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Voxel-wise statistical inference is commonly used to identify significant experimental effects or group
differences in both functional and structural studies of the living brain. Tests based on the size of spatially
extended clusters of contiguous suprathreshold voxels are also widely used due to their typically increased
statistical power. In “imaging genetics”, such tests are used to identify regions of the brain that are associated
with genetic variation. However, concerns have been raised about the adequate control of rejection rates in
studies of this type. A previous study tested the effect of a set of ‘null’ SNPs on brain structure and function,
and found that false positive rates were well-controlled. However, no similar analysis of false positive rates in
an imaging genetic study using cluster size inference has yet been undertaken.
We measured false positive rates in an investigation of the effect of 700 pre-selected null SNPs on grey matter
volume using voxel-based morphometry (VBM). As VBM data exhibit spatially-varying smoothness, we used
both non-stationary and stationary cluster size tests in our analysis. Image and genotype data on 181 subjects
withmild cognitive impairmentwere obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI). At
a nominal significance level of 5%, false positive rates were found to be well-controlled (3.9–5.6%), using a
relatively high cluster-forming threshold, αc=0.001, on images smoothed with a 12 mmGaussian kernel. Tests
were however anticonservative at lower cluster-forming thresholds (αc=0.01, 0.05), and for images smoothed
using a 6 mm Gaussian kernel. Here false positive rates ranged from 9.8 to 67.6%. In a further analysis, false
positive rates using simulated data were observed to be well-controlled across a wide range of conditions.
While motivated by imaging genetics, our findings apply to any VBM study, and suggest that parametric cluster
size inference should only be used with high cluster-forming thresholds and smoothness. We would advocate
the use of nonparametric methods in other cases.
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Introduction

In imaging genetics brain images are used as phenotypes that are
modelled by genetic predictors. In contrast to conventional genetic
association studies where disease status is based on clinical observa-
tions, neuroimaging phenotypes are able to capture aspects of disease
phenotypes at the physiological level. Neuroimaging genetic studies
thus offer the prospect of gains in statistical power, since genes code
not for mental or behavioural traits, but for the neural phenotypes
that underpin them (Glahn et al., 2007). Neuroimaging genetic studies
have the additional benefit of spatially localising gene effects, offering
further potential insights into the structural and functional neurobi-
ology of disease (Meyer-Lindenberg and Weinberger, 2006; Roffman
et al., 2006; Hariri et al., 2006). Structural and functional brain images
have been used in candidate and whole genome investigations of a
number of neurological disorders including schizophrenia (Roffman
et al., 2006; Potkin et al., 2009a, b) and Alzheimer's Disease (Filippini
et al., 2009; Pievani et al., 2009), and a recent study has highlighted
gene effects on cortical surface area (Joyner et al., 2009).

A range of statistical methods have been used to investigate
associations between SNPs and structural and functional neuroi-
mages. Techniques include linear regression, parallel independent
component analysis and multivariate approaches that model the
influence of multiple SNPs at a time (Ashburner and Friston, 2000;
Calhoun et al., 2009; Hardoon et al., 2009). The problem of multiple
testing presents a particular challenge in imaging genetic studies,
with a whole-brain study of 700 SNPs across 200,000 voxels requiring
1.4 million separate tests, raising concerns about false positives.
Random field theory (RFT) is a widely used multiple testing method
for determining corrected significances while accounting for spatial
dependencies between voxels (Worsley et al., 1996a). These correla-
tions are introduced by the image acquisition process itself, by

http://dx.doi.org/10.1016/j.neuroimage.2010.08.049
mailto:t.e.nichols@warwick.ac.uk
http://www.loni.ucla.edu/ADNI
http://www.loni.ucla.edu/ADNI/Collaboration/ADNI_Manuscript_Citations.pdf
http://www.loni.ucla.edu/ADNI/Collaboration/ADNI_Manuscript_Citations.pdf
http://dx.doi.org/10.1016/j.neuroimage.2010.08.049
http://www.sciencedirect.com/science/journal/10538119


993M. Silver et al. / NeuroImage 54 (2011) 992–1000
physiological signal not included in the model, by image resampling
during re-alignment, or by explicit smoothing applied in pre-
processing (Frackowiak et al., 2003, chap. 14). Such RFT techniques
must however be tested on representative empirical data before their
efficacy can be firmly established. In a recent studyMeyer-Lindenberg
et al. (2008) measured rejection (i.e. false positive) rates in an
imaging genetic study using voxel-wise inference against a pre-
selected set of ‘null’ SNPs considered to have no effect on brain
structure or function. Subjects included patients with schizophrenia,
as well as healthy controls. Gene effects on brain structure (using
VBM) and function (using fMRI response to cognitive tests) were
considered. The study looked at false positive rates both across the
brain as a whole, and for specific regions of interest. Significance
thresholds were adjusted for comparisons across multiple voxels
using both family-wise error (FWE) and false discovery rate (FDR)
corrections. At a nominal significance level of 0.05, they found
empirical rejection rates ranging from 0.2 to 4.1%, suggesting that for
the methods studied, false positive rates are well-controlled, and that
inferences are if anything conservative.

Cluster size tests

A variety of approaches are used to identify significant signals in
the brain. In voxel-wise tests, group differences or differences in
activation are assessed at each individual voxel, so that locations
where there is a strong association between voxel intensity and a
disease phenotype for example, are labelled as significant. In cluster
size tests, an arbitrary cluster-forming threshold is applied to define
connected components, and then significance is assessed on the basis
of the size of the clusters. Cluster size tests are relatively more
sensitive than voxel-wise tests for spatially extended signals (Friston
et al., 1996; Poline et al., 1997; Moorhead et al., 2005), since they
make use of the spatial nature of the signal and require a less severe
multiple testing correction (there are always fewer clusters than
voxels). This necessarily comes at the cost of reduced localising
power, as rejecting the cluster null hypothesis just implies that one or
more voxels within the cluster are significant.

As with voxel-wise tests, cluster size testsmust account for the fact
that neighbouring voxels are correlated even without any true effects
RFT is used to assign P-values to each cluster in the statistic image
accounting for smoothness and search volume. However, RFT rests on
a number of assumptions, and simulation studies have shown that the
performance of this technique depends on the choice of cluster-
forming threshold, and on the use of sufficiently smooth images
(Hayasaka and Nichols, 2003).

Inferences using cluster size are also subject to confounding effects
arising from ‘non-stationarity’ — i.e., from local variations in noise
smoothness. Under non-stationarity, even when there is no signal
present, clusters will be larger in ‘smoother’ regions, and smaller in
‘rougher’ ones. Methods that fail to take such local non-stationarity
into account will provide unreliable inferences, with areas of
extended smoothness producing large clusters and increased inci-
dence of false positives, and conversely rough areas demonstrating
greater incidence of false negatives (Hayasaka et al., 2004). One
approach to tackling this problem is to adjust cluster sizes according
to local smoothness using non-stationary RFT methods (Worsley,
2002).

Hayasaka et al. (2004) compared stationary and non-stationary
RFT cluster size inference methods in the identification of activated
areas using simulated and PET data sets. They found that the
stationary RFT method was anticonservative2 under non-stationarity,
but that the non-stationary RFT test performed well only for smooth
images under high degrees of freedom.While that work suggested the
2 Anticonservative tests produce P-values that are too small, giving rise to rejection
(false positive) rates that are higher than the nominal (expected) rate for the test.
use of corresponding nonparametric non-stationary cluster size
permutation tests, here we are motivated to use parametric RFT in
the imaging genetics context, as testingmassive numbers of SNPsmay
make permutation tests impractical.

In this studywemeasured false positive (type I error) rates for voxel-
wise and cluster size neuroimaging genetic inference on a dataset
comprising 181 MRI images and associated genotype information from
the Alzheimer's Disease Neuroimaging Initiative (ADNI) online database.
We follow a similar experimental design to that of Meyer-Lindenberg
et al. (2008), although we restrict our analysis to genotypic effects on
whole-brain structure (using VBM). We supplement our real data with
simulated data evaluations to aid in the interpretation of the real VBM
data results.

Methods and materials

Real imaging and genotype data were obtained from the
Alzheimer's Disease Neuroimaging Initiative (ADNI) database
(www.loni.ucla.edu/ADNI). The ADNI was launched in 2003 by the
National Institute on Aging (NIA), the National Institute of Biomedical
Imaging and Bioengineering (NIBIB), the Food and Drug Administra-
tion (FDA), private pharmaceutical companies and non-profit orga-
nizations. ADNI is the result of efforts of many co-investigators from a
broad range of academic institutions and private corporations, and
subjects have been recruited from over 50 sites across the U.S. and
Canada (see Acknowledgments for more details).

Imaging data

ADNI subjects
181 T1-weighted 3D structural MRI scans from subjects with mild

cognitive impairment (MCI) were obtained from the ADNI database
(see Jack et al. (2008) for image acquisition details). In the present
study, SPM5's (http://www.fil.ion.ucl.ac.uk/spm/software/spm5) uni-
fied segmentation and normalisation was used to obtain gray matter
(GM) images in standard space, modulated to account for volume
changes in the warping to the MNI atlas. Modulated GM images were
smoothed with 6 mm and 12 mm Gaussian kernels. 12 mm smoothing
is the de-facto standard in VBM studies (Ashburner and Friston, 2000),
andwas used byMeyer-Lindenberg et al. (2008). A second set of images
with 6 mm smoothing enables the performance of RFT at relatively low
smoothness to be assessed. A grey matter analysis mask was
constructed by thresholding the mean grey matter image at 0.025. All
pre-processing and smoothing was carried out using SPM5.

Simulated images
Stationary and non-stationary random images were generated

using FSL (http://www.fmrib.ox.ac.uk/fsl/). 3D simulated images had
the same voxel size (2mm3) as MNI-warped ADNI images, and were
also masked with the real data analysis mask.

Stationary realisations were generated using white noise images
convolved with 6 mm and 12 mm 3D Gaussian smoothing kernels.
Non-stationary realisations were generated from white noise images
smoothed with 3 different Gaussian kernels extending over distinct,
adjacent 3D regions of the image volume. “6 mm” non-stationary
images were composed of a central region smoothed with a 9 mm
kernel, with intermediate and outer regions smoothed with 6 and
4 mm kernels respectively. “12 mm” images were made up of regions
smoothed with 12, 8, and 18 mm kernels (see Fig. 1). Final images
were smoothed with a 1.5 mm kernel to eliminate discontinuities at
the boundaries between different regions, resulting in final non-
stationary smoothness of 4.3, 6.2 and 9.1 mm FWHM for “6 mm”, and
8.1, 12.1 and 18.1 for “12 mm”. All images were truncated from a
larger initial volume to avoid edge artefacts. Finally, to match the real
data under consideration, only voxels within the real-image grey
matter mask were used.
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http://www.fil.ion.ucl.ac.uk/spm/software/spm5
http://www.fmrib.ox.ac.uk/fsl/


(a)

(b)

(c)

(d)

Fig. 1. Non-stationary image simulation. (a) Schematic illustrating extent of 3 different
smoothness regions. (b) as (a) with ADNI image brain mask applied. (c) Realisation of
non-stationary image with outer, middle and inner regions smoothed with 8, 12 and
18 mm FWHM Gaussian smoothing kernels. (d) as (c) with final 1.5 mm smoothing
kernel and ADNI mask applied.
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Genotype data

In their studyof genetic effects onbrain structure,Meyer-Lindenberg
et al. (2008) selected 720 ‘null’ SNPs, found to have no significant
association with disease phenotype (at the 5% level) in separate case–
control and family-based analyses. The results of the subsequent
neuroimaging genetic analysis were considered to set an upper bound
on null rejection rates, since individual SNPs may still influence brain
structure after all. To establish a lower bound, the authors repeated their
analysis, but with the genotype–phenotype relationship removed by
permuting genotypes across subjects. 4 such permutations were
analysed. In the present study, 700 selected ‘null’ SNPs are used, with
10 subsequent permutations.
ADNI subjects' genotype information, assayed using the Illumina
610-Quad BeadChip microarray, was obtained from the ADNI website.
Each genotype file contains information pertaining to 620,901 SNPs
and copy number variations (CNVs). 700 ‘null’ SNPs were selected as
follows. Firstly, all CNVs were excluded and only SNPs from
chromosome 3 were considered. Chromosome 3 was chosen since
none of 4 prime candidate AD-associated genes (APOE, PSEN1, PSEN2
and SORL1) are located on this chromosome. Of the remaining 39,928
SNPs, those with a minor allele frequency of less than 5% were
excluded, as were any SNPs with a Bonferroni-corrected Hardy
Weinberg equilibrium P-value b0.05/700. From the remaining 18,285
SNPs, 700 uniformly-spaced (by rank order in position) SNPs were
selected, in order to minimise any possible linkage disequilibrium
effects. Finally, as per standard practice, an adjustment was made to
those SNPs (310 in total) with low numbers (b10) of homozygous
alleles, merging the rare homozygous and heterozygous groups. This
is to minimise any potential biasing effects in the regression, and is
equivalent to fitting a dominant or recessive model at the SNPs in
question.

Statistical inference

Voxel-wise and cluster size tests for association between genotype
and grey matter intensity were performed under the General Linear
Model (GLM) (Friston et al., 1995) using SPM5. Non-stationary tests
were carried out using Hayasaka's non-stationary toolbox for SPM
(http://fmri.wfubmc.edu/cms/NS-General). The non-stationary tool-
box corrects for expected variation in cluster size in non-stationary
images under the null, using statistical random field theory (Hayasaka
et al., 2004; Worsley et al., 1999). Note that we did not compare our
results with standard permutation tests (Hayasaka et al., 2004).
Permutation methods are guaranteed to be valid under the null
hypothesis, and our prime motivation in this study was to address the
accuracy of RFT methods in a large data (i.e. imaging genetics) setting
where permutation might not be practical computationally.

For the real (ADNI) image dataset, genotype effects were
measured by modelling modulated grey matter intensity as a
response to SNP allele frequency, with subject age and sex as nuisance
covariates. Each SNP was analysed separately, with SNP significance
determined from t and F-tests, corrected for multiple comparisons
using family-wise error and false discovery rate. For cluster size tests,
cluster-forming thresholds, αc, of 0.001, 0.01 and 0.05 under both
stationary and non-stationary assumptions were considered. Overall
rejection rates express the proportion of the 700 SNPs found to cause
any significant activation. All tests were repeated a total of 10 times
with genotype–phenotype labels permuted to remove any possible
remaining association.

Equivalent tests on simulated images were conducted with the
same SNP and covariate (age, sex) data, so that degrees of freedom for
all tests were the same as those on the ADNI dataset. These tests were
performed without permutation since there can be no association
between genotype and phenotype with random images.

Non-stationary cluster size inference
While the RFT non-stationary cluster size test is described in detail

elsewhere (Hayasaka et al., 2004), we review it again here to facilitate
later discussion. Under the GLM, the intensity Y(v) at voxel location v
is expressed as a linear combination of regressors

Y vð Þ = Xβ vð Þ + ε vð Þ ð1Þ

where, in a study with n subjects and p regressors, X is an n× p design
matrix, β(v) is a p-dimensional vector of parameters to be estimated,
and ε(v) is an n-vector of error terms, assumed to be independent and
normally distributed with equal variance.

http://fmri.wfubmc.edu/cms/NS-General
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With cluster size tests, significant clusters are formed from
contiguous voxels whose t or F-statistic exceed a fixed cluster-
forming threshold, uc (or equivalently, an uncorrected significance
level αc that uniquely determines uc). Briefly, the non-stationary
toolbox corrects for image non-stationarity by measuring the
‘smoothness’ at each voxel, a quantity that is related to the variance
of the spatial partial derivatives of the model errors, � in (1). From this
a measure of image smoothness, measured in FWHM is obtained.
FWHM refers to the ‘full-width at half-maximum’ of a Gaussian kernel
required to smooth a random (white noise) image into equivalent
smoothness of the data at hand; note that isotropy is not assumed,
and FWHM is fully specified by [FWHMx FWHMy FWHMz]. A related
quantity is the RESEL, a ‘virtual’ voxel of size FWHMx×FHWMy

×FHWMz. The RESEL count Nres is the number of RESELs that fit into
the search volume,

Nres =
V

FWHMx × FHWMy × FHWMz
ð2Þ

where V is the number of voxels in the image. When stationarity (i.e.
uniform smoothness across the image) is assumed, FWHM is
calculated by pooling FWHM across the entire image volume.3 Under
non-stationarity, FWHM is estimated at each voxel v, giving a RESEL
measure as well. The size of this local RESEL, 1/ [FWHMx(v)×FHWMy

(v)×FHWMz(v)], is denoted RPV (v) for RESELs per voxel at voxel v. In
this way a voxel's effective volume, relative to image smoothness, is
obtained. The next step is to calculate the smoothness-adjusted cluster
size, S′, by summing effective voxel volumes over a cluster:

S′ = ∑
v∈C

RPV vð Þ

where C denotes the set of voxel indices in the cluster. This procedure
is equivalent to measuring cluster size in a distorted image, where
space has been warped in such a way so as to ensure that stationarity
holds (Worsley et al., 1999).

Finally, the probability of obtaining clusters of a given size S′ under
the null is calculated, corrected for multiple comparisons. This
probability is derived from the image's Euler Characteristic, ρ(uc), a
topological property which approximates the expected number of
clusters or ‘blobs’ in a thresholded image of given smoothness. In the
stationary case, the expected cluster size under the null is

E Sð Þ = E Nvð Þ
E Cð Þ ð3Þ

where E Nvð Þ is the expected number of suprathreshold voxels
(=Vαc), and E Cð Þ is the expected number of clusters (=Vρ(αc)).
This expression also holds for S′ but suprathreshold voxels must be
measured in RESELs, i.e. E Nvð Þ = Nresαc. The expected cluster size is
then used to estimate the null distribution of S (or S′) and obtain
uncorrected P-values, which are then converted to either FWE-
corrected P-values or FDR-corrected P-values (Chumbley and Friston,
2009) that account for searching the brain for significant clusters.

The use of RFT in cluster size tests rests on a number of
assumptions (Hayasaka and Nichols, 2003). These include:

• Lattice approximation — images are assumed to be derived from a
smooth random field sampled at regular points on a lattice;
sampling is assumed to be fine enough to capture the local features
of the field;

• Image smoothness — images are smooth at the voxel scale;
3 Precisely the roughness measure is pooled and then converted to FWHM in order
to minimise bias; see (Worsley et al., 1999) for details.
• Large search region— Search volume is large compared to the size of
a resel;

• Uniform smoothness (for stationary tests only);
• High cluster-forming thresholds — RFT's estimate of cluster size
distribution under the null is derived asymptotically, under the
assumption that the cluster-forming threshold αc is sufficiently
high.

These assumptions present particular practical difficulties for
those using cluster size tests, since low thresholds with as little
smoothing as possible — the very conditions under which RFT
performs worst — tend to maximise sensitivity and localising power
(Hayasaka and Nichols, 2003).

Results

Real (ADNI) images

Full cluster and voxel-wise results under FWER correction are
presented in Table 1. Similar results under FDR correction are
presented in Table 2. Relevant whole brain, voxel-wise rejection
rates reported by Meyer-Lindenberg et al. (2008) are also included for
comparison.

Results from tests with permuted genotype–phenotype labels
(FWER-corrected results only) were broadly similar to those with
observed, unpermuted labels, indicating that for the purposes of the
present study, chromosome 3 SNP effects on brain structure were
negligible.

The key finding was that rejection rates were poorly controlled for
all cluster size tests, except for those performed on 12 mm smoothed
images with the highest cluster-forming threshold, αc=0.001. In this
latter instance, FWER-corrected rejection rates approached the
desired nominal 5% level, with a 3.8±0.8% rejection rate for a t-test
with non-stationary correction under permutation, and 4.5±1.2%
under the corresponding F-test. FDR-corrected results were broadly
similar to FWE-corrected results for αc=0.01 and 0.001.

FWE and FDR-corrected voxel-wise tests were conservative for
both 6 and 12 mm smoothed images, in agreement with results for
FWER-corrected voxel-wise t-tests on 12 mm smoothed images
reported by Meyer-Lindenberg et al. (2008).

In general, cluster size tests became more anticonservative at
lower thresholds (decreasing uc, increasing αc), and this effect was
exacerbated for low smoothness images. Image smoothness had a
pronounced effect on all results, with tests performed on 6 mm
smoothed images having substantially higher rejection rates than
those performed on images with 12 mm smoothing. The degree of
smoothing, however, showed little effect on voxel-wise rejection
rates.

Cluster size tests corrected for image non-stationarity were
generally closer to nominal than those assuming stationarity. Finally,
F-tests were generally more anticonservative than equivalent t-tests.

Simulated images

Rejection rates for tests on simulated, randomGaussian images are
presented in Table 3. For stationary (constant smoothness) 6 and
12 mm FWHM Gaussian images, both stationary and non-stationary
cluster size t-tests are highly conservative at higher thresholds
(αc=0.001,0.01), but are anticonservative at the lowest threshold
(αc=0.05). F-tests are conservative at all thresholds. As with
stationary images, non-stationary cluster size t-tests are conservative
at αc=0.001,0.01, and anticonservative at αc=0.05, whereas F-tests
are conservative at all thresholds. As might be expected, stationary
cluster size t and F-tests on both “6 mm” and “12 mm” FWHM non-
stationary images perform poorly.



Table 1
FWER-corrected results — real (ADNI) images.

Rejection rates

6 mm smoothing 12 mm smoothing Meyer-Lindenberg et al. (2008)a

αc Observed(%) Permuted(%)b Observed(%) Permuted(%)b Observed(%) Permuted(%)c

t-tests
Cluster size

Stationary 0.001 10.7 9.2±1.1 3.4 3.6±0.7 – –

0.01 23.3 24.8±2.2 9.4 9.4±1.5 – –

0.05 47.4 46.7±1.8 20.7 18.6±1.5 – –

Non-stationary 0.001 10.0 8.1±1.0 3.9 3.8±0.8 – –

0.01 19.9 21.2±1.6 9.1 9.3±1.5 – –

0.05 45.0 43.2±2.2 20.1 18.4±1.6 – –

Voxel-wise – 3.4 2.7±0.6 3.0 2.7±0.6 1.9 1.1±0.4

F-tests
Cluster size

Stationary 0.001 13.0 10.3±1.6 4.4 3.8±1.1 – –

0.01 30.9 29.6±2.1 11.9 10.7±1.7 – –

0.05 60.4 60.6±1.7 26.1 24.5±2.5 – –

Non-stationary 0.001 11.6 9.1±1.2 4.7 4.5±1.2 – –

0.01 25.6 25.1±2.1 11.4 10.9±1.7 – –

0.05 57.6 55.6±2.0 25.6 23.9±2.2 – –

Voxel-wise – 3.6 2.6±0.7 3.0 2.9±0.7 – –

a Results refer to whole-brain t-tests using structural (VBM) data with 12 mm smoothing.
b Mean rejection rate±SD across 10 permutations.
c Mean rejection rate±SD for 4 permutations.
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Voxel-wise tests are generally conservative, or close to nominal for
both stationary and non-stationary images at 6 and 12 mm.
Table 3
Results — simulated images.

Rejection rates
Discussion

This study provides the first analysis of false positive rates in an
imaging genetics study of VBM data using cluster size inference.
Images from a group of 181 subjects with mild cognitive impairment
were tested against a set of 700 ‘null’ SNPs. The analysis presented
here suggests that rejection rates under both stationary and non-
stationary assumptions are poorly controlled at low cluster-forming
thresholds or for images with low smoothness.

The use of real genotype data is considered important, since the
accurate modelling of linkage disequilibrium and population strati-
Table 2
FDR-corrected results—real (ADNI) images.

Rejection ratesa

αc 6 mm smoothing 12 mm smoothing Meyer-Lindenberg
et al. (2008)

t-tests
Cluster size

Stationary 0.001 12.7 2.7 –

0.01 31.4 8.0 –

0.05 51.6 17.7 –

Non-
stationary

0.001 10.7 2.6 –

0.01 26.9 7.9 –

0.05 48.1 16.0 –

Voxel-wise – 3.3 1.9 1.8

F-tests
Cluster size

Stationary 0.001 15.9 2.9 –

0.01 41.1 11.6 –

0.05 75.7 25.4 –

Non-
stationary

0.001 13.6 3.3 –

0.01 35.9 11.1 –

0.05 70.3 24.4 –

Voxel-wise – 2.9 1.6 –

a Rejection rates for unpermuted data only were considered for FDR-corrected tests.
fication is a challenge, and their effect on neural phenotypes is
unknown (Meyer-Lindenberg et al., 2008).

Null SNPs were selected from chromosome 3, with the simple
rationale that none of the genes reported to have the strongest link
with AD are present on this chromosome. While this is clearly a crude
measure for selecting SNPs with no effect on grey matter distribution,
the use of multiple permutations ensures that any possible effects are
removed by breaking the association between genotype and pheno-
type. In fact, rejection rates obtained using permuted SNPs are not
significantly different from those obtained without permutation
6 mm smoothing 12 mm smoothing

αc Stationary Non-stationarya Stationary Non-stationaryb

t-tests
Cluster size

Stationary 0.001 0.5 5.5 2.3 8.2
0.01 1.0 11.7 1.6 13.0
0.05 13.0 35.9 6.9 21.9

Non-
stationary

0.001 0.6 1.1 2.7 2.6
0.01 0.9 0.3 1.4 1.9
0.05 9.3 10.7 6.4 7.4

Voxel-wise
FWE – 3.7 3.6 5.1 4.3
FDR – 4.7 4.0 2.9 2.7

F-tests
Cluster size

Stationary 0.001 0.3 5.6 2.9 7.7
0.01 0.4 10.7 0.9 10.9
0.05 2.1 20.3 2.4 20.4

Non-
stationary

0.001 0.4 0.7 3.1 2.7
0.01 0.4 0.1 0.9 2.3
0.05 1.1 1.4 2.2 2.1

Voxel-wise
FWE – 2.6 2.7 3.6 3.1
FDR – 2.0 3.4 1.4 1.3

a Images constructed from concentric regions smoothed with 4, 6 and 9 mm
Gaussian kernels.

b As in footnote a with 8, 12 and 18 mm Gaussian kernels.
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(considering a 95% confidence interval at ±2 SD), indicating that, for
the purposes of this study, SNP effects on brain structure are indeed
negligible.

We begin by considering the results obtainedwith the ADNI image
dataset.

Effect of cluster-forming threshold, αc

The choice of cluster-forming threshold, αc was found to have a
significant effect on cluster size inference rejection rates. For images
smoothed with a 12 mm Gaussian kernel, both stationary and non-
stationary tests were found to be well-controlled or conservative at
the most stringent threshold (αc=0.001). However, tests became
increasingly anticonservative at lower thresholds uc (higher αc) for
both 12 mm and 6 mm smoothed images.

A possible explanation for the poor performance at low uc is bias in
RFT's estimate of the expected number of clusters, E Cð Þ (Fig. 2). If
E Cð Þ is over-estimated, expected cluster size is under-estimated (see
Eq. (3)), meaning that more clusters of a given size are labelled as
significant. This over-estimation of E Cð Þ may reflect the inability of
the Euler Characteristic, ρ(uc), to accurately estimate the number of
clusters at low thresholds, where clusters are more numerous and
tend to coalesce to form topologically complex patterns (Taylor and
Worsley, 2008).

12mm vs. 6 mm smoothing kernels

The application of a wide range of Gaussian smoothing kernels in
VBM is evident in the literature — e.g. 4 mm (Schwartz et al., 2010),
8 mm (Folley et al., 2010) and 10 mm (Shen et al., 2010), as well as the
‘standard’ 12 mm (Rosen et al., 2010; Ueda et al., 2010). However
guidelines on the particular choice of smoothing kernel have been
described as ‘vague’ (Hayasaka and Nichols, 2003), and there is a
suggestion that kernel widths should be determined empirically
(Worsley et al., 1996b). Notably, with the use of high-dimensional
warping methods like DARTEL (Ashburner, 2007), there appears to be
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dotted lines respectively. The amount by which RFT overestimates E Cð Þ increases as the clu
the x axis for 6 mm smoothed images has a larger range, reflecting the fact that many mor
a trend towards lower smoothing kernels. Improved intersubject
alignment means there is a reduced need for smoothing to ‘blur out’
warping errors. For example, Bergouignan et al. (2009) use 12 mm
smoothing with SPM's standard normalisation and 8 mm with
DARTEL. While reduced smoothing should increase sensitivity to
effects of smaller size by “Matched Filter” arguments, cluster size tests
aremost sensitive to effects that are larger than the noise smoothness.
Hence, to the extent that large scale anatomical effects are present
after either low- or high-resolution warping, high-resolution results
may be more sensitive as effects will be larger in units of resels.

In the present study, differing amounts of smoothing were found
to have a pronounced effect on rejection rates. Tests on images
smoothed with a 6 mm Gaussian kernel were highly anticonservative
at all thresholds including the highest (αc=0.001), and were
consistently more anticonservative when compared with 12 mm
smoothing results.

Poor performance for low smoothness images is in fact to be
expected under the lattice assumption of random field theory
(Hayasaka and Nichols, 2003). As image smoothness decreases, this
lattice approximation breaks down, since the underlying variation is
poorly-captured by discrete, voxel-wise sampling. This means that
continuous RFT results are modelling unobserved, large intensity
changes between sampled voxels. While previous reports have
suggested 3 voxel FWHM smoothing (i.e. 6 mm FWHM smoothing
for the 2 mmvoxels considered here) is sufficient (Nichols and
Hayasaka, 2003), for the ADNI data this is insufficient. Specifically,
we find an over-estimation of the expected number of clusters, with
the gap between expected and observed values, E Cð Þ−C, generally
greater at 6 mm than at 12 mm (see Fig. 2).

Stationary vs. non-stationary tests

Non-stationary cluster-wise rejection rates were generally similar,
or slightly better-controlled than those assuming stationarity,
suggesting that there is at least some non-stationarity present in the
images. For non-stationary images, stationary tests would also be
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expected to perform worse at lower thresholds where clusters are
larger and more likely to encompass extra-smooth regions, and this is
indeed the case. A heuristic measure of image non-stationarity was
obtained by plotting the distribution of voxel-wise FWHM, obtained
from the RPV image produced by SPM (FWHM=RPV−1/3). A
completely stationary image would be expected to have constant
FWHM across the entire image volume. Any pronounced departure
from this suggests non-stationarity. An analysis of 6 mm and 12 mm
FWHM images (see Fig. 3) finds a spread of around 4 mm to 8 mm and
SD of 1.0 mm for 6 mm smoothed images, and 7 mm to 17 mm and SD
of 2.6 mm for 12 mm images. While this spread of FWHM could be
attributed to sampling variation, the theoretical SD of the FWHM
estimator can be computed by simulation (see Appendix B of
Hayasaka et al. (2004)). We find theoretical SDs of 0.696 mm for
12 mm smoothed stationary images, and 0.348 mm for 6 mm images,
which are much smaller than our observed values. While these
theoretical SDs under stationarity again depend on the accuracy of the
RFT results (and, note in particular the bias in the smoothness
estimation for 6 mm smoothing), they provide further evidence of
substantial image non-stationarity.

t vs. F image results

The t and F image cluster size results cannot be directly compared.
While the single degree-of-freedom F-test we used is exactly equal to
the square of the t-test used, the set of clusters generated will be
different for two reasons. First, the one-sided α level used to define a t
statistic threshold will not equal the square root of the F statistic
threshold of the same α level (an F's level corresponds to the t's two-
sided α level). Further, the F image has the clusters arising from
negative t values. Thus there will be both more and different clusters
in the F images for the same data and αc.

These caveats aside, the rejection rates on the real data were
largely similar for the same αc's, with valid performance found only
for 12 mm smoothed data with αc=0.001.

Simulated images

In marked contrast to tests performed on the ADNI image dataset,
non-stationary cluster size tests on simulated stationary and non-
stationary random images were found to be valid (conservative) at
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stationary image would have constant FWHM at all voxels. In contrast, a highly non-station
both high andmoderate cluster-forming thresholds (αc=0.001,0.01),
irrespective of image smoothness.

Other studies using simulated images produced from stationary
and non-stationary, Gaussian random fields have also considered the
effect of varying both the cluster-forming threshold and image
smoothing kernel. With stationary simulated images, Hayasaka and
Nichols (2003, Fig. 2) found that cluster size tests were conservative
over the same range of image smoothness with αc=0.001,0.01, in
agreement with our results. Using similar non-stationary simulated
data, Hayasaka et al. (2004) also found that non-stationary cluster size
tests were conservative with images of low smoothness (comparable
to our 6 mm non-stationary images), and with 20 subjects, but only
considered αc=0.01.

The large discrepancy in cluster size inference rejection rates
between real and simulated image data over a range of thresholds and
smoothing kernels suggests that there are features of the real VBM
data that may be incompatible with the RFT method. This may for
example be due to the inherent non-normality of VBM data, or to
patterns of non-stationarity in real images that are more complex
than those simulated here. Non-normality of VBM data has been
reported before, but only when considering the accuracy of voxel-
wise significance (Viviani et al., 2007; Salmond et al., 2002). This other
work found that imbalanced group comparisons required 12 mm
FWHM smoothing to accurately control voxel-wise false positives,
though balanced group comparisons were accurate with smaller
kernel sizes. As genotypes are rarely equally frequent, the imbalanced
results are most relevant to this setting.

We performed a number of additional simulations in order to
investigate the role of non-normality in cluster size inference. VBM
data is hard bounded between 0 and 1, and modulated VBM nearly so.
A Shapiro–Wilks test for normality at each voxel, using the spmd5beta
diagnostic toolbox (http://www.sph.umich.edu/~nichols/SPMd/)
reveals that both 6 mm and 12 mm smoothed images are indeed
highly non-normal. This deviation is particularly marked for 6 mm
images, with around 45% of voxels exceeding a nominal 5% Shapiro–
Wilks threshold. In contrast, the stationary Gaussian noise-derived
simulated images describe earlier show no significant deviation from
normality. To test the effect of introducing non-normality to our
simulations, we generated a set of images by first thresholding
Gaussian noise images smoothed with 6 mm and 8 mm kernels, to
produce ‘patchy’, binary images. These were then smoothed with
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Fig. 4. 12 mm VBM image non-stationarity. The figure illustrates the variation in image
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6 mm and 12 mm kernels to produce images with a range of
deviations from non-normality that mimicked or exceeded the
deviations from normality exhibited by the real VBM data, as
measured with a Shapiro–Wilks test. Regression of these images
against all 700 SNPs produced similar results to those described
earlier, with conservative results at high and moderate cluster-
forming thresholds with both 6 mm and 12 mm smoothing.

To test the effect of more complex patterns of non-stationarity, we
segmented FWHM images derived from 6 mm and 12 mm smoothed
ADNI images to produce a set of topologically complex masks
corresponding to regions of high, medium and low ‘smoothness’.
Non-stationary simulated images were then generated by filling each
masked region with differently smoothed Gaussian noise, as de-
scribed in the Section Imaging data. Once again, a full analysis
produced conservative results, with rejection rates below a nominal
5% for αc=0.001,0.01 for both 6 mm and 12 mm smoothed images.

One final set of simulated images was produced by again
generating complex, non-stationary FWHM-segmented masks, this
time filled with non-normal, Gaussian noise-derived data, as
described earlier. Rejection rates were again well-controlled, in
marked contrast to results obtained using real ADNI data.

A reviewer raised the concern that poor performance might be
attributable to the low (2.5%) threshold applied to the mean GM
image to create an analysis mask. To address this we ran an additional
set of tests using a mask based on a 20% GM threshold. This higher
threshold will exclude voxels with the least amount of GM and
those likely to have non-Gaussian errors, but also will change the
topology of the search region, making it more convoluted. While we
did find a slight improvement in test performance with the newmask
on real ADNI data, our findings were left unchanged, in that only
tests performed on 12 mm smoothed images with αc=0.001 were
well-controlled.

Conclusion

We found that RFT non-stationary cluster size tests on real VBM
data perform poorly at low cluster-forming thresholds and for images
with low smoothness. In a second analysis with synthetic image data
generated using Monte Carlo simulations, we found performance was
instead excellent, if conservative. The contradictory results indicate
there are features of the real VBM data that are incompatible with the
RFT method.

We suggest two possible reasons for this difference in perfor-
mance. First, as grey matter segmented data is hard bounded between
0 and 1, andmodulated VBM data nearly so, the data may exhibit non-
normality, violating a foundational assumption of the RFT method.
Second, while we simulated non-stationarity, the pattern of non-
stationarity observed in real VBM is substantially more complex
(Fig. 4). However, further tests using simulated images with both
significant deviations from normality, and with more complex
patterns of non-stationarity still produced conservative results, so
that we were unable to find evidence that either aspect of real VBM
data is responsible for the poor performance observedwith real image
data.

There are many ways to characterise deviations from normality in
image data, and it may be that the VBM data deviates from normality
in ways which we have been unable to capture in our simulations. The
same is true of our attempts to model the true complexity of non-
stationarity. Additionally, while RFT assumes that images can be
warped to approximate stationarity, for VBM these hypothetical
warps could be so convoluted so as to render the constituent
approximations inaccurate.

Fortunately, an alternative to parameteric, RFT-based cluster size
inference is available — a nonparametric permutation test where the
data itself is used to derive an empirical cluster size distribution under
the null (Hayasaka et al., 2004). While this approach carries a greater
computational burden, the false positive rates are exact (Hayasaka
and Nichols, 2003), and the permutation approach should be
reasonable for studies examining only a small number of SNPs.
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