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Abstract  

A number of human genetic polymorphisms are prevalent in tropical populations and appear to 

offer protection against symptomatic and/or severe malaria. We compared the prevalence of 

four polymorphisms, the sickle hemoglobin mutation (β globin E6V), the α-thalassemia 3.7 kb 

deletion, glucose-6-phosphate dehydrogenase deficiency caused by the common African 

variant (G6PD A-), and the CD36 T188G mutation in 1,344 individuals residing in districts in 

eastern (Tororo), south-central (Jinja), and southwestern (Kanungu) Uganda. Genes of interest 

were amplified, amplicons subjected to mutation-specific restriction endonuclease digestion (for 

sickle hemoglobin, G6PD A-, and CD36 T188G), reaction products resolved by electrophoresis, 

and genotypes determined based on the sizes of reaction products. Mutant genotypes were 

common, with many more heterozygous than homozygous alleles identified. The prevalences 

(heterozygotes plus homozygotes) of sickle hemoglobin (28% Tororo, 25% Jinja, 7% Kanungu), 

α-thalassemia (53% Tororo, 45% Jinja, 18% Kanungu) and G6PD A- (29% Tororo, 18% Jinja, 

8% Kanungu) were significantly greater in Tororo and Jinja compared to Kanungu (p<0.0001 for 

all three alleles); prevalences were also significantly greater in Tororo compared to Jinja for α-

thalassemia (p = 0.03) and G6PD A- (p<0.0001). For the CD36 T188G mutation, the prevalence 

was significantly greater in Tororo compared to Jinja or Kanungu (27% Tororo, 17% Jinja, 18% 

Kanungu; p = 0.0004 and 0.0017, respectively). Considering ethnicity of study subjects, based 

on primary language spoken, the prevalence of mutant genotypes was lower in Bantu compared 

to non-Bantu language speakers, but in the Jinja cohort, the only study population with a 

marked diversity of language groups, prevalence did not differ between Bantu and non-Bantu 

speakers. These results indicate marked differences in human genetic features between 

populations in different regions of Uganda. These differences might be explained by both ethnic 

variation and by varied malaria risk in different regions of Uganda.   

 

Keywords: Malaria, Plasmodium, Sickle, Thalassemia, G6PD, CD36 
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1. Introduction 

 Multiple human genetic polymorphisms are prevalent in tropical populations and offer 

protection against malaria, suggesting that these were selected in human populations due to 

protection against death from Plasmodium falciparum infection (Hedrick, 2011). As first 

proposed by Haldane, disadvantages of a homozygous mutation can be balanced by 

advantages to heterozygotes in protection against infectious diseases (Haldane, 1949).  It has 

been suggested that malaria has offered the strongest evolutionary pressure of any infectious 

disease in recent human history (Kwiatkowski, 2005), and disorders of erythrocytes are the 

most common genetic disorders of humans (Weatherall, 2008). 

Strong evidence supports balanced polymorphisms for sickle cell disease, α-

thalassemia, and glucose-6-phosphate dehydrogenase (G6PD) deficiency, all of which are 

deleterious primarily in homozygotes, but appear to offer protection against severe malaria in 

heterozygotes, and are most prevalent in populations currently or historically at high risk of 

mortality from falciparum malaria (Kwiatkowski, 2005; Taylor and Fairhurst, 2014; Verra et al., 

2009; Williams, 2006). The sickle hemoglobin mutation (β globin E6V) has a frequency of up to 

about 20% in populations in Africa, southern Europe, and India, and in multiple case-control 

studies the heterozygous AS genotype has been associated with over 70% protection against 

severe malaria (Kwiatkowski, 2005; Verra et al., 2009). α-thalassemia, due to deletion of one or 

more linked β globin genes, is very common in many tropical populations; the common variant 

in Africa contains a 3.7 kb deletion (Hedrick, 2011). α-thalassemia has been associated with 

marked protection against severe malaria in multiple studies from Africa (May et al., 2007; 

Williams et al., 2005) and elsewhere (Allen et al., 1997). G6PD deficiency is the most common 

enzyme deficiency in humans (Nkhoma et al., 2009). The common G6PD deficiency genotype 

in African populations is G6PD A- (V68M and N126D), which leads to an enzyme deficiency that 

is marked, but not as severe as with some other genetic variants (Town et al., 1992). G6PD A- 
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has been associated with protection against severe malaria in African populations (Guindo et 

al., 2007; Ruwende et al., 1995), although associations for this polymorphism have been less 

consistent than for sickle hemoglobin and α-thalassemia (Verra et al., 2009). 

The human CD36 antigen is an integral membrane protein in many cell types and a 

member of the scavenger receptor family that imports fatty acids into cells (Canton et al., 2013). 

CD36 is also an endothelial receptor for binding of erythrocytes infected with P. falciparum; this 

cytoadhesion is believed to be an important feature of the virulence of falciparum malaria, due 

both to its prevention of clearance of infected erythrocytes by the spleen and to local effects of 

cytoadhering parasites (Newbold et al., 1999). Importantly, expression of CD36 is low in the 

brain, even in the setting of cerebral malaria (Silamut et al., 1999), suggesting that binding to 

CD36 is most relevant in non-cerebral forms of severe malaria. CD36 is also believed to be an 

important macrophage pattern recognition receptor that mediates innate recognition and 

clearance of infected erythrocytes (Cabrera et al., 2014). Considering our current 

understanding, CD36 expression might be seen to contribute to malaria severity, by mediating 

cytoadherence, or to help control malaria, via immune effects. Results with murine malaria 

models have been complex; mice with decreased CD36-mediated cytoadherence had 

decreased growth of P. berghei (Fonager et al., 2012), but CD36-deficient mice had increased 

risk of fatal P. chabaudi malaria (Patel et al., 2007). Considering human populations, many 

CD36 polymorphisms, including nonsense mutations that prevent expression of the protein, are 

common, particularly in African populations (Aitman et al., 2000). However, attempts to identify 

associations between common polymorphisms and malaria risk have led to inconsistent results, 

with evidence for enhancement of (Aitman et al., 2000; Omi et al., 2002), no effect (Fry et al., 

2009), or protection from (Das et al., 2009; Omi et al., 2003; Pain et al., 2001; Sinha et al., 

2008) severe malaria with different polymorphisms.  
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 High prevalence of malaria-protective genetic polymorphisms is clearly associated with 

malaria endemicity, but prevalence varies among populations in endemic areas. Some of this 

difference can be explained by local malaria risk, as suggested by decreased prevalence of  

protective polymorphisms with increasing altitude in endemic countries (Hedrick, 2011). The 

prevalence of some protective polymorphisms has also been shown to vary between ethnic 

groups. In West Africa, the Fulani ethnic group has decreased susceptibility to malaria 

compared to Dogon populations (Bereczky et al., 2006), and the Fulani also have decreased 

prevalence of sickle hemoglobin (Nasr et al., 2008), α-thalassemia (Modiano et al., 2001a), and 

G6PD A- (Maiga et al., 2014; Modiano et al., 2001a) compared to other groups. In this case 

decreased malaria is likely not explained by genetic polymorphisms, but rather selective 

pressure for the balanced polymorphisms may have been lower in the Fulani due to decreased 

malaria incidence. In order to characterize the prevalence of key malaria-protective 

polymorphisms in Uganda, where malaria risk varies between regions of the country and ethnic 

diversity is great, we characterized polymorphisms in residents of three regions of the country.  

 

2. Materials and methods 

2.1. Study populations.  

Cohorts were enrolled in three regions of Uganda (Kamya et al., 2015). The study sites 

were Nagongera Sub-county, Tororo District, a rural area with high transmission intensity in 

southeastern Uganda near the Kenyan border; Walukuba Sub-county, a peri-urban area near 

the city of Jinja and adjoining Lake Victoria in south-central Uganda; and Kihihi Sub-county, 

Kanungu District, a rural area with moderate transmission intensity in southwestern Uganda 

(Figure 1). To establish the cohorts, all households within the three sub-counties were 

enumerated and mapped, and randomly selected households that included at least one resident 

0.5-10 years of age and one adult resident were enrolled, as previously described (Kamya et al., 

2015). This study included cohort members reported previously and additional subjects 
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recruited into the cohorts after prior reports (Kamya et al., 2015; Rek et al., 2016). Cohort 

household adults provided the primary language spoken by the household. All cohort subjects 

provided a blood sample for genetic analysis. The parent cohort study and the genetic 

evaluations described in this report were approved by the Makerere University Research and 

Ethics Committee, the Uganda National Council for Science and Technology, and the University 

of California, San Francisco Committee on Human Research.  

 

2.2. Laboratory reagents.  

All PCR and restriction endonuclease reagents were from New England Biolabs, except 

as noted. Other reagents were from Sigma-Aldrich, or as noted. Molecular grade water was 

used in all reactions. 

 

2.3. Sample collection and DNA purification.  

Blood samples were collected into EDTA tubes, and DNA was purified from buffy coats 

using QIAamp DNA Mini Kits (Qiagen), following manufacturer’s instructions with minor 

modifications. For each sample 300 μl of buffy coat was mixed with 20 μl of kit protease enzyme 

solution and then 200 μl of lysis buffer, the mixture was vortexed for 15 sec and incubated at 

56°C for 10 min, and then 200 μl of absolute ethanol was added. The mixture was vortexed 

briefly and transferred to a QIAamp column, and the column was spun for 1 min at 8000 rpm. 

The column was then washed twice with wash buffer, and DNA was eluted by incubating with 

80 μl of elution buffer at room temperature for 5 min followed by centrifugation at 8,000 rpm for 

5 min.  

 

2.4. Characterization of sickle hemoglobin.  

As previously described (Modiano et al., 2001b), 2 μl of purified DNA was amplified in a 

50 μL reaction consisting of 5 μl of PCR 10X Taq buffer, 1.0 μl each of 10 μM forward (5’-
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AGGAGCAGGGAGGGCAGG A -3’) and reverse (5’-TCCAAGGGTAGACCACCAGC-3’) 

primers, 5 μL of each dNTP (2 mM), and 0.2 μl Taq DNA polymerase (5 U/μL). PCR conditions 

were 96°C for 5 min followed by 30 cycles of 96°C for 30 sec, 60°C for 1 min, and 72°C for 30 

sec, followed by 72°C for 10 min. 15 μl of the PCR product was digested by incubating at 37°C 

for 3 h with 2 μL10X CutSmart buffer, 0.2 μL BSA, 1 μL MnlI (5 U/μL) or 0.5 μL DdeI (10 U/μL) 

endonuclease, and 1.8 μL water. All PCR reactions described in this report included positive 

and negative controls. Reaction products were resolved in 3% agarose gels and stained with 

ethidium bromide, and sizes were determined based on DNA ladders. Expected fragment sizes 

were, for MnII reactions: HbAA: 173 bp, 109 bp, and 60 bp; HbCC/SS/SC: 173 bp, 109 bp, and 

76 bp; HbAC/AS: 173 bp, 109 bp, 76bp, and 60 bp; and for DdeI reactions:  HbSS: 331 bp; 

HbSC: 130 bp, 201 bp, and 331 bp; HbCC: 201 bp and 130 bp; HbAS: 130bp, 201bp, and 

331bp; HbAC: 130 bp and 201 bp.  

 

2.5. Characterization of α-thalassemia 3.7 kb deletion.  

As previously described (Liu et al., 2000), 1.5 ul of purified DNA was amplified in a 25 μl 

reaction consisting of 12.5 μl HotStart Taq DNA polymerase mix containing dNTPs (Qiagen), 

0.5 μl forward primer (5’-AAGTCCACCCCTTCCTTCCTCACC-3’), 0.2 μl reverse primer 1 (5’-

ATGAGAGAAATGTTCTGGCACCTGCACTTG-3’), 0.2 μl reverse primer 2 (5’-

TCCATCCCCTCCTCCCGCCCCTGCCTTTTC-3’; each primer 25 μM), 1.25 μl DMSO, and 3.75 

μl glycine betaine (5 M). PCR conditions were 95°C for 16 min, followed by 35 cycles of 95°C 

for 60 sec, 62°C for 60 sec, 72°C for 150 sec, followed by 72°C for 10 min. Amplicons were 

resolved in 1% agarose gels and stained with ethidium bromide. Wild type (αα/αα) contained a 

single 2,213 bp product, heterozygotes (carriers, αα/-α3.7) products of 2,213 bp and 1,963 bp, 

and homozygotes (-α3.7/-α3.7) a 1,963 bp product.  

 

2.6. Characterization of G6PD A-.  

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

8 
 

As previously described (Fanello et al., 2008), 2 μL of purified DNA was amplified in a 30 

μL reaction containing 3 μl of 10X Taq buffer, 1 μL each of 10 μM forward (5’-

CTGGCCAAGAAGAAG ATCTACCC-3’) and reverse (5’-GAGAAAACGCAGCAGAGCACAG 3’) 

primers, 3 μl of each dNTP (2 mM), and 0.2 μl Taq DNA polymerase (5 U/μL). PCR conditions 

were 95°C for 5 min, followed by 30 cycles of 95°C for 40 sec, 64°C for 40 sec, and 72°C for 40 

sec, followed by 72°C for 10 min. 15 μl of the PCR product was digested by incubating at 37°C 

for 3 h with 2 μl 10X CutSmart buffer, 0.2 μl BSA, 0.3 μl NlaIII (10 U/uL), and 2.5 μL water. 

Reaction products were resolved in 2.5% agarose gels and stained with ethidium bromide. Wild 

type contained fragments of 300 bp and 150 bp; heterozygotes fragments of 300 bp, 150 bp, 

and 140 bp; and homozygotes (and hemizygous males) fragments of 150 bp and 140 bp. 

 

2.7. Characterization of CD36 T188G.  

As previously described (Das et al., 2009), 2 µl of purified DNA was amplified in a 50 μL 

reaction with 5 μl of 10X Taq buffer, 1 μL each  of 10 μM forward (5’-

CTATGCTGTATTTGAATCCGACGTT-3’) and reverse (5’-CTGTGCTACTGAGGTTATTTACTC-

3’) primers, 5 μl of each dNTP (2 mM), and 0.2 μl Taq DNA polymerase (5 U/μL). PCR 

conditions were 95°C for 3 min, followed by 40 cycles of 95°C for 30 sec, 55°C for 30 sec, and 

72°C for 1 min, followed by 72°C for 10 min. 15 μl of the PCR product was digested by 

incubating at 37°C for 5 h with 3 μl 10X CutSmart buffer, 1 μl NdeI (10 U/uL), and 11 μL water. 

Reaction products were resolved in 2% agarose and stained with ethidium bromide. Wild type 

contained fragments of 148 bp and 64 bp; heterozygotes fragments of 212 bp, 148 bp, and 64 

bp; and mutants a single 212 bp fragment. 

 

2.8. Data analysis.  

Outcomes for each tested genotype were categorized as wild type, heterozygous, or 

homozygous. For α-thalassemia the αα/αα genotype represents wild type, αα/-α3.7 the 
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heterozygote (silent carrier), and -α3.7/-α3.7 the homozygous mutation. For G6PD A-, 

homozygous females and hemizygous males were considered homozygotes. Prevalences of 

polymorphisms were compared using the Fisher’s exact test, with comparisons either between 

wild type and heterozygotes/homozygotes combined or between wild type and only 

heterozygotes. P-values <0.05 were considered statistically significant. 

 

3. Results 

3.1. Study sites and populations.  

Study populations were members of cohorts enrolled from a rural area of Tororo District 

in southeastern Uganda; a peri-urban area of Jinja District, in south-central Uganda; and a rural 

area of Kanungu District in southwestern Uganda (Figure 1; Table 1). Out of the 1,344 subjects 

enrolled, 44% were children under 5 years of age, 32% 5-10 years, and 24% above 18 years. 

Prior reports defined malaria transmission, prevalence, and incidence in the three cohorts, as 

summarized in Table 1 (Kamya et al., 2015; Rek et al., 2016). The sites differed markedly, with 

very high transmission intensity, parasite prevalence, and malaria incidence in Tororo District, 

lower levels of all of these parameters in Kanungu District, and the lowest levels in Jinja District. 

Of note, malaria transmission was considerably greater in earlier surveys of Jinja District, and 

transmission has since decreased greatly in Tororo District after a campaign of indoor residual 

spraying of insecticide that was launched in 2014 (Katureebe et al., 2016). Historically, it 

appears that malaria transmission intensity followed the rank order Tororo > Jinja > Kanungu 

(Yeka et al., 2012).  It is anticipated that various differences between study sites impact on 

malaria transmission intensity; our goal in this study was to compare human genetic 

polymorphisms that may have been selected under differential malaria selection pressures at 

the sites.  

 

3.2. Comparative prevalence of human genetic polymorphisms at three sites in Uganda.  
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DNA from cohort subjects was analyzed for the prevalence of four polymorphisms 

associated with protection against malaria: the sickle hemoglobin mutation (β globin E6V), α-

thalassemia, G6PD deficiency caused by the common African variant (G6PD A-; V68M and 

N126D), and the CD36 T188G mutation (which introduces a stop codon in exon 10). For all 

studied sites and alleles, >95% of samples were successfully analyzed. For all of these 

polymorphisms, mutant genotypes were common, with many more heterozygous than 

homozygous alleles identified (Table 2). HbC (β globin E6K) was not identified in any samples. 

Marked differences were identified in prevalences of polymorphisms of interest at the three 

study sites. For sickle hemoglobin, α-thalassemia, and G6PD deficiency, prevalences of wild 

type were lowest in Tororo and highest in Kanungu; for CD36 T188G prevalence of wild type 

was lowest in Tororo, and the same in Jinja and Kanungu (Table 3; Figure 2). Consideration of 

any two polymorphisms together yielded associations similar to those seen for individual 

polymorphisms, with prevalences of wild type generally lowest in Tororo and highest in Kanungu 

(Supplemental Table 1). 

 

3.3. Comparative prevalence of human genetic polymorphisms among different ethnic groups.  

 Uganda has a highly diverse population, and it was of interest to determine if differences 

in the prevalences of genetic polymorphisms were associated with the ethnicity of different 

populations. Ethnicity was defined based on the primary language spoken by the household, 

with stratification for speakers of Bantu and non-Bantu (Nilotic and Central Sudanic) languages. 

Each study population included a range of ethnicities, but the Tororo cohort was primarily 

composed of speakers of Dhopadhola, a Nilotic language; the Jinja cohort included a mixture of 

Bantu and non-Bantu speakers, and the Kanungu cohort contained nearly all Bantu speakers 

(primarily Bakiga and Banyarwanda; Supplemental Table 2). The four studied polymorphisms 

were all more common in non-Bantu speakers, with differences in prevalence statistically 

significant for all but the CD36 T188G mutation (Table 3). This result suggests that differences 
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in prevalence between Ugandan sites were largely explained by major ethnic differences among 

the study populations. However, when prevalences were compared among ethnic groups in 

Jinja, the only site with large numbers of both Bantu and non-Bantu speakers, no differences in 

prevalence of any of the studied polymorphisms were seen between Bantu and non-Bantu 

speakers (Supplemental Table 3). Thus, both ethnicity and place of residence appear to have 

contributed to the observed differences in prevalence of studied traits. 

 

4. Discussion 

 We characterized the prevalences of four common human genetic polymorphisms, each 

previously associated with protection against severe malaria, in three regions of Uganda. All 

four polymorphisms demonstrated similar patterns, with highest prevalence in Tororo District, in 

eastern Uganda and, except for CD36 T188G, lowest prevalence in Kanungu District, in 

southwestern Uganda. Considering ethnicity of study populations, prevalence of the 

polymorphisms was greatest among non-Bantu speakers. However, in Jinja District, the only 

site with a highly diverse ethnic make-up, prevalence of the polymorphisms was not associated 

with ethnicity. Our results indicate marked variations in the prevalences of malaria-protective 

human genetic polymorphisms between populations in different regions of Uganda and suggest 

that these variations might be explained both by ethnic differences and by varied malaria risk in 

different regions of the country.    

 The three Ugandan study sites differed greatly in recent malaria transmission intensity 

(Kamya et al., 2015; Katureebe et al., 2016). Tororo District has had very high transmission 

intensity recorded, with entomologic inoculation rates >300 infectious bites per year, although 

very recently transmission intensity has decreased due to an intensive IRS campaign. Jinja 

District has had decreasing transmission intensity, presumably due to both improved utilization 

of ITNs and malaria case management, and to effects of urbanization. Kanungu District has 

intermediate levels of malaria transmission intensity. However, appreciation of malaria 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

12 
 

transmission prior to recent intensive control efforts and urbanization suggests that the rank 

order for historical transmission intensity for these sites is Tororo > Jinja > Kanungu (Yeka et al., 

2012). Thus, our measured prevalences of genetic polymorphisms followed a pattern similar to 

that of historical malaria transmission intensity, with the prevalence of all four studied 

polymorphisms highest in Tororo, the region with the highest transmission intensity, potentially 

explained by the greatest selective pressure for mutations that protect against lethal malaria at 

this site.  

 Our study also collected information on the primary language of study households, a 

proxy for ethnicity, and thus it offered the opportunity to assess associations between ethnicity 

and genetic polymorphisms. A large literature has demonstrated that, in studies across 

populations, linguistic trees correspond remarkably well to genetic trees (Cavalli-Sforza, 1997).  

In our case, there were strong associations between language and genetic polymorphisms. The 

prevalence of sickle hemoglobin, a-thalassemia, and G6PD deficiency were all greatest in non-

Bantu speakers. Major movements of different African populations appear to have occurred 

over about the last 3,000-8,000 years (Beltrame et al., 2016). Our results suggest that non-

Bantu speakers, in our study consisting of speakers of Nilotic and Central Sudanic languages, 

whom appear to have originated from the area of modern Sudan and South Sudan, experienced 

greater malaria risk than did Bantu-speaking groups, who are believed to have originated 

around modern Cameroon and Nigeria (Beltrame et al., 2016). A number of dating studies 

suggest that sickle hemoglobin and G6PD deficiency  arose within the last few thousand years 

(Hedrick, 2011). The marked differences in prevalences of malaria-protective polymorphisms 

between ethnic groups are consistent with our recent understanding of the evolution of P. 

falciparum, with the appreciation that this parasite crossed from gorillas to humans quite 

recently, probably within the last 10,000 years (Loy et al., 2017). Thus, it is plausible that 

modern differences in the prevalence of malaria-protective human genetic polymorphisms are 

due to differences in malaria risk over the last few thousand years.  
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 In summary, we identified marked variation in the prevalences of human genetic 

polymorphisms in residents of three different regions of Uganda. These differences may be due, 

in part, to differences in historical malaria risk between these regions and to genetic differences 

between the ethnic groups principally inhabiting these regions. The large differences in 

prevalences of balanced polymorphisms between harmful homozygous and protective 

heterozygous mutations suggest a profound impact of fatal falciparum malaria on the human 

genome. 
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Figure legends  

Figure 1. Study sites. Districts and subcounties are labelled and shaded in gray and black, 

respectively. 

 

Figure 2. Prevalence of studied polymorphisms at the three study sites.   
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Table 1. Description of study sites. 

 

1
The cohorts consisted of children up to 11 years of age and adults over 18 years of age.  

2
These results are from Kamya et al., 2015. 

 

 

 

 

Table 2. Overall prevalence (%) of human genetic polymorphisms at 3 sites in Uganda. 

Polymorphism N Wild type Heterozygous Homozygous 

HbS 1,321 1,060 (80.2) 256 (19.4) 5 (0.4) 

α-Thalassemia 1,284 794 (61.8) 420 (32.7) 70 (5.5) 

G6PD deficiency 1,323 1,083 (81.9) 166 (12.5) 74 (5.6) 

CD36 T188G 1,334 1,061 (79.5) 263 (19.7) 10 (0.7) 

 
 
  

 Study site 

Characteristics of sites Tororo Jinja Kanungu 

     Location Southeastern South-central Southwestern 

     Setting Rural Peri-urban Rural 

     Altitude  695-1,443 m 1,102-1,500 m 886-1,329 m 

Number of study subjects
1
    

     Children 340 321 365 

      Adults 106 114 98 

     Total 446 435 463 

Malaria indicators (children)
2
    

     Entomological inoculation rate per year 310 2.8 32.0 

     Parasite prevalence 28.7% 7.4% 9.3% 

     Malaria incidence per year 2.81 0.43 1.43 
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Table 3. Comparative prevalence (%) of polymorphisms of interest at 3 sites in Uganda. 

Site Polymorphism P-value
1
 

 N WT Heterozy
gous 

Homozygous T vs. J T vs. K J vs. K 

 HbS    

Tororo 434 313 (72) 119 (27) 2 (1) 0.442  
<0.0001 

 
 

<0.0001 
Jinja 429 320 (75) 106 (24) 3 (1) 

Kanungu 458 427 (93) 31 (7) 0 

 

 α-Thalassemia    

Tororo 414 196 (47) 190 (46) 28 (7) 0.0327  
<0.0001 

 
 

<0.0001 
Jinja 430 236 (55) 156 (37) 38 (8) 

Kanungu 440 362 (82) 74 (17) 4 (1) 

 

 G6PD deficiency    

Tororo 438 310 (71) 80 (18) 48 (11) <0.0001  
<0.0001 

 
 

<0.0001 
Jinja 432 355 (82) 58 (14) 19 (4) 

Kanungu 453 418 (92) 28 (6) 7 (2) 

 

 CD36 T188G    

Tororo 442 324 (73) 114 (26) 4 (1) 0.0004  
0.0017 

 
 

0.724 
Jinja 433 360 (83) 67 (16) 6 (1) 

Kanungu 459 377 (82) 82 (18) 0 

 
1
P-values for comparisons of prevalences in Tororo (T), Jinja (J), and Kanungu (K) Districts were 

determined for comparisons of wild type (WT) vs. heterozygous + homozygous genotypes using the 
Fisher’s exact test. Consideration of WT vs. only heterozygous genotypes identified the same 
comparisons as statistically significant.  
 
 

Table 4. Comparative prevalence (%) of polymorphisms in Bantu and non-Bantu 
language speakers. 

Language Polymorphism P-value
1
 

 N WT Heterozygous Homozygous  

 HbS  

Bantu 692 595 (86.0) 96 (13.9) 1 (0.1) <0.0001 

Non-Bantu 472 358 (75.8) 109 (23.1) 5 (1.1) 

 

 α-Thalassemia  

Bantu 676 487 (72.0) 169 (25.0) 20 (3.0) <0.0001 

Non-Bantu 461 230 (49.9) 196 (42.5) 35 (7.6) 

 

 G6PD deficiency  

Bantu 689 606 (87.1) 65 (9.4) 18 (2.6) <0.0001 

Non-Bantu 464 342 (73.7) 79 (17.0) 43 (9.3) 

 

 CD36 T188G  

Bantu 652 542 (83.1) 106 (16.3) 4 (0.6) 0.094 

Non-Bantu 430 340 (79.1) 86 (20.0) 4 (0.9) 

 
1
P-values for comparisons of prevalences between language groups were determined for comparisons of 

wild type (WT) vs. heterozygous + homozygous genotypes using the Fisher’s exact test. Consideration of 
WT vs. only heterozygous genotypes identified the same comparisons as statistically significant. 
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Fig. 1 
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Fig. 2 
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Highlights for Review 

 

Prevalence of 4 malaria-protective human genetic polymorphisms varied across Uganda. 

Prevalence of mutations was lowest in southwestern Uganda. 

Prevalence of mutations was lower in Bantu compared to non-Bantu language speakers. 

Genetic differences might be explained by ethnic variation and varied malaria risk. 
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