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Climate services for health: predicting the evolution of the 
2016 dengue season in Machala, Ecuador
Rachel Lowe, Anna M Stewart-Ibarra, Desislava Petrova, Markel García-Díez, Mercy J Borbor-Cordova, Raúl Mejía, Mary Regato, Xavier Rodó

Summary
Background El Niño and its effect on local meteorological conditions potentially influences interannual variability in 
dengue transmission in southern coastal Ecuador. El Oro province is a key dengue surveillance site, due to the high 
burden of dengue, seasonal transmission, co-circulation of all four dengue serotypes, and the recent introduction of 
chikungunya and Zika. In this study, we used climate forecasts to predict the evolution of the 2016 dengue season in 
the city of Machala, following one of the strongest El Niño events on record.

Methods We incorporated precipitation, minimum temperature, and Niño3·4 index forecasts in a Bayesian 
hierarchical mixed model to predict dengue incidence. The model was initiated on Jan 1, 2016, producing monthly 
dengue forecasts until November, 2016. We accounted for misreporting of dengue due to the introduction of 
chikungunya in 2015, by using active surveillance data to correct reported dengue case data from passive surveillance 
records. We then evaluated the forecast retrospectively with available epidemiological information.

Findings The predictions correctly forecast an early peak in dengue incidence in March, 2016, with a 90% chance of 
exceeding the mean dengue incidence for the previous 5 years. Accounting for the proportion of chikungunya cases 
that had been incorrectly recorded as dengue in 2015 improved the prediction of the magnitude of dengue incidence 
in 2016.

Interpretation This dengue prediction framework, which uses seasonal climate and El Niño forecasts, allows a 
prediction to be made at the start of the year for the entire dengue season. Combining active surveillance data with 
routine dengue reports improved not only model fit and performance, but also the accuracy of benchmark estimates 
based on historical seasonal averages. This study advances the state-of-the-art of climate services for the health 
sector, by showing the potential value of incorporating climate information in the public health decision-making 
process in Ecuador.
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Introduction
The burden of dengue fever (family Flaviviridae, genus 
flavivirus) has increased globally over the last 
three decades, from an estimated 8·3 million apparent 
(symptomatic) cases in 1990, to 58·4 million cases in 
2013.1 WHO and others have advocated the use of 
climate information to manage the increasing burden 
of dengue as part of comprehensive early warning and 
response systems.2–4 Predictions of higher than expected 
dengue incidence (eg, outbreaks) can optimise the 
allocation of scarce resources through targeted and 
focused interventions. Previous studies have shown 
that climate information, such as seasonal climate 
forecasts, can be used to improve predictions of dengue 
outbreaks months in advance.5,6

Dengue is sensitive to changes in climate conditions 
because temperature affects the physiology of the 
Aedes aegypti and Aedes albopictus mosquito vectors (eg, 
biting and larval development rates)7,8 and the rate of viral 
replication in the mosquito.9,10 Transmission of dengue, 
and other arboviruses by Aedes spp mosquitoes, has been 

found to occur between 18–34°C with maximal trans­
mission in the range of 26–29°C.11 Both rainfall and 
drought can increase the availability of larval mosquito 
habitats (ie, containers with standing water), depending 
on local water storage practices and piped water 
infrastructure.12,13

The El Niño Southern Oscillation (ENSO) is the 
strongest interannual climate cycle on Earth. It occurs in 
the equatorial Pacific Ocean, and affects weather patterns 
worldwide through atmospheric teleconnections. Typical 
examples include excess rainfall in Peru and Ecuador, 
dry conditions in Indonesia, and a decrease in the 
number of typhoons in the western Pacific during the 
warm phase of the cycle, and more or less symmetrical 
anomalies during the cold phase.14 To monitor, assess, 
and predict ENSO, the climate research community has 
defined the Niño3·4 index, which is calculated as 
anomalies in sea surface temperature (SST) in the 
Niño3·4 region ([120–170°W, 5°S–5°N]). The warm 
phase, El Niño, occurs when the 3 month running mean 
Niño3·4 index is 0·5 or higher for a period of at least 
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five consecutive 3-month overlapping seasons, and the 
cold phase, La Niña, when the Niño3·4 index is –0·5 or 
less.15 The recent El Niño in 2014–16 was one of the 
strongest on record, similar in magnitude to the 
prominent 1997–98 event. The warming in the 
Niño3·4 region started in October, 2014, and the 
Niño3·4 index reached a maximum value of +2·9 in 
November, 2015. The Niño3·4 index then gradually 
decreased with a transition to a weak La Niña by the 
autumn of 2016.15

Southern coastal Ecuador is an important region to 
study the effects of ENSO on dengue. El Niño events are 
usually associated with heavy rainfall and warmer than 
average air temperatures.16–18 Previous studies have 
shown the effects of ENSO and climate on dengue trans­
mission in Ecuador and surrounding regions.13,19–21

Dengue is hyperendemic in Ecuador and the main 
cause of mosquito-borne febrile illness. There is no 
official dengue early warning system in the country. 
Every year, the authorities tend to expect the same 
number of cases and a peak in transmission during the 
hot, rainy season as in previous years. Each local health 
district monitors the behaviour of dengue based on the 
endemic curve, which is calculated with retrospective 
dengue case reports from the past 5 years. The mean 
number of weekly cases and the upper 95% CIs are 
calculated and compared with cases reported in the 
current year. Current surveillance efforts do not formally 
incorporate climate information, although the public 
health sector has identified this as a priority area.

Chikungunya virus and Zika virus, which are spread 
by the same mosquito species (A aegypti) as dengue, 
now co-circulate in Ecuador. The first recognised 
autochthonous cases of chikungunya were reported in 
Ecuador at the end of 2014.22 The first cases of Zika were 
confirmed in Ecuador on Jan 7, 2016, and currently 
(May 25, 2017) 3972 suspected and 1330 confirmed 
cases of Zika have been reported.23

In this study, we predicted monthly dengue incidence 
in the city of Machala, El Oro Province, Ecuador, from 
January to November, 2016. We incorporated seasonal 
climate forecasts of precipitation and minimum 
temperature and a novel ENSO forecast in a statistical 
model framework to make monthly probabilistic 
predictions of dengue. The forecasts were generated on 
Jan 1, 2016, to predict dengue from 1 to 11 months 
ahead (January to November, 2016). We accounted for 
misreporting of dengue due to the introduction of 
chikungunya virus, by using active surveillance data to 
correct reported dengue case data from the passive 
dengue surveillance system. We then evaluated the 
forecast retrospectively with available epidemiological 
information.

Methods
Study area
Machala is a midsized port city located in El Oro 
province in southern coastal Ecuador. Like many cities 
in Latin America, the city was settled through a process 
of rapid unstructured urbanisation, and is now in a 
process of consolidation. The city was settled on low-
lying mangroves, resulting in a high water-table and 
poor drainage. The city is prone to flooding every year 
during the rainy season, and extreme flooding events 
occur when rainfall coincides with high tides (as seen 
in February, 2016), often during El Niño years. The 
economic base of the province is agriculture (banana 
coffee, and cacao), aquaculture (shrimp), mining, and 
commerce due to a large port and proximity to the 
Peruvian border (see land use on appendix p 1). The 
core of the city is highly urbanised and has access to 
improved urban infrastructure and municipal services, 
such as paved streets, piped water inside the home, 
sewerage, and garbage collection. Many communities 
at the margin of the urban area are often not legally 
incorporated into the city, because they were settled 

Research in context

Evidence before this study
We searched PubMed on March 7, 2017, for studies using 
seasonal climate forecasts for dengue early warning. Our search 
terms included “climate”, “dengue”, “model”, and “early 
warning system”. Several studies have used climate data to 
formulate dengue models and produce dengue predictions. 
However, predictions are usually made in retrospective mode, 
using observed climate data, which would have been available 
only after the event being predicted had occurred.

Added value of this study
To our knowledge, this work constitutes the first 
demonstration of the use of seasonal climate and El Niño 
forecasts in a dengue early warning model for Ecuador. This 
study adds value to the body of literature on dengue modelling 
by using real-time climate forecasts to make long-lead dengue 

predictions and using active surveillance data to correct for 
misreporting.

Implications of all the available evidence
The results of this study contribute to an ongoing 
collaboration between the National Institute of Meteorology 
and Hydrology and the Ministry of Health in Ecuador to 
undertake studies on climate and dengue. Previous studies 
have focused on providing the evidence base of the effect of 
climate on dengue transmission and improvements in 
seasonal forecasts in the region. This study takes this 
collaboration one step further, by co-developing a dengue 
early warning system using forecast climate information, 
which could potentially be operationalised as a climate 
service for the public health sector.

See Online for appendix
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through informal slum settlements. As a result, they 
do not have adequate coverage of urban infrastructure 
and services, resulting in populations highly vulnerable 
to mosquito-borne diseases and other pathogens.24 
Previous studies in Machala have shown that poor 
housing conditions, lack of access to piped water inside 
the home, interruptions in the piped water supply, 
high population density, water storage, low risk 
perception, and absence of knowledge about the 
mosquito vector are key risk factors for the presence of 
A aegypti and dengue transmission.13,20 Many homes in 
the urban periphery store water due to frequent 
interruptions in the piped water supply. In addition, 
homes in the urban centre continue to store water as a 
backup water source despite adequate access to piped 
water.

Machala is a key dengue surveillance site,25,26 due the 
high burden of dengue, seasonal transmission, and co-
circulation of all four dengue serotypes (DENV 1–4). 
Further, the region experiences exceptionally high 
A aegypti vector indices, which has implications for the 
recent emergence of chikungunya in 2015 and Zika 
in 2016.13,27 Through the region, there is substantial 
movement of people and goods, due to proximity to the 
Ecuador–Peru border, the presence of a major port, and 
the location along the Pan-America highway, probably 
resulting in frequent reintroductions of viruses and 
vectors.

Data
Passive surveillance data
Monthly clinically suspected cases of dengue from 
Machala from 2002 to 2016 were provided by the national 
surveillance system operated by the Ministry of Health. 
Dengue is a mandatory notifiable disease in Ecuador. 
Cases were converted to incidence per 100 000 population 
using population data provided by the 2001 and 2010 
national censuses (National Institute for Statistics and 
Census [INEC] 2001, INEC 2010), and population 
projections generated by INEC from 2011 to 2016. 
Population estimates between 2001 and 2010 were 
generated by linear extrapolation.

Active surveillance data
The proportion of reported clinically diagnosed dengue 
cases in 2015, which were later confirmed to be 
chikungunya infections, were removed from the 
passive surveillance dengue case dataset (appendix p 2). 
This proportion was determined from the results of a 
passive and active surveillance study of dengue 
infections in Machala, which has been described in 
detail elsewhere.25 Briefly, patients were referred to the 
study if they were clinically diagnosed with dengue 
fever by physicians from sentinel clinics and the central 
hospital operated by the Ministry of Health in Machala. 
These individuals were registered as dengue cases in 
the Ministry of Health passive surveillance system. 

Serum samples from patients were tested by the study 
team for acute or recent dengue infections by 
non-structural glycoprotein-1 (NS1) rapid test, NS1 
ELISA, Immunoglobulin M (IgM) ELISA, and RT-PCR, 
and for acute chikungunya and Zika infections by RT-
PCR. All samples were negative for Zika virus. Based 
on these results, we calculated the monthly proportion 
of clinically diagnosed dengue cases that were dengue 
negative and chikungunya positive, and used this 
proportion to adjust the total number of Ministry of 
Health dengue cases reported in the passive surveillance 
system from the same period. This allowed us to 
account for over-reporting of dengue cases due to the 
recent introduction of a new febrile illness with similar 
clinical presentation as dengue.

Climate data
Local daily weather data (eg, rainfall, minimum 
temperature) were obtained from the Granja Santa Ines 
weather station located in Machala (3°17’26” S, 79°54’5” W, 
10 m above sea level) and operated by the National 
Institute of Meteorology and Hydrology (INAMHI) of 
Ecuador. The Niño3·4 index (Extended Reconstructed 
Sea Surface Temperature [ERSST] version 4 SST 
anomalies in the Niño3·4 region) was obtained from 
the National Oceanic and Atmospheric Administration 
(NOAA) Climate Prediction Center (CPC) of NOAA/
National Weather Service. SST anomalies in the 
Niño3·4 region are calculated using centred 30-year base 
periods updated every 5 years.

Figure 1 shows anomalies in dengue incidence in 
Machala, precipitation, and minimum temperature 
from the Granja Santa Ines weather station, at the 
monthly timescale from 2002 to 2015. Anomalies were 
calculated by subtracting the annual cycle of each 
variable (ie, the mean value for each month, calculated 
for 2002–15, appendix p 3) from the observed monthly 
data for each year. The Niño3·4 index from 2002 
to 2015 is also shown. El Niño events (anomalous 
warming of SST in the Niño3·4 region, figure 1D) are, 
generally, associated with positive temperature 
(figure 1C), and precipitation (figure 1B) anomalies in 
Machala. These conditions can, in turn, create an ideal 
environment for dengue outbreaks (eg, the large 
dengue outbreak that peaked in February, 2010, see 
figure 1A). Alternatively, cool SSTs, cooler temperatures, 
and less than average rainfall might inhibit dengue 
outbreaks (see negative anomalies in figure 1A–D 
in 2013).

The epidemiological surveillance and climate data, 
outlined above, were used to formulate the dengue 
forecast model, described in the following section.

Dengue forecast model
A statistical mixed model was used to produce 
probabilistic forecasts of dengue cases per month.19,28 
Dengue cases, yt, were assumed to follow a negative 

For population data and 
projections see http://www.
ecuadorencifras.gob.ec/censo-
de-poblacion-y-vivienda

http://www.ecuadorencifras.gob.ec/proyecciones-poblacionales/
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binomial distribution with mean μt and overdispersion 
parameter κ. At the linear predictor scale, the log of the 
mean is equal to the log population pT’(t), T’(t)=1,...,n 
(n=14 years; included in the model as an offset) and log 
relative risk rt for each time t:

Using exploratory analysis and model selection 
criteria, such as the deviance information criterion, the 
best estimate of the log relative risk comprised a 
smooth function for the annual cycle βt’(t), t’(t)=1,...,m 
(m=12 months), using a first order autoregressive 

model. This term captures the seasonality in dengue, 
which is expected every year. This is partly attributable 
to climate conditions, but also other factors, such as 
human movement during holiday periods. The 
autoregressive model allows dengue in one calendar 
month to depend on dengue in the previous calendar 
month. The explanatory variables, xjt, represent the 
selected climate covariates: precipitation (x1t) and 
minimum temperature (x2t), lagged by 1 month with 
respect to dengue, and Niño3·4 (x3t), lagged by 
3 months with respect to dengue (ie, 2 months with 
respect to the local climate). Note, we also tested 
maximum temperature in the model, but found a 
stronger association between minimum temperature 
and dengue incidence at all time lags, which was 
consistent with findings from previous studies.13,19 To 
avoid overfitting the model (eg, representing an 

yt˜NegBin(μt, κ)

log(rt) = α + ƒ(βtʹ(t)) + Σγjxjt + δTʹ(t)

log(μt) = log(ρTʹ(t)) + log(rt)

Figure 1: Annual cycle of anomalies in dengue and climate variables, 2002–15
(A) Dengue incidence anomalies in Machala, Ecuador per 100 000 population. (B) Precipitation anomalies (mm/day). (C) Minimum temperature anomalies (°C), from 
the Granja Santa Ines weather station, located in Machala. (D) Niño3·4 index (sea surface temperature anomalies [°C] in the Niño3·4 region).
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anomalous warming event more than once in the 
model), we selected the best fitting temperature 
variable only. Exchangeable non-structured random 
effects for each year δT’(t), T’(t)=1,...,n (n=14 years) were 
included, to account for interannual changes in dengue 
risk attributable to unknown factors from 2002 to 2015, 
such as changes in vector control practices and the 
introduction of new serotypes and viruses (eg, 
introduction of chikungunya in 2015). In view of the 
introduction of another new virus (Zika) in 2016, the 
random year effect in 2015 was used to approximate 
the effect of a new virus (and associated misreporting) 
in 2016. To show the added value of our climate-based 
prediction model, we also formulated a null model 
using the annual cycle term as a predictor (ie, 
a submodel of the final predictive model) to represent 
current practice (ie, monitoring dengue incidence 
throughout the year compared to seasonal averages).

The model was trained using monthly dengue data 
from January, 2002, to December, 2015, and observed 
climate variables (precipitation, minimum temperature, 
and Niño3·4 index). The model was then used to produce 
forecasts for January to November, 2016, making use of 
seasonal climate forecasts of precipitation and minimum 
temperature, and Niño3·4 index forecasts from a new 
ENSO forecasting system (see below for details). Model 
parameters were estimated in a Bayesian framework 
using Integrated Nested Laplace Approximation (INLA) 
to generate samples from an approximated posterior of a 
fitted model.29

Seasonal climate forecasts
Seasonal forecasts of climate variables, such as 
precipitation and temperature, take advantage of the 
parts of the climate system with long-term memory, such 
as the oceans, to predict climate anomalies 1 or more 
months ahead of a given season.30 To estimate uncertainty, 
each forecast consists of an ensemble of forecasts, 
obtained by perturbing the initial conditions. In this 
study, seasonal forecasts from the Climate Forecast 
System (CFS) model, developed by the National Center 
for Environmental Research (NCEP), were used.31 The 
data were accessed via the International Research 
Institute for Climate and Society Data Library). The 
forecasts (1° zonal resolution) were arranged as a 
24-member ensemble, initiated on Jan 1, 2016. The data 
consisted of monthly averages of precipitation and daily 
minimum temperatures, for the 10 months following the 
forecast start date (January to October, 2016, appendix 
p 4), taken at the grid point immediately to the west of 
the reference Granja Santa Ines weather station, located 
in Machala. The climate at this grid point, located over 
the sea, was found to be more representative of the 
climate of Machala, located at sea-level, than the nearest 
grid point (appendix p 5). The grid point in which the 
weather station is located has an average altitude of about 
1200 m above sea level. Therefore, the forecasts for this 

grid point consistently underestimated the minimum 
temperatures recorded at the weather station, with a cold 
bias of 6–6·5ºC compared with a warm bias of 0·5–1ºC 
for the selected grid point (appendix p 5). Forecasts from 
the more representative grid point were then bias-
corrected by subtracting the mean bias for each forecast 
time, to account for the model drift.32,33 This was done 
using hindcasts (eg, retrospective forecasts) for the 
period 1982–2015, and corresponding observed data from 
the weather station.

ENSO forecast model
A structural time-series model, which uses subsurface 
ocean temperature, wind stress, and sea surface 
temperature as predictor variables, was used to forecast 
the Niño3·4 index in 2016.34 We chose this ENSO forecast 
model based on its ability to predict El Niño events in the 
past (figure 2C). The model is comparable in performance 
to some of the most skilful dynamical ENSO models and 
generally performs better than other statistical schemes 
in terms of common skill metrics such as the root mean 
square error.34,35 The ENSO prediction model is run with 
different predictor variables at different lead times. All 
forecasts of the 2016 Niño3·4 index were calculated using 
the observed Niño3·4 index data for December, 2015. For 
example, the Niño3·4 index forecast for January, 2016, 
was obtained from a 1-month-ahead forecast. Similarly, 
the Niño3·4 index forecast for February, 2016, was 
obtained from a 2-month-ahead forecast. The model is 
designed to produce very long-lead forecasts34 (eg, 2 years 
ahead), but for the purpose of this study the last forecast 
used here was an 8-month lead forecast (eg, forecast for 
August, 2016, used to predict dengue incidence in 
November, 2016).

Probabilistic dengue predictions for 2016
To account for uncertainty in the response variable, given 
the model parameters, the posterior predictive distribution 
of dengue cases, yt, for each month (January to 
November, 2016) was estimated by drawing 1000 random 
values from a negative binomial distribution with mean 
corresponding to the elements of μt and scale parameter 
corresponding to the elements of κ, estimated from the 
model (note, the time lag of 1 month between the local 
climate variables [minimum temperature and precipitation] 
and dengue incidence allowed us to extend the dengue 
forecast 1 month beyond the maximum lead-time provided 
by the seasonal climate forecasts). To account for 
uncertainty in the model input (explanatory variables), we 
initiated the model 24 times for each ensemble member 
of the CFS forecasts of precipitation and minimum 
temperature. Therefore, for each month, we created a prob­
ability distribution of 576 000 samples (ie, 1000 × 24 × 24; note, 
as the ENSO model is deterministic, we do not account for 
uncertainty in the Niño3·4 index forecast). These data were 
summarised using the posterior predicted median and 
prediction interval (2·5% and 97·5% percentiles of the 

For the Integrated Nested 
Laplace Approximation see 
http://www.r-inla.org

For the International Research 
Institute for Climate and 
Society Data Library see  
http://iridl.ldeo.columbia.edu/
SOURCES/.NOAA/.NCEP/.EMC/.
CFSv2/index.html

http://www.r-inla.org
http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCEP/.EMC/.CFSv2/index.html
http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCEP/.EMC/.CFSv2/index.html
http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCEP/.EMC/.CFSv2/index.html
http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCEP/.EMC/.CFSv2/index.html
http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCEP/.EMC/.CFSv2/index.html
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posterior predicted distribution). For each month, the 
probability distribution was used to provide probabilistic 
forecasts of exceeding (1) the mean dengue incidence 
and (2) the upper 95% CI for the mean dengue incidence 
over the previous 5 years (2011–15; appendix p 6).

Role of the funding source
The sponsors of the study had no role in the study design, 
data collection, data analysis, data interpretation, or 
writing of the report. The corresponding author had full 

access to all the data in the study and had final 
responsibility for the decision to submit for publication.

Results
A set of analyses were done and visual aids were co-
designed with climate and public health specialists in 
Ecuador, to communicate the predicted climate and 
dengue situation for Machala, at the beginning of 2016. 
This consisted of (1) the climate forecasts for 2016, along 
with hindcasts (retrospective forecasts) to indicate how 

Figure 2: Forecast and observed climate variables, 1986–2016 
Bias-corrected monthly forecasts from the Climate Forecast System version 2 model for Machala, Ecuador, from January to October, 1986–2016, for (A) precipitation 
(mm/day) and (B) minimum temperature (°C). The shaded areas represent the 95% CIs for the ensemble forecast (24 members). Observations from the weather station 
located in Machala for 1986–2015 (solid lines) and 2016 (dashed lines) are included. Forecasts are produced in January every year to predict climate conditions up to 
10 months in advance. (C) Forecast Niño3·4 index (sea surface temperature anomalies in the Niño3·4 region), 1986–2016. Forecasts are produced using a structural 
time-series model with a 6-month lead time. Observed values for 1986–2015 (solid lines) and 2016 (dashed lines) are included.
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well climate models had forecast climate variations over 
the past 30 years; (2) the dengue prediction for the 2016 
season, along with a comparison of observed and predicted 
dengue over the past 14 years; (3) a detailed forecast of 
dengue for each month in 2016, from January to November, 
showing the 2016 model prediction, and the mean and 
95% upper CI dengue incidence thresholds, based on 
observed dengue incidence over the previous 5 years.

The bias-corrected mean monthly climate forecasts of 
precipitation and minimum temperature (and 95% CIs, 
based on the 24-member ensemble) for Machala, Ecuador, 
from January to October, 1986–2016, are shown in figure 2. 
Observed values from the Granja Santa Ines weather 
station in Machala are also shown. The forecasts were 
produced on Jan 1 every year to predict climate conditions 
from 1 month to 10 months ahead. The observed and 
forecast Niño3·4 index (SST anomalies in the 
Niño3·4 region), from 1986 to 2016, produced using the 
structural time-series ENSO model with a 6-month lead 
time are also included.34 The ENSO model successfully 
predicted the peak in El Niño in November and a decrease 
in SST anomalies throughout 2016 (figure 2C). All 
24 forecasted ensemble members from CFS for 
precipitation and minimum temperature in 2016, along 
with observations, are shown in the appendix (p 4). The 
forecasts were reasonably accurate, particularly for the first 
6 months of the year. For example, the climate model 
predicted a peak in precipitation in February, 2016, the 
month in which Machala was subject to an extreme 
flooding event.

Observed, posterior predicted median and 95% pre­
diction (credible) intervals for dengue incidence per 
100 000 population in Machala, for the period 2002–16 
are shown in figure 3. The posterior median estimate 
from the null model is also included. This shows the 
added value of using the proposed model to predict 
interannual variability in dengue incidence, rather than 
relying on seasonal averages. The model predicted, with 
some success, the interannual variability in dengue 
incidence. For example, the model accurately predicted 
the epidemic that occurred in 2010 and low dengue 
incidence in 2013. However, the model did underestimate 
incidence in 2003 and 2015, although observed incidence 
fell within the 95% prediction interval. Figure 4 shows 
the out-of-sample posterior predicted mean and 
95% prediction (credible) interval for log dengue 
incidence (per 100 000 population) for 2016, January to 
November. The 5-year mean dengue incidence and upper 
95% CI, calculated for the period 2011–15, are also shown. 
This shows the typical thresholds used by the Ministry of 
Health in Ecuador to assess the severity of a dengue 
season. The probability of exceeding the mean and upper 
95% CI, calculated using incidence over the preceding 
5 years (2011–15), is provided in the table. The model 
predicted an early peak in dengue incidence in 
March, 2016 (compared with the previous 5 years), with a 
90% chance of exceeding the mean dengue incidence 

and an 85% chance of exceeding the upper 95% CI 
threshold (calculated for the previous 5 years). From June 
to November, the posterior mean prediction was less 
than the 5-year mean incidence, with probabilities of 
exceeding the mean less than 35%. The observed dengue 
incidence, obtained after the forecast had been made, is 
also included in figure 4. Although the posterior predicted 
median overestimated the observed dengue incidence for 
each month, the model correctly predicted that the peak 
incidence would occur 3 months earlier than expected, in 
March, 2016. The model also correctly predicted with 
confidence that dengue incidence would be greater than 
the 5-year mean incidence between January and April 
and less than the 5-year mean incidence from June 
onwards. Therefore, by using forecast climatic covariates, 
the model could identify key features of the transmission 
season, including an earlier-than-normal peak, and a 
lower-than-normal second half of season.

Figure 3: Observed versus predicted dengue incidence 2002–16 
The posterior predicted median and 95% prediction (credible) interval (shaded area) for dengue incidence per 
100 000 population in Machala, Ecuador, 2002–16; posterior median dengue incidence from a null model; 
and observed values for 2002–15 (solid line) and 2016 (dashed line) are shown.
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To illustrate the benefit of incorporating active 
surveillance data, to correct for dengue misreporting, 
the model predictions were reproduced using the 
uncorrected dengue data—ie, before removing the 
confirmed chikungunya cases from the dataset in 2015 
(appendix p 7). By using the original reported data, both 
the predicted dengue incidence and 5-year benchmark 
thresholds were inflated.

Discussion
Using a probabilistic dengue prediction model, driven 
by climate forecasts, dengue incidence in Machala was 
correctly predicted to be greater than the mean 
incidence over the previous 5 years (2011–15) at the 
start of the season (between January and April, 2016). 
The model successfully predicted the peak to occur 
3 months earlier than expected, in March, with a 
90% chance of exceeding the mean dengue incidence 
and an 85% chance of exceeding the upper 
95% prediction interval. From June, 2016, the model 
also correctly predicted dengue incidence to be less 
than the mean incidence observed during the previous 
5 years.

In Ecuador, the Ministry of Health informally monitors 
dengue incidence based on historical passive surveillance 
data averaged over the previous 5 years. When case 
reports exceed the upper 95% CI, the local public health 
authorities are aware that there is potential for an 
epidemic. By incorporating forecast climate information, 
the model provided a more accurate dengue outlook for 
the upcoming dengue season, than relying on the 
benchmark risk thresholds of the mean and upper 
95% CI over the previous 5 years. Based on the 5-year 
average alone, public health officials would have expected 
the peak to occur later in the season.

The main advantage of this new dengue prediction 
framework is the use of seasonal climate and El Niño 
forecasts, which allows a prediction to be made at the 
start of the year for the entire dengue season. This 
provides advanced warning of the timing and magnitude 
of peak dengue incidence, which could greatly aid the 
management of scarce resources by the Ministry of 
Health, which is the institution responsible for dengue 
control. The planning period for the following fiscal year 
occurs during the last trimester of the calendar year. The 
new fiscal calendar begins on Jan 1, and budget 
allocations are finalised during the first trimester of the 
year. There are also emergency funds that can be allocated 
at a shorter timescale in the case of an emergency, such 
as an earthquake or epidemic. If the Ministry of Health 
was warned at the start of the calendar year that the peak 
in dengue would occur several months earlier than 
expected due to forecast climate conditions, they could 
adjust their budgets, and more effectively mobilise 
resources to strengthen vector control and surveillance, 
such as personnel, insecticide, diagnostic reagents, and 
vehicles, ahead of the peak season. With sufficient lead 
time, the public health sector could also implement 
community communication and mobilisation campaigns 
to promote behavioural change, such as health care 
seeking behaviour and the elimination of uncovered 
containers with standing water.

Dengue transmission in Ecuador is seasonal, with 
most cases occurring during the hot and rainy season, 
and sporadic transmission during the rest of the year. 
Over the past 5 years, the peak in dengue has shifted 
from the first trimester to the second trimester. This 
study shows the predicted evolution of the epidemic 
curve in 2016 was only possible due to the incorporation 
of forecast climate information in the model. However, 
this might not be the case every year. Other factors 
intrinsic to the local population dynamics are likely to 
play a more dominant part for certain years. For example, 
interannual variations in human mobility patterns, 
population immunity status, and the intensity of vector 
control measures. These factors are not explicitly 
accounted for in the model. However, we do include 
yearly random effects to crudely quantify variability 
resulting from unmeasured factors from 1 year to the 
next. This allows us to better quantify the effect of climate 
variation on dengue interannual variability and make 
more realistic predictions of future risk, based on climate 
information.

The efficacy of a climate-based dengue early warning 
system depends on the availability of accurate climate 
information and skilful climate forecasts. Seasonal climate 
forecasts are found to be more accurate during El Niño and 
La Niña episodes and in ENSO-affected regions, such as 
southern coastal Ecuador.36 When these events occur, there 
is a clear opportunity to incorporate climate information 
into decision-making processes for climate-sensitive 
sectors. The presence of a strong El Niño towards the end 

Mean (2011–15) Upper 95% CI (2011–15)

Cases Incidence Probability of 
exceeding mean

Cases Incidence Probability of 
exceeding upper 
95% CI

January 18 8 90% 27 11 84%

February 33 13 87% 58 23 76%

March 37 15 90% 56 22 85%

April 59 23 82% 68 26 79%

May 133 51 54% 186 71 41%

June 248 95 24% 430 162 9%

July 154 59 17% 251 97 5%

August 79 31 33% 140 54 13%

September 52 21 31% 69 27 21%

October 33 13 29% 53 22 13%

November 20 9 34% 32 14 17%

Mean and upper 95% CI of dengue (cases and incidence per 100 000 population) for the last 5 year period 2011–15. 
Probability of dengue incidence exceeding both the 5 year mean and upper 95% CI are shown.

Table: Monthly probabilistic dengue risk forecasts for Machala, Ecuador, January–November, 2016
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of 2015 increased our confidence in the seasonal climate 
forecasts for 2016. Furthermore, the 2015–16 El Niño was of 
similar magnitude to the 1997–98 and 2009–10 El Niño 
events, which were followed by dengue outbreaks in El Oro 
province.19 This provided an ideal opportunity to test 
El Niño and climate forecasts in a pseudo-operational 
dengue modelling framework. However, seasonal climate 
forecasts can be less reliable during ENSO-neutral years. 
The skill of climate model simulations and predictions still 
represents a major research area for improving the 
usefulness of health early warning systems to public health 
decision makers, particularly in those regions and 
timescales for which climate forecast skill is low or non-
existent. Further work is in progress to explore different 
sources of predictability of local meteorological conditions 
in coastal Ecuador, to improve the skill of seasonal climate 
forecasts in this region.37

Despite these limitations, this work advances the 
state-of-the-art of climate services for the health sector 
in Ecuador, by transitioning from proof of concept to 
application. The successful implementation of climate 
services for health depends on availability of relevant, 
high-quality climate data, as well as the institutional 
and human capacity to transform the data into reliable 
and tailored climate products and services.38 In our 
case, this relied on close collaboration between public 
health specialists, climate scientists, and mathematical 
modellers to find a compromise between the quality 
and resolution of the climate and epidemiological 
datasets.

As well as taking advantage of the lead times provided 
by climate information, the model also considered active 
surveillance data in the city to correct the dengue dataset, 
in view of the introduction of chikungunya virus in the 
region in 2015. This was a unique opportunity, because 
active surveillance data are not readily available in many 
dengue-endemic regions. By removing the estimated 
number of chikungunya cases from the dataset, which 
had been erroneously recorded as dengue cases, both the 
model prediction and the benchmark mean estimates 
were more realistic (appendix p 7). The surveillance study 
showed that dengue case data in 2015 was in fact made 
up of dengue, chikungunya, and other febrile diseases. 
These individuals were also screened for active Zika 
virus infections, and were negative, which is consistent 
with Ministry of Health reports. We decided to remove 
chikungunya cases from the dataset, rather than using 
confirmed dengue cases only. This is because 
chikungunya was first introduced to the region in 2015. 
In previous years, other febrile diseases were likely to 
have been misreported as dengue cases. Therefore, to 
be consistent with misreporting practices in the years 
before 2015, we did not correct for diseases other than 
chikungunya.

In 2016, Zika virus also began to circulate in Machala 
but only ten cases of Zika were confirmed in the city. The 
epidemic has escalated in 2017 and as of May 25, 2017, 

there have been three confirmed cases of congenital 
syndrome associated with Zika virus infection in 
Ecuador.23 Because we did not have data for the proportion 
of dengue infections that were misclassified as Zika 
virus, we did not adjust the dataset for the introduction of 
Zika. Although it is likely that some Zika virus infections 
were classified as dengue, we anticipate that this 
proportion was much lower than for chikungunya 
in 2015. The severe symptoms associated with 
chikungunya led to a substantial increase in misreported 
dengue cases that were captured by the Ministry of 
Health passive surveillance system. After accounting for 
chikungunya infections, the model well reproduced the 
evolution of dengue cases in 2016. Therefore, further 
correction for Zika was considered less essential than for 
chikungunya. Based on our experience, fewer people 
with suspected Zika virus infections attended health 
centres in 2016, due to mild symptoms. Analyses of 
active surveillance data from 2016 are ongoing to 
understand the prevalence and co-infections of Zika, 
chikungunya, dengue, and other febrile illnesses.

Ultimately, future predictions of dengue outbreaks in 
areas co-endemic for dengue, chikungunya, and Zika 
require laboratory confirmation of cases for accurate 
differential diagnosis. This study highlights the need to 
combine climate information and active surveillance data 
to strengthen early warning systems for arboviruses in 
Ecuador and other El Niño-sensitive areas, experiencing 
co-circulation of arboviral diseases.
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