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Abstract

Health economic decision models often involve a wide-ranging and compli-

cated synthesis of evidence from a number of sources, making design and

implementation of such models resource-heavy. When new data become

available and reassessment of treatment recommendations is warranted, it

may be more efficient to perform a Bayesian update of an existing model

than to construct a new model. If the existing model depends on many,

possibly correlated, covariates then an update may produce biased es-

timates of model parameters if some of these covariates are completely

absent from the new data. Motivated by the need to update a cost-

effectiveness analysis comparing diagnostic strategies for coronary heart

disease, this study develops methods to overcome this obstacle by either

introducing additional data or using results from previous studies. We

outline a framework to handle unobserved covariates, and use our moti-

vating example to illustrate both the flexibility of the proposed methods

and some potential difficulties in applying them.

Introduction

Long-term health economic decision models have complicated mathematical

structures, with model parameters informed by a range of data sources, in-

cluding mortality rates, clinical outcomes, incidence of clinical events, costs and
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utilities.1 Given the resources involved in the design and implementation of

these models, when reassessment of the treatment decisions is required due to

accrual of new data, conducting a Bayesian update of the model parameters

may be more efficient than designing a new model.

Many parameters within decision models are conditional on patient covari-

ates, representing demographics, clinical histories and treatments. These covari-

ates might be necessary to allow for changes in patients’ characteristics as they

transition between health states within the model, or they might be used to

restrict the analysis to a specific patient population. If, for example, a decision

model depends on prediction equations for risk of clinical events then the coeffi-

cients of the regression equations will have been adjusted for the other variables

involved, and this should be reflected in the analysis.2 Any Bayesian updating

of these equations must therefore update all coefficients simultaneously in order

to accommodate correlations between coefficients.3

Intermittently missing data are common in updates that require data on

many different covariates. They may be handled by treating missing values

as uncertain quantities and assigning distributions to them.4,5 A potentially

greater obstacle is the complete absence of some necessary variables from the

accrued data. Commonly-used missing data methods cannot be applied because

they require at least some observations for each variable.

Our motivating example is an update of an existing cost-effectiveness study

and its probabilistic sensitivity analysis (PSA). Assessment of decision uncer-

tainty through PSA, by assigning distributions to uncertain model parameters

and propagating that uncertainty through the model,6 is a requirement of deci-

sion makers such as The National Institute for Health and Care Excellence.7 It

is also considered a hallmark of good practice by the ISPOR-SMDM Modeling

Good Research Practices Task Force, who recommend incorporating all avail-

able data through evidence synthesis techniques.2 In our example, individual

patient data (IPD) had become available, which we hoped to incorporate in the

PSA by performing a Bayesian update of the parameter distributions. However,

a necessary covariate had not been observed.

Ignoring new data would not be good practice as it would ignore current,

available and relevant evidence. Proceeding with an inappropriate synthesis,

ignoring important correlations between observed and unobserved covariates,

could produce biased results. Our goal in this paper is therefore to present sim-

ple methods to overcome the problem of unobserved covariates in a Bayesian

update. These are similar to methods used for intermittently missing data,
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with the important difference that distributions assigned to unobserved covari-

ates must be informed by external evidence, such as estimated distributions

from published research or IPD from another study.

Full details of our motivating example are given in the following section. In

the subsequent section, we propose methods to handle unobserved covariates

in a number of general situations. We apply these methods to our example,

illustrating their flexibility and highlighting potential difficulties. In the final

section, we discuss their advantages and limitations. Although we focus on up-

dating the inputs of a cost-effectiveness model, rather than the model structure,

our motivating example demonstrates how the structure and assumptions of the

model are important considerations in applying these methods.

Motivating example

Coronary heart disease (CHD) is the stenosis (narrowing) of coronary arteries.

The extent of stenosis, and thus a patient’s need for revascularisation, can be

assessed through diagnostic imaging techniques, including cardiovascular mag-

netic resonance imaging (MRI), single-photon emission computed tomography

(SPECT) and X-ray coronary angiography (CA).

The CE-MARC study8,9 compared the accuracy of SPECT and MRI in the

diagnosis of CHD with significant stenosis (i.e. stenosis sufficient for revascular-

isation). Eligible patients were referrals to cardiologists with suspected angina.

Participants were scheduled to undergo both MRI and SPECT. Each partici-

pant was also scheduled to have the true extent of their stenosis classified by

CA (Table 1), which was assumed to be the gold standard (perfect sensitivity

and specificity).
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CHD with signifi-

cant stenosis

At least 70% stenosis of a first order coronary artery

at least 2mm in diameter, or left main stem stenosis

of at least 50%.

CHD without sig-

nificant stenosis

No significant stenosis, but at least 10% stenosis

of at least one first order coronary artery at least

2mm in diameter, or at least 10% stenosis of the

left main stem.

No CHD Less than 10% stenosis of all first order coronary

arteries at least 2mm in diameter, and less than

10% stenosis of the left main stem.

Table 1: Classification of CHD by angiography. The CE-MARC study

considered diagnosis of CHD with significant stenosis. Further classification of

patients without significant stenosis into those with and without CHD was

introduced later, in the cost-effectiveness study.

Alongside the CE-MARC trial analysis, a cost-effectiveness study was un-

dertaken.10 This study considered the subset of the CE-MARC population that

was eligible for exercise tolerance testing (ETT) and had not previously un-

dergone revascularisation. Eight diagnostic strategies were compared, including

combinations of ETT, SPECT, MRI and CA. For example, a patient might

undergo an MRI-CA sequence. A patient testing negative in MRI would not

undergo the subsequent CA or revascularisation. A patient testing positive in

MRI would then undergo CA and thus be correctly diagnosed and revascularised

if necessary.

Using a decision analytic model (Figure 1), expected costs and quality-

adjusted life years (QALYs) were estimated for each strategy over a 50-year

time horizon. Each strategy would allocate patients to one of four states: true

positive (TP), true negative (TN), false negative (FN), or death (caused by CA).

This was modelled using decision trees. Positive test sequences would always

end with CA and therefore false positives were not considered possible. For

patients with and without CHD, separate Markov models were used to model

pathways following testing.
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Figure 1: The cost-effectiveness model used in CE-MARC, illustrated for the

MRI-CA testing stratgy. Health states are represented by ellipses, events by

rectangles, and transitions by arrows. Only patients with significant stenosis,

confirmed by CA, would undergo revascularisation and thus enter the TP

state. Transitions from FN to TP would require identification via CA, followed

by revascularisation.

For patients with CHD, transitions involving CV events (defined as myocar-

dial infarction, cardiac arrest or cardiovascular death) were explicitly modelled,

with transition probabilities depending on the incidence rate and mortality of

these events. Before long-term follow-up data from CE-MARC became avail-

able, the required estimates were taken from published results of the EUROPA

study.11,12

For example, a patient’s time to first CV event, which we denote here by y,

was assumed to be exponentially distributed, with event rate λ depending on

17 patient-level covariates in a proportional hazards model:

y | x, β ∼ Exp(λ), λ = exp (β0 + β1x1 + . . .+ β17x17) ,

where β = (β0, . . . , β17) denotes a vector of parameters and x = (x1, . . . , x17)

includes baseline characteristics such as previous myocardial infarction and pre-

vious revascularisation. In the CE-MARC cost-effectiveness study, β was as-

signed a multivariate normal distribution, with mean and covariance matrix as

estimated in EUROPA.

However, EUROPA recruited patients with evidence of CHD, such as previ-

ous myocardial infarction (64% of patients recruited), previous revascularisation

(55%) or angiographic evidence of significant stenosis (61%), and a few with

only a positive nuclear stress test (5%). Therefore estimates from EUROPA

might require adjustment to accurately reflect the population of the CE-MARC

cost-effectiveness analysis. In particular, patients with CHD in the TN state of

Figure 1 do not have significant stenosis and therefore do not necessarily meet

the main inclusion criteria of EUROPA. Despite this, the original CE-MARC

cost-effectiveness model used the same estimated incidence rates from EUROPA

in all three initial states (TN, FN and TP). This required an implicit assumption

that, in patients with CHD, time to first CV event is independent of the ex-

tent of stenosis, given the other patient characteristics adjusted for in EUROPA.

Annual follow-ups for cardiac events were planned for each CE-MARC pa-

tient over a period of at least five years.13 With these data, the cost-effectiveness
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analysis could be updated by obtaining posterior distributions for model param-

eters related to the rate of CV events. Furthermore, information on extent of

stenosis, from the detailed angiography results of each patient, could be used

to investigate the assumption described above. Our goal was therefore to use

the newly available IPD both to update model parameters and to adjust for an

additional variable indicating severity of stenosis. CV events are associated with

high risk of death, high treatment costs and reduced quality of life, and therefore

such an update could have a significant impact on the cost-effectiveness results.

A major obstacle to this update was the complete absence of a necessary

variable, symptomatic angina, from the CE-MARC data. This was a covariate

in the proportional hazards model estimated in EUROPA, and was also used

to specify scenario analyses in the CE-MARC cost-effectiveness study. It was

therefore important that we did not ignore this variable in our update.

Methods

General problem

Suppose we wish to update model parameter estimates from an initial study

(Study 1) using data from a new study (Study 2). We assume that we only

have summary data from Study 1, but that IPD are available from Study 2.

We are interested in the situation where a conditional probability distribu-

tion p(y | x, β) has been estimated in Study 1; this represents the distribution of

an outcome y (e.g. time to CV event) conditional on covariates x and regression

coefficients β. A joint distribution p(β) describes the current uncertainty in the

parameter vector β, prior to observing data from Study 2.

We denote by y(k)i and x(k)i the values of the outcome variable y and covari-

ate vector x for the i-the individual of Study k, where i = 1, 2, . . . , n(k). Suppose

that the vector of covariates can be decomposed as x = (x′, x′′), such that the

vector x′′(2)i was observed for each individual in Study 2 but the vector x′(2)i was

not. Our general problem reduces to estimating the posterior distribution of β

conditional on all n(2) observations (y(2)i, x
′′
(2)i) from Study 2.

Updating when all covariates are available in Study 2

Bayesian updating is most straightforward when we observe all variables (y, x)

for each individual in Study 2. We only need to specify the prior p(β) from

Study 1 and the likelihood p(y | x, β) in order to obtain the posterior distri-

bution of β, conditional on all n(2) observations (y(2)i, x(2)i), via Bayes’ theorem.
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The necessary relationships between observed data and model parameters

can be specified in the directed acyclic graph (DAG)14 shown in Figure 2. We

have the observed data y(2)i and x(2)i from Study 2 (rectangular nodes), and an

uncertain parameter vector β (circular). Arrows into y(2)i show its dependence

on x(2)i and β through the specified likelihood. The plate (dashed rectangle)

indicates that the same relationship holds for all i = 1, 2, . . . , n(2).

Figure 2: DAG for updating p(β) when all covariates are observed in Study 2.

In many Bayesian analyses, particularly those involving many parameters,

mathematical derivations of posterior distibutions are unavailable. Markov

Chain Monte Carlo (MCMC) methods, such as Gibbs sampling, are therefore

used to sample from the posterior distribution of the model parameters.15

Unobserved covariates in Study 2

Suppose that a subset x′ of the covariates x = (x′, x′′) was not observed

in Study 2, so that the observed data in Study 2 comprises (y(2)i, x
′′
(2)i) for

i = 1, 2, . . . , n(2). Since our likelihood is p(y | x′, x′′, β), without data on x′(2)i
we cannot directly use Bayes’ theorem to obtain the posterior distribution of β.

However, if we can assign a distribution to each x′(2)i, conditional on x′′(2)i, we

might proceed by treating each x′(2)i as an uncertain parameter.

We need to identify a distribution, p(x′ | x′′, γ) (with parameter vector γ),

relating the unobserved covariates and the observed covariates. For example,

this distribution might have been estimated in a previous study (Study 3). This

leads to the model in Figure 3.

Figure 3: DAG for updating β when there are unobserved covariates x′ in

Study 2 imputed from observed covariates x′′.

When performed via Gibbs sampling, this method of handling unobserved

covariates is analogous to multiple imputation of missing data. All uncertain pa-

rameters, including each component of the vector x′(2)i, are sampled sequentially

from their full conditional distributions (conditional on all other parameters and

the observed data). In each iteration, values of β are therefore sampled condi-

tional on the previously sampled values of x′(2)i.

Properties of this method are also comparable to the usual recommenda-

tions16 for imputation of missing covariates: each component of x′(2)i is drawn

7



Handling unobserved covariates in Bayesian updates

from a distribution that conditions on all other variables in the model of interest

(including y(2)i) and additional parameter uncertainty is accounted for in the

prior p(γ).

We have not assumed that we have IPD from the distribution of x′, only that

the parameters and nature of their distribution are available from an existing

study. However, if we had IPD from Study 3, we could estimate p(x′ | x′′, γ)

ourselves and (for example) determine p(γ) using asymptotic properties of max-

imum likelihood estimators.

Additional assumptions required for the case of unobserved

covariates in Study 3

Where the number of covariates in x′′ is large, it is possible, even likely, that

some of these will not have been observed in Study 3 (or simply not included

when estimating the distribution of x′). Thus the covariate vector x can be

decomposed into x = (x′, x′′, x′′′), where x′ was observed in Study 1 and Study

3 only, x′′ was observed in all three studies, and x′′′ was observed in Study 1

and Study 2 only.

If we have p(x′ | x′′, γ) from Study 3, we can use this to update β, provided

that we can make an additional assumption that x′ is independent of x′′′ given

x′′ and γ; we denote this by x′ ⊥⊥ x′′′ | (x′′, γ). Figure 4 shows the DAG

corresponding to these assumptions.

Figure 4: DAG for updating β when there are unobserved covariates x′ in

Study 2 imputed from a subset x′′ of the observed covariates.

Additional covariates in Study 3

Another potential difficulty is that the distribution estimated for x′ in Study

3 might include additional, unwanted covariates. Suppose that we have an

estimated distribution p(x′ | x′′, z, γ) from Study 3, where z is a vector of

covariates not in x. Suppose also that we do not have IPD from Study 3. Our

update can still be performed if z was observed in Study 2 and if we can assume

both x′ ⊥⊥ x′′′ | (x′′, z, γ) and y ⊥⊥ z | (x, β). See Figure 5.

Figure 5: DAG for updating β when there are unobserved covariates x′ in

Study 2 imputed from observed covariates x′′ and additional observed

covariates z.

8



Handling unobserved covariates in Bayesian updates

Additional covariates can sometimes be used to our advantage. For example,

if the IPD from Study 3 are available, we might incorporate additional covariates

to strengthen confidence in our independence assumptions. We would choose

variables z that are not in x and then estimate p(x′ | x′′, z, γ) and p(γ). For

example, we might choose z such that an assumption x′ ⊥⊥ x′′′ | (x′′, z, γ) is

more plausible than an assumption x′ ⊥⊥ x′′′ | (x′′, γ). This is analogous to in-

clusion of auxiliary variables in a multiple imputation model to make a ‘missing

at random’ assumption more plausible.

This two-stage approach (estimation of p(x′ | x′′, z, γ), followed by updating

β) could be performed in a single step by including the Study 3 data directly

in our Bayesian model, as illustrated in Figure 6.

Figure 6: DAG for updating β and γ simultaneously using data sets from both

Study 2 and Study 3.

Handling unobserved covariates in multiple studies in a

one-stage analysis

If Study 2 and Study 3 do not provide covariates z for which assumptions

x′ ⊥⊥ x′′′ | (x′′, z, γ) and y ⊥⊥ z | (x, β) are plausible then the model in Figure 6

is not tenable. One option is to use the covariates x′′, available in both Study 2

and Study 3, to impute x′′′ in Study 3, as illustrated in Figure 7. This requires

additional distributional assumptions: p(x′′′ | x′′, θ) with parameter vector θ,

relating observed and unobserved covariates, and a prior p(θ). An assumption

x′ ⊥⊥ x′′′ | (x′′, γ) is not required.

Figure 7: DAG for updating β, using data sets from both Study 2 and Study

3, with imputation of unobserved covariates x′ in Study 2 and x′′′ in Study 3.

The models presented so far apply to a broad range of problems and can be

extended to more specific problems after careful specification of additional dis-

tributions and conditional independence assumptions. For example, the model

in Figure 7 could be extended to include auxiliary variables z in the imputation

of x′ and x′′′.

Application

We now describe the application of the proposed methods to our example of

updating the CE-MARC cost-effectiveness analysis. We focus on updating pa-

rameters related to the rate of CV events for patients with CHD in the three
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initial states (FN, TN and TP) of Figure 1.

Recall that the distribution of time to first CV event, y, was estimated

in the EUROPA study using a parametric proportional hazards model with

17 baseline characteristics as covariates. In the CE-MARC cost-effectiveness

model, the population consisted of patients with no history of revascularisation,

so the likelihood and prior information from EUROPA reduced to:

y | x, β ∼ Exp(λ), λ = exp
(
β0 +

∑16
i=1 βixi

)
, β = (β0, . . . , β16) ∼ N17(µ,Σ),

where λ now denotes the CV event rate for a patient with baseline characteris-

tics x = (x1, . . . , x16) who has not undergone revascularisation prior to testing.

Given the EUROPA eligibility criteria, these distributions were considered to be

directly applicable to patients with significant stenosis, and therefore to tran-

sitions from the FN and TP states. However, as noted, their application to

transitions from the TN state required an assumption that CV event rate does

not depend on the extent of stenosis, given its existence and given the values

of other covariates in the model. This assumption was not made on the basis

of any established evidence. For CE-MARC participants, we had data on both

time to first CV event (from follow-up) and stenosis (from angiography), and

could therefore investigate the validity of this assumption.

We extended the proportional hazards model to include x17, an indicator for

insignificant stenosis, and β17, an additional regression coefficient:

y | x, β ∼ Exp(λ), λ = exp
(
β0 +

∑17
i=1 βixi

)
,

where x = (x1, . . . , x17) and β = (β0, . . . , β17). The additional hazard ratio

(eβ17) would apply to patients in the TN state, since these patients would have

only insignificant stenosis (x17 = 1). Patients in the TP or FN states would

all have significant stenosis at the time of testing (x17 = 0), and therefore the

model for y would reduce to the one specified in EUROPA.

We took the prior (β0, . . . , β16) ∼ N17(µ,Σ), as estimated in EUROPA. We

took a weakly informative, independent normal prior for β17, with mean 0 and

standard deviation 0.97, so that eβ17 would have median 1 and around 50%

probability of lying between 1/2 and 2. Our primary goal was therefore to up-

date p(β), the multivariate normal distribution taken as the prior of β, using

IPD from CE-MARC.

We note that other cost-effectiveness analyses, including some with the same

decision model structure as CE-MARC,17 have similarly allowed event rates to

differ between states by multiplying them by appropriate factors. These factors
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are often taken from previously published studies, without any adjustment.

Possible correlations with other parameters in the decision model are therefore

overlooked, and potentially related parameters are varied independently in PSA.

A strength of our Bayesian approach is that, by using IPD and specifying only

weak prior information for the additional parameter, these potential correlations

are accommodated in the posterior.

Data

CE-MARC recruited 752 patients, of whom 296 were eligible for ETT, had not

previously undergone revascularisation, and had angiographic evidence of CHD

with either significant or insignificant stenosis. To avoid overcomplicating pre-

sentation of our methods, we excluded a further 24 patients with intermittently

missing data in the observed covariates. We therefore present a complete case

analysis using IPD from 272 CE-MARC patients.

Symptomatic angina, defined in EUROPA as a Canadian Cardiovascular So-

ciety (CCS) grading of II or higher (chest pain during ordinary physical activi-

ties), was not recorded in CE-MARC. Because of this, straightforward updating

(Figure 2) of p(β) was not possible.

We therefore introduced a third study into our analysis, CECaT,18 from

which had access to a subset of the baseline data, including CCS grading. CE-

CaT compared diagnostic strategies for CHD and recruited 898 patients who

were eligible for ETT and not recently revascularised. Of these patients, 218

were randomised to and underwent angiography. All but one had CCS grading

recorded at baseline. We selected these 217 CECaT patients as IPD for our

analysis.

In our terminology, EUROPA is Study 1, CE-MARC is Study 2, CECaT is

Study 3, and symptomatic angina at baseline is x′. We denote by x′′ the vector

of covariates available from both CE-MARC and CECaT, and by x′′′ the vector

of covariates not available from CECaT (Table 2).
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Baseline characteristics (x) EUROPA CE-MARC CECaT

x′: Symptomatic angina (CCS grade II – IV) X X

x′′: Insignificant stenosis (negative angiography) X X

Years older than 65 X X X

Gender X X X

Systolic blood pressure (mm Hg) X X X

History of myocardial infarction X X X

Diabetes mellitus X X X

Smoking X X X

Obesity (body mass index over 30kg/m2) X X X

Family history of CHD X X X

Lipid lowering drug use X X X

x′′′: Nitrate use X X

Total cholesterol (mmol/L) X X

Creatinine clearance below 80 (ml/min) X X

History of TIA, PVD or CVA X X

Angiotensin converting enzyme (ACE) inhibitor use X X

Calcium antagonist use X X

Table 2: Baseline variables, their use in EUROPA and their availability in the

CE-MARC and CECaT data sets. (TIA: transient ischaemic attack. PVD:

peripheral vascular disease. CVA: cerebrovascular accident.)

Model selection

The strategy for model selection was to work up from the simplest model, ex-

amining data sources and assumptions until reaching a model adequately rep-

resenting our situation. The model in Figure 3 could not be used because the

CECaT data did not include some necessary covariates. The model in Figure 4

would require x′ ⊥⊥ x′′′ | (x′′, γ), which is doubtful because x′ is an indicator

for symptomatic angina and x′′′ includes an indicator for use of nitrates, which

are used to relieve and prevent angina.
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We could have taken the approach of either Figure 5 or Figure 6, which

would allow us to ignore x′′′ for CECaT patients. But these models would

both require us to choose auxiliary variables z such that we could assume

x′ ⊥⊥ x′′′ | (x′′, z, γ). Alternatively, we could handle unobserved covariates

in CECaT by specifying a joint conditional distribution for all variables in x′′′,

given x′′, and using the model in Figure 7.

We adapted the approach of Figure 7, avoiding the need to specify a joint

distribution for x′′′ by choosing to impute only nitrate use for CECaT patients.

Writing x′′′ = (x∗, x∗∗), where x∗ denotes the binary covariate for nitrate use

and x∗∗ denotes the vector of covariates to be ignored, we used the model in

Figure 8. The assumptions required were x′ ⊥⊥ x∗∗ | (x′′, x∗, γ) and x∗ ⊥⊥ x∗∗ |
(x′′, θ).

Figure 8: Selected model for updating β using the CE-MARC and CECaT

data sets. Variables included are y (time to first CV event), x∗ (nitrate use),

x∗∗ (total cholesterol, creatinine clearance below 80, TIA/PVD/CVA, ACE

inhibitor use, calcium antagonist use), x′ (symptomatic angina) and x′′ (as in

Table 2).

Implementation

Sampling methods provide a straightforward and efficient way to obtain an ap-

proximate posterior distribution for β. Specifically, we used MCMC methods in

the freely available OpenBUGS software.14 An example program is provided in

the online supplement to this paper.

Logistic regression models were assumed for the conditional distributions of

the unobserved covariates, p(x′ | x′′, x∗, γ) and p(x∗ | x′′, θ). Initial analysis

using vague normal priors, p(γ) and p(θ), led to very unstable Markov chains.

To overcome such problems, Gelman et al.19 proposed a default method to as-

sign weakly informative priors for logistic regression: shift each covariate by

subtracting its mean, divide each continuous covariate by twice its standard

deviation,20 then assign independent Cauchy distributions to each parameter

(centre 0, scale 2.5 for coefficients, scale 10 for intercept terms). These priors

were chosen to give preference to reasonable values for the regression coefficients

(around 50% prior probability of lying between -5 and 5).

We assigned priors p(γ) and p(θ) using reasoning similar to that of Gelman

et al. However, to avoid dependence of our priors on the CE-MARC and CE-

CaT data, we shifted and scaled our covariates using summaries from EUROPA.
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Also, since we would not anticipate large effect sizes in our context, and to avoid

known limitations of Cauchy priors,21 we assigned normal priors with the rec-

ommended scale parameters. These are less conservative than Cauchy priors,

giving each regression coefficient around 95% prior probability of lying between

-5 and 5.

Some events were censored at known times c(2)i because of non-CV death,

withdrawal or the end of follow-up. Assuming ignorable censoring, the cen-

sored event times y(2)i were sampled conditional on y(2)i > c(2)i. Implementing

this in OpenBUGS is straightforward.22 Also, some CE-MARC patients were

recorded at baseline to have suffered previous acute coronary syndrome, but

it was not specified whether this had been myocardial infarction or unstable

angina. Therefore the myocardial infarction covariate for these patients was

sampled from a Bernoulli distribution, informed by the ratio of myocardial in-

farction to unstable angina observed in the ENACT study.23

Model fit was checked graphically by comparing empirical data summaries to

their posterior predictive distributions and by calculating Bayesian p-values.15,24,25

For example, potential underestimation or overestimation of event rates was in-

vestigated by assessing censoring of predicted event times. At each iteration

of the Gibbs sampler, an event time was simulated for each CE-MARC patient

conditional on the sampled value of β. For each iteration, we calculated the

proportion π of predicted events that would be censored (at either c(2)i or at

the final planned follow-up). We then compared a histogram of π (which had

mean 90% and standard deviation 2%) to the actual proportion of censored

times in the data (93%). This suggested some overestimation of event rates,

with p-value P (π > 93%) = 0.1. These checks were repeated in various sub-

sets of the CE-MARC sample and under different scenarios for censoring, each

producing similar results.

Results

The relevant input to the original cost-effectiveness model was a CV event rate

λ for a ‘base case’ patient with a given set of baseline characteristics x. This

rate was a deterministic function of β and x. For PSA, a rate λ was calculated

from each sampled β.

In our analysis, we had two such rates as model inputs: one for a base

case patient with significant stenosis (entering the model in either the FN or

TP state), and another for an otherwise identical patient with CHD but only

insignificant stenosis (entering the model in the TN state). Using our sampled

values of β, the approximate posterior distributions of these rates are plotted

14
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separately in Figure 9.

Figure 9: Histograms (left) showing posterior distributions of the rate of CV

events (λ) for base case patients with significant or insignificant stenosis.

Forest plot (right) showing the prior/posterior mean of each hazard ratio (eβi)

with 90% highest prior/posterior density (HPD) intervals.

By construction, the prior distribution of λ in Figure 9 for a patient with

significant stenosis was exactly the distribution obtained from EUROPA, as

used in the original CE-MARC cost-effectiveness analysis. The posterior was

very similar to this prior. This was because the update had little impact on

the hazard ratios eβ1 , . . . , eβ16 , or on eβ0 which had prior mean 0.018 (highest

prior density interval 0.008 to 0.028) and posterior mean 0.017 (highest poste-

rior density interval 0.008 to 0.026).

However, the posterior of λ for a patient with insignificant stenosis was

clearly different. On average, in the posterior, the event rate for a base case

patient with insignificant stenosis was around half that of an otherwise identical

patient with significant stenosis. Our posterior sample suggested around a 97%

probability of the event rate being lower (eβ17 < 1) in patients with insignificant

stenosis. The assumption made in the original analysis, that λ is the same in

all three initial states, is therefore unlikely to be true.

Despite this, conclusions from the updated cost-effectiveness analysis, using

the posterior distributions in Figure 9, were in agreement with those obtained

using only the prior information from EUROPA. The base case scenario we

considered was males, under 65, suffering from symptomatic angina and tak-

ing ACE inhibitors, who were otherwise average and without any other risk

factors listed in Table 2. Analysis using the EUROPA priors gave 55% proba-

bility of the MRI-CA strategy being cost-effective at willingness to pay £30,000

per QALY. Expected costs and QALYs of MRI-CA were £13,920 and 10.73

respectively. The updated analysis produced the same probability and simi-

lar expected QALYs (10.76), but lower expected costs (£13,825). For all eight

strategies compared, similar differences were seen between results of the two

analyses. For example, SPECT-CA had expected costs and QALYs £13,943

and 10.73 before the update, then £13,848 and 10.75 after.

Our update only had a notable effect on event rates in the TN state. The

proportion of patients entering TN would only vary between strategies through

very small differences in mortality due to misdiagnosed patients undergoing

unnecessary CA (Figure 1). Therefore comparisons between strategies would

15
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be affected very little, potentially explaining the agreement in our two analyses.

For example, although costs were lower in the updated analysis for all strategies,

incremental costs between strategies were similar in both analyses. Had our

update significantly affected event rates in the FN and TP states (for example,

if estimates from EUROPA were less precise or were in clear disagreement with

the observed data), then there might have been more impact on our conclusions

because the proportion of patients entering these states depends more heavily

on diagnostic accuracy of a strategy.

Discussion

We have presented a framework for updating decision model parameters based

on regression equations when the available data do not include all of the nec-

essary covariates. These methods are flexible and usually easy to implement

in freely available sampling-based software. The graphical modelling approach

encourages explicit statement of any independence assumptions. Using our mo-

tivating example, we demonstrated how these methods can be extended to more

specific problems when necessary.

Our example had one unobserved covariate in each study. In other situa-

tions, it might be necessary to handle multiple unobserved covariates in each

study. We would ideally specify multivariate distributions for these covariates.

For example, for multiple unobserved binary covariates we might use a multi-

nomial regression model. Also, for clarity, we demonstrated our methods using

a complete case analysis. Limitations of such analyses are well known16 and

Bayesian methods for dealing with intermittently missing data are described

elsewhere.4,5 Use of these methods in combination with our proposed methods

might require additional independence assumptions, or specification of multi-

variate distributions simultaneously describing unobserved and intermittently

missing covariates.

We did not address the issue of how much weight should be given to the

prior information. EUROPA was a large trial and produced very precise pa-

rameter estimates. However, the timing and setting of EUROPA (424 centres

in EUROPE, 1997 to 2000) were very different to CE-MARC (a single centre

in England, 2006 to 2009). Therefore the priors from EUROPA may have dom-

inated to an unacceptable degree, which might explain why our model checks

suggested some overestimation of event rates. A related issue is inconsistency

between data sources. Trials have been criticised for their selection bias, with

trial results often applied uncritically to a target population, despite differences

in patient characteristics and disease severity.26 Further work could investigate
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how existing models for cost-effectiveness could be updated to target popu-

lations within this framework, with appropriate weighting of trial and target

population data.

Imputation of unobserved covariates across multiple studies was inspired by

methods from epidemiology.27–29 However, our methods have a different pur-

pose. For example, Jackson et al.27 fit one regression model using two data sets,

each containing the same response variable but different subsets of the desired

covariates. This was done to address confounding that might have arisen if the

analysis was performed on a single data set, omitting unobserved covariates. In

contrast, we considered a previously estimated model and introduced additional

data to make an otherwise hopeless update possible, not to address confound-

ing. We are unaware of any previous applications of similar methods in health

economics.

In summary, we have presented methods to update an existing model us-

ing a data set with an incomplete set of covariates. However, these methods

should not be applied blindly. Priors should be carefully chosen, independence

assumptions should be justified, and discrepancies between model predictions

and observed data should be investigated.
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