5.01 5.01 0.96 0.91 0.91 0.90 95.0 95.0 95.1 95.0

30 4.99 4.99 4.99 4.99 0.79 0.75 0.74 0.74 95.0 95.0 95.0 95.0

0.001 5 4.98 4.98 4.99 4.99 1.34 1.18 1.31 1.35 95.2 95.1 96.2 99.6

10 5.01 5.00 5.01 5.01 0.96 0.85 0.90 0.93 95.1 95.1 96.8 97.8

20 4.99 4.99 5.00 5.00 0.69 0.61 0.63 0.64 94.8 94.9 96.2 96.7

30 5.00 5.00 5.00 5.00 0.56 0.50 0.51 0.52 95.1 95.3 96.2 96.8
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Table 3. Simulation results-missingness mechanism is the same between the intervention groups and there is an

interaction between intervention and baseline covariate in the data-generating model for outcome. Empirical average

estimates of intervention effect, average estimated SEs and coverage probabilities of nominal 95% confidence interval

over 10,000 simulation runs for unadjusted cluster-level analysis (CL(unadj)), baseline covariate adjusted cluster-level

analysis (CL(adj)) and linear mixed model (LMM), using CRA and MI. Monte Carlo errors for average estimates and

average estimated SEs are all less than 0.024 and 0.016, respectively. The true value of the intervention effect is 5.

Average Estimate Average estimated SE Coverage (%)

� k CL(unadj) CL(adj) LMM MI CL(unadj) CL(Adj) LMM MI CL(unadj) CL(Adj) LMM MI

0.1 5 4.46 4.44 4.97 4.97 2.31 2.22 2.25 2.22 94.3 94.3 95.0 96.4

10 4.50 4.49 5.01 5.02 1.66 1.59 1.61 1.60 93.7 93.6 94.7 94.8

20 4.48 4.48 5.00 5.00 1.19 1.14 1.15 1.15 92.5 92.6 94.9 94.9

30 4.49 4.49 5.00 5.00 0.97 0.93 0.94 0.94 91.3 91.2 94.7 94.7

0.05 5 4.45 4.43 4.96 4.97 1.88 1.76 1.81 1.80 94.0 93.7 95.3 97.1

10 4.51 4.49 5.01 5.01 1.36 1.28 1.30 1.29 93.7 93.4 95.0 95.5

20 4.50 4.50 5.01 5.01 0.97 0.91 0.92 0.92 91.9 91.6 94.8 94.8

30 4.50 4.50 5.01 5.01 0.79 0.75 0.76 0.75 90.4 89.8 94.6 94.6

0.001 5 4.48 4.46 4.99 4.99 1.34 1.18 1.35 1.39 93.4 93.5 98.1 99.4

10 4.50 4.49 5.02 5.01 0.96 0.85 0.93 0.96 92.3 91.6 96.9 97.9

20 4.49 4.49 5.00 5.00 0.69 0.61 0.65 0.66 88.9 87.2 96.3 96.8

30 4.48 4.48 4.99 4.99 0.56 0.50 0.52 0.54 84.9 81.6 95.6 96.3

Table 2. Simulation results-missingness mechanism is different between the intervention groups and there is no

interaction between intervention and baseline covariate in the data-generating model for outcome. Empirical average

estimates of intervention effect, average estimated SEs and coverage probabilities of nominal 95% confidence interval

over 10,000 simulation runs for unadjusted cluster-level analysis (CL(unadj)), baseline covariate adjusted cluster-level

analysis (CL(adj)) and linear mixed model (LMM), using CRA and MI. Monte Carlo errors for average estimates and

average estimated SEs are all less than 0.025 and 0.017, respectively. The true value of the intervention effect is 5.

Average Estimate Average estimated SE Coverage (%)

� k CL(unadj) CL(adj) LMM MI CL(unadj) CL(Adj) LMM MI CL(unadj) CL(Adj) LMM MI

0.1 5 3.83 4.94 5.01 5.01 2.44 2.32 2.34 2.28 93.2 95.1 95.2 97.0

10 3.81 4.94 5.03 5.03 1.76 1.67 1.68 1.66 89.9 95.4 95.2 95.5

20 3.78 4.91 5.00 4.99 1.25 1.19 1.19 1.19 84.2 94.9 94.8 94.8

30 3.79 4.93 5.01 5.01 1.02 0.98 0.98 0.98 79.1 95.4 95.3 95.4

0.05 5 3.77 4.90 4.98 4.98 2.04 1.90 1.94 1.92 91.7 94.9 95.7 98.3

10 3.78 4.90 5.00 4.99 1.48 1.38 1.38 1.36 87.5 95.0 95.0 95.8

20 3.76 4.92 4.98 4.98 1.05 0.98 0.98 0.97 79.4 95.2 95.1 95.1

30 3.77 4.92 4.99 4.99 0.86 0.80 0.80 0.80 70.7 94.8 94.6 94.7

0.001 5 3.77 4.89 5.00 5.00 1.58 1.39 1.54 1.60 89.4 95.1 98.3 99.7

10 3.76 4.89 4.99 4.98 1.14 1.01 1.06 1.10 82.1 95.0 97.3 98.5

20 3.78 4.91 5.00 5.00 0.81 0.72 0.74 0.76 68.8 95.2 96.4 97.3

30 3.78 4.92 5.00 5.00 0.66 0.59 0.60 0.61 56.1 94.9 95.8 96.5
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(described in Section 4.2), is not valid under CDM assumption unless the two intervention groups
have the same missingness mechanisms and there is no interaction between intervention and baseline
covariate in the outcome model. The bias in average intervention effect estimates could be in either
direction. But, in this paper, we always have downward bias in the reported intervention effect

Table 4. Simulation results-missingness mechanism is different between the intervention groups and there is an

interaction between intervention and baseline covariate in the data-generating model for outcome. Empirical average

estimates of intervention effect, average estimated SEs and coverage probabilities of nominal 95% confidence interval

over 10,000 simulation runs using unadjusted cluster-level analysis (CL(unadj)), baseline covariate adjusted cluster-

level analysis (CL(Adj)) and linear mixed model (LMM), using CRA and MI. Monte Carlo errors for average estimates

and average estimated SEs are all less than 0.025 and 0.018, respectively. The true value of the intervention effect is 5.

Average Estimate Average estimated SE Coverage (%)

� k CL(unadj) CL(adj) LMM MI CL(unadj) CL(Adj) LMM MI CL(unadj) CL(Adj) LMM MI

0.1 5 3.02 4.09 5.00 5.00 2.44 2.31 2.42 2.37 89.0 93.4 95.7 98.1

10 3.03 4.10 5.01 5.01 1.76 1.67 1.73 1.71 82.0 93.5 95.8 96.3

20 3.03 4.11 5.01 5.01 1.25 1.19 1.23 1.23 66.6 88.8 95.6 95.6

30 3.03 4.11 5.01 5.02 1.02 0.97 1.01 1.01 52.8 85.9 95.2 95.2

0.05 5 3.02 4.10 5.01 5.01 2.05 1.89 2.06 2.04 87.0 93.9 96.5 99.0

10 3.02 4.10 5.01 5.01 1.47 1.36 1.45 1.44 75.9 90.4 95.7 96.7

20 3.01 4.08 4.98 4.98 1.05 0.98 1.03 1.03 55.3 84.9 95.8 95.9

30 3.02 4.10 5.01 5.00 0.86 0.80 0.84 0.84 38.0 81.1 95.6 95.7

0.001 5 3.02 4.07 4.99 4.99 1.57 1.37 1.69 1.75 80.4 91.1 98.5 99.8

10 3.03 4.10 5.00 5.00 1.13 0.99 1.17 1.21 63.0 87.6 97.6 98.7

20 3.02 4.10 5.00 5.00 0.81 0.71 0.81 0.84 33.4 77.7 97.0 97.7

(continued)

Table 5. Comparison between the complete data DF ð
comÞ and the average estimates of adjusted DF ð
adjÞ, over

10,000 simulation runs, used by MI, when the two intervention groups have different missingness mechanisms and

different covariate effects on outcome in the data-generating model for outcome (scenario 4). The last two columns

show the upper 2.5% points of the t-distribution with 
com and 
adj DF, respectively.

� k 
com 
adj t
com
ð0:025Þ t
adj

ð0:025Þ

0.1 5 8 4.58 2.31 2.64

10 18 11.72 2.10 2.18

20 38 25.71 2.02 2.06

30 58 38.74 2.00 2.02

0.05 5 8 3.92 2.31 2.80

10 18 9.64 2.10 2.24

20 38 20.61 2.02 2.08

30 58 30.18 2.00 2.04

0.001 5 8 3.12 2.31 3.11

10 18 7.12 2.10 2.36

20 38 13.73 2.02 2.14

30 58 19.01 2.00 2.09

DF: degrees of freedom.
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estimates. This is because we considered a positive correlation between baseline covariate and
outcome in the data generation process, and a positive association between baseline covariate and
probability of missingness in outcomes. As a result, a large value of outcome has higher chance of
being missing compared to a low value of outcome. In our simulations the degree of bias was high if
the two intervention groups had different covariate effects on outcome and it goes up if, in addition,
the two intervention groups have different missingness mechanisms (see Tables 3 and 4). LMM and
MI gave unbiased estimates of intervention effect under all the four considered scenarios, provided
that an interaction of intervention and baseline covariate was included in the model to allow for
different covariate effects on outcome in the two intervention groups (scenario 3 and 4).

The LMM and MI had similar empirical average estimated SEs of the intervention effect
estimates. The LMM gave coverage probabilities close to nominal level except for very small �
and small k, where it showed slightly overcoverage. However, while LMM with 
com gave good
coverage, MI using 
adj gave overcoverage, and this can be attributed to it using a smaller DF. The
average estimates of 
adj, used by MI, over 10,000 simulations runs and 
com for scenario 4 are
presented in Table 5. Results showed that the estimates of 
adj are smaller compared to 
com.

7 Discussion and conclusion

In this paper, we aimed to investigate the validity of the unadjusted and adjusted cluster-level
analyses, and LMM for analysing CRTs, where the outcomes are continuous and only outcomes
are missing under CDM assumption. We used CRA and MI for handling the missing outcomes. The
contributions of the paper can be summarised as follows:

First, we found that both the unadjusted and adjusted cluster-level analyses are in general biased
using CRA unless there is no interaction between intervention and baseline covariate in the data-
generating model for outcome and the missingness mechanism is the same between the interventions
groups, which is arguably unlikely to hold in practice. Cluster-level analysis is used by many
researchers to analyse CRTs because of its simplicity. We therefore caution researchers that these
methods may commonly give biased inferences in CRTs with missing outcomes. However, we note
that these two methods are unbiased with full data, even when there is an interaction between
baseline covariate and intervention in the true data-generating model for outcome.

Second, cluster mean imputation has been previously recommended as a valid approach for
handling missing outcomes in CRTs. We found that cluster mean imputation gave invalid
inferences under CDM assumption unless missingness mechanism is the same between the
intervention groups and there is no interaction between intervention and baseline covariate in the
data-generating model for outcome.

Third, the LMM using CRA gave unbiased estimates of intervention effect regardless of whether
missingness mechanisms are the same or are different between the intervention groups and whether
there is an interaction between intervention and baseline covariate in the data-generating model for
the outcome, provided that an interaction between intervention and baseline covariate was included
in the model when such interaction exists in truth.

Finally, we compared the results of LMM using CRA with the results of MI. As expected, we
found that MI gave unbiased intervention effects estimates regardless of whether missingness
mechanisms are the same or are different in the two intervention groups and whether there is an
interaction between intervention and baseline covariate. The LMM and MI had similar empirical
SEs of the estimates of intervention effects. However, MI using adjusted DF estimates gave
overcoverage for the nominal 95% confidence interval. This is due to underestimation of adjusted
DF used by MI compared to complete data DF. Groenwold et al.20 showed that there is little to be
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gained by using MI over LMM in the absence of auxiliary variables. Moreover, when missingness is
confined to outcomes, LMMs fitted using maximum likelihood are fully efficient and valid under
MAR.

Throughout this paper, we have assumed CDM mechanism in a continuous outcome, which is an
example of MAR as our baseline covariate was fully observed. In practice, we cannot identify on the
basis of the observed data which missingness assumption is appropriate.14,26 Therefore, sensitivity
analyses should be performed26 (Ch. 10) to explore whether our inferences are robust to the primary
working assumption regarding the missingness mechanism. Furthermore, we focused on studies with
only one individual-level covariate; the methods described can be extended for more than one
covariate.

In conclusion, in the absence of auxiliary variables, LMM using complete records can be
recommended as the primary analysis approach for CRTs with missing outcomes if one is willing
to make baseline CDM assumption for outcomes.
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Appendix 1. Unadjusted cluster-level analysis using complete records

The mean of the observed outcomes in a particular cluster can be written as

�Yobs
ij ¼

1

Pmij

l

Rijl

Xmij
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RijlYijl

¼
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l

Rijl

Xmij

l¼1
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where �Xobs
ij ¼ 1=

P
l Rijl

� �Pmij

l¼1 RijlXijl is the observed mean of the baseline covariate X in the ðij Þth

cluster. The expected value of �Xobs
ij across the clusters in the ith intervention group will be the true

mean of X among those individuals with observed outcomes. Let �xi1 denote the true mean of the
baseline covariate X in the ith intervention group among those individuals with observed outcomes.
Then

E �Yobs
ij

� �
¼ �i þ �i�xi1 þ E
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0
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Let Rij ¼ ðRij1,Rij2, . . . ,Rijmij
Þ be the vector of missing data indicators for the ðij Þth cluster. Then

E
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since eijl’s are independent of Rijl’s and Eð�ijlÞ ¼ 0. Therefore, we have

E �Yobs
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The variance of �Yij can be written as
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where �2�xi1 is the variance of the cluster-specific means of X among those with observed outcomes.
Now
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where E 1=
Pmij

l Rijl

� �� �
¼ 1=�i ðsayÞ. Therefore
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The observed mean of the ith intervention group is calculated as
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The estimator of intervention effect in unadjusted cluster-level analysis based on observed values
is given by
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¼
1

k1
�21�

2
�x11
þ �2b þ

�2w
�1

� �
þ

1

k2
�22�

2
�x21
þ �2b þ

�2w
�2

� �

¼
X2
i¼1

1

ki
�2i �

2
�xi1
þ �2b þ

�2w
�i

� �

which tends to zero as ðk1, k2Þ tend to infinity.

Appendix 2. Adjusted cluster-level analysis using complete records

The mean of observed residuals of a particular cluster is given by

�̂�obsij ¼
1

Pmij

l

Rijl

Xmij

l¼1

Rijl�̂ijl
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¼
1P

l

Rijl

Xmij

l¼1

Rijl Yijl � Ŷijl

� �

¼
1P

l

Rijl

Xmij

l¼1

Rijl �i þ �iXijl þ �ij þ �ijl � � � Xijl

� �

¼ �i þ �i � ð Þ
1P

l

Rijl

Xmij

l¼1

RijlXijl þ �ij þ
1P

l

Rijl

Xmij

l¼1

Rijl�ijl � �

¼ �i þ �i � ð Þ �Xobs
ij þ �ij þ

1P
l

Rijl

Xmij

l¼1

Rijl�ijl � �

Then

E �̂�obsij

� �
¼ �i þ �i � ð Þ�xi1 � �

and

Var �̂�obsij

� �
¼ �i � ð Þ

2�2�xi1 þ �
2
b þ

�2w
�i

using the results (12) and (13). The mean of observed residuals of the ith intervention group can be
written as

�̂�obsi ¼
1

ki

Xki
j¼1

�̂�obsij

Then

E �̂�obsi

� �
¼ �i þ �i � ð Þ�xi1 � �

and

Var �̂�obsi

� �
¼

1

ki
�i � ð Þ

2�2�xi1 þ �
2
b þ

�2w
�i

� �

The baseline covariate adjusted estimator of intervention effect, based on observed values, is
given by

	̂obsadj ¼
�̂�obs1 �

�̂�obs2

Then

E 	̂obsadj

� �
¼ �1 þ �1 � ð Þ�x11 � �ð Þ � �2 þ �2 � ð Þ�x21 � �ð Þ

¼ �1 þ �1�xð Þ � �2 þ �2�xð Þ þ �1 �x11 � �xð Þ � �2 �x21 � �xð Þ þ  �x21 � �x11ð Þ

¼ �1 � �2 þ �1 �x11 � �xð Þ � �2 �x21 � �xð Þ þ  �x21 � �x11ð Þ
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and

Var 	̂obsadj

� �
¼

1

k1
�1 � ð Þ

2�2�x11 þ �
2
b þ

�2w
�1

� �
þ

1

k2
�2 � ð Þ

2�2�x21 þ �
2
b þ

�2w
�2

� �

¼
X2
i¼1

1

ki
�i � ð Þ

2�2�xi1 þ �
2
b þ

�2w
�i

� �

which tends to zero as ðk1, k2Þ tend to infinity.
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Part III

Binary Outcomes



Chapter 6

Review of Analysis Methods with Full

Data and Missing Data

In this chapter, we discuss the terminology, define the necessary notations used in

this part of the thesis, and review the literature on handling missing binary outcomes

in CRTs. Section 6.1 describes the two broad approaches to the analysis of binary

outcomes in CRTs. In Section 6.2, we review the literature on handling missing binary

outcomes in CRTs, and identify the research questions. In the following chapter, we

will present our research on missing binary outcomes in CRTs.
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6.1 Analysis with full data

In this section, we briefly review the two broad approaches to the analysis of bi-

nary outcomes in CRTs with full data. These approaches are cluster-level analysis

and individual-level analysis. Let Yijl be a binary outcome of interest for the lth

(l = 1, 2, . . . ,mij) individual in the jth (j = 1, 2, . . . , ki) cluster of the ith (i = 0, 1)

intervention group, where i = 0 corresponds to control group and i = 1 corresponds to

active intervention group. Also let Xijl be an individual-level baseline covariate value

for lth individual in the (ij)th cluster. Note that these methods can be extended to the

case of multiple baseline covariates, some of which are at the individual-level and some

are at the cluster-level. For convenience, we assume that both control and intervention

groups have the same number of clusters (ki = k) and constant cluster size across the

groups (mij = m).

6.1.1 Cluster-level analysis

This approach is conceptually very simple and can be explained as a two-stage approach.

There are two different types of cluster-level analysis. These are unadjusted cluster-level

analysis and (baseline covariate) adjusted cluster-level analysis. For binary outcomes,

risk difference (RD) or risk ratio (RR) is usually estimated as a measure of intervention

effect using cluster-level analysis in CRTs. The cluster-specific proportion of success

is usually used as the summary measure for each cluster. In unadjusted cluster-level

analysis, RD is estimated as the difference between the means of the cluster-specific

proportions of success in the two interventions groups, and RR is estimated as the ratio
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of the means of the cluster-specific proportions of success in the two interventions groups.

In the second stage, a test of the hypothesis RD = 0 or log(RR) = 0 is performed using

an appropriate statistical method. The most popular one is the standard t−test for

two independent samples. The reasons for using this test is that the cluster-specific

summary measures are statistically independent, which is a consequence of the clusters

being independent from each other.

In an adjusted cluster-level analysis, an individual-level regression analysis of the out-

come of interest is carried out at the first stage of analysis ignoring the clustering of

the data, which incorporates all covariates into the regression model except interven-

tion indicator [5, 7]. A standard logistic regression model is usually fitted for binary

outcomes [5]. Then the observed and predicted numbers of success are compared by

computing a residual for each cluster. In the case of no intervention effect, the residuals

should be similar on average in the two intervention groups. In the case of calculating

adjusted RD, the residual, known as difference-residual, is calculated for each cluster

as the difference between the observed and predicted proportions of success. Then

adjusted RD is estimated as the difference between the means of the cluster-specific

difference residuals of the two interventions groups. In the case of calculating adjusted

RR, the residual, known as ratio-residual, is calculated for each cluster as the ratio of

the observed number of success to the predicted number of success. Then adjusted RR

is estimated as the ratio of the means of the cluster-specific ratio residuals of the two

intervention groups.
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6.1.2 Individual-level analysis

In individual-level analysis, a regression model is fitted to the individual-level outcome

which allows us to estimate the fixed effect coefficients corresponding to intervention

indicator and other covariates, if any. There are two types of models for CRTs. These are

cluster-specific (CS) (also known as conditional) models and population averaged (PA)

(also known as marginal) models. The CS models estimate the effect of intervention on

outcome while cluster random effect is held constant, known as CS intervention effect. In

contrast, the PA models estimate the effect of intervention on outcome as averaged over

all clusters, i.e, over the range of random effects. For a linear model, both the CS and

PA models estimate the same population parameter. However, for non-linear models,

this is not necessarily the case. For binary outcomes in CRTs, the most commonly used

CS model is random-effects logistic regression (RELR) model and the most commonly

used PA model is generalised estimation equations (GEE). Both RELR and GEE are

extensions of the standard logistic regression models modified to allow for correlation

between the outcomes of individuals in the same cluster.

Random-effects logistic regression (RELR) model takes into account of between-cluster

variability by incorporating cluster-specific random effects, which are almost always as-

sumed to be normally distributed, into the logistic regression. These models are fitted

by maximising the likelihood function numerically, because the likelihood function and

its derivative can not be derived analytically as this involves an integral over the distri-

bution of the random effects. Numerical integration methods are used to approximate

the integral and so approximate the likelihood function.
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Generalised estimating equations (GEE) take into account the correlation among the

outcomes of the same cluster using a working correlation matrix. In CRTs, it is usual

to assume that the correlation matrix is exchangeable, since outcomes on individuals

in different clusters are uncorrelated, while outcomes on individuals in the same cluster

are equally correlated. In GEE, the sandwich standard error estimator is typically used

to estimate the standard error of the parameter estimates. Although the sandwich

standard error estimator is consistent even when the working correlation structure is

specified incorrectly, it tends to be biased downwards when the number of clusters in

each intervention group is small [5, 34]. Moreover, the estimate of standard error is

highly variable when the number of clusters is small. It is recommended to have at

least 40 clusters in the study to get reliable standard error estimates [35]. A number of

methods have been proposed for dealing with the limitations of the sandwich variance

estimator [34, 36]. Ukoumunne (2007) [34] suggested the following method to correct the

bias for small number of clusters in each intervention group. Firstly, the downward bias

of the sandwich standard error estimator is adjusted by multiplying it by
√
k/(k − 1),

where k is the number of clusters in each intervention group. Secondly, the increased

small sample variability of the sandwich standard error estimator is accounted for by

constructing the confidence interval for intervention effect based on the quantiles from

a t−distribution rather than quantiles from standard normal distribution.
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6.2 Analysis with missing outcomes

A number of recent studies [25–28] had investigated how to handle missing binary

outcomes in CRTs under the assumption of CDM. However, these studies simulated

datasets in ways which arguably do not correspond to how data arise in CRTs, raising

doubts about their conclusions.

Ma et al. [25] examined within-cluster MI, fixed effects MI and MMI for missing binary

outcomes under CDM mechanism in CRTs, using RELR and GEE. They showed that

all these strategies give quite similar results for low percentages of missing data or

for small value of ICC. With high percentage of missing data, they found that within-

cluster MI underestimated the variance of the intervention effect which result in inflated

Type I error rate. However, the simulation study was based on a real dataset, so the

conclusions to other design settings may be limited. It is therefore difficult to draw

conclusions from their results about the performance of GEE and RELR with different

MI strategies under CDM mechanism.

In two subsequent studies, Ma et al. [26, 27] compared the performance of GEE and

RELR with missing binary outcomes under CDM mechanism using CRA, standard MI

and within-cluster MI. They concluded that GEE using CRA performs well in terms of

bias when the percentage of missing outcomes is low. In contrast, they concluded that

RELR using CRA does not perform well. However, in the case of missing outcomes

under MAR for individually randomised trials, Groenwold et al. [15] showed that CRA

with covariate adjustment and MI give similar estimates as long as the same functional

form of the same set of predictors of missingness are used. It can be anticipated that
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a similar result holds for CRTs. Moreover, in the case of missing continuous outcomes

under CDM in CRTs, we showed in the published paper in Chapter 5 that LMM using

CRA adjusted for covariates such that the CDM assumption holds give unbiased esti-

mates of intervention effect. Similar conclusion can be anticipated in the case of binary

outcomes in CRTs using RELR and GEE.

These two studies by Ma et al. [26, 27] also concluded that GEE performs well when

using standard MI and the variance inflation factor (VIF) is less than 3; and when

using within-cluster MI and VIF ≥ 3 with cluster size is at least 50. In contrast, they

concluded that RELR does not perform well using either standard MI or within-cluster

MI. Their simulation study showed that standardised bias for RELR with full data

were much higher than those obtained by standard MI or within-cluster MI. However,

we expect zero bias or possibly small finite sample bias with full data. The reasons for

contradictory conclusions by Ma et al. [26, 27] are because they generated the data

in such a way that they knew what the true PA log(OR) was, but after fitting RELR,

they compared estimates of CS log(OR) to the true PA log(OR), which are expected

to be different due to non-collapsibility. In addition, in the data generating mechanism

used in these studies [26, 27], the baseline covariate was generated independently of the

outcome, which in general is not a plausible assumption. It is therefore difficult to draw

conclusions about what would happen in CRTs where the baseline covariates are related

to the outcome.

Caille et al. [28] compared different MI strategies through a simulation study for hand-

ing missing binary outcomes in CRTs assuming CDM. They showed that GEE using

unadjusted CRA and using adjusted (for covariates) CRA are biased for estimating in-
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tervention effects. However, as we stated earlier, it is expected that GEE using CRA

adjusted for covariates give unbiased estimates of intervention effect if the CDM as-

sumption holds. In their simulation study, individual-level continuous outcomes were

generated at first using a LMM which included intervention indicator and a cluster ran-

dom effect for each cluster, but without covariates. Each continuous outcome was then

dichotomised to obtain a binary outcome. Then, baseline covariates were generated de-

pendent on the continuous outcomes. So it appears the data generation mechanism used

would mean that baseline covariates were associated with intervention group, which is

not possible (in expectation) due to randomisation. In addition, as the authors noted,

they compared estimates of CS ORs to the true PA ORs, which is expected to differ

even with full data due to non-collapsibility. It is therefore difficult to draw general con-

clusions from their results about the methods’ performance in CRTs. Caille et al. [28]

also concluded that that MMI with RELR and single-level MI with standard logistic

regression give better inference for intervention effect compared to CRA in terms of bias,

efficiency and coverage. However, their data generation mechanism does not correspond

to how data arise in CRTs. It is therefore again difficult to draw general conclusions

from their results about the MI strategies’ performance in CRTs.

All of these previous studies [25–28] considered only individual-level analysis and esti-

mated odds ratio (OR) as a measure of intervention effect. The risk difference (RD) or

risk ratio (RR) may be of interest as measures of intervention effect, and have a num-

ber of advantages over OR [37]. For example, they are arguably easier to understand,

and they are ‘collapsible’, i.e., the population marginal and conditional (on covariates

or cluster effects or both) values are identical in the absence of confounding. Cluster-

level analysis methods can be used to analyse CRTs where RD or RR is estimated
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as a measure of intervention effect [5], and these analyses can also incorporate adjust-

ment for baseline covariates. These methods have the advantage of being simple to

apply compared to the individual-level analysis methods. To date the performance of

cluster-level analysis approaches with incompletely-observed binary outcomes has not

been investigated.

In the research paper contained in Chapter 7, we will investigate the validity of esti-

mating RD and RR as measures of intervention effect using unadjusted and adjusted

cluster-level analysis methods when binary outcomes are missing under a CDM mecha-

nism. We will also investigate the validity of RELR and GEE considering the limitations

of previous studies [25–28], which we described earlier in this Section.
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Chapter 7. Research Paper II

Summary of Research Paper II

Title: Missing binary outcomes under covariate dependent missingness in cluster ran-

domised trials.

This paper investigates the validity of estimating RD and RR as measures of interven-

tion effect using unadjusted and adjusted cluster-level analysis methods when binary

outcomes are missing under a CDM mechanism. In addition, it investigates the validity

of individual-level analysis approaches considering the limitations of previous studies.

We show analytically and through simulations that cluster-level analyses for estimating

RD using complete records are in general biased. For estimating RR, cluster-level anal-

yses using complete records are valid if the true data generating model has log link, and

the intervention groups have the same missingness mechanism and the same covariate

effect in the outcome model. In contrast, MMI followed by cluster-level analyses give

unbiased estimates of RD and RR regardless of whether missingness mechanisms were

the same or different between the intervention groups and whether there is an interac-

tion between intervention and baseline covariate in the outcome model, provided that

this interaction is included in the imputation model when required.

In the case of individual-level analysis, as long as both MMI and CRA use the same

functional form of the same set of baseline covariates, RELR or GEE using CRA adjusted

for covariates such that the CDM assumption holds can be recommended as the primary

analysis approach for CRTs with missing binary outcomes if one is willing to make the

CDM assumption for outcomes.
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Missing binary outcomes under
covariate-dependent missingness in
cluster randomised trials
Anower Hossain,a,b*† Karla DiazOrdaza and
Jonathan W. Bartlettc

Missing outcomes are a commonly occurring problem for cluster randomised trials, which can lead to biased and
inefficient inference if ignored or handled inappropriately. Two approaches for analysing such trials are cluster-
level analysis and individual-level analysis. In this study, we assessed the performance of unadjusted cluster-level
analysis, baseline covariate-adjusted cluster-level analysis, random effects logistic regression and generalised
estimating equations when binary outcomes are missing under a baseline covariate-dependent missingness mech-
anism. Missing outcomes were handled using complete records analysis and multilevel multiple imputation. We
analytically show that cluster-level analyses for estimating risk ratio using complete records are valid if the true
data generating model has log link and the intervention groups have the same missingness mechanism and the
same covariate effect in the outcome model. We performed a simulation study considering four different scenar-
ios, depending on whether the missingness mechanisms are the same or different between the intervention groups
and whether there is an interaction between intervention group and baseline covariate in the outcome model.
On the basis of the simulation study and analytical results, we give guidance on the conditions under which each
approach is valid. © 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.

Keywords: cluster randomised trials; missing binary outcome; baseline covariate-dependent missingness;
complete records analysis; multiple imputation

1. Introduction

Cluster randomised trials (CRTs), also known as group randomised trials, are increasingly being used to
evaluate the effectiveness of interventions in health services research [1,2]. The unit of randomisation for
such trials are identifiable clusters of individuals such as medical practices, schools or entire communities.
However, individual-level outcomes of interest are observed within each cluster. One important feature
of CRTs is that the outcomes of individuals within the same cluster are more likely to be similar to
each other than those from different clusters, which is usually quantified by the intraclass correlation
coefficient (ICC, denoted as 𝜌). Although typically in primary care and health research the value of ICC
is small (0.001 < 𝜌 < 0.05) [3], it can lead to substantial variance inflation factors and should not be
ignored [2,4]. This is because ignoring the dependence of the outcomes of individuals within the clusters
will underestimate the variance of the intervention effect estimates and consequently give inflated type I
error rates [5]. It is well known that the power and precision of CRTs are lower compared with trials that
individually randomise the same number of units [2]. However, in practice, CRTs have several advantages
including that the nature of the intervention itself may dictate its application at the cluster level, less
risk of intervention contamination and administrative convenience [6]. These advantages are sometimes
judged by researchers to outweigh the potential loss of statistical power and precision.
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Missing data are a commonly occurring threat to the validity and efficiency of CRTs. In a systematic
review of CRTs published in English in 2011, 72% of trials had missing values either in outcomes or in
covariates or in both, and only 34% of them reported how missing data had been handled [7]. Dealing
with missing data in CRTs is complicated because of the clustering of the data. In statistical analysis,
if there are missing values, an assumption must be made about the relationship between the probability
of data being missing and the underlying values of the variables involved in the analysis. The mecha-
nisms that caused the data to be missing can be classified into three broad categories. Data are missing
completely at random (MCAR) if the probability of missingness is independent of the observed and unob-
served data. MCAR is generally a very restrictive assumption and is unlikely to hold in many studies. A
more plausible assumption is missing at random (MAR) where, conditioning on the observed data, the
probability of missingness is independent of the unobserved data. Missing not at random is the situa-
tion where the probability of missingness depends on both the observed and unobserved data. In CRTs,
an assumption regarding missing outcomes that is sometimes plausible is that missingness depends on
baseline covariates, but conditioning on these baseline covariates, not on the outcome itself. We refer to
this as covariate-dependent missingness (CDM). This is an example of MAR when baseline covariates
are fully observed. In this paper, we will consider the case of a binary outcome that is partially observed
and assume that all baseline covariates are fully observed.

Two approaches for analysing CRTs are cluster-level analyses, which derive summary statistics for
each cluster, and individual-level analyses, which use the data for each individual in each cluster [6].
Complete records analysis (CRA) and multiple imputation (MI) (described in Section 3) are the most
commonly used methods for handling missing data. A number of recent studies have investigated how to
handle missing binary outcomes in CRTs under the assumption of CDM [8–11]. However, as we describe
in detail in Section 3, these previous studies simulated datasets in ways that arguably do not correspond
to how data arise in CRTs raising doubt about their conclusions.

In the case of missing outcome under MAR for individually randomised trials, Groenwold et al. [12]
showed that CRA with covariate adjustment and MI give similar estimates as long as the same covariates
and same functional form are used. It can be anticipated that a similar result holds for CRTs. In the case
of missing continuous outcomes in CRTs, Hossain et al. [13] showed that there is no gain in terms of
bias or efficiency of the estimates using MI over CRA adjusted for covariates, where both approaches
used the same covariates with the same functional form, and the same modelling assumptions. Therefore
in situations where they are equivalent, CRA is clearly preferable.

All of these previous studies [8–11] considered only individual-level analysis and estimated odds ratio
(OR) as a measure of intervention effect. The risk difference (RD) or risk ratio (RR) may be of interest
as measures of intervention effect and have a number of advantages over OR [14]. For example, they are
arguably easier to understand, and they are ‘collapsible’, that is, the population marginal and conditional
(on covariates or cluster effects or both) values are identical. Cluster-level analysis methods can be used to
analyse CRTs where RD or RR is estimated as a measure of intervention effect [6], and these analyses can
also incorporate adjustment for baseline covariates. These methods have the advantage of being simple
to apply compared with the individual-level analysis methods. To date, the performance of cluster-level
analysis approaches with incompletely observed binary outcomes has not been investigated.

The aim of this paper is twofold. The first is to investigate the validity of estimating RD and RR as
measures of intervention effect using unadjusted and adjusted cluster-level analysis methods when binary
outcomes are missing under a CDM mechanism. The second is to investigate the validity of individual-
level analysis approaches considering the limitations of previous studies [8–11], which we describe in
Section 3. CRA and MI are used to handle the missing outcomes.

This paper is organised as follows. We begin in Section 2 by giving a brief review of the approaches to
the analysis of binary outcome in CRTs with full data. Section 3 describes methods of handling missing
data in CRTs. In Section 4, we investigate the validity of CRA of CRTs under CDM assumption for
missing binary outcomes. In Section 5, we report the results of a simulation study to investigate the
performance of our considered methods. Section 6 presents an example of application of our results to
an actual CRT. We conclude in Section 7 with some discussion.

2. Analysis of CRTs with full data

We begin by describing the two broad approaches to the analysis of CRTs in the absence of missing data.
These two approaches are cluster-level analysis and individual-level analysis. Let Yijl be a binary outcome

© 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2017, 36 3092–3109
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of interest for the lth (l = 1, 2,… ,mij) individual in the jth ( j = 1, 2,… , ki) cluster of the ith (i = 0, 1)
intervention group, where i = 0 corresponds to control group and i = 1 corresponds to intervention
group. For convenience, we assume that both control and intervention groups have the same number of
clusters (ki = k) and constant cluster size across the groups (mij = m). Also let Xijl be an individual-level
baseline covariate value for lth individual in the (ij)th cluster. Note that these methods can be extended
to the case of multiple baseline covariates, some of which are individual level and some are cluster level.

In the case of a continuous outcome, it is common to assume that the expectation of the outcome
is linearly dependent on the covariate and intervention indicator. However, this assumption is not very
plausible in the case of a binary outcome. Two commonly used alternatives in the case of binary outcome
are to assume a log or logit link between the mean of the outcome and the linear predictor.

In the case of a log link, each binary Yijl is assumed to be generated by

𝜋ijl = exp(𝛽0 + 𝛽1i + fi(Xijl) + 𝛿ij), (1)

where 𝛽0 is a constant, 𝛽1 is the true intervention effect, fi(Xijl) is a function of baseline covariate Xijl in
the ith intervention group, 𝛿ij is the (ij)th cluster effect with mean 0 and 𝜋ijl = P

(
Yijl = 1|𝛿ij,Xijl

)
. On the

other hand, assuming a logit link for the true data generating model, we have

𝜋ijl = expit
(
𝛽0 + 𝛽1i + fi(Xijl) + 𝛿ij

)
, (2)

where expit(t) = exp(t)∕(1 + exp(t)).

2.1. Cluster-level analysis

This approach is conceptually very simple and can be explained as a two-stage process. Two different
ways of doing cluster-level analysis are unadjusted cluster-level analysis and (baseline covariate) adjusted
cluster-level analysis. For binary outcomes, RD or RR is usually estimated as a measure of intervention
effect in cluster-level analysis [6].

2.1.1. Unadjusted cluster-level analysis (CLU). In the first stage of analysis, a relevant summary measure
of outcomes is obtained for each cluster. For binary outcomes, the cluster-level proportion of success is
usually used as the summary measure for each cluster. Let pij be the observed proportion of success in
the (ij)th cluster. Then RD is estimated as

R̂Dunadj = p̄1 − p̄0,

where p̄i is the mean of the cluster-specific proportions of success in the ith intervention group. In the
second stage, a test of the hypothesis RD = 0 is performed using an appropriate statistical method. The
most popular one is the standard t-test for two independent samples with degrees of freedom (DF) 2k−2.
The reason for using this test is that the cluster-specific summary measures are statistically independent,
which is a consequence of the clusters being independent of each other.

On the basis of the first stage cluster-level summary measures, RR is estimated as

R̂Runadj =
p̄1

p̄0
.

Then, in the second stage, a test of the hypothesis log (RR) = 0 is performed using t-test with DF 2k− 2,
where V̂

(
log(R̂Runadj)

)
can be calculated as [6]

V̂
(

log(R̂Runadj)
)
≈

s2
0

kp̄2
0

+
s2

1

kp̄2
1

with s2
i =

∑k
j=1

(
pij − p̄i

)2

k − 1
.

It can be shown that, with full data, R̂Dunadj is unbiased for RD, and R̂Runadj is consistent (and, therefore,
asymptotically unbiased) for RR as k → ∞ (see Appendix A in the Supporting Information).
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2.1.2. Adjusted cluster-level analysis (CLA). In CRTs, baseline covariates that may be related to the out-
come of interest are often collected and incorporated into the analysis. The main purpose of adjusting
for covariates is to increase the credibility of the trial findings by demonstrating that any observed inter-
vention effect is not attributable to the possible imbalance between the intervention groups in terms of
baseline covariates [15].

In an adjusted cluster-level analysis, an individual-level regression analysis of the outcome of interest
is carried out at the first stage of analysis ignoring the clustering of the data, which incorporates all
covariates into the regression model except intervention indicator [6, 16]. A standard logistic regression
model is usually fitted for binary outcomes, which assumes that

logit
(
𝜋ijl

)
= log

( 𝜋ijl

1 − 𝜋ijl

)
= 𝜆1 + 𝜆2Xijl. (3)

Let Nij and N̂ij be the observed and predicted number of successes in the (ij)th cluster, respectively. After
fitting model (3), N̂ij is calculated as

N̂ij =
m∑

l=1

�̂�ijl =
m∑

l=1

expit
(
�̂�1 + �̂�2Xijl

)
.

Then the observed and predicted numbers of success are compared by computing a residual for each clus-
ter. In the case of no intervention effect, the residuals should be similar on average in the two intervention
groups.

If we want to estimate the adjusted RD, the residual, known as difference residual, for each cluster is
calculated as 𝜖d

ij = (Nij − N̂ij)∕m, where the d superscript refers to difference residual. The adjusted RD
is then estimated as

R̂Dadj = 𝜖 d
1 − 𝜖 d

0 ,

where 𝜖d
i is the mean of the difference residuals across the clusters of the ith intervention group and where

R̂Dadj can be rewritten as

R̂Dadj = R̂Dunadj +
1

mk

k∑
j=1

(
N̂0j − N̂1j

)
. (4)

Because the distribution of X (in expectation) is the same between the intervention groups as a conse-
quence of randomisation, and the prediction from the first-stage regression model (3) depends only on
Xijl, E

(
N̂0j

)
= E

(
N̂1j

)
. Hence, from (4), R̂Dadj is unbiased for RD because R̂Dunadj is unbiased for RD.

In the second stage, a test of hypothesis RDadj = 0 is performed using t-test with DF 2k − 2.
If we want to estimate the adjusted RR, the residual, also known as ratio residual, for each cluster

is calculated as 𝜖r
ij = Nij∕N̂ij, where the r superscript refers to ratio residual. The adjusted RR is then

estimated as

R̂Radj =
𝜖 r

1

𝜖 r
0

, (5)

where 𝜖 r
i is the mean of the ratio residuals across the clusters of the ith intervention group. It can be

shown that, with full data, R̂Radj is consistent and, therefore, asymptotically unbiased (as k → ∞) for true
RR if (i) the true data generating model is a log link model; (ii) the functional form of the covariates is
the same between the intervention groups; and (iii) the distribution of random effect is the same between
the intervention groups (see Appendix B in the Supporting Information for details). In the second stage,
a test of hypothesis log

(
RRadj

)
= 0 is performed using t-test with DF 2k− 2, where V̂

(
log(R̂Radj)

)
can

be calculated as

V̂
(

log(R̂Radj)
)
≈

s2
𝜖0

k
(
𝜖r

0

)2
+

s2
𝜖1

k
(
𝜖r

1

)2
with s2

𝜖i =

∑k
j=1

(
𝜖r

ij − 𝜖
r
i

)2

k − 1
.
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2.2. Individual-level analysis

In individual-level analysis, a regression model is fitted to the individual-level outcome that allows us
to analyse the effects of intervention and other covariates in the same model. For binary outcomes, two
commonly used individual-level analysis methods are random effects logistic regression (RELR), which
estimates cluster-specific (also known as conditional) intervention effects, and generalised estimation
equations (GEEs), which estimate population-averaged (also known as marginal) intervention effects.
Both of these approaches are extensions of the standard logistic regression models modified to allow for
correlation between the outcomes of individuals in the same cluster. We also note that for both methods,
one can obtain estimates of RD or RR by integrating over the fixed and random effects in the case of
RELR and by integrating over the fixed effects in the case of GEE.

2.2.1. Random effects logistic regression. RELR models take into account between-cluster variabil-
ity by incorporating cluster-specific random effects, which are almost always assumed to be normally
distributed, into the logistic regression. These models are fitted by maximising the likelihood function
numerically, because the likelihood function and its derivative cannot be derived analytically as this
involves an integral over the distribution of the random effects. Numerical integration methods are used
to approximate the integral and so approximate the likelihood function. It is recommended to have at
least 15 clusters in each intervention group to acquire the correct size and coverage for significance
tests and confidence interval [6]. Li and Redden [17] examined the performance of five denominator
degrees of freedom (DDF) approximations, namely, residual DDF, containment DDF, between-within
DDF, Satterthwaite DDF and Kenward–Roger DDF. They recommended to use between-within DDF
approximation, which is equal to the total number of clusters in the study minus the rank of the design
matrix, as it gave type I error rate close to nominal level and higher power compared with the other four
methods. Ukoumunne et al. [18] examined the properties of t-based confidence intervals for log(OR)
from CRTs using DF 2k − 2 assuming the same number of clusters in the two intervention groups. They
found that the coverage rates were close to the nominal level, although this approach gave overcoverage
with very small ICC (0.001). In this paper, we used the quantiles from t-distribution with DF 2k−2 rather
than quantiles from N(0, 1) to construct the confidence interval for intervention effect.

2.2.2. Generalised estimating equations. GEEs are commonly used as a method for analysing binary
outcomes in CRTs while taking into account the correlation among the outcomes of the same cluster using
a working correlation matrix. In CRTs, it is usual to assume that the correlation matrix is exchangeable,
because outcomes on individuals in different clusters are uncorrelated, while outcomes on individuals in
the same cluster are equally correlated.

In GEE, the sandwich standard error (SE) estimator is typically used to estimate the SE of the parameter
estimates. Although the sandwich SE estimator is consistent even when the working correlation structure
is specified incorrectly, the sandwich SE of the regression coefficient tends to be biased downwards when
the number of clusters in each intervention group is small [6,18]. Moreover, the estimate of SE is highly
variable when the number of clusters is small. It is recommended to have at least 40 clusters in the study
to acquire reliable SE estimates [5]. A number of methods have been proposed for dealing with the
limitations of the sandwich variance estimator [18, 19]. In this paper, we used the method proposed by
Ukoumunne (2007) [18] to correct the bias for small number of clusters in each intervention group. Firstly,
the downward bias of the sandwich SE estimator was adjusted by multiplying it by

√
k∕(k − 1), where

k is the number of clusters in each intervention group. Secondly, the increased small sample variability
of the sandwich SE estimator was accounted for by constructing the confidence interval for intervention
effect on the basis of the quantiles from a t-distribution with DF 2k−2 rather than quantiles from N(0, 1).
However, if some baseline covariates were cluster level, the DF would be adjusted downwards as 2k −
2− q to account for this, where q is the number of parameters corresponding to the cluster-level baseline
covariates.

3. Methods of handling missing data in CRTs

Common methods for handling missing data in CRTs are CRA, single imputation and MI. In this paper,
we focused on CRA and MI because they are the most commonly used methods for handling missing
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data. All the analysis methods described in the previous section can be implemented using either complete
records or MI. This section briefly describes these two approaches.

3.1. Complete records analysis

In CRA, often referred to as complete case analysis, only individuals with complete data on all variables
in the analysis are considered. It has the advantage of being simple to apply and is usually the default
method in most statistical packages. It is well known that CRA is valid if data are MCAR. CRA is also
valid if, conditioning on covariates, missingness is independent of outcome and and the outcome model
being fitted is correctly specified [20]. On the basis of simulations for CDM in CRTs, Ma et al. [9, 10]
showed that GEE using CRA performs well in terms of bias when the percentage of missing outcomes is
low. In contrast, they concluded that RELR using CRA does not perform well. This is because they gen-
erated the data in such a way that they knew what the true population-averaged log(OR) was, but after
fitting RELR, they compared estimates of conditional (on cluster random effects and covariates) log(OR)
with the true population-averaged log(OR). In addition, in the data generating mechanism used in these
studies [9, 10], the baseline covariate was generated independently of the outcome, which in general is
not a plausible assumption. It is therefore difficult to draw conclusions about what would happen in CRTs
where the baseline covariates are related to the outcome. Caille et al. [11] reported through simulations
that GEE using unadjusted CRA and using adjusted (for covariates) CRA are biased for estimating inter-
vention effects. However, in their simulation study, individual-level continuous outcomes were generated
at first using a linear mixed model that includes intervention indicator and a cluster random effect for
each cluster, but without covariates. Each continuous outcome was then dichotomised to obtain a binary
outcome. Then, baseline covariates were generated dependent on the continuous outcomes. So it appears
the data generation mechanism used would mean that baseline covariates were associated with interven-
tion group, which is not possible (in expectation) because of randomisation. In addition, as the authors
noted, they compared estimates of covariate conditional ORs with the true unconditional ORs, which
would be expected to differ even with full data because of non-collapsibility. It is therefore difficult to
draw general conclusions from their results about the methods’ performance in CRTs.

3.2. Multiple imputation

In MI, a sequence of Q imputed datasets are obtained by replacing each missing outcome by a set of
Q ≥ 2 imputed values that are simulated from an appropriate distribution or model. Imputing multiple
times allows the uncertainty associated with the imputed values because the imputed values are sampled
draws for the missing outcomes instead of the actual values. This uncertainty is taken into account by
adding between-imputation variance to the average within-imputation variance. Each of the Q imputed
datasets are analysed as a full dataset using standard methods, and the results are then combined using
Rubin’s rules [21]. One important feature of MI is that the imputation model and the analysis model do
not have to be the same. However, in order for Rubin’s rules to be valid, the imputation model needs to
be compatible or congenial with the analysis model [22].

There are at least four different types of MI that have been used in CRTs [7]. These are standard
MI, also known as single-level MI, that ignores clustering in the imputation model, fixed effects MI that
includes a fixed effect for each cluster in the imputation model, random effects MI where clustering is
taken into account through a random effect for each cluster in the imputation model and within-cluster MI
where standard MI is applied within each cluster. From now, we refer to random effects MI as multilevel
multiple imputation (MMI).

The MI inference is usually based on a t-distribution with DF given by

𝜐 = (Q − 1)
(

1 + Q
Q + 1

W
B

)2

,

where B and W are the between-imputation variance and the average within-imputation variance, respec-
tively. This DF is derived under the assumption that the complete data (full data) DF, 𝜐com, is infinite
[23]. In CRTs, the value of 𝜐com is calculated on the basis of the number of clusters in the study rather
than the number of individuals and, therefore, is usually small. In CRTs with equal number of clusters in
each intervention group, 𝜐com is calculated as 2k − 2 [24]. If 𝜐com is small and there is a modest propor-
tion of missing data, the value of 𝜐 can be much higher than 𝜐com, which is not appropriate [23]. In such
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a situation, a more appropriate DF, proposed by Barnard and Rubin (1999) [23], is calculated as

𝜈adj =
(
𝜐−1 + �̂�−1

obs

)−1 ≤ 𝜈com where �̂�obs =
(
𝜈com + 1

𝜈com + 3

)
𝜈com

(
1 + Q + 1

Q
B
W

)−1

.

Ma et al. [8] examined within-cluster MI, fixed effects MI and MMI for missing binary outcomes under
CDM mechanism in CRTs. They showed that all these strategies give quite similar results for low percent-
ages of missing data or for small value of ICC. With high percentage of missing data, the within-cluster
MI underestimates the variance of the intervention effect that may result in inflated type I error rate. In
two subsequent studies, Ma et al. [9, 10] compared the performance of GEE and RELR with missing
binary outcomes using standard MI and within-cluster MI. Results showed that GEE performs well when
using standard MI and the variance inflation factor is less than 3 and using within-cluster MI when vari-
ance inflation factor is ≥3 and cluster size is at least 50. Ma et al. [10] concluded that RELR does not
perform well using either standard MI or within-cluster MI. However, in the latter two studies [9, 10],
as we described in Section 3.1, they compared estimates of conditional (on cluster random effects and
covariates) log(OR) with the true population-averaged log(OR), and their data generation mechanisms
do not correspond to how data arise in CRTs. In the first study [8], the simulation was based on a real
dataset, so the conclusions to other design settings may be limited. It is therefore again difficult to draw
conclusions from their results about the performance of GEE and RELR with different MI strategies
under CDM mechanism. Caille et al. [11] compared different MI strategies through a simulation study
for handing missing binary outcomes in CRTs assuming CDM, assessing bias, SE and coverage rate of
the estimated intervention effect. They showed that MMI with RELR and single-level MI with standard
logistic regression give better inference for intervention effect compared with CRA in terms of bias, effi-
ciency and coverage. However, as we described in Section 3.1, their data generation mechanism does not
correspond to how data arise in CRTs. It is therefore again difficult to draw general conclusions from
their results about the MI strategies’ performance in CRTs.

In the case of missing continuous outcome in CRTs, Andridge [24] showed that the true MI variance
of group means are underestimated by single-level MI and are overestimated by fixed effects MI. She
also showed that MMI is the best among these three methods and recommended its use for practitioners.
DiazOrdaz et al. [25] showed that for bivariate outcomes, MMI gives coverage rate close to nominal
level, whereas single-level MI gives low coverage and fixed effects MI gives overcoverage. In this paper,
we therefore used MMI for missing binary outcome.

4. Validity of CRA of CRTs

In this section, we investigate the validity of CLU, CLA, RELR and GEE using complete records, when
binary outcomes are missing under CDM.

In settings where the expectation of the outcome is assumed to be linearly dependent on the covariate
and intervention indicator, both unadjusted and adjusted cluster-level analyses using complete records
for estimating mean difference as a measure of intervention effect are unbiased in general only when the
two intervention groups have the same CDM mechanism and the same covariate effect on the outcome
[13]. However, as described in Section 2, the assumption of the expectation of the outcome being linear
in baseline covariate and intervention indicator is not very plausible in the case of a binary outcome.
Two common alternatives are to use a log or logit link between the mean of the outcome and the linear
predictor.

Define a missing outcome data indicator Rijl such that Rijl = 1 if Yijl is observed and Rijl = 0 if Yijl is
missing. Then

∑m
l=1 Rijl is the number of complete records in the (ij)th cluster.

4.1. Cluster-level analyses for estimating RD

In unadjusted cluster-level analysis using complete records, RD is estimated as

R̂D
cr

unadj = p̄ cr
1 − p̄ cr

0 ,

where p̄ cr
i is the mean of the cluster-specific proportions of success, calculated using complete records,

in the ith intervention group. The superscript cr refers to complete records.
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In adjusted cluster-level analysis, recall that a logistic regression model is fitted to the data at the first
stage of analysis ignoring intervention and clustering of the data. Then the observed and predicted number
of successes in each cluster are compared by computing a residual for each cluster. The adjusted RD
using complete records is estimated as

R̂D
cr

adj = 𝜖 d(cr)
1 − 𝜖 d(cr)

0 ,

where 𝜖 d(cr)
i is the average of the cluster-specific difference residuals in the ith intervention group using

complete records. Then R̂D
cr

adj can be written in terms of R̂D
cr

unadj as

R̂D
cr

adj = R̂D
cr

unadj +
1
k

k∑
j=1

[
1∑m

l=1 Rijl

(
N̂cr

0j − N̂cr
1j

)]
, (6)

where N̂cr
ij is the predicted number of successes using complete records in the (ij)th cluster.

We aim to derive conditions under which the cluster-level analyses for RD using complete records are
unbiased. To this end, we write the individual-level probabilities of success, 𝜋ijl, as

𝜋ijl = 𝜋i + gi

(
Xijl, 𝛿ij

)
,

where gi

(
Xijl, 𝛿ij

)
is a function of baseline covariate Xijl and random cluster effect 𝛿ij and which deter-

mines how individual-level probabilities of success differ from group-level probability of success in each
intervention group. Then it can be shown that R̂D

cr

unadj will be unbiased for true RD if and only if

E
(
g1

(
X1jl, 𝛿1j

) |R1jl = 1
)
= E

(
g0

(
X0jl, 𝛿0j

) |R0jl = 1
)
, (7)

(see Appendix C of the Supporting Information for more details). Assuming the data are generated from
log link model (1) or logit link model (2) and there is an intervention effect (𝛽1 ≠ 0) in truth, the condition
(7) is not satisfied even if the two intervention groups have the same missingness mechanism and the same

covariate effects in the data generating model for the outcome. Hence, R̂D
cr

unadj is biased for true RD (≠ 0)
when the true data generating model has log link or logit link. However, under the null hypothesis of no
intervention effect (𝛽1 = 0), if the two intervention groups have the same covariate effects and the same
missingness mechanism, the condition (7) is satisfied, and hence, R̂D

cr

unadj is unbiased for true RD = 0.
Referring to equation (6), if the two intervention groups have the same missingness mechanism and the

same covariate effect, then E
(

N̂cr
0j

)
= E

(
N̂cr

1j

)
. Hence, with 𝛽1 ≠ 0, from equation (6), we can conclude

that because R̂D
cr

unadj is biased for RD (≠ 0) with both log and logit links for the true data generating

model, R̂D
cr

adj is also biased for RD (≠ 0) with both log and logit links in the true data generating model.

However, with 𝛽1 = 0, since R̂D
cr

unadj is unbiased for RD = 0 with both log and logit links, when the two

intervention groups have the same missingness mechanism and the same covariate effect, R̂D
cr

adj is also
unbiased for RD = 0 under the same conditions. It can also be shown that the expectation of gi

(
Xijl, 𝛿ij

)
over ( j, l) is zero for i ∈ {0, 1} for both log and logit links in the data generating model, and hence, both
R̂Dunadj and R̂Dadj are unbiased for true RD with full data.

4.2. Cluster-level analyses for estimating RR

In both unadjusted and adjusted cluster-level analyses, RR is estimated using complete records as,
respectively,

R̂R
cr

unadj =
p̄ cr

1

p̄ cr
0

and R̂R
cr

adj =
𝜖 r(cr)

1

𝜖 r(cr)
0

, (8)

where 𝜖 r(cr)
i is the average of the ratio residuals in the ith intervention group using complete records.

We aim to establish conditions under which the cluster-level analyses for RR using complete records
are consistent. To this end, we write 𝜋ijl as

𝜋ijl = 𝜋i hi

(
Xijl, 𝛿ij

)
,

© 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2017, 36 3092–3109

3099



A. HOSSAIN, K. DIAZORDAZ AND J. W. BARTLETT

where hi

(
Xijl, 𝛿ij

)
is a function of baseline covariate Xijl and random cluster effect 𝛿ij and which deter-

mines how individual-level probabilities of success differ from group-level probability of success. Then
it can be shown that R̂R

cr

unadj will be consistent for true RR if only if

E
(
h1

(
X1jl, 𝛿1j

) |R1jl = 1
)

E
(
h0

(
X0jl, 𝛿0j

) |R0jl = 1
) = 1, (9)

(see Appendix D of the Supporting Information for more details). Assuming the data are generated from
log link model (1), the condition (9) is satisfied if the two intervention groups have the same missingness
mechanism and the same covariate effects, and hence, R̂R

cr

unadj is consistent (and, therefore, asymptotically
unbiased) for true RR.

On the other hand, assuming the data are generated from logit link model (2) with 𝛽1 ≠ 0, the condition
(9) is not satisfied even if the two intervention groups have the same missingness mechanism and the same
covariate effects. Hence, R̂R

cr

unadj is not consistent for true RR (≠ 1). However, under the null hypothesis of
no intervention effect (𝛽1 = 0), if the two intervention group have the same missingness mechanism and
the same covariate effect, the condition (9) is satisfied, and hence, R̂R

cr

unadj is consistent for true RR = 1.

In Appendix E of the Supporting Information, we show that R̂R
cr

adj is consistent and, therefore, asymp-
totically unbiased (as k → ∞) for true RR if (i) the true data generating model is a log link model, (ii)
the functional form of the covariates in the outcome model is the same between the intervention groups,
(iii) the missingness mechanism is the same between the intervention groups and (iv) the distribution
of random effects is the same between the intervention groups. If the data are generated from logit link
model (2) with 𝛽1 ≠ 0, R̂R

cr

adj is not consistent for true RR (≠ 1). However, under the null hypothesis

of no intervention effect (𝛽1 = 0), R̂R
cr

adj is consistent (as k → ∞) for true RR (= 1) if (i) the true data
generating model is a logit link model, (ii) the functional form of the covariates is the same between the
intervention groups, (iii) the missingness mechanism is the same between the intervention groups and
(iv) the distribution of random effects is the same between the intervention groups.

4.3. RELR and GEE using complete records

For individually randomised trials, it is well known that likelihood-based CRA is valid under MAR,
if missingness is only in the outcome and all predictors of missingness are included in the model as
covariates [20]. So it is anticipated that RELR using CRA will give consistent estimates of intervention
effect, if the covariate X, which is associated with the missingness, is included in the model and the model
is correctly specified. We also expect that GEE using CRA adjusted for covariate X that is associated
with the missingness in outcomes will give consistent estimates of intervention effect.

When it is assumed that the two intervention groups have the same covariate effects on outcome, we fit
RELR with fixed effects of intervention indicator and covariate and a random effect for cluster, while we
fit GEE with intervention indicator and covariate assuming exchangeable correlation for the outcomes
of the same cluster. If it is assumed that the baseline covariate effect on outcome could be different in
the two intervention groups, an interaction between intervention and covariate must be included in the
model. This implies that the intervention effect varies with level of covariate values. In those scenarios
where an interaction is present, we will target the intervention effect at the mean value of the covariate.
Let X∗ denote the empirically centred covariate X − X̄, where X̄ is the mean of X using data from all
individuals. Then, we fit RELR with fixed effects of intervention indicator, X∗ and their interaction, and a
random effect for cluster, while we fit GEE including the intervention indicator, X∗ and their interaction,
and assuming an exchangeable correlation for the outcomes of the same cluster. One may need to account
for the centring step in the variance estimation. We will investigate in the simulation whether ignoring
this has any negative impact on confidence interval coverage.

5. Simulation study

A simulation study was conducted to assess the performance of CLU, CLA, RELR and GEE under CDM
mechanism. CRA and MMI were used to handle the missing data. The average estimate of intervention
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effect, its average estimated SE and coverage rates were calculated for each of the methods and compared
with each other. We considered balanced CRTs, where the two intervention groups have the same number
of clusters and constant cluster size (before missing outcomes were introduced), and a single continuous
individual-level baseline covariate.

5.1. Data generation

Data were generated using the model in equation (2) with a logit link, as described in Section 2, with
fi(Xijl) = 𝛽2(i)Xijl, where 𝛽2(i) is the effect of covariate of X in the ith intervention group. For each individual
in the study, a value of Xijl was generated using the model

Xijl = 𝛼ij + uijl,

where 𝛼ij is the (ij)th cluster effect on X and uijl is the individual-level error on X. We assumed that 𝛼ij ∼
N
(
𝜇x, 𝜎2

𝛼

)
independently of uijl ∼ N

(
0, 𝜎2

u

)
, where 𝜇x is the mean of X, 𝜎2

𝛼 and 𝜎2
u are the between-cluster

and within-cluster variance of X, respectively. The total variance of X can be written as 𝜎2
x = 𝜎2

𝛼 + 𝜎
2
u ,

and thus, the ICC of X is 𝜌x = 𝜎2
𝛼∕𝜎

2
x . Then, we generated logit(𝜋ijl) for each individual in the study

using model (2) assuming 𝛿ij ∼ N
(
0, 𝜎2

b

)
. Finally, Yijl was generated as Bernoulli random variable with

parameter 𝜋ijl.
Once the complete datasets (full data) were generated, we introduced missing outcomes by generating

a missing outcome data indicator Rijl (defined in Section (4)), independently for each individual, under
CDM mechanism according to a logistic regression model

logit(Rijl = 0|Yij,Xij) = 𝜓i + 𝜙iXijl, (10)

where Yij and Xij are the vectors of outcome and covariate values, respectively, of the (ij)th cluster.
The constants 𝜓i and 𝜙i were chosen such that the ith intervention group had the desired proportion
of observed outcomes. The value of 𝜙i in equation (10) represents the degree of association between
the missingness and the covariate X in the ith intervention group. In this study, we assumed the same
covariate effects for the probability of having a missing outcome in the two intervention groups and thus
set 𝜙0 = 𝜙1 = 1 in equation (10) corresponding to the OR of having a missing outcome of 2.72 for a 1
unit change in X.

We investigated four scenarios, varying whether the baseline covariate effects on outcome and the
missingness mechanisms were the same in the two intervention groups. For generating Xijl, we chose
𝜇x = 0, 𝜎2

u = 3.37 and 𝜎2
𝛼 = 0.18, and thus, we had 𝜎2

x = 3.55 and 𝜌x = 0.05. Then, to generate Yijl,
we set 𝜎2

b = 0.20, 𝛽0 = 0 and 𝛽1 = 1.36 and varied 𝛽2(0) and 𝛽2(1) across the four scenarios to obtain
the value of success rates 𝜋0 = 0.50 and 𝜋1 = 0.70 in the control and intervention groups, respectively,
on average over 1000 datasets. The value of ICC for outcome is expected to be different in the control
and intervention groups because, for binary outcome, ICC depends on the success rate [26]. We used the
expression 𝜌i = Var

(
𝜋ij

)
∕
(
𝜋i(1 − 𝜋i)

)
[6, 27], where 𝜋ij is the true proportion of success in the (ij)th

cluster, to estimate the value of ICC for the ith intervention group. Firstly, we estimated Var
(
𝜋ij

)
from

a very big dataset with large number of clusters in each intervention group and with large cluster size.
Then, with the success rates stated earlier for the control and intervention groups, the estimated ICC for
outcome in the control and intervention groups were 0.037 and 0.032, respectively. We varied the number
of clusters in each intervention group as k = (5, 10, 20, 50) and fixed the cluster size m = 50. In the
simulation studies, the four scenarios considered were (S1) 𝛽2(0) = 𝛽2(1) = 1 and 𝜓0 = 𝜓1 = −1.34;
that is, both intervention groups have the same covariate effects on outcome and the same missingness
mechanisms; (S2) 𝛽2(0) = 𝛽2(1) = 1 and 𝜓0 = −1.34, 𝜓1 = 0.65; that is, both intervention groups have the
same covariate effects on outcome but different missingness mechanisms; (S3) 𝛽2(0) = 0.588, 𝛽2(1) = 1
and 𝜓0 = 𝜓1 = −1.34; that is, both intervention groups have different covariate effects on outcome
but the same missingness mechanisms; and (S4) 𝛽2(0) = 0.588, 𝛽2(1) = 1 and 𝜓0 = −1.34, 𝜓1 = 0.65;
that is, both intervention groups have different covariate effects on outcome and different missingness
mechanisms. In S1 and S3, there were 30% missing outcomes in each of the two intervention groups,
while in S2 and S4, there were 30% missing outcomes in the control group and 60% missing outcomes
in the intervention group.
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3101



A. HOSSAIN, K. DIAZORDAZ AND J. W. BARTLETT

5.2. Data analysis

Each generated full and incomplete datasets were then analysed by CLU, CLA, RELR and GEE. Missing
outcomes were handled using CRA and MMI. We included the interaction between intervention and
baseline covariate into the analysis models RELR and GEE in the case of S3 and S4. The R packages
lme4 and geepack were used to fit RELR and GEE, respectively. We used MMI, with a RELR imputation
model, so that the imputation model was correctly specified. For S3 and S4, an interaction between
intervention and baseline covariate was included in the imputation model. The R package jomo [28] was
used to multiply impute each generated incomplete dataset 15 times, although this package uses probit
link between the mean of the outcome and the linear predictor. Both links give similar results as long as
individual-level probabilities of success are not too small and not too large. The algorithm used by jomo
[28] is essentially the same used by the REALCOM-IMPUTE software for MMI, details of which can
be found in [29]. We used 100 burn-in iterations, which through preliminary investigations, we found to
be sufficient for convergence to the posterior distribution of the parameters of our imputation model, and
thinning rate 25 to reduce the autocorrelation between successive draws. When fitting the GEE models
using the package geepack in R, we encountered convergence problems (maximum of three times out of
1000 simulation runs) in the case of S2 and S4. In such situation, we fitted GEE assuming independent
correlation structure.

5.3. Simulation results

Figure 1 represents the average estimates of RD and coverage rates of nominal 95% confidence intervals
over 1000 simulation runs using CLU and CLA with CRA and MMI for each of the four scenarios. The
corresponding numerical results using full data, CRA and MMI are available in Table F1 in Appendix
F of the Supporting Information. The RD estimates using full data and using MMI followed by cluster-
level analyses were unbiased for each of the four scenarios. However, CRA estimates were biased using
both the CLU and CLA for each of the four scenarios. These results support our derived analytical results
for RD estimates in Section 4.1. Under scenario S3, the CRA estimates of RD using both the CLU and
CLA were coincidentally close to the true value of RD. In further simulations, where the parameter values
were changed, the corresponding estimates of RD, using both the CLU and CLA, were found to be biased
(see Table F2 in Appendix F in the Supporting Information). As expected, the average estimated SEs of
CLA are smaller than that of CLU, using full data, CRA and MMI. This is because the CLA removes the
differences between the outcome values of the two intervention groups that can be attributed to differ-
ences in the baseline covariate. MMI with adjusted DF estimates gave overcoverage for nominal 95%
confidence intervals for small number of clusters in each intervention group.

Figure 2 shows the average estimates of log(RR) and coverage rates for nominal 95% confidence
intervals over 1000 simulation runs using CLU and CLA with CRA and MMI for the all four considered
scenarios. The corresponding numerical results using full data, CRA and MMI are available in Table F3
in Appendix F of the Supporting Information. The full data estimates of log(RR) using CLU and CLA
were very close to the true value. However, our analytical result showed that CLA estimates of RR are
biased if the data are generated from a logit link model. In this simulation, CLA estimates were close to the
true value because of the parameters’ configuration. In a further simulation, where the parameters’ values
were changed, the estimates of log(RR) using CLA were found to be biased (see Table F4 in Appendix F
in the Supporting Information). The MMI followed by cluster-level analyses estimates of log(RR) were
unbiased for all four considered scenarios. The CRA estimates were biased using both CLU and CLA for
all four considered scenarios. These results support our derived analytical results for RR in Section 4.2.
MMI with adjusted DF estimates resulted in the overcoverage of nominal 95% confidence intervals for
small number of clusters in each intervention group.

Recall that RELR estimates cluster-specific (also known as conditional) intervention effect, while GEE
estimates population-averaged (also known as marginal) intervention effect. In this study, the simulation
data were generated using a RELR model (equation (2)), where we set 𝛽1 = 1.36, which can be interpreted
as conditional (on cluster random effects and baseline covariate X) log(OR) of developing the event of
interest in the intervention group compared with the control group. The corresponding marginal value of
𝛽1 will be smaller because the general effect of using a population-averaged model over cluster-specific
model is to attenuate the regression coefficient [27]. Table I displays the average estimates of the log(OR),
their average estimated SE and coverage rates of nominal 95% confidence intervals using RELR and GEE.
The full data estimates of GEE is slightly lower as expected than that of RELR. For GEE, the CRA and
MMI estimates were compared with the mean of the full data estimates as the true population-averaged
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Figure 1. Simulation results for risk difference (RD). The columns represent the four scenarios considered in the
simulation studies. The first and second rows represent the average estimates of RD and coverage rates for nominal
95% confidence interval, respectively, using unadjusted cluster-level analysis. The third and fourth rows represent
the similar estimates using adjusted cluster-level analysis. Results are shown for complete records analysis (∙) and

multilevel multiple imputation (▴) over 1000 simulation runs. The lines (—) correspond to the true value.

log(OR) was unknown. The CRA estimates of RELR and GEE were unbiased with nominal coverage
rates. This is because we were adjusting for the baseline covariate that was associated with missingness.
However, RELR with MMI gave slightly upward biased (maximum 8.6%) estimates of intervention effect
with small number of clusters in each intervention group, while GEE with MMI gave unbiased estimates.
The study by Caille et al. [11] showed similar results to ours regarding good performance of GEE with
respect to bias and coverage rate using MMI. The average estimated SEs of RELR estimates using CRA
were lower than that of RELR using MMI, whereas the average estimated SEs of GEE estimates using
CRA and MMI are fairly similar. Therefore, there is no benefit in doing MMI over CRA when the CRA
and MMI use the same functional form of baseline covariates.

© 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2017, 36 3092–3109
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Figure 2. Simulation results for risk ratio (RR). The columns represent the four scenarios considered in the simu-
lation studies. The first and second rows represent the average estimates of log(RR) and coverage rates for nominal
95% confidence interval, respectively, using unadjusted cluster-level analysis. The third and fourth rows represent
the similar estimates using adjusted cluster-level analysis. Results are shown for complete records analysis (∙) and

multilevel multiple imputation (▴) over 1000 simulation runs. The lines (—) correspond to the true value.

6. Example

We now illustrate the methods compared here using the data from Health and Literacy Intervention
(HALI) trial, a factorial CRT designed to investigate the impact of two interventions among school chil-
dren in class 1 and class 5 on the south coast of Kenya [30]. The interventions were intermittent screening
and treatment (IST) for malaria on the health and education of school children in class 1 and class 5 and
a literacy intervention (LIT) on education only being applied in class 1. One hundred and one govern-
ment primary schools were randomised to one of the four groups receiving (i) IST alone (25 schools);
(ii) LIT alone (25 schools); (iii) both IST and LIT (26 schools); or (iv) neither IST nor LIT (25 schools).
On average, the number of children per school in the four groups were, respectively, 107 (standard devi-
ation (SD) = 7.54 ), 99 (SD = 17.84), 103 (SD = 6.28) and 102 (SD = 7.51). The primary outcomes were
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anaemia at either 12 or 24 months and educational achievement at 9 and 24 months assessed by a battery
of tests of reading, writing and arithmetic. Baseline characteristics of the school (school mean exam score
and school size), the child (age, sex, sleep under net and baseline anaemia) and the household (pater-
nal education and household size) were collected. For the purpose of illustration, we restricted attention
to anaemia (binary) measured at the 24 months follow-up. A paper published based on this study [30]
showed no evidence of interaction between the two interventions in class 1 where both were imple-
mented. We therefore merged groups (i) and (iii) where IST was implemented and considered this as
the intervention group and merged groups (ii) and (iv) where IST was not implemented and considered
this as the control group. The control group and the intervention group consisted of 2502 and 2674 chil-
dren, respectively, and among them, 475 (18.98%) and 501 (18.74%) had missing anaemia at 24 months,
respectively. The covariate baseline anaemia had some missing values as well. To illustrate our methods
for the case where only outcomes are missing and all baseline covariates are fully observed, we excluded
the children from the analysis with missing baseline anaemia value. Hence, in our analysis, the control
group and the intervention group consisted of 2373 and 2451 children, respectively, and among them,
430 (18.12%) and 424 (17.30%) had missing anaemia at 24 months, respectively.

The original trial’s prespecified analysis planned to adjust for the baseline covariates’ age, sex, exam
score, literacy group and baseline anaemia. In our analysis, firstly, we investigated the association of the
baseline covariates (age, sex, exam score, literacy group and baseline anaemia) with anaemia at 24 months
and with the probability of anaemia outcome at 24 months being missing by fitting RELR models (see
Table F5 in Appendix F of the Supporting Information). Age and baseline anaemia were strongly asso-
ciated with anaemia at 24 months, and there was no evidence of interaction between IST intervention
and baseline covariates in the model for anaemia at 24 months. Older children were more likely to have
anaemia at 24 months missing, and children receiving LIT were less likely to have anaemia at 24 months
missing. There was weak evidence of interaction between IST intervention and literacy group on the
missingness of anaemia at 24 months. Based on these analyses, a working assumption is that missing-
ness of anaemia at 24 months depends mainly on age and that this dependence does not differ between
the two intervention groups as there was no evidence of interaction between IST intervention and age.

We analysed the data using the methods CLU, CLA, RELR and GEE, assuming that the missingness in
anaemia at 24 months depends on the baseline covariates, but conditioning on these, not on the anaemia
at 24 months itself, that is, a CDM mechanism. GEE models were fitted assuming both logit and log links
for the true outcome model to estimate OR and RR, respectively. The objective of fitting GEE with log
link was to estimate RR using individual-level analysis and to compare these estimates with the similar
estimates obtained using cluster-level analyses. In addition, we wanted to compare our estimates of RR
using GEE with the estimates of RR reported in the original paper [30] published based on this HALI
trial data. The missing anaemia data at 24 months were handled using CRA and MMI. The RELR, GEE
and adjusted cluster-level analyses were adjusted for the baseline covariates age, sex, school mean exam
score, literacy group and baseline anaemia. MMI was carried out using the R package jomo [28], with
an imputation model adjusted for the aforementioned baseline covariates. We used 100 imputed datasets
in MMI. GEE with log link after MMI was not congenial with the imputation model, as the imputation
model used probit link. The estimates and confidence intervals of RD, RR and OR obtained by CRA and
MMI are displayed in Table II. Columns M0 and M1 in Table II represent the number of children in the
control and intervention groups, respectively. All measures showed no evidence of IST intervention effect
in improving health of school children by alleviating anaemia. The CRA estimates of RD and RR using
cluster-level analyses are very similar to the corresponding estimates obtained by MMI. This is because
CRA is valid in this case as there is no evidence of intervention effect and no evidence of interaction
between covariates and intervention. The estimates and CIs of unadjusted and adjusted OR obtained by
CRA were found to be very close to the corresponding estimates obtained by MMI. This is because, as
we found in our simulation results, there is no gain in terms of bias or efficiency of the estimates using
MMI over CRA as long as the same functional form of the same set of predictors of missingness are used
by both methods.

7. Discussion and conclusion

In this paper, we showed analytically and through simulations that cluster-level analyses for estimating
RD using complete records are valid only when there is no intervention effect in truth and the intervention
groups have the same missingness mechanism and the same covariate effect in the outcome model. For
estimating RR, cluster-level analyses using complete records are valid if the true data generating model

© 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2017, 36 3092–3109
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Table II. Risk difference, risk ratio and odds ratio estimates using CRA and MMI for the IST intervention
trial data.

Analysis approach M0 M1 Risk difference Risk ratio Odds ratio

Estimate (95% CI) Estimate (95% CI) Estimate (95% CI)

Cluster-level analysisa

CRA
Unadjusted 2027 2173 0.019 (−0.040, 0.077) 1.047 (0.908, 1.208)
Adjusted 1935 2027 0.022 (−0.033, 0.077) 1.037 (0.908, 1.185)

MMI
Unadjusted 2373 2451 0.021 (−0.038, 0.080) 1.053 (0.911, 1.218)
Adjusted 2373 2451 0.017 (−0.035, 0.070) 1.040 (0.910, 1.189)

Individual-level analysis

CRA
RELR
Unadjusted 2027 2173 — 1.090 (0.841, 1.414)
Adjusted 1935 2027 — 1.088 (0.839, 1.409)
GEEb

Unadjusted 2027 2173 1.048 (0.908, 1.209) 1.082 (0.850, 1.378)
Adjusted 1935 2027 1.019 (0.911, 1.141) 1.070 (0.842, 1.359)

MMI
RELR
Unadjusted 2373 2451 — 1.101 (0.849, 1.428)
Adjusted 2373 2451 — 1.089 (0.841, 1.413)
GEE
Unadjusted 2373 2451 1.053 (0.912, 1.215) 1.090 (0.856, 1.389)
Adjusted 2373 2451 1.019 (0.911, 1.140) 1.072 (0.843, 1.363)

aCluster-level analysis was used to estimate the risk difference and the risk ratio.
bGEE was used to estimate the risk ratio using log link and to estimate the marginal odds ratio using logit link.
CRA, complete records analysis; MMI, multilevel multiple imputation; RELR, random effects logistic regression;
GEE, generalised estimation equation; IST, intermittent screening and treatment; CI, confidence interval.

has log link and the intervention groups have the same missingness mechanism and the same covariate
effect in the outcome model. However, if the true data generating model has logit link, cluster-level
analyses using complete records for estimating RR are valid only when there is no intervention effect in
truth and the intervention groups have the same missingness mechanism and the same covariate effect in
the outcome model. But, in practice, it is impossible to know in advance whether there is an intervention
effect. We therefore caution researchers that cluster-level analyses using complete records, assuming
logit link for the true data generating model, in general results in biased inferences for RR in CRTs.
However, when the true data generating model follows a log link and the parameter of interest is RR,
cluster-level analyses using complete records give valid inferences if the intervention groups have the
same missingness mechanism and the same covariates effect in the outcome model.

In contrast, MMI followed by cluster-level analyses gave unbiased estimates of RD and RR regard-
less of whether missingness mechanisms were the same or different between the intervention groups
and whether there is an interaction between intervention and baseline covariate in the outcome model,
provided that an interaction was allowed for in the imputation model when required. However, MMI
resulted in overcoverage for the nominal 95% confidence interval with small number of clusters in each
intervention group. Similar results were found for continuous outcomes in CRTs by Hossain et al. [13].

The full data estimates of conditional (on cluster random effects and covariates) log(OR) using RELR
were unbiased with good coverage rates. These results differ from the results found by Ma et al. [10],
where they concluded that full data estimates using RELR were biased. As noted previously, we believe
this is because they generated the data in such a way that they knew what the true population-averaged
log(OR) was, but after fitting RELR, they compared the estimates of conditional log(OR) with the true
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population-averaged log(OR). As noted earlier, population-averaged log(OR) is marginal with respect to
the cluster random effects [31].

The CRA estimates of conditional log(OR) using RELR were unbiased with coverage rates close to
the nominal level regardless of whether the missingness mechanism is the same or different between the
intervention groups and whether there is an interaction between the intervention and baseline covariate
in the data generating model for outcome, provided that if there is an interaction in the data generating
model for the outcome, then this interaction is included in the model fitted to the data. This conclusion
contradicts the results of a previous study by Ma et al. [10], where they found that CRA estimates using
RELR are biased under CDM assumption. Again we believe this is because they compared RELR esti-
mates of the conditional log(OR) with the true marginal log(OR). The conclusions of Ma et al. [10] have
subsequently been cited in a recent textbook on CRT design and analysis [27]. We hope that our results
and explanations help in understanding some of the surprising results and conclusion in Ma et al. [8–10].
In our study, we also found that the RELR with MMI gave slightly upward biased estimates of conditional
log(OR) for small number of clusters in each intervention groups.

The GEE using CRA and MMI gave unbiased estimates of population-averaged log(OR)with coverage
rates close to the nominal level regardless of whether the missingness mechanism was the same between
the intervention groups and whether there was an interaction between the intervention group and baseline
covariate in the data generating model. Similar results had been found by Ma et al. [10] for GEE in terms
of bias, although as described earlier, in their data generating mechanism, the covariate was generated
independently of the outcome.

In this study, we assumed the same covariate effects for the probability of having a missing outcome
in the two intervention groups. Another possible scenario would be that the two groups have different
missingness mechanism in the sense that the covariate effects on the probability of having missing out-
come are different between the two intervention groups. To address this, we have carried out a further
simulation with different covariate effects (𝜙0 = 0.5, 𝜙1 = 1) on the probability of having a missing out-
come between the two groups. The results showed, as expected by theory, that CRA gives valid estimates.
This is because, CRA is valid as long as conditional on the covariates in the model, the missingness is
independent of the outcome. We also assumed baseline CDM assumption for binary outcome, which is
an example of MAR as our baseline covariate was fully observed. In practice, it cannot be identified on
the basis of the observed data that missingness assumption is appropriate [32, 33]. Therefore, sensitivity
analyses should be performed [33, Ch. 10] to explore whether inferences are robust to the primary work-
ing assumption regarding the missingness mechanism. Furthermore, we focused on studies with only one
individual-level baseline covariate; the methods described can be extended to more than one baseline
covariate.

In conclusion, as long as both MMI and CRA use the same covariates with the same functional form,
RELR or GEE using complete records can be recommended as the primary analysis approach for CRTs
with missing binary outcomes if we are willing to assume that the missingness depends on baseline
covariates and conditional on these, not on the outcome. In addition, where the aim is to estimate RD
or RR, MMI can be used followed by cluster-level analysis to acquire valid estimates under the CDM
assumption for missing binary outcomes, but one should be cautious when making inferences as this
approach results in overcoverage for small number of clusters in each intervention group.
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Appendix A

In this appendix, we show that, with full data, R̂Dunadj is unbiased for true RD,

and R̂Runadj is consistent (and, therefore, asymptotically unbiased) for true RR. We
have

E (p̄i) = E

(
1

k

k∑

i=1

pij

)
=

1

mk

k∑

j=1

m∑

l=1

E (Yijl) = πi

where πi is the true proportion of success in the ith intervention group. Then

E
(

R̂Dunadj

)
= E (p̄1 − p̄0) = π1 − π0 = RD.

Hence R̂Dunadj is unbiased for true RD.

Now, since

p̄0
prob.−→ π0 and p̄1

prob.−→ π1 as k →∞,

R̂Runadj =
p̄1
p̄0

prob.−→ π1
π0

= RR as k →∞.

Therefore, R̂Runadj is consistent (and, therefore, asymptotically unbiased) for true
RR as k →∞.

Appendix B

In this appendix, we show that the adjusted cluster-level estimator of risk ratio (RR)
with full data is a consistent estimator (and, therefore, asymptotically unbiased) of
true RR under certain conditions.

1



As we defined in equation (5) in the main paper, the adjusted cluster-level esti-
mator of RR is given by

R̂Radj =
ε̄ r1
ε̄ r0

=

1
k

∑k
j=1

N1j

N̂1j

1
k

∑k
j=1

N0j

N̂0j

(B1)

If k →∞, the numerator is a consistent estimator of

E

(
N1j

N̂1j

)
= E

[
E

(
N1j

N̂1j

∣∣∣δ1j,X1j

)]

= E

[
E (N1j|δ1j,X1j)

N̂1j(X1j)

]

= E

[∑m
l=1 π1jl

N̂1j(X1j)

]

Assuming the data are generated from the log link model given in equation (1) in
the main paper, we have

E

(
N1j

N̂1j

)
= E

[∑m
l=1 exp (β0 + β1 + f1(X1jl) + δ1j)

N̂1j(X1j)

]

= exp (β0 + β1) E

[
exp (δ1j)

∑m
l=1 exp (f1(X1jl))

N̂1j(X1j)

]
(B2)

Similarly, it can be shown that, if k → ∞, the denominator of equation (B1) is a
consistent estimator of

E

(
N0j

N̂0j

)
= E

[∑m
l=1 exp (β0 + f0(X0jl) + δ0j)

N̂0j(X0j)

]

= exp (β0) E

[
exp (δ0j)

∑m
l=1 exp (f0(X0jl))

N̂0j(X0j)

]
(B3)

The distribution of X (in expectation) is the same between the intervention groups
as a consequence of randomisation. If δ0j and δ1j have common distribution, and
fi(Xijl) = f(Xijl) for i ∈ {0, 1}, the expectations in the right hand side of equations
(B2) and (B3) are equal. Hence, we have

R̂Radj → exp(β1) = RR as k →∞.
Therefore, the adjusted cluster-level estimator of RR is consistent and, therefore,
asymptotically unbiased (as k → ∞) for true RR if (i) the true data generating
model is a log link model, (ii) the functional form of the covariates is the same
between the intervention groups, and (iii) the distribution of random effect is the
same between the intervention groups.

The above argument is not true if the data are generating from the logit link
model (2) in the main paper with β1 6= 0, and, therefore, R̂Radj is not consistent
for true RR ( 6= 1). However, under the null hypothesis of no intervention effect
(β1 = 0), the above argument is true if the true data generating model has logit

link. Hence R̂Radj is consistent for true RR (= 1) as k →∞.
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Appendix C

In this appendix we show that the cluster-level analyses for RD using CRA are
biased. To this end, we write the individual-level probabilities of success, πijl, as

πijl = πi + gi (Xijl, δij)

where gi (Xijl, δij) is a function of baseline covariate Xijl and random cluster-effect
δij, and which determines how individual-level probabilities of success differ from
group level probability of success in each intervention group. Then

Ej,l (πijl|Rijl = 1) = πi + Ej,l (gi (Xijl, δij) |Rijl = 1)

and

E
(

R̂D
cr

unadj

)
= E (π1jl|R1jl = 1)− E (π0jl|R0jl = 1)

= π1 − π0 + E (g1 (X1jl, δ1j) |R1jl = 1)− E (g0 (X0jl, δ0j) |R0jl = 1)

= RD + E (g1 (X1jl, δ1j) |R1jl = 1)− E (g0 (X0jl, δ0j) |R0jl = 1) .

So R̂D
cr

unadj will be unbiased for true RD if and only if

E (g1 (X1jl, δ1j) |R1jl = 1) = E (g0 (X0jl, δ0j) |R0jl = 1) .

Assuming the data are generated from the log link model (1) in the main paper, we
have

gi (Xijl, δij) = πijl−πi = exp(β0+β1 i) {exp (fi(Xijl) + δij)− Ej,l (exp (fi(Xijl) + δij))}
(C1)

since πi = Ej,l (πijl). If there is an intervention effect in truth (β1 6= 0), in general,
we have from (C1)

E (g1 (X1jl, δ1j) |R1jl = 1) 6= E (g0 (X0jl, δ0j) |R0jl = 1)

even if the two intervention groups have the same missingness mechanism and the

same covariate effects in the data generating model for the outcome. Hence, R̂D
cr

unadj

is biased for true RD when the true data generating model has log link. However,
under the null hypothesis of no intervention effect (β1 = 0), if the two intervention
groups have the same covariate effect, i.e. fi(Xijl) = f(Xijl) for i ∈ {0, 1}, we have

gi (Xijl, δij) = exp(β0) {exp (f(Xijl) + δij)− Ej,l (exp (f(Xijl) + δij))}

and then, in addition, if the two intervention groups have the same missingness
mechanism, we have

E (g1 (X1jl, δ1j) |R1jl = 1) = E (g0 (X0jl, δ0j) |R0jl = 1)

and hence R̂D
cr

unadj is unbiased for true RD = 0.
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On the other hand, if we assume the data are generated from the logit link model
(2) in the main paper, we have

gi (Xijl, δij) = πijl − πi
= expit (β0 + β1i+ fi(Xijl) + δij)− Ej,l (expit (β0 + β1i+ fi(Xijl) + δij))

(C2)

Then, again with β1 6= 0, we have from (C2)

E (g1 (X1jl, δ1j) |R1jl = 1) 6= E (g0 (X0jl, δ0j) |R0jl = 1)

even if the two intervention groups have the same missingness mechanism and the

same covariate effect. Hence, R̂D
cr

unadj is biased for true RD when the true data
generating model has logit link. However, like log link, under the null hypothesis
of no intervention effect (β1 = 0), if the two intervention groups have the same
covariate effect, i.e. fi(Xijl) = f(Xijl) for i ∈ {0, 1} and if δ0j and δ1j have common
distribution, we have

gi (Xijl, δij) = expit (β0 + f(Xijl) + δij)− Ej,l (expit (β0 + f(Xijl) + δij))

and then, in addition, if the two intervention groups have the same missingness
mechanism, we have

E (g1 (X1jl, δ1j) |R1jl = 1) = E (g0 (X0jl, δ0j) |R0jl = 1)

and hence R̂D
cr

unadj is unbiased for true RD = 0.

Appendix D

In this appendix we investigate the validity of the cluster-level analyses for RR using
CRA. To this end, we write πijl as

πijl = πi hi (Xijl, δij)

where hi (Xijl, δij) is a function of baseline covariate Xijl and random cluster-effect
δij, and which determines how individual-level probabilities of success differ from
group level probability of success. Then

Ej,l (πijl|Rijl = 1) = πi Ej,l (hi (Xijl, δij) |Rijl = 1)

and

R̂R
cr

unadj −→
E (π1jl|R1jl = 1)

E (π0jl|R0jl = 1)
as k −→∞

=
π1 E (h1 (X1jl, δ1j) |R1jl = 1)

π0 E (h0 (X0jl, δ0j) |R0jl = 1)

= RR
E (h1 (X1jl, δ1j) |R1jl = 1)

E (h0 (X0jl, δ0j) |R0jl = 1)
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So R̂R
cr

unadj will be consistent for true RR if only if

E (h1 (X1jl, δ1j) |R1jl = 1)

E (h0 (X0jl, δ0j) |R0jl = 1)
= 1.

Assuming the data are generated from the log link model (1) in the main paper, we
have

hi (Xijl, δij) =
exp (β0 + β1i+ fi(Xijl) + δij)

Ej,l (exp (β0 + β1i+ fi(Xijl) + δij))

=
exp (fi(Xijl) + δij)

Ej,l (exp (fi(Xijl) + δij))

and

E (h1 (X1jl, δ1j) |R1jl = 1)

E (h0 (X0jl, δ0j) |R0jl = 1)
=

E (exp (f1(X1jl) + δ1j) |R1jl = 1)

E (exp (f0(X0jl) + δ0j) |R0jl = 1)
×E (exp (f0(X0jl) + δ0j))

E (exp (f1(X1jl) + δ1j))

Then if the two intervention groups have the same covariate effect, i.e. fi(Xijl) =
f(Xijl) for i ∈ {0, 1}) and if δ0j and δ1j have common distribution, we have

E (exp (f0(X0jl) + δ0j))

E (exp (f1(X1jl) + δ1j))
= 1

and, in addition, if the two intervention groups have the same missingness mecha-
nism, we have

E (exp (f1(X1jl) + δ1j) |R1jl = 1)

E (exp (f0(X0jl) + δ0j) |R0jl = 1)
= 1

Therefore, if the two intervention groups have the same missingness mechanism and
the same covariate effects, we have

E (h1 (X1jl, δ1j) |R1jl = 1)

E (h0 (X0jl, δ0j) |R0jl = 1)
= 1

and hence R̂R
cr

unadj is consistent for true RR.
On the other hand, assuming the data are generated from the logit link model

(2) in the main paper, we have

hi (Xijl, δij) =
expit (β0 + β1i+ fi(Xijl) + δij)

Ej,l (expit (β0 + β1i+ fi(Xijl) + δij))

and

E (h1 (X1jl, δ1j) |R1jl = 1)

E (h0 (X0jl, δ0j) |R0jl = 1)
=

E (expit (β0 + β1 + f1(X1jl) + δ1j) |R1jl = 1)

E (expit (β0 + f0(X0jl) + δ0j) |R0jl = 1)

× E (expit (β0 + f0(X0jl) + δ0j))

E (expit (β0 + β1 + f1(X1jl) + δ1j))
(D1)

If β1 6= 0, we have

E (expit (β0 + f0(X0jl) + δ0j))

E (expit (β0 + β1 + f1(X1jl) + δ1j))
6= 1
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and
E (expit (β0 + β1 + f1(X1jl) + δ1j) |R1jl = 1)

E (expit (β0 + f0(X0jl) + δ0j) |R0jl = 1)
6= 1

even if the two intervention groups have the same missingness mechanism and the
same covariate effects. Hence

E (h1 (X1jl, δ1j) |R1jl = 1)

E (h0 (X0jl, δ0j) |R0jl = 1)
6= 1

and therefore R̂R
cr

unadj is not consistent for true RR. However, under the null hypoth-
esis of no intervention effect (β1 = 0), if the two intervention group have the same
missingness mechanism and the same covariate effect, the both ratios of expectations
in the right side of equation (D1) equal to one, and hence we have

E (h1 (X1jl, δ1j) |R1jl = 1)

E (h0 (X0jl, δ0j) |R0jl = 1)
= 1

Therefore, if the data generating model has logit link and there is no intervention

effect in truth, R̂R
cr

unadj is consistent for true RR = 1 when the two intervention
groups have the same missingness and the same covariate effect.

Appendix E

As we defined in equation (8), the adjusted cluster-level estimator of RR using
complete records is given by

R̂R
cr

adj =
ε̄
r(cr)
1

ε̄
r(cr)
0

=

1
k

∑k
j=1

Ncr
1j

N̂cr
1j

1
k

∑k
j=1

Ncr
0j

N̂cr
0j

(E1)

where N cr
ij and N̂ cr

ij are the observed and predicted number of successes for the
complete records in the (ij)th cluster.

Assuming the data are generated from the log link model (1) in the main paper,
and following the similar argument presented in Appendix B, it can be shown that,
in the case of CRA, the numerator of equation (E1) is a consistent estimator of

E

(
N cr

1j

N̂ cr
1j

)
= E

[∑m
l=1Rijl exp (β0 + β1 + f1(X1jl) + δ1j)

N̂ cr
1j(X1j,R1j)

]

= exp (β0 + β1) E

[
exp (δ1j)

∑m
l=1Rijl exp (f1(X1jl))

N̂ cr
1j(X1j,R1j)

]
, (E2)

and the denominator of equation (E1) is a consistent estimator of

E

(
N cr

0j

N̂ cr
0j

)
= E

[∑m
l=1Rijl exp (β0 + f0(X0jl) + δ0j)

N̂ cr
0j(X0j,R0j)

]

= exp (β0) E

[
exp (δ0j)

∑m
l=1Rijl exp (f0(X0jl))

N̂ cr
0j(X0j,R0j)

]
, (E3)

6



where Rij is the vector of missing outcomes indicators of the (ij)th cluster. The
distribution of X (in expectation) is the same between the intervention groups as
a consequence of randomisation. The expectations in the right hand side of equa-
tions (E2) and (E3) are equal if δ0j and δ1j have common distribution, the miss-
ingness mechanism is the same between the intervention groups, and fi(Xijl) =
f(Xijl) for i ∈ {0, 1}. Hence, we have

R̂R
cr

adj → exp(β1) = RR as k →∞.

Therefore, R̂R
cr

adj is consistent and, therefore, asymptotically unbiased (as k → ∞)
for true RR if (i) the true data generating model is a log link model, (ii) the func-
tional form of the covariates is the same between the intervention groups, (iii) the
missingness mechanism is the same between the intervention groups, and (iv) the
distribution of random effects is the same between the intervention groups.

The above argument is not true if the data are generated from the logit link

model (2) in the main paper with β1 6= 0, and, therefore, R̂R
cr

adj is not consistent
for true RR ( 6= 1). However, under the null hypothesis of no intervention effect
(β1 = 0), the above argument is true if the true data generating model has logit

link. Hence R̂R
cr

adj is consistent for true RR (= 1) as k →∞.

7
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Table F4 shows the results of a further simulation study for adjusted cluster-level
analysis for RR with full data. The parameters configuration was the same with
the simulation study explained in the main paper except the variance components
parameters for generating the baseline covariate X. We set σ2

u = 0.35, σ2
α = 3.20

and thus we had σ2
x = 3.55, ρx = 0.9.

Table F4: Further simulation results for adjusted cluster-level analysis for RR with
full data. Average estimates of log(RR), their empirical standard errors (SE), their
average estimated SE, and coverage rates for nominal 95% confidence intervals over
1000 simulation runs, using unadjusted cluster-level (CLU) and adjusted cluster-level
(CLA) analyses with full data. The true value of log(RR) is 0.34.

k
Average Empirical SE Average Coverage (%)
estimate estimated SE

CLU CLA CLU CLA CLU CLA CLU CLA

5 0.341 0.439 0.336 0.185 0.343 0.208 96.2 94.8
10 0.342 0.460 0.230 0.135 0.234 0.146 95.9 91.4
20 0.341 0.468 0.160 0.097 0.160 0.100 95.7 78.4
50 0.339 0.476 0.100 0.062 0.101 0.063 95.3 38.8
100 0.338 0.477 0.070 0.043 0.070 0.045 95.1 9.4

Table F5 represents the association of the baseline covariates (age, sex, exam score,
literacy group and baseline anaemia) of the HALI trial with anaemia at 24 months
and with the probability of anaemia outcome at 24 months being missing.

Table F5: Estimates of log odds ratios as measures of association of the baseline
covariates with anaemia at 24 months and with the probability of anaemia outcome
at 24 months being missing

Anaemia Missingness of anaemia

Estimate Std. Error p-value Estimate Std. Error p-value

Intercept -1.72 0.81 0.03 -2.10 0.60 0.00
IST (intervention) 0.36 1.10 0.74 -0.27 0.83 0.74
Age (years) 0.07 0.02 < 0.001 0.06 0.02 < 0.001
Sex (male vs female) -0.04 0.10 0.73 -0.08 0.11 0.48
Exam score 0.00 0.00 0.77 0.00 0.00 0.91
Literacy group 0.06 0.19 0.74 -0.28 0.13 0.03
Baseline anaemia 1.57 0.11 < 0.001 0.09 0.11 0.42
IST: Age * 0.01 0.03 0.62 0.04 0.03 0.12
IST: Sex * 0.10 0.14 0.49 -0.18 0.15 0.24
IST: Exam score * 0.00 0.00 0.59 0.00 0.00 0.62
IST: Literacy group * 0.37 0.26 0.15 0.38 0.19 0.04
IST: Baseline anaemia * -0.19 0.15 0.19 -0.03 0.15 0.86

* Interaction terms
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Chapter 8

Time-to-Event Outcomes

8.1 Introduction

Time-to-event outcomes occur when individuals in the trial are followed until they

experience the event of interest or they are censored. In this thesis, we restrict our

attention to time to first occurrence of the event of interest. For example, in a trial of

reducing fall injury for elderly people, the outcome from each individual is either the

time until he/she experiences a fall or the time until he/she is censored.
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Chapter 8. Time-to-Event outcomes

In Part II and Part III of this thesis, whenever we said that the outcome is missing

for an individual we meant that the value of the outcome is entirely unknown for that

individual. However, there are some situations where outcome for an individual is

neither perfectly known nor entirely unknown. This type of data are known as coarse

data. A common source of such data is censoring, which occurs in time-to-event studies

when an individual is lost to follow up or outlives the study period. Censoring can be

considered as a special case of missing data [13, 44]. The censoring mechanism that

gives rise to the censored data can be thought of as the missingness mechanism [44].

We therefore have three kinds of censoring mechanism paralleling MCAR, MAR and

MNAR, respectively. Time to event data are said to be censored completely at random

(CCAR) when time to censoring is completely independent of time to event. Time to

event data are said to be censored at random (CAR) if, conditional on observed data

(for example, intervention group or covariates), time to censoring is independent of time

to event. Time to event data are said to be censored not at random (CNAR) if time

to censoring is dependent of time to event. Censoring mechanisms CCAR and CAR

are often referred to as ‘non-informative’ or ‘ignorable’ and CNAR often refereed to as

‘informative’ or ‘non-ignorable’ [44].

Let Tijl be the time to event and Cijl be the time to censoring for the lth (l =

1, 2, . . . ,mij) individual in the jth (j = 1, 2, . . . , ki) cluster of the ith (i = 0, 1) in-

tervention group, where i = 0 corresponds to control group and i = 1 corresponds

to active intervention group. Then, for each individual, we observe the follow-up time

Yijl = min(Tijl, Cijl) and a event indicator ∆ijl, where ∆ijl = 1 if Tijl < Cijl and ∆ijl = 0

otherwise. Also let Xijl be an individual-level baseline covariate for the lth individual

in the (ij)th cluster. For simplicity, we assume here that we have only one baseline
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Chapter 8. Time-to-Event outcomes

covariate, though in practice, X can be a vector of covariates, some of which are at the

individual-level and some of which are at the cluster-level. For convenience, we assume

that both control and intervention groups have the same number of clusters (ki = k)

and constant cluster size (mij = m) across the intervention groups.

For time-to-event data, the rate ratio (RaR) or hazard ratio is usually used as the mea-

sure of intervention effect [5]. In the literature, the two broad approaches for estimating

RaR in CRTs are cluster-level analysis and individual-level analysis. As far as we are

aware, there has been little work done to investigate the consistency of the cluster-level

analysis methods under different scenarios, for example, with or without censored data.

An alternative way to measure the intervention effect could be to compare the survival

functions between the intervention groups. One advantages of using survival functions

to quantify the intervention effect is that this approach doesn’t rely on any assumptions

that the rate/hazard is constant over time. Survival functions can be estimated using

the Kaplan-Meier (KM) estimator, assuming that censoring times and survival times

are independent, but the standard error of these estimates need to be adjusted for the

clustered structure of the data. Greenwood’s formula is often used to estimate the vari-

ance of KM estimates assuming the observations are statistically independent. In our

CRT setting, these variances need to be adjusted to acknowledge the clustered struc-

ture of the data. Williams (1995) [38] derived a variance estimator for KM estimates

considering the observations are not statistically independent. Our impression is that

this methodology has not been widely used, particularly in the setting of CRTs.
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We now describe the data generating mechanism assumed in the remainder of the chap-

ter. We are going to assume that the rate or hazard is constant over time, which is

in contrast to what is done in non-clustered randomised trials, where the Cox model

usually used, which doesn’t assume constant hazards. Suppose Tijl ∼ Exp(λijl), where

the rate

λijl = δij exp(β0 + β1i+ fi(Xijl)) (8.1)

with β0 a constant, β1 is the intervention effect, fi(Xijl) is a function of the baseline

covariate Xijl in the ith intervention group, and δij is the random effect for the (ij)th

cluster. In order to separate the baseline rate from the overall random effect, the mean

of the random effect is typically constrained to unity.

The true RaR can then be defined as

RaR =
Ejl(λ1jl)

Ejl(λ0jl)

=
Ejl[δ1j exp(β0 + β1 + f1(X1jl))]

Ejl[δ0j exp(β0 + f0(X0jl))]

= exp(β1)
Ejl[δ1j exp(f1(X1jl))]

Ejl[δ0j exp(f0(X0jl))]
(8.2)

Since the distribution of Xijl is the same across the intervention groups by randomisa-

tion, the expectations in the numerator and denominator of equation (8.2) will be the

same if fi(Xijl) = f(Xijl), i ∈ (0, 1). Under these assumptions, we have RaR = exp(β1).

This chapter is organised as follows. Section 8.2 describes the cluster-level analysis

methods, investigates under which conditions these methods are consistent for estimat-

ing RaR, and presents a simulation study. Section 8.3 describes the shared frailty model,

an individual-level analysis method, and investigates its performance through simula-
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tion. Section 8.4 explains the Kaplan-Meier estimate of survival function and Williams’

approach for estimating the standard errors for KM estimates considering the clustered

structure of the data and presents a simulation study. We summarise the chapter in

Section 8.5.

8.2 Cluster-level analysis

We now explain briefly, how to define and conduct unadjusted and adjusted cluster level

analyses for time-to-event outcomes.

8.2.1 Unadjusted cluster-level analysis

Similar to what was done with continuous and binary outcomes, a relevant summary

measure of outcomes is calculated for each cluster in the first stage of analysis. For

time-to event data, the cluster-level rate of the event of interest is usually used as the

summary measure for each cluster [5]. Let rij be the observed rate of the event of

interest in the jth cluster of the ith intervention group. Then RaR is estimated as

R̂aRunadj =
r̄1
r̄0

where r̄i is the mean of the cluster-specific event rates in the ith intervention group.

Then in the second stage, a test of the hypothesis log(RaRunadj) = 0 is performed using

a standard two independent sample t−test with DF 2k − 2, where V̂ar
(

log(R̂aRunadj)
)
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can be estimated by

V̂ar
(

log(R̂aRunadj)
)

=
s20
kr̄20

+
s21
kr̄21

with s2i =

∑k
j=1(rij − r̄i)2
k − 1

A 95% confidence interval (CI) for the log(RaRunadj) can be obtain based on t−distribution

as

log
(
R̂aRunadj

)
± t2k−2,0.025 ×

√
V̂ar
(

log(R̂aRunadj)
)

One can then easily obtain a 95% CI for the RaRunadj by dividing and multiplying the

R̂aRunadj by

exp
(
t2k−2,0.025 ×

√
V̂ar
(

log(R̂aRunadj)
))
.

We now investigate the consistency of R̂aRunadj. First we consider the case of no cen-

soring in the data and then we consider the case of censoring in the data.

No censoring: Recall that the number of individuals in each cluster is m. Since there

is no censoring, each individual will have an event observed. Hence, the observed rate

of event for the (ij)th cluster is given by

rij =
m∑m
l=1 Tijl

.

The RaR is then estimated as

R̂aRunadj =
r̄1
r̄0

=
(1/k)

∑k
j=1 r1j

(1/k)
∑k

j=1 r0j
(8.3)
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Now for ith intervention group

r̄i = k−1
k∑

j=1

rij
prob−−−→
k→∞

E(rij)

= E

(
m∑m
l=1 Tijl

)

= E

(
1

(1/m)
∑m

l=1 Tijl

)

≈ 1

(1/m)
∑m

l=1 E(Tijl)
, (8.4)

using delta method with m is large. Now

E(Tijl) = Ejl[Ejl(Tijl|λijl)]

= Ejl(λ
−1
ijl ) since Tijl ∼ Exp(λijl)

= Ejl[δ
−1
ij exp(−β0 − β1i− fi(Xijl))]

= exp(−β0 − β1i)Ejl[δ
−1
ij exp(−fi(Xijl))]

Plugging this result into equation (8.4), we have

r̄i = k−1
k∑

j=1

rij
prob−−−−−→

(k,m)→∞

exp(β0 + β1i)

Ejl[δ
−1
ij exp(−fi(Xijl))]

Hence

R̂aRunadj =
r̄1
r̄0

prob−−−−−→
(k,m)→∞

exp(β1)
Ejl[δ

−1
0j exp(−f0(X0jl))]

Ejl[δ
−1
1j exp(−f1(X1jl))]

. (8.5)
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Since the distribution of X is the same across the intervention groups by randomisation,

the expectations in the numerator and denominator in equation (8.5) will cancel out if

fi(Xijl) = f(Xijl), i ∈ (0, 1). Under these assumption, we have

R̂aRunadj
prob−−−−−→

(k,m)→∞
exp(β1) = RaR

Therefore, with no censoring, R̂aR is consistent as (m, k)→∞ if the functional form of

the covariates is the same between the intervention groups in the data generating model

for the outcome. It can also be concluded here that in the case of no covariates effects,

in which case the event rate is the same for every individual within the intervention

groups, R̂aR is also consistent.

Censored data: In the case of censored data, RaR is estimated as

R̂aRunadj =
(1/k)

∑k
j=1 r1j

(1/k)
∑k

j=1 r0j
(8.6)

where

rij =

∑m
l=1 ∆ijl∑m
l=1 Yijl

.

153



Chapter 8. Time-to-Event outcomes

Consider cluster j in intervention group i. Then the survival function in the (ij)th

cluster is defined as

Sij(t) = El[1(Tijl > t)]

= El[El[1(Tijl > t)|λijl]]

= El[Sij(t|λijl)]

= El[exp(−λijlt)] (8.7)

• Condition 1: If Varl(λijl) is small (and so Xijl has small effect), we can approx-

imate the survival function from equation (8.7) using delta method. We have

Sij(t) ≈ exp[−tEl(λijl)] (8.8)

which is the survival function of an exponential distribution with rate El(λijl).

• Condition 2: If λijlt is small (which is possible when either study period is short

or rates are small), using the Taylor expansion of the exponential function, we can

write from equation (8.7)

Sij(t) ≈ El[1− λijlt]

= 1− tEl(λijl)

≈ exp[−tEl(λijl)], (8.9)

which will be valid when tEl(λijl) is small. Under these assumptions, Sij(t) is the

survival function of an exponential distribution again with rate El(λijl).
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Hence, under either of these conditions assuming censoring is independent within (ij)th

cluster, we have

rij
prob−−−→
m→∞

El(λijl) = δij exp(β0 + β1i)El[exp(fi(Xijl))] (8.10)

since rij is the MLE for common rate for a sample of independent individuals with

exponentially distributed event times. Then

R̂aRunadj
prob−−−−−→

(k,m)→∞

Ej(r1j)

Ej(r0j)

= exp(β1)
Ej[δ1jEl[exp(f1(X1jl))]]

Ej[δ0jEl[exp(f0(X0jl))]]
. (8.11)

Again, since the distribution of X is the same across the intervention groups by ran-

domisation, the expectations in the numerator and denominator in equation (8.11) will

the same if fi(Xijl) = f(Xijl), i ∈ (0, 1) ( i.e. if the rates depend on X in both groups

according to the same functional form). Under these assumptions,

R̂aRunadj
prob−−−−−→

(k,m)→∞
exp(β1) = RaR

Therefore, in the case with censored data, R̂aR is consistent as (k,m)→∞ if (i) either

the covariate has small effect or event rates are small, (ii) the functional form of the

covariates is the same between the intervention groups in the data generating model for

the outcome, and (iii) censoring is independent within each cluster.
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8.2.2 Adjusted cluster-level analysis

In adjusted cluster-level analysis, an individual-level regression analysis of the outcome

of interest is carried out at the first stage of analysis ignoring the clustering of the

data, which incorporates all covariates into the regression model except intervention

indicator[5, 7]. A standard Poisson regression model is usually fitted for time-to-event

data, which assumes

log(λijl) = α1 + α2Xijl (8.12)

Let Nij and N̂ij be the observed and predicted number of event in the (ij)th cluster,

respectively. After fitting the model (8.12), N̂ij is calculated as

N̂ij =
m∑

l=1

Yijlλ̂ijl =
m∑

l=1

Yijl × exp(α̂1 + α̂2Xijl) (8.13)

Then the ratio-residual for each cluster is calculated as

εij =
Nij

N̂ij

The adjusted RaR is then estimated as

R̂aRadj =
ε̄1
ε̄0

=

1
k

∑k
j=1

N1j

N̂1j

1
k

∑k
j=1

N0j

N̂0j

(8.14)
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In the second stage, a test of the hypothesis log(RaRadj) = 0 is performed using a

standard two independent sample t−test with degrees of freedom (DF) 2k − 2, where

V̂ar
(

log(R̂aRadj)
)

can be estimated by

V̂ar
(

log(R̂aRadj)
)

=
s2ε0
kε̄20

+
s2ε1
kε̄21

with s2εi =

∑k
j=1(εij − ε̄i)2
k − 1

A 95% confidence interval (CI) for the log(RaRadj) can be calculated as

log
(
R̂aRadj

)
± t2k−2,0.025 ×

√
V̂ar
(

log(R̂aRadj)
)

One can then easily obtain a 95% CI for the RaRadj by dividing and multiplying the

R̂aRadj by

exp
(
t2k−2,0.025 ×

√
V̂ar
(

log(R̂aRadj)
))
.

We now investigate the consistency of R̂aRadj. First we consider the case of no censoring

in the data and then we consider censoring in the data.

No censoring: Recall that each cluster has m individuals. Since in the case of no

censoring each individual will have an event, the observed number of event in each

cluster is Nij = m, and the predicted number of event is N̂ij =
∑m

l=1 Tijlλ̂ijl. Again,

since λ̂ijl is a function of Xijl only, replacing λ̂ijl by h(Xijl) for convenience, we have

N̂ij =
m∑

l=1

Tijlh(Xijl).
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The numerator of (8.14) is a consistent estimator of

E

(
N1j

N̂1j

)
= E

(
m

∑m
l=1 T1jlλ̂1jl

)

= E

(
1

(1/m)
∑m

l=1 T1jl h(X1jl)

)
,

Then using the delta method assuming large m, we have

E

(
N1j

N̂1j

)
≈ 1

E[(1/m)
∑m

l=1 T1jl h(X1jl)]

=

(
E

[
1

m

m∑

l=1

T1jl h(X1jl)

])−1

= (E[T1jlh(X1jl)])
−1 (8.15)

Now

E[T1jlh(X1jl)] = E [E (T1jl h(X1jl)|X1jl, δ1j)]

= E [h(X1jl)E (T1jl|X1jl, δ1j)]

= E[h(X1jl)λ
−1
1jl]

= E[h(X1jl)δ
−1
1j exp(−β0 − β1 − f1(X1jl))]

= exp(−β0 − β1)E[δ−11j h(X1jl) exp(−f1(X1jl))]

Plugging this result into equation (8.15), we have

E

(
N1j

N̂1j

)
= exp(β0 + β1)

(
E[δ−11j h(X1jl) exp(−f1(X1jl))]

)−1
(8.16)
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Analogously, it can be shown that the denominator of equation (8.14) is a consistent

estimator of

E

(
N0j

N̂0j

)
= exp(β0)

(
E[δ−10j h(X0jl) exp(−f0(X0jl))]

)−1
(8.17)

Since the distribution of X is in expectation the same between the intervention groups

as a consequence of randomisation, the expectations in the right hand sides of equations

(8.16) and (8.17) are equal. Under all these assumptions, we have

R̂aRadj
prob−−−−−→

(k,m)→∞
exp(β1) = RaR.

Note that this proof has not needed to assume that the first stage regression model is

correctly specified.

Censored data: The numerator of (8.14) is a consistent estimator of

E

(
N1j

N̂1j

)
= E

[
E

(
N1j

N̂1j

∣∣∣Y 1j,X1j, δ1j

)]

= E

[
E (N1j|Y 1j,X1j, δ1j)∑m

l=1 Y1jlλ̂1jl

]
, assuming independent censoring

= E

[∑m
l=1 Y1jlλ1jl∑m
l=1 Y1jlλ̂1jl

]

= E

[∑m
l=1 Y1jl δ1j exp (β0 + β1 + f1(X1jl))∑m

l=1 Y1jl exp (α̂1 + α̂2X1jl)

]

=
exp (β0 + β1)

exp (α̂1)
E

[
δ1j
∑m

l=1 Y1jl exp (f1(X1jl))∑m
l=1 Y1jl exp (α̂2X1jl)

]
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where Y 1j and X1j are the vectors of Y1jl and X1jl values, respectively, for the j cluster

of the intervention group. Suppose fi(Xijl) = f(Xijl) = β2Xijl, i ∈ (0, 1). Then

E

(
N1j

N̂1j

)
=

exp (β0 + β1)

exp (α̂1)
E

[
δ1j
∑m

l=1 Y1jl exp (β2X1jl)∑m
l=1 Y1jl exp (α̂2X1jl)

]
(8.18)

The first stage model (8.12) incorporates only the covariate Xijl and not the intervention

indicator. This model possesses the collapsibility property because it assumes log-link

and Xijl is independent of the intervention indicator. Hence, α̂2 is consistent for β2

assuming censoring is independent conditional on X, and therefore

E

[
δ1j
∑m

l=1 Y1jl exp (β2X1jl)∑m
l=1 Y1jl exp (α̂2X1jl)

]
= E(δ1j) (8.19)

This result is true for any form of f(Xijl), provided that the analyst correctly models

the dependence on X in the first stage model.

Plugging equation (8.19) into equation (8.18), we have

E

(
N1j

N̂1j

)
=

exp (β0 + β1)

exp (α̂1)
E(δ1j).

Using a similar argument, it can be shown that the denominator of (8.14) is a consistent

estimator of

E

(
N0j

N̂0j

)
=

exp(β0)

exp(α̂1)
E(δ0j). (8.20)
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Now, from equation (8.14), we can write

R̂aRadj
prob−−−→
k→∞

E
(
N1j

N̂1j

)

E
(
N0j

N̂0j

)

=
exp (β0 + β1)

exp (α̂1)
× exp (α̂1)

exp (β0)
× E (δ1j)

E (δ0j)

= exp(β1)×
E (δ1j)

E (δ0j)

= exp(β1) = RaR,

since δ1j and δ01 have the same mean by assumption. Therefore, in the case of censored

data, adjusted cluster-level estimator of RaR is consistent if the rates depend on covari-

ates in both groups according to the same functional form (fi(Xijl) = f(Xijl), i ∈ (0, 1))

and the first stage regression model correctly specifies such dependence.

8.2.3 Simulation study I

A simulation study was conducted to investigate the consistency of the cluster-level anal-

ysis methods for estimating RaR. We considered three different scenarios: no censoring,

only administrative censoring, and only random censoring that depends on baseline

covariate values.
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Data generation and analysis: Data were generated using the model in equa-

tion (8.1) with fi(Xijl) = β2Xijl, where β2 is the effect of covariate Xijl. For each

individual in the study, a value of the covariate Xijl was generated using the model

Xijl = αij + uijl

where αij is the (ij)th cluster effect on X and uijl is the individual-level error on X. We

assumed that αij ∼ N (µx, σ
2
α) independently of uijl ∼ N (0, σ2

u), where µx is the mean

of X, σ2
α and σ2

u are the between-cluster and within-cluster variance of X, respectively.

The total variance of X can be written as σ2
x = σ2

α + σ2
u and thus the ICC of X is

ρx = σ2
α/σ

2
x. Then we generated event times for each individual as Tijl ∼ Exp(λijl),

where

λijl = δij exp(β0 + β1i+ β2Xijl) (8.21)

with δij ∼ Gamma (shape = 1/θ1, rate = 1/θ1). The non-parametric intraclass correla-

tion coefficient for Tijl was calculated as ρT = θ1/(2+θ1). For generating individual-level

covariate values Xijl, we chose µx = 6, σ2
x = 1 and ρx = 0.05; and thus we had σ2

α = 0.05

and σ2
u = 0.95. We set the parameter β1 = −0.35, which corresponds to true RaR=0.70,

and β2 = 1. The value of the parameter for generating random effects was fixed as

θ1 = (2/9, 2/19) so that we had ρT = (0.1, 0.05), respectively. We fixed β0 = −8.0 for

no censoring. For only administrative censoring, we varied β0 = (−10.5,−8.0) and the

length of the study τ = (3, 5, 7, 10, 15) to have the proportions of the event of interest

as small to moderate or moderate to high in the intervention groups.
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For random censoring, we generated random censoring times for each individual as

Cijl ∼ Exp(φijl), where

φijl = ωij exp(ψ0 + ψ1Xijl)

with ωij ∼ Gamma (shape = 1/θ2, rate = 1/θ2). We set ψ0 = −1.5, ψ1 = 0.5 and θ2 =

2/19 and thus we had ρC = 0.05. We varied β0 = (−8.5,−6.5,−5.5,−4.5,−3.5,−3.0)

to have low to high proportions of event. In this simulation study, we also varied the

number of clusters in each intervention group as k = (5, 10, 20, 30) and fixed the cluster

size m = 100. We estimated log(RaR) from each generated data set as a measure of

intervention effect.

Recall that, in the case of adjusted cluster-level analysis with no censoring, we showed

analytically (Section 8.2.2) that the first stage regression model need not to be correctly

specified to get consistent estimate of RaR. To show this empirically in an additional

set of analyses, we generated event times for each individual as Tijl ∼ Exp(λijl), where

λijl = δij exp(β0 + β1i+ β2Xijl + β3
√
Xijl)

but we fit the first stage model as

log(λijl) = α1 + α2Xijl
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Results: The average estimates of log(RaR), their average estimated standard errors

(aveSE), empirical standard errors (empSE), and coverage rates for nominal 95% con-

fidence interval are presented over 1000 simulation runs with ρT = 0.1 for each of the

three scenarios: no censoring, only administrative censoring and only random censoring.

For unadjusted cluster-level analysis, Table 8.1 shows the results for no censoring, Ta-

ble 8.2 and Table 8.3 show the results for administrative censoring considering low to

moderate and moderate to high proportions of event, respectively, and Table 8.4 shows

the results for only random censoring. In the case of no censoring, the average esti-

mates of log(RaR) were very close to the true value with coverage rates close to the

nominal rate (see Table 8.1). In the cases of censored data (either administrative or

random censoring), the average estimates of log(RaR) were close to the true value of

RaR with good coverage rates when the proportions of event were small (see Table 8.2

with τ = 3, 5 and Table 8.4). In contrast, as the proportions of event in the intervention

groups went high (see Table 8.3 and Table 8.4 ), the average estimates of log(RaR)

went away from the true RaR. These empirical results support our derived analytical

results in Section 8.2.1 for estimating RaR using unadjusted cluster-level analysis. We

observed qualitatively similar results under ρT = 0.05 and are not presented.

Table 8.1: Simulation results for the unadjusted cluster-level analysis considering no cen-
soring. Average estimates of log(RaR), their average estimated standard errors (aveSE),
empirical standard errors (empSE), and coverage (Cov) rates for nominal 95% confidence
interval over 1000 simulation runs are presented. The true log(RaR) is -0.35.

k Estimate aveSE empSE Cov (%)

5 -0.349 0.332 0.356 95.2
10 -0.355 0.246 0.250 94.5
20 -0.352 0.177 0.184 94.6
30 -0.354 0.146 0.147 95.0
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Table 8.2: Simulation results for the unadjusted cluster-level analysis considering only
administrative censoring with low to moderate proportions of event. Average estimates
of log(RaR), their average estimated standard errors (aveSE), empirical standard er-
rors (empSE), and coverage (Cov) rates for nominal 95% confidence interval over 1000
simulation runs are presented. The true log(RaR) is -0.35.

k τ
Proportions of event

Estimate aveSE empSE Cov (%)
Control Intervention

5 3 0.051 0.037 -0.358 0.420 0.458 94.8
5 0.080 0.059 -0.347 0.370 0.406 93.9
7 0.107 0.079 -0.343 0.348 0.362 94.5
10 0.145 0.109 -0.338 0.329 0.347 94.4
15 0.199 0.155 -0.326 0.315 0.333 94.4

10 3 0.051 0.037 -0.334 0.311 0.314 95.5
5 0.081 0.059 -0.327 0.273 0.284 94.9
7 0.108 0.080 -0.323 0.258 0.272 93.1
10 0.144 0.109 -0.307 0.246 0.250 94.0
15 0.202 0.153 -0.317 0.231 0.234 94.8

20 3 0.051 0.036 -0.336 0.221 0.222 95.1
5 0.080 0.058 -0.328 0.198 0.198 95.7
7 0.108 0.080 -0.326 0.186 0.191 94.3
10 0.145 0.109 -0.316 0.176 0.174 95.2
15 0.199 0.153 -0.304 0.167 0.165 94.9

30 3 0.051 0.036 -0.343 0.181 0.182 95.6
5 0.081 0.059 -0.335 0.163 0.165 94.1
7 0.108 0.080 -0.324 0.153 0.155 95.2
10 0.146 0.108 -0.321 0.144 0.147 94.4
15 0.201 0.152 -0.315 0.135 0.131 93.8

For adjusted cluster-level analysis when the first stage model is correctly specified,

Table 8.5 shows the results for no censoring, Table 8.6 and Table 8.7 show the results for

administrative censoring considering low to moderate and moderate to high proportions

of event, respectively, and Table 8.8 shows the results for only random censoring. The

average estimates of log(RaR) were very close to the true value of RaR with good

coverage rates regardless of whether there was censoring or not. These empirical results

support our derived analytical results in Section 8.2.2 for estimating RaR using adjusted
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Table 8.3: Simulation results for the unadjusted cluster-level analysis considering only
administrative censoring with moderate to high proportions of event. Average esti-
mates of log(RaR), their average estimated standard errors (aveSE), empirical standard
errors (empSE), and coverage (Cov) rates for nominal 95% confidence interval over 1000
simulation runs are presented. The true log(RaR) is -0.35.

k τ
Proportions of event

Estimate aveSE empSE Cov (%)
Control Intervention

5 3 0.368 0.294 -0.294 0.293 0.314 94.8
5 0.492 0.405 -0.295 0.276 0.298 93.2
7 0.577 0.490 -0.279 0.272 0.273 95.4
10 0.662 0.577 -0.275 0.267 0.287 94.3
15 0.750 0.673 -0.281 0.265 0.298 93.1

10 3 0.369 0.295 -0.292 0.209 0.214 93.2
5 0.489 0.407 -0.280 0.201 0.200 93.6
7 0.574 0.488 -0.278 0.196 0.199 94.5
10 0.661 0.575 -0.289 0.193 0.200 93.1
15 0.751 0.674 -0.272 0.195 0.207 93.2

20 3 0.368 0.296 -0.289 0.150 0.154 92.2
5 0.491 0.406 -0.290 0.143 0.144 93.5
7 0.573 0.488 -0.272 0.141 0.144 91.4
10 0.660 0.576 -0.274 0.139 0.145 90.3
15 0.753 0.675 -0.279 0.139 0.143 90.6

30 3 0.369 0.296 -0.289 0.122 0.123 92.3
5 0.490 0.406 -0.286 0.118 0.116 92.6
7 0.573 0.487 -0.278 0.115 0.119 89.7
10 0.659 0.575 -0.275 0.115 0.119 88.8
15 0.752 0.673 -0.283 0.115 0.119 90.5

cluster-level analysis when the first stage model is correctly specified. Again, the results

for ρ = 0.05 are not presented as we observed qualitatively similar results under ρ = 0.1

and 0.05.

Table 8.9 shows the simulation results for the adjusted cluster-level analysis considering

no censoring when the first stage model was misspecified. The empirical estimates of

RaR were very close to the true value of RaR with good coverage rates which supports

our analytical results in Section 8.2.2.
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Table 8.4: Simulation results for the unadjusted cluster-level analysis considering only
random censoring. Average estimates of log(RaR), their average estimated standard
errors (aveSE), empirical standard errors (empSE), and coverage (Cov) rates for nominal
95% confidence interval over 1000 simulation runs are presented. The true log(RaR) is
-0.35.

k
Proportions of event

Estimate aveSE empSE Cov (%)
Control Intervention

10
0.022 0.016

-0.348 0.420 0.446 94.7
20 -0.357 0.297 0.310 95.2
30 -0.351 0.245 0.254 95.1
10

0.135 0.100
-0.333 0.261 0.279 94.3

20 -0.335 0.188 0.187 94.7
30 -0.332 0.155 0.159 95.3
10

0.486 0.412
-0.310 0.225 0.237 93.9

20 -0.323 0.163 0.173 93.0
30 -0.311 0.134 0.141 93.5
10

0.696 0.628
-0.310 0.226 0.235 93.6

20 -0.305 0.165 0.163 94.2
30 -0.311 0.135 0.132 94.8

Table 8.5: Simulation results for the adjusted cluster-level analysis considering no cen-
soring when the first stage model is correctly specified. Average estimates of log(RaR),
their average estimated standard errors (aveSE), empirical standard errors (empSE),
and coverage (Cov) rates for nominal 95% confidence interval over 1000 simulation runs
are presented. The true log(RaR) is -0.35.

k Estimate aveSE empSE Cov (%)

5 -0.352 0.291 0.306 94.6
10 -0.351 0.211 0.215 95.9
20 -0.348 0.150 0.152 93.4
30 -0.354 0.123 0.126 94.6
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Table 8.6: Simulation results for the adjusted cluster-level analysis considering only
administrative censoring with low to moderate proportions of event when the first stage
model is correctly specified. Average estimates of log(RaR), their average estimated
standard errors (aveSE), empirical standard errors (empSE), and coverage (Cov) rates
for nominal 95% confidence interval over 1000 simulation runs are presented. The true
log(RaR) is -0.35.

k τ
Proportions of event

Estimate aveSE empSE Cov (%)
Control Intervention

5 3 0.051 0.037 -0.358 0.420 0.458 94.8
5 0.080 0.059 -0.347 0.370 0.406 93.9
7 0.107 0.079 -0.343 0.348 0.362 94.5
10 0.145 0.109 -0.348 0.329 0.347 94.4
15 0.199 0.155 -0.346 0.315 0.334 94.4

10 3 0.051 0.037 -0.351 0.301 0.311 94.5
5 0.081 0.059 -0.359 0.272 0.284 93.9
7 0.108 0.080 -0.349 0.253 0.265 94.0
10 0.144 0.109 -0.345 0.241 0.252 93.7
15 0.202 0.153 -0.352 0.230 0.248 93.7

20 3 0.051 0.036 -0.351 0.216 0.219 94.5
5 0.080 0.058 -0.349 0.192 0.190 95.3
7 0.108 0.080 -0.345 0.181 0.188 95.0
10 0.145 0.109 -0.357 0.173 0.172 95.1
15 0.199 0.153 -0.344 0.165 0.165 95.3

30 3 0.051 0.036 -0.348 0.176 0.172 95.2
5 0.081 0.059 -0.355 0.157 0.161 95.0
7 0.108 0.080 -0.350 0.148 0.149 94.8
10 0.146 0.108 -0.352 0.141 0.146 94.0
15 0.201 0.152 -0.352 0.135 0.138 94.5

8.3 Individual-level analysis

In individual-level analysis, a regression model is fitted to the individual-level outcome,

allowing for the fact that observations within the same clusters are correlated. For time-

to-event data in CRTs, shared frailty models (SFM) are widely used as individual-level

analysis method. We now describe SFM briefly.
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Table 8.7: Simulation results for the adjusted cluster-level analysis considering adminis-
trative censoring with moderate to high proportions of event when the first stage model
is correctly specified. Average estimates of log(RaR), their average estimated standard
errors (aveSE), empirical standard errors (empSE), and coverage (Cov) rates for nomi-
nal 95% confidence interval over 1000 simulation runs are presented. The true log(RaR)
is -0.35.

k τ
Proportions of event

Estimate aveSE empSE Cov (%)
Control Intervention

5 3 0.371 0.296 -0.349 0.301 0.340 93.8
5 0.492 0.409 -0.340 0.291 0.316 95.9
7 0.575 0.488 -0.343 0.291 0.300 95.1
10 0.661 0.576 -0.354 0.284 0.302 94.7
15 0.750 0.670 -0.348 0.289 0.311 94.4

10 3 0.369 0.295 -0.348 0.218 0.222 94.8
5 0.489 0.407 -0.342 0.213 0.217 94.9
7 0.574 0.488 -0.359 0.212 0.217 95.7
10 0.661 0.575 -0.351 0.212 0.211 94.6
15 0.751 0.674 -0.347 0.218 0.229 93.4

20 3 0.368 0.296 -0.341 0.155 0.153 95.6
5 0.491 0.406 -0.344 0.153 0.152 94.6
7 0.573 0.488 -0.347 0.152 0.152 95.3
10 0.660 0.576 -0.345 0.151 0.155 95.1
15 0.753 0.675 -0.352 0.150 0.153 93.9

30 3 0.369 0.296 -0.347 0.128 0.130 95.3
5 0.490 0.406 -0.348 0.125 0.128 94.0
7 0.573 0.487 -0.351 0.124 0.128 94.4
10 0.659 0.575 -0.347 0.124 0.129 93.5
15 0.752 0.673 -0.351 0.123 0.123 94.9
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Table 8.8: Simulation results for the adjusted cluster-level analysis considering only
random censoring when the first stage model is correctly specified. Average estimates
of log(RaR), their average estimated standard errors (aveSE), empirical standard er-
rors (empSE), and coverage (Cov) rates for nominal 95% confidence interval over 1000
simulation runs are presented. The true log(RaR) is -0.35.

k
Proportions of event

Estimate aveSE empSE Cov (%)
Control Interven.

10
0.281 0.222

-0.353 0.222 0.225 93.9
20 -0.348 0.161 0.161 94.5
30 -0.346 0.131 0.133 94.4
10

0.486 0.411
-0.347 0.215 0.233 93.7

20 -0.354 0.153 0.154 94.6
30 -0.349 0.126 0.127 95.1
10

0.696 0.627
-0.351 0.212 0.220 94.5

20 -0.345 0.153 0.151 94.9
30 -0.345 0.124 0.129 93.8

Table 8.9: Simulation results for adjusted cluster-level analysis considering no censoring
when the first stage model is misspecified. Average estimates of log(RaR), their average
estimated standard errors (aveSE), empirical standard errors (empSE), and coverage
(Cov) rates for nominal 95% confidence interval over 1000 simulation runs are presented.
The true log(RaR) is -0.35.

k Estimate aveSE empSE Cov (%)
5 -0.350 0.287 0.313 94.6
10 -0.347 0.211 0.218 94.8
20 -0.353 0.151 0.155 95.4
30 -0.349 0.124 0.124 94.3
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8.3.1 The Shared frailty model

The frailty model is an extension of the Cox model that allows dependency among ob-

servations within the same cluster. In a SFM, a multiplicative random effect is common

to all individuals of a cluster. The SFM is defined in terms of conditional rate, often

referred to conditional hazard, as

λijl(t|Xijl, δij) = λ0(t) δij exp(β1i+ fi(Xijl)), (8.22)

where λ0(t) is the baseline rate, δij(> 0) is the frailty for the (ij)th cluster, β1 is the

intervention effect. The conditional rate for the (ijl)th individual is composed of the

baseline rate λ0(t), the frailty multiplier δij shared by all individuals in the (ij)th cluster,

and the adjustment for the covariate Xijl. If the baseline rate λ0(t) is a constant over

time, one can write the model (8.22) as

λijl(t|Xijl, δij) = δij exp(β0 + β1i+ fi(Xijl)) with exp(β0) = λ0(t). (8.23)

The main assumption of a SFM is that all individuals in the same cluster share the same

frailty value, giving rise to the name. Sharing the same frailty value by all individuals

in a cluster generates dependence between event times of two individuals in the same

cluster. Conditional on the frailty δij, the event times in the (ij)th cluster are assumed

to be independent. It is also assumed that event times between clusters are independent.

If δij > 1, all individuals of the (ij)th cluster are said to have an increased risk of the

event. Conversely, if 0 < δij < 1, all individuals in the (ij)th clusters are less frail and

will tend to survive longer period provided that all else is unchanged.
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The frailties δij(i = 0, 1; j = 1, 2, . . . , k) are assumed to be independently and iden-

tically distributed random variables with probability density function f(δ), the frailty

distribution. Various frailty distributions have been proposed in the literature [39, 40]

including gamma, log-normal, inverse-Gaussian and positive stable distributions. In this

thesis, we restrict our attention to the gamma distribution, a family of positively skewed

distributions. There are two main reasons for choosing this distribution as the frailty

distribution. First, the rates are positive quantities and often have a positively skewed

distribution. Second, a simple analytical form for the distribution of the number of

events can be derived if the frailties (random effects) follow the gamma distribution. It

can be shown that the combination of Poisson distribution with gamma frailties implies

that the number of events in clusters follow the negative binomial distribution. Under

the assumption that the frailties follow a gamma distribution, the model (8.23) is called

gamma SFM. Since the frailties multiply the rate, they need to be non-negative. In ad-

dition, in order to separate the baseline rate from the overall effect of random frailties,

the mean of frailties is typically constrained to unity. The variance of frailties represents

the degree of heterogeneity across the clusters in baseline rate.

8.3.2 Simulation study II

Maximum likelihood methods are used to fit the gamma SFM which are valid asymp-

totically. However, like LMM and RELR, the SFM could underestimate the standard

errors of the parameters estimates when each intervention group has small number of

clusters. A simulation study was conducted to investigate the performance of the SFM
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for estimating RaR with small number of clusters in each intervention group. We also

investigated whether the CIs calculated using quantiles form t−distribution give better

coverage than that of CIs calculated using quantiles from standard normal distribution.

Data generation and analysis: Data were generated in exactly the same way that

we explained in Section 8.2.3. However, in this simulation study, we considered two

different cases depending on whether the censoring mechanism is the same or different

between the intervention groups. These are (C1) the two intervention groups have the

same censoring mechanism, and (C2) the intervention groups have the different censoring

mechanism. We set (ψ0, ψ1) = (−1.5,−0.05) to generate censoring times under C1, and

we set (ψ0, ψ1) = (−1.5,−0.05) in the control group and (ψ0, ψ1) = (−2.5,−0.05) in the

intervention group to generating censoring times under C2. The R package parfm [41]

was used to fit the gamma SFM (8.23). We calculated the CIs based on quantiles form

N (0, 1) and based on quantiles form t−distribution with DF 2k − 2.

Simulation results: Table 8.10 and Table 8.11 present the average estimates of

log(RaR), their average estimated standard errors (aveSE) and empirical standard er-

rors (empSE), and coverage rates for 95% CI over 1000 simulations runs under C1 and

C2, respectively, with ρ = 0.1. The estimates were unbiased for the true log(RaR)

regardless of whether the two intervention groups have the same or different censoring

mechanism. However, the average standard error estimates were slightly lower com-

pared to the empirical SEs when the intervention groups had small number of clusters,
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Table 8.10: Average estimates of log(RaR) using gamma SFM, their average estimated
standard errors (aveSE), empirical standard errors (empSE) and coverage (Cov) rates
for nominal 95% CI over 1000 simulations when the two intervention groups have the
same censoring mechanism. The true log(RaR) is -0.35. The proportions of event in the
control and intervention groups were, respectively, (a) 0.065 and 0.045 (b) 0.407 and
0.333, and (c) 0.855 and 0.795.

k Estimate aveSE empSE
Cov (%).

Normal t−dist.

(a)

5 -0.363 0.369 0.436 89.0 91.0
10 -0.341 0.273 0.282 93.1 94.7
20 -0.359 0.198 0.206 93.6 94.8
50 -0.351 0.127 0.133 93.4 94.3

(b)

5 -0.352 0.274 0.332 86.0 87.3
10 -0.338 0.210 0.219 93.0 94.8
20 -0.351 0.154 0.160 93.4 95.1
50 -0.351 0.099 0.101 94.7 95.6

(c)

5 -0.352 0.266 0.320 87.3 88.9
10 -0.337 0.203 0.212 92.1 94.2
20 -0.350 0.149 0.155 92.8 94.5
50 -0.351 0.096 0.097 94.8 96.1

which resulted in low coverage rate. However, the CIs calculated using quantiles from

t−distribution showed better coverage rates compared to that of CIs calculated using

quantiles from N (0, 1).

8.4 Kaplan-Meier estimator

In this section, the estimand of interest is the survival function in each intervention

group and we use the Kaplan-Meier (KM) estimator. Since KM estimator has the same

form in each group, we describe it for one intervention group. Therefore, the subscript

i is dropped in the remainder of this section.
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Table 8.11: Average estimates of log(RaR) using gamma SFM, their average estimated
standard errors (aveSE), empirical standard errors (empSE) and coverage (Cov) rates for
nominal 95% CI over 1000 simulations when the two intervention groups have different
censoring mechanism. The true log(RaR) is -0.35. The proportions of event in the
control and intervention groups were, respectively, (a) 0.075 ans 0.054 (b) 0.410 and
0.375, and (c) 0.880 and 0.875

k Estimate aveSE empSE
Cov (%)

Normal t−dist.

(a)

5 -0.358 0.356 0.419 87.7 89.9
10 -0.345 0.264 0.275 92.6 94.2
20 -0.358 0.192 0.202 94.2 95.4
50 -0.352 0.124 0.128 93.4 95.3

(b)

5 -0.352 0.272 0.329 86.6 87.9
10 -0.348 0.209 0.218 93.4 94.3
20 -0.351 0.154 0.160 93.6 95.2
50 -0.351 0.099 0.101 94.4 95.4

(c)

5 -0.353 0.266 0.320 87.4 88.9
10 -0.342 0.203 0.212 92.3 94.4
20 -0.350 0.149 0.154 92.9 94.1
50 -0.351 0.096 0.097 94.9 96.3

Assuming that there are no tied event times, let t1 < t2 < . . . < tM be the ordered event

times, where M = km. Define the indicator variables

Ajl(tv) =





1 if lth individual from jth cluster fails at time tv

0 otherwise

and

Bjl(tv) =





1 if lth individual from jth cluster is at risk at time tv

0 otherwise.

The number of events at time tv is then calculated as

dv =
k∑

j=1

m∑

l=1

Ajl(tv)
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and the number of individuals at risk at time tv is

nv =
k∑

j=1

m∑

l=1

Bjl(tv)

Ignoring clustering, the KM estimate of survival function at time tu is

Ŝ(tu) =
u∏

v=1

(
1− dv

nv

)
=

u∏

v=1

(1− qv) =
u∏

v=1

pv

where qv = dv/nv and pv = 1− qv.

Greenwood’s formula estimates the variance of the KM estimates, assuming the obser-

vations are independent, as

V̂ar
(
Ŝ(tu)

)
=
{
Ŝ(tu)

}2
u∑

v=1

dv
nv(nv − dv)

.

However, if the observations are clustered, i.e, the observations in the same cluster are

correlated, the variance of KM estimates using Greenwood’s formula might be under-

estimated. Williams (1995) [38] derived a variance estimator for KM estimates which

allows for the dependence caused by clustering. This estimator uses a Taylor series

linearised approach and the between-cluster variance estimator. We now describe the

Williams approach briefly (see the original paper [38] for more details).

Williams’ approach used Woodruff’s technique [42] that replaces a complex non-linear

function, like Ŝ(tv), with a linear approximation based on a first-order Taylor series

expansion. The linear approximation is then used to estimate the variance of the original

non-linear function. Returning to the KM estimate of survival function, Ŝ(tu) is a
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product of terms containing the ratio qv = dv/nv, v = 1, 2, . . . , u. The linearised value

of qv for the (jl)th individual, using Woodruff’s approach [42], is

Ljl(qv) =
1

nv

[
Ajl(tv)− qvBjl(tv)

]
.

Then the linearised value for the survival estimate Ŝ(tu), developed by Folsom et.al [43],

is

Ljl[Ŝ(tu)] = −
u∑

v=1

Ŝ(tu)

pv
Ljl(qv)

= −Ŝ(tu)

[
u∑

v=1

Ajl(tv)− qvBjl(tv)

nv − dv

]
.

The leading minus sign can be ignored as this will not affect the variance estimate. The

linearised values can be calculated using the recursive formula

Ljl[Ŝ(tu)] = puLjl
[
Ŝ(t(u−1))

]
+ Ŝ(tu−1)Ljl(qu); u = 2, 3, . . . ,M

with Ljl[Ŝ(t1)] = Ljl(q1). In order to estimate the variance of Ŝ(tu), it is assumed

that the k clusters are randomly selected from a infinite population of clusters and the

individuals within each cluster are correlated. The between-cluster variance estimator

can then be applied to the linearised values Ljl[Ŝ(tu)] to estimate the variance of Ŝ(tu).

Accumulating the linearised values to the cluster level as

Lj[Ŝ(tu)] =
m∑

l=1

Ljl
[
Ŝ(tu)

]
,
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the variance of Ŝ(tu) is then estimated by

V̂ar[Ŝ(tu)] =
k

k − 1

k∑

j=1

(
Lj
[
Ŝ(tu)

]
− L̄

[
Ŝ(tu)

])2
,

where L̄(Ŝ(tu)) is the mean of Lj[Ŝ(tu)] over j. This variance estimator is unbiased

for any linear statistic, and is consistent for non-linear statistic when the number of

clusters tends to infinity. Also this method is valid for any correlation structure among

the observations within a cluster as long as the clusters are independent. The main

advantage of this method is that it does not require any information regarding the

within-cluster correlation structure.

In order to construct a confidence interval (CI) for Ŝ(t) we need to make a distributional

assumption. Let zα/2 be such that P
(
Z > zα/2

)
= α/2, where Z ∼ (0, 1). Then

assuming Ŝ(t) is normally distributed, an approximate 100(1−α)% confidence interval

for S(t) is given by

Ŝ(t)± zα/2 ×
√

V̂ar[Ŝ(t)].

A drawback of this CI is that the distribution of Ŝ(t) is not really normal. One possible

solution is to transform Ŝ(t) onto (−∞,∞) scale. Consider a complementary log-log

transformation

V = log{− log[Ŝ(t)]}.

Applying the delta method, we know

Var[f(U)] ≈ Var(U) {f ′[E(U)]}2 ,
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where f(U) is a function of U . Applying this variance lemma when U = Ŝ(t), we get

Var
(
− log[Ŝ(t)]

)
≈ Var[Ŝ(t)]

[Ŝ(t)]2
.

Now, applying the variance lemma, but this time letting U = − log[Ŝ(t)], we get

Var
(

log{− log[Ŝ(t)]}
)
≈ Var

(
− log[Ŝ(t)]

)

{− log[Ŝ(t)]}2

=
Var[Ŝ(t)]

[Ŝ(t)]2{log[Ŝ(t)]}2
.

Assuming V is normally distributed, an approximate 100(1−α)% CI for log{− log[S(t)]}

is given by

log{− log[Ŝ(t)} ± zα/2 ×
√

Var[log{− log[Ŝ(t)]}],

One can then easily obtain a 100(1− α)% CI for Ŝ(t) by back-transforming as

(
[Ŝ(t)]exp{zα/2

√
Var[log{− log[Ŝ(t)]}]}, [Ŝ(t)]exp{−zα/2

√
Var[log{− log[Ŝ(t)]}]}

)
.

As far as we are aware no study has been done to investigate the performance of

Williams [38] approach for estimating the SEs of KM estimates in the CRT setup.

8.4.1 Simulation study III

A simulation study was conducted to investigate the performance of Greenwood and

Williams approaches for estimating SEs of KM estimates when the interventions groups

have low, moderate or high proportions of event and the value of ICC (ρ) is small.

Williams [38] conducted a similar simulation study with correlated time-to-event data
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but he considered high values for ρ= (0.1,0.3,0.5). However, in practice, the value of ρ

in CRTs typically ranges from 0.001 to 0.05 in primary care and health research, and

it is rare to have ICC above 0.1 [3]. It is not clear from Williams’ paper [38] how his

approach performs compare to Greenwood approach when the value of ρ is small and

the intervention groups have low, moderate or high proportions of event.

Data generation and analysis: For each individual in the study, the baseline covari-

ate Xijl and event time Tijl were generated exactly the same way that we explained in

Section 8.2.3. We set ρ = (0.1, 0.05, 0.001). The independent censoring times were gen-

erated as Cijl ∼ Exp(0.5). Then we observed the event time Yijl = min(Tijl, Cijl, τ = 3)

and the event indicator ∆ijl = 1 if Tijl < Cijl and Tijl < 3, and 0 otherwise.

We calculated the KM estimates from a very large data set with 500 clusters in each

intervention group and 500 individuals in each cluster. The estimated survival probabil-

ities at six different time-points (0.5,1.0,1.5,2.0,2.5,3.0) were calculated and used as the

true probabilities for these time points. In the simulation study, we fixed the number

of clusters in each intervention group as k = 20 and the cluster size as m = 100. We

considered (a) small, (b) moderate and (c) high proportions of event in the interven-

tions groups by varying the value of β0 in equation (8.21). Then for each generated

dataset, we calculated the KM estimates at these six points, their standard errors using

Greenwood’s and Williams’ approach, and 95% CI.
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Table 8.12: Average KM estimates at the selected time-points in the control group,
their empirical SE (empSE) and average estimated SE (aveSE) using Greenwood’s and
Williams’ approaches, and corresponding coverage rates for nominal 95% CI over 1000
simulation runs. The proportions of events in the control and intervention groups were,
respectively, (a) 0.067 and 0.035 (b) 0.299 and 0.190, and (c) 0.843 and 0.747. The
intra-class correlation coefficient was 0.1.

Time-points
Survival prob.

empSE
aveSE Coverage rate (%)

True
Average Green-

Williams
Green-

Williams
Estimate wood wood

(a)

0.5 0.976 0.976 0.005 0.004 0.004 87.6 92.0
1.0 0.954 0.954 0.007 0.005 0.007 85.4 93.2
1.5 0.932 0.933 0.010 0.007 0.010 81.3 93.3
2.0 0.912 0.913 0.012 0.008 0.012 80.1 92.4
2.5 0.894 0.894 0.015 0.010 0.014 78.6 92.3
3.0 0.876 0.877 0.017 0.011 0.016 80.9 92.9

(b)

0.5 0.852 0.854 0.016 0.008 0.016 66.4 93.9
1.0 0.748 0.751 0.024 0.011 0.023 62.2 93.0
1.5 0.670 0.672 0.028 0.013 0.028 62.3 93.5
2.0 0.606 0.608 0.031 0.014 0.030 62.0 93.1
2.5 0.555 0.556 0.033 0.016 0.032 63.6 93.1
3.0 0.510 0.511 0.035 0.017 0.034 66.3 93.0

(c)

0.5 0.226 0.227 0.028 0.010 0.027 53.7 91.5
1.0 0.111 0.111 0.020 0.008 0.019 60.1 90.6
1.5 0.066 0.067 0.015 0.007 0.014 67.1 91.5
2.0 0.044 0.044 0.012 0.006 0.011 71.4 91.0
2.5 0.031 0.031 0.010 0.006 0.009 76.3 90.9
3.0 0.023 0.023 0.009 0.005 0.008 81.6 90.8

Simulation results: The average KM estimates at the six considered time-points of

the survival function of the control group, their empirical and average estimated SEs

using Greenwood and Williams approaches, and their corresponding coverage rates over

1000 simulation runs are presented in Table 8.12, Table 8.13 and Table 8.14, respectively,

for ρ = (0.1, 0.05, 0.01). We considered three scenarios for proportion of event: (a) low,

(b) moderate and (iii) high. As a result, the true survival probabilities at a particular

time-point across the scenarios were different. As expected, the average KM estimates
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Table 8.13: Average KM estimates at the selected time-points in the control group,
their empirical SE (empSE) and average estimated SE (aveSE) using Greenwood’s and
Williams’ approaches, and corresponding coverage rates for nominal 95% CI over 1000
simulation runs. The proportions of events in the control and intervention groups were,
respectively, (a) 0.027 and 0.019 (b) 0.305 and 0.246, (c) 0.710 and 0.643. The true
intraclass correlation coefficient was 0.05.

Time-points
Survival prob.

empSE
aveSE Coverage rate (%)

True
Average Green-

Williams
Green-

Williams
Estimate wood wood

(a)

0.5 0.991 0.991 0.002 0.002 0.002 94.4 94.2
1.0 0.982 0.982 0.004 0.003 0.004 93.1 94.7
1.5 0.974 0.974 0.005 0.004 0.004 92.8 94.8
2.0 0.966 0.965 0.006 0.005 0.006 91.4 93.6
2.5 0.957 0.957 0.007 0.006 0.007 91.5 94.7
3.0 0.949 0.949 0.008 0.007 0.008 91.3 94.1

(b)

0.5 0.849 0.852 0.014 0.008 0.014 76.2 91.7
1.0 0.743 0.747 0.020 0.011 0.020 73.0 93.7
1.5 0.661 0.666 0.023 0.013 0.023 70.8 94.2
2.0 0.597 0.601 0.025 0.014 0.025 72.0 93.5
2.5 0.542 0.546 0.027 0.016 0.027 74.3 94.8
3.0 0.495 0.500 0.028 0.017 0.028 75.5 94.2

(c)

0.5 0.442 0.446 0.025 0.012 0.025 64.5 94.5
1.0 0.274 0.275 0.023 0.011 0.023 68.5 94.1
1.5 0.190 0.190 0.020 0.011 0.020 72.2 93.9
2.0 0.140 0.140 0.018 0.010 0.018 77.3 94.2
2.5 0.107 0.107 0.016 0.010 0.016 80.0 94.7
3.0 0.084 0.085 0.014 0.010 0.014 83.0 92.8

were very close to the true values at all considered six points regardless of the values

of ρ and the proportions of event. The Greenwood SEs estimates were lower than the

empirical SEs and, consequently, the coverage rates were lower compared to the nominal

rate unless the proportion of event was low and the value of ρ was small (0.05,0.01). In

contrast, the SEs estimates using Williams approach were very close to the empirical

SEs regardless of the proportions of event and the value of ρ and, consequently, the

coverage rates were also very close to the nominal rate. Both approaches performed
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Table 8.14: Average KM estimates at the selected time-points in the control group,
their empirical SE (empSE) and average estimated SE (aveSE) using Greenwood’s and
Williams’ approaches, and corresponding coverage rates for nominal 95% CI over 1000
simulation runs. The proportions of events in the control and intervention groups were,
respectively, (a) 0.027 and 0.019 (b) 0.311 and 0.249, (c) 0.720 and 0.654. The true
intraclass correlation coefficient was 0.01.

Time-points
Survival prob.

empSE
aveSE Coverage rate (%)

True
Average Green-

Williams
Green-

Williams
Estimate wood wood

(a)

0.5 0.991 0.991 0.002 0.002 0.002 94.9 93.9
1.0 0.982 0.982 0.004 0.003 0.003 93.6 93.5
1.5 0.973 0.973 0.005 0.004 0.005 94.1 93.8
2.0 0.965 0.965 0.006 0.005 0.006 93.5 94.3
2.5 0.957 0.957 0.007 0.006 0.007 93.2 93.6
3.0 0.949 0.949 0.008 0.007 0.008 93.4 93.9

(b)

0.5 0.851 0.851 0.012 0.008 0.011 84.3 92.3
1.0 0.745 0.743 0.016 0.011 0.016 82.6 93.8
1.5 0.662 0.659 0.019 0.013 0.018 81.9 93.2
2.0 0.593 0.592 0.021 0.014 0.020 81.8 92.5
2.5 0.539 0.537 0.022 0.016 0.021 83.3 92.0
3.0 0.491 0.489 0.023 0.017 0.023 85.1 93.2

(c)

0.5 0.433 0.435 0.018 0.012 0.019 78.5 95.1
1.0 0.261 0.262 0.017 0.011 0.017 80.7 94.5
1.5 0.176 0.177 0.015 0.011 0.015 83.9 93.8
2.0 0.127 0.128 0.013 0.010 0.013 86.4 93.8
2.5 0.096 0.097 0.012 0.010 0.012 88.6 94.3
3.0 0.075 0.076 0.011 0.009 0.011 90.0 93.9

similarly for estimating SEs when the proportion of event was low and the value of ρ

was small. We observed qualitatively similar results for the intervention group and the

results are not presented in this thesis. One can then compare the KM estimates of the

survival curves in the control and intervention groups at a particular point of follow-up

period using standard t−test. The R code for estimating SEs of KM estimates using

Williams [38] approach are given in Appendix B.
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8.5 Summary

In this chapter, first, we investigated under which conditions the cluster-level analysis

methods for analysing time-to-event outcomes in CRTs are consistent. In the case

of no censored observations in the data, we showed that the unadjusted cluster-level

analysis for estimating RaR is consistent when the covariate effects are the same between

the intervention groups. With censored data, the unadjusted cluster-level analysis is

consistent when the event rates are small between the intervention groups and the

covariate effects are the same between the intervention groups. In contrast, the adjusted

cluster-level estimator for RaR is consistent regardless of whether there are censored

observations or not when the covariate effects are the same between the intervention

groups. However, in the case of censored data, the first stage model needs to be correctly

specified.

Second, we investigated the performance of gamma SFM as individual-level analysis

when the number of clusters is small in each intervention group. We found that it

underestimated the SEs of the RaR estimates when each intervention group have small

number of clusters and, consequently, resulted in low coverage. In this case, we also

found that the CIs calculated using t−distribution gave better coverage than that of

CIs calculated using standard normal distribution.

Finally, we compared the performance of Greenwood and Williams approaches for esti-

mating the SEs of KM estimates of survival function in the setting of CRTs with small

ICC. We found that the SEs estimates of KM estimates using Williams approach are

very close to empirical standard errors and, consequently, the coverage rates are very
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close to the nominal rate. In contrast, Greenwood approach underestimated the stan-

dard errors of KM estimates and, consequently, resulted in low coverage rate unless the

event rate is small and the value of ICC is small.

In practice, it is common to have censored data almost always. We recommend to use

unadjusted cluster-level analysis when the event rates are small between the intervention

groups, if one is willing to assume that the covariate effects are the same between the

intervention groups. In the case of adjusting for baseline covariates in cluster-level

analysis, adjusted cluster-level analysis can be used when the analyst can correctly

models the dependence on covariates, if the covariate effects are the same between the

intervention groups. In case of individual-level analysis with large number of clusters,

the gamma SFM can be used if one is willing to assume constant rate over time.
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Chapter 9

Discussion and Conclusion

The aim of this thesis was to investigate the validity of methods for the analysis of CRTs

for the three outcome types: continuous, binary and time-to-event, when outcomes are

missing under the assumption of CDM mechanism. In this final chapter, we review our

work presented in this thesis, highlighting the key findings, and outlining possible areas

of interest for future research. We summarise our findings for continuous, binary and

time-to-event outcomes in Section 9.1, Section 9.2 and Section 9.3, respectively. We

outline areas of interest for future research in Section 9.4. We give some concluding

remarks in Section 9.5.
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9.1 Continuous outcomes

In Part II, we considered continuous outcomes. We investigated the impact of cluster

mean imputation for missing outcomes, under MCAR and MAR, on the validity of the

ANOVA estimators for the variance components, namely, within-cluster variance and

between-cluster variance. We also investigated the impact of CRA and cluster mean

imputation for missing outcomes on the validity and power of cluster-level t−test, ad-

justed t−test and LMM under MCAR and MAR. Then we investigated the performance

of cluster-level analyses and LMM when outcomes are missing under the assumption of

CDM mechanism.

Cluster mean imputation has been recommended as a valid approach for handling miss-

ing outcomes [17]. In Chapter 4, we showed that the ANOVA estimators of the variance

components are biased with cluster mean imputation. The estimate of ICC is also bi-

ased. Therefore, we do not recommend cluster mean imputation, since the variance

components and ICC are often of interest in CRTs. We also showed that cluster-level

t−test, adjusted t−test and LMM give similar power with full data, CRA and cluster

mean imputation, when cluster sizes do not vary largely. In this situation, the cluster-

level t−test could be an attractive option for testing intervention effect because of its

simplicity compared to both adjusted t−test and LMM. However, when observed cluster

sizes vary to a greater extent, adjusted t−test and LMM give better power compared

to cluster-level t−test using CRA at small values of ICC.
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In Chapter 5 (research paper I), we showed that cluster-level analyses are in general

biased using CRA unless the two intervention groups have the same missingness mech-

anism and the same covariate effects on outcome in the data generating model, which

is arguably unlikely to hold in practice. We therefore caution researchers that these

methods may commonly give biased inferences in CRTs when outcomes are missing

under CDM mechanism. In the case of individual-level analysis, we showed that LMM

using CRA adjusted for covariates such that the CDM assumption holds gives unbiased

estimates of intervention effect regardless of whether missingness mechanisms are the

same or different between the intervention groups, and whether there is an interaction

between intervention and baseline covariate in the data generating model for the out-

come, provided that such interaction is included in the model when required. We also

found that there is no gain in terms of bias or efficiency of the estimates using MMI

over CRA adjusted for covariates such that the CDM assumption holds as long as both

approaches use the same functional form of the same set of baseline covariates and the

same modelling assumptions. Therefore, where the CDM assumption for missing out-

comes is plausible, and in the absence of auxiliary variables, we recommend that LMM

using CRA adjusted for covariates such that the CDM assumption holds as the primary

analysis approach for CRTs with missing outcomes.

9.2 Binary outcomes

In Part III, we considered binary outcomes. In this part, first, we derived sufficient

conditions for the consistency of the adjusted cluster-level analysis for RR with full

data. Then we investigated the validity of RD and RR as measures of intervention effect
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using cluster-level analyses when outcomes are missing under the assumption of CDM

mechanism. We also investigated the performance of RELR and GEE as individual-

level analysis approaches under the same CDM assumption, considering the limitations

of previous studies [25–28], which we described in Chapter 6.

In Chapter 7 (research paper II), firstly, we showed that the adjusted cluster-level es-

timator of RR using full data is consistent and, therefore, asymptotically unbiased for

true RR if the true data generating model is a log link model, the functional form of the

covariates is the same between the intervention groups, and the distribution of random

effect is the same between the intervention groups. Then, we showed that cluster-level

analyses for estimating RD using CRA are in general biased under CDM assumption.

For estimating RR, both unadjusted and adjusted cluster-level analyses using CRA are

valid if the true data generating model has log link and the intervention groups have the

same missingness mechanism and the same functional form of the covariates in the out-

come model. In contrast, MMI followed by cluster-level analyses gives valid inferences

for estimating RD and RR regardless of whether the missingness mechanisms are the

same or different between the intervention groups, and whether there is an interaction

between intervention and baseline covariate in the outcome model, provided that such

interaction is included in the imputation model when required. An alternative often

used in the trials context to allow for such an interaction is to impute separately in the

two intervention groups.

In the case of individual-level analysis, both RELR and GEE give valid inferences using

both CRA adjusted for covariates such that the CDM assumption holds and MMI

regardless of whether the missingness mechanisms are the same or different between
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the intervention groups, and whether there is an interaction between intervention and

baseline covariate in the outcome model, provided that such interaction is included

in both the imputation model and the analysis model when required. This conclusion

regarding the performance of RELR contradicts the results of a previous study by Ma et

al [27], where they concluded that RELR using CRA gives biased inference under CDM

assumption. We believe our results and explanations help in understanding some of the

surprising results and conclusions in Ma et al [25–27]. As was the case with continuous

outcomes, in the absence of auxiliary variables, there is no benefit in performing MMI

rather than doing CRA, under the CDM assumption. Therefore, in the absence of

auxiliary variables, and where the CDM assumption for missing outcomes is plausible,

we recommend RELR and GEE using CRA adjusted for covariates such that the CDM

assumption holds as the primary analysis approach for CRTs with missing outcomes.

9.3 Time-to-Event outcomes

In Part IV, we considered time-to-event outcomes. First, we investigated the consistency

of the cluster-level methods for estimating RaR. In the case of no censored observations

in the data, we showed that the unadjusted cluster-level analysis for estimating RaR is

consistent when the intervention groups have the same covariate effect. In the case of

censored data, we showed that the unadjusted cluster-level analysis is consistent when

the event rates are small and the covariate effects are the same between the intervention

groups. In contrast, the adjusted cluster-level estimator for RaR is consistent regardless
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of whether there are censored observations or not when the covariate effects are the same

between the intervention groups. However, in the case of censored data, the first-stage

model needs to be correctly specified the dependence on covariates.

Second, we investigated the performance of the gamma SFM as an individual-level

analysis when the number of cluster is small in each intervention group. We found

that it underestimates the SEs of the estimates when each intervention group has small

number of clusters.

Finally, we compared the performance of Greenwood and William approaches for es-

timating the SEs of KM estimates of survival function in the setting of CRTs. We

showed that the SEs estimates of KM estimates using Williams approach are very close

to empirical SEs and, consequently, the coverage rates are very close to the nominal

rate. In contrast, Greenwood approach underestimates the SEs of KM estimates and,

consequently, resulted in low coverage rates unless the event rates are small and the

value of ICC is small.

Since censored data are common almost always in practice, we can make the following

recommendations based on our analytical and simulation results. We recommend to use

unadjusted cluster-level analysis when the event rates are small between the intervention

groups, if one is willing to assume that the covariate effects are the same between the

intervention groups. In the case of adjusting for baseline covariates in cluster-level

analysis, adjusted cluster-level analysis can be used when the analyst can correctly

models the dependence on covariates, if the covariate effects are the same between the

intervention groups. In case of individual-level analysis with large number of clusters,
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the gamma shared frailty model can be used if one is willing to assume constant rate

over time. However, the gamma shared frailty model underestimates the SEs of the

parameters estimates when the number of clusters is small.

9.4 Future work

In this thesis, we assumed baseline CDM mechanism for missing outcomes in CRTs

which is an example of MAR when the covariates are fully observed. In practice, given

the observed data, we cannot identify which missingness assumption is appropriate [44,

45]. Inferences obtained under the CDM assumption may not be valid if this assumption

does not hold. It is therefore imperative to explore the robustness of the inferences

under a range of plausible MNAR missingness mechanisms [44]. This is known as

sensitivity analysis. The idea is to analyse the data assuming a range of plausible

MNAR mechanisms for the missing outcomes and see how robust the inferences are

across the different mechanisms. The degree to which inferences are robust across a

range of plausible MNAR mechanisms indicates how sensitive conclusions are to missing

outcomes to the CDM/MAR assumption.

Analysing partially observed outcomes under a MNAR missingness mechanism is more

complex. There are three broad types of modelling approach which can be applied.

These approaches are shared parameter modelling, selection modelling and pattern mix-

ture modelling. The shared parameter modelling approach uses a set of latent variables

(random effects) to model the relationship between missingness and the outcome [46].

The selection modelling approach specifies a model for how missingness depends both
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on the observed and unobserved outcome data. The pattern mixture modelling ap-

proach assumes a distribution for the missing outcomes which may be different for each

missingness pattern. All these three approaches can be applied with maximum likeli-

hood methods, Bayesian methods and MI [44, 47]. These methods have been developed

extensively in the context of non-clustered data. Further research is needed on how to

extent and apply these approaches for sensitivity analysis in CRTs. For example, in

this thesis, we have explored MMI methods assuming MAR. These methods could be

modified to do MNAR sensitivity analysis in the CRT setting.

9.5 Concluding remarks

As we discussed in Chapter 2, missing outcomes are very common in CRTs [11, 12].

Handling such data is one of the main challenges faced by an analyst wishing to anal-

yse a CRT. Although CRTs are increasingly being used to evaluate the effectiveness

of interventions in health services research [1, 2], there is limited guidance on how to

handle missing data in CRTs. This thesis investigated the validity of the methods for

the analysis of CRTs for the three common outcome types when outcomes are miss-

ing under CDM mechanism. We gave recommendations based on our analytical and

simulations results for which methods to use to get valid inferences despite having miss-

ing outcomes under CDM assumption. The choice of appropriate methods depend on

type of outcome and parameter of interest. We hope this thesis will help researchers to

choose appropriate methods to get valid inferences from CRTs, when it is assumed that

outcomes are missing under CDM mechanism.
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Appendix A:

Table A1: Empirical type I error rate over 1000 simulation runs of LMM using the
z−test and the Wald t−test ( using Satterthwaite’s approximation for degrees freedom)
for intervention effect with CRA and cluster mean imputation for missing values under
MCAR2.

k m ρ Full data CRA cluster mean
imputation

z− Wald z− Wald z− Wald

test t−test test t−test test t−test

5 30 0.01 4.8 3.6 5.4 4.4 8.1 4.9
0.05 7.6 4.2 7.3 5.4 8.5 5.0
0.10 8.3 5.1 7.8 4.3 7.4 4.7

50 0.01 6.8 4.6 5.1 3.9 7.5 4.3
0.05 9.0 5.8 7.8 4.7 7.4 4.4
0.10 8.9 5.2 7.5 4.5 7.4 4.0

100 0.01 6.2 4.3 7.0 4.6 8.5 5.5
0.05 7.9 3.7 9.0 5.2 8.9 4.5
0.10 7.9 4.1 8.8 5.3 9.2 5.0

250 0.01 8.5 5.4 9.1 6.1 8.7 5.4
0.05 8.6 4.6 9.1 5.0 9.1 5.2
0.10 8.6 4.4 9.2 5.1 9.0 4.9

10 30 0.01 5.8 5.0 5.3 4.2 6.4 5.2
0.05 7.6 6.4 7.6 5.4 6.1 4.7
0.10 7.4 6.0 7.3 5.3 6.4 4.9

50 0.01 5.5 4.8 5.7 4.3 5.7 4.1
0.05 7.4 5.3 6.0 4.2 6.5 4.6
0.10 7.3 5.6 6.1 4.3 6.3 4.2

100 0.01 5.0 3.7 4.6 3.3 5.2 3.8
0.05 5.9 4.0 5.2 3.6 4.9 3.6
0.10 5.9 4.6 4.7 3.6 4.9 3.8

250 0.01 4.7 3.4 6.2 4.9 5.9 4.3
0.05 5.6 4.4 6.7 5.1 6.8 5.0
0.10 5.7 4.6 6.5 4.9 6.4 4.7

15 30 0.01 5.5 4.9 6.5 6.0 7.1 5.9
0.05 6.1 5.5 5.9 5.2 6.1 5.3
0.10 5.9 5.3 5.7 4.5 5.9 4.8

50 0.01 6.4 5.4 5.6 5.1 5.6 4.9
0.05 5.5 4.9 6.3 5.5 6.0 5.4
0.10 5.7 4.6 6.1 5.7 6.2 5.3
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Table A2: Empirical type I error rate over 1000 simulation runs of LMM using the
z−test and the Wald t−test ( using Satterthwaite’s approximation for degrees freedom)
for intervention effect with CRA and cluster mean imputation for missing values under
MAR.

k m ρ Full data CRA cluster mean
imputation

z− Wald z− Wald z− Wald

test t−test test t−test test t−test

5 30 0.01 4.8 3.6 6.6 5.0 8.6 5.5
0.05 7.6 4.2 7.3 5.1 8.1 4.7
0.10 8.3 5.1 8.2 5.3 8.2 5.0

50 0.01 6.8 4.6 6 5.1 8.0 5.7
0.05 9.0 5.8 8.1 5.1 8.5 4.8
0.10 8.9 5.2 8.7 5.1 8.7 5.1

100 0.01 6.2 4.3 6.2 3.9 7.5 4.0
0.05 7.9 3.7 8.7 4.7 8.9 4.4
0.10 7.9 4.1 8.4 4.7 8.4 4.9

250 0.01 8.5 5.4 8.5 4.9 8.9 4.5
0.05 8.6 4.6 9.6 4.6 9.5 4.6
0.10 8.6 4.4 9.1 5.1 8.9 5.2

10 30 0.01 5.8 5.0 4.9 4.1 6.1 4.9
0.05 7.6 6.4 6.3 5.1 6.2 4.8
0.10 7.4 6.0 6.5 5.0 6.4 4.6

50 0.01 5.5 4.8 5.0 4.2 6.6 5.0
0.05 7.4 5.3 6.9 5.6 6.9 5.6
0.10 7.3 5.6 6.7 5.0 6.6 5.1

100 0.01 5.0 3.7 7.1 5.7 7.5 5.7
0.05 5.9 4.0 7.4 5.3 7.6 5.6
0.10 5.9 4.6 7.1 5.0 7.2 5.0

250 0.01 4.7 3.4 7.8 6.6 8.2 6.6
0.05 5.6 4.4 8.5 5.7 8.4 5.7
0.10 5.7 4.6 7.5 5.5 7.5 5.7

15 30 0.01 5.5 4.9 4.4 4.1 5.6 4.4
0.05 6.1 5.5 5.1 3.7 5.3 4.1
0.10 5.9 5.3 5.3 4.2 5.2 4.3

50 0.01 6.4 5.4 4.0 3.4 4.7 3.5
0.05 5.5 4.9 5.5 4.3 5.7 4.6
0.10 5.7 4.6 5.7 4.7 5.9 4.8

100 0.01 5.1 4.1 5.6 4.7 6.0 5.1
0.05 5.4 4.4 4.9 4.0 4.9 3.9
0.10 5.6 4.4 5.1 4.1 5.0 4.0
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Table A3: Empirical power values of the cluster-level t−test, adjusted t−test and LMM
with Wald t−test for intervention effect over 1000 simulation runs using full data, CRA
and cluster mean imputation for missing values under MCAR2.

k m ρ Full data CRA LMM
Cluster LMM Cluster Adjusted LMM with

level approach level t−test approach cluster mean
t−test t−test imputation

5 30 0.01 63.8 60.9 49.7 49.6 47.8 46.7
0.05 38.0 38.2 33.1 32.4 32.3 33.1
0.10 25.6 26.6 22.9 22.4 22.3 22.9

50 0.01 76.6 74.8 62.6 64.5 64.2 62.9
0.05 42.9 39.6 36.7 35.6 36.6 36.7
0.10 28.3 25.0 23.6 23.0 23.5 23.5

100 0.01 90.5 89.2 82.6 83.7 83.9 82.6
0.05 48.7 46.8 45.0 43.7 45.1 45.0
0.10 28.7 29.3 28.9 29.3 28.9 28.9

250 0.01 97.3 97.2 95.2 94.6 95.2 95.2
0.05 54.2 51.7 49.9 49.2 49.4 49.9
0.10 31.6 33.0 29.7 28.5 29.7 29.7

10 30 0.01 92.0 93.4 78.5 82.4 81.2 78.5
0.05 68.2 71.0 60.5 61.5 61.6 60.5
0.10 50.7 51.2 43.9 43.6 43.7 43.9

50 0.01 98.4 97.7 93.1 94.6 94.5 93.1
0.05 76.4 77.6 71.3 71.4 71.7 71.3
0.10 52.1 54.8 52.3 50.4 52.8 52.3

100 0.01 99.7 99.8 99.5 99.2 99.5 99.5
0.05 82.7 84.1 78.5 79.7 79.3 78.5
0.10 57.3 58.9 54.0 53.7 54.2 54.0

20 30 0.01 99.8 100 98.6 98.9 98.8 98.6
0.05 94.3 96.0 90.5 90.0 90.9 90.5
0.10 80.0 80.9 76.5 75.3 76.8 76.5

50 0.01 100 100 100 100 100 100
0.05 97.0 97.1 94.3 94.4 94.6 94.3
0.10 84.0 86.1 80.9 79.9 80.4 80.9

100 0.01 100 100 100 100 100 100
0.05 98.4 98.9 98.1 98.3 98.3 98.1
0.10 87.3 87.0 85.8 84.1 86.3 85.8
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Table A4: Empirical power values of the cluster-level t−test, adjusted t−test and LMM
with Wald t−test for intervention effect over 1000 simulation runs using full data, CRA
and cluster mean imputation for missing values under MAR.

k m ρ Full data CRA LMM
Cluster LMM Cluster Adjusted LMM with

level approach level t−test approach cluster mean
t−test t−test imputation

5 30 0.01 63.8 60.9 49.3 49.3 47.7 49.6
0.05 38.0 38.2 32.9 32.8 33.2 32.9
0.10 25.6 26.6 23.2 23.6 24.1 23.2

50 0.01 76.6 74.8 66.3 66.3 66.9 66.3
0.05 42.9 39.6 39.5 39.8 39.3 39.5
0.10 28.3 25.0 27.6 27.8 27.7 27.6

100 0.01 90.5 89.2 82.8 82.5 83.0 82.8
0.05 48.7 46.8 43.8 43.7 43.9 43.8
0.10 28.7 29.3 27.0 27.2 27.2 27.0

250 0.01 97.3 97.2 95.3 95.4 95.2 95.3
0.05 54.2 51.7 51.9 51.5 51.8 51.9
0.10 31.6 33.0 31.4 31.4 31.4 31.4

10 30 0.01 92.0 93.4 81.9 83.3 83.2 81.9
0.05 68.2 71.0 61.2 62.3 61.9 61.2
0.10 50.7 51.2 46.5 45.6 45.8 46.5

50 0.01 98.4 97.7 95.2 95.2 95.2 95.2
0.05 76.4 77.6 70.6 70.5 71.0 70.6
0.10 52.1 54.8 51.0 49.8 50.6 51.0

100 0.01 99.7 99.8 99.7 99.7 99.8 99.7
0.05 82.7 84.1 81.0 80.8 81.0 81.0
0.10 57.3 58.9 55.2 54.4 54.8 55.2

20 30 0.01 99.8 100 98.1 98.3 98.3 98.1
0.05 94.3 96.0 88.8 89.0 89.4 88.8
0.10 80.0 80.9 75.5 74.4 75.2 75.5

50 0.01 100 100 99.9 99.9 99.9 99.9
0.05 97.0 97.1 95.8 95.8 95.8 95.8
0.10 84.0 86.1 83.3 83.4 83.5 83.0

100 0.01 100 100 100 100 100 100
0.05 98.4 98.9 97.9 97.8 97.8 97.9
0.10 87.3 87.0 85.5 85.7 85.7 85.5
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Appendix B: R code for estimating SEs and 95 % CIs of KM esti-

mates using Williams approach

library(survival)

SE.Williams<-function(dataSet, ncls){

## dataSet: Data with the followings variables

# obstime: minimum of survival time and censoring time

# status: 1 for event and 0 for censored

# clud.id: cluster id

## ncls: number of cluster

# estimating survival funciton

survf<-survfit(Surv(obstime, status)~ 1, conf.type="none", data=dataSet)

summ<-as.data.frame(summary(survf)[c(2,3,4,6,8)])

q.prob<-summ$n.event/summ$n.risk

var.williams<-array(NA,length(summ$time))

for(j in 1:length(summ$time)){

dataSet$delta<-0

dataSet$delta[dataSet$obstime==summ$time[j]]<-1

dataSet$gamma<-0

dataSet$gamma[dataSet$obstime>=summ$time[j]]<-1

# linearised value of q_{ij} for (ij)th subject (i-clustrer, j-individual)

dataSet$linear1<-(dataSet$delta - q.prob[j]*dataSet$gamma)/summ$n.risk[j]

# linearised value of S(t_v) for (ij)th subject (i-clustrer, j-individual)
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if (j==1) {

dataSet$linear2<-dataSet$linear1

csum.linear2<-as.vector(with(dataSet,sapply(split(linear2,clus.id),sum)))

var.williams[j]<-ncls*var(csum.linear2)

} else {

dataSet$linear2<-(1-q.prob[j])*dataSet$linear2

+summ$surv[(j-1)]*dataSet$linear1

csum.linear2<-as.vector(with(dataSet,sapply(split(linear2,clus.id),sum)))

var.williams[j]<-ncls*var(csum.linear2)

} }

# SEs of survival probability using Wiliams approach

summ$std.err.W<-sqrt(var.williams)

names(summ)[c(4,5)]<-c("surv.prob","std.err.G")

###95% CI for S(t) using complementary log-log transformation ######

if(conf.int==TRUE){

den<-(summ$surv^2)*((log(summ$surv))^2)

se.clogW<-sqrt(var.williams/den)

##confidence limits using Willaims SE

summ$loweCI<- (summ$surv)^(exp(1.96*se.clogW))

summ$upperCI<- (summ$surv)^(exp(-1.96*se.clogW))

}

return(summ)

# time: event time points

# n.risk: number of individuals in the risk set
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# n.event: number of events

# surv.prob: Estimated survival probabilities

# std.err.G: SEs of survival probabilities using Greenwood formula

# std.err.W: SEs of survival probabilities using Williams approach

}
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