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Abstract 47 

Screening of more than 1,500 drug-resistant strains of Mycobacterium tuberculosis revealed evolutionary 48 

patterns characteristic of positive selection for three alanine racemase (Alr) mutations. We investigated these 49 

mutations using molecular modeling, in vitro MIC testing, as well as direct measurements of enzymatic activity, 50 

which demonstrated that these mutations likely confer resistance to D-cycloserine.  51 

 52 

 53 

Manuscript 54 

In 2015, the Global Drug Facility declared that the cost of D-cycloserine (DCS), a group C drug to treat 55 

tuberculosis (TB), would be cut by more than half to as little as $0.19 per capsule to support the treatment of 56 

multidrug-resistant (MDR) and extensively drug-resistant (XDR) TB, which represent a major threat to public 57 

health (1). In light of this announcement, a better understanding of the resistance mechanisms to this drug is 58 
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required to facilitate phenotypic as well as genotypic drug-susceptibility testing (DST), both in the context of 59 

surveillance and individual patient treatment to avoid the severe side-effects of this drug (2, 3). 60 

Studies of the mode of action of DCS in mycobacteria have produced contradictory results, with some 61 

studies pointing to alanine racemase (Alr) as the primary target and others supporting D-alanine-D-alanine ligase 62 

(DdlA) (4-9). However, molecular data from Mycobacterium tuberculosis complex (MTBC) have only implicated 63 

the former gene in DCS resistance, which can also be conferred by mutations in alanine dehydrogenase (ald) or a 64 

permease (cycA) (10, 11). Using molecular modeling, we had predicted that the alr M319T mutation observed in 65 

an XDR strain would likely confer resistance to DCS, which was subsequently confirmed by Desjardins et al. using 66 

the unrelated strain TKK_04_0105 (Table S1 (2, 11)). Desjardins et al. described a number of additional alr 67 

mutations in strains with elevated DCS MICs, including a C to T nucleotide change 8 base pairs upstream of the 68 

experimentally confirmed start codon of alr (strain TKK_02_0050 in Table S1 (11, 12)). This was notable as 69 

Merker et al. had previously reported that, compared with the susceptible, parental alr wild-type strain, the 70 

acquisition of this mutation during treatment with DCS correlated with DCS resistance, which suggested that alr 71 

mutations might be both necessary and sufficient to confer DCS resistance (13). 72 

To gain further insights into the impact of alr mutations, we first confirmed that the aforementioned alr 73 

C-8T promoter mutant that evolved during treatment correlated in MICs above the current World Health 74 

Organization (WHO)-endorsed critical concentration (CC) of 30 μg/ml using the 1% proportion method on 75 

Löwenstein-Jensen (LJ) (strain PBm0 and PBm14 in Table S1; Desjardins et al. and Merker et al. had used 10% as 76 

the critical proportion and therefore had not adhered to the current WHO recommendations (11, 13, 14)). Using 77 

the same method, we also showed that two strains with alr M319T or Y364D mutations from XDR TB patients 78 

with a treatment history with DCS had MICs above the CC (Table S1). Moreover, we observed the M319T 79 

mutation in three XDR strains (PT1, PT2 and PT5) from Lisbon, Portugal (15). Although no CC exists for MGIT 960, 80 

this mutation correlated in an MIC increase from 16 to 64 μg/ml compared with three closely related wild-type 81 

control strains (PT3, PT6 and PT7) and one more distantly related control strain (PT4), which supported the role 82 

of this mutation in DCS resistance (Figure 1A and Table S1). By contrast, no or minimal MIC increases were 83 

recorded when testing these Portuguese strains using Sensititre MycoTB plates (Table S1) (16). Finally, a pre-XDR 84 

alr R373L mutant from a patient with DCS exposure, which also harbored a deletion in ald, tested resistant on LJ 85 

using the 1% proportion method (Tables S1 and S2). 86 
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To study the importance of the C-8T, M319T, Y364D and R373L mutations from an evolutionary 87 

perspective, we screened previously published and unpublished genomes of more than 1,500 MDR strains 88 

(mostly from Germany, Eastern Europe, and Swaziland), which identified eight additional strains with mutations 89 

at these alr positions or codons (Table S1). Interrogating the genomes of these 17 strains in the context of a 90 

phylogenetically diverse reference collection that included all major MTBC lineages and species showed that the 91 

mutations had either been acquired multiple times independently and/or that different amino acid changes 92 

were present at the same codons (Figure 1B). These mutation patterns are typically a signal of positive selection, 93 

which could have occurred in response to DCS exposure. 94 

Molecular modeling of these coding mutations supported this hypothesis. Alr functions as a homodimer, 95 

aided by the co-factor pyridoxal 5'-phosphate (PLP) to which it is covalently bound. DCS inhibits Alr irreversibly 96 

by covalently bonding to PLP (4). We generated and analyzed a model of the complex between the M. 97 

tuberculosis Alr and DCS (AlrMtb-DCS) (Figure S1) (4, 17). Amino acid residues 319 and 364 were located directly 98 

in the active site (Figure S1B). M319T was positioned close enough to allow interaction with the DCS moiety, 99 

which, given the large change of the character of the side chain, could strongly affect DCS reactivity (Figure S1C). 100 

Y364 is involved in the positioning of the phosphate moiety of PLP and thus represents a prominent active site 101 

residue in the conserved inner layer of the substrate entrance corridor of Alr (Figure S1B) (17). Mutation to 102 

aspartic acid introduced a shorter and negatively charged side chain, which could potentially affect PLP 103 

orientation in the active site (Figure S1C). Moreover, it could influence DCS uptake through alteration of the 104 

entrance corridor. Interestingly, M319 is located near Y364 and, as a result, it is possible that the M319T 105 

mutation could alter the interaction with Y364, thereby affecting DCS inhibition. In contrast, the R373L mutation 106 

was not directly located within the active site but near the dimer interface and close to residues M319 and D320, 107 

which play an important role in the makeup of the active site (Figure S1B). Consequently, the replacement of 108 

arginine with the short and hydrophobic side chain of leucine might disrupt molecular interactions at the dimer 109 

interface as well as destabilize the DCS binding site (Figure S1C). 110 

 To test these predictions experimentally, we expressed and purified the aforementioned AlrMtb coding 111 

mutants, along with wild-type AlrMtb, and determined their half maximal inhibitory concentration (IC50) to 112 

measure the effectiveness of inhibition by DCS (Figure 2). The IC50 for wild-type AlrMtb was 26.4 ± 1.7 μM, which 113 

was in the range previously reported for this compound (18, 19). From our structure-based analysis, we 114 

expected the two mutations located in the active site to show the greatest effect on DCS inhibition. Indeed, the 115 
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M319T mutant enzyme showed minimal inhibition by DCS, even at 1000 µM (Figure 2). Thus, the IC50 of this 116 

mutant could not be determined. The IC50 of the Y364D mutant showed a 50-fold increase to 1328.0 ± 340.0 µM. 117 

The R373L mutation, which was not located directly within the active site, also showed a significant increase in 118 

resistance to DCS with an IC50 of 712.0 ± 138.5 μM (27-fold increase). 119 

 Taken together, these data suggested that alr mutations likely confer DCS resistance, although allelic 120 

exchange experiments are required to formally prove this (particularly for R373L, which coincided with a 121 

deletion in ald and, consequently, may not be sufficient to confer resistance on its own). Although the 122 

relationship between MICs and IC50s can be complex, the observation that MICs increased by only 4-16 fold vs. 123 

at least 25-fold increases for IC50s supported the notion that DCS inhibits multiple targets, as noted earlier. This 124 

study should be complemented with extensive MIC testing of phylogenetically diverse, pan-susceptible MTBC 125 

strains to define the epidemiological cut-off value given that it is unclear based on which evidence the current 126 

WHO CC on LJ has been set (3, 14, 20, 21). Moreover, further MIC testing of likely DCS-resistant strains is needed 127 

to investigate whether the Sensititre system is less reliable at detecting DCS resistance compared with LJ and 128 

MGIT. Finally, the impact of alr mutations on resistance on terizidone remains to be investigated. 129 

 130 
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Figure 1. 152 

Maximum likelihood tree based on a concatenated sequence alignment of 45,740 variable sites (1,000 153 

resamplings, GTR nucleotide substitution model) showing the alr mutants from Table S1 in the context of a 154 

globally representative reference collection of 287 MTBC strains. Inset A, a zoomed-in part of the overall tree B, 155 

shows the phylogenetic relationship between the three Portuguese M319T mutants (PT1, PT5 and PT2) and the 156 

control strains (PT7, PT3, PT6 and PT4) tested in MGIT and Sensititre. The three Indian M319T, R364D and R373G 157 

mutants that were tested with the 1% proportion LJ method in this study are underlined. The T-8C, M319T and 158 

R364D mutations were homoplastic (i.e. they were acquired multiple times independently) and two different 159 

amino acid changes were observed at codon 373 (i.e. R373L, and. R373G). Thus, all mutations show evolutionary 160 

patterns of positive selection.  161 

  162 
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Figure 2. Determination of DCS IC50 for wild-type (wt) AlrMtb and the M319T, Y364D and R373L mutants. The activity 163 

was normalized against a control with no DCS present in the assay mix. The activity assay at each concentration 164 

was performed in triplicate, resulting in the error bars, which represent 95% CI. A variable slope model was fitted 165 

to determine the IC50 values, which were 26.4 ± 1.7, 1328.0 ± 340.0, 712.0 ± 138.5 μM for the wild-type, Y364D, and 166 

R373L enzymes, respectively. The inhibition of M319T was too weak to allow for IC50 determination. 167 

  168 
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