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ANALYTIC PERSPECTIVE

Randomised and non‑randomised 
studies to estimate the effect 
of community‑level public health interventions: 
definitions and methodological considerations
Wolf‑Peter Schmidt*

Abstract 

Background:  The preferred method to evaluate public health interventions delivered at the level of whole com‑
munities is the cluster randomised trial (CRT). The practical limitations of CRTs and the need for alternative methods 
continue to be debated. There is no consensus on how to classify study designs to evaluate interventions, and how 
different design features are related to the strength of evidence.

Analysis:  This article proposes that most study designs for the evaluation of cluster-level interventions fall into four 
broad categories: the CRT, the non-randomised cluster trial (NCT), the controlled before-and-after study (CBA), and 
the before-and-after study without control (BA). A CRT needs to fulfil two basic criteria: (1) the intervention is allocated 
at random; (2) there are sufficient clusters to allow a statistical between-arm comparison. In a NCT, statistical compari‑
son is made across trial arms as in a CRT, but treatment allocation is not random. The defining feature of a CBA is that 
intervention and control arms are not compared directly, usually because there are insufficient clusters in each arm 
to allow a statistical comparison. Rather, baseline and follow-up measures of the outcome of interest are compared in 
the intervention arm, and separately in the control arm. A BA is a CBA without a control group.

Conclusion:  Each design may provide useful or misleading evidence. A precise baseline measurement of the 
outcome of interest is critical for causal inference in all studies except CRTs. Apart from statistical considerations the 
exploration of pre/post trends in the outcome allows a more transparent discussion of study weaknesses than is pos‑
sible in non-randomised studies without a baseline measure.
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Background
Public health interventions are often delivered at the level 
of a cluster, for example a community or larger areas, 
and not at the individual level. Allocating interventions 
at cluster-level has methodological, analytical and ethical 
implications. The development of methods for conduct-
ing cluster-randomised trials (CRT) has set a standard in 
the evaluation of public health interventions [1, 2]. The 
practical limitations of CRTs and the need for alternative 

methods continue to be debated [3–8]. The methodol-
ogy of other study designs is not well defined, and often 
remains explicitly ignored by textbooks (e.g. [2]). As a 
consequence, the quality of non-randomised designs 
may suffer, although they may require an equal or greater 
amount of thought [8] and methodological rigor [6].

There appears to be no consensus on how to clas-
sify study designs evaluating cluster-level interventions. 
Terms such as before-and-after trial, controlled before-
and-after trial and non-randomised trial can be found 
in reports of public health trials, often without account-
ing for cluster-level allocation of an intervention. This 
article reviews how cluster-level allocation affects the 

Open Access

Emerging Themes in
Epidemiology

*Correspondence:  Wolf‑Peter.Schmidt@lshtm.ac.uk 
Department of Disease Control, Faculty of Infectious and Tropical 
Diseases, London School of Hygiene and Tropical Medicine, Keppel St, 
London WC1E 7HT, UK

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12982-017-0063-5&domain=pdf


Page 2 of 11Schmidt ﻿Emerg Themes Epidemiol  (2017) 14:9 

classification of study designs and proposes a simple 
design-based classification of such studies. Key methodo-
logical features of different designs are discussed, espe-
cially with regard to their impact on the level of evidence 
potentially obtainable from a study. The article is meant 
to provide guidance for the planning stage of intervention 
studies where the intervention is allocated at community 
level, and is not intended to contribute to the method-
ology of systematic reviews, which has been reviewed 
extensively [9–11].

Analysis
Study designs for impact evaluations: a brief review 
of definitions
Habicht and colleagues suggested a framework in which 
study designs are categorised as adequacy, plausibil-
ity and probability evaluations [12]. According to this 
classification, adequacy studies are basically designs 
without a control group, plausibility studies are those 
with a control group not allocated at random, while 
randomised trials are referred to as probability studies. 
A more descriptive classification has been published by 
Kirkwood and colleagues, which distinguishes between 
pre-post, intervention-control and adopter versus non-
adopter comparisons, applicable to cohort, cross sec-
tional and case–control studies [13]. This is a useful 
approach, since within the different trial designs to eval-
uate community-level interventions, the traditional defi-
nitions of epidemiological studies (case–control, cross 
sectional, and cohort study) represent tools, not studies 
in themselves: the outcome in a randomised controlled 
trial can be assessed using a cross sectional survey or by 
enrolling a cohort.

The Cochrane Effective Practice and Organisation of 
Care (EPOC) group proposes four study designs suitable 
for inclusion into systematic reviews: randomised con-
trolled trials, non-randomised trials, controlled before 
and after studies and interrupted time series studies (ITS) 
[9]. Non-randomised trials are defined as trials where the 
investigator controls allocation, which is not at random. 
Controlled before-and-after trials are defined by pre- 
and post-intervention outcome assessment and a non-
random group allocation that is not under the control of 
the investigator. This is in line with a recent UK Medical 
Research Council definition of natural experiments as a 
design where allocation is not under the control of the 
researcher, and where the intervention is not done for the 
purposes of research [14]. In practice, however, it matters 
little under whose control allocation was done. It is either 
random or not. Taking an outcome measure before and 
after an intervention is also not a suitable defining feature 
as this is done in many randomised and non-randomised 
trials.

In this article, it is proposed that most study designs 
used for the evaluation of cluster-level interventions fall 
into four broad categories: the cluster-randomised trial, 
the non-randomised cluster trial (NCT), the controlled 
before-and-after trial (CBA), and the before-and-after 
trial without control (BA). Each of these, under cer-
tain conditions, has the potential for providing useful 
or misleading evidence, and the apparent hierarchy in 
the strength of these designs (CRT > NCT > CBA > BA) 
needs to be treated with caution [11]. This is in contrast 
to the Habicht classification, which links these designs to 
the strength of the obtainable evidence (adequacy, plau-
sibility, probability) [12]. Definitions and key design fea-
tures of CRTs, NCTs, CBAs and BAs are discussed in the 
following section, and summarized in Table 1.

Trial designs: key methodological features
Cluster randomised trial
A CRT as defined here needs to fulfil two basic criteria: 
(1) the intervention is allocated at random or using a 
quasi- random method of systematic allocation, and (2) 
there are sufficient clusters to allow a statistically mean-
ingful comparison between intervention and control. If 
fewer than 4 clusters are allocated to the intervention and 
control each (5–6 in a pair-matched trial), then the statis-
tical between-arm comparison is not informative as there 
is no chance for the p value to be low, e.g. lower than 0.05 
[1, 13]. A trial in which too few clusters are allocated to 
allow statistical between-arm comparison is not a CRT 
by this definition (in contrast to the EPOC definition [9]).

The methodology of CRTs has been described in 
depth [1, 2, 15]. The key difference between individually 
randomised and cluster-randomised studies lies in the 
loss in study power due to cluster-randomisation, often 
expressed as the design effect [1, 2, 15]. The design effect 
is the factor by which the sample size needs to be multi-
plied to account for clustering. The design effect can be 
unpredictable for outcomes with a high spatial or tem-
poral variability, as in the case of many infections [16]. 
Underestimating the design effect occurs even in other-
wise well-planned studies. For example, in the large-scale 
ZAMSTAR trial testing two tuberculosis case-finding 
interventions, the design effect was considerably higher 
than expected [17]. The effect sizes found were of public 
health relevance, but owing to the underestimation of the 
design effect the width of the confidence intervals pre-
cluded meaningful interpretation, at a cost of US$15m. 
Unless reliable design effect estimates are available or the 
effect size of interest is large, CRTs can be an expensive 
gamble. However, underpowered CRTs have one impor-
tant advantage over underpowered NCTs, CBAs or BAs: 
effect estimates in well-designed and well conducted 
CRTs can be regarded as unbiased even if the confidence 
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intervals are wide. Results from several inconclusive 
CRTs can be pooled in meta-analysis to improve preci-
sion. Statistically, meta-analysis is much more straight-
forward for CRTs than for non-randomised studies where 
pooled effects reflect the average amount of confounding, 
whereas in CRTs confounding can only be due to chance. 
Unlike in CRTs, a large number of studies included in a 
meta-analysis of non-randomised studies does not mini-
mise confounding.

While all study designs provide more convincing evi-
dence if the effect size of interest is large, the CRT remains 
the only study design suitable to investigate small effects. 
Both the confidence interval of the effect size and the risk 
of confounding can be minimised by increasing the sam-
ple size (in particular the number of clusters), sometimes 
allowing the detection of very small effects [18]. All other 
study designs are at higher risk of confounding, the size 
of which is independent of the sample size. Even if con-
founding can be minimised by statistical methods, the 
potential for residual confounding is likely to be larger 
than an expected small intervention effect.

As will be discussed in more detail below, the CRT 
is the only study design that does not require a base-
line measure of the outcome to minimise confounding, 
although a baseline can help to improve study power, 
explore eventual imbalances and adjust for these if appro-
priate. Imbalances between study arms can be assumed 
to have arisen by chance, unless proven otherwise. Base-
line measurements are costly, may cause reactivity  in 
the study population due to repeated surveying and may 
already be outdated by the time a delayed intervention is 
delivered. If no baseline survey is needed, the investiga-
tors are in the comfortable position of letting the imple-
menters work according to their schedule, and use the 
time to develop study procedures in a subset of the trial 
population or in external pilot clusters.

A disadvantage of CRTs is that for ethical reasons, 
participants often (but not always [19]) may need to be 
told that they are part of a trial, possibly altering their 
behaviour and response to questions [20–22]. This may 
be a considerable problem especially in trials that are 
neither blinded nor use an objective outcome measure. 
Several meta-analyses have shown that such trials pro-
duce estimates that are severely affected by responder 
and observer bias [20, 21]. These trials are the most 
problematic for the public since randomised trials carry 
a large weight in decision making, while it is the process 
of informed consent (usually required in a randomised 
trial) that may contribute to bias [21]. Not all may be lost 
for unblinded trials with a subjective outcome in  situa-
tions where the purpose of the outcome assessment can 
be hidden from the study participants, for example by 
presenting it as a general health survey. In this context, 

the unit of treatment allocation may be important. If 
an unblinded intervention evaluated using a subjec-
tive outcome (e.g. self-reported symptoms) is allocated 
to small clusters (e.g. households), the link between 
the intervention and outcome assessment may be obvi-
ous to participants and their responses are likely to be 
biased. If allocation is done at community level (e.g. a 
large scale government-led public health intervention), 
followed by surveys to assess disease symptoms, then 
the link between intervention and outcome assessment 
may not be obvious. For example, it has been demon-
strated through systematic reviews that unblinded trials 
of interventions of point-of-use (household) water treat-
ment with reported diarrhoea symptoms as outcome are 
severely biased, suggesting a 50% reduction in diarrhoea 
(despite poor compliance), while blinded trials showed 
no reduction [21]. In contrast, several CRTs on commu-
nity-level sanitation (an unblinded intervention) with the 
same outcome (self-reported diarrhoea symptoms) and 
equally poor compliance with the intervention showed 
no effect at all [23–25]. In both the point-of-use water 
treatment and the sanitation trials, compliance with the 
intervention was very poor. For both interventions, a 
true effect would have been biologically implausible. The 
absence of an observed effect in the sanitation trials may 
therefore be regarded not only as evidence for absence of 
a true effect but (in contrast to the water treatment tri-
als) also as evidence for lack of responder bias, possibly 
because participants did not link the health surveys to 
the intervention or did not expect any benefits from giv-
ing false information [23–25].

Non‑randomised cluster trial
In a NCT, statistical comparison is made across trial 
arms as in a CRT, but treatment allocation is not random. 
Allocation is done by the investigator or the implementer, 
e.g. based on logistics or needs. The EPOC definition of 
non-randomised trials requires that the investigator con-
trols allocation [9]. In the definition used here, allocation 
is not random and it does not matter who allocates. An 
implementer may decide to deliver an intervention in ten 
villages, and an evaluator may choose ten suitable control 
villages for comparison [26, 27]. With notable exceptions 
[28], participants may not need to be explicitly told that 
they are part of a trial. Trial procedures may more easily 
be camouflaged as general demographic and health sur-
veys than in a CRT, which may reduce responder bias.

NCTs need to demonstrate that intervention and con-
trol arms are comparable. Unlike in CRTs, imbalances 
are not due to chance until proven otherwise (which is 
usually impossible). Most often, baseline characteris-
tics are used to adjust for imbalances. Baseline vari-
ables may include (1) demographic and socio-economic 
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characteristics and other covariates potentially associated 
with outcome and intervention, and (2) a baseline meas-
ure of the outcome of interest. These two measures need 
to be clearly distinguished as it can be argued that adjust-
ing for the latter is likely to be more effective than for the 
former. In a sense, baseline variables are a predictor of 
the baseline measure of the study outcome, which in turn 
is a predictor of the outcome at follow-up. Then, concep-
tually, the outcome in the control group is used as a proxy 
to estimate the outcome in the intervention group had it 
not received the intervention (the “potential outcome” 
[29]). Hence, the baseline measure of the study outcome 
can be regarded as more proximate to the potential out-
come than other baseline variables. Investigating trends 
of the study outcome from baseline to follow-up is a fairly 
transparent way of exploring whether baseline imbal-
ances may have affected the effect estimate, as the trends 
in the outcome in different study arms can be openly 
discussed. If there is no baseline measure of the study 
outcome, then one can only compare other baseline vari-
ables (e.g. socio-demographic characteristics) between 
intervention and control, and then use these variables in 
a multivariable statistical model. Such models, however, 
usually represent a black box with an unknown amount 
of residual confounding [30]. It can be argued that the 
only way to make a NCT convincing is to obtain a pre-
cise baseline measurement of the study outcome and use 
it in the final analysis [31]. No amount of multivariable 
adjustment or matching of other variables, even if done 
with great care [27, 32], can replace the value of a precise 
baseline measure of the study outcome.

Statistical methods to account for baseline measure are 
imperfect and continue to be debated [33, 34]. Methods 
include the analysis of covariance (or lagged regression) 
method [33, 34], the analysis of change scores [4, 33, 34], 
and the exploration of the interaction between treatment 
allocation and time point [35]. In the analysis of covari-
ance method, regression models are used that include 
the baseline measure as just another explanatory vari-
able. The analysis of change-scores is based on between-
arm comparison of the difference between the outcome 
at follow-up and the outcome at baseline, measured in 
the same individual, or, in cluster-level analysis [36], in 
the same cluster [34, 37]. The interaction approach is 
required if different individuals are measured at baseline 
and follow-up, and is calculated as the interaction term 
between treatment allocation and time-point (e.g. base-
line vs. follow-up) [38]. The effect estimates produced 
by the change score and the interaction approaches are 
sometimes referred to as Difference-in-Difference (DID) 
[35]. All three methods work well if baseline imbalances 
are relatively small, but become problematic if imbal-
ances are large [4, 34, 37], which is fair enough as in this 

case trial arms are probably not comparable to start with. 
The regression approach works well if baseline and follow 
up measures are highly correlated, which is often the case 
for continuous variables such as child anthropometrics or 
blood pressure. The regression approach is problematic 
for binary outcomes. Binary outcomes measured at two 
different time points (e.g. diarrhoea prevalence or breast-
feeding in the past 24  h) are rarely highly correlated. 
Adjusting for a baseline measure showing only a low or 
moderate correlation with the follow up measure leads 
to regression dilution bias, and failure of the regression 
model to adequately adjust for any baseline imbalance 
[4]. The change score approach may be preferable in this 
situation [33]. It is important to maximise between-arm 
comparability and not solely rely on statistical methods 
to achieve balance, since the three methods mentioned 
above each rely on a number of assumptions. Choosing 
comparable control clusters is central in the design of 
NCTs (and similarly CBAs), for example by matching. 
Various matching methods can be applied to achieve 
comparability [31], including using publicly available cen-
sus data [27, 32]. The most promising approach may be to 
match intervention and clusters according to the baseline 
measure of the outcome of interest, which however may 
not yet be available at the time of recruitment.

A special case of NCT is the controlled interrupted 
time series study (CITS), which can provide high qual-
ity evidence [39–41]. Across a number of intervention 
and control clusters many repeated measurements of the 
outcome of interest are taken before and after the inter-
vention. Usually, CITS require the use of regularly col-
lected routine data, which often are only available at the 
level of large administrative units (e.g. states, provinces). 
The analysis focuses on whether a certain change in the 
outcome has taken place after the intervention in the 
intervention but not the control clusters. To include inter-
vention and control clusters in the same model, they need 
to be reasonably comparable. CITS have the advantage 
that the requirement of including at least 4–6 clusters per 
arm [1, 13] may be relaxed by including a fixed effect for 
cluster intercepts to control for time-invariant differences 
between clusters. It may not be necessary to consider ran-
dom variation in the intervention effect across clusters.

Controlled before‑and‑after study
The key feature of a CBA as defined here is that inter-
vention and control arms are not compared statistically. 
Rather, baseline and follow-up measures of the out-
come of interest are compared in the intervention arm, 
and separately in the control arm. The control arm only 
serves to get an idea of what the trend in the intervention 
arm might have been in the absence of an intervention. 
Whether or not the intervention is allocated at random 
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is of no relevance for this definition. For example, a trial 
allocating a total of four villages at random to interven-
tion and control (2/2) can only be analysed pre/post in 
each arm, because between-arm comparison is statisti-
cally uninformative, as there is no chance of observing 
low p-values [1, 13]. This definition is in contrast with 
the EPOC definition which defines a CBA as a trial where 
before and after measures are taken and where allocation 
is non-random and outside the control of the investigator 
[9], equivalent to the MRC definition of a natural experi-
ment [14].

Design and interpretation of CBA studies have been 
described [5], often disregarding the issue of cluster-level 
allocation. In CBAs, the study outcomes can be com-
pared statistically between different points in time before 
and after the intervention, but only separately for inter-
vention control clusters, not between them. The com-
parison between intervention and control arm can only 
be done informally without statistical methods, e.g. by 
producing a graph. Not being able to calculate a confi-
dence interval or p-value for between-arm comparison is 
unsatisfying, and usually excludes such studies from for-
mal meta-analyses. In some small CRTs or NCTs with for 
example 4 or 5 clusters per arm, statistical between-arm 
comparison is theoretically possible but may have low 
power. In one trial in India with just 5 clusters per arm, 

the investigators chose to analyse the data as a CBA, with 
the direct comparison serving only as a secondary analy-
sis to enable future meta-analyses [42]. The advantages of 
this approach are unclear and require further study.

Trend interpretation is critical in CBAs. Similar con-
siderations apply to NCTs, but in CBAs one cannot even 
use statistical analysis to compare trends across arms. 
An often cited requirement in NCTs and CBAs is the 
parallel-trend assumption, assuming that intervention 
and control arms would have shown the same trend from 
baseline to follow-up in the absence of an intervention. 
However, especially small scale CBAs can often only be 
meaningfully interpreted if no trend at all is observed 
in the control arm, i.e. if the outcome does not change 
over time in the absence of an intervention. A moder-
ate or even large change in the control arm from baseline 
to follow-up may more often indicate a methodological 
problem in the study procedures than a true change. The 
absence of a trend in the control arm makes a NCT but 
especially a CBA much more credible. Some possible 
trends observable in CBAs or NCTs are shown in Fig. 1. 
All scenarios share a similar Difference-in-Difference 
of about 3% (except B), but are not equally convincing 
[5]. Scenario A most strongly suggest an intervention 
effect, as in the control prevalence is similar at base-
line and remains constant at follow-up. In scenario B, 
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Fig. 1  Trend interpretation in non-randomised cluster trails (NCT) and before-and-after trails with control group (CBA): a good balance, no trend 
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intervention and control start at similar prevalence val-
ues that decrease in parallel, suggesting absence of an 
independent intervention effect. This scenario is often 
encountered in  situations of rapid economic develop-
ment, the health benefits of which overshadow public 
health interventions [43, 44]. In scenario C, prevalence 
is very different at baseline, suggesting that the two arms 
are not comparable. Caution is warranted in interpreting 
the DID estimate as an intervention effect. This applies 
even more to Scenario D where there is no change in the 
intervention arm and a prevalence increase in the control 
arm. Lack of baseline comparability or poor data quality 
may well be the cause for the observed trends. In CBAs 
and NCTs, considerable skill (and sometimes a bit of 
luck) is required to identify control clusters with compa-
rable outcome levels at baseline.

Strong and erratic temporal trends in the outcome 
measure can be natural (e.g. in infectious diseases), or 
may indicate a change in the sampling approach or survey 
tools from baseline to follow-up, or data manipulation 
(Scenarios E and F). In NCTs and CBAs, the evaluation 
of trends is greatly compromised by pre/post changes in 
the data collection methods, highlighting that great care 
must be taken to apply the exact same sampling proce-
dures and outcome assessment tools at all time points.

A trend in the opposite direction (Scenario F) raises the 
possibility of regression to the mean [45]: the interven-
tion clusters may have been chosen because prevalence 
was temporarily high prior to the intervention, indicat-
ing a need for an intervention. The control area may have 
been excluded from the intervention because of tempo-
rarily favourable indicators. Absence of regression to the 
mean effects is best demonstrated by including measure-
ments at different time points both before and after the 
intervention.

These examples demonstrate the many obstacles faced 
by trend analyses in the context of NCTs and especially 
CBAs to identify true intervention effects—the price of 
non-random allocation. They highlight the importance 
of rigorous study procedures to ensure comparability of 
baseline and follow-up surveys. They also show the value 
of comparing trends between trial arms, which allows a 
fairly transparent discussion about the merits and limi-
tations of a particular study. Consider a NCT, where no 
baseline data are available in scenarios A to F, and multi-
variable regression analysis is used to address confound-
ing. Even if as recommended [4] investigators carefully 
adjusted for confounders, reported their methods thor-
oughly and were conscious and critical of the assump-
tions they made, the analysis would still be a black box. 
Neither those who argue in favour of a true effect, nor 
those arguing that all is due to confounding have much in 
their hands to support their views.

Before‑and‑after study
This is a CBA without a control group. One or several 
measures of the outcome of interest are taken at baseline 
and follow-up, and compared. The absence of a control 
arm makes it difficult to support the assumption of an 
absence of a strong secular trend. In this definition (and 
in contrast to EPOC [9]), ITS studies are a special case 
of a BA. A typical scenario for a BA is the evaluation of 
a mass media campaign that targets a whole population, 
leaving no one to serve as control.

Temporal variability is even more problematic in BAs 
than they are in CBAs and NCTs, since in the absence of 
a control arm we do not know how variable the outcome 
would have been without an intervention. It may there-
fore not be possible to judge how “bad” the study was. 
However, some outcomes are naturally stable and are 
potentially suitable for BAs, but even here confounding 
is possible. Consider for example the mass media adverts 
to increase handwashing during the H1N1 pandemic in 
2009 [46], where it was hard to distinguish between cam-
paign effects, and the effect of the general anxiety altering 
people’s behaviour.

One method to increase the validity of a BA is to take 
several measures of the outcome of interest at baseline 
and follow-up, ideally to demonstrate a reasonable sta-
bility of the outcome of interest pre-intervention and, if 
the intervention is successful, at a different level post-
intervention. If many before and after measurements 
are available, ITS may allow obtaining statistically robust 
estimates [47, 48]. In their simplest form, ITS studies 
assume a common slope over time before and after an 
intervention and explore changes in the intercept at fol-
low-up. Uncontrolled ITS analysis addresses temporal 
variability but not the risk of confounding as in the H1N1 
example (unlike CITS).

A further way to improve BAs lies in combining it with 
an adopter versus non-adopter comparison. Adopters 
are usually defined as those complying with the interven-
tion or at least having been exposed to the intervention. 
Post-intervention adopter versus non-adopter compari-
sons are often used to evaluate mass media campaigns 
e.g. comparing outcomes in those that have seen a TV 
ad with those that have not seen it [13, 49]. Post-inter-
vention adopter versus non-adopter comparisons carry 
a high risk of confounding, as it is not clear how similar 
outcomes in adopters and non-adopters would have been 
without an intervention. If, however, the same individu-
als are surveyed before and after the intervention, then 
trends in the outcome can be assessed separately for 
adopters and non-adopters, allowing an estimate of the 
risk of confounding. This design then resembles a CBA 
study, but is methodologically different as there is no 
pre-planned or otherwise well-defined group of control 
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clusters. Therefore it is defined here as a subtype of BA, 
not CBA.

Study designs and the potential for obtaining relevant 
evidence
Evaluations of public health interventions at community 
level need to fulfil at least one of the following three cri-
teria: (1) randomisation of a sufficiently large number 
of clusters to allow statistical between-arm comparison 
(RCT), (2) if this is not possible, a precise baseline meas-
ure of the outcome of interest to assess baseline compa-
rability and to study trends from baseline to follow-up in 
the absence of an intervention (NCT, CBA), (3) if there 
is no control group, multiple measures of the outcome of 
interest at baseline and after the intervention (BA).

Compared to CRTs, NCTs, and in particular CBAs 
and BAs are problematic study designs, and likely to 
be most convincing if (1) the effect size is large; (2) the 
before-after trends are consistent across the majority 
of intervention clusters; (3) the outcome at baseline is 
approximately similar between intervention and control 
(CRT, NCT, CBA); 4) there is no major trend in either 
direction observable in the control clusters (NCT, CBA).

Different trial designs may be applicable at differ-
ent stages of an evaluation: for example, a campaign to 
promote exclusive breastfeeding (EBF) may need to 
achieve an exposure of say 90% of the target population 
to increase motivation to practice EBF from say 20 to 
70% (a difference of 50 percentage points) to achieve an 
actual increase in EBF from say 20 to 50% (a difference 
of 30 percentage points), to result in a reduction of diar-
rhoea prevalence from 10 to 8% (a difference of two per-
centage points). With each step, the effect size of public 
health relevance decreases: a reduction in diarrhoea of 2 
percentage points would be an important public health 
goal, while we would not be content with a 2 percentage 
points difference in intervention coverage or EBF. Similar 
arguments can be made for the evaluation of biomedical 
interventions such as micronutrient supplements, where 
high compliance is needed to achieve a large change in 
serum-micronutrient levels, which may lead to a moder-
ate change in subclinical disease and a small change in 
morbidity or mortality [50]. The smaller the effect size 
of interest, the larger the sample size and the better the 
study quality needs to be. In addition, the scope for con-
founding is likely to increase the more downstream an 

outcome is situated, as the number of potentially uncon-
trolled causal influences on the endpoint tends to add up.

Conclusion
Some study designs are likely to confuse public health 
decision making, rather than inform it [51]. These rely 
on multivariable analysis to control for confounding 
and include: NCT without a baseline measure (e.g. con-
ducted as cross sectional surveys or cohort studies post-
intervention comparing intervention and control areas); 
cross sectional surveys post-intervention comparing 
adopters and non-adopters e.g. to study the effect of a 
mass media intervention; BAs with only one measure 
of the outcome before and after the intervention. Case 
control studies are usually unsuitable for the evalua-
tion of community level intervention because of a high 
risk of confounding and bias, and the difficulty in deal-
ing with the community level exposure allocation [13]. 
Table 2 outlines a categorisation of study designs and the 
expected quality of evidence as a rough guide to help in 
the planning of an evaluation. There are situations where 
a study is little more than occupational therapy for field 
researchers. While there are many design features that 
threaten the quality of randomised trials, a landmark 
meta-analysis of clinical trials by Savovic and colleagues 
has demonstrated that in particular the combination 
of lack of blinding and the use of a subjective outcome 
strongly impairs validity [20], and this may particularly 
be the case for public health interventions [21]. CRTs are 
the preferable study design provided that either the out-
come is objective or allocation is blinded to participants 
and assessors. If this is not the case, then a CRT may not 
be the “gold standard” and should not carry more weight 
in health policy than NCTs, CBAs or BAs. It may often 
be better not to do such a trial, unless the purpose of the 
trial can be successfully hidden from study participants. 
Further, a precise baseline measurement of the outcome 
of interest is critical for causal inference in all studies 
except CRTs, to the point where non-randomised stud-
ies without a baseline measure may not be worth doing 
(Table 2). 

The main argument in favour of this view is not purely 
statistical. Rather, the exploration of pre/post trends in 
the outcome allows a more transparent discussion of 
study weaknesses than it is possible in studies relying on 
adjustment for other, more distal confounders.
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