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Abstract 

Cold temperature extremes can have a detrimental effect on human health, public services and 

the economy of a country. From a public health services perspective, it is important to quantify 

the frequency of occurrence of extreme cold events and how this frequency changes over time 

in order to develop cost-effective anticipatory plans to reduce the potential impact of cold 

extremes on the exposed vulnerable population. Using non-stationary extreme-value analysis, 

the geographical and temporal distribution of cold temperature extremes over the last 160 years 

in several locations in England and Scotland was investigated. The temperature data were 

obtained from weather stations. It is then shown that the 5, 10, 50 and 100 year return levels of 

minimum winter temperature have increased throughout the 20th century. It was also shown 

that the probability of experiencing extreme cold temperatures has become very low in most 

locations particularly in years with a positive phase of the North Atlantic Oscillation (NAO) 

index. Finally, an estimate of the approximate financial risk to the UK economy of consecutive 

days of extreme cold temperatures is presented. 

 

Keywords: extreme cold temperature phenomena, health impacts of extreme cold temperatures 

and thresholds   
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1. Introduction 

 

Extreme weather events are, by definition, those that have low probability of occurrence but 

can have a high (or very high) impact on the ecosystem and biodiversity, agriculture, economy 

and public health (IPCC, 2012). There is strong evidence that extreme weather events such as 

heatwaves, droughts and intense precipitation periods, are becoming more frequent and intense 

worldwide (Easterling et al., 2000, Coumou and Rahmstorf, 2012) and are impacting 

ecosystem and human health (Field et al 2012). A rapid pace of development worldwide in the 

20th century leading to high amounts of greenhouse gases in the atmosphere, is a major 

contributing factor to an increased global mean temperature and it has been widely reported 

that the earth has been getting progressively warmer since the mid-20th century (IPCC, 2014). 

Evidence indicates that this warming has been associated with an increased frequency of 

extreme climatic events (Rahmstorf and Coumou, 2011, Field et al, 2012). Despite this 

warming however there is evidence that extreme cold period will persist in the 21st century 

(Guirguis et al 2011, Kodra et al 2011). 

 

The extremes of temperature (hot and cold) can have detrimental acute as well as chronic 

impacts on public health and on many aspects of public services if the exposed vulnerable 

population and infrastructure are not protected. In particular, temperature extremes can have 

adverse effects on health (Huber et al 2017). To protect the exposed vulnerable population 

against temperature extremes, a country is required to invest in interventions to mitigate their 

impacts. Examples of such interventions in healthcare services could include developing 

temperature-triggered warning systems, anticipatory public services plans and responses (Kirch 

et. al., 2005).    
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With increasing demands on often over-stretched and limited public resources, it is imperative 

that these interventions are cost-effective in the long-term (Chalabi et al., 2016). Cost-

effectiveness of the interventions would depend to a certain extent on the frequency and 

duration of extreme temperature episodes (Chalabi et al., 2016). There could be opportunity 

costs associated with the interventions if the extreme episodes are infrequent and far between, 

because the public funds could be invested elsewhere. It is important therefore to quantify the 

distribution of the extreme temperature episodes temporally and geographically.   

 

The main purpose of this paper is to study changes in the frequency, return levels and return 

periods of extreme cold winter temperatures in England and Scotland over the last 160 years. It 

is known that the temperatures between the North of the United Kingdom and the South can 

vary greatly during different seasons. The North often experiences cold winters and generally 

cooler summers whereas the South tends to experience warmer winters and summers, in 

comparison. However a large body of research has recently pointed to an increased frequency 

of milder winters in UK as well as decrease in the number of very cold winter nights in the 

North (Vogelsang and Franses, 2005, Stainforth et al., 2013). 

 

This paper begins by modelling the distribution of the extreme cold winter temperatures by 

analysing temperature readings in 12 weather stations across England and Scotland using: (i) a 

non- stationary block maxima method and (ii) a non- stationary peak over threshold method 

(Coles et al., 2001). Although both methods are related they provide complimentary 

information. The first method focuses on the annual cold extremes whereas the second method 

focuses on the daily cold extremes below a threshold and the day-to-day dependence of cold 

temperatures.  Using the fitted models, we proceed to highlight the changes in the 5, 10, 50 and 
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100 year return levels of extreme cold temperature events as well as the probability of 

experiencing an extreme cold temperature event (characterised by the 85th, 90th and 95th centile 

of the temperatures in each station) in any given year, and through time. These extreme 

temperature centiles differ from station to station where 95th centile temperatures for stations in 

the north would be much lower than for stations in the south. Finally, an approximate financial 

risk to the UK economy of experiencing consecutive days of extreme cold temperatures is 

estimated.  

 

2. Data and Exploratory Analysis  

 

We used data from the UK’s Met Office Integrated Data Archive System (MIDAS) (Met 

Office, 2006) which stores land surface and marine surface observations data from the Met 

Office station network and other worldwide stations. Data are available from 1853 and provide 

daily and hourly measurements of variables such as wind speed and direction, air and soil 

temperatures, rain fall measurements and other meteorological variables.  

 

The observations of daily minimum temperatures were extracted for various locations of the 

MIDAS weather stations from December 1853 to February 2015. Although the accuracy of 

temperature measurements improved over time we did not take into account errors in 

temperature readings in our analysis and assumed that all the temperature readings were 

consistently accurate over time.  For this analysis, only the three winter months of December, 

January and February (when the lowest temperatures are normally expected to occur) were 

extracted for each year. Winter of 1991-92, for example, comprised of December 1991 and 

January and February 1992. The temperatures of all the winter months were joined to form a 

long time series for each weather station. 
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Monthly values of the North Atlantic Oscillation (NAO) index from year 1825 to present were 

obtained from the Climatic Research Unit at the University of East Anglia (Hurrell, 1995, 

Jones et al., 1997, Climatic Research Unit (https://crudata.uea.ac.uk/cru/data/nao/). The NAO 

is the dominant mode of winter climate variability in the North Atlantic region ranging from 

Central North America to Europe. There is very strong evidence that the NAO index influences 

winter temperatures in the UK (Scaife et al., 2008 George et al., 2004, Woodworth et al., 2007, 

Osborn, 2011). A positive NAO index results in warm and wet winters in Europe and the 

negative index brings cold air towards Europe. Due to this, the NAO index was selected as an 

explanatory variable in the study of the distribution of winter temperature extremes in England 

and Scotland. We wished to separate the temporal variation of the historical winter extremes 

from the influence of the NAO acknowledging though that this approach cannot be used to 

investigate future temperature cold extremes because the NAO is not predictable. 

Table 1 lists the names and the dates from which complete data is available for each of the 

weather stations. All of the 12 selected stations had at least 50 years of complete temperature 

data. For the purpose of our analysis, stations in Northern Ireland and Wales were excluded 

from this study due to large amounts of missing data in their temperature series records. 

All further analysis present the results of two (Durham and Balmoral) of the 12 stations in the 

main body of this paper. All analyses’ results of the remaining ten stations are provided in the 

Supplementary Material. 

 

Table 1: MIDAS station details used in the analysis. The regional location, starting date and duration of each 

weather time series are given.  

Station Name Location Data start date Length of series 

https://crudata.uea.ac.uk/cru/data/nao/
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Oxford South East 01/12/1853 162 years 

Durham North East 01/12/1880 135 years 

Stornoway Airport Scotland 01/12/1883 132 years 

Rothampsted East 01/12/1916 99 years 

Balmoral Scotland 01/12/1918 97 years 

Leuchars Scotland 01/12/1921 94 years 

Wick Airport Scotland 01/12/1930 85 years 

Plymouth South West 01/12/1930 85 years 

Craibstone Scotland 01/12/1931 84 years 

Hastings South East 01/12/1947 68 years 

Eskdalemuir Scotland 01/12/1954 61 years 

Bude South West 01/12/1959 56 years 

 

Figures 1 and 2 show respectively the observed time series of the annual minimum winter 

temperature (AMWT) and the relationship between the AMWT and NAO for two of the 

stations in the study, Durham and Balmoral. The plots show the raw data (as dots) and a locally 

fitted polynomial regression line. Figures containing these data for each of the remaining 10 

stations are given as part of the supplementary material (Figures 1A and 2A).   

Durham exhibits a positive trend and Balmoral exhibits a convex quadratic trend in AMWT 

through time. Both stations were found to have a positive correlation between the NAO index 

and the AMWT, that is, higher the NAO index the higher the AMWT. In general the pattern of 

AMWT with time is inconsistent across locations unlike the pattern of AMWT with NAO 

which shows more consistent behaviour.  

Additionally, as shown in Figure 1A in the supplementary material, of the six Scottish stations, 

four exhibit a non-linear trend in AMWT through time. Balmoral, Leuchars, Stornoway and 

Wick Airport all experienced a drop in AMWT between 1950 and 1970. On the other hand, 

Oxford, Hastings and Plymouth in the South of England and Durham in the North, exhibit a 

positive linear relationship between time and AMWT. Additionally, as Figure 2A in the 
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supplementary material shows, all stations were found to have a positive correlation between 

the NAO index and the AMWT. The higher the NAO index the higher the AMWT. AMWT in 

Bude, Craibstone and Rothampsted were found to have significant association with the NAO 

than with time.  

Figure 1: Observed time series of annual minimum winter temperature for Durham (1880-2015) and Balmoral (1918-

2015).  

 

Figure 2: Observed relationship between annual minimum temperature and the NAO for Durham and Balmoral.  

 

3. Methods 
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3.1 Generalised Extreme Value Distribution  

From a climate physics perspective it could be argued that it would be more appropriate to 

estimate the Generalised Extreme Value (GEV) parameters using the Global Mean 

Temperature (GMT) as the dependent variable instead of time. However GMT is correlated 

positively with historical time and so as a first order approximation the GEV parameters were 

regressed against time, because it was simpler to conduct. 

 

First the annual minimum temperatures were analysed. Although we are examining 

temperature minima in this section, we refer to the temperature maxima in the description of 

the methods and the equations, by taking the negative value of the minimum temperatures. This 

makes the equations easier to follow without compromising the analysis on the following 

grounds. If a temperature time series of length 𝑛 is represented by the points {𝑥1, 𝑥2, … 𝑥𝑛} then 

its maximum over the period is defined by 𝑦𝑚𝑎𝑥 = 𝑚𝑎𝑥[𝑥1, 𝑥2, … 𝑥𝑛] and its minimum by 

𝑦𝑚𝑖𝑛 = 𝑚𝑎𝑥[−𝑥1, −𝑥2, … −𝑥𝑛].In other words the maximum operator can be used in both 

definitions but in the case of the minimum, the sign of the temperatures are inverted. The 

correct temperature values (i.e. cold temperatures with their correct sign) are however 

presented in the numerical results, tables and figures.  

 

The classical approach to perform an extreme value analysis is to fit the annual maxima values 

using the Generalized Extreme Value (GEV) cumulative distribution function, given by 

Equation (1) below and is defined on the set {𝑇: 1 + 𝜉 (
𝑇−𝜇

𝜎
) > 0} and where 𝑇 is the annual 

maximum temperature, parameters 𝜇, 𝜉 𝑎𝑛𝑑 𝜎 denote respectively the mean, shape and scale of 

the distribution and 𝜇, 𝜉 ∈  ℝ (set of real numbers) and 𝜎 ∈ ℝ+ (set of strictly positive real 

numbers). 
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𝐺(𝑇) = exp {− [1 + 𝜉 (
𝑇−𝜇

𝜎
)]

−
1

𝜉
}     (1) 

When ξ ≈ 0 the GEV distribution corresponds to the Gumbel family, conversely for ξ > 0 the 

Fréchet form is adopted and for ξ < 0 the Weibull form is adopted. The underlying assumption 

in the derivation of GEV is that the extreme values are independent and identically distributed, 

which is violated in the presence of a temporal trend. Since the exploratory analysis shows that 

the AMWT in all stations is non-stationary in time and also depends on the NAO index, a non-

stationary GEV model is fitted to each station by making the parameters a function of time and 

NAO index. 𝜇 and 𝜎 are expressed as polynomial functions of time (𝑡) and NAO index (𝑧) as 

follows: 

�̂� = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡2 + 𝑎3𝑡3 + 𝑏1𝑧 + 𝑏2𝑧2 

�̂� = 𝑐0 + 𝑐1𝑡 + 𝑐2𝑡2 + 𝑑1𝑧 

𝜉 = 𝑓0 

  

The parameters {𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝑏1, 𝑏2, 𝑐0, 𝑐1, 𝑐2, 𝑑1, 𝑓0} of the above distribution are estimated 

using maximum likelihood and probability weighted moments as defined in (Coles et al.,2001).  

The best model for each station was selected using likelihood ratio tests for nested 

190 non-stationary models (as described in Coles et al., 2001, Ch. 6) 

 

3.2 Peak Over Threshold Analysis 

The winter daily extreme cold temperatures were analysed using the Peak Over Threshold 

(POT) method which models all data that lie below a selected threshold. Naturally there is a 

relationship between the POT and block maximum method as both methods are modelling 
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extremes. However, the POT method allows more efficient use of data by considering all 

values that lie above a high threshold rather than just the block maximum has been widely used 

to model extreme environmental events (Bommier 2014).  

Again, as in the previous section, in describing the POT method we refer to the temperatures 

above a threshold (by taking the negative of the minimum temperatures) although in reality we 

are modelling cold temperatures below a threshold.  

The peak over threshold or the POT method allows more efficient use of data by considering 

all values that lie above a high threshold rather than just the maxima of blocks. Details of the 

POT method are described elsewhere e.g. Coles et al (2001). A brief summary is provided 

below. 

 

In order to simplify the mathematical notation, we redefine some of the mathematical symbols 

used in the description of the GEV method whilst ensuring that the two sections are self-

consistent. Denote the daily temperature by 𝑇 and its probability distribution function by 𝐹. 

There are two features to consider in the POT method: the number of exceedances in a given 

block (e.g. one year or one season) and the threshold excesses 𝜔 = 𝑇 − 𝑢, where 𝑢 is the 

threshold. The POT method assumes that the number of exceedances, 𝑁, in a given block 

follows a poisson distribution as 𝑁~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆) and the threshold excesses follow a 

Generalised Pareto Distribution (GPD).  

 

Given a high threshold 𝑢, the distribution function of 𝜔 = 𝑇 − 𝑢 i.e. the exceedance over the 

threshold conditional on 𝑇 > 𝑢 is given by 

𝐹𝑢(𝜔) = P(𝜔 ≤ 𝑣|𝑇 > 𝑢) 
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𝐹𝑢(𝜔) = P(𝑇 − 𝑢 ≤ 𝑣|𝑇 > 𝑢) , 𝑣 ≥ 0 

                                           𝐹𝑢(𝜔) =
𝐹(𝑢+𝑣)−𝐹(𝑢)

1−𝐹(𝑢)
~𝐻𝜉,�̃�(𝜔)      (2) 

where 𝑃 denotes probability and 𝐻𝜉,�̃�(𝜔)is the GPD distribution.  𝐻𝜉,�̃�(𝜔) is given by: 

𝐻𝜉,�̃�(𝜔) = 1 − (1 +
𝜉𝜔

�̃�
)

−
1

𝜉
, 𝑖𝑓 𝜉 ≠ 0 𝑜𝑟 𝐻𝜉,�̃�(𝜔) = 1 − exp (−

𝜔

�̃�
) 𝑖𝑓 𝜉 = 0  (3) 

𝑤ℎ𝑒𝑟𝑒 𝜔 ≥ 0 𝑖𝑓 𝜉 ≥ 0; 0 ≤ 𝜔 ≤ −
�̃�

𝜉
 𝑖𝑓 𝜉 < 0; �̃� = 𝜎 + 𝜉(𝑢 − 𝜇) 

 

The 𝜉 𝑎𝑛𝑑 𝜇 are exactly equal to the parameters of the corresponding GEV but the scale 

parameter of the GPD is a function of the location, scale and shape parameters of the 

corresponding GEV. As in the GEV distribution, 𝜉 < 0, implies that the distribution of 

excesses has an upper bound (Weibull distribution), 𝜉 > 0 implies unbounded upper tail 

(Frechet distribution) and 𝜉 = 0 (Gumbel distribution) is also unbounded. Once again, as with 

the GEV analysis, the 𝜇 and 𝜎 are expressed as polynomial functions of time (𝑡) and NAO 

index (𝑧) for every station. The details of how the thresholds for each station were selected are 

given in section 4.3. 

 

3.3 Return levels and cluster analysis 

Of particular relevance to extreme events is the estimated return period.   

The return period is given by: 

𝑞𝑝(𝑡, 𝑧) = {
𝜇(𝑡, 𝑧) −

𝜎(𝑡,𝑧)

𝜉(𝑡,𝑧)
[1 − {− log(1 − 𝑝)}−𝜉(𝑡,𝑧)], 𝑓𝑜𝑟 𝜉(𝑡, 𝑧) ≠ 0

𝜇(𝑡, 𝑧) − 𝜎 log{− 𝑙𝑜𝑔(1 − 𝑝)} , 𝑓𝑜𝑟 𝜉(𝑡, 𝑧) = 0
                         (4) 
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In Equation (4) the parameters {𝜇(𝑡, 𝑧), 𝜉(𝑡, 𝑧), 𝜎(𝑡, 𝑧)} represent the mean, shape and scale 

parameters for a non-stationary GEV distribution. For ease of explaining Equation (4), it is 

assumed that the time series data are annual but the concept is equally valid for any unit time 

(daily, weekly and monthly). The return periods, however, are calculated only for the annual 

cold extremes. There are various ways of interpreting Equation (4). 𝑞𝑝(𝑡, 𝑧) is defined as the 

return level or the value that is expected to be exceeded every 
1

𝑝
 years. 𝑞𝑝(𝑡, 𝑧) is also known as 

the return level associated with the return period 
1

𝑝
 , or 𝑞𝑝(𝑡, 𝑧) is exceeded annually with 

probability p. 

 

The schematic in Figure 3 demonstrates the link between the GEV for annual maxima and the 

GPD for threshold exceedances. The schematic is divided in to 5 quadrants. Each quadrant 

represents one year (consecutive years 1 to 5).  The horizontal line labelled “u” is a selected 

threshold and the green points are the daily temperatures that lie above this threshold. The 

black dots are the daily values below the threshold. The red circled dot is the annual maximum. 

Since temperatures tend to exhibit temporal dependence, the blue ellipsoids represent clusters 

of daily temperatures which are above the threshold that are separated by r days. If 𝑟 = 1, then 

two temperatures are considered to be part of the same cluster if they occur consecutively. 

Otherwise they form another independent cluster. 

 

The GEV distribution for the block maxima analyses and fits a distribution to the red markers 

and the GP distribution for the daily threshold exceedances analyses only the maxima of 

independent clusters that lie over the threshold. The annual maxima then becomes the maxima 

of a cluster if it lies over the threshold. For example, in the schematic in Figure 3, in year 3 the 
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annual maximum is below the threshold and hence ignored in the POT analysis. Figure 3 also 

shows that the POT method better utilises the available data compared to the block maxima 

method. 

Figure 3: Schematic diagram demonstrating the block maxima and POT methods.  

 

All analyses have been conducted in R using the extRemes 2.0 package (Gilleland and Katz, 

2011).  

 

3.4 Financial Risk  to the UK Economy 

The following method gives an approximate measure of the financial risk to the UK economy 

of clusters of extreme cold days. This cost is given by the product of three terms: the 

probability of occurrence of a cluster of 𝑛 successive cold days, the number of days in the 

cluster (𝑛), and the mean financial cost to the UK economy per day of extreme cold.  

The probability of occurrence of a cluster of extreme cold days are calculated as follows. For 

every weather station, using all the data that are below the corresponding cold threshold for 

that station, we identified clusters where temperatures were below the cold threshold for one, 

two, three and up to ten consecutive days. For example, it was seen that in 1927 in Balmoral, 
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temperatures dipped below the selected threshold for 4 days continuously from the 16th of 

December till the 19th of December. This constituted a 4 day long cluster. In this manner, for 

each station, the probability of experiencing one to ten consecutive day long clusters of low 

temperatures (𝑝(𝑥), 𝑥 ∈ 1, … ,10) , was calculated, where the numerator is taken to be the 

number of each 𝑥 day long clusters over the whole time period and the denominator is the total 

number of clusters over the whole time period as described in Table 1. The details of how the 

thresholds for each station were selected are given in section 4.3. 

 

The Centre for Economics and Business Research estimated the economic cost of extreme 

weather in the UK (CEBR, 2015). They calculated that each additional day of “air frost” costs 

the UK economy £103 m. As a rough approximation it is assumed that this cost estimate 

corresponds also to the burden of cold extremes analysed in this study. This provides an 

underestimate because air frost is higher than the cold extreme temperatures used in this study. 

This is however the only economic study we found on the economic daily burden of cold 

weather. Based on this CEBR figure, and the estimated probabilities of cluster of successive 

extreme cold days, the approximate financial risk to the UK economy was calculated as 𝑐 ×

𝑝𝑐 × 103 m, where 𝑝𝑐 is the average probability of having  𝑐 successive extreme cold days. To 

get a perspective of the health impact (mortality and morbidity) of cold weather, the percentage 

change in mortality risk per 1oC decrease in temperature below 5oC is 3.84% and the 

percentage change in hospital admissions risk for patients with chronic obstructive pulmonary 

disease per 1oC decrease in temperature below 8oC is 8.40% (Chalabi et al 2016). Both risk 

figures are unadjusted for influenza.   

 

 

4. Results 
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4.1 GEV Analysis 

The results of the GEV analysis for two stations, Durham and Balmoral, are shown in Table 2. 

The results for the remaining ten stations are shown in Table 6 in the Supplementary Material. 

The first row of the table gives the GEV parameters, the second row shows the variables used 

in the fitted model and the subsequent rows give the mean estimates (and their standard errors 

in brackets) of the variables.  “NS” indicates the variables that were not used in the full model, 

or were found to be insignificant. As explained earlier, models for each station were fitted to 

the negative of the minimum temperatures (ie the annual block maxima) and so the regression 

coefficients correspond to this data. It is shown that in the case of Durham the mean parameter 

of the GEV distribution is linear with time and NAO, whereas in the case of Balmoral the mean 

parameter is quadratic with time but also linear with NAO. In both cases, the shape parameters 

of the respective GEV distributions are linear with NAO and do not show variation with time. 

Table 6 in the supplementary material shows the results for the remaining 10 stations. It was 

found that in the case of Balmoral, Leuchars, Stornoway and Wick Airport, the location 

parameter is non-linear with respect to time whereas in the case of Eskdalemuir, Oxford, 

Hastings, Plymouth and Durham, it is linear with time. In all cases, the shape parameter was 

consistently negative indicating a Weibull type distribution with a finite upper bound. 

 

Table 2: Fitted non stationary GEV models for each station*.  

 �̂� �̂� 𝜉 

 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 𝑌𝑒𝑎𝑟 𝑌𝑒𝑎𝑟2 𝑌𝑒𝑎𝑟3 𝑁𝐴𝑂 𝑁𝐴𝑂2 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 𝑌𝑒𝑎𝑟 𝑌𝑒𝑎𝑟2 𝑁𝐴𝑂  

Durham 7.988
(0.450)

 
−0.016
(0.005)

 
NS NS −0.659

(0.117)
 

NS 2.420
(0.165)

 
NS NS −0.177

(0.076)
 

−0.158
(0.060)

 

Balmoral 9.897
(0.615)

 
0.135 

(0.011)
 

−0.001 
(0.000)

 
NS −0.685 

(0.144)
 

NS 2.935
(0.221)

 
NS NS −0.202 

(0.088)
 

−0.207
(0.053)

 

*Notes: The first row is the set GEV parameters and the second row are the polynomial regression coefficients in 

time and NAO. Shown below are the mean estimates of the coefficients (specified to three points after the decimal) 

and in brackets are the associated standard errors.  NS means that the covariate was found to be insignificant. 
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These regression coefficients were estimated by fitting the GEV models to the negative of the minimum 

temperatures (ie the annual block maxima) 

 

Based on the above fitted models, the 5, 10, 50 and 100 year return levels of the AMWT were 

estimated. In the case of Eskdalemuir, Durham, Oxford, Hastings and Plymouth, each of the 

above period return levels of the AMWT were shown to linearly increase with time for 

different phases of the NAO. This was most notable in Plymouth where the 10 year return 

levels during the positive phases of the NAO were estimated to have increased between mid- 

20th century and the winter of 2014-15 from -4.5 °C to -2.9 °C. In the case of the Scottish 

weather stations               of Balmoral, Leuchars, Stornoway and Wick, it was found that the 

above period return levels     of the AMWT decreased from the start of the 20th century and 

kept falling approximately    through the 1970s, after which the AMWT return levels started 

increasing. Stornoway and    Wick Airport both exhibited high levels of increase in AMWT 

return levels. The 5, 10, 50 and 100 year return levels in Stornoway increased from -10°C to -

6°C, -12°C to -8°C, -16°C to -11°C and -17°C to -13°C respectively, for all phases of the NAO 

index. Similar results were found for Wick Airport. This is shown graphically in Figure 4 for 

Durham and Balmoral (and in figure 4A for the remaining 10 stations, along with the full 

tabular results in Table 7, in the supplementary material). Note the contrasting patterns of the 

return levels for Durham and Balmoral. For Durham, the return level increases linearly with 

time for different phases of the NAO whereas for Balmoral the return level is convex and 

quadratic. 

 

The fitted GEV models were also used to estimate the probabilities of extreme temperatures,      

as given by the 85th, 90th and 95th centile of the winter temperature of each of the weather 
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stations, in any given year for extreme positive, average and negative phase of the NAO index.  

As with the return levels, in the case of Eskdalemuir, Durham, Oxford, Hastings and Plymouth 

the probability of experiencing an extreme AMWT linearly decreased with time for different 

phases of the NAO. In the case of the Scottish weather stations of Balmoral, Leuchars, 

Stornoway and Wick, the probability of extreme temperatures increased till approximately 

1975 after which it drops. The probability of experiencing a temperature corresponding to the 

95th centile at most weather stations dropped to zero by the winter of 2014-15. Additionally, in 

most stations, the drop in the return probability of extreme temperatures through time exceeds 

50%. The results are shown graphically in Figure 5 for Durham and Balmoral (and in Figure 

5A for the remaining 10 stations, along with the full tabular results in Table 8, in the 

supplementary material). Because of the relationship between return levels and probabilities of 

extremes, Figure 5 mirrors the findings of Figure 4: for Durham the probabilities of extreme 

cold winter decrease linearly with time over all NAO phases and whereas for Balmoral the 

counterpart probabilities of extreme cold winters are concave and quadratic. 

Figure 4:  The 5 (blue), 10 (red), 50 (purple) and 100 (green) year return levels of minimum winter temperature 

variation with time for different phases of the NAO (shown for Durham and Balmoral).  

 

 

Figure 5: Probability of experiencing an extreme minimum winter temperature (defined by the 85th(green), 90th 

(red) and 95th (blue) centile) for different phases of the NAO (shown for Durham and Balmoral).   
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4.2 Peak over threshold analysis 

Following the analysis on the annual minimum winter temperature, threshold models were 

then fitted to the daily temperatures of each of the stations to examine the distribution of 

threshold exceedances. For each station, the thresholds were determined a priori as the 95th 

centile of the minimum temperatures in each station. Data (taken to be the negative of 

minimum temperatures) above the selected threshold were de-clustered and each independent 

cluster maxima were taken to be independent observations.  Two exceedances were assumed 

to be independent if they were separated by at least 𝑟 days, where 𝑟 takes a different value for 

each weather station to ensure complete independence. The run length, 𝑟, is estimated in the 

extRemes package as the best value beyond which two extreme temperatures can be 

considered independent. Every weather station was estimated to have a different threshold 

and the selected run length, as shown in Table 3 for Durham and Balmoral (and in Table 9 in 

the supplementary material, for the remainder of the stations). As explained earlier, models 

for each station were fitted to the negative of the minimum temperatures (ie the annual block 

maxima) and so the regression coefficients correspond to this data. Table 3 shows that for 

Durham the mean of the GEV distribution decreases linearly with time and shows no 

association with NAO whereas for Balmoral the mean of the GEV distribution is convex and 

quadratic with respect to time and decreases linearly with NAO. The shape parameter of the 

GEV distribution for Durham shows no association with either time or NAO where in 

contrast the counterpart parameter for Balmoral shows positive linear association with time 

and negative linear association with NAO.   

Table 3: Fitted threshold models for each run length for Durham and Balmoral*.  

 �̂� �̂� 𝜉 

 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 𝑌𝑒𝑎𝑟 𝑌𝑒𝑎𝑟2 𝑌𝑒𝑎𝑟3 𝑁𝐴𝑂 𝑁𝐴𝑂2 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 𝑌𝑒𝑎𝑟 𝑌𝑒𝑎𝑟2 𝑁𝐴𝑂  

Durham 

𝑟 = 3,  
𝑢 = 4 

7.409
(0.358)

 
−0.005
(0.004)

 
NS NS NS NS 2.699

(0.121)
 

NS NS - −0.118
(0.049)

 



 

 

Balmoral 

𝑟 = 5,  
𝑢 = 8 

10.647
(0.470)

 
0.105 

(0.010)
 

−0.001 
(0.000)

 
NS −0.970 

(0.133)
 

NS 2.492
(0.334)

 
0.019 

(0.007) 

NS −0.242 
(0.084)

 
−0.312
(0.047)

 

*Notes: The first row is the set POT parameters and the second row is the polynomial regression coefficients in 

time and NAO. The table shows the mean estimates of the coefficients (specified to three points after the 

decimal) and those in brackets are the associated standard errors. NS means that the covariate was found to be 

insignificant. These regression coefficients were estimated by fitting the POT models to the negative of the 

minimum daily temperatures that lie above the selected threshold. 

The fitted threshold models were broadly similar to the fitted GEV models for the AMWT in 

terms of the location parameter with some changes to the scale parameter. As with the GEV 

models, the best model was selected using likelihood ratio tests for nested models (as 

described in (Coles et al., 2001, Ch. 6)) Once again, the shape parameter was consistently 

negative indicating a Weibull type distribution with a finite upper bound. Based on the 

models fitted in able 3, the 5, 10, 50 and 100 year return levels of cluster cold extremes, 

below the estimated thresholds for different phases of the NAO, were estimated. 

 

Based on the models shown in Table 3, the 5, 10, 50 and 100 year return levels were 

estimated. As noted in the GEV analysis, in the case of Eskdalemuir, Durham, Oxford and 

Plymouth, each of the above period return levels of the winter temperatures falling below a 

low threshold, was shown to linearly increase with time for different phases of the NAO. This 

was most notable in Eskdalemuir where the 50 year return level during the positive phases of 

the NAO were estimated to have increased significantly from -12°C to -6.1°C ,between mid 

20th century and the winter of 2014-15. In the Scottish stations of Balmoral, Leuchars and 

Wick, it was found that the 5, 10, 50 and 100 year return levels of the winter temperatures 

below the threshold decreased from the start of the 20th century and kept falling 

approximately through the 1970s, after which the minimum winter temperature return levels 

start increasing. Stornoway exhibited high levels of increase in the 5, 10, 50 and 100 year 



 

 

return levels which increased from -11.6°C to -7.5°C, -13°C to -9°C, -15°C to -11°C and -

16.3°C to-12.2°C respectively, for all phases of the NAO index. The full results are provided 

in the supplementary material in Tables 10 and 11. 

 

4.3 Financial Risk to the UK Economy  

Table 4 below shows the probability of 1-10 consecutive days of winter temperatures that lie 

below the threshold selected for each station (as calculated in section 4.2 above and shown in 

Table 3). The probability of experiencing 5 consecutive days of temperatures below -4oC in 

Rothampsted was 0.04, much higher than in the Scottish stations, over the whole time period 

as given in Table 1. The cost of 5 consecutive days of temperatures below a low threshold on 

average is £13.2 million.  

 

Table 4: Probability of experiencing 1-10 day long clusters of consecutive threshold exceedances 

Cluster size 

 1 2 3 4 5 6 7 8 9 10 >10 

Balmoral 0.446 0.300 0.134 0.058 0.025 0.013 0.010 0.010 0.003 0.000 0.003 

Craibstone 0.438 0.308 0.127 0.056 0.028 0.017 0.014 0.003 0.006 0.000 0.003 

Leuchars 0.617 0.218 0.085 0.034 0.019 0.013 0.008 0.002 0.000 0.002 0.002 

Eskdalemuir 0.640 0.221 0.068 0.042 0.019 0.006 0.003 0.000 0.000 0.000 0.000 

Stornoway 0.570 0.249 0.088 0.046 0.024 0.007 0.005 0.009 0.000 0.002 0.000 

Wick 0.645 0.206 0.070 0.047 0.015 0.006 0.012 0.000 0.000 0.000 0.000 

Durham 0.521 0.236 0.107 0.060 0.031 0.017 0.019 0.002 0.000 0.006 0.002 

Rothampsted 0.494 0.252 0.085 0.058 0.042 0.027 0.009 0.012 0.009 0.003 0.009 

Oxford 0.459 0.249 0.137 0.062 0.029 0.017 0.015 0.010 0.004 0.004 0.014 

Hastings 0.478 0.208 0.111 0.075 0.031 0.022 0.013 0.018 0.013 0.009 0.022 

Plymouth 0.657 0.190 0.080 0.033 0.013 0.007 0.003 0.007 0.000 0.003 0.007 

Bude 0.537 0.245 0.092 0.048 0.031 0.017 0.009 0.004 0.009 0.004 0.004 

 

The above table shows that the probability of cold clusters of size greater than 3 days is less than 

10% and that of cold clusters of size greater than 5 days is less than 5%. The probabilities for 

cluster sizes beyond 5 days are negligible.  



 

 

Table 5 averages the probabilities given in Table 4 across all stations and calculates the 

expected financial risk to the UK economy. As a rough approximation, it is assumed that 

these average probabilities apply to the whole UK. 

Table 5. Average probabilities over all stations of experiencing 1-10 day clusters of consecutive threshold 

exceedances and the associated expected costs to the economy   

 Cluster 

size 

1 2 3 4 5 6 7 8 9 10 >10 

All 

Stations 

Average 

Probability 0.54 0.24 0.10 0.05 0.03 0.01 0.01 0.01 0.00 0.00 0.01 

 Expected 

Cost to the 

Economy 

(in 

millions) £55.81 £49.47 £30.49 £21.25 £13.18 £8.70 £7.21 £5.29 £3.40 £2.83 £6.23 

 

It is shown that the expected financial risk decreases with the cluster size. This is 

because the probability of the occurrence of very long clusters is low.  

 

5. Discussion and conclusion 

This study has used statistically-based models to quantify the frequency and duration of cold 

weather extremes in several cities in the UK. The results of two of the stations (Balmoral and 

Durham) were presented in the main body of the paper and those of the remaining stations 

were presented in the supplementary material. Physics-based methods (Altmann and Kantz, 

2005) could have equally been used instead to analyse the extreme cold events of the 

temperature time series records. It is difficult however to handle non-stationarity with these 

methods. Our models were based on non-stationary extreme value analysis. The non-

stationarity is defined in terms of time and NAO.  Using these models the 5, 10, 50 and 100 

year return levels were determined at the different locations as well as the probabilities of 

experiencing extreme cold temperatures. In particular, the probabilities of experiencing 1 - 10 

day long duration clusters of consecutive extreme cold days were presented. Using data from 

a very recent study on the economic impacts of extreme weather on the UK economy, a very 



 

 

approximate financial risk to the UK economy of a cluster of extreme cold spells of different 

durations was calculated . Although our analysis which is based on historical temperature 

data showed that the frequency of cold extremes have decreased and is expected to continue 

to do so in the future, periods of extreme cold winter can still occur with global warming 

(Räisänen and Ylhäisi, 2011).    

 

In this study we have analysed cold extremes, the same method, however, is also applicable 

to hot extremes.  The weather stations selected for the study are not representative of the 

whole UK, however they are reasonably spread within the south and north of the UK. It is 

difficult to extrapolate the findings of this study (which were based on analysing historical 

data) into the future because of the changing climate.  Nevertheless our findings are still 

relevant for future assessments.  They can be used to analyse the impact of extreme weather 

events in computer simulation experiments in order to evaluate the cost-effectiveness of 

protective measures for such events. This is important for the insurance industry (Smolka, 

2006). 

 

One of the key results of this study is the calculation of the probabilities of successive cold 

extremes. This is important for several reasons. The economic impact of successive cold 

weather extremes is not necessarily additive. It is very likely to be super-additive. This means 

that the impact of say three successive days of extreme cold weather is more than the sum of 

the impacts of the three extremely cold days treated as if there are independent and far 

between.  In our burden calculations, additive impacts are assumed which imply that the 

calculated economic burdens represent a low (optimistic) bound.   

 



 

 

In relation to the estimates of the economic daily burden as calculated in the CEBR report, on 

which our financial risk assessment is based, any large-scale economic model of a country is 

based on assumptions and hence the model’s estimates are naturally subject to uncertainties. 

The CEBR report was the only study of its kind which investigated the economic daily 

burden of cold weather in England. Naturally the economic estimates are subject to 

uncertainties. Our aim was to provide broad and approximate estimates of the economic 

burden of clusters of extreme cold days of different durations. We acknowledge however that 

our estimates could have wide confidence/credible intervals. 
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Supplementary Material 

Figure 1A: Observed time series of annual minimum winter temperature for 10 stations (excluding Durham and Balmoral). The x-axis is the year and the y-axis is the annual 

minim temperature. The plots show the raw data (as dots) and a locally fitted polynomial regression line. 

 

 

  
 

 
   



 

 

  

 

  



 

 

Figure 2A: Observed relationship between annual minimum temperature and the NAO for 10 stations (excluding Durham and Balmoral). The x-axis is the NAO index and 

the y-axis is the annual minimum temperature. The plots show the raw data (as dots) and a locally fitted polynomial regression line.  

  
  

 
 

 

 

 



 

 

  

 

Table 6: Fitted non stationary GEV models for each station (except Durham and Balmoral). The first row is the 

set GEV parameters and the second row are the polynomial regression coefficients in time and NAO. Shown 

below are the mean estimates of the coefficients (specified to three points after the decimal) and in brackets are 

the associated standard errors.  NS means that the covariate was found to be insignificant. These regression 

coefficients were estimated by fitting the GEV models to the negative of the minimum temperatures (ie the 

annual block maxima) 

 �̂� �̂� 𝜉 

 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 𝑌𝑒𝑎𝑟 𝑌𝑒𝑎𝑟2 𝑌𝑒𝑎𝑟3 𝑁𝐴𝑂 𝑁𝐴𝑂2 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 𝑌𝑒𝑎𝑟 𝑌𝑒𝑎𝑟2 𝑁𝐴𝑂  

Craibstone 6.678
(0.261)

 
NS NS NS −0.635

(0.118)
 

NS 2.196
(0.178)

 
NS NS NS −0.211

(0.057)
 

Leuchars 4.595
(0.424)

 
0.080

(0.007)
 

0.001
(0.000)

 
NS −0.510

(0.111)
 

NS 1.973
(0.160)

 
NS NS −0.206

(0.076)
 

−0.145
(0.069)

 

Eskdalemui

r 

11.486
(0.684)

 
−0.058
(0.019)

 
NS NS −0.820

(0.174)
 

NS 2.478
(0.234)

 
NS NS −0.209

(0.103)
 

−0.212
(0.066)

 

Stornoway 6.131
(0.000)

 
0.140

(0.000)
 

−0.003
(0.000)

 −
0.000

(0.000)
 

−0.305
(0.000)

 
NS 1.788

(0.000)
 

NS NS −0.104
(0.000)

 
−0.015
(0.000)

 

Wick 

Airport 

6.329
(0.401)

 
0.029

(0.006)
 −

0.000
(0.000)

 
NS −0.828

(0.054)
 

NS 0.909
(0.191)

 
0.097

(0.002)
 −

0.001
(0.000)

 
0.095

(0.072)
 

−0.336
(0.081)

 

Rothampste

d 

5.925
(0.353)

 
NS NS NS −0.653

(0.119)
 

0.138
(0.049)

 
2.396

(0.189)
 

NS NS NS −0.099
(0.066)

 

Oxford 7.459
(0.382)

 
−0.016
(0.004)

 
NS NS −0.722

(0.100)
 

NS 2.227
(0.138)

 
NS NS NS −0.092

(0.051)
 

Hastings 3.684
(0.473)

 
−0.020
(0.117)

 
NS NS −0.595

(0.128)
 

NS 1.801
(0.165)

 
NS NS NS −0.186

(0.071)
 

Plymouth 3.991
(0.387)

 
−0.024
(0.010)

 
NS NS −0.512

(0.094)
 

NS 1.465
(0.131)

 
NS NS NS −0.198

(0.067)
 

Bude 4.143
(0.258)

 
NS NS NS −0.603

(0.105)
 

NS 1.750
(0.174)

 
NS NS −0.193

(0.079)
 

−0.218
(0.086)

 

 



 

 

Figure 4A:  The 5 (blue), 10 (red), 50 (purple) and 100 (green) year return levels of minimum winter temperature variation with time for different phases of the NAO. Each 

row of figures represents one weather station and for three different phases of the NAO.  

 

 



 

 

 



 

 

 



 

 

Figure 5A: Probability of experiencing an extreme minimum winter temperature (defined by the 85th(green), 90th (red) and 95th (blue) centile) for different phases of the 

NAO.  Each row of figures represents one weather station and for three different phases of the NAO.  

 

 



 

 

 

 



 

 

 



 

 

Table 7: Return levels of AMWT for extreme positive, average and negative phase of the NAO index 

  5 Year Return Level 10 Year Return Level 50 Year Return Level 100 Year Return Level 

Station Year Extreme 

Low NAO 

Average 

NAO 

Extreme 

High NAO 

Extreme 

Low NAO 

Average 

NAO 

Extreme 

High NAO 

Extreme 

Low NAO 

Average 

NAO 

Extreme 

High NAO 

Extreme 

Low NAO 

Average 

NAO 

Extreme 

High NAO  

Balmoral 1920-
21 

-19.857 oC -14.075 oC -10.294 oC -19.764 oC -15.572 oC 
 

-11.380 oC 
 

-23.050 oC 
 

-18.150 oC 
 

-13.250 oC 
 

-24.136 oC 
 

-19.002 oC 
 

-13.867 oC 
 

1950-

51 

-20.392 oC -16.611 oC -12.830 oC -22.299 oC -18.107 oC 

 

-13.915 oC 

 

-25.586 oC -20.686 oC 

 

-15.785 oC 

 

-26.672 oC 

 

-21.537 oC -16.403 oC 

 

1975-
76 

-20.572 oC -16.791 oC -13.010 oC -22.479 oC -18.287 oC 
 

-14.095 oC 
 

-25.766 oC 
 

-20.865 oC 
 

-15.965 oC 
 

-26.851 oC 
 

-21.717 oC 
 

-16.583 oC 
 

2000-

01 

-18.994 oC -15.213 oC -11.432 oC -20.901 oC -16.709 oC 

 

-12.517 oC 

 

-24.187 oC 

 

-19.287 oC 

 

-14.387 oC 

 

-25.273 oC 

 

-20.139 oC 

 

-15.004 oC 

 

2014-

15 

-17.342 oC -13.561 oC -9.780 oC -19.2491 oC -15.057 oC -10.865 oC -22.536 oC -17.636 oC -12.735 oC -23.621 oC -18.487 oC -13.353 oC 

Bude 

 
All 
years 

-9.783 oC -6.382 oC -2.981 oC -11.044 oC -7.257 oC -3.470 oC -13.188 oC 
 

-8.744 oC -4.300 oC -13.888 oC -9.229 oC -4.571 oC 

Craibstone 

 

All 

years 

-12.043 oC -9.503 oC -6.963 oC -13.154 oC -10.614 oC -8.074 oC -15.060 oC -12.520 oC -9.980 oC -15.687 oC -13.146 oC -10.606 oC 

Durham 1880-
81 

-14.786 oC -11.204 oC -7.622 oC -16.533 oC -12.556 oC -8.578 oC -19.722 oC -15.022 oC -10.323 oC -20.839 oC -15.886 oC -10.934 oC 

 1900-

01 

-14.473 oC -10.891 oC -7.309 oC -16.220 oC -12.242 oC -8.264 oC -19.408 oC -14.709 oC -10.009 oC -20.525 oC -15.573 oC -10.620 oC 

 1925-
26 

-14.081 oC -10.499 oC -6.916 oC -15.828 oC -11.850 oC -7.872 oC -19.016 oC -14.316 oC -9.617 oC -20.133 oC -15.181 oC -10.228 oC 

 1950-

51 

-13.689 oC -10.107 oC -6.524 oC -15.436 oC -11.458 oC -7.480 oC -18.624 oC -13.924 oC -9.225 oC -19.741 oC -14.789 oC -9.836 oC 

 1975-
76 

-13.297 oC -9.715 oC -6.132 oC -15.044 oC -11.066 oC -7.088 oC -18.232 oC -13.532 oC -8.833 oC -19.349 oC -14.397 oC -9.444 oC 

 2000-

01 

-12.905 oC -9.323 oC -5.740 oC -14.652 oC -10.674 oC -6.696 oC -17.840 oC -13.140 oC -8.441 oC -18.957 oC -14.005 oC -9.052 oC 

 2014-
15 

-12.685 oC -9.103 oC -5.521 oC -14.432 oC -10.455 oC -6.477 oC -17.620 oC -12.921 oC -8.221 oC -18.738 oC -13.785 oC -8.833 oC 

Oxford 1853-

54 

-13.453 oC -10.564 oC -7.675 oC -14.861 oC -11.972 oC -9.083 oC -17.638 oC 

-14.749 oC -11.860 oC 

-18.691 oC 

-15.802 oC -12.914 oC 

 1875-
76 

-13.096 oC -10.207 oC -7.318 oC -14.504 oC -11.615 oC -8.726 oC -17.281 oC 
-14.392 oC -11.503 oC 

-18.334 oC 
-15.445 oC -12.557 oC 

 1900-

01 

-12.690 oC -9.801 oC -6.912 oC -14.098 oC -11.209 oC -8.320 oC -16.875 oC 

-13.986 oC -11.098 oC -17.929 °C -15.04 °C -12.151 °C 

 1925-
26 

-12.284 oC -9.396 oC -6.507 oC -13.692 oC -10.803 oC -7.915 oC -16.470 oC 
-13.581 oC -10.692 oC -17.523 °C -14.634 °C -11.745 °C 

 1950-

51 

-11.879 oC -8.990 oC -6.101 oC -13.287 oC -10.398 oC -7.509 oC -16.064 oC 

-13.175 oC -10.286 oC -17.117 °C -14.228 °C -11.34 °C 



 

 

  5 Year Return Level 10 Year Return Level 50 Year Return Level 100 Year Return Level 

Station Year Extreme 
Low NAO 

Average 
NAO 

Extreme 
High NAO 

Extreme 
Low NAO 

Average 
NAO 

Extreme 
High NAO 

Extreme 
Low NAO 

Average 
NAO 

Extreme 
High NAO 

Extreme 
Low NAO 

Average 
NAO 

Extreme 
High NAO  

 1975-
76 

-11.473 oC -8.584 oC -5.695 oC -12.881 oC -9.992 oC -7.103 oC -15.658 oC 
-12.769 oC -9.880 oC -16.711 °C -13.823 °C -10.934 °C 

 2000-

01 

-11.067 oC -8.179 oC -5.290 oC -12.475 oC -9.586 oC -6.697 oC -15.252 oC 

-12.36 4 oC -9.475 oC -16.306 °C -13.417 °C -10.528 °C 

 2014-
15 

-10.840 oC -7.951 oC -5.063 oC -12.248 oC -9.359 oC -6.470 oC -15.025 oC 
-12.136 oC -9.248 oC -16.079 °C -13.19 °C -10.301 °C 

Rothampsted All 

years 

-14.082 oC -9.265 oC -8.859 oC -15.577 oC -10.760 oC -10.353 oC -18.501 oC 

-13.684 oC -13.278 oC -19.601 °C -14.784 °C -14.378 °C 

Leuchars 1925-
26 10.785 oC 7.634 oC 4.483 oC 12.386 oC 8.763 oC 5.140 oC 15.351 oC 10.854 oC 6.357 oC 16.406 °C 11.598 °C 6.79 °C 

 1950-

51 12.119 oC 8.968 oC 5.817 oC 13.719 oC 10.096 oC 6.474 oC 16.684 oC 12.187 oC 7.691 oC 17.739 °C 12.931 °C 8.124 °C 

 1975-
76 12.511 oC 9.360 oC 6.209 oC 14.111 oC 10.489 oC 6.866 oC 17.076 oC 12.580 oC 8.083 oC 18.131 °C 13.324 °C 8.516 °C 

 2000-

01 11.962 oC 8.811 oC 5.660 oC 13.563 oC 9.940 oC 6.317 oC 16.528 oC 12.031 oC 7.534 oC 17.583 °C 12.775 °C 7.967 °C 

 2014-
15 11.244 oC 8.093 oC 4.942 oC 12.844 oC 9.222 oC 5.599 oC 15.809 oC 11.313 oC 6.816 oC 16.864 °C 12.057 °C 7.249 °C 

Eskdalemuir 1954-

55 -18.970 oC -14.612 oC -10.255 oC -20.644 oC -15.863 oC -11.083 oC -23.512 oC -18.007 oC -12.502 oC -24.453 °C -18.71 °C -12.967 °C 

 1975-

76 -17.757 oC -13.400 oC -9.042 oC -19.431 oC -14.651 oC -9.870 oC -22.299 oC -16.794 oC -11.289 oC -23.24 °C -17.497 °C -11.755 °C 

 2000-

01 -16.313 oC -11.956 oC -7.598 oC -17.987 oC -13.207 oC -8.426 oC -20.855 oC -15.350 oC -9.845 oC -21.796 °C -16.054 °C -10.311 °C 

 2014-
15 -15.505 oC -11.147 oC -6.790 oC -17.179 oC -12.398 oC -7.618 oC -20.047 oC -14.542 oC -9.036 oC -20.988 °C -15.245 °C -9.502 °C 

Hastings 1950-

51 -8.344 oC -5.963 oC -3.582 oC -9.298 oC -6.917 oC -4.536 oC -10.983 oC -8.602 oC -6.221 oC -11.553 °C -9.173 °C -6.792 °C 

 1975-
76 -7.849 oC -5.469 oC -3.088 oC -8.804 oC -6.423 oC -4.042 oC -10.488 oC -8.108 oC -5.727 oC -11.059 °C -8.678 °C -6.297 °C 

 2000-

01 -7.355 oC -4.974 oC -2.593 oC -8.309 oC -5.928 oC -3.547 oC -9.994 oC -7.613 oC -5.232 oC -10.564 °C -8.183 °C -5.802 °C 

 2014-
15 -7.078 oC -4.697 oC -2.316 oC -8.032 oC -5.651 oC -3.270 oC -9.717 oC -7.336 oC -4.955 oC -10.287 °C -7.906 °C -5.526 °C 

Plymouth 1950-

51 
-7.867 °C -5.819 °C -3.772 °C -8.625 °C -6.578 °C -4.531 °C -9.946 °C -7.899 °C -5.852 °C -10.387 °C -8.34 °C -6.293 °C 

 1975-

76 
-7.261 °C -5.214 °C -3.167 °C -8.02 °C -5.973 °C -3.925 °C -9.341 °C -7.294 °C -5.246 °C -9.782 °C -7.735 °C -5.687 °C 

 2000-
01 

-6.656 °C -4.608 °C -2.561 °C -7.414 °C -5.367 °C -3.32 °C -8.735 °C -6.688 °C -4.641 °C -9.176 °C -7.129 °C -5.082 °C 

 2014-

15 
-6.317 °C -4.269 °C -2.222 °C -7.075 °C -5.028 °C -2.981 °C -8.396 °C -6.349 °C -4.302 °C -8.837 °C -6.79 °C -4.743 °C 



 

 

  5 Year Return Level 10 Year Return Level 50 Year Return Level 100 Year Return Level 

Station Year Extreme 
Low NAO 

Average 
NAO 

Extreme 
High NAO 

Extreme 
Low NAO 

Average 
NAO 

Extreme 
High NAO 

Extreme 
Low NAO 

Average 
NAO 

Extreme 
High NAO 

Extreme 
Low NAO 

Average 
NAO 

Extreme 
High NAO  

Stornoway 1883-
84 

-10.485 °C -8.646 °C -6.808 °C -12.093 °C -9.951 °C -7.809 °C -15.572 °C -12.772 °C -9.973 °C -17.017 °C -13.945 °C -10.872 °C 

 1900-

01 
-8.866 °C -7.028 °C -5.189 °C -10.475 °C -8.332 °C -6.19 °C -13.953 °C -11.154 °C -8.354 °C -15.398 °C -12.326 °C -9.254 °C 

 1925-

26 
-8.316 °C -6.478 °C -4.639 °C -9.925 °C -7.782 °C -5.64 °C -13.403 °C -10.604 °C -7.804 °C -14.848 °C -11.776 °C -8.704 °C 

 1950-

51 
-8.82 °C -6.982 °C -5.144 °C -10.429 °C -8.287 °C -6.144 °C -13.907 °C -11.108 °C -8.309 °C -15.352 °C -12.28 °C -9.208 °C 

 1975-

76 
-9.12 °C -7.281 °C -5.443 °C -10.728 °C -8.586 °C -6.444 °C -14.207 °C -11.407 °C -8.608 °C -15.652 °C -12.58 °C -9.507 °C 

 2000-

01 
-7.955 °C -6.117 °C -4.279 °C -9.564 °C -7.422 °C -5.28 °C -13.043 °C -10.243 °C -7.444 °C -14.488 °C -11.415 °C -8.343 °C 

 2014-
15 

-6.195 °C -4.357 °C -2.518 °C -7.804 °C -5.661 °C -3.519 °C -11.282 °C -8.483 °C -5.683 °C -12.727 °C -9.655 °C -6.582 °C 

Wick 1930-

31 
-9.689 °C -7.541 °C -4.678 °C -9.977 °C -7.944 °C -5.233 °C -10.405 °C -8.542 °C -6.059 °C -10.526 °C -8.711 °C -6.291 °C 

 1950-

51 
-11.699 °C -9.552 °C -6.688 °C -12.547 °C -10.514 °C -7.803 °C -13.807 °C -11.944 °C -9.461 °C -14.162 °C -12.347 °C -9.928 °C 

 1975-
76 

-12.033 °C -9.885 °C -7.021 °C -13.029 °C -10.995 °C -8.285 °C -14.508 °C -12.645 °C -10.162 °C -14.925 °C -13.11 °C -10.691 °C 

 2000-

01 
-9.944 °C -7.796 °C -4.933 °C -10.475 °C -8.442 °C -5.731 °C -11.263 °C -9.4 °C -6.916 °C -11.485 °C -9.67 °C -7.251 °C 

 2014-

15 
-7.717 °C -5.569 °C -2.705 °C -7.719 °C -5.686 °C -2.975 °C -7.722 °C -5.859 °C -3.375 °C -7.723 °C -5.908 °C -3.488 °C 

 

  



 

 

Table 8: probability of experiencing an extreme temperature (as given by the 85th, 90th and 95th quantile of temperature data) in any given year for extreme positive, average 

and negative phase of the NAO index 

Station Year Extreme Low NAO (extremely cold winter) Average NAO (average winter) Extreme High NAO (extremely warm winter) 

 Temp -10 oC -15 oC -20 oC -10 oC -15 oC -20 oC -10 oC -15 oC -20 oC 

Balmoral 1920-21 0.879 
 

0.436 
 

0.091 
 

0.668 
 

0.133 
 

0.004 
 

0.235 
 

0.002 
 

0.000 
 

1950-51 0.974 
 

0.687 
 

0.227 
 

0.910 
 

0.361 
 

0.033 
 

0.647 
 

0.042 
 

0.000 
 

1975-76 0.978 
 

0.704 
 

0.239 
 

0.920 
 

0.382 
 

0.037 
 

0.677 
 

0.050 
 

0.000 
 

2000-01 0.934 
 

0.549 
 

0.141 
 

0.796 
 

0.218 
 

0.011 
 

0.404 
 

0.010 
 

0.000 
 

2014-15 0.847 0.387 0.073 0.604 0.103 0.002 0.176 0.001 0.000 
 

 Temp -1 oC -4 oC -6 oC -1 oC -4 oC -6 oC -1 oC -4 oC -6 oC 

Bude All years 0.998 0.918 0.711 0.989 0.662 0.259 0.865 0.039 0.000 

 Temp -10 oC -11 oC -12oC -10 oC -11 oC -12oC -10 oC -11 oC -12oC 

Craibstone All years 0.499 0.337 0.205 0.149 0.076 0.033 0.020 0.006 0.001 

 Temp -11 oC -12 oC -13oC -11 oC -12 oC -13oC -11 oC -12 oC -13oC 

Durham 1880-81 0.586 0.468 0.358 0.220 0.135 0.077 0.009 0.002 0.000 

 1900-01 0.548 0.432 0.326 0.190 0.114 0.064 0.006 0.001 0.000 

 1925-26 0.502 0.389 0.289 0.157 0.092 0.050 0.004 0.001 0.000 

 1950-51 0.456 0.348 0.254 0.128 0.073 0.039 0.002 0.000 0.000 

 1975-76 0.412 0.309 0.222 0.104 0.058 0.030 0.001 0.000 0.000 

 2000-01 0.370 0.273 0.193 0.083 0.045 0.022 0.001 0.000 0.000 



 

 

Station Year Extreme Low NAO (extremely cold winter) Average NAO (average winter) Extreme High NAO (extremely warm winter) 

 2014-15 0.347 0.254 0.178 0.073 0.039 0.019 0.000 0.000 0.000 

 Temp -10 oC -11 oC -14oC -10 oC -11 oC -14oC -10 oC -11 oC -14oC 

Oxford 1853-54 

0.686 0.522 0.154 0.257 0.163 0.032 0.061 0.034 0.005 

 1875-76 

0.628 0.465 0.129 0.220 0.137 0.026 0.050 0.027 0.004 

 1900-01 

0.561 0.403 0.105 0.182 0.111 0.020 0.039 0.021 0.003 

 1925-26 

0.494 0.346 0.085 0.150 0.090 0.015 0.031 0.016 0.002 

 1950-51 

0.431 0.294 0.068 0.123 0.072 0.012 0.024 0.013 0.001 

 1975-76 

0.372 0.247 0.054 0.100 0.058 0.009 0.019 0.010 0.001 

 2000-01 

0.317 0.206 0.043 0.080 0.046 0.007 0.014 0.007 0.001 

 2014-15 

0.289 0.186 0.038 0.071 0.040 0.006 0.012 0.006 0.001 

 Temp -11 oC -12 oC -13oC -11 oC -12 oC -13oC -11 oC -12 oC -13oC 

Rothampsted All years 

0.592 0.442 0.311 0.089 0.053 0.030 0.072 0.042 0.024 

 Temp -10 oC -11 oC -12oC -10 oC -11 oC -12oC -10 oC -11 oC -12oC 

Leuchars 1925-26 

0.269 0.183 0.119 0.041 0.018 0.007 0.000 0.000 0.000 

 1950-51 

0.417 0.303 0.210 0.107 0.053 0.024 0.000 0.000 0.000 

 1975-76 

0.466 0.345 0.243 0.137 0.070 0.033 0.000 0.000 0.000 

 2000-01 

0.398 0.287 0.197 0.096 0.047 0.021 0.000 0.000 0.000 

 2014-15 

0.316 0.220 0.146 0.058 0.026 0.011 0.000 0.000 0.000 

 Temp -15 oC -16 oC -17oC -15 oC -16 oC -17oC -15 oC -16 oC -17oC 



 

 

Station Year Extreme Low NAO (extremely cold winter) Average NAO (average winter) Extreme High NAO (extremely warm winter) 

Eskdalemuir 1954-55 

0.600 0.600 0.486 0.164 0.092 0.046 0.000 0.000 0.000 

 1975-76 

0.463 0.463 0.355 0.080 0.039 0.017 0.000 0.000 0.000 

 2000-01 

0.312 0.312 0.224 0.027 0.011 0.003 0.000 0.000 0.000 

 2014-15 

0.240 0.240 0.165 0.013 0.004 0.001 0.000 0.000 0.000 

 Temp -6 oC -7 oC -8oC -6 oC -7 oC -8oC -6 oC -7 oC -8oC 

Hastings 1950-51 0.629 0.424 0.248 0.195 0.094 0.038 0.026 0.008 0.002 

 1975-76 0.527 0.331 0.181 0.138 0.061 0.023 0.015 0.004 0.001 

 2000-01 0.426 0.250 0.127 0.094 0.038 0.013 0.008 0.002 0.000 

 2014-15 0.373 0.210 0.103 0.075 0.029 0.009 0.005 0.001 0.000 

 Temp -5 oC -6 oC -7oC -5 oC -6 oC -7oC -5 oC -6 oC -7oC 

Plymouth 1950-51 

0.844 0.624 0.373 0.362 0.172 0.064 0.060 0.016 0.003 

 1975-76 

0.720 0.469 0.246 0.237 0.097 0.030 0.028 0.006 0.001 

 2000-01 

0.570 0.326 0.149 0.142 0.050 0.012 0.011 0.002 0.000 

 2014-15 

0.483 0.256 0.108 0.103 0.032 0.007 0.006 0.001 0.000 

 Temp -8 oC -9 oC -10oC -8 oC -9 oC -10oC -8 oC -9 oC -10oC 

Stornoway 1883-84 

0.503 0.358 0.244 0.276 0.167 0.097 0.087 0.042 0.020 

 1900-01 

0.283 0.189 0.123 0.120 0.069 0.039 0.026 0.012 0.006 

 1925-26 

0.228 0.150 0.097 0.089 0.051 0.028 0.017 0.008 0.004 

 1950-51 

0.278 0.186 0.121 0.117 0.067 0.038 0.025 0.012 0.005 



 

 

Station Year Extreme Low NAO (extremely cold winter) Average NAO (average winter) Extreme High NAO (extremely warm winter) 

 1975-76 

0.312 0.210 0.138 0.137 0.080 0.045 0.032 0.015 0.007 

 2000-01 

0.196 0.128 0.082 0.073 0.041 0.023 0.013 0.006 0.003 

 2014-15 

0.092 0.058 0.037 0.027 0.015 0.008 0.003 0.001 0.001 

 Temp -10 oC -11 oC -12oC -10 oC -11 oC -12oC -10 oC -11 oC -12oC 

Wick 1930-31 

0.094 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 1950-51 

0.488 0.308 0.160 0.149 0.064 0.018 0.009 0.001 0.000 

 1975-76 

0.494 0.339 0.204 0.188 0.100 0.042 0.024 0.006 0.000 

 2000-01 

0.188 0.038 0.001 0.003 0.000 0.000 0.000 0.000 0.000 

 2014-15 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 

  



 

 

Table 9: Fitted threshold models for each run length for all stations except (Durham and Balmoral). The first 

row is the set POT parameters and the second row is the polynomial regression coefficients in time and NAO. 

The table shows the mean estimates of the coefficients (specified to three points after the decimal) and those in 

brackets are the associated standard errors. NS means that the covariate was found to be insignificant. These 

regression coefficients were estimated by fitting the POT models to the negative of the minimum daily 

temperatures that lie above the selected threshold. 

 �̂� �̂� 𝜉 

 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 𝑌𝑒𝑎𝑟 𝑌𝑒𝑎𝑟2 𝑌𝑒𝑎𝑟3 𝑁𝐴𝑂 𝑁𝐴𝑂2 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 𝑌𝑒𝑎𝑟 𝑌𝑒𝑎𝑟2 𝑁𝐴𝑂  

Craibstone 

𝑟 = 3,  
𝑢 = 3 

6.476
(0.242)

 
NS NS NS −0.701

(0.112)
 

NS 2.471
(0.118)

 
NS NS −0.133 

(0.074) 

−0.212
(0.049)

 

Leuchars 

𝑟 = 4,  
𝑢 = 3 

5.038
(0.289)

 
0.053

(0.005)
 

−0.000
(0.000)

 
NS −0.736

(0.081)
 

NS 2.042
(0.094)

 
NS NS −0.261

(0.045)
 

−0.170
(0.044)

 

Eskdalem

uir 

𝑟 = 7,  
𝑢 = 6 

10.720
(0.000)

 
−0.030
(0.000)

 
NS NS −0.956

(0.000)
 

NS 3.757
(0.000)

 
−0.029 
(0.000) 

NS −0.397
(0.000)

 
−0.273
(0.000)

 

Stornoway 

𝑟 = 6,  
𝑢 = 2 

5.984
(0.000)

 
−0.107
(0.000)

 
0.002

(0.000)
 

−0.000
(0.000)

 
−0.554
(0.000)

 
NS 2.179

(0.000)
 

NS NS −0.118
(0.000)

 
−0.186
(0.000)

 

Wick 

Airport 

𝑟 = 3,  
𝑢 = 3 

4.899
(0.425)

 
0.095

(0.008)
 

−0.001
(0.000)

 
NS −0.633

(0.097)
 

NS 2.310
(0.102)

 
NS NS −0.056

(0.067)
 

−0.335
(0.057)

 

Rothampst

ed 

𝑟 = 6,  
𝑢 = 4 

6.518
(0.293)

 
NS NS NS −0.765

(0.123)
 

0.015
(0.043)

 
2.735

(0.167)
 

NS NS −0.278  
(0.082) 

−0.127
(0.057)

 

Oxford 
𝑟 = 6,  
𝑢 = 4 

7.118
(0.340)

 −
0.012

(0.003)
 

NS NS −0.805
(0.093)

 
NS 2.585

(0.131)
 

NS NS −0.240  
(0.062) 

−0.142
(0.044)

 

Hastings 

𝑟 = 5,  
𝑢 = 1.5 

3.096
(0.379)

 
0.002

(0.008)
 

NS NS −0.550
(0.099)

 
NS 1.902

(0.143)
 

NS NS −0.277 

(0.068) 

−0.218
(0.076)

 

Plymouth 

𝑟 = 5,  
𝑢 = 1 

3.542
(0.291)

 
−0.011
(0.007)

 
NS NS −0.512

(0.073)
 

NS 1.620
(0.087)

 
NS NS −0.182 

(0.040) 

−0.276
(0.050)

 

Bude 

𝑟 = 4,  
𝑢 = 2 

4.429
(0.228)

 
NS NS NS −0.676

(0.094)
 

NS 1.848
(0.110)

 
NS NS −0.158

(0.054)
 

−0.294
(0.063)

 



 

 

Table 10: Return levels of winter temperatures lying below a low thresholds for extreme positive, average and negative phase of the NAO index 

 

  5 Year Return Level 10 Year Return Level 50 Year Return Level 100 Year Return Level 

Station Year Extreme 

Low NAO 

Average 

NAO 

Extreme 

High NAO 

Extreme 

Low NAO 

Average 

NAO 

Extreme 

High NAO 

Extreme 

Low NAO 

Average 

NAO 

Extreme 

High NAO 

Extreme 

Low NAO 

Average 

NAO 

Extreme 

High NAO 

Balmoral 1920-

21 
-19.046 °C -14.006 °C -8.965 °C -20.52 °C -15.074 °C -9.628 °C -22.77 °C -16.705 °C -10.639 °C -23.423 °C -17.178 °C -10.933 °C 

1950-
51 

-21.72 °C -16.68 °C -11.639 °C -23.437 °C -17.991 °C -12.545 °C -26.057 °C -19.991 °C -13.926 °C -26.818 °C -20.572 °C -14.327 °C 

1975-

76 -22.474 °C -17.434 °C -12.393 °C -24.393 °C -18.947 °C -13.501 °C -27.321 °C -21.256 °C -15.19 °C -28.172 °C -21.926 °C -15.681 °C 

2000-

01 
-21.888 °C -16.847 °C -11.807 °C -24.008 °C -18.562 °C -13.116 °C -27.245 °C -21.179 °C -15.114 °C -28.185 °C -21.94 °C -15.694 °C 

2014-

15 
-20.973 °C -15.933 °C -10.893 °C -23.207 °C -17.761 °C -12.315 °C -26.617 °C -20.551 °C -14.486 °C -27.607 °C -21.361 °C -15.116 °C 

Bude 

 

All 

years -10.233 °C -6.746 °C -3.26 °C -11.232 °C -7.521 °C -3.81 °C -12.714 °C -8.67 °C -4.627 °C -13.131 °C -8.994 °C -4.857 °C 

Craibstone 

 

All 

years -13.136 °C -9.65 °C -6.164 °C -14.652 °C -10.898 °C -7.143 °C -17.249 °C -13.034 °C -8.82 °C -18.101 °C -13.736 °C -9.37 °C 

Durham 1880-

81 -11.116 °C -11.116 °C -11.116 °C -12.742 °C -12.742 °C -12.742 °C -15.852 °C -15.852 °C -15.852 °C -16.996 °C -16.996 °C -16.996 °C 

 1900-

01 -11.008 °C -11.008 °C -11.008 °C -12.634 °C -12.634 °C -12.634 °C -15.744 °C -15.744 °C -15.744 °C -16.888 °C -16.888 °C -16.888 °C 

 1925-

26 -10.874 °C -10.874 °C -10.874 °C -12.499 °C -12.499 °C -12.499 °C -15.61 °C -15.61 °C -15.61 °C -16.754 °C -16.754 °C -16.754 °C 

 1950-
51 -10.739 °C -10.739 °C -10.739 °C -12.365 °C -12.365 °C -12.365 °C -15.475 °C -15.475 °C -15.475 °C -16.619 °C -16.619 °C -16.619 °C 

 1975-

76 -10.605 °C -10.605 °C -10.605 °C -12.23 °C -12.23 °C -12.23 °C -15.341 °C -15.341 °C -15.341 °C -16.485 °C -16.485 °C -16.485 °C 

 2000-

01 -10.47 °C -10.47 °C -10.47 °C -12.096 °C -12.096 °C -12.096 °C -15.206 °C -15.206 °C -15.206 °C -16.35 °C -16.35 °C -16.35 °C 

 2014-

15 -10.395 °C -10.395 °C -10.395 °C -12.021 °C -12.021 °C -12.021 °C -15.131 °C -15.131 °C -15.131 °C -16.275 °C -16.275 °C -16.275 °C 

Oxford 1853-
54 -15.12 °C -10.601 °C -6.082 °C -17.162 °C -12.089 °C -7.017 °C -20.96 °C -14.859 °C -8.758 °C -22.317 °C -15.848 °C -9.38 °C 

 1875-

76 -14.86 °C -10.341 °C -5.822 °C -16.902 °C -11.83 °C -6.758 °C -20.7 °C -14.599 °C -8.498 °C -22.058 °C -15.589 °C -9.12 °C 

 1900-
01 -14.566 °C -10.047 °C -5.528 °C -16.608 °C -11.535 °C -6.463 °C -20.406 °C -14.305 °C -8.204 °C -21.763 °C -15.294 °C -8.826 °C 



 

 

  5 Year Return Level 10 Year Return Level 50 Year Return Level 100 Year Return Level 

Station Year Extreme 

Low NAO 

Average 

NAO 

Extreme 

High NAO 

Extreme 

Low NAO 

Average 

NAO 

Extreme 

High NAO 

Extreme 

Low NAO 

Average 

NAO 

Extreme 

High NAO 

Extreme 

Low NAO 

Average 

NAO 

Extreme 

High NAO 

 1925-

26 -14.271 °C -9.752 °C -5.233 °C -16.313 °C -11.241 °C -6.169 °C -20.111 °C -14.01 °C -7.909 °C -21.468 °C -15 °C -8.531 °C 

 1950-
51 -13.977 °C -9.457 °C -4.938 °C -16.018 °C -10.946 °C -5.874 °C -19.816 °C -13.716 °C -7.615 °C -21.174 °C -14.705 °C -8.237 °C 

 1975-

76 -13.682 °C -9.163 °C -4.644 °C -15.724 °C -10.652 °C -5.579 °C -19.522 °C -13.421 °C -7.32 °C -20.879 °C -14.41 °C -7.942 °C 

 2000-
01 -13.387 °C -8.868 °C -4.349 °C -15.429 °C -10.357 °C -5.285 °C -19.227 °C -13.126 °C -7.025 °C -20.584 °C -14.116 °C -7.647 °C 

 2014-

15 -13.222 °C -8.703 °C -4.184 °C -15.264 °C -10.192 °C -5.12 °C -19.062 °C -12.961 °C -6.86 °C -20.419 °C -13.951 °C -7.482 °C 

Rothampsted All 
years -15.077 °C -10.253 °C -5.923 °C -17.353 °C -11.872 °C -6.884 °C -21.661 °C -14.936 °C -8.703 °C -23.228 °C -16.05 °C -9.365 °C 

Leuchars 1925-

26 -12.517 °C -8.046 °C -3.575 °C -14.267 °C -9.171 °C -4.074 °C -17.34 °C -11.146 °C -4.951 °C -18.376 °C -11.811 °C -5.246 °C 

 1950-
51 -13.487 °C -9.016 °C -4.544 °C -15.236 °C -10.14 °C -5.043 °C -18.31 °C -12.115 °C -5.92 °C -19.345 °C -12.78 °C -6.216 °C 

 1975-

76 -13.95 °C -9.479 °C -5.008 °C -15.699 °C -10.603 °C -5.507 °C -18.773 °C -12.578 °C -6.383 °C -19.808 °C -13.243 °C -6.679 °C 

 2000-

01 -13.907 °C -9.436 °C -4.965 °C -15.656 °C -10.56 °C -5.464 °C -18.73 °C -12.535 °C -6.341 °C -19.765 °C -13.201 °C -6.636 °C 

 2014-

15 -13.662 °C -9.191 °C -4.72 °C -15.411 °C -10.315 °C -5.219 °C -18.485 °C -12.29 °C -6.096 °C -19.52 °C -12.956 °C -6.391 °C 

Eskdalemuir 1954-
55 -21.06 °C -15.28 °C -9.5 °C -23.456 °C -16.96 °C -10.465 °C -27.284 °C -19.645 °C -12.006 °C -28.45 °C -20.463 °C -12.476 °C 

 1975-

76 -19.69 °C -13.91 °C -8.13 °C -21.815 °C -15.319 °C -8.823 °C -25.208 °C -17.569 °C -9.93 °C -26.243 °C -18.255 °C -10.268 °C 

 2000-
01 -18.059 °C -12.279 °C -6.499 °C -19.86 °C -13.364 °C -6.869 °C -22.737 °C -15.099 °C -7.46 °C -23.614 °C -15.627 °C -7.64 °C 

 2014-

15 -17.145 °C -11.365 °C -5.585 °C -18.766 °C -12.27 °C -5.774 °C -21.354 °C -13.715 °C -6.076 °C -22.143 °C -14.155 °C -6.168 °C 

Hastings 1950-
51 -9.157 °C -5.538 °C -1.919 °C -10.66 °C -6.488 °C -2.315 °C -13.218 °C -8.103 °C -2.988 °C -14.051 °C -8.629 °C -3.208 °C 

 1975-

76 -9.208 °C -5.589 °C -1.97 °C -10.711 °C -6.539 °C -2.366 °C -13.269 °C -8.154 °C -3.039 °C -14.102 °C -8.68 °C -3.259 °C 

 2000-
01 -9.259 °C -5.64 °C -2.021 °C -10.762 °C -6.59 °C -2.417 °C -13.32 °C -8.205 °C -3.09 °C -14.153 °C -8.731 °C -3.309 °C 

 2014-

15 -9.285 °C -5.666 °C -2.047 °C -10.789 °C -6.616 °C -2.443 °C -13.346 °C -8.231 °C -3.117 °C -14.18 °C -8.758 °C -3.336 °C 

Plymouth 1950-
51 -8.429 °C -5.488 °C -2.547 °C -9.481 °C -6.214 °C -2.948 °C -11.154 °C -7.369 °C -3.584 °C -11.662 °C -7.72 °C -3.778 °C 



 

 

  5 Year Return Level 10 Year Return Level 50 Year Return Level 100 Year Return Level 

Station Year Extreme 

Low NAO 

Average 

NAO 

Extreme 

High NAO 

Extreme 

Low NAO 

Average 

NAO 

Extreme 

High NAO 

Extreme 

Low NAO 

Average 

NAO 

Extreme 

High NAO 

Extreme 

Low NAO 

Average 

NAO 

Extreme 

High NAO 

 1975-

76 -8.159 °C -5.218 °C -2.277 °C -9.211 °C -5.944 °C -2.678 °C -10.884 °C -7.099 °C -3.314 °C -11.392 °C -7.45 °C -3.508 °C 

 2000-
01 -7.889 °C -4.948 °C -2.008 °C -8.941 °C -5.674 °C -2.408 °C -10.614 °C -6.829 °C -3.045 °C -11.122 °C -7.18 °C -3.238 °C 

 2014-

15 -7.749 °C -4.808 °C -1.867 °C -8.8 °C -5.534 °C -2.267 °C -10.474 °C -6.689 °C -2.904 °C -10.982 °C -7.04 °C -3.097 °C 

Stornoway 1883-
84 -11.564 °C -8.731 °C -5.898 °C -12.968 °C -9.886 °C -6.803 °C -15.45 °C -11.926 °C -8.403 °C -16.29 °C -12.618 °C -8.945 °C 

 1900-

01 -10.352 °C -7.519 °C -4.686 °C -11.757 °C -8.674 °C -5.592 °C -14.238 °C -10.715 °C -7.192 °C -15.079 °C -11.406 °C -7.734 °C 

 1925-
26 -10.017 °C -7.184 °C -4.351 °C -11.421 °C -8.339 °C -5.257 °C -13.903 °C -10.38 °C -6.856 °C -14.743 °C -11.071 °C -7.398 °C 

 1950-

51 -10.439 °C -7.606 °C -4.773 °C -11.843 °C -8.761 °C -5.678 °C -14.325 °C -10.801 °C -7.278 °C -15.165 °C -11.493 °C -7.82 °C 

 1975-
76 -10.538 °C -7.705 °C -4.872 °C -11.942 °C -8.86 °C -5.777 °C -14.424 °C -10.9 °C -7.377 °C -15.264 °C -11.592 °C -7.919 °C 

 2000-

01 -9.234 °C -6.401 °C -3.568 °C -10.639 °C -7.556 °C -4.474 °C -13.12 °C -9.597 °C -6.073 °C -13.961 °C -10.288 °C -6.616 °C 

 2014-

15 -7.489 °C -4.656 °C -1.823 °C -8.893 °C -5.811 °C -2.728 °C -11.375 °C -7.851 °C -4.328 °C -12.215 °C -8.543 °C -4.87 °C 

Wick 1930-

31 -10.512 °C -7.718 °C -4.923 °C -11.53 °C -8.646 °C -5.762 °C -13.044 °C -10.027 °C -7.009 °C -13.472 °C -10.417 °C -7.362 °C 

 1950-
51 -11.755 °C -8.96 °C -6.165 °C -12.772 °C -9.888 °C -7.004 °C -14.287 °C -11.269 °C -8.252 °C -14.714 °C -11.659 °C -8.604 °C 

 1975-

76 -12.362 °C -9.568 °C -6.773 °C -13.38 °C -10.496 °C -7.612 °C -14.894 °C -11.877 °C -8.859 °C -15.322 °C -12.266 °C -9.211 °C 

 2000-
01 -11.518 °C -8.723 °C -5.929 °C -12.536 °C -9.652 °C -6.767 °C -14.05 °C -11.032 °C -8.015 °C -14.477 °C -11.422 °C -8.367 °C 

 2014-

15 -10.115 °C -7.32 °C -4.526 °C -11.133 °C -8.248 °C -5.364 °C -12.647 °C -9.629 °C -6.612 °C -13.074 °C -10.019 °C -6.964 °C 

 

  



 

 

Table 11: probability of experiencing an extreme temperature (as given by the 85th, 90th and 95th quantile of temperature data) in any given year for extreme positive, average 

and negative phase of the NAO index 

Station Year Extreme Low NAO (extremely cold winter) Average NAO (average winter) Extreme High NAO (extremely warm winter) 

 Temp -10 oC -15 oC -20 oC -10 oC -15 oC -20 oC -10 oC -15 oC -20 oC 

Balmoral 1920-21 

0.69 0.21 0.03 0.53 0.04 0.00 0.12 0.00 0.00 

1950-51 

0.74 0.29 0.08 0.63 0.13 0.01 0.40 0.00 0.00 

1975-76 

0.75 0.33 0.10 0.66 0.18 0.02 0.48 0.02 0.00 

2000-01 

0.76 0.33 0.11 0.67 0.18 0.02 0.49 0.02 0.00 

2014-15 

0.75 0.33 0.10 0.66 0.18 0.02 0.48 0.02 0.00 

 Temp 
-1 oC -4 oC -6 oC -1 oC -4 oC -6 oC -1 oC -4 oC -6 oC 

Bude All years 

1.00 0.56 0.30 1.00 0.39 0.12 1.00 0.08 0.00 

 Temp 
-10 oC -11 oC -12oC -10 oC -11 oC -12oC -10 oC -11 oC -12oC 

Craibstone All years 

0.14 0.00 0.00 0.05 0.10 0.06 0.03 0.01 0.00 

 Temp 
-11 oC -12 oC -13oC -11 oC -12 oC -13oC -11 oC -12 oC -13oC 

Durham 1880-81 

0.59 0.47 0.36 0.22 0.13 0.08 0.01 0.00 0.00 

 1900-01 

0.55 0.43 0.33 0.19 0.11 0.06 0.01 0.00 0.00 

 1925-26 

0.50 0.39 0.29 0.16 0.09 0.05 0.00 0.00 0.00 

 1950-51 

0.46 0.35 0.25 0.13 0.07 0.04 0.00 0.00 0.00 

 1975-76 

0.41 0.31 0.22 0.10 0.06 0.03 0.00 0.00 0.00 

 2000-01 

0.37 0.27 0.19 0.08 0.04 0.02 0.00 0.00 0.00 



 

 

Station Year Extreme Low NAO (extremely cold winter) Average NAO (average winter) Extreme High NAO (extremely warm winter) 

 2014-15 

0.35 0.25 0.18 0.07 0.04 0.02 0.00 0.00 0.00 

 Temp 
-10 oC -11 oC -14oC -10 oC -11 oC -14oC -10 oC -11 oC -14oC 

Oxford 1853-54 

0.22 0.17 0.07 0.10 0.06 0.01 0.00 0.00 0.00 

 1875-76 

0.22 0.17 0.06 0.09 0.06 0.01 0.00 0.00 0.00 

 1900-01 

0.22 0.16 0.06 0.09 0.06 0.01 0.00 0.00 0.00 

 1925-26 

0.21 0.16 0.06 0.09 0.05 0.01 0.00 0.00 0.00 

 1950-51 

0.21 0.16 0.06 0.08 0.05 0.01 0.00 0.00 0.00 

 1975-76 

0.21 0.15 0.06 0.08 0.05 0.01 0.00 0.00 0.00 

 2000-01 

0.20 0.15 0.05 0.08 0.04 0.01 0.00 0.00 0.00 

 2014-15 

0.20 0.15 0.05 0.07 0.04 0.01 0.00 0.00 0.00 

 Temp 
-11 oC -12 oC -13oC -11 oC -12 oC -13oC -11 oC -12 oC -13oC 

Rothampsted All years 

0.183193 0.139111 0.10459 0.066669 0.041434 0.024977 0.001557 0.000321 4.45E-05 

 Temp 
-10 oC -11 oC -12oC -10 oC -11 oC -12oC -10 oC -11 oC -12oC 

Leuchars 1925-26 

0.14 0.10 0.07 0.02 0.01 0.00 0.00 0.00 0.00 

 1950-51 

0.16 0.11 0.08 0.03 0.01 0.01 0.00 0.00 0.00 

 1975-76 

0.16 0.12 0.09 0.04 0.02 0.01 0.00 0.00 0.00 

 2000-01 

0.16 0.12 0.09 0.04 0.02 0.01 0.00 0.00 0.00 

 2014-15 

0.16 0.12 0.08 0.03 0.02 0.01 0.00 0.00 0.00 

 Temp 
-15 oC -16 oC -17oC -15 oC -16 oC -17oC -15 oC -16 oC -17oC 



 

 

Station Year Extreme Low NAO (extremely cold winter) Average NAO (average winter) Extreme High NAO (extremely warm winter) 

Eskdalemuir 1954-55 

0.13 0.10 0.07 0.06 0.04 0.02 0.01 0.00 0.00 

 1975-76 

0.12 0.09 0.06 0.05 0.03 0.02 0.01 0.00 0.00 

 2000-01 

0.11 0.08 0.05 0.04 0.02 0.01 0.00 0.00 0.00 

 2014-15 

0.10 0.07 0.05 0.04 0.02 0.01 0.00 0.00 0.00 

 Temp 
-6 oC -7 oC -8oC -6 oC -7 oC -8oC -6 oC -7 oC -8oC 

Hastings 1950-51 

0.26 0.18 0.12 0.07 0.03 0.01 0.00 0.00 0.00 

 1975-76 

0.26 0.18 0.12 0.07 0.03 0.01 0.00 0.00 0.00 

 2000-01 

0.26 0.18 0.12 0.08 0.03 0.01 0.00 0.00 0.00 

 2014-15 

0.26 0.18 0.12 0.08 0.03 0.01 0.00 0.00 0.00 

 Temp 
-5 oC -6 oC -7oC -5 oC -6 oC -7oC -5 oC -6 oC -7oC 

Plymouth 1950-51 

0.17 0.11 0.27 0.04 0.01 0.09 0.00 0.00 0.00 

 1975-76 

0.17 0.10 0.26 0.03 0.01 0.08 0.00 0.00 0.00 

 2000-01 

0.16 0.09 0.25 0.03 0.01 0.07 0.00 0.00 0.00 

 2014-15 

0.15 0.09 0.24 0.02 0.00 0.07 0.00 0.00 0.00 

 Temp 
-8 oC -9 oC -10oC -8 oC -9 oC -10oC -8 oC -9 oC -10oC 

Stornoway 1883-84 

0.15 0.10 0.07 0.07 0.04 0.02 0.01 0.00 0.00 

 1900-01 

0.13 0.09 0.05 0.05 0.03 0.01 0.01 0.00 0.00 

 1925-26 

0.13 0.08 0.05 0.05 0.02 0.01 0.00 0.00 0.00 

 1950-51 

0.13 0.09 0.06 0.06 0.03 0.01 0.01 0.00 0.00 



 

 

Station Year Extreme Low NAO (extremely cold winter) Average NAO (average winter) Extreme High NAO (extremely warm winter) 

 1975-76 

0.14 0.09 0.06 0.06 0.03 0.01 0.01 0.00 0.00 

 2000-01 

0.11 0.07 0.04 0.04 0.02 0.01 0.00 0.00 0.00 

 2014-15 

0.08 0.05 0.03 0.02 0.01 0.00 0.00 0.00 0.00 

 Temp 
-10 oC -11 oC -12oC -10 oC -11 oC -12oC -10 oC -11 oC -12oC 

Wick 1930-31 

0.08 0.04 0.02 0.01 0.00 0.00 0.00 0.00 0.00 

 1950-51 

0.11 0.07 0.04 0.03 0.01 0.00 0.00 0.00 0.00 

 1975-76 

0.12 0.08 0.04 0.04 0.02 0.00 0.00 0.00 0.00 

 2000-01 

0.10 0.06 0.03 0.02 0.01 0.00 0.00 0.00 0.00 

 2014-15 

0.07 0.03 0.01 0.01 0.00 0.00 0.00 0.00 0.00 

 


