Detecting gametocytes: how sensitive is sensible?

Lisette Meerstein-Kessel¹, Teun Bousema^{1, 2}, Will Stone^{1, 2}

¹ Radboud Institute for Health Sciences, Radboud university medical center, Nijmegen, the

Netherlands

² Department of Immunology and Infection, London School of Hygiene and Tropical Medicine,

Keppel Street, London, United Kingdom

Improving our understanding of the human infectious reservoir of malaria parasites could expedite

elimination of the disease. The presence of infectious *Plasmodium* gametocytes is requisite for

onward transmission. The detectability of gametocytes depends on their density, the volume of

blood examined, and methodology used. In a recent report, Essuman et al. identify a previously

uncharacterised Plasmodium falciparum gene transcript, here named Pfg17 (PF3D7_1319800), for

sensitive gametocyte detection. (1). In line with previous reports, Essuman and colleagues show that

Pfg17 gene expression is strongly upregulated in gametocytes (2). On the basis of this transcription

profile, the authors present a novel assay for gametocyte detection amplifying Pfg17 mRNA with a

lower limit of detection than the most widely used assay amplifying Pfs25 (PF3D7_1031000) mRNA.

The strength of the study is the microarray analysis, which provides a short list of mRNA transcripts

that are highly upregulated or specific to gametocytes. Though the Pfg17 assay requires further

validation using standard qRT-PCR assays, in the form of biological and technical repeats with serial

dilutions of purified gametocytes, and asexual stages to demonstrate its stage specificity, the assay

may be a useful addition to the arsenal of tools for gametocyte detection.

The new assay's ability to estimate gametocyte density was not assessed in the current manuscript

and we believe that is crucial for the assay to contribute to our understanding of P. falciparum

transmission. As the authors point out, Pfs25's specificity to females limits its usefulness for

gametocyte quantification when used in isolation. Male specific gene transcripts (PfMGET

© The Author(s) 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

[PF3D7_1469900], Pf230p [PF3D7_0208900]) enable the measurement of gametocyte sex ratio,

which may be an important effector of gametocyte infectivity, and particularly informative during

trials of gametocytocidal drugs that may have a differential effect on male and female gametocytes

(3). Because Pfg17 appears more equally transcribed by male and female gametocytes (4) the assay

may provide a uniquely accurate molecular estimate of total gametocyte density.

Recent studies indicate that gametocyte commitment is a stochastic process so, in all probability,

some gametocytes form in the first rounds of erythrocytic schizogony (5). With progressive

improvements in sensitivity, we may approach a stage where molecular tools simply bring

gametocyte prevalence in line with total parasite prevalence. Sensitive detection of all malaria

infections (without a specific focus on gametocytes) is, thus, argued to be of most relevance for

public health intervention planning and evaluation (6). To better predict the infectious reservoir for

malaria, accurate gametocyte quantification is more informative than sensitive gametocyte

detection. For a mosquito to become infected after feeding, it must ingest a minimum of one

gametocyte of each sex. With blood meal sizes anywhere between 2-8µL, both the Pfs25 and Pfg17

assays are capable of detecting gametocytes at concentrations below these minimal thresholds for

infectivity (≥0.25 gametocytes/µL). In line with these theoretical limits, there is a clear decrease in

mosquito infection rate at densities less than $1/\mu$ L (7). Our own studies show similar patterns; many

individuals who are positive in Pfs25 based assays are not infectious to mosquitoes in membrane

feeding assays, while the opposite is not observed.

A Pfg17 assay may form a highly desirable tool for characterizing the human infectious reservoir,

provided it can robustly quantify male and female gametocytes across the entire range of densities

that contribute to transmission. Importantly, future investigations should also examine the

association of the measured gametocyte densities with the likelihood of mosquito infections.

Downloaded from https://academic.oup.com/jid/advance-article-abstract/doi/10.1093/infdis/jix672/4772559 by London School of Hygiene & Tropical Medicine user on 10 January 2018

1) The authors are supported by a VIDI fellowship from the Netherlands Organization for Scientific Research (NWO; project number 016.158.306), and by the Bill and Melinda Gates Foundation

(AFIRM OPP1034789).

2)The authors declare no conflicts of interest.

1. Essuman E, Grabias B, Verma N, Chorazeczewski JK, Tripathi AK, Mlambo G, et al. A Novel

Gametocyte Biomarker for Superior Molecular Detection of the Plasmodium falciparum Infectious

Reservoirs. J Infect Dis. 2017 Aug 24. doi: 10.1093/infdis/jix442...

2. López-Barragán MJ, Lemieux J, Quiñones M, Williamson KC, Molina-Cruz A, Cui K, et al.

Directional gene expression and antisense transcripts in sexual and asexual stages of Plasmodium

falciparum. BMC Genomics. 2011;12(1):587.

3. Stone W, Sawa P, Lanke K, Rijpma S, Oriango R, Nyaurah M, et al. A Molecular Assay to

Quantify Male and Female Plasmodium falciparum Gametocytes: Results From 2 Randomized

Controlled Trials Using Primaquine for Gametocyte Clearance. J Infect Dis. 2017;216(4):457-67.

Lasonder E, Rijpma SR, van Schaijk Ben CL, Hoeijmakers Wieteke AM, Kensche PR, Gresnigt

MS, et al. Integrated transcriptomic and proteomic analyses of P. falciparum gametocytes: molecular

insight into sex-specific processes and translational repression. Nucleic Acids Res. 2016.

5. Kafsack BF, Rovira-Graells N, Clark TG, Bancells C, Crowley VM, Campino SG, et al. A

transcriptional switch underlies commitment to sexual development in malaria parasites. Nature.

2014;507(7491):248-52.

6. Bousema T, Okell L, Felger I, Drakeley C. Asymptomatic malaria infections: detectability,

transmissibility and public health relevance. Nat Rev Micro. 2014;12(12):833-40.

Downloaded from https://academic.oup.com/jid/advance-article-abstract/doi/10.1093/infdis/jix672/4772559 by London School of Hygiene & Tropical Medicine user on 10 January 2018

7. Churcher TS, Bousema T, Walker M, Drakeley C, Schneider P, Ouédraogo AL, et al. Predicting mosquito infection from Plasmodium falciparum gametocyte density and estimating the reservoir of infection. eLife. 2013;2.

