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Abstract  

Background: Cluster randomised trials (CRTs) are increasingly used to assess the effectiveness of 

health interventions. Three main analysis approaches are: cluster-level analyses, mixed-models and 

generalized estimating equations (GEEs).  Mixed models and GEEs can lead to inflated type I error 

rates with a small number of clusters, and numerous small-sample corrections have been proposed to 

circumvent this problem. However, the impact of these methods on power is still unclear. 

Methods: We performed a simulation study to assess the performance of 12 analysis approaches for 

CRTs with a continuous outcome and 40 or fewer clusters. These included weighted and unweighted 

cluster-level analyses, mixed-effects models with different degree-of-freedom corrections, and GEEs 

with and without a small-sample correction. We assessed these approaches across different values of 

the intraclass correlation coefficient (ICC), numbers of clusters, and variability in cluster sizes. 

Results: Unweighted and variance-weighted cluster-level analysis, mixed models with degree-of-

freedom corrections, and GEE with a small-sample correction all maintained the type I error rate at or 

below 5% across most scenarios, whereas uncorrected approaches lead to inflated type I error rates. 

However, these analyses had low power (below 50% in some scenarios) when fewer than 20 clusters 

were randomized, with none reaching the expected 80% power.   

Conclusion: Small-sample corrections or variance-weighted cluster-level analyses are recommended 

for the analysis of continuous outcomes in CRTs with a small number of clusters. The use of these 

corrections should be incorporated into the sample size calculation to prevent studies from being 

underpowered. 
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Key messages 
 

 Cluster randomised trials (CRTs) with few randomised clusters can lead to inflated type I 

error rates if they are analysed with standard methods 

 

 A cluster-level analysis weighted by the inverse of the variance, degrees-of-freedom 

corrections for mixed models or a small-sample correction for GEE can provide an 

appropriate type I error rate in most situations even with as few as 6-8 clusters 

 

 These type I error corrections lead to a decrease in statistical power; therefore, an inflation 

of the sample size to account for these corrections is required to ensure trials are 

appropriately powered 

 

 These analysis approaches, available in common statistical software packages, should be 

used to analyse CRTs with few clusters, and should be reported in publications to improve 

transparency and reproducibility 

 

 



Introduction   

Cluster randomised trials (CRTs) are trials in which groups of participants, rather than the participants 

themselves, are randomised (1). CRTs are commonly used in settings in which individual randomisation 

is impossible, for example when the intervention is applied at the cluster level, or when there is a risk 

of contamination between treatment groups (2). The observations within a cluster tend to be correlated, 

which is usually quantified by the intraclass correlation coefficient (ICC) (3). An appropriate analysis 

method needs to consider this correlation, as the type I error rate - the probability of finding a statistically 

significant  difference when no true effect exists - will be inflated otherwise (4). 

 

Two families of such methods exist.  Cluster-level methods consist of estimating a summary measure 

of the outcome for each cluster, and then analyzing the summaries using standard methods for 

independent data. Individual-level methods consist of analyzing individual-level data using a method 

which takes the clustering into account, usually mixed-effects models (5) or generalized estimating 

equations (GEEs) (6). Individual-level analyses are used more frequently than cluster-level methods 

(7), as they typically lead to higher power and allow adjustment for covariates in a more straightforward 

way than cluster-level methods, which require a two-stage approach to adjust for individual-level 

covariates (8). However, individual-level analysis approaches can lead to an inflated type I error rate 

when the number of clusters is small. A recent review showed that 65% of CRTs were at risk of inflated 

type I error because no small-sample corrections were used despite a small number of clusters 

randomised (7). The minimum number of clusters required to maintain the type I error rate at 5% has 

been suggested to be around 30-40 clusters for mixed models and 40-50 for GEEs (1,9), although 

depending on specific trial characteristics, a larger number of clusters may be required.  However, CRTs 

often involve less than 40 clusters:  three reviews of CRTs found median numbers of 21 (10), 25 (7), 

and 34 (11) of clusters randomised. Therefore, many published CRTs may over report statistically 

significant intervention effects. Moreover, sample size formulae for CRTs assume a large number of 

clusters, and are based on the assumption that the statistical method used will have the correct type I 

error rate. Because this assumption is likely to be violated in trials with a small number of clusters, usual 



sample size calculation may not be appropriate. It is unclear how much of an impact this violation could 

have in practice, and whether classic sample size formulae can still be used for trials with a small number 

of clusters, or whether new formulae need to be developed for these situations. 

Some small-sample corrections have been proposed to circumvent the problem of inflated type I error 

rate. For mixed-models, these involve degrees-of-freedom corrections, such as the one proposed by 

Satterthwaite (12) or Kenward and Roger (13). For GEEs, the corrections typically involve corrections 

to standard errors (14,15). Li and Redden assessed type I error rate and power for several small-sample 

corrections for mixed models (16) and GEEs (17) with binary outcomes, and Johnson et al. (18) assessed 

the type I error rate for cluster-level methods and several degrees-of-freedom corrections for mixed 

models.  However, there is currently no guidance on which small-sample corrections can maintain both 

the nominal type I error rate and a reasonable power in CRTs with a continuous outcome. We therefore 

undertook a simulation study to determine which methods perform best in terms of type I error rate and 

power in CRTs with a small number of clusters and a continuous outcome, and we provide some 

guidance for the choice of the analysis method. 

 

Methods 

We performed a simulation study to compare the performance of 12 analysis methods used in practice 

for the analysis of continuous outcomes in CRTs with a small number of clusters. These 12 methods 

include 4 cluster-level methods, 5 corrections for mixed models and 3 corrections for GEE. 

 

Analysis strategies 

Cluster-level analyses 

Unweighted cluster-level regression: Cluster-level analysis (1,8,19), also known as the two-stage 

approach (18), consists first of estimating a summary outcome measure by cluster (e.g. the mean) and 

then fitting a linear regression on these summary measures. 

 



Weighted cluster-level regression: Weighted approaches have been proposed to improve efficiency 

when clusters are not of the same size (20). A common and straightforward approach is to weight each 

cluster by its sample size using 𝑤𝑖 = 𝑚𝑖, where 𝑤𝑖  is the weight for cluster i (i = 1, ..., k) and 𝑚𝑖 the 

number of participants in cluster i. Another approach has been proposed, in which the weights are set 

to the inverse of the estimated theoretical variance of the clusters means (18,20): 

𝑤𝑖 =
1

𝜎𝑏
2 +

𝜎𝑤
2

𝑚𝑖

, 

where 𝜎𝑏
2 and 𝜎𝑤

2  are the estimates of the between and within cluster variance, obtained using a one-

way analysis of variance. Note that the three cluster-level linear regressions provide different treatment 

effect estimates and standard errors. 

 

Wilcoxon rank-sum test: A non-parametric approach such as the Wilcoxon test may also be used to 

compare cluster means between intervention groups, as it does not require the assumption of normality 

of cluster-level summaries. The Wilcoxon test only provides the p-value and no estimate of the 

intervention effect. 

 

Individual-level analysis 

Individual-level analyses model individual data while taking the hierarchical structure of the data into 

account. The two main approaches used in practice are mixed models (5) and GEEs (6). 

 

Mixed models: For continuous outcomes from CRTs from two-level CRTs, with patients nested in 

clusters, mixed models are typically linear regression models which include a random intercept for 

clusters (1). Inference for the treatment effect estimate is usually based on a Student’s t-distribution, 

where the key issue is the determination of an appropriate number of degrees of freedom (Dof).   

There are 5 main approaches described in the literature to determine the Dof for mixed models: 

 Method 1 - “uncorrected”: inferences are made using a normal distribution and therefore, no 

Dof computation is needed. 



 Method 2 - “uncorrected-t”: the t-distribution with n-2 Dof, n being the total number of 

observations, is used instead of the normal distribution in Method 1. 

Other methods have been proposed to estimate the Dof taking into account the number of clusters: 

 Method 3 - “between-within” (following Li and Redden notation (15)): the Dof is defined as k-

2 for CRTs where k is the number of clusters. This method assumes all the clusters are the same 

size. 

 Method 4 - “Satterthwaite” (11): the Dof approximation is based on the first two moments of 

the parameter estimate and does not rely on the assumption of fixed cluster sizes, unlike Method 

3. 

 Method 5 - “Kenward-Roger” (12): this correction uses the Satterthwaite approximation after 

applying a scale factor based on a small-sample estimate of the covariance matrix to the Wald 

statistic (21). 

 

We will assess the performance of these five methods based on mixed models using a restricted 

maximum likelihood (REML) estimator. Note that they provide the same intervention effect estimate 

and standard error but different confidence intervals and p-values. This is because the methods only 

impact the Dof used for the test of the intervention effect, except for Method 5 which also modifies the 

test statistic itself. 

 

GEEs: The GEE approach aims to model the mean outcome to give a population-averaged intervention 

effect while treating the intraclass correlation as a nuisance parameter, instead of estimating cluster-

specific effects as in the mixed models approach. 

 

For GEEs, the model-based standard error (SE) estimator assumes the correlation structure to be 

correctly specified. In CRTs, the correlation structure is usually specified as exchangeable (assuming 

the same correlation within each cluster).  A SE estimator that is robust to misspecification of the 

working correlation structure may also be used.  This “sandwich” estimator relies on the observed 



between-cluster variability, but this variability is not well estimated if the number of clusters is too 

small.  Therefore, small-sample corrections to the robust SE have been proposed (14,17). The standard 

errors from these GEE methods differ, but the intervention effect estimate is the same for each, and a 

normal approximation is used for the test of the intervention effect and the construction of its confidence 

interval. 

 

Simulation study 

A full description of the data generation process and the scenarios studied is given in Appendix. Briefly, 

data were generated for a two-arm parallel CRT with a continuous outcome and varying cluster sizes 

using R software.  We considered different values for the number of clusters k, the ICC ρ, the coefficient 

of variation of cluster sizes cv and the average cluster size m. Average cluster sizes were chosen to be 

close to the lower and upper quartiles of cluster size found in a review of CRTs (7). Parameter values 

are listed in Table 1. The treatment effect was set to 0 to assess the type I error rate.  To assess power, 

we set the treatment effect to give 80% power based on a standard CRT sample size formula (21). For 

each scenario, 5000 datasets were generated. Type I error rate and power were then defined as the 

proportion of these 5000 datasets in which the treatment effect estimates were statistically different 

from 0 at a 5% significance level, when the true treatment effect was null or positive, respectively. 

 

Results 

All the 12 methods compared in our simulation study lead to unbiased estimates of the treatment effect 

(bias < 0.0005, see supplementary material). The uncorrected mixed models based on the normal 

distribution (“uncorrected”) and based on the t-distribution (“uncorrected-t”) gave almost identical 

results since the DoF for the “uncorrected-t” method was always very high (total number of 

observations-2, which varies from 198 to 1198). We therefore only present the results for the 

“uncorrected” approach. Figures 1 and 2 show the power and type I error for two scenarios with ICC 

values of 0.001 and 0.05 respectively, a coefficient of variation of cluster sizes of 0.8 and the larger of 

the two mean cluster sizes considered. For GEEs, only the results obtained from convergent models are 



presented. GEEs converged between 59.8% and 99.9% of the time across the different scenarios – 

further details are given in the supplementary material. The pattern of results for different values of 

ICC, coefficient of variation for the cluster size and average cluster size for other scenarios are very like 

those seen in Figures 1 and 2. These results can be found in the supplementary material. 

 

 

From 4 to 8 clusters 

Cluster-level analyses 

With 4 to 8 clusters, only the unweighted and the variance-weighted cluster-level methods maintained 

the nominal type I error rate of 5% across all scenarios.  However, the power was usually low (between 

10 and 65%).  With fewer than 8 clusters, a Wilcoxon test cannot provide statistically significant results 

so both the type I error and the power were null. 

 

Mixed models 

Both the uncorrected and Satterthwaite approaches had an inflated type I error in some of the scenarios 

with higher ICC. The between-within and Kenward-Roger methods were too conservative, leading to 

type I errors lower than 2% in some scenarios, and resulting in a low power. Discrepancies between the 

Satterthwaite and Kenward-Roger approximations are partially explained by differences in the way the 

methods are implemented in R (details in supplementary material). 

 

GEEs 

GEEs without a small-sample correction always lead to a very high type I error rate (greater than 30% 

in some scenarios). When a small-sample correction was applied, the type I error rate was below 5% 

but this approach was generally too conservative when 8 or fewer clusters were randomised. 

 

Although having 8 or fewer clusters may be common in practice (11 out of 78 in a recent published 

review (7)), our results suggest that the 80% nominal power was not reached among any of the methods 

which maintained an appropriate type I error rate. 



 

From 10 to 20 clusters 

Cluster-level analyses 

From 10 to 20 clusters, the size-weighted analysis failed to maintain the type I error rate below 5% 

across all scenarios. The other approaches maintained an appropriate type I error. Wilcoxon had the 

lowest power and the variance-weighted method appeared to perform better in terms of power than the 

unweighted approach when the coefficient of variation of cluster sizes was high. 

 

Mixed models 

The uncorrected mixed model still lead to inflated type I error rates for between 10 and 20 clusters. The 

other approaches maintained an appropriate type I error in all scenarios.  However, the power remained 

low with these approaches, typically between 60% and 75%. In some scenarios (low ICC and cluster 

size, high coefficient of variation) Satterthwaite outperformed between-within, which outperformed 

Kenward-Roger, but these differences grew smaller as the number of clusters increased. 

 

 GEEs 

GEEs without a small-sample correction failed to maintain the type I error rate below 5%.  Corrected 

GEEs generally had a conservative type I error, and a power close to that observed for Kenward-Roger 

(usually below the variance-weighted cluster-level and Satterthwaite mixed model). 

 

From 30 to 40 clusters 

Cluster-level analyses 

With 30 or more clusters, all the cluster-level methods maintain a 5% type I error rate across all 

scenarios, except the size-weighted method when the ICC or coefficient of variation of cluster sizes 

were high.  Unweighted cluster-level regression and the Wilcoxon test were often under-powered 

compared to individual-level methods, although a 5% type I error rate was maintained. Only variance-

weighted cluster-level regression performed well both in terms of type I error and power. 

 



Mixed models 

The Satterthwaite, between-within and Kenward-Roger methods gave similar results for most scenarios 

(giving both the expected type I error rate and power), but Satterthwaite and between-within seemed to 

have slightly higher power than Kenward-Roger in some scenarios.  Note that the power exceeds 80% 

for large ICCs because the sample size formula used is known to overestimate the sample size (22). 

GEEs 

Using a GEE without a small-sample correction lead to inflated type I error rates even with 30 or more 

clusters.  The small-sample correction lead to a 5% type I error rate and a power close to that observed 

for the mixed models. 

 

200 clusters 

For comparison, one scenario with a very large number of clusters was explored. Results are given in 

the supplementary material. All methods except the size-weighted cluster-level analysis lead to 

appropriate type I error rates. Only the unweighted cluster-level analysis and the Wilcoxon test were 

underpowered. All the other approaches performed similarly. 

 

Discussion 

Many CRTs have a small number of clusters. Although it is known that small-sample corrections are 

often required to maintain nominal type I error rates, it is not known what impact these corrections may 

have on power.  Our results confirmed that corrections are needed to maintain a correct type I error rate, 

but these corrections negatively impact the power of the trial, in some cases reducing power from the 

nominal 80% to 10%. 

 

Our recommendations for which analysis approaches to use are shown in Table 2. The unweighted, 

variance-weighted and Wilcoxon cluster-level analyses, mixed-models with Satterthwaite, between-

within and Kenward-Roger degree-of-freedom corrections, and GEEs with small-sample correction all 

had appropriate type I error rates across most scenarios.  The method with the highest power varied 



across the different scenarios, and so should be chosen based on the study characteristics (e.g. number 

of clusters, anticipated cluster size, etc). Although our results share similarities with Li and Redden’s 

(16,17) studies about small sample corrections for CRTs with a binary outcome, our results are valid 

for continuous outcomes only. Further research is needed to compare the power of the best corrections 

for cluster-level analyses, mixed models and GEEs when the outcome is binary. 

 

Among the cluster-level analyses, the variance-weighted analysis performed best as the unweighted 

approach lead to a loss of efficiency when the number of clusters increased (8). The Wilcoxon test 

generally had lower power than the other analyses, although may be useful when the outcome cluster-

level summaries are not normally distributed, which was not the case in our simulations which used a 

normal distribution..  A major limitation with cluster-level analyses is the difficulty of adjusting for 

baseline characteristics, which is a severe drawback given that one third of CRTs are at risk of selection 

bias (23).  This is also an issue when only a small number of clusters are randomised, because chance 

imbalance is more likely to occur. Some methods have been proposed to adjust for covariates in cluster-

level analysis, but individual-level analyses are generally simpler if baseline adjustment is required. 

 

For mixed models, the Satterthwaite, Kenward-Roger, and between-within corrections all generally 

performed well in terms of type I error rate. GEEs with a small-sample correction also provided correct 

type I error rates across most settings. However, there were issues with convergence in some cases, 

especially for a very low number of clusters and a very low intraclass correlation.   

 

Our results for the type I error rate are broadly similar to those from Johnson et al. (18).  They did not 

assess the performance of the Satterthwaite approach, which performed well in our simulations, or GEE 

approaches. Although GEEs are often not recommended for a small number of randomised clusters 

(9,24), our simulation results suggest that they perform similarly to mixed models when a small-sample 

correction is used to correct the standard error. 

 



Further investigation is required to assess the robustness of the small-sample corrections studied in this 

paper to model misspecification. All the methods assume that the cluster-level means are normally 

distributed. Further work is needed to assess the robustness of the small-sample corrections if the data 

do not match this assumption., which can be likely when only few clusters are randomised. For GEEs, 

an exchangeable working correlation matrix is often chosen, assuming the same correlation for each 

pair of individuals within a cluster, that is the same across all clusters.   If the level of correlation varies 

from one cluster to another (25), this working matrix is no longer appropriate and the impact on the 

small-sample standard error is unknown. Similarly, if the correlation is not constant across clusters, the 

estimates of the within and between-cluster variance components for the weights used in the variance-

weighted cluster-level analysis may be misleading.    

 

Method performance varied with the ICC. In practice the ICC will be unknown when deciding the 

analysis method, and ICC estimates based on previous data can be imprecise.  Therefore, even though 

an uncorrected mixed model can maintain a type I error rate close to 5% for a very small ICC, we do 

not recommend this approach in practice. We therefore encourage researchers to use a method that 

maintains an appropriate type I error rate across a range of possible ICC values when a small number 

of clusters are randomised.  These corrections are now available in most standard statistical software 

packages and their implementation is straightforward. Table 3 gives the commands to implement the 

methods proposed in this paper in R, SAS and Stata. A brief overview is given also by Cook (26). 

 

Among the methods with appropriate type I error, none lead to the expected power of 80%. Therefore, 

adjustments to the sample size are required in order to maintain the expected level of power. Because 

there is no sample size formula for such adjustments, we advise researchers to use simulations. Some 

crude methods have been proposed to correct the sample size when only few clusters are available, such 

as adding one cluster per arm (22,27). For a given number of clusters, increasing the cluster size may 

not always be sufficient to reach an 80% power, and thus the randomization of a larger number of 

clusters is preferable whenever feasible. CRTs with few clusters may only be appropriate for relatively 

large treatment effects. 



 

In practice, when a small-sample correction is used, clear reporting is needed in the method sections of 

the trial’s publications.  The name of the method along with the software command is needed to ensure 

transparency and reproducibility of the results. Two recent reviews highlighted that small-sample 

corrections are not clearly reported in published CRTs (7,24). 

 

In summary, we strongly recommend the use of appropriate methods for the analysis of continuous 

outcomes in CRTs when few clusters are randomised. The choice of the appropriate methods must be 

driven by the context of the study along with consideration of statistical arguments. These methods are 

now available in most statistical software packages. However, these corrections lead to a decrease in 

power so adjustment must be made in the sample size calculation. 

 

Supplementary material 

The full results for all studied scenarios are displayed in the supplementary material.  
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Tables  

 

Table 1. List of parameters varied across scenarios (total number of scenarios = 90) 

Parameter Notation Values Source 

Intraclass correlation 
coefficient 

ρ 0.001,0.01,0.05 Campbell et al. (28) 

Number of clusters 
randomised 

k 4,6,8,10,20,30,40,200 Donner and Klar (1) 

Average cluster size m 

m=50,300 when k = 4,6,8 

Kahan et al. (7) 

m=25,280 when k=10 

m=15,200 when k=20 

m=10,150 when k=30 

m=7,40 when k=40 

m=50 when k=200 

Coefficient of variation of 
cluster sizes 

cv 0.4,0.8 Eldridge et al. (21) 

 

Table 2.  Recommended* methods 

Analysis strategy 
Number of clusters 

k=4-8 k=10-20 k=30-40 

Cluster-level analyses Variance-weighted 

Mixed models Between-within Satterthwaite 
Satterthwaite  

Between-within 
Kenward-Roger 

GEEs Small-sample correction 

 

*The “recommended” method is that which tended to have the highest power across our simulations, 

among the methods maintaining a type I error rate below 5% in all scenarios evaluated. Other factors 

should also be considered for the choice of methods, such  as the ICC value and the variability in 

cluster sizes. Note that different methods may perform equally well in several scenarios, and that the 

differences between methods tend to become negligible as the number of clusters increases.
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Table 3.  R, SAS and Stata commands to correct the type I error rate when the number of randomised clusters is small 

*Because small-sample corrections are not available yet in Stata  

    R SAS Stata 

Weighted cluster-level analysis 

  

lm function with the weights 
option. 
Weights can be computed using 
the between and within variance 
components from the package ICC 

proc glm with the weights option. 
Weights can be computed using the 
between and within variance components 
estimated from a mixed model with proc 
mixed 

regress command with 
aweights option. 
Weights can be computed 
using the between and within 
variance components 
estimated with the command 
xtreg 

Mixed model 

Satterthwaite 

Mixed model with the lmer 
function from lme4 package then 
anova command with the option 
DDF="Satterthwaite". Package 
lmerTest required 

proc mixed with the option DDFM=SAT 
mixed command with the 
dfmethod(satterthwaite) 
option 

Kenward-Roger 

Mixed model with the lmer 
function from lme4 package then 
anova command with the option 
DDF="Kenward-Roger". Package 
pbkrtest required 

proc mixed with the option DDFM=KR 
mixed command with the 
dfmethod(kroger) option 

Between-Within 

Mixed model with the lmer 
function from lme4 package then 
anova command to get the F 
value. Finally, the pf function to 
get the corresponding p-value 
with 1 and k-2 degrees of freedom 

proc mixed with the option DDFM=BW 
mixed command with the 
dfmethod(repeated) option 

Small sample correction for GEE 

  

gee function from the gee package 
then saws function applied on the 
gee output. Package saws 
required 

proc GLIMMIX with the option 
EMPIRICAL=FIROEEQ 

xtgee command with the 
vce(bootstrap) option to 
obtain correct standard 
errors with bootstrapping* 
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Figure 1:  Power and type I error rate of the compared me t h o d s  f o r  the analysis of CRTs wi th  a small number o f  clusters. The value of the intraclass correlation 

coefficient ρ for the outcome is  0.001.  The average cluster s ize  corresponds t o  the upper quart i le  o f  the distribution observed in a review of CRTs [7] with 

coefficient of variation for cluster size of 0.8. 5000 simulations were carried out per scenario. 
 
 
 

 

 

 

 

 

 

 

 

Figure 2:  Power and type I error rate of the compared m e t h o d s  f o r  the analysis of CRTs wi th  a small number o f  clusters. The value of the intraclass correlation 

coefficient ρ for the outcome is 0.05. The average cluster size corresponds to the upper quartile of the distribution observed in a review of CRTs [7] with coefficient 

of variation for cluster size of 0. 5000 simulations were carried out per scenario.
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Appendix - Simulation plan 

 

Data generation 

We generated datasets corresponding to a two-arm parallel CRT with a continuous outcome and varying 

cluster sizes. 

 

Cluster size: The number of individuals within each cluster was allowed to vary, with a coefficient of 

variation cv. This coefficient of variation is defined as: 

𝑐𝑣 =
𝑠𝑚

𝑚
, 

where 𝑠𝑚 is the standard deviation of the cluster size. Fixing the average cluster size m and the 

coefficient of variation cv, cluster sizes were generated in a negative binomial distribution, as in Ref. 

[A1] with NegBin(
𝑚2

𝑠𝑚
2 −𝑚

,
𝑚

𝑠𝑚
2 ) with 𝑠𝑚

2 = (𝑐𝑣 × 𝑚)2. This distribution was truncated to have a 

minimum cluster size of 2.  

 

Outcome model: the individual-level continuous outcome Yij was generated under the following mixed-

effects model: 

𝑌𝑖𝑗 = 𝛿𝑇𝑖 + 𝛾𝑖 + 𝜀𝑖𝑗 , 

for the individual j (j = 1,…,mi), in the ith cluster (i = 1,…, k). 𝛿 is the difference in means between the 

two groups. 𝑇𝑖 is an indicator variable for the intervention (𝑇𝑖=0 in the control group and 1 in the 

intervention group). 𝛾𝑖 is the random effect for cluster i and 𝜀𝑖𝑗 the residual error for the jth subject in 

cluster i where 𝛾𝑖~𝑁(0, 𝜎𝑏
2) and 𝜀𝑖𝑗~𝑁(0, 𝜎𝑤

2 ) with 𝛾𝑖 ⊥  𝜀𝑖𝑗. The intraclass correlation coefficient 

(ICC) for the outcome is defined as [A2]: 

𝜌 =
𝜎𝑏

2

𝜎𝑏
2+𝜎𝑤

2 . 

Without loss of generalizability, we constrained 𝑉𝑎𝑟(𝑌|𝑇𝑖) = 𝜎𝑏
2 + 𝜎𝑤

2 = 1. Thus, 𝜎𝑏
2 = 𝜌 and 𝜎𝑤

2 =

1 − 𝜌. This implies that 𝑌𝑖𝑗 ∼ 𝑁(𝛿𝑇𝑖, 1). 
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Scenarios studied 

We designed our simulation study in order to reflect situations observed in practice. Because our focus 

is on CRTs with a small number of clusters k, we chose the following values for the total number of 

randomised clusters k: k = (4; 6; 8; 10; 20; 30; 40). The values for the average cluster size m were 

chosen according to those observed in a review of 100 CRTs looking at the use of small sample 

corrections in practice [A3]. The distribution of cluster sizes for CRTs in this review with less than 45 

clusters are displayed in Table A1.  

 

Table A1. Distribution of the average cluster size observed in 78 CRTs with a small number of clusters [A3] 

Number of clusters Number of trials Median [Q1-Q3] 

4-8 11 93 [49-289] 

9-15 20 53 [25-284] 

16-25 20 34 [16-73] 

26-35 11 55 [12-158] 

36-45 15 16 [7-41] 

 

For each value of k, we considered two values of m, based on the 1st and the 3rd quartile of the average cluster size 

distribution observed in the review for the corresponding number of clusters. Values were rounded for simplicity. 

Thus, we have: m = (50, 300) for k = (4, 6, 8); m = (25, 280) for k = 10; m = (15, 200) for k = 20; m = (10, 150) 

for k = 30; m = (7, 40) for k = 40. As a “control” scenario, we also looked at k = 200 with m = 50 to assess the 

performance of the different approaches when the number of randomised clusters is no longer small. 

 

Because cluster size is variable in most CRTs, we assessed scenarios with both a moderate and a high variability 

in the average cluster size, using values of 0.4 and 0.8 for the coefficient of variation of the cluster size. These 

two values are the smallest and the largest values observed in the examples presented by Eldridge et al. [A4]. 

Finally, we used 3 different ICC values for the outcome ρ= (0.001, 0.01, 0.05). An ICC of 0.05 corresponds to 

the median ICC value observed in Campbell's study [A5], but we also considered smaller values since the ICC 

tends to be smaller in large clusters [A5]. 
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In a first set of simulations, we set 𝛿 = 0 to evaluate the type I error rate. Then, we went on to examine scenarios 

with non-zero 𝛿. We used values of the treatment effect 𝛿 obtained from the sample size formula for a mean 

difference accounting for the design effect (𝐷𝐸) [A4]: 

𝛿 = √2𝐷𝐸 ×
(𝑧𝛼 2⁄ + 𝑧𝛽)

2

𝑚𝑘
2

, 

with a power of 80% (𝑧𝛽 = 𝑧0.2) and a type I error of 5% (𝑧𝛼 2⁄  = 𝑧0.025) and 

𝐷𝐸 = 1 + [(
𝑐𝑣2 (

𝑘
2

− 1)

𝑘
2

+ 1
) 𝑚 − 1] 𝜌, 

where k is the total number of clusters, m the average cluster size, cv the coefficient of variation of cluster size, ρ 

the ICC of the outcome, and zγ the γth percentile of the standard normal distribution. By doing this, we fixed the 

nominal power at 80% in order to assess if the compared analysis strategies reach the expected power. Across the 

scenarios evaluated (see below), the median of the  𝛿 values used was 0.33, with values within the range [0.08-

0.82]. 

 

The combination of possible parameters values for k, m, cv and ρ lead to 90 different scenarios. For each of the 

90 scenarios, 5000 simulated datasets were generated with 𝛿 set to 0 to assess the type I error rate and another  

5000 datasets to assess the power (𝛿 ≠0). In summary, for each scenario, the simulations followed these steps: 

1. Create k clusters 

2. Draw cluster size mi for each cluster from a negative binomial distribution 

3. Generate individual continuous outcomes according to the mixed model described above 

4. Analyse the dataset using the 12 methods described in the main paper 

5. Store treatment effect estimates, standard errors and two-sided p-values. 

 

Assessment of results 

Results were assessed in terms of: 

 Type I error rate: defined as the proportion of simulations in which the p-value for the intervention effect 

was < 0.05 when the true treatment effect 𝛿 = 0 

 Power: defined as the proportion of simulations in which the p-value for the intervention effect was < 

0.05 when the true treatment effect 𝛿 ≠ 0 
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 Bias of the treatment effect: 𝐵(�̂�) = 𝐸(�̂�) − 𝛿, calculated as the difference between the average 

treatment effect across the simulations and the true treatment effect 𝛿 

 Variability ratio: defined as the ratio of the mean model-based standard error to the empirical standard 

deviation of the treatment effect estimate 

 Rate of convergence and estimation issues: defined as the percentage of models for which convergence 

problems arise. 

 

Simulations were performed using R software version 3.1. For mixed models, the Satterthwaite correction was 

obtained from the lmerTest package [A6] and the pbkrtest [A7] package was used for Kenward-Roger estimator. 

The small sample correction for GEE was obtained using the package saws [A8] after estimating GEE parameters 

using the package gee [A9]. 
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