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Abstract. The emergence of Clostridium difficile as a significant human diarrheal pathogen 46	  

is associated with the production of highly transmissible spores and the acquisition of 47	  

antimicrobial resistance genes (ARGs) and virulence factors. Unlike the hospital associated 48	  

C. difficile RT027 lineage, the community associated C. difficile RT078 lineage is isolated 49	  

from both humans and farm animals; however, the geographical population structure and 50	  

transmission networks remain unknown. Here we applied whole genome phylogenetic 51	  

analysis of 248 C. difficile RT078 strains from 22 countries. Our results demonstrate limited 52	  

geographical clustering for C. difficile RT078 and extensive co-clustering of human and 53	  

animal strains, thereby revealing a highly-linked, inter-continental transmission network 54	  

between humans and animals.  Comparative whole-genome analysis reveals indistinguishable 55	  

accessory genomes between human and animal strains, and a variety of antimicrobial 56	  

resistance genes in the pangenome of C. difficile RT078. Thus, bi-directional spread of C. 57	  

difficile RT078 between farm animals and humans may represent an unappreciated route 58	  

disseminating antimicrobial resistance genes between humans and animals. These results 59	  

highlight the importance of the “One Health” concept to monitor infectious disease 60	  

emergence and the dissemination of antimicrobial resistance genes. 61	  
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Introduction: Over the past decade, Clostridium difficile has emerged as the primary cause 74	  

of infectious antibiotic associated diarrhea in hospitalized patients (1). Unlike other common 75	  

healthcare-associated pathogens, C. difficile produces resistant spores that facilitate host-to-76	  

host transmission and enable long term survival and dispersal in the healthcare system and 77	  

the wider environment (2). The emergence of epidemic C. difficile ribotype (RT) 027 (NAP1 78	  

/ ST-1), responsible for many large-scale hospital outbreaks worldwide (3, 4), has been 79	  

linked to environmental spore contamination and the acquisition of fluoroquinolone 80	  

resistance (5). Enhanced research focus on C. difficile in the aftermath of the C. difficile 81	  

RT027 outbreaks has revealed other evolutionarily distinct C. difficile lineages, in particular 82	  

C. difficile RT078 (NAP07-08/ST-11), that are now emerging as significant human pathogens 83	  

for unknown reasons (6).  84	  

The “One Health” concept, connecting the health of humans to the health of animals 85	  

and their shared environments, represents a relevant framework for understanding the 86	  

emergence and spread of pathogens. C. difficile RT078 is commonly isolated from both 87	  

humans and farm animals (7) and increasingly recognized as a causative agent of both 88	  

healthcare and community-associated C. difficile infection (CDI) (8). This lineage typically 89	  

affects a younger population (9) and results in higher mortality than C. difficile RT027 (10). 90	  

Standard genotyping tools have highlighted genetic similarities between human and animal 91	  

C. difficile RT078 (11-13) strains raising the possibility of zoonotic transmission (14). 92	  

Nevertheless, the exact evolutionary and epidemiological relationships between human and 93	  

animal C. difficile RT078 strains remain unknown due to the lack of discriminatory power of 94	  

these typing methods and the clonal nature of C. difficile lineages. Recently, using whole 95	  

genome phylogeny, we reported that asymptomatic farmers and their pigs can be colonized 96	  

with clonal C. difficile RT078 isolates demonstrating evidence for spread between animals 97	  

and humans (15).  98	  
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Results and Discussion: Here we assess the broad genetic diversity of C. difficile RT078, by 99	  

performing whole genome sequence analysis of 247 strains isolated predominantly from 100	  

humans and animals that were collected from 22 countries across North America, Europe, 101	  

Australia and Asia between 1996 and 2012 (https://microreact.org/project/rJs-SYgMe) (Table 102	  

S1). We explored the phylogenetic structure of C. difficile RT078 by generating a core 103	  

genome maximum likelihood phylogeny that included the 247 C. difficile RT078 strains and 104	  

the reference genome of C. difficile M120 (n=248) (Fig. 1). Superimposing the geographic 105	  

origin of strains revealed considerable co-clustering of European (dark green) and North 106	  

American (purple) strains across the phylogeny (Fig. 1). Permutation analysis on randomly 107	  

generated, equalized subsets of European (dark green) and North American (purple) genomes 108	  

confirmed co-clustering of geographically diverse strains (Fig. S1). In addition, the absence 109	  

of a single clade of C. difficile RT078 isolated in Australia (light green) is also suggestive of 110	  

sporadic transmission between Europe and Australia (Fig. 1). Overall, the observed lack of 111	  

geographic clustering is characteristic of repeated, international transmission. 112	  

We next examined the phylogenetic distribution of strains isolated from humans 113	  

(n=184) and animals (n=59) to understand the potential for zoonotic spread. This analysis 114	  

identified examples of human to human and animal to animal spread and strong evidence of 115	  

bi-directional spread of C. difficile RT078 between animals and humans across the 116	  

phylogeny. These observations are supported by the extensive co-clustering of human (blue 117	  

lines) and animal strains (red lines) (Fig. 1). Focused analysis of closely related C. difficile 118	  

RT078 strains identified 6 clusters containing both animal and human isolates with identical 119	  

core genome and highly similar whole genomes (ANI ≥ 99.73%; Table 1). Surprisingly, 120	  

Cluster 1 consists of an animal strain from Canada and human strains from UK indicating 121	  

that zoonotic spread of C. difficile is not confined to a local population of humans and 122	  
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animals as found previously (15). The existence of highly related human and animal isolates 123	  

suggests that C. difficile RT078 has frequently spread between animals and humans. 124	  

Next, a detailed analysis of the accessory genome, including mobile genetic 125	  

elements, was performed to further explore the genomic similarities between human and 126	  

animal strains. Of the 6,239 unique genes present across our genome collection, 3,368 genes 127	  

(54.0%) were assigned to the core genome leaving 2,871 genes (46.0%) present in the 128	  

accessory genome (Fig. S2). Considering only the human and animal isolates, 2,859 129	  

accessory genes were identified. The vast majority of human and animal specific accessory 130	  

genes were found at low frequencies in the population (Fig. 2A). We observed no statistically 131	  

significant difference in the number of strains carrying accessory genes exclusive to either the 132	  

human or the animal population (χ2 p-value of 0.39). Considering only those accessory genes 133	  

present in at least 10% of isolates (n= 465), 461 (99.1%) were identified in both human and 134	  

animal isolates. The absence of accessory genes unique to either group demonstrates that 135	  

either C. difficile has a stable accessory genome, which is host independent or provides 136	  

further support for the frequent transmission of C. difficile between host populations. 137	  

Given the high percentage of mobile elements including antimicrobial resistance 138	  

genes harbored by C. difficile genomes (5, 6), we next sought to analyze distribution of 139	  

different ARGs in the pangenome of human and animal strains. In total, 22 different putative 140	  

ARGs are present in the 243 C. difficile RT078 genomes (Fig. 2B). The most common ARG 141	  

was the chromosome encoded cdeA, a well-known multidrug transporter that was detected in 142	  

all strains; however, other common genes included those encoding resistance to 143	  

aminoglycosides, tetracycline and erythromycin (Fig. 2B). Importantly, no specific ARGs 144	  

were statistically enriched in the animal isolates; however, the ermB (erythromycin resistance 145	  

methylase) gene was identified in the human isolates (Fisher’s-exact test, q value = 1.25E-146	  

07). These results provide further support that a clonal C. difficile RT078 population 147	  
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containing a broad array of ARGs is spreading between humans and farm animals except 148	  

ermB, which has signs of unknown selective pressure in the human isolates. 149	  

C. difficile is an ancient, genetically diverse species that has only emerged as a 150	  

significant human pathogen over the past four decades. It remains to be determined why 151	  

evolutionary distinct lineages such as C. difficile RT027 and RT078 (6) are simultaneously 152	  

emerging to cause disease in the human population. Previously we have demonstrated that C. 153	  

difficile RT027 acquired fluoroquinolone resistance during the 1990s in North America and 154	  

rapidly spread through the global healthcare system (5). Here we demonstrated that C. 155	  

difficile RT078 has spread multiple times between continents, in particular North America 156	  

and Europe, highlighting that C. difficile emergence and spread is a global issue. In contrast 157	  

to the distinct animal- and human-associated populations observed for the multidrug-resistant 158	  

enteric pathogen Salmonella Typhimurium DT104 (16), we demonstrated that C. difficile 159	  

RT078 is a clonal population moving frequently between livestock and human hosts with no 160	  

geographical barriers. Although the original reservoir remains unknown, the reciprocal 161	  

transmission between humans and farm animals emphasizes the importance of a 162	  

comprehensive One Health perspective in managing and controlling C. difficile RT078. 163	  

 164	  
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Materials and Methods 173	  

Collection of C. difficile strains 174	  

C. difficile laboratories worldwide were asked to send a diverse representation of their 175	  

C. difficile 078 collections to the Lawley laboratory hosted at the Wellcome Trust Sanger 176	  

Institute. Sample shipping was coordinated by the Lawley laboratory. After receiving all 177	  

shipped samples the DNA extraction was performed batch wise by one person using the same 178	  

protocol and reagents to minimize bias. Phenol-Chloroform was the preferred method for 179	  

extraction since it provides high DNA yield and intact chromosomal DNA.	  The genomes of 180	  

182 strains designated as C. difficile RT078 (/NAP07-08/ST-11), by PCR ribotyping (17) 181	  

were sequenced and combined with our previous collection of 65 strains of C. difficile RT078 182	  

(12) making a total of 247 strains analyzed in this study. These 247 strains were collected 183	  

between 1996 and 2012 and are comprised of representative strains from 4 continents (North 184	  

America, Europe, Australia and Asia). Of these strains, 183 were derived from humans, 59 185	  

from animals (pigs, cattle, horses and poultry), 4 foods and 1 environmental sample. Details 186	  

of all sequenced strains are listed in Table S1, including the European Nucleotide Archive 187	  

(ENA) sample accession numbers. Metadata of the C. difficile RT078 strains has been made 188	  

freely publicly available through Microreact (18) (https://microreact.org/project/rJs-SYgMe). 189	  

Bacterial culture and genomic DNA preparation 190	  

C. difficile strains were cultured on blood agar plates (bioMérieux, the Netherlands) 191	  

for 48 hours, inoculated into liquid medium (brain–heart infusion (BHI) broth supplemented 192	  

with yeast extract and cysteine) and grown over night (ca  16 hours) anaerobically at 37  °C. 193	  

Cells were pelleted, washed with phosphate-buffered saline (PBS), and genomic DNA 194	  

preparation was performed using a phenol–chloroform extraction as previously described 195	  

(19). 196	  

DNA sequencing, assembly and annotation 197	  
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Paired-end multiplex libraries were prepared and sequenced using Illumina Hi-Seq 198	  

platform with fragment size of 200-300bp and a read length of 100bp, as previously 199	  

described (20, 21). An in-house pipeline developed at the Wellcome Trust Sanger Institute 200	  

(https://github.com/sanger-pathogens/Bio-AutomatedAnnotation) was used for bacterial 201	  

assembly and annotation. It consisted of de novo assembly for each sequenced genome using 202	  

Velvet v. 1.2.10 (22), SSPACE v. 2.0 (23) and GapFiller v 1.1 (24) followed by annotation 203	  

using Prokka v. 1.5-1 (25).  204	  

Construction and analysis of the Pan genome 205	  

We used the pan genome pipeline Roary (26), to identify the C. difficile RT078 pan 206	  

genome. Roary takes annotated draft assemblies in GFF3 format which were produced by 207	  

Prokka (25). Predicated coding regions were extracted from the input and converted to 208	  

protein sequences. Partial sequences (>5% nucleotides unknown or sequence length less than 209	  

120 nucleotides) were filtered and the remaining sequences were iteratively clustered with 210	  

CD-HIT beginning with a sequence identity of 100% and matching length of 100% down to a 211	  

default sequence identity of 98%. One final clustering step was performed again with CD-hit, 212	  

with a sequence identity of 100% leaving one representative sequence for each cluster in a 213	  

protein FASTA file. This was followed by a comprehensive, pairwise comparison with 214	  

BLASTP on the reduced sequences with a default sequence identity percentage of 95% and 215	  

matching length of 100%. The pan genome embodies the core genome, defined as those 216	  

genes present in at least 90% of the genomes, and the accessory genome, defined as those 217	  

genes present in between 10% and 90% of the genomes. Rare variant genes, found in less 218	  

than 10% of genomes, were discarded. 219	  

Core genes (n=3,368) alignment, an output from Roary, was used to construct 220	  

phylogenetic structure of 248 C. difficile strains. Single nucleotide polymorphisms (SNPs) 221	  

were extracted from the core gene alignment using SNP-sites (27). Maximum likelihood tree 222	  
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based on SNPs alignment was constructed using FastTree with –gamma –gtr settings (28) and 223	  

tree was visualized with iTOL (29).  224	  

 225	  

Average Nucleotide Identity (ANI) analysis 226	  

Using Roary analysis, C. difficile RT078 strains isolated from humans and animals 227	  

with identical core genome were extracted using an in-house R script. ANI was calculated by 228	  

performing pairwise comparison of genome assemblies of these C. difficile RT078 strains 229	  

using MUMmer (30). 230	  

Identification of antimicrobial resistance gene sequence 231	  

Antimicrobial resistance genes were identified within the C difficile RT078 genomes through 232	  

comparison to the CARD database with the ARIBA software (https://github.com/sanger-233	  

pathogens/ariba). 234	  

 235	  
 236	  

 237	  

 238	  

 239	  

 240	  

 241	  

 242	  
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 246	  

 247	  

 248	  
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Figures	  389	  
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Figure 1. Phylogeography of human and animal Clostridium difficile RT078. Maximum 391	  

likelihood, midpoint rooted phylogenetic tree of 248 genomes, representing strains isolated from 392	  

human (dark blue), animal (red), food (orange) and environment (light blue) and collected from 393	  

Europe (dark green), North America (purple), Asia (pink) and Australia (light green). Branches with 394	  

bootstrap confidence values above 0.7 are shown as solid lines. The phylogeny demonstrates clear 395	  

mixing of European and North American strain indicating multiple transmission events between 396	  

continents and mixing of human and animal strains indicating multiple transmissions events between 397	  

these hosts. Closely related clusters (see Table 1) containing both human and animal isolates are 398	  

labeled 1 – 6 and highlighted in yellow. 399	  
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Figure 2. Indistinguishable accessory genome of C. difficile RT078 harbours a variety of 409	  

antimicrobial resistance genes. 410	  

A. The accessory genes (n=2,859) categorized according to host origin. The number of accessory 411	  

genes (x-axis) only found in human genomes (dark blue), only found in animal genomes (red) or 412	  

found in both human and animal genomes (green) is plotted against the number of genomes in which 413	  

these genes are present (y-axis). 414	  

B. The frequency of predicted antimicrobial resistances genes (ARGs) within the 243 C. difficile 415	  

RT078 strains. Human (dark blue) and animal (red) isolation sources are shown by color. 416	  
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Table 1. Table of 6 highly similar C. difficile RT078 clusters identified as identical through core 431	  

genome analysis, where isolates from both human and animal are present. Average Nucleotide 432	  

Identity (ANI) for human isolate compared to the animal isolate is also shown. 433	  

 434	  

Cluster ENA ID Year Continent Country Host ANI (%) 

1 ERR171209 2004 North America Canada Animal - 

 ERR171230 2010 Europe UK Human 99.93 

 ERR256911 2011 Europe UK Human 99.91 

 ERR171303 2008 Europe UK Human 99.90 

 ERR256986 2012 Europe UK Human 99.84 

 ERR256910 2011 Europe UK Human 99.83 

 ERR1910469 
 

1997 Europe UK Human 99.82 

 ERR1910468 
 

1997 Europe UK Human 99.80 

 ERR256981 2008 Europe UK Human 99.75 

2 ERR257071 2011 Europe Netherlands Animal - 

 ERR257072 2011 Europe Netherlands Human 99.94 

3 ERR257053 2011 Europe Netherlands Animal - 

 ERR257057 2011 Europe Netherlands Human 99.77 

4 ERR257067 2011 Europe Netherlands Animal - 

 ERR171352 2011 Europe Netherlands Human 99.97 

 ERR257052 2011 Europe Netherlands Human 99.91 

5 ERR257046 2011 Europe Netherlands Animal - 

 ERR257061 2011 Europe Netherlands Human 99.82 

6 ERR257065 2011 Europe Netherlands Animal - 

 ERR257044 2011 Europe Netherlands Human 99.80 

 ERR257050 2011 Europe Netherlands Human 99.73 

 435	  
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