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Abstract

Modulation of host immunity in invasive fungal infection is an appealing but as yet mostly elusive 

treatment strategy. Animal studies in invasive candidiasis and aspergillosis have demonstrated 

beneficial effects of colony stimulating factors, interferon-gamma and monoclonal antibodies. 

More recent studies transfusing leukocytes pre-loaded with lipophilic anti-fungal drugs, or 

modulated T-cells, along with novel vaccination strategies show great promise. The translation of 

immune therapies into clinical studies has been limited to date but this is changing and the results 

of new Candida vaccine trials are eagerly awaited. Immune modulation in HIV-associated mycoses 

remains complicated by the risk of immune reconstitution inflammatory syndrome and although 

exogenous interferon-gamma therapy may be beneficial in cryptococcal meningitis, early initiation 

of anti-retroviral therapy leads to increased mortality. Further study is required to better target 

protective immune responses.

INTRODUCTION

Invasive fungal infections (IFI) are an increasing global health problem, resulting in 

significant morbidity and mortality among individuals with impaired immunity [1–3]. 

Despite recent advances in the care of patients with IFI, conventional therapeutic options 
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remain limited, and outcomes poor. A potential strategy to improve this is to reverse 

underlying immune deficits, or modify and enhance host immune responses using 

immunomodulatory treatments. However, immune responses against fungal pathogens are 

diverse, and detailed understanding of the underlying immunology is essential to enable 

effective interventions. Here we review recent advances in immunomodulatory therapies for 

treatment and prevention of invasive fungal infections. A summary of the main findings is 

given in Table 1.

REMOVAL OR REVERSAL OF UNDERLYING IMMUNE SUPPRESSION

Clinical practice guidelines strongly recommend reduction or elimination of immune 

suppression in patients with invasive aspergillosis (IA) and disseminated candidiasis [4,5]. 

These recommendations are based on observational data and an understanding of the 

epidemiology and immunopathogenesis of invasive fungal disease [6]. However, in some 

patients with fungal infection this strategy may not be feasible and may also result in 

paradoxical clinical worsening. The best example of this is HIV-associated cryptococcal 

meningitis immune reconstitution inflammatory syndrome (CM-IRIS), where patients 

develop worsening meningitis following initiation of anti-retroviral therapy (ART) [7]. The 

main predisposing factor for CM-IRIS is a lack of cerebrospinal fluid (CSF) inflammation 

and increased fungal burden prior to ART initiation [8,9]. Following ART initiation, excess 

CSF antigen triggers chemokine-mediated cell trafficking, macrophage activation, and 

marked inflammation [10,11]. After two randomised controlled trials demonstrated 

increased mortality with early ART [12,13], treatment guidelines now recommend delaying 

initiation of ART until at least four weeks of antifungal treatment have been completed to 

minimise the risk of CM-IRIS [14]. IRIS is also reported among individuals with HIV 

associated Pneumocystis jirovecii, Histoplasma capsulatum, and Taralomyces marneffei 
infections[15]. Similar clinical deteriorations have also been observed in solid organ 

transplant recipients with cryptococcal meningitis who undergo rapid reductions in immune 

suppressive medications [16], and in patients with chronic disseminated candidiasis 

following neutrophil recovery [17]. Given the problems with infection following 

haematopoietic stem cell transplantation (HSCT), there are now efforts to explore novel 

conditioning strategies using haematopoetic cell-specific immunotoxins that avoid such 

profound immune suppression [18].

CYTOKINE THERAPY

A variety of pro-inflammatory cytokines have been studied to determine whether their 

administration may improve host immune response against IFIs. Given the clear association 

between neutropenia and IFIs much of this focus has been on colony stimulating factors. 

The prophylactic use of granulocyte colony stimulating factor (G-CSF) in patients with 

chemotherapy-associated neutropenia is well established and reduces overall incidence of 

infections and febrile neutropenia by almost half [19]. G-CSF stimulates neutrophil 

production, maturation, phagocytic activity and oxidative burst metabolism [20], and 

enhances protection against disseminated Aspergillus and Candida in animal models [21–

23]. In clinical practice, prophylactic G-CSF has not convincingly been shown to reduce the 

incidence of IFIs [24]. However, two small studies demonstrate a potential benefit of G-CSF 
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when used alongside anti-fungal therapy as an adjunctive treatment leading to faster 

resolution of infection compared to antifungal therapy alone [25,26].

Granulocyte-macrophage colony stimulating factor (GM-CSF) is also licenced for treatment 

of chemotherapy-associated neutropenia. It promotes the production, maturation, activation, 

and migration of neutrophils, monocytes, macrophages and lymphocytes [27], and has 

potential advantages over G-CSF due to its wider effects on the immune response [28]. 

Animal and cell culture models suggest GM-CSF is important in the host response against 

Aspergillus and Cryptococcus [29,30], and individuals with anti-GM-CSF auto-antibodies 

have been found to be at increased risk of infection with C. gattii [31]. In patients receiving 

chemotherapy for acute myeloid leukaemia and allogeneic haematological stem cell 

transplantation (HSCT), prophylactic GM-CSF results in faster neutrophil recovery, lower 

all-cause mortality, lower transplantation-related mortality, and lower invasive fungal 

disease-associated mortality [32–34]. Case reports and case series suggest GM-CSF may be 

beneficial when used alongside antifungal treatments in treating a variety of IFI, including 

candidiasis, aspergillosis, and zygomycosis [35–37].

Macrophage colony-stimulating factor (M-CSF) also rapidly increases myeloid 

differentiation of hematopoietic stem cells via activation of the myeloid regulator PU.1 [38]. 

Data from animal models suggest that M-CSF may also play a role in controlling invasive 

fungal infections [39]. However, it has never been tested in humans and unlike G-CSF and 

GM-CSF, there is no pharmaceutical product available.

Interferon-gamma (IFN-γ) is produced by NK cells and T lymphocytes and promotes 

classical activation of macrophages resulting in increased phagocytosis, production of 

reactive oxygen species and reactive nitrogen intermediates; it is a vital component of the 

host immune response against intracellular pathogens [40]. IFN-γ knockout mice and people 

with impaired IFN-γ signalling (IFN-γ receptor 1 deficiency or anti-IFN-γ autoantibodies) 

are at significantly increased risk of severe infection with C. albicans, C. neoformans, H. 
capsulatum and Coccidioides immitis [41–46]. In animal models of invasive aspergillosis, 

IFN-γ enhances neutrophil function augments the response to anti-fungal therapy resulting 

in significantly improved survival [47,48]. Improvements in neutrophil function resulting in 

significant reductions in serious infections have also been observed in patients with chronic 

granulomatous disease (CGD) treated with prophylactic IFN-γ [49].

In HIV-infected individuals with cryptococcal meningitis, low CSF concentrations of IFN-γ 
are associated with higher fungal burden, slower clearance of Cryptococcus, and increased 

mortality [50]. Animal models have demonstrated significantly improved survival when 

IFN-γ was used as an adjunctive treatment alongside amphotericin B [51], prompting two 

phase II trials of adjunctive IFN-γ in AIDS patients with cryptococcal meningitis [52,53]. 

The first showed a non-significant trend towards better CSF sterilization; the second showed 

significantly faster clearance of infection when IFN-γ was added to antifungal treatment. 

IFN-γ has also been used to augment the host immune response in cases of HIV-negative 

patients with cryptococcal meningitis, invasive aspergillosis, invasive candidiasis and 

disseminated H. capsulatum infection [54–56].
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LEUKOCYTE TRANSFUSIONS

Infusion of donor granulocytes is an experimental technique to improve survival from 

invasive fungal infections in the setting of profound neutropenia and requires harvesting of 

granulocytes from an ABO matched donor using leukophoresis. Case reports and 

retrospective case-control studies suggest granulocyte transfusions are feasible, safe and 

associated with better than expected survival rates [57–59]. However, clinical benefit has yet 

to be clearly demonstrated, and the single randomised controlled trial conducted to date 

showed no survival benefit in the setting of neutropenic sepsis [60]. In a mouse model of 

invasive aspergillosis, significant improvement in outcome was observed when granulocytes 

were loaded with the lipophilic triazole posaconazole [61].

Adoptive transfer of pathogen-specific T cells is another promising treatment strategy. 

Prolonged lymphopenia is a major risk factor for post-engraftment invasive aspergillosis 

following HSCT, and the presence of Aspergillus-specific Th1 cells is associated with 

successful resolution of infection [62–64]. Murine studies have demonstrated that adoptive 

transfer of Aspergillus-specific Th1 memory CD4 T cells (generated through exposure to 

Aspergillus culture filtrate antigens) results in prolonged survival in experimentally infected 

mice [65]. This strategy was replicated in a single small human study involving ten HSCT 

patients with pulmonary aspergillosis; reductions in serum galactomannan and a trend 

towards improved survival were seen [66].

To expedite clonal expansion, co-stimulatory molecules (CD137 and CD154) can be used to 

select antigen-specific T cells. This technique has been used to generate Aspergillus-specific 

T cells, with in vitro activity against a wide range of fungal isolates [67]. In a further 

refinement, adoptive transfer of chimeric antigen receptor (CAR) T cells targeting tumor 

antigens has been adapted to target fungal pathogens [68]. This involves fusing the 

extracellular domain of Dectin-1 to a CAR cassette and transferring into human T cells 

resulting in a modified β-1,3-glucan-specific T lymphocyte. Such cells have been shown to 

inhibit germinating Aspergillus spores in vitro, and improve outcome in experimentally 

infected mice [69]. These two techniques are clarified further in Figure 1.

An alternative approach to improving T cell responses is the use of immune checkpoint 

inhibitors targeting the inhibitory T cell co-receptors, including programmed death 1 (PD-1) 

[70]. Although mostly studied in cancer, in a murine model of Candida blood stream 

infection, PD-1 blockade improved T cell responses and survival when combined with 

fluconazole [71]. A trial of PD-1 blockade was also used successfully in a patient with 

refractory mucormycosis in combination with IFN-γ and anti-fungal therapy [72].

MONOCLONAL ANTIBODY THERAPY

Administration of monoclonal antibodies reactive with fungal cell surface components 

protects animals in models of candidiasis, aspergillosis, cryptococcosis and histoplasmosis 

[73–76]. Human trials of monoclonal antibodies directed against C. albicans heat shock 

protein 90 resulted in faster clearance of infection, and pilot studies of anti-C. neoformans 
capsule antibodies showed temporary reductions in antigen titres [77,78]. Efforts to develop 
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a monoclonal antibody with pan-fungal efficacy have shown some promise with monoclonal 

antibodies directed again β-glucans [79] and β-1,6-poly-N-acetyl-D-glucosamine [80].

VACCINATION

No fungal vaccine has been licensed for human use, and special challenges arise in 

developing vaccines for diseases that almost exclusively affect immune compromised 

individuals. While some live attenuated fungal strains induce protective immunity in mice 

[81], caution needs to be exercised that such strains are sufficiently attenuated so as not to 

cause disease in persons with impaired immunity. Killed strains obviate this concern but 

autoimmune and inflammatory reactions to vaccine components need to be carefully 

monitored. For example, a formalin-killed Coccidioides spherule whole cell vaccine 

targeting individuals at risk for the endemic mycosis coccidioidomycosis showed a trend 

towards protection but was poorly tolerated [82].

One strategy for fungal vaccines is utilization of conserved fungal cell wall components to 

stimulate adaptive immunity. This strategy has the potential for eliciting protective 

antibodies against multiple genera of fungi. While cell wall glycans are poorly 

immunogenic, glycan conjugate vaccines effectively induce adaptive responses [83]. A 

glycoconjugate vaccine consisting of brown algae β-glucan covalently linked to diphtheria 

toxin protects against challenge with multiple fungi in animal models [84], and similar 

approaches have been used to develop protective antibodies against capsular components of 

C. neoformans [85].

Due to their capacity to be innately recognized by the host immune system, fungal cell wall 

glycans (β-glucans, mannans and chitiosan) have been utilized as antigen delivery systems 

and adjuvants [83]. The benefits of this technique have been demonstrated in murine 

experiments where encapsulation of antigen in β-glucan particles resulted in durable 

antigen-specific Th1 and Th17 T-cell and antibody responses [86,87]. Dendritic cell (DC) 

vaccination is another potentially beneficial approach and in murine models of HSCT 

associated aspergillosis, this resulted in improved antigen-specific Th1 responses, 

accelerated lymphoid and myeloid cell recovery, and improved survival following infective 

challenge [88].

An active area of investigation is the identification of immunoreactive fungal antigens that 

can be used in subunit vaccines. Although many antigens are species- or genus-specific and 

would elicit protective responses against only a narrow range of fungal pathogens, this 

approach may have merit in targeted at-risk populations. For example, a vaccine consisting 

of a recombinant N-terminus of Als3 protein (required by Candida for endothelial 

adherence) has been shown to induce antigen-specific antibody, Th1 and Th17 T-lymphocyte 

responses, and reduce fungal burden in hematogenously challenged mice [89].

Phase I trials have shown it to be safe and immunogenic in healthy adults [90], and a clinical 

trial of this vaccine in women with recurrent vulvovaginal candidiasis recently completed 

enrolment [91].
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IMMUNE SUPPRESSIVE THERAPY

Finally, although the majority of evidence for immune modulation in IFI favours techniques 

that stimulate the immune response, in some fungal infections inhibition of an overly 

exuberant response may be preferential. In patients with HIV-associated Pneumocystis 
jirovecii pneumonia (PCP), adjunctive corticosteroids reduce IL-8 driven neutrophil 

pulmonary infiltration and decrease patient mortality in severe disease [92,93]. 

Corticosteroids may also reduce the incidence of cerebrovascular events in Coccidioides 
immitis meningitis [94] and beneficial effects have been reported in individual patients with 

chronic disseminated (hepatosplenic) candidiasis and in cryptococcal meningitis-IRIS 

[7,17]. However, the use of corticosteroids in patients with HIV-associated cryptococcal 

meningitis who do not have IRIS is not recommended after a clinical trial demonstrated 

slower clearance of infection and worse clinical outcome [95]. This is consistent with 

immunological studies that demonstrate an association between a poor inflammatory 

response in the CSF and blood, and increased disease severity and mortality [96,97].

FUTURE DIRECTIONS

The pathogenesis of fungal infections is instrinsically linked to host immune response. 

Given the recent advances in immune therapy against cancer, the prospect of modulating the 

host immune response in fungal infections is appealing but thus far elusive. Many techniques 

have shown great promise in vitro and in animal models but very few have been tested, much 

less proven to work, in patients. Future research should concentrate on translating promising 

ideas such as adoptive T cell transfer and adjunctive IFN-γ therapy to the clinic and 

developing immune assays to identify groups of patients likely to benefit.
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HIGHLIGHTS

• Pro-inflammatory cytokine therapy confers benefit in animal models of 

mycoses

• Translation of pre-clinical findings into patient therapy is limited to date

• IFN-gamma therapy in humans results in faster clearance of Cryptococcus

• Antigen-specific T cell therapies are promising but technically challenging

• Results of anti-Candida vaccine trials are awaited
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Figure 1. Mechanisms of adoptive T-cell generation
Therapeutic fungal-specific T-cells can be generated through PBMC exposure to fungal 

antigen, identification of fungal-specific T-cells (e.g. immunomagnetic sorting), and T-cell 

expansion or through generation of CAR T-cells with expression of antibodies containing 

extracellular fungal recognition component (e.g. Dectin-1). CAR– chimeric antigen receptor; 

PBMC – peripheral blood mononuclear cells; PRR – pattern recognition receptor
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Table 1
A summary of evidence supporting different immunomodulatory strategies in three main 
invasive fungal infections

Shading indicates level of evidence: green – cell culture or animal experiments; orange – animal models and 

exploratory human studies; red – animal models and human clinical trials.

Aspergillus Candida Cryptococcus

G-CSF Enhanced protection & 
antifungal response in animal 
models [22,23]

Enhanced protection and antifungal 
response in animal models [21]. Faster 
resolution of infection in human trials 
[25].

GM-CSF Reduction in tissue burden in 
experimental infection [29]

Resolution of fluconazole-refractory 
oropharyngeal candidiasis in 7 out of 
11 AIDS patients [35]

Enhanced response to antifungal 
therapy in cell culture models 
[30]. Persons with anti-GM-CSF 
autoantibodies at risk of infection 
[31]

M-CSF Enhanced protection in 
neutropenic animal models [39]

IFN-γ Enhanced protection and 
antifungal response in animal 
models [47,48].

Increased susceptibility and mortality 
in knockout mice [41].

Increased susceptibility in IFN-γ 
deficienty/inhibition [42,46]. 
Exogenous IFN-γ results in 
reduced mortality in animal 
models [51] and faster clearance 
in human trials [53].

PD-1 blockade Improved T cell responses and 
survival in mice [71]

mAb Improves protection in animal 
model [75].

mAb to hsp-90 protect mice from 
infection [74]and associated with 
faster clearance in clinical trials [77]

Enhanced protection and animal 
fungal response in animal models 
[73,79]. Reduction in antigen titre 
in human pilot studies [78]

Granulocyte transfusion Animal model demonstrate 
benefits of posaconazole-loaded 
leukocytes transfusion[61]

Better than expected outcome in 
human pilot studies [58].

T cell transfusion Prolonged survival in animal 
models [65,69].
No complications in human pilot 
studies [66]

Vaccination Improved survival with dendritic 
cell vaccine in mice [88]

New vaccines confer protection in 
animal models [84,89], and are 
immunogenic and safe in humans; 
clinical trials have recently completed 
enrolment [90,91].

Glycoprotein and glucan particle 
vaccine provide protection in 
animal models [85,87].
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