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ARTICLE INFO ABSTRACT

Introduction: Genetic studies of osteoporosis have commonly examined SNPs in candidate genes or whole
genome analyses, but insertions and deletions of DNA, collectively called copy number variations (CNVs),
also comprise a large amount of the genetic variability between individuals. Previously, SNPs in the APC
gene have been strongly associated with femoral neck and lumbar spine volumetric bone mineral density
in older men. In addition, familial adenomatous polyposis patients carrying heterozygous mutations in
the APC gene have been shown to have significantly higher mean bone mineral density than age- and
sex-matched controls suggesting the importance of this gene in regulating bone mineral density. We examined
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Bone mineral density CNV within the APC gene region to test for association with bone mineral density.
Osteoporosis Methods: DNA was extracted from venous blood, genotyped using the Human Hap610 arrays and CNV deter-

Copy number variation mined from the fluorescence intensity data in 2070 Caucasian men and women aged 47.0 + 13.0 (mean4-SD)
APC years, to assess the effects of the CNV on bone mineral density at the forearm, spine and total hip sites.
Association Results: Data for covariate adjusted bone mineral density from subjects grouped by APC CNV genotype showed
significant difference (P=0.02-0.002). Subjects with a single copy loss of APC had a 7.95%, 13.10% and 13.36%
increase in bone mineral density at the forearm, spine and total hip sites respectively, compared to subjects
with two copies of the APC gene.
Conclusions: These data support previous findings of APC regulating bone mineral density and demonstrate that
anovel CNV of the APC gene is significantly associated with bone mineral density in Caucasian men and women.
Crown Copyright © 2012 Published by Elsevier Inc. All rights reserved.

Introduction such as asthma, autoimmune disease and psychiatric disease [5-13]

and recent data suggests CNVs may also be relevant to osteoporosis

Osteoporosis is characterized by low bone mineral density (BMD)
and deterioration in bone microarchitecture which results in fragility
and increased risk for fracture [1]. Several large genome-wide associ-
ation studies (GWAS) have recently identified single nucleotide poly-
morphisms (SNPs) associated with BMD and fracture risk [2,3].
However combinations of these SNPs only contribute approximately
5% of the risk of developing osteoporosis [4]. Alternative structural
genomic mechanisms, including copy number variations (CNVs), are
being investigated as a source of phenotypic variation in diseases
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[4,14].

In 2009, Yerges et al. screened for associations between SNPs in
383 candidate genes and femoral neck and lumbar spine volumetric
BMD and found three SNPs in the APC gene to be strongly associated
[15]. In addition, Miclea et al. conducted a cross-sectional study and
reported familial adenomatous polyposis (FAP) patients with hetero-
zygous mutations within the APC gene displayed significantly higher
mean BMD than age- and sex-matched controls [16]. The APC tumor
suppressor gene encodes for a protein known to be involved in a
broad spectrum of cellular processes including apoptosis, adhesion,
cell cycle control, cell migration and chromosomal stability [17-19].
However, its main role is to bind B-catenin, a key transducer of the
Wnt signaling pathway, and negatively regulate the Wnt signaling
cascade [20,21]. There is emerging evidence of the important role of
B-catenin in bone regulation and the pathophysiology of skeletal
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Table 1

Demographic data and bone density parameters of the TwinsUK cohort.
Variables Females Males

(n=1815) (n=255)

Age (years) 46.8+12.8 48.3+14.0
Height (m) 1.624+0.07 1.7540.07
Weight (kg) 67.04+12.6 80.7+124
BMI (kg/m?) 255+6.7 263439
Forearm BMD (g/cm?) 0.5554-0.058 0.658 4-0.062
Spine BMD (g/cm?) 0.997 £0.142 1.02640.151
Total hip BMD (g/cm?) 0.930+0.129 1.0424+0.144

Data are mean 4-SD.

disorders [22-24]. Interestingly, mice carrying a heterozygous loss of
function mutation in Apc display significantly increased BMD of the
distal femur [25]. Collectively, these data strongly imply that APC
may have a role in BMD through [3-catenin regulation. In this study,
we performed a candidate gene study of APC CNV to further examine
the effect of genetic variation in the APC gene on BMD.

Material and methods
Subjects and clinical assessment

Subjects who participate in the study were identified from the St
Thomas' UK adult twin registry (TwinsUK) and included both males
and females between 16 and 81 years of age. Measurement of the
anterior-posterior projection of forearm, lumbar spine (L1-4) and
total hip BMD was performed using DEXA (QDR 4500, Hologic) as de-
scribed previously [26]. Clinical data which included age, height and
weight were collected at interview and lifestyle questionnaires were
also completed. Body mass index (BMI) was derived by computation:
weight (kg)/height (m)2. All subjects from the TwinsUK cohort pro-
vided written informed consent, and the institutional ethics commit-
tees of participating institutions approved the experiment protocols.

Genotyping and CNV calling

Genotyping was performed on genomic DNA extracted from ve-
nous blood and analyzed using the Human Hap610 Quad array
(Illumina, San Diego, USA) according to the manufacturer's instruc-
tions. PennCNV software was used for the calling of CNVs, which
uses the combined values of log R ratio and B allele frequency values
and an integrated hidden Markov model [27]. Quality control thresh-
old was performed as per PennCNV guidelines [27].

Linkage disequilibrium

To assess the linkage disequilibrium of the APC CNV with sur-
rounding SNPs using available software, we recoded the CNV call as
a bi-allelic variable (“one copy loss” = TA and “two copy” = TT)
and combined this with the SNP genotype data obtained from the
Human Hap610 Quad array. We used SNP genotype data from all

50 kb

SNPs in the gene region including approximately 45 kb before and
after the APC gene, and perform linkage disequilibrium analysis
using Haploview 4.2 [28].

Statistical analyses

Statistical analysis was performed using SPSS for Windows v17.0
(SPSS Inc., Chicago, IL, USA). All individuals in the study were from in-
dependent families with only a single sib from each pedigree partici-
pating in the study. We first tested whether the following variables:
age, age?, height, BMI and sex were significantly associated with
BMD phenotypes using multiple linear regression — all variables
were retained as covariates in subsequent analyses. BMD standard-
ized residuals were generated after adjustment for covariates and
the differences in mean BMD for each genotype group were examined
using independent t-test. Two-tailed P values are reported through-
out, with values <0.05 considered statistically significant.

Results

The demographic data and bone density parameters for the study
subjects are detailed in Table 1.

Among the 2070 participants, eight subjects (0.4%) had a hetero-
zygous deletion encompassing a portion of the APC gene, with the
remaining 2062 (99.6%) subjects having two copies of the APC gene.
No subjects were detected with homozygous deletion or copy gain
in this region. Out of the eight subjects with a single copy deletion,
there were seven females and one male individual. Interestingly, the
eight different heterozygous deletions of the APC gene share a com-
mon deletion region (chr5:112144628-112152268 (hg18)), clus-
tered near the 3’ end of exon 5 of the APC gene (Fig. 1). However it
is unclear whether a specific region within the CNV is responsible
for the effect on BMD or whether any of the observed combination
of deletions of exons is sufficient to elicit the effect. In support of
the PennCNV genotypes for this region, a distinct decrease in log R
ratio values for the eight single copy subjects encompassing only
the APC gene, compared to 100 kb before and after the gene, was ev-
ident on examination of the genotyping array data (Fig. 2).

The pairwise linkage disequilibrium (%) of SNPs in the region approx-
imately 45 kb before and after the APC gene (chr5:112055101-
112254554 (hg18)) and the APC CNV is depicted in Fig. 3. This analysis
showed that the common one-copy deletion region, shared by the
eight affected subjects, is not in strong linkage disequilibrium with any
of the surrounding SNPs.

There was evidence of significant association between APC CNV
genotype and BMD at all sites studied: forearm, spine and total hip
(P=0.023, P=0.004 and P=0.002 respectively; Table 2) after ad-
justment for age, age?, height, BMI and sex. Subjects with heterozy-
gous deletion of the APC gene showed 7.95%, 13.10% and 13.36%
higher mean forearm, spine and total hip sites respectively compared
to subjects with two copies of the APC gene.

APC gene

Fig. 1. Location of the APC gene copy number variations in the eight individuals from the TwinsUK cohort. The APC gene transcript spans 108 kb at chromosome 5q22.2 (NCBI

Genome Build 36/hg18).
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Fig. 2. Graph of log R ratio by chromosomal position for the eight subjects with a single copy loss of the APC CNV in the APC gene region. Gray symbols represent log R ratio for SNPs
upstream/downstream of the CNV region and gray lines represent expected value for two copies. Black symbols represent log R ratio for SNPs within the CNV region and the black
line indicates the expected value of a loss in copy number (NCBI Genome Build 36/hg18).

Discussion

The data presented in this study provides evidence that CNV with-
in the APC gene is associated with increased BMD in a Caucasian co-
hort of 2070 individuals. We found strong evidence that subjects
with single copy loss of APC display a significantly higher mean
BMD than subjects with two copies of APC. These finding suggest
that the APC gene may be an important negative regulator of bone
mineral density in humans. Our results are in agreement with a re-
cently published study reporting that FAP patients with heterozygous
mutation in the APC gene also displayed increased mean BMD [16].
In addition, our findings in humans are supported by the study of
Holmen et al. which demonstrated that mice with osteoblast-
specific deletion of the Apc gene revealed significant accumulation
of bone matrix in the femur and dramatically increased bone deposi-
tion associated with disturbances in bone architecture and composi-
tion in the tibia [25].

A proportion of CNVs in the genome are in strong linkage disequi-
librium with common SNPs and potential association of those CNVs
can be assessed by association testing with the SNPs acting as surro-
gate markers. However this is not the case for all CNVs and in this
study we have shown that the CNV in the APC gene is not in strong
linkage disequilibrium with any of the surrounding SNPs. This lack
of linkage disequilibrium may account for the APC gene not being
documented to be associated with the regulation of BMD in recent
GWAS. In addition to identifying a novel CNV association with BMD,
our study also shows the importance of direct analysis of CNVs and
their role in diseases as it is not always possible to draw appropriate
conclusions from tagSNP studies alone.

We and others have previously examined the role of candidate
CNVs in osteoporosis and regulation of BMD [4,14,29] and this study
further adds to the growing body of literature on the role of CNVs in
bone metabolism. Our findings on the effect of APC CNV on BMD com-
pliment and extend the findings of Yerges et al. [15]. Data from
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Fig. 3. Linkage disequilibrium plot of the APC gene region for the TwinsUK cohort. The region of one copy loss shared among the eight affected individuals is titled APC CNV. Pairwise
linkage disequilibrium, measured as 12, was calculated from genotyping data using Haploview 4.2.
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Table 2
Mean bone mineral density parameters by body site in relation to the APC CNV
genotype.

Variable 1 copy 2 copies P value
Forearm BMD (g/cm?) 0.607 +£0.018 0.566 -+ 0.001 0.023
Spine BMD(g/cm?) 1.137 +£0.047 1.000+0.003 0.004
Total hip BMD (g/cm?) 1.077 +0.042 0.943 +0.003 0.002

Results are given as mean 4- SEM. P-values were determined using independent t-test
after adjustment for age, age?, height, BMI and sex.

studies of human missense mutations and that from the conditional
knockout mouse are similarly in accord with the findings of our re-
search. However, this is the first study that examined the effects of
CNV within the APC gene in BMD regulation in humans.

The tumor suppressor APC is an intracellular cytosolic Wnt signal-
ing inhibitor which forms a ‘multi-protein destruction complex’ with
axin and glycogen synthase kinase 3 (GSK3) [30]. Together with axin,
APC acts as a scaffold protein, increasing the affinity of GSK3 to bind
and phosphorylate 3-catenin, leading to its degradation by the 3-TrCP-
mediated ubiquitination/proteasome pathway [31]. This results in the
deactivation of the canonical Wnt signaling pathway. However, loss of
APC disrupts the destruction complex, thereby preventing the phosphor-
ylation and degradation of -catenin, leading to its cytoplasmic stabiliza-
tion and proliferation [32]. In the murine models presented by Holmen
et al., mice carrying osteoblast-specific deletions of both Apc and the
B-catenin genes are phenotypically similar to those lacking only the
[-catenin gene. This confirms that the phenotype induced by loss of
Apc is due to dysregulation of B-catenin signaling [25].

The most common target for both germ line and somatic mutation
within the APC gene lies mainly in exon 15, where more than 75% of
the coding sequence is located [33,34]. In our study, only one affected
individual had a single copy deletion encompassing all exons, includ-
ing exon 15, however the phenotype of that individual was not signif-
icantly different in comparison to other individuals with a 1 copy loss.
Although the common deletion region that the eight affected individuals
share is located within intron 6, this region does cover regulatory ele-
ments, including enhancer elements [35]. In addition, the single copy
loss for every individual encompasses at least 4 exons, which suggests
that each deletion would result in an abnormal or non-functional APC
protein. As there is strong evidence of the pivotal role of Wnt signaling
in bone regulation, this would imply that haploinsufficiency of APC re-
sults in over-activation of the canonical Wnt signaling pathway via the
stabilization of more B-catenin, increasing bone mass through diverse
range of mechanisms such as osteoblastogenesis induction, apoptosis in-
hibition of osteoblast and osteocyte, stimulation of preosteoblast replica-
tion and the renewal of stem cells [36-39].

Conclusions

Our data add to the accumulating evidence regarding the impor-
tance of CNV in the regulation of BMD and the role of the APC gene
as an antagonist to the canonical Wnt signaling pathway in the regu-
lation of bone mass. This study also demonstrates that as for some
other complex genetic diseases, CNVs may play a role in the regula-
tion of key clinically relevant traits and that this effect is not always
defined by attempting to exploit linkage disequilibrium of CNVs
with common tagSNPs.
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