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Abstract

Background: Large reductions in the incidence of antibiotic-resistant strains of
Staphylococcus aureus and Clostridium difficile have been observed in
response to multifaceted hospital-based interventions. Reductions in
antibiotic-sensitive strains have been smaller or non-existent. It has been
argued that since infection control measures, such as hand hygiene, should
affect resistant and sensitive strains equally, observed changes must have
largely resulted from other factors, including changes in antibiotic use. We used
a mathematical model to test the validity of this reasoning. Methods: We
developed a mechanistic model of resistant and sensitive strains in a hospital
and its catchment area. We assumed the resistant strain had a competitive
advantage in the hospital and the sensitive strain an advantage in the
community. We simulated a hospital hand hygiene intervention that directly
affected resistant and sensitive strains equally. The annual incidence rate ratio
(IRR) associated with the intervention was calculated for hospital- and
community-acquired infections of both strains. Results: For the resistant strain,
there were large reductions in hospital-acquired infections (0.1 < IRR < 0.6) and
smaller reductions in community-acquired infections (0.2 < IRR < 0.9). These
reductions increased in line with increasing importance of nosocomial
transmission of the strain. For the sensitive strain, reductions in hospital
acquisitions were much smaller (0.6 < IRR < 0.9), while community acquisitions
could increase or decrease (0.9 < IRR < 1.2). The greater the importance of the
community environment for the transmission of the sensitive strain, the smaller
the reductions. Conclusions: Counter-intuitively, infection control interventions,
including hand hygiene, can have strikingly discordant effects on resistant and
sensitive strains even though they target them equally. This follows from
differences in their adaptation to hospital- and community-based transmission.
Observed lack of effectiveness of control measures for sensitive strains does
not provide evidence that infection control interventions have been ineffective
in reducing resistant strains.
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Introduction

In England and Wales, rates of methicillin-resistant Staphylo-
coccus aureus (MRSA) bacteraemia in hospitals showed a sharp
decline following implementation of the national CleanYour-
Hands campaign in 2004, with rates falling from 1.9 to 0.9 cases
per 10 000 bed days between 2004 and 2008'. Over the same period,
the methicillin-sensitive Staphylococcus aureus (MSSA) bacterae-
mia rate showed a small increase from 2.7 per 10 000 bed days in
2004 to 3.0 in 2008. Analysis of regional or hospital-level data
from England reveals a similar picture: most hospital settings
experienced sharp falls in rates of MRSA infection from 2004,
while MSSA infection rates either did not fall or fell only in
line with preexisting trends®’. A remarkably similar pattern has
recently been reported for Clostridium difficile infection (CDI)
in England’. CDI prevention policies, including infection con-
trol and antibiotic stewardship, were introduced in England in
2007; by 2013 the annual number of CDI had fallen by approxi-
mately 80 per cent. Genomic analysis revealed that this decline
was accounted for by the elimination of fluoroquinolone-resistant
strains. Rates of infection with fluoroquinolone-sensitive strains
showed very little change following the interventions, and there
was no change in the number of inferred secondary cases with or
without hospital contact.

These diverging outcomes for antibiotic-resistant and antibiotic-
sensitive variants of common nosocomial pathogens have led
some researchers to argue that these data provide evidence against
infection control measures having played a major role in these
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declines*. It is reasoned that non-specific infection control meas-
ures, such as improved hand hygiene or ward cleaning, would be
expected to reduce hospital transmission of resistant and sensitive
strains equally. The fact that we observe only declines in resist-
ant strains indicates that other factors, i.e. those having a differ-
ential effect on resistant and sensitive strains, must have been the
major causes for the reduction®. Here we develop a simple mecha-
nistic mathematical model to assess the validity of this line of
reasoning. Our model considers the carriage dynamics of two bac-
terial strains: one antibiotic-resistant and one antibiotic-sensitive.
We assume that both strains are able to spread between individu-
als in the hospital and the community, but that the resistant strain
transmits better in the hospital, while the sensitive strain transmits
better in the community.

Since most bacterial hospital pathogens of clinical concern can
be carried asymptomatically over long periods, we account for
movements of colonized individuals between the hospital and
community’. We explicitly model a hospital hand hygiene interven-
tion and evaluate the impact of this intervention on the incidence
of hospital and community acquisitions of antibiotic-resistant and
antibiotic-sensitive strains.

Methods

Model framework and assumptions

We developed a dynamic deterministic compartmental transmission
model to track the number of people colonized with the resistant
and sensitive strains in the hospital and community (Figure 1).

Healthcare
workers

Population 1
Hospitalized
patients

Population 2
Community
(short time
to hospital
admission)

Population 3
Community
(long time
to hospital
admission)

uncolonized

Figure 1. Flow diagram of model framework. In all three populations, individuals can reside in and move between the three carriage states
(uncolonized, colonized with antibiotic-sensitive bacteria, and colonized with antibiotic-resistant bacteria). Movements between states are
indicated by black arrows. Broken white lines indicate what variables influence transition rates between compartments. Transmission events
between hospitalized patients are mediated by transiently contaminated healthcare workers (circles), and transient contamination is removed
by hand hygiene events (an intervention which affects resistant and sensitive strains equally).
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Transmission between patients in the hospital was assumed to
occur via the transiently contaminated hands of healthcare workers.
‘We modelled this process explicitly using a previously described
host-vector approach®’. Healthcare workers in turn were assumed
to become transiently contaminated through patient contact. Hand
hygiene performed by a contaminated healthcare worker was
assumed to clear this contamination®. Individuals were assumed
to be either colonized with an antibiotic-sensitive strain (whether
asymptomatically or symptomatically), colonized with an antibiotic-
resistant strain or uncolonized and susceptible to both.

Patients were tracked by their hospitalisation history so that
recently discharged patients (those in population 2) experienced
a transient period with a shorter expected time to their next hos-
pital admission; i.e. a higher (re)admission rate than the general
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community population (population 3, Figure 1). The model
allowed for the possibility of assortative mixing within popu-
lations 2 and 3. The resistant strain was assumed to be better
adapted to the hospital setting, meaning that in the absence of
other colonized hosts, a patient colonized with a resistant strain
admitted to the hospital would be expected to generate more sec-
ondary cases during their hospital episode than a patient colonized
with a sensitive strain. In contrast, the sensitive strain was assumed
to be better adapted to the community. Individuals could not be
co-infected with resistant and sensitive strains, and we allowed for
bacterial interference between the two strains so that colonization
with one strain reduced the risk of acquisition of the other strain’.

Model equations are given below. Variables are defined in Table 1
and parameter definitions and values in Table 2.

Table 1. Model variables.

Variable Description

U

Susceptible population 1: number of patients in hospital who are not
1 colonized/infected with either the resistant or sensitive strain.

Susceptible population 2: number of individuals in community setting

) who have a short expected time to hospital admission who are

colonized with neither the resistant nor the sensitive strain.

Susceptible population 3: number of individuals in community setting

) who have a long expected time to hospital admission who are

colonized with neither the resistant nor the sensitive strain

Resistant population 1: number of patients in hospital setting
1 colonized with the resistant (hospital-adapted) strain

Resistant population 2: number of individuals in community setting

R colonized with the resistant (hospital-adapted) strain who have a

short expected time to hospital admission

Resistant population 3: number of individuals in community setting

R colonized with the resistant (hospital-adapted) strain who have a

long expected time to hospital admission

Sensitive population 1: number of patients in hospital setting
1 colonized with the sensitive (community-adapted) strain

Sensitive population 2: number of patients in hospital setting

S colonized with the sensitive (community-adapted) strain who have a

short expected time to hospital admission

Sensitive population 3: number of patients in hospital setting

colonized with the sensitive (community-adapted) strain who have a

long expected time to hospital admission

hecw,

hew,

Number of hospital healthcare workers who are transiently colonized
R with the resistant (hospital-adapted) strain

Number of hospital healthcare workers who are transiently colonized
s with the sensitive (community-adapted) strain
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Table 2. Model parameters. “Defined by other parameters to give R, a value of 1.5 for the resistant strain
and a value of 1.4 for the sensitive strain. Here, R, is defined as the expected number of secondary cases
in the hospital and community resulting from one infected individual in a fully uncolonized and susceptible
population, with a baseline hand hygiene rate of 40% and accounting for the possibility of readmissions while

still colonized.

Parameter
N

1

N,

hew

C
wa ’ sz' 7/5’3

Description
Number of hospitalised patients
Number of healthcare workers (HCW)

Number of people in the community who have a short expected time to
hospital admission (recently discharged people)

Number of people in the community who have a long expected time to
hospital admission (not recently discharged people)

Hospital patient removal rate (reciprocal of mean hospital stay)

Rate of transition from the community population with a high hospital
admission rate to the community population with a low hospital
admission rate

Ratio of hospital admission rate of the recently hospitalised to hospital
admission rate for the general population

Admission rate to hospital of people in the general population
Admission rate to hospital of recently discharged people
Mean number of HCW contacts per patient day

Carriage clearance rate of the resistant (hospital-adapted) strain in the
hospital/community (reciprocal of mean carriage duration)

As above for the sensitive (community-adapted) strain

Transmission parameter for the resistant strain (from colonized HCW to
a susceptible patient)*

As above for the sensitive strain*

Ratio of probability of transmission from colonized patient to a
susceptible HCW to the probability of transmission from colonized
HCW to a susceptible patient

Transmission parameters for the resistant strain in the community
populations*

As above for the sensitive strain*

Rate at which uncolonized individuals become infected with the
resistant strain per unit time in the hospital/community

As above for the sensitive strain

Baseline hand hygiene compliance (probability of successful hand
decontamination following patient contact)

Hand hygiene rate

Bacterial interference: risk ratio for acquiring the resistant strain if
carrying the sensitive strain relative to a non-carrier

As above for the sensitive strain

Fraction of N, individuals that mixes with N, (where 1 assumes
homogeneous mixing)

Fraction of N, individuals that mixes with N, (where 1 assumes
homogeneous mixing)

Percentage of transmission events with the hospital-adapted strain
(assuming an otherwise fully susceptible population, and that the
hospital-adapted strain is initially acquired in the hospital)

As above for the community-adapted strain

Value (range)
1000
100

10,000

100,000

10d"

ANJN,

20

See methods
See methods
10

4004
40d,400d",400d"
0.187 (0.035, 0.225)

0.100 (0.040, 0.216)

10

0.00212 (0.00013,
0.00335)

0.00320 (0.00236,
0.00330)

See methods
See methods

40%

See methods
0

0

NN,

25%

2.5
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The basic reproduction numbers for both resistant and sensi-
tive pathogens (1.5 and 1.4, respectively) were calculated as the
dominant eigenvalues of the next generation matrix'’. Here, R is
defined as the expected number of secondary cases in the hospital
and community resulting from one infected individual in a fully
uncolonized and susceptible population at baseline hand hygiene
rates of 40%, accounting for the possibility of readmissions while
still colonized. The model was implemented by numerically solv-

ing the set of ordinary differential equations using R version 3.3.1
(Team R Development Core, website: https://cran.r-project.org/)
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and the package deSolve''. Model code is available online at https://
zenodo.org/record/345136#. WLmdTVWLTcv20.

Hospital infection control measures

We modelled a hospital infection control intervention to reduce
secondary spread of bacterial pathogens in the hospital. This
was achieved by a stepwise increase in hand hygiene compliance
amongst health care workers from a baseline rate of 40% to a rate of
50%. We assumed the intervention was equally effective at decon-
taminating hands of healthcare workers transiently contaminated
with resistant and sensitive strains.

Measuring the impact of hospital infection control

Annual incidence rate ratios (IRR) were calculated using simulated
data for one year pre- and post-intervention after first running the
model to equilibrium. These correspond to the ratio of the number of
new infections in the year pre-intervention to the number in the first
year post-intervention. To aid comparison with reported infection
data‘, we assumed the number of new infections with and without a
hospital link was proportional to the cumulative number of acquisi-
tions in the hospital and community, respectively, in each of the
two time periods. Confidence intervals were calculated using 1000
Monte Carlo replicates on the assumption that the actual number of
observed infections of each strain (Y) followed a negative binomial
distribution with Var(Y) = u + u*/x, with x (the dispersion parame-
ter) = u/(0 — 1) where 6= 5, and assuming 1 in 10 carriage episodes
resulted in an infection.

Investigating the importance of environmental adaptation
of competing pathogens

At baseline, the relative fraction of new cases acquired in hos-
pital was 25% and 2.5% for the resistant and sensitive strains,
respectively. To investigate the impact of hospital- and community-
adaptation of both strains on our findings, we varied the level of
transmission in both settings for each of the two strains, while keep-
ing the overall basic reproduction number for resistant and sensi-
tive strains constant at 1.5 and 1.4, respectively. We investigated
hospital acquisition fractions of 0.5-60%, for the resistant strain,
and 0.5-15% for the sensitive strain. Only scenarios where resistant
and sensitive strains co-existed prior to the intervention were con-
sidered in this analysis, and we considered this to be the case when
the equilibrium incidence rates for colonization were above one per
100,000 person years for both strains.

Results

Impact of hospital infection control

Improving hand hygiene compliance by 10% resulted in dramatic
reductions in the incidence of infections with the resistant strain.
These reductions were most pronounced for secondary cases that
resulted from cross-infection within the hospital (IRR = 0.41 [95%
CI: 0.32-0.52] under baseline parameters); they were also clearly
observed for acquisitions that occurred in the community (IRR =
0.67 [0.59-0.76], Figure 2). Incidence rates of infections caused
by the sensitive strain were markedly less affected by the interven-
tion, though in the first year post-intervention there was a moder-
ate reduction in infections linked to hospital transmission (IRR =
0.83 [0.55-1.22] Figure 2). In contrast, the reduced competition
from the resistant strain resulted in moderate increases in
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Figure 2. Distribution of predicted incidence rate ratios associated with the infection control intervention. Predicted annual incidence
rate ratios (IRRs) for infections with the resistant and sensitive bacterial strains associated with a 10% improvement in hand hygiene compliance
from a baseline of 40%. Incidence rate ratios were calculated using simulated data one year pre- and post-intervention, where observed
infections followed a negative binomial distribution with a mean proportional to the number of acquisitions in hospital and community in the
deterministic model. Shaded areas represent distributions, and enclosed dots and lines represent medians and standard deviations. An IRR
of 1 corresponds to no change (dotted line). Non-enclosed single dots and lines represent mean and 95% confidence intervals of observed
IRRs for C. difficile fluoroquinolone-resistant (turquoise) and fluoroquinolone-sensitive (grey) strains, grouped according to presence or

absence of a hospital link (data from 4).

sensitive infections linked to community acquisitions (IRR =
1.10 [1.03-1.17], Figure 2). The net result was a small overall
increase in the incidence of infections with the sensitive pathogen.
These trends are exactly in line with reported data* (Figure 2).

Dynamics after hospital infection control

The above results appear counterintuitive, but can be understood
after consideration of the dynamics. First, the reduction in resist-
ant infections linked to community transmission can be explained
by a reduction in the number of patients colonized with resist-
ant bacteria at hospital discharge. Reducing the efflux of these
colonized patients into the community (a consequence of reduced
transmission in the hospital) leads to a long-term decline in the
prevalence and incidence of the resistant strain in this setting
(Figure 3). These gradual changes in the community reser-
voir (which occur despite the sudden changes in the hospital
transmission rate due to the intervention) in turn lead to reduced
importations (and subsequent transmission) of the resistant

strain into the hospital. This explains why we see a gradual
decline in resistant infections in the hospital and community, even
following an intervention that occurs in a stepwise manner and
which is restricted to the hospital.

For the sensitive pathogen strain, we also see an initial stepwise
reduction in the hospital incidence of new patient acquisitions
(Figure 3). However, the drop is smaller than for the resistant strain
because the sensitive strain depends much less on hospital trans-
mission for maintaining its hospital prevalence and much more on
importations from the community. Despite this initial fall in hospi-
tal prevalence and incidence of the sensitive strain, over a period of
several years there are modest increases in both - a consequence of
reduced competition with the resistant strain. The net result is that
the intervention has a discordant effect on new hospital acquisi-
tions of the sensitive and resistance strains; the former marginally
increases over a period of several years, while the latter declines to
low levels.
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Figure 3. Predicted incidence and prevalence trends of the sensitive and resistant bacterial strains following the introduction of
enhanced infection control. Trends in the incidence of new acquisitions (symptomatic and asymptomatic) and carriage prevalence for
resistant and sensitive bacterial strains following a 10% stepwise improvement in hand hygiene compliance after one year from a baseline
of 40%. As prevalence in the hospital represents only a small fraction of the overall prevalence (in hospital and community populations
combined), the latter is almost identical to the community prevalence for both the resistant and sensitive bacterial strains.

Broadly similar dynamics were observed for larger increases in
hand hygiene compliance, and for sufficiently high compliance the
intervention was capable of driving the resistant strain to extinc-
tion (Supplementary material). Thus, while the resistant strain
was able to persist at a low level alongside the sensitive strain
when hand hygiene compliance was 50% (Figure 3), increasing it
further to >55% induced a more rapid decline in both the
hospital and community reservoir and successfully eliminated
the resistant strain (Supplementary Figure S1 and Supplementary
Figure S2).

Importance of the degree of strain adaptation to the
hospital and community settings

With baseline parameters, 25% of acquisitions of the resistant
strain occurred in hospital; the corresponding figure for the sensi-
tive strain was 2.5%. Increasing adaptation of the resistant strain to
the hospital environment (i.e. increasing the proportion of resistant

transmission that occurs in hospital while keeping the basic repro-
duction number constant), resulted in larger effect sizes for the
hospital infection control intervention: 0.1 < /RR < 0.6 for inci-
dence linked to hospital transmission and 0.2 < /RR < 0.9 for
incidence related to community transmission (Figure 4). For the
sensitive strain, secondary cases with a hospital link also
declined in response to the intervention, though at lower rates
than the resistant strain (0.6 <IRR <0.9).

In contrast, incidence rates of the sensitive pathogen without a
hospital link either remained unchanged or increased following
the infection control intervention (0.9 </RR < 1.2). The smaller
the importance of the hospital environment for transmission of the
sensitive strain, the larger the increase in its incidence rate in the
community in response to the intervention (Figure 4). This increase
became larger when the percentage of resistance strain acquisitions
occurring in the community increased.
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Figure 4. Annual incidence rate ratios associated with an infection control intervention under different levels of adaptation of sensitive
and resistant strains to hospital and community settings. In all simulations, basic reproduction number for resistant and sensitive strains
were held constant at 1.5 and 1.4, respectively. White spaces represent scenarios where no co-existence occurred. An IRR = 1 corresponds

to no change.

Discussion

Our analysis shows that discordant temporal changes in resistant
and sensitive infections in response to intensified hospital-based
control measures, as observed for Staphylococcus aureus™ and
C. difficile’, are consistent with an intervention that reduces trans-
mission rates of resistant and sensitive bacteria equally. Under
plausible assumptions (all of which have been used in previous
models™*'>"¥) our simulations were able to produce effect sizes that
are similar to those observed with real data*. Notably, we did not
assume the existence of an intervention, such as antimicrobial stew-
ardship, that has different direct effects on resistant and sensitive
strains. Some aspects of our results (and of the real-world data) may
be considered counterintuitive™, but the modelling framework helps
provide a simple intuitive explanation. In general, if two pathogen
strains compete unequally in two environments, a transmission-
reducing intervention that preferentially targets one environment
will have a disproportionate effect on the strain better adapted to

that environment. We have used a hand hygiene intervention as our
motivating example; similar conclusions would have been reached
with other nonspecific hospital infection control measures, such as
ward cleaning.

Previous modelling work has shown that hospital infection control
measures can have a greater effect on resistant than on sensitive
bacteria'”. This can be expected when the hospital influx of patients
carrying sensitive bacteria is the dominant factor in maintaining
their high hospital prevalence, while patient-to-patient spread is
largely responsible for the high hospital prevalence of resistant bac-
teria. Our model has extended this work by explicitly accounting
for transmission in the community reservoir. One motivation for
doing this is to allow direct comparison with data from recent stud-
ies using whole genome sequencing to identify infections plausibly
linked to recent hospital transmission®. Consideration of hospital
and community dynamics also enabled us to capture the observed
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long-term temporal changes in resistance in response to interven-
tions, and to demonstrate that the prevalence of sensitive bacteria
may in fact marginally increase following non-specific infection
control measures. We have not attempted to quantify the relative
contributions of infection control, antibiotic stewardship and other
factors in the large reductions in nosocomial infections with C.
difficile and S. aureus in England and Wales. Our analysis merely
shows that the observed reductions in resistant infections without
reductions in sensitive infections is not inconsistent with infection
control playing a major role. There are other lines of evidence to
suggest infection control may have made an important contribu-
tion. For example, in England and Wales strong negative associa-
tions between hospital-level usage of soap and C. difficile infection
rates and between alcohol hand rub and MRSA infection rates have
been reported'. Similar associations have been reported elsewhere
(e.g. 14).

The intensification of hospital infection control is commonly mul-
tifaceted, complicating the quantification of the effectiveness of
individual interventions. Our findings indicate further data, e.g.
hospital-level antimicrobial consumption data and measures of the
behavioural impact of infection control interventions, are required
to more reliably quantify the relative contribution of different
control measures to the reductions observed. The most detailed
analysis to date comes from two long time series studies from
northeast Scotland'>'°. These suggest that both antibiotic steward-
ship and infection control measures made important contributions
to the decline in MRSA infections in this region, while an antibiotic
stewardship intervention (restricting the use of fluoroquinolones,
clindamycin, co-amoxiclav, and cephalosporins) was likely to have
been the dominant factor in reducing C. difficile infections. A strong
point of our work is the simple framework we used for considering
generic pathogens. The flexibility of the model readily allows adap-
tation to specific pathogens. For example, assumptions about car-
riage duration and the degree of bacterial interference between the
two strains can easily be altered. In addition, by capturing dynamic
transmission in both hospital- and community-populations (some-
thing commonly ignored in mathematical models of nosocomial
pathogens'’), and including a core group of recently discharged
patients with higher readmission rates, we were able to capture the
interaction between hospital and community more realistically. Of
note, this core group is not an essential model requirement for our
central result, which is that infection control interventions alone
can account for the very different effects on sensitive and resistant
strains.

Our work also has important limitations. All models are
simplifications of reality. Hospitals and communities encompass
complex networks of contact patterns; our model represents only
a caricature of these networks. We did not allow for co-infection
with resistant and sensitive strains. This is a reasonable approxi-
mation for S. aureus’, and competition for ecological niches
has been reported for C. difficile (e.g. 18,19), but it is unclear
how appropriate this assumption would be for other enteric
pathogens. Clearly, our model also ignores a lot of host and pathogen

Wellcome Open Research 2017, 2:16 Last updated: 22 NOV 2017

heterogeneity. However, we can think of no plausible mechanism
by which incorporation of more biological realism would in any
way alter our primary conclusion. Though our framework allows
for further complexity, the purpose here was to demonstrate that the
divergent effects of infection control interventions on resistant and
sensitive models could be explained even with a simple model.
Therefore, no formal model fitting to data was conducted. How-
ever, we have presented a set of scenarios for different degrees of
hospital-adaptation, making our findings generalizable to a wide
variety of settings and pathogens.

Conclusions

Hospital-based infection control interventions, such as hand
hygiene, that target sensitive and resistant bacteria equally, can
result in diverging outcomes for strains which are differentially
adapted to community and hospital transmission. While it is highly
plausible that changing patterns of antibiotic usage have played an
important role in some of the observed declines in C. difficile and
S. aureus infections, the relative importance of antibiotic steward-
ship versus infection control interventions cannot be inferred from
differential changes in infection rates with resistant and sensitive
bacteria.
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Supplementary material
Figure S1: Predicted trends in incidence of new acquisitions of sensitive and resistant strains under varying improvements in hand
hygiene compliance. Trends in the incidence of new acquisitions (symptomatic and asymptomatic) for resistant and sensitive bacterial
strains following a 5%, 10%, 15% and 20% improvement in hand hygiene compliance from a baseline of 40%.

Click here to access the data
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Figure S2: Predicted trends in prevalence of new acquisitions of sensitive and resistant strains under varying improvements in hand
hygiene compliance. Trends in the prevalence of carriage (symptomatic and asymptomatic) for resistant and sensitive bacterial strains fol-
lowing a 5%, 10%, 15% and 20% improvement in hand hygiene compliance from a baseline of 40%.

Click here to access the data

References

Stone SP, Fuller C, Savage J, et al.: Evaluation of the national Cleanyourhands
campaign to reduce Staphylococcus aureus bacteraemia and Clostridium
difficile infection in hospitals in England and Wales by improved hand

hygiene: four year, prospective, ecological, interrupted time series study. BMJ.

2012; 344: e3005.
PubMed Abstract | Publisher Full Text | Free Full Text

Newitt S, Myles PR, Birkin JA, et al.: Impact of infection control interventions on
rates of Staphylococcus aureus bacteraemia in National Health Service acute
hospitals, East Midlands, UK, using interrupted time-series analysis. J Hosp
Infect. 2015; 90(1): 28-37.

PubMed Abstract | Publisher Full Text

Wyllie DH, Walker AS, Miller R, et al.: Decline of meticillin-resistant
Staphylococcus aureus in Oxfordshire hospitals is strain-specific and
preceded infection-control intensification. BMJ Open. 2011; 1(1): e000160.
PubMed Abstract | Publisher Full Text | Free Full Text

Dingle KE, Didelot X, Quan TP, et al.: Effects of control interventions on
Clostridium difficile infection in England: an observational study. [To appear
in]. Lancet Infect Dis. 2017. pii: S1473-3099(16)30514-X.

PubMed Abstract | Publisher Full Text

Cooper BS, Medley GF, Stone SP, et al.: Methicillin-resistant Staphylococcus
aureus in hospitals and the community: stealth dynamics and control
catastrophes. Proc Nat/ Acad Sci U S A. 2004; 101(27):

10223-10228.

PubMed Abstract | Publisher Full Text | Free Full Text

Cooper BS, Medley GF, Scott GM: Preliminary analysis of the transmission
dynamics of nosocomial infections: stochastic and management effects.
J Hosp Infect. 1999; 43(2): 131-147.

PubMed Abstract | Publisher Full Text

Ross R: The prevention of malaria. John Murray, London. 1911; LVII(21): 1715-1716.

Publisher Full Text

Pittet D, Boyce JM, Allegranzi B: Hand Hygiene: A Handbook for Medical
Professionals. Wiley-Blackwell, Hoboken, New Jersey, 2017.
Reference Source

Shinefield HR, Ribble JC, Boris M: Bacterial interference between strains of
Staphylococcus aureus, 1960 to 1970. Am J Dis Child. 1971; 121(2): 148—-152.
PubMed Abstract | Publisher Full Text

Diekmann O, Heesterbeek JA, Roberts MG: The construction of next-generation
matrices for compartmental epidemic models. J R Soc Interface. 2010; 7(47):
873-885.

PubMed Abstract | Publisher Full Text | Free Full Text

20.

Soetaert K, Petzoldt T, Setzer RW: Package deSolve: Solving Initial Value
Differential Equations in R. J Stat Softw. 2010; 33(9): 1-25.
Publisher Full Text

Lipsitch M, Bergstrom CT, Levin BR: The epidemiology of antibiotic resistance
in hospitals: paradoxes and prescriptions. Proc Natl Acad Sci USA. 2000; 97(4):
1938-1943.

PubMed Abstract | Publisher Full Text | Free Full Text

Smith DL, Dushoff J, Perencevich EN, et al.: Persistent colonization and the
spread of antibiotic resistance in nosocomial pathogens: resistance is a
regional problem. Proc Nat/ Acad Sci USA. 2004; 101(10): 3709-3714.
PubMed Abstract | Publisher Full Text | Free Full Text

Vernaz N, Sax H, Pittet D, et al.: Temporal effects of antibiotic use and hand rub
consumption on the incidence of MRSA and Clostridium difficile. J Antimicrob
Chemother. 2008; 62(3): 601-607.

PubMed Abstract | Publisher Full Text

Lawes T, Lopez-Lozano JM, Nebot CA, et al.: Effects of national antibiotic
stewardship and infection control strategies on hospital-associated and
community-associated meticillin-r Staphylococcus aureus infections
across a region of Scotland: a non-linear time-series study. Lancet Infect Dis.
2015; 15(12): 1438-1449.

PubMed Abstract | Publisher Full Text

Lawes T, Lopez-Lozano JM, Nebot CA, et al.: Effect of a national 4C antibiotic
stewardship intervention on the clinical and molecular epidemiology of
Clostridium difficile infections in a region of Scotland: a non-linear time-series
analysis. Lancet Infect Dis. 2017; 17(2): 194-206.

PubMed Abstract | Publisher Full Text

van Kleef E, Robotham JV, Jit M, et al.: Modelling the transmission of healthcare
associated infections: a systematic review. BMC Infect Dis. 2013; 13(1): 294.
PubMed Abstract | Publisher Full Text | Free Full Text

Songer JG, Jones R, Anderson MA, et al.: Prevention of porcine Clostridium
difficile-associated disease by competitive exclusion with nontoxigenic
organisms. Vet Microbiol. 2007; 124(3-4): 358-361.

PubMed Abstract | Publisher Full Text

Merrigan MM, Sambol SP, Johnson S, et al.: Prevention of fatal Clostridium
difficile-associated disease during continuous administration of clindamycin
in hamsters. J Infect Dis. 2003; 188(12): 1922—-1927.

PubMed Abstract | Publisher Full Text

van Kleef E, Luangasanatip N, Bonten MJ, et al.: Why sensitive bacteria are

resi 1t to hospital ir 1 control [Data set]. Wellcome Open Research.
Zenodo. 2017.

Data Source

£t

Page 11 of 30


https://wellcomeopenresearch.s3.amazonaws.com/supplementary/11033/fbfbeb09-55ec-4bb1-96f6-775a769111e6.tiff
https://wellcomeopenresearch.s3.amazonaws.com/supplementary/11033/bc8bf4c3-c9c8-4d53-b694-df80cf3bc116.tiff
http://www.ncbi.nlm.nih.gov/pubmed/22556101
http://dx.doi.org/10.1136/bmj.e3005
http://www.ncbi.nlm.nih.gov/pmc/articles/3343183
http://www.ncbi.nlm.nih.gov/pubmed/25659447
http://dx.doi.org/10.1016/j.jhin.2014.12.016
http://www.ncbi.nlm.nih.gov/pubmed/22021779
http://dx.doi.org/10.1136/bmjopen-2011-000160
http://www.ncbi.nlm.nih.gov/pmc/articles/3191576
http://www.ncbi.nlm.nih.gov/pubmed/28130063
http://dx.doi.org/10.1016/S1473-3099(16)30514-X
http://www.ncbi.nlm.nih.gov/pubmed/15220470
http://dx.doi.org/10.1073/pnas.0401324101
http://www.ncbi.nlm.nih.gov/pmc/articles/454191
http://www.ncbi.nlm.nih.gov/pubmed/10549313
http://dx.doi.org/10.1053/jhin.1998.0647
http://dx.doi.org/10.1001/jama.1911.04260110215034
http://as.wiley.com/WileyCDA/WileyTitle/productCd-1118846869.html
http://www.ncbi.nlm.nih.gov/pubmed/5542853
http://dx.doi.org/10.1001/archpedi.1971.02100130102013
http://www.ncbi.nlm.nih.gov/pubmed/19892718
http://dx.doi.org/10.1098/rsif.2009.0386
http://www.ncbi.nlm.nih.gov/pmc/articles/2871801
http://dx.doi.org/10.18637/jss.v033.i09
http://www.ncbi.nlm.nih.gov/pubmed/10677558
http://dx.doi.org/10.1073/pnas.97.4.1938
http://www.ncbi.nlm.nih.gov/pmc/articles/26540
http://www.ncbi.nlm.nih.gov/pubmed/14985511
http://dx.doi.org/10.1073/pnas.0400456101
http://www.ncbi.nlm.nih.gov/pmc/articles/373527
http://www.ncbi.nlm.nih.gov/pubmed/18468995
http://dx.doi.org/10.1093/jac/dkn199
http://www.ncbi.nlm.nih.gov/pubmed/26411518
http://dx.doi.org/10.1016/S1473-3099(15)00315-1
http://www.ncbi.nlm.nih.gov/pubmed/27825595
http://dx.doi.org/10.1016/S1473-3099(16)30397-8
http://www.ncbi.nlm.nih.gov/pubmed/23809195
http://dx.doi.org/10.1186/1471-2334-13-294
http://www.ncbi.nlm.nih.gov/pmc/articles/3701468
http://www.ncbi.nlm.nih.gov/pubmed/17493774
http://dx.doi.org/10.1016/j.vetmic.2007.04.019
http://www.ncbi.nlm.nih.gov/pubmed/14673773
http://dx.doi.org/10.1086/379836
http://dx.doi.org/10.5281/zenodo.345136

Weucome Open ResearCh Wellcome Open Research 2017, 2:16 Last updated: 22 NOV 2017

Open Peer Review

Current Referee Status: ¢ v

Referee Report 20 June 2017

doi:10.21956/wellcomeopenres.11901.r21144

v

Chris Robertson
Department of Mathematics and Statistics, University of Strathclyde, Glasgow, G1 1XH, UK

This paper presents a very interesting transmission dynamic model of resistant and susceptible
pathogens in both healthcare and community settings. It is constructed in such a way as to be able to
explore potential reasons why antimicrobial resistant organisms have been declining recently while
sensitive versions of the same organism have been increasing or, remaining constant. This elegant model
has different rates of transmission depending on the setting and this is the aspect which leads to an
explanation of the observed data on reducing rates of MRSA alongside increasing rates of MSSA.

| think that the key aspect of the model is that resistant strains are assumed to be better adapted to the
hospital setting and so would be expected to generate more secondary cases in hospital than a non
resistant strain. The opposite is assumed to happen in the community. When an intervention is targeted
at reducing transmission in hospitals then this will interfere more with the transmission of resistant
organisms in hospital and will have no impact on the transmission in the community. This crucial
assumption is not really justified, nor does it need to be, as the model only seeks to provide a mechanism
whereby the observed results can be explained.

The model equations are standard for this type of model. This model, like many others, relies on
assigning values to a number of parameters. There are not justified other than to have an R, of 1.5 for
resistant strains and 1.4 for susceptible strains. These are reasonable values and, as this model is an
exercise to see if a model can explain the observed results, getting justified parameter estimates for one
organism is not really required.

In some respects the model is similar to the some of the models in
Lipsitch et al. 2009 though co existence of susceptible and resistant strains are not permitted in this
model.

The authors do not claim that this is a model for a disease however | was a little surprising that the
resistant strain is eliminated when hand hygiene compliance reaches 55% while coexistence was
observed when compliance was 50%.

Minor points:

The model assumes each hospital is associated with a community of 110,000 - this is OK for Scotland
with 42 acute hospitals and a population of 5.2 million. The average size of each hospital is just under
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300 beds. What would be the impact of smaller hospitals and smaller numbers of health care workers per
hospital?

Is the ratio of 100:1000 for health care workers to patients per hospital realistic?

1in 10 carriage episodes results in an infection — justification This is the same in hospital and community.
However you might expect that immune compromised individuals in hospital who carry a strain might be
more likely to develop an infection.

References
1. Lipsitch M, Colijn C, Cohen T, Hanage WP, Fraser C: No coexistence for free: neutral null models for
multistrain pathogens.Epidemics. 2009; 1 (1): 2-13 PubMed Abstract | Publisher Full Text
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This paper presents a very interesting transmission dynamic model of resistant and susceptible
pathogens in both healthcare and community settings. It is constructed in such a way as to be able
to explore potential reasons why antimicrobial resistant organisms have been declining recently
while sensitive versions of the same organism have been increasing or, remaining constant. This
elegant model has different rates of transmission depending on the setting and this is the aspect
which leads to an explanation of the observed data on reducing rates of MRSA alongside
increasing rates of MSSA.

| think that the key aspect of the model is that resistant strains are assumed to be better adapted to
the hospital setting and so would be expected to generate more secondary cases in hospital than a
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non resistant strain. The opposite is assumed to happen in the community. When an intervention
is targeted at reducing transmission in hospitals then this will interfere more with the transmission
of resistant organisms in hospital and will have no impact on the transmission in the community.
This crucial assumption is not really justified, nor does it need to be, as the model only seeks to
provide a mechanism whereby the observed results can be explained.

The model equations are standard for this type of model. This model, like many others, relies on
assigning values to a number of parameters. There are not justified other than to have an R of 1.5
for resistant strains and 1.4 for susceptible strains. These are reasonable values and, as this
model is an exercise to see if a model can explain the observed results, getting justified parameter
estimates for one organism is not really required.

In some respects the model is similar to the some of the models in
Lipsitch et al. 2009 though co existence of susceptible and resistant strains are not permitted in
this model.

1.The authors do not claim that this is a model for a disease however | was a little surprising that
the resistant strain is eliminated when hand hygiene compliance reaches 55% while coexistence
was observed when compliance was 50%.

This is over the 5-year period modelled, as presented in Figure S1 and Figure S2. The
lower the improvement in hand hygiene, the more gradual the decline in resistant
bacteria. Running the model over a 10-year period shows that eventually elimination of
the resistant strain will be reached under 50% hand hygiene compliance as well. However,
we considered a 5-year time horizon sufficient to illustrate the underlying dynamics. We
have added the following text to the result section:

“...increasing it further to 55% induced a more rapid decline in both the hospital and community
reservoir and successfully eliminated the resistant strain within the five year time period
simulated.”

Minor points:

2.The model assumes each hospital is associated with a community of 110,000 - this is OK for
Scotland with 42 acute hospitals and a population of 5.2 million. The average size of each hospital
is just under 300 beds. What would be the impact of smaller hospitals and smaller numbers of
health care workers per hospital?

With smaller population sizes (and smaller hospitals), stochastic effects would become
increasingly important and the relative magnitude of fluctuations in each hospital would
increase (in proportion to the reciprocal of the square root of the population size). Such
stochastic effects are not accounted for in our paper as the key intention was to shed light
on how hospital interventions could lead to long-term trends in large populations.
Stochastic models would lead to the same broad conclusions, but in any given simulation
the trends might be obscured by stochastic fluctuations (particularly when populations
are small). We have added the following sentence listed in bold to the discussion:
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Our model also ignores a lot of host and pathogen heterogeneity, and we did not account for
stochastic effects. In small populations of single hospitals, chance events are likely to
play an important role in the transmission dynamics of pathogens. However, we can think of
no plausible mechanism by which incorporation of more biological realism would in any way alter
our primary conclusion. Though our framework allows for further complexity, the purpose here was
to demonstrate that the divergent effects of infection control interventions on resistant and
sensitive models could be explained even with a simple model.

3. Is the ratio of 100:1000 for health care workers to patients per hospital realistic?

The EU FP7 framework RN4cast study surveyed practicing nurses in nine European
countries in 2012, and hence provided insight in acute Trust nursing staff ratios in these
countries, including England[1,2]. For England, ~3000 nurses from 31 Trusts, 46 hospitals
participated in the study. Patient to nursing staff ratios were highly variable across the
sampled Trusts in England, with an overall average of per 1 one patient, 8.8 [Range: 5.5 -
11.5] registered nurses [2]. Moreover, levels of 1:8 were found during day time and 1:11
during night time on average[1]. Across all participating countries, the patient-to-nurse
ratio was 1:8.3 [2.4 - 17.9] [2]. We are aware that these figures include nurses only, while
not accounting for other healthcare workers. As nurses account for the largest fraction of
caring staff, we believe that our patient healthcare worker ratio of 1:10 is not unrealistic.
However, we wish to emphasise that lower patient-to-healthcare worker ratios would not
change our findings.

We have added the above listed references to Table 2.

4.1 in 10 carriage episodes results in an infection — justification. This is the same in hospital and
community. However you might expect that immune compromised individuals in hospital who carry
a strain might be more likely to develop an infection.

Fundamentally, we have presented a model of carriage dynamics and the assumption is
that clinical infections increase in line with the number of carriers. The key results
presented do not depend on the proportion of colonized patients who develop an
infection. For example, in figure 3, incidence refers to the "incidence of nhew acquisitions
(symptomatic and asymptomatic) " and figure 4 also refers to changes in incidence of
acquisitions of both symptomatic and asymptomatic infection (apologies if this was not
clear). The exception is figure 2 where we are attempting to simulate something like the
incidence data we observe (i.e. samples submitted to the Oxford University Hospitals NHS
Trust that tested positive for C. difficile. This hospital does all the C. difficile testing in
Oxfordshire, including samples submitted by GPs, community hospitals and other
providers[3]), though in this case we report only changes in these incidence rates
associated with an intervention (i.e. incidence rate ratios) rather than absolute numbers to
aid comparison with reference 4. The net result is the expected values of these IRRs will
be insensitive to the risk of clinical infection given carriage in hospital and community,
but the absolute numbers (and therefore degree of dispersion) will be sensitive to this. We
agree that difference in case mix between hospitalised individuals and individuals
residing in the community might lead to a difference in likelihood of developing infection.
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In addition, hospital-acquired C. difficile cases are probably more likely to be reported
than community-acquired cases. Indeed, this may explain why the simulations are giving
wider dispersion for the IRR for hospital linked cases than observed data but somewhat
narrower dispersion for the community linked cases (for which we may be overestimating
the proportion seen in hospital). To address this issue we allowed for different constants
of proportionality for hospital and community-linked infections, and, by default, assumed
that hospital-acquired cases were 5 times more likely to be reported as
community-acquired cases. Figure 2 has been updated accordingly.

In addition, the method section now reads:

“We assumed the number of new infections reported with a hospital link or a community was
proportional to the cumulative number of acquisitions in the hospital or community in each of the
two time periods”

In explaining our calculated observed infections we now say:

“...and assuming 1 in 10 carriage episodes acquired in hospital resulted in a reported
infection. This was 1 in 50 for community-acquired episodes. Hence we allowed for
differences in reporting rates in both settings as well as heterogeneity in case-mix
affecting the likelihood of developing an infection.”

Moreover, we have changed the caption of Figure 4 in line with figure 3, the caption now
reads:

“Annual incidence rate ratios of new acquisitions (symptomatic and asymptomatic)
associated with an infection control intervention under different levels of adaptation of
sensitive and resistant strains to hospital and community settings”

References:

1. Ball J, Pike G, Griffiths P, Rafferty A, Murrells T. RN4CAST Nurse Survey in England. London;
2012.

2. Aiken L, Sloane D, Bruyneel L, Van Den Heede K, Giriffi P, Busse R, et al. Nurse staffing and
education and hospital mortality in nine European countries: a retrospective observational study.
Lancet. 2014;383:1824-30.

3. Dingle K, Didelot X, Eyre D, Stoesser N, Golubchik T, Harding R, et al. Effects of control
interventions on Clostridium difficile infection in England: an observational study. Lancet Infect Dis.
2017;

Competing Interests: We declare no competing interest

Referee Report 27 April 2017

doi:10.21956/wellcomeopenres.11901.r21315

Page 16 of 30


http://dx.doi.org/10.21956/wellcomeopenres.11901.r21315

Wellcome Open ResearCh Wellcome Open Research 2017, 2:16 Last updated: 22 NOV 2017

Lulla Opatowski
Biostatistics, Biomathematics, Pharmacoepidemiology and Infectious Diseases Unit (B2PHI), UMR1181,
Université Versailles Saint Quentin, Institut Pasteur, Inserm, University of Paris-Saclay, Paris, France

This article aims at investigating the impact of implementing unspecific control measures, such as hand
hygiene, on the spread of antibiotic resistant and antibiotic sensitive bacteria in hospitals, using
mathematical modelling. In this theoretical study, a new deterministic model based on ODEs is
numerically simulated under different hand hygiene scenarios. For each scenario, the resulting annual
incidence ratio is calculated for hospital- and community-acquired infections with resistant and sensitive
bacteria. The simulation results suggest that, counter-intuitively but in accordance to the observations
from recent years, infection control interventions such as hand hygiene can have discordant effects on
resistant and sensitive strains, even if they do not target specifically one or the other.

This is a very clear and well written article and | really enjoyed reading it. The question addressed is of
high importance in a context where antimicrobial resistance keeps increasing and limited number of drugs
and interventions are available to control it. Understanding better the respective impact of control
measures is therefore essential to optimize their implementations and also interpret the observed trends.
However, to make the presented results more convincing and interpretable, some clarification about the
model is needed, in addition to sensitivity analysis on the model parameters.

Main comments

1. Modelling health care workers (HCW) colonisation. An originality of the model is that it specifically
formalizes the patient-HCW transmission. Here, HCWs are classified either as non-hand-carriers
or as hand-carriers. In the model, hand hygiene is therefore assumed to directly impact to directly
clear HCW carriage in compliant individuals (eg at a proportion of 50%). Several epidemiological
studies have shown that, in the case of S. aureus at least, proper (nasal) colonization is frequent in
HCW. | would expect that, for those HCW properly carrying the bacteria, efficient hand hygiene
may impede transmission to others by clearing hand carriage, but would not clear colonisation.
They would not need to be recolonized through contact with patients to become again S or R
carriers the next day. On the contrary, for purely transient hand carriers HCWs, | would expect that
hand hygiene completely removes the bacteria from the hand and entire body. In that case, new
acquisition from patient would be necessary for them to become carrier again. Can the authors
comment on that point? In particular, how is HCW’s duration of carriage handled in the model?

2. Parameters table. The table needs some clarifications and references. (1) | did not understand the
values of the following rates: tau, gammaR, and gammas: is the rate or the duration depicted in the
last column? It looks more like the reciprocal duration, despite the unit is given in day-1. (2) | think a
% is lacking in the last raw of the table. (3) Can you please explain the calculation of f23, this is not
clear to me. (4) If | understand well, carriage is assumed to last for 400 days. This is quite long and
may have consequences on the resulting trends obtained in the simulations. Can the authors
provide a justification for this value and carry out some sensitivity analysis on this parameter? (5)
Can you provide some justification about the values of p set to 10?

3. Bacterial interference. This is not clear whether the authors finally assumed some competition for
colonisation between the strains or not. On the schematic representation of the model, no
“superinfection” is assumed, but this mechanism is described in the Methods section. If w=0 as
indicated in Table2, then full competition is assumed between the strains. This hypothesis is strong
and may have some influence on the resulting trends. My intuition is that this strong assumption
may provide more chance to S strains to spread in hospitals when R strains are removed by
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intervention. Could the authors carry out some sensitivity analysis on the impact of that parameter?

4. Transmission rate. Could you provide more details about beta calculation for the different strains in
the different settings according to RO? Also, in the section “Importance of the degree of strain

adaptation...”, “when increasing the transmission that occurs in hospital”, could you provide the
corresponding values for beta?

Similarly, when investigating the importance of environmental adaptation, how did you process to
vary “the level of transmission in both settings for each of the two strains, while keeping the overall
basic reproduction number for R and S strains constant...”?

5. Model equations. Frequency dependent hypothesis is assumed in the ward which looks realistic.
However, in some equations, this rule does not apply; it would require some explanation. In
equations describing the hcwS and hcwR derivatives, the denominator of the transmission term is
for example Nhcw.

6. Community transmission. The expressions of the force of infections for patients are not totally clear
to me either. In particular, | don’t understand the term beta_R3xR3xf23/N2. Given the definition of
23, this expression is actually equivalent to beta_ R3xR3/N3, which makes more sense to me. In
general, it would be good if more details were provided to explain the model community
transmission. It was not clear to me what the authors meant by “the model allowed for the
possibility of assortative mixing within population 2 and 3”. Could you provide a mixing matrix to
make clear the transmission between the 3 (or 4) populations? Similarly, expressions of
lambda_R3, lambda_S1, lambda_S2 and lambda_S3 would need some more explanation. Why is
it divided respectively by N3, N2 and N3?

7. Annual incidence rate ratio. Could you provide an equation for the calculation of IRR as a function
of the measured outputs from the results?

8. Interpretation of results about the dynamic after hospital infection control. To make the
interpretation of Figure 3 more convincing, it would be important to disentangle what processes
come from the community- to-community transmission, the hospital- to-community (ie community
importations) transmission, the hospital- to-hospital transmission and the community-to-hospital (ie
hospital importations) transmission. Could the authors present, in addition to Figure3, the incident
cases coming from these different processes?

9. The modelled hospital population is 1000 patients and 100 HCWs. The proposed model is
deterministic. How would stochasticity impact the results?

Minor comments
1. Does RO define the number of secondary cases of infection or colonisation? As transmission
occurs through colonization my choice would go for that one but in the main text and Table 2
legend, the authors mention “infection”. In addition, as RO is actually defined in a setting with
already 40% hand hygiene at baseline, this is actually not the strict basic reproductive number of
the bacteria. | therefore suggest naming it reproductive number (R) which seems more correct to
me.

2. Table1. hCWR and hCWS notations do not match with notations in the model depicted in fig1.
Could the authors check they use the same notations?
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Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Partly

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Partly

Competing Interests: No competing interests were disclosed.
Referee Expertise: Mathematical modelling, bacterial resistance, pathogens interactions

| have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however | have significant reservations, as outlined
above.

Esther van Kleef, Mahidol Oxford Tropical Medicine Research Unit, Thailand

This article aims at investigating the impact of implementing unspecific control measures, such as
hand hygiene, on the spread of antibiotic resistant and antibiotic sensitive bacteria in hospitals,
using mathematical modelling. In this theoretical study, a new deterministic model based on ODEs
is numerically simulated under different hand hygiene scenarios. For each scenario, the resulting
annual incidence ratio is calculated for hospital- and community-acquired infections with resistant
and sensitive bacteria. The simulation results suggest that, counter-intuitively but in accordance to
the observations from recent years, infection control interventions such as hand hygiene can have
discordant effects on resistant and sensitive strains, even if they do not target specifically one or
the other.

This is a very clear and well written article and | really enjoyed reading it. The question addressed
is of high importance in a context where antimicrobial resistance keeps increasing and limited
number of drugs and interventions are available to control it. Understanding better the respective
impact of control measures is therefore essential to optimize their implementations and also
interpret the observed trends. However, to make the presented results more convincing and
interpretable, some clarification about the model is needed, in addition to sensitivity analysis on the
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model parameters.

Main comments

1. Modelling health care workers (HCW) colonisation. An originality of the model is that it
specifically formalizes the patient-HCW transmission. Here, HCWs are classified either as
non-hand-carriers or as hand-carriers. In the model, hand hygiene is therefore assumed to
directly impact to directly clear HCW carriage in compliant individuals (eg at a proportion of
50%). Several epidemiological studies have shown that, in the case of S. aureus at least,
proper (nasal) colonization is frequent in HCW. | would expect that, for those HCW properly
carrying the bacteria, efficient hand hygiene may impede transmission to others by clearing
hand carriage, but would not clear colonisation. They would not need to be recolonized
through contact with patients to become again S or R carriers the next day. On the contrary,
for purely transient hand carriers HCWs, | would expect that hand hygiene completely
removes the bacteria from the hand and entire body. In that case, new acquisition from
patient would be necessary for them to become carrier again. Can the authors comment on
that point? In particular, how is HCW'’s duration of carriage handled in the model?

We recognise that both types of carriage have been found among healthcare
workers, at least in the case of MRSA. A review of the literature [4] revealed a wide
array of studies with some finding persistent carriage to be more common, whereas
other studies concluded transient carriage is the most frequent type of carriage
among healthcare workers. The findings of these studies are likely to be setting
dependent and, as concluded by Albrich and Harbarth [4], sensitive to
misclassification bias (e.g. incorrectly defining transient carriage as persistent
carriage), and are, in any case, not informative about the significance of longer-term
staff carriage for hospital transmission dynamics. In this model, we assumed that
persistent carriage by healthcare workers does not play a significant role in
hospital transmission and can be neglected. Clearly, as with other model
assumptions, this is a simplification, and we acknowledge that there are case
reports of outbreaks with a plausible link to long-term staff carriers. However, our
assumption is supported by a prospective carriage study of MRSA in adult and
paediatric ICUs using whole genome sequencing to determine possible
transmission pathways [5]. This study showed frequent patient acquisition events of
MRSA with closely related strains shared between overlapping patients, strongly
suggesting patient-to-patient transmission. In contrast, while MRSA was recovered
from nasal swabs from four healthcare workers, there was only a single patient
MRSA acquisition that could have been plausibly related to known staff carriage
(based on the whole genome sequencing data). Since patients were not mobile,
patient-to-patient transmission events are likely to represent either hand-borne or
air-borne transmission. Studies from the 1960s suggest that the latter plays a
relatively minor role in S. aureus transmission in hospital settings (see, for
example, [6,7]). Since the purpose of our model is to illustrate the potential
differential effects of infection control measures on sensitive and resistant strains
(and not to make strong claims for potential impact of different control measures),
for simplicity we chose to focus on what appears to be the dominant mode of
transmission (at least for S. aureus, other organisms are less well studied) rather
than adding non-essential complexity by accounting for other transmission
pathways. Therefore, following hand hygiene, healthcare worker carriage is cleared
and new contact with contaminated patients is required for healthcare workers to
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become carriers again. Persistent colonization such as the nasal colonization the
reviewer is referring to is not included in this model. Hence no explicit colonization
time for healthcare workers is assumed. We have now added the following sentence
to our methods:

“Persistent carriage of bacteria such as MRSA has been reported among healthcare
workers, though is commonly found to be transient”. Followed by the text already
present: “Therefore, healthcare workers in turn were assumed to become
transiently contaminated through patient contact. Hand hygiene performed by a
contaminated healthcare worker was assumed to clear this contamination”

In addition, we have added the following text to our discussion:

Moreover, for simplicity we chose to focus on what appears to be the dominant
mode of transmission (at least for S. aureus, other organisms are less well studied).
Since hospitalised patients are generally not mobile, patient-to-patient transmission
events represent either hand-borne or air-borne transmission. Studies from the
1960s suggest that the latter plays a relatively minor role in S. aureus transmission
in hospital settings [24,25].”

2. Parameters table. The table needs some clarifications and references. (1) | did not
understand the values of the following rates: tau, gammaR, and gammas: is the rate or the
duration depicted in the last column? It looks more like the reciprocal duration, despite the
unit is given in day-1. (2) | think a % is lacking in the last raw of the table. (3) Can you please
explain the calculation of f23, this is not clear to me. (4) If | understand well, carriage is
assumed to last for 400 days. This is quite long and may have consequences on the
resulting trends obtained in the simulations. Can the authors provide a justification for this
value and carry out some sensitivity analysis on this parameter? (5) Can you provide some
justification about the values of p setto 10

1. We thank the author for spotting this error, the last column should indeed
depict the rates for tau, gammaR and gammasS. We have now changed the
values to reflect the reciprocal duration.

2. The % sign is now added to the last row of table 2
3. See comment 6

4. We belief 400 days of carriage is a plausible value to represent the dynamics
of MRSA. For example, Scanvic et al, CID 2001 found a median duration of
carriage of 8.5 months among patients readmitted to hospital, following an
exponential distribution[8]. This would result in an average duration of: y;, =
(8.5/12)*365*1/log(2) = 373 days.

For other major pathogens this is less well known, but, in the case of for
example C. difficile, likely to be shorter. Our key results however, are not
affected by this; in Van Kleef et al LID 2017[9] we show an example where we
assumed a shorter duration of carriage (200 days) and were able to produce
similar findings and conclusions. We feel that presenting additional
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sensitivity analysis here would make the paper harder to read and potentially
obscure the key message.

However, we have added a reference to our analysis using different
parameter values, including a shorter duration of carriage [9] to the
discussion:

“For example, assumptions about carriage duration, mixing of community
populations, and the degree of bacterial interference between the two strains
can easily be altered (and will not change our main conclusions, as shown in
respectively [20], Figure S3, Figure S4)”Furthermore, we added the reference
of Scanvic et al to table 2.

5. The rational behind the different transmission probabilities of patients and
healthcare workers relates to our assumption explained under comment 1.
We assume that healthcare workers were transiently hand-carriers of
bacterial pathogens, whereas patients were fully colonised. For patients, this
could be e.g. on the skin, wounds or nasal carriage. We translated these
different degrees of carriage in different risks of transmission. We fully agree
with the reviewer that a justified value for p based on scientific evidence
would be important if we were interested in quantifying effects of hand
hygiene interventions specifically. However, we are just using hand hygiene
as a specific example of an intervention that interrupts transmission in the
hospital but not the community for resistant and sensitive strains equally. To
make the latter clearer, we have added the following in bold to our
introduction:

“We explicitly model a hospital hand hygiene intervention as an example of a
non-specific infection control measure and evaluate the impact of this
intervention on the incidence of hospital and community acquisitions of
antibiotic-resistant and antibiotic-sensitive strains.”

3. Bacterial interference. This is not clear whether the authors finally assumed some
competition for colonisation between the strains or not. On the schematic representation of
the model, no “superinfection” is assumed, but this mechanism is described in the Methods
section. If w=0 as indicated in Table2, then full competition is assumed between the strains.
This hypothesis is strong and may have some influence on the resulting trends. My intuition
is that this strong assumption may provide more chance to S strains to spread in hospitals
when R strains are removed by intervention. Could the authors carry out some sensitivity
analysis on the impact of that parameter?

e apologies that we did not make our assumptions regarding bacterial inference
clear in our manuscript. We do assume competition for colonization between
strains. This is specified by the parameters wg and w, (see table 2) which by default
were set to 0 (implying carriage of one strain completely blocks acquisition of
another i.e. complete bacterial interference). In response to this comment we have
now conducted an additional sensitivity analysis where we assume wg,wg = 0.25,
0.5, 0.75 and 1 respectively. The results are presented in Figure S3.
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We find that at lower levels of bacterial interference (i.e. higher w, and wg ), the
incidence of the resistant strain in both the hospital and the community is higher
compared to baseline, whereas the incidence of the sensitive strain is lower in both
settings (Figure S3). This relates to the higher R, of the resistant strain, giving it a
competitive advantage over the sensitive strain, which is further enhanced when
replacement infection is allowed for. At wg,wp = 1, this means the sensitive strain
does not coexist with the resistant at baseline hand hygiene levels of 40%.
However, after implementation of the hand hygiene intervention, the sensitive strain
will emerge even under these conditions. Thus, what is shown is that regardless of
the level of bacterial interference, the overall conclusions remain unchanged:
hospital infection control can have discordant effects on resistant and sensitive
bacteria provided heterogeneity is present in their respective environmental
adaptations.

Just to clarify, while we do consider competition we do not consider superinfection
(i.e. co-infection with both sensitive and resistant strains[10]) and we state this in
the methods section “Individuals could not be co-infected with resistant and
sensitive strains”. Including this would greatly add to the complexity of the model,
reduce readability and, we feel, obscure the key messages.

We have added the following text in bold to the discussion section:

“For example, assumptions about carriage duration and the degree of bacterial interference
between the two strains can easily be altered (and will not change our main
conclusions, Lancet ID paper, Figure S3, Figure S4)”

Moreover, we have added the term ‘replacement infection’ to our methods, which
now reads:

“we allowed for bacterial interference between the two strains so that colonization
with one strain reduced the risk of acquisition of the other strain, i.e. replacement
infection”.

4. Transmission rate. Could you provide more details about beta calculation for the different
strains in the different settings according to R0? Also, in the section “Importance of the
degree of strain adaptation...”, “when increasing the transmission that occurs in hospital”,
could you provide the corresponding values for beta?Similarly, when investigating the
importance of environmental adaptation, how did you process to vary “the level of
transmission in both settings for each of the two strains, while keeping the overall basic

reproduction number for R and S strains constant...”?

We varied the values of beta_R,, (where n = population 1, population 2, population
3) to give values of RO = 1.5 an beta_Rg to give values of RO = 1.4 keeping all other
parameter values constant and ran the model at equilibrium. If at model equilibrium,
the strain adaptation to each of the respective environments was at the desirable
level, these values were chosen for model parameterisation. Here, the degree of
strain adaptation was defined as the fraction of new acquisitions of strain i
occurring in setting n (hospital or community) respectively on each day t.
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The corresponding values for all beta_i, used to produce figure 4 are available at
https://github.com/esthervankleef/Two_strain_model_published. We have added
the following text in bold to the method section:

‘Increasing adaptation of the resistant strain to the hospital environment (i.e. increasing the
proportion of resistant transmission that occurs in hospital by changing the values of the
transmission parameters (beta_i,) while keeping the basic reproduction number and all
other parameters constant),

Also, we added the following text to the legend of Figure 4.

“For corresponding transmission parameter values see
https://github.com/esthervankleef/Two_strain_model_published”

5. Model equations. Frequency dependent hypothesis is assumed in the ward which looks
realistic. However, in some equations, this rule does not apply; it would require some
explanation. In equations describing the hcwS and hcwR derivatives, the denominator of the
transmission term is for example Nhcw.

The reason why the denominator for hcwg and hcwg derivatives is Ny, ., follows

from the structure of our model, which assumes healthcare workers are the
pathogen vectors. Similar to Cooper et al (1999)[11] we assume that in hospital, all
transmission events between patients is caused by a contact from a transiently
colonized HCW. Similarly, HCW acquire transient hand-contamination only by
touching colonized patients.

In our model, beta_R, = the probability that an uncolonized patient becomes
colonized on contact with a colonized healthcare worker, whereas p*beta_R, = the

probability that an uncolonized healthcare worker becomes colonized with a
resistant strain on contact with a colonized patient (where rho = ratio of probability
of patient-to-HCW transmission vs HCW-to-patient transmission).

Hence, the rates at which contacts are made which can potentially result in
colonization with a resistant strain is beta_R,*U, for patients (i.e. a function of

beta_R, and the number of uncolonized patients U,), and p*beta_R;*R, for
healthcare workers (i.e. a function of p, beta_R, and the number of colonized
patients R,). Only a fraction of these contacts will result in transmission. For

patients this is the fraction of contacts which are with colonized healthcare workers
(hcw-g/N,..\,). For healthcare workers, it is those contacts in which the healthcare

worker is uncolonized that will result in transmission (N,.,, — hcwg _hcwg)/ Ny .,.)-

As a result, the rate of colonization for patients and healthcare workers is
beta_R1*U,*hcwg/N,.,, and p*beta_R;*R;(N},, — hcwg — hcw,)/N,,.,, respectively.

In the community we do assume direct transmission between individuals, hence
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here the population size of the susceptible hosts is used as a denominator while
following the assumption of frequency dependent transmission of Otto and Day[12],
further explained under comment 6.

Of note: the parameter p was left out of equations 10 and 11, and has now been
added.

6. Community transmission. The expressions of the force of infections for patients are not
totally clear to me either. In particular, | don’t understand the term beta_ R3xR3xf23/N2.
Given the definition of 123, this expression is actually equivalent to beta_ R3xR3/N3, which
makes more sense to me. In general, it would be good if more details were provided to
explain the model community transmission. It was not clear to me what the authors meant
by “the model allowed for the possibility of assortative mixing within population 2 and 3”.
Could you provide a mixing matrix to make clear the transmission between the 3 (or 4)
populations? Similarly, expressions of lambda_RS3, lambda_S1, lambda_S2 and
lambda_S3 would need some more explanation. Why is it divided respectively by N3, N2
and N3?

This is a good point. We recognize that our baseline assumptions regarding the
mixing of our population need further clarification. In our description of the force of
infection, we followed the definition of Otto and Day, who decompose the frequency
dependent incidence rate, i.e. the rate at which new infections occur, in three
components [12]:

The rate of contact with other individuals in the population (c¢) which are of an
appropriate type for transmission to be possible if one of the hosts is infectious

The probability that the contact is indeed with a susceptible host U (p, assumed to
be U(t)/N(t))

The probability that a contact between an infectious and susceptible host leads to
successful transmission (v)

In the case of frequency dependent transmission, ¢ is assumed constant, hence the
effective contact rate or transmission coefficient beta = cv. Assuming frequency
dependent transmission, and the definition of Otto and Day, the mixing matrix for
the community population should be as follows, where the beta terms are
equivalent to the effective contact rates, and e.g. f,5/beta_R; reflects that the
effective contact rate between individuals of population 2 and population 3 is a
fraction of the effective contact rate between individuals in population 3.

Equation 1

Multiplying these by the number of infected individuals in each population and the
probability p; that the contact is indeed with a susceptible host (Ug; /N;) would
result in the following incidence rates:

Equation 2
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As our lambdas represent the force of infections, i.e. the rate at which a susceptible
individual becomes infected, we replaced p; of the incidence rates with the
probability that the contact is with one specific susceptible host, i.e. and , resulting
in:

Equation 3

The same logic applies to lambda_S, and lambda_S;

We realise our description of the f,5 and f3, in table 2 was not entirely correct and
would be better described as given below. Moreover, the reference of our frequency
dependent transmission has been added to the method section, which now reads:

“We assumed frequency-dependent transmission [10]. The model allowed for the
possibility of assortative mixing within populations 2 and 3, where the effective
contact rate of strain i (beta_in) between individuals within a population is a fraction
of the effective contact rate between individuals across populations: “

Equation 4
We have changed the description of f,; and f5, in Table 2 to:

f23 = The ratio of the effective contact rate in N2 from someone in N3 to the
effective contact rate in N3 from someone in N3 (where 1 implies that on contact,
someone in N3 is causing new infections in N3 and N2 at the same rate. Of note, as
N3 > N2, 23 = N2/N3 assumes the same per capita infection rate, i.e. homogenous
mixing.

f32 = The ratio of the effective contact rate in N3 from someone in N2 to the
successful contact rate in N2 from someone in N2 (where 1 implies that on contact,
someone in N2 is causing new infections in N2 and N3 at the same rate. Of note, as
N3 > N2, 32 = N3/N2 assumes the same per capita infection rate, i.e. homogenous
mixing.

With regards to our assortative mixing assumption, as described in the above
definitions, by defining 23 = N2/N3 and 32 = 1, we assume that individuals in N3
are equally likely to infect an individual in N2 as they are to infect a given individual
in N3, whereas setting 32 to 1 implies a higher per capita rate of infection in N2,
given N2 < N3, thus individuals in N2 are more likely to infect an individual in N2
than an individual in N3. Baseline values of these parameters were chosen to
reflect perceived heterogeneities in contacts (e.g. assuming a scenario of LTCFs
(N2) vs the general population (N3) where those in N2 will be exposed preferentially
to those in N2, but, considering some in N3 will be carers to N2, N3 will mix equally
with N2 and N3. These assumptions are not critical to our results, as shown by a
sensitivity analysis, where we modelled the following additional scenarios:

Fully homogenous mixing (f23 = N2/N3, f32 = N3/N2)
Fully assortative mixing (f23= f32=0)
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The results of this analysis are presented in Figure S4. We have added the following
text to the discussion section:

“For example, assumptions about carriage duration and the degree of bacterial interference
between the two strains can easily be altered (and will not change our main
conclusions, Lancet ID paper, Figure S3, Figure S4)”

7. Annual incidence rate ratio. Could you provide an equation for the calculation of IRR as a
function of the measured outputs from the results?

The annual incidence ratio represents the ratio of the number of new infection in the
year pre-intervention (T,) to the number of new cases in the first year
post-intervention (T-;). As mentioned in the method section, Y;, represents the
actual number of observed infections of strain i in population n, which is
proportional to the cumulative number of acquisitions in each population in these
two time periods.

We have now changed the methods section ‘measuring the impact of hospital
infection control’ to the following:

“Annual incidence rate ratios (IRR) were calculated using simulated data for one
year pre- and post-intervention (T, and T, respectively) after first running the model
to equilibrium. To aid comparison with reported infection data, we assumed the
number of new infections (Y;,) with and without a hospital link was proportional to
the cumulative number of acquisitions (1;,) in the hospital and community,
respectively, in each of the two time periods:

Equation 5

Confidence intervals were calculated using 1000 Monte Carlo replicates on the
assumption that the actual number of observed infections of each strain (Y;,)
followed a negative binomial distribution where Var(Y;,) = u+ u2/k, with k (the
dispersion parameter) = /(- 1), with =5, and assuming 1 in 10 carriage episodes
acquired in hospital resulted in a reported infection. This was 1 in 50 for
community-acquired episodes. Hence we allowed for differences in reporting rates
in both settings as well as heterogeneity in case-mix affecting the likelihood of
developing an infection. Then the IRR;, corresponded to the ratio of the number of
new observed infections of strain i in population n in the year pre-intervention to the
number in the first year post-intervention:”

Equation 6

8. Interpretation of results about the dynamic after hospital infection control. To make the
interpretation of Figure 3 more convincing, it would be important to disentangle what
processes come from the community- to-community transmission, the hospital-
to-community (ie community importations) transmission, the hospital- to-hospital
transmission and the community-to-hospital (ie hospital importations) transmission. Could
the authors present, in addition to Figure3, the incident cases coming from these different
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processes?

We fully agree that it is helpful to show where the transmission events are actually
occurring and this is what we are depicting in the top row of figure 3 - i.e.
community-to-community transmission (dashed line) and hospital-to-hospital
transmission (dotted line). The model assumes that community-to-hospital and
hospital-to-community transmission events do not occur (we do not depict
importation events of colonized patients to the hospital as these simply scale with
community prevalence and would provide no new information). We apologies that
the caption to figure 3 did not make this clear and we have now revised it:

“Trends in the incidence of new acquisitions (symptomatic and asymptomatic) and carriage
prevalence for resistant and sensitive bacterial strains following a 10% stepwise
improvement in hand hygiene compliance after one year from a baseline of 40%. Incidence
trends are depicted as transmission events following from
community-to-community transmission (dashed line) and hospital-to-hospital
transmission (dotted line). As prevalence in the hospital represents only a small fraction
of the overall prevalence (in hospital and community populations combined), the latter is
almost identical to the community prevalence for both the resistant and sensitive bacterial
strains.”

9. The modelled hospital population is 1000 patients and 100 HCWs. The proposed model is
deterministic. How would stochasticity impact the results?

See the response to comment 1 reviewer #1

Minor comments
1. Does RO define the number of secondary cases of infection or colonisation? As
transmission occurs through colonization my choice would go for that one but in the main
text and Table 2 legend, the authors mention “infection”. In addition, as RO is actually
defined in a setting with already 40% hand hygiene at baseline, this is actually not the strict
basic reproductive number of the bacteria. | therefore suggest naming it reproductive
number (R) which seems more correct to me.

In our model and the manuscript through out, RO is considered the expected
number of secondary cases in the hospital and community resulting from one
colonised individual in a fully uncolonized and susceptible population at baseline
hand hygiene rates of 40%, accounting for the possibility of readmissions while still
colonized. The text in Table 2 has now been altered to reflect colonisation instead
of infection. Moreover, we have altered RO has now been changed to R, (the net

reproduction number) across the manuscript.

2. Table1. hCWR and hCWS notations do not match with notations in the model depicted in
fig1. Could the authors check they use the same notations?

Many thanks for this sharp observation. We have now updated figure 1, which now
matches our notation in Table 1.
References
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Discuss this Article

Reader Comment 16 May 2017
David Eyre, University of Oxford, UK

This article comments directly on the findings of reference 4, "Effects of control interventions on
Clostridium difficile infection in England: an observational study" (available at
http://dx.doi.org/10.1016/S1473-3099(16)30514-X). As the authors of reference 4, we have responded to
the content of this article and an associated letter to The Lancet Infectious Diseases (
http://dx.doi.org/10.1016/51473-3099(17)30186-X). Our response published by The Lancet Infectious
Diseases can be found at http://dx.doi.org/10.1016/S1473-3099(17)30185-8.
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Reader Comment 25 Mar 2017
Tim Lawes,

Dear Authors,

| read your article with interest. The outcomes of your modelling study are congruent with our empirical
observations of the relative effects of changing antibiotic use and infection prevention and control
measures on MRSA molecular epidemiology in an area of NE Scotland [Lawes et al Turning the tide or
riding the waves? Impacts of antibiotic stewardship and infection control on MRSA strain dynamics in a
Scottish region over 16 years: non-linear time series analysis. BMJ Open 5

(3), DOI:10.1136/bmjopen-2014-006596].

From multivariable non-linear time-series models applied to a large hospital population we established that
(i) reductions in bed-occupancy (ii) shorter average length-of-stay, and (iii) hand-hygiene contributed to
declines in hospital-epidemic strains (in particular CC22, CC30) but not in CC5/Other strains which
appeared to spread from community to the hospital and show much less multi-drug resistance. In addition,
we found that levels of MRSA admission screening and importation pressure above which changes in
hospital prevalence density were seen (thresholds) were much higher for CC5/Other strains than CC22
and CC30. This may have important implications for admission screening policies which are now targeted
(based upon risk-factors such as prior hospitalisation) since they may miss MRSA colonisation by
community strains in patients without typical risk-factors.

Overall we concluded that even those infection control measures expected to have general effects can
have strain-specific impacts due to differences in the temporal and spatial distribution of clonal complexes.
Moreover it is likely that our interventions shape molecular epidemiology in populations. An important
implication for policy is that need to proceed with caution when translating results from interventions in one
region or time-period - infection prevention and control colleagues will need to continually adjust to
changing epidemiology if the successes in control of MRSA and C.difficile are to continue

Yours sincerely,

Dr. Tim Lawes

Royal Aberdeen Children's Hospital
Aberdeen

Scotland, UK

Competing Interests: | have no competing interests to declare.
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